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1 Introduction

The spectral problem of string theory on AdS3 × S3 × T4 backgrounds is believed to be
integrable [1–3].1 Given any set of NS-NS and R-R charges and any value of moduli [6],
an exact worldsheet S matrix satisfying the Yang-Baxter equation was constructed [7], by
using the centrally-extended symmetries of the magnons in this theory. This generalises the
findings for backgrounds with only R-R charge [8–10]. In all backgrounds supported by a
mixture of NS-NS and R-R charge, the elementary worldsheet magnons have mass m = 1
or m = 0 and come in two types, denoted by L and R, in reference to their chirality in the
dual CFT2. Their exact dispersion relations [7, 11] are2

EL(p) =
√
(m + k̄p)2 + 4h2 sin2 p

2 , ER(p) =
√
(m − k̄p)2 + 4h2 sin2 p

2 , (1.1)

where
k̄ = k

2π
, (1.2)

1For earlier work in this direction see [4, 5].
2Massless L and R representations are physically equivalent.
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with k ∈ Z the level of the WZW term in the action. Above, h is a function of the moduli of
the mixed NS-NS and R-R charges, whose exact form remains to be determined, but whose
leading order expressions are known [6].3 When k̄ is non-zero, the backgrounds have been
referred to in the literature as mixed-flux, because at a generic point in moduli space both
R-R and NS-NS fluxes are turned on in the supergravity solutions. As was clarified in [6],
mixed-flux backgrounds include the theory supported by only NS-NS charge, for which at a
generic point in moduli space the R-R three form flux is also non-zero due to the coupling to
R-R axions. Turning off such axion moduli corresponds to setting h = 0 and corresponds
to the WZW point [13]. With this clarification implict, we will continue to use the term
mixed-flux to refer to all backgrounds with k̄ ̸= 0.

Unlike in the R-R theory [9], the mixed-flux dispersion relations (1.1) are no longer
periodic in p and physical momenta can take any real value. As a result, the kinematics of
the excitations in mixed-flux theories is very different from the R-R cases. While momentum
periodicity is broken, it is nevertheless useful to think of distinct momentum intervals, each
with their own Zhukovsky sheets that can be reached through analytic continuation. While
most of the Zhukovsky sheets share some similarities with the familiar R-R ones, they have
important differences including a more complicated set of physical regions. In addition, there
is one set of sheets which exhibits a novel type of periodicity. We explore these new features,
in part using a visualisation programme [14] that is released together with this paper. For
example, we find that the bound-state structure is novel compared to R-R theories, with
bound states whose mass is larger than k being identified with fundamental excitations with
momentum on a different interval or equivalently on a different set of Zhukovsky sheets. This
novel behaviour places important restrictions on the S matrices through fusion, relating for
example the RL S matrix to the LL one.

This paper is organised as follows. In section 2, we disccuss in detail the mixed-flux
Zhukovsky variables in terms of which the S matrix is most easily expressed, as well as the
mixed-flux generalisation of the rapidity u, which has featured prominently in the quantum
spectral curve (QSC) of R-R backgrounds [15–18]. In section 3 we discuss the crossing
transformations that place restricitions on the scalar factors of the S matrix and summarise
our normalization conventions in section 4. In section 5, we review the R-R dressing factors
proposed as solutions to the massive crossing equations in [10]. It was pointed out in [19]
that these factors have unphysical logarithmic cuts in the Zhukovsky plane. Cavaglià and
Ekhammar showed that these unwanted cuts can be removed in a straightforward way
without spoiling the crossing or unitarity properites. This simple correction to [10] matches
the dressing factors found in [19]. We review these findings in section 5, before solving the odd
part [20] of the mixed-flux crossing equations in section 6. There, we also make proposals for
the even scalar factors in the theory, which give rise to the expected bound state poles, but
are trivial under crossing. Exploiting the periodicity on one of the sheets, we propose a scalar
factor closely related to that of the XXZ model at a root of unity, i.e., with anisotropy of the

3For each (supersymmetric) configuration of NS-NS and R-R charges, there is an exact string theory
background. The moduli of each background are different combinations of supergravity fields determined by
the attractor mechanism [12]. Of these moduli, only 4 have an effect on the closed string spectrum with zero
winding and momentum along T4 that is under consideration here. The dependence of the spectrum on thrse
moduli is entirely contained in the function h [6].
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form ∆ = cos π
k . We show how in a relativistic limit, our results reduce to those found in [21].

Finally, in section 7 we discuss the bound-state analytic structure and fusion and show their
compatibility with the odd dressing factors and the scalar factors we found. Finding the full
even dressing factor which generalises the even part of the Beisert-Eden-Staudacher (BES)
phase [20, 22] is beyond the scope of this paper and we hope to return to it in the near future.

2 Mixed-flux kinematics

The global symmetry of string theory on AdS3 × S3 × T4 backgrounds is psu(1, 1|2)2. When
quantising the worldsheet theory in uniform light-cone gauge around the BMN vacuum,
this is broken to psu(1|1)4. Each fundamental world-sheet excitation transforms in a short
representation of a particular central extension of this algebra, conventionally denoted
psu(1|1)4

ce.4 The dispersion relations (1.1) follow from the shoretening conditions, just as
they do in integrable R-R backgrounds, see [23, 24] and references therein. In the pure R-R
charge world-sheet theory (k̄ = 0) the dispersion relation is periodic

ER-R(p) =
√

m2 + 4h2 sin2 p

2 , (2.1)

while in the pure NS-NS charge theory at the WZW point (h = 0), the dispersion relation
reduces to a linear relativistic one

ENS-NS(p) = |m + k̄p|. (2.2)

In contrast to the case of R-R backgrounds (for which k̄ = 0), the mixed-flux dispersion
relations are not periodic. There is instead a shift symmetry

p → p ± 2π, m → m + k, (2.3)

with ± = − for L representations and ± = + for R representations, discussed below. In
this paper we are mainly concerned with fundamental excitations with mass m = 1. Since
the dispersion relation is no longer periodic, we allow for momenta of physical excitations
to take any real value, rather than being restricted to the [0, 2π] interval familiar from
integrable string theories with R-R flux. Analytic continuation in p will then lead to a
complex p plane with cuts.

The L and R dispersion relations have branch points at complex values of momenta for
which EL(p) = 0, respectively ER(p) = 0. The solutions of these equations, labelled p

(n)
b.p., with

n ∈ Z can be found numerically and come in complex conjugate pairs, with

Re
(
p

(n)
b.p.

)
∈
(
2π(n − 1

2), 2π(n + 1
2)
)
. (2.4)

We choose the cuts to lie along the contours where EL(p) is imaginary, so the cuts do not
cross the real p axis as shown in figure 1.5 It is natural to think about these two sheets
of the p plane as a physical sheet, which contains the line where p ∈ R and ReE > 0, and
a crossed sheet, containing the line p ∈ R and ReE < 0. However, as we will see later,
once we consider bound states, not all physical (crossed) states fully sit on the physical
(crossed) sheet of the m = 1 p plane.

4Upon imposing the level-matching condition on physical states the central extensions trivialise.
5Unless otherwise indicated the figures are drawn with the coupling constants set to h = 2 and k = 5.
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p

Figure 1. Location of branch points and branch cuts of EL(p). They come in complex conjugate
pairs and we label each pair by an integer n, with the n = 0 pair closest to the imaginary p-axis.

2.1 Zhukovsky variables

The mixed-flux dispersion relation and world-sheet S matrix take a simple form when
expressed in terms of Zhukovsky variables. Since the theory is not parity invariant, these
come in two types: x±

L and x±
R , corresponding to two types of short representations L and

R. Worldsheet energy and momentum can be expressed in terms of Zhukovsky variables
in the same way as in the R-R case

eip = x+
I

x−
I

, EI(p) = − ih

2

(
x+

I − 1
x+

I
− x−

I + 1
x−

I

)
, I = L, R. (2.5)

However, the L and R variables satisfy different shortening conditions

x+
L + 1

x+
L
− x−

L − 1
x−

L
= 2i(m + k̄p)

h
,

x+
R + 1

x+
R
− x−

R − 1
x−

R
= 2i(m − k̄p)

h
.

(2.6)

Focussing on the L representations, from (2.5) we find that an excitation with real momentum
and positive energy has x+

L in the upper half-plane and x−
L = (x+

L )∗. The shortening condition
is then solved by

x±
L (p, m) = Ξ±

L (p, m) ≡
m + k̄p +

√
(m + k̄p)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 . (2.7)

We often drop the arguments of x±
L and, unless otherwise specified, we then consider the

case of a fundamental excitation with m = 1.
The functions Ξ±

L (p, m) appearing on the right hand side of (2.7) can also be used to cover
the Zhukovsky planes. To do this we consider m ∈ R and because of the symmetry (2.3), we
can restrict to p ∈ [0, 2π]. In figure 2 we plot Ξ±

L (p, m) for m = −8, . . . , 6 and p ∈ [0, 2π]. From
the figure it should be clear that with m ∈ R, Ξ+

L (p, m) covers the UHP while Ξ−
L (p, m) covers

the LHP. We may view the parameter m as a type of radial ordering of the Zhukovsky planes.

– 4 –
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m=−4
m=−3
m=−2
m=−1
m=0
m=1
m=2
m=3
m=4

(a) Ξ+
L (p, m)

m=−4
m=−3
m=−2
m=−1
m=0
m=1
m=2
m=3
m=4

(b) Ξ−
L (p, m)

Figure 2. Plots of the functions Ξ±
L (p, m) with m = −8, . . . , 6 and p ∈ [0, 2π]. In the Ξ+

L (p, m)
(Ξ−

L (p, m)) plot the top (bottom) curve has m = 6 and m decreases as one moves to lower (higher)
curves, with the smallest oval curve shown having m = −8. Non-integer values of m will fill the
remaining parts of each half-plane. The blue curves have m = 1 and shows the location of fundamental
excitations with p ∈ [0, 2π].

(a) h = 7, k = 3

Scallion

Kidney

(b) h = 2, k = 5 (c) h = 1, k = 7

Figure 3. The scallion and kidney contours for various values of the couplings.

For later convenience we also introduce the related function

Ξ̃±
L (p, m) =

m + k̄p −
√
(m + k̄p)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 , (2.8)

which solves the L shortening condition when ReEL(p) < 0, as well as the functions

Ξ±
R (p, m) =

m − k̄p +
√
(m − k̄p)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 ,

Ξ̃±
R (p, m) =

m − k̄p −
√
(m − k̄p)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 ,

(2.9)

which solve the R shortening conditions when ImER(p) > 0 and ImER(p) < 0, respectively.
The contours Ξ±

L (p, m = 0) and Ξ±
L (p, m = −k), which are shown in figure 3, play a

distinguished role in the Zhukovsky planes: as we will see shortly they correspond to the
branch cuts in the u rapidity plane. We find their form reminiscent of scallion and a kidney
and we will often refer to these curves as such.

For a given real momentum p′ ∈ [0, 2π] and real mass m′ there is an infinite number
of complex momenta p such that x+

L (p, m = 1) = Ξ+
L (p′, m′) and also an infinite number

– 5 –
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L (p, m = 1) = Ξ±(p′, m′)

Figure 4. Plots of the complex p plane with contours labelled by m′ ∈ Z such that x±
L (p, m = 1) =

Ξ+
L (p′, m′) (in black) or x±

L (p, m = 1) = Ξ−
L (p′, m′) (in blue). The wavy red and green lines show the

pre-image of the real line in the x+
L and x−

L lines. We also indicate the location of the x+
L /x−

L scallion
with solid red/green curves, and the kidneys with corresponding dashed curves.

of (separate) complex momenta p such that x+
L (p, m = 1) = Ξ−

L (p′, m′). The same holds
for the equations x−

L (p, m = 1) = Ξ±
L (p′, m′). To illustrate this, figure 4(a) on page 6

shows the p plane with contours labelled by m′ ∈ Z such that x+
L (p, m = 1) = Ξ+

L (p′, m′) or
x+

L (p, m = 1) = Ξ−
L (p′, m′) for some real p′ ∈ [0, 2π]. Figure 4(b) shows the corresponding plot

for x−
L (p, m = 1). In the figures we have also indicated the curves mapping to the real line of

the x±
L planes, as well as the pre-images of the scallion and kidney contours. The distinguished

role of these contours can be seen in the figures: in the x+
L plot in figure 4(a) there is a branch

point where the x−
L scallion or kidney intersects with the x−

L real line. The nature of these
branch points is best understood through the u plane which we will introduce next.

2.2 The u-plane

Another variable that is often useful in integrable holographic models is the rapidity u. In
the mixed-flux setting this is defined as [11]

uL(x) = x + 1
x
− 2k̄

h
log x, uR(x) = x + 1

x
+ 2k̄

h
log x. (2.10)

– 6 –
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u

(a) Sheet covering the up-
per half of the xL plane.

u

(b) Sheet covering the
lower half of the xL plane.

x

(c) The xL plane with
preimages of long cuts.

Figure 5. The uL plane with long cuts.

The shortening conditions (2.6) can then be written as6

uL(x+
L )− uL(x−

L ) =
2im

h
, uR(x+

R )− uR(x−
R ) =

2im

h
. (2.11)

It is then natural the introduce the rapidities uL and uR such that

uL(x±
L ) = uL ± im

h
, uR(x±

R ) = uR ± im

h
. (2.12)

By solving du
dx = 0 we find that the branch points of xL(uL) are at

xb.p.
L = s, −s−1, (2.13)

while those of xR(uR) are at

xb.p.
R = −s, s−1, (2.14)

where, following [25], we have introduced the parameter s

k̄

h
= s − s−1

2 , (2.15)

with the convention that s ≥ 1, in which case

s = k̄ +
√

h2 + k̄2

h
, −s−1 = k̄ −

√
h2 + k̄2

h
. (2.16)

2.2.1 The analytical structure of uL(xL)

The function uL(xL) has a fairly complicated analytical structure. The inverse function xL(uL)
has branch points at xL = s and xL = −1/s. Additionally uL(xL) itself has a log cut which
sits on the negative real axis of the xL plane. Together this means that we will need an
infinite number of sheets in both the xL plane and the uL plane to describe the full function.

Let us first see what it takes to cover a single sheet of the xL plane. A simple choice is
to use “long” cuts, where the upper and lower half of the xL planes are completely covered

6This is clearly true for p ∈ [0, 2π] with the principal branch of the log. We will discuss the role of the log
cut further below.

– 7 –
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3
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x

Figure 6. A path wrapping twice around the origin of xL.

1

u

(a)

2

u

(b)

3

u

(c)

4

u

(d)

Figure 7. Four sheets of uL with long cuts.

by one sheet of the uL plane each.7 Figure 5(a) and 5(b) show the two sheets of uL with long
cuts, which cover the single xL plane shown in figure 5(c). We have shown how the regions
of the xL plane are mapped into the uL planes by using matching colours in the figures. In
figure 5(c) we have also explicitly drawn in black the pre-image of the two long cuts of uL(x)
shown in figures 5(a) and 5(b). We emphasize that these are not cuts in the xL plane and are
drawn merely to help visualise the gluing of the two uL planes. The only cut of the xL plane
is the log cut, whose location coincides with the wavy black line in figure 5(c). As is clear
from the picture, the two uL sheets are connected by the solid black line cut on the right.
If we instead go through the left cut, we simultaneously go through the log cut in the xL

plane and thus come out on a new sheet of the xL plane, which comes with two new uL sheet.
We emphasize that this is a new feature of the mixed-flux variables compared to the R-R
ones. To see this in more detail, figure 6 shows a path that wraps twice around the origin in
the xL plane. In the uL plane this corresponds to the path in figure 7.

A benefit of the long cuts is that each sheet of the xL plane is completely covered by
two full sheets of the uL plane. However, in what follows we will find it more convenient to

7We will refer to cuts as long, and later as short, because in the k = 0 limit they reduce to the well-known
short and long cuts of the R-R theory.
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work with “short” cuts. These can be thought of as the complement of the long cuts. We
cut each sheet of the uL plane into three pieces along horizontal lines coincident with the
long cuts, and then glue them back together along the opposite cuts. This partitions the
xL plane into a region outside the scallion, and region between the scallion and the kidney,
and a region inside the kidney, as shown in figures 8(a), 8(b) and 8(c), respectively. In these
figures, the solid and dashed black lines correspond to the pre-images of the short cuts of
uL(x). The wavy black line is the location of the log x cut, which further splits the inside
region into an upper and a lower part.

If we only consider a single sheet of the xL plane, the short cuts split the uL plane into
four parts. The outside region is covered by one sheet of uL with a single cut, see figure 8(d).
The between region corresponds to a horizontal strip of height 2k/h, see figure 8(e) and the
inside region corresponds to two disconnected and offset half-planes, see figure 8(f).

However, we can now easily extend the uL plane through the log cuts in the between
and inside regions. We then find that the between region gives rise to a periodic uL sheet
as in figure 8(h) while the region inside the kidney corresponds to a sheet with a single cut
as in figure 8(i).8 With short cuts the log cut is thus completely resolved in the uL plane.
As an example of this figure 9 shows the same path as in figures 6 and 7. With short cuts
the whole path sits on a single sheet.

2.2.2 The full uL plane

In the previous section we considered the analytical structure of the function uL(xL) and its
inverse. However, to describe the full kinematics of the mixed-flux string theory we need
both Zhukovsky variables x±

L . The full uL plane therefore has twice the number of cuts to
what was discussed above. Let us illustrate this by considering a path in the momentum
plane that goes from (0, 2π) to (−2π, 0) as shown in figure 10(a) on page 11. Its images in
the x+ and x− planes, drawn for compactness together in figure 10(b), split into four parts:

1. x± start out with real momentum p ∈ [0, 2π] and x+ is brought inside the scallion from
below,

2. x− is brought inside the scallion,

3. x+ goes through the log cut,

4. x± end up with real momentum p ∈ [−2π, 0].

Figures 10(c)–(e) shows the same path in the u plane. For real momentum p ∈ [0, 2π] there are
two cuts corresponding to x+ and x− going through the scallion. In the first step (figure 10(c))
we go through the x+ scallion cut. We then come out on a new sheet (figure 10(d)) where we
have a periodic set of x+ cuts (in red) but a single x− cut (in green). We go through the x−

cut. Finally, we come out (figure 10(e)) on a third sheet where both the red x+ cuts and
the green x− cuts are periodic. Since the u plane resolves the log cut we can just go up to
the real momentum line. Note that for real momentum p ∈ [0, 2π] we have chosen u to be
real. As we have just seen, this means that for p ∈ [−2π, 0] u will not be real.

8Here we draw the sheets that corresponds to the upper half of the kidney region of the original xL plane.
There is a second sheet corresponding to the extension of the lower half of the kidney, which looks identical
except the cut is shifted up by 2ik/h.
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Figure 8. The x and u planes with “short” cuts split into regions outside the scallion (figures (a), (d)
and (g)), between the scallion and the kidney (figures (b), (e) and (h)) and inside the kidney (figures
(c), (f) and (i)). When entering a cut in the u plane we come out on the next sheet in a region with
the same colour. The middle figures (d), (e) and (f) show the parts of the uL plane with short cuts
that cover a single sheet of the xL plane. The last row, with figures (g), (h) and (i), shows three sheets
of the uL plane after extending them through the log cuts. In the x plane, the solid and dashed black
lines correspond to the pre-images of the u short cuts, while the wavy black line is the location of the
log x cut.
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Figure 9. A path encircling the origin of the xL plane. The short cuts resolve the log cut.

p

(a)

12

3

4

x+

x−

x±

(b)

1

u

(c)

2

u

(d)

3

4

u

(e)

Figure 10. A simple path that takes x± from the outside of the scallion to the region between the
scallion and the kidney.

Consider next a path in the p plane that begins and ends on (0, 2π) and goes clockwise
around p = 0 as shown in figure 11(a). The image of this path in the x+ and x− planes,
again drawn for compactness together in figure 11(b) where both x+ and x− encircle the
origin as well as the branch points at s and −1/s once in a anti-clockwise direction. The
corresponding path in the u plane is shown in figure 11(c)–(e). From the point of view of
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Figure 11. A path describing a large circle in the x+ plane.

x±, the path takes us back to the exact same point we started at, but that is not true in the
u plane. Instead, the end point sits on a sheet which looks identical to the one we started
on except everything is shifted down by 2ik/h. If instead we had gone around p = 0 in an
anti-clockwise direction, we would have ended up on a u sheet where everything is shifted
up by 2ik/h. This argument shows that it is only the difference of u(x+) and u(x−) that
is physical, rather than the value of each.

We can also think about separate x+ and x− planes, where in, e.g., the x+ plane we
include not only the normal scallion and kidney, but also additional cuts where x− goes
through the scallion and the kidney. See figure 12 where we have also included the image
of the E(p) cut of the p plane as a black line.

2.3 The p, x± and u planes

We are now finally ready to discuss the full analytical structure of the p, x+, x− and u planes.
Let us start by summarising the types of cuts we encounter in the various planes:

1. The p plane has two sheets connected by an infinite number of E(p) cuts.

2. The x± planes have an infinite number of sheets. The sheets are connected both through
log cuts, along the negative real axis, and through the x∓ scallion and kidney cuts.
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Figure 12. The full x+ and x− planes as seen by an excitation with p ∈ (0, 2π).

3

3′

2

2′

1

1′

−1

−1′−2

−2′

−3

−3′

p

Figure 13. To go from real momentum p ∈ (2πn, 2π(n + 1)) to momentum p + 2π or p − 2π we need
to choose if we go above or below the point 2π(n + 1) or 2πn, respectively. Equivalently we need to
choose if we go through the log cut in the x+

L or x−
L plane. The paths −3,−2, . . . , 3 all cross the x+

L

log cut while the paths −3′,−2′, . . . , 3′ cross the x−
L log cut.

3. The u plane has an infinite number of sheets connected through the x± scallion and
kidney cuts.

A physical excitation with real momentum p (by definition) sits along the real line on the
first sheet of the p plane. It is natural to divide this real line into regions (2πn, 2π(n + 1)).
This corresponds to x−

L = (x+
L )∗ with Im x+

L > 0 and uL along a line with Im uL = kl/h for
some l ∈ Z, where l is an even (odd) integer when n is even (odd).

When p approaches a multiple of 2π x±
L and uL all diverge. In order to continuously

go between the different real momentum regions we need to go into the complex plane. At
each point 2πn we need to choose if we go above or below the point. Some such paths are
illustrated in figure 13. Let us first consider going from the region 0 (with p ∈ (0, 2π)) to
the region 1 (with p ∈ (2π, 4π)). The figure shows two paths:

1: Take x+
L into the scallion, through the log cut and then out of the scallion again.

1′: Take x−
L into the scallion, through the log cut and then out of the scallion again.
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(b) n = −2

u

(c) n = −1
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(f) n = 2

Figure 14. The physical region in the u plane for various momentum regions 2πn < p < 2π(n + 1).
The blue dots correspond to excitations with real momenta p = 2πn + π. The real momentum line
in the middle of the cuts. The u plane for n = −1 is periodic and shows an infinite number of both
scallion and kidney cuts. The other regions each have two cuts.

In either case the other parameter (x∓
L ) stays outside the scallion. Once we go down to the

real momentum line again we find that x±
L are now located on the

x±
L = Ξ±

L (p − 2π, m = k + 1) (2.17)

contours, where we write the momentum as p − 2π to emphasise that x±
L has momentum in

the (2π, 4π) range while the functions Ξ±
L (p, m) were define for p ∈ (0, 2π). Going to higher

momentum regions along the paths 2, 3, . . . or 2′, 3′, . . . is just repeating a similar path.
To go to the −1 region (where p ∈ (−2π, 0)) we take both x+

L and x−
L through both

scallions, see path −1 and −1′ in the figure. The region −2 (where p ∈ (−4π,−2π)) takes
us into the kidney, and to go to yet lower regions we just take one of x±

L out of the kidney,
through the log cut and then back in to the kidney again.

It seems natural to pick a convention where we always take say x+
L through the log cut.

This means that we go around the point p = 2πn in the upper half-plane for n ≥ 0 and in
the lower half-plane for n < 0. In the uL plane real momenta in region n then correspond
to Im uL = −nk

h . Moreover, for n ≥ 0 the x−
L scallion cut in the uL plane will be in a fixed

position with imaginary part +1/h, with the x+
L scallion cut at −(2nk+1)/h, and for n < −1

the x−
L kidney cut will always have imaginary part (k + 1)/h, with the x+

L kidney cut at
−((2n + 1)k + 1)/h, see figure 14.

The scallion and kidney cuts naturally partition the p planes into regions depending
on where x+

L and x−
L sit: outside the scallion, between the scallion and kidney, or inside

the kidney, as illustrated in figure 15.
For an excitation with real momentum, x±

L sit in the same region. In particular, if the
momentum p is in the range (2πn, 2π(n+1)), a physical excitation, which has positive energy
and sits on the real line of the first sheet of the p plane, has

x±
L (p, 1) = Ξ±

L (p − 2πn, 1 + nk) (2.18)

while a crossed excitation, with negative energy sitting on the real line of the second sheet
of the p plane, has

x±
L (p, 1) = Ξ∓

L

(
2π(n + 1)− p,−1− (n + 1)k

)
. (2.19)
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Inside/Outside

Outside/Inside

p

(a) The sheet ReE > 0

Inside/InsideBetween/BetweenOutside/Outside

Inside/Between

Between/Inside

Between/Outside

Outside/Between

Inside/Outside

Outside/Inside

p

(b) The sheet ReE < 0

Figure 15. The p plane can be naturally subdivided into regions depending on the location of x±
L . If

x+
L (x−

L ) is inside the kidney the region is filled with a solid red (green) colour, if x+
L (x−

L ) is between
the scallion and the kidney the region is filled with a diagonal red (green) pattern, and if x+

L (x−
L )

is outside the scallion we leave the region unfilled. The colours mix, so that, e.g., a solid brownish
colour means that x±

L are both inside the kidney and a solid green colour means that x+
L is outside

the scallion and x−
L is inside the kidney.

As a result, a crossed real momentum excitation has x−
L in the upper half-plane and x+

L

in the lower half-plane.

2.4 Bound states

In addition to fundamental excitations the world-sheet spectrum contains bound states
of such excitations. The basic construction of such bound states follows from psu(1|1)4

ce
representation theory and is the same as in the pure R-R theory [26–28]. An m-particle
boundstate has m constituent Zhukovsky parameters x±

j , j = 1, . . . , m satisfying9

x−
j = x+

j+1, j = 1, . . . , m − 1. (2.20)
9Here we will discuss bound states from the point of view of kinematics and representation theory. For a

particular bound state to actually appear in the physical spectrum the (bound state) S matrix needs to have a
pole corresponding to the formation of that bound state. We will discuss the poles of the S matrix in section 6.
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Figure 16. Bound state dispersion relations for h = 2, k = 5 and m = 1, . . . , k − 1. Note that for
negative momentum p and small bound state numbers m the energy is decreasing as m increases.

The bound state condition (2.20) ensures that the momentum, energy and charge of the bound
state only depends on the “outer-most” Zhukovsky parameters X+ = x+

1 and X− = x−
1 .

Using (2.5) we have

Etot =
m∑

j=1
Ej =− ih

2

m∑
j=1

x+
j − 1

x+
j

−x−
j + 1

x−
j

=− ih

2

(
X+− 1

X+ −X−+ 1
X−

)
, (2.21)

and

eiptot = X+

X− =
m∏

j=1

x+
j

x−
j

≡
m∏

j=1
eipj , (2.22)

where pj is the momentum of the j-th constituent of the bound state. From the shortening
condition (2.6) we find the charge

m + k̄ptot = − ih

2

m∑
j=1

x+
j + 1

x+
j

− x−
j − 1

x−
j

= − ih

2

(
X+ + 1

X+ − X− − 1
X−

)
. (2.23)

X± thus satisfy the L shortening condition (2.6).
In the uL plane the bound state condition (2.20) translates to a simple Bethe string

configuration of the form10

uj+1 = uj −
2i

h
, (2.24)

where
uj ±

i

h
≡ u(x±

j ), (2.25)

like in the pure R-R case.
It is worth stressing a feature of the bound state dispersion relation not present in

R-R theories

EL(p) =
√
(m + k̄p)2 + 4h2 sin2 p

2 . (2.26)

In figure 16 we plotted the dispersion relation of bound states with m = 1, . . . , k− 1 for k = 5.
We note that for p > 0 the energy increases with increasing m, as happens in conventional

10As we saw in the previous section we can shift u by a multiple of 2ik/h by taking x± through log cuts, so
for (2.24) to hold we need to pick the correct log branch for each uj .
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(a) 0 < p < 2π
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(b) 2π < p < 4π

Figure 17. Typical configurations corresponding to bound states. Figure (a) shows two bound states
with momentum p ∈ (0, 2π). The filled dots on the right show the locations of the five parameters
x±

1 , . . . , x±
5 making up a bound state with m = 7. Similarly, the hollow dots on the rights show the

locations of the four parameters describing a bound state with m = 4. Figure (b) shows a bound state
with m = 2 and p ∈ (2π, 4π).

relativistic theories and in R-R integrable backgrounds. However, as p is lowered from 0 to
−2π the energy levels cross each other, and for p < −2π the energy decreases as m increases
from 1 to k − 1. Hence, the lightest massive excitation for momentum on sheets with p > 0,
has m = 1, while on sheets with p < −2π the lightest massive excitation has m = k − 1.
Therefore, bound states on p > 0 sheets will be most naturally made up of m = 1 excitations,
while bound states on p < −2π will be made up of m = k − 1 excitations. As we will show in
section 7.1.3 below, an L excitation with m = k − 1 and momentum p is equivalent to an R
m = 1 excitation with momentum p + 2π. As a result, on the p < −2π sheets we can think
of L fundamentals and L bound states as being made up of R fundamentals.

From figure 16 we also see that the −2π < p < 0 sheet does not have a massive
excitation that is lightest for the full range of momenta. For momenta slightly less than
0, the m = 1 L excitation is lightest and bound states can be most naturally made from
it. For momenta slightly larger than −2π, the m = k − 1 L excitation is lightest so bound
states are naturally made from them or equivalently from the m = 1 R excitations. The
key feature of the −2π < p < 0 sheet is then the fact that the notion of fundamental and
bound state excitations does not make sense across the whole sheet, as there are momentum
regions where so-called bound states become less energetic than the fundamentals they are
made up from. We now discuss these observations more fully.

Bound states with p ∈ (0, 2π). Figure 17(a) shows two typical bound states with m = 4
and m = 7 and total momentum p in the (0, 2π) range.11 The highest component sits at x+

1 =
X+ = Ξ+

L (p, m). The next component sits two steps below that, at x−
1 = x+

2 = Ξ+(q1, m− 2),
where q1 is a real parameter which can be determined through the shortening condition
for x±

1 . The subsequent excitations sit along curves below this, with m decreasing in steps
of two, until we reach the lowest component x−

m = X− = Ξ−
L (p, m). In this way we can

11As in most figures in this paper, we set k = 5 here.
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Figure 18. p plane plot of two bound states with momentum in (0, 2π).

p

Figure 19. A two particle bound state with total momentum in (2π, 4π) in the p plane. Note that
the constituent on the left has momentum which is almost purely imaginary.

construct bound states with total momentum in the (0, 2π) range, and with all constituents
having (complex) momenta in the same range.

Figure 18 shows the same two states as in figure 17(a) but in the p plane. From
conventional relativistic intuition of bound states one might expect that energy and momentum
should be more or less evenly distributed among the constituents. This is indeed true for
the m = 4 states represented by the red hollow circles, because this state has relatively
small total momentum. However, as we increase total momentum, most of the energy and
momentum is carried by a single excitation as in the m = 7 state represented by the blue
dots in figure 18. Indeed, we can see that any excitation sitting on a contour Ξ±

L (p, m) with
m > 2 is confined to a small region close to the origin in the p plane. In the u-plane, the
p > 0 bound states sit at the same real value of u and are separated by 2

h in the imaginary
direction. In other words, they take the familiar “Bethe string” form (2.24), much like in
higher-dimensional integrable holographic models [29, 30].

Bound states with p > 2π. Let us now consider a bound state with total momentum
in (2π, 4π). We could try starting with two or more excitations each having momentum
in (2π, 4π). However, the resulting state would have momentum larger than 4π: the real
part of the momentum of each excitation is at least 2π so a two-particle state would have
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total momentum in the (4π, 6π) range. Instead, starting with an bound state in the (0, 2π)
range with bound state number m < k, we can analytically continue the momentum of one
of the constituents to the (2π, 4π) range, while imposing the bound state condition along the
path.12 As a result, at the end of the analytic continuation, the remaining m− 1 constituents
will have momenta close to the origin of the p plane.

Consider the m = 2 case in more detail: we begin with two excitations x±
1 and x±

2
which satisfy

x+
1 = X+, x−

1 = x+
2 , x−

2 = X−. (2.27)

For real momentum p ∈ (0, 2π), the middle roots x−
1 = x+

2 are real13 and X± = Ξ±
L (p, m = 2).

We now continue the top excitation to the next momentum region by taking X+ through a
log cut. Once we get back to a real momentum configuration we have

X+ =Ξ+
L (p−2π,k+2), x−

1 =x+
2 =Ξ−

L (p1,k), X−=Ξ−
L (p−2π,k+2). (2.28)

Because x±
1 sits in a higher momentum region there is a “gap” of size 2k in the Zhukovsky

plane, as shown in figure 17(b). Figure 19 shows the same state in the p plane. We could
instead have analytically continued the bottom excitation by taking X− through a log cut.
This would result in a similar configuration, with x+ and x− switched.

Both these configurations are closely related to m = k +2 bound states considered in the
p ∈ (0, 2π) paragraph above. For example, comparing the m = k+2 = 7 bound state shown in
blue in figure 17(a) (recall that k = 5 in the figure) to the m = 2 configuration in figure 17(b),
we see that the bound state Zhukovsky variables X± are the same for both configurations,
and the value of x−

6 = x+
7 of the m = 7 bound state agrees with x−

1 = x+
2 of the m = 2 bound

state. As we will show in section 7.1.1 below, the remaining 2k = 10 Zhukovsky variables of
the m = 7 bound state, not present in the m = 2 bound state form a singlet state [31, 32],
which has trivial scattering with all physical excitations. As a result, the m = 7 bound state
in figure 17(a) and the m = 2 bound state in figure 17(b) are in fact the same state.

If we had instead analytically continued the X− variable of the m = 2 bound state
to the higher momentum region, i.e. through a log x cut, we would obtain a configuration
similar to the one depicted in figure 19, but mirrored around the horizontal axis. This
state too is equivalent to the m = 7 bound state in figure 17(a), by an analogous argument
involving another singlet state.

In a similar way we can obtain bound states in momentum regions (2πn, 2π(n + 1)) with
n > 1 by analytic continuation of one of its components. The singlets that imply equivalence
of the different possible analytic continuations will in general involve 2kl Zhukovsky variables,
with l ∈ N+. For any such higher-momentum bound state almost all of the energy and
momentum is carried by the component that is analytically continued to highest momentum
sheet. The other constituents sit close to the origin of the p plane. As we will show in
section 7.1.1, these higher momentum bound states with momentum p = 2πl + p0 and bound

12The interested reader may find it useful to experiment themselves with such analytic continuations in the
visualisation programme [14].

13To be precise the middle root is real for momentum up to some critical value. Beyond that the middle
root sit on one side of the scallion: x−

1 = x+
2 = Ξ+(p′, m = 0) or x−

1 = x+
2 = Ξ−(p′, m = 0).
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Figure 20. Typical configurations corresponding to bound states with p < 0. Figure (a) shows
a bound state with m = 4 and p ∈ (−2π, 0) and figure (b) shows a bound state with m = 2 and
p ∈ (−4π,−2π). In figure (b), note x−

j gets closer to the kidney contour with increasing j.

p

Figure 21. Two two-particle bound states. The red circles show a bound state with momentum in
the (−2π, 0) range, while the dots show a bound state in the (−4π,−2π) range. Note that the dot on
the right, close to the origin of the p plane, is drawn in grey to represent that it is located on the
other sheet of the p plane, and thus carries energy with a negative real part.

state number m0 are equivalent to bound states with momentum p0 ∈ [0, 2π] and bound
state number m = m0 + kl,

Bound states with p ∈ (−2π, 0). To construct a bound state with momentum in the
range (−2π, 0), we can start with a bound state in (0, 2π) and analytically continue all
Zhukovsky parameters through the scallion, essentially following the same path we would
use for a single fundamental excitation, crossing log x cuts in the process.14 An example
of such a bound state is shown in figure 20(a).

In this momentum region bound state constituents exhibit a novel property we aluded to
above when discussing figure 16. To see this in detail, consider a three-particle state with

14If we were mainly interested in states with p < 0 it would be more natural to put the log cut along
the positive real line. Another choice could be to put it along the interval from x = 0 to x = +s and from
there along the upper half of the scallion contour. However, we find it easiest to leave the log cut along the
conventional negative part of the Zhukovsky real line.
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Figure 22. Three-particle bound state. Here h = 1 and k = 7.

momentum in the range (−2π, 0) and close to 0, as shown by the blue dots in figure 22. The
middle excitation has real momentum p2 and thus real energy E2, while the outer excitations
have complex momenta p1 and p3 and complex energies E1 and E3. Since the total momentum
and energy of the bound state are real, we have p1 = p∗3 and E1 = E∗

3 . Let us now make the
total momentum more negative. This also decreases p2. As p2 hits some critical value pc, the
outer excitations hit the black line representing the cut of E(p). This means that the real
parts of E1 and E3 vanish. If we further lower the momentum, ReE1 and ReE3 will become
negative. Hence, for p2 < pc we find that a single “fundamental” m = 1 L excitation with
momentum p2 has higher energy than the m = 3 L three-particle bound state we built from
it. We saw precisely this behaviour earlier in the plot of the bound state dispersion relations
in figure 16: at low momentum the energy decreases as the bound state number increases.
This unusual non-relativistic behaviour does not lead to a pathology. If we think about the
bound state dispersion relation as a function of m for a fixed bound state momentum p, that
function has a minimum at m = −k̄p, which means that the spectrum still is bounded from
below. As we have argued above, in this intermediate region of momenta, or in other words
between the kidney and scallion, there is no single excitation which has lowest energy for all
momenta. The analytic continuation we have just described starts in a sub-region where the
m = 1 excitation is least energetic and so it is natural to think of the m = 3 excitation as
a bound state of it. But, as we continue to lower momenta, the m = 3 excitation becomes
less energetic than its m = 1 constituents. We can continue thinking of it as a bound state,
if we allow the constituents to live on the crossed momentum sheet. Alternatively, we can
declare that here the m = 3 excitation is “fundamental”.

Finally, we note that there are only 2k − 1 contours between the scallion and the kidney.
Thus, only bound states with m ≤ k can have all their constituents in the same region. If we
want to go beyond that we need to include excitations that have, e.g., x− inside (or on) the
scallion and x+ outside the scallion. Allowing for that we can however build bound states
for any m. These will be related to lower bound state number states with more momentum,
using the singlet argument from section 7.1.1.

Bound states with p < −2π. To construct a bound state with p ∈ (−4π,−2π) we start
with a bound state in the (−2π, 0) region and continue the top component to the (−4π,−2π)
region. In doing so the other constituents of our starting bound state will unavoidably go
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into the crossed (0, 2π) region. This results in a state where all the excitations sit inside
the kidney, see figure 20(b). The same construction can be used to build bound states with
p < −4π. We see again the consequences of the discussion around figure 16: insisting on
viewing these states as bound states of m = 1 fundamental excitations necessarily implies
that some of the m = 1 constituents must be on crossed momentum sheets.

To obtain a more conventional picture of bound states for p < −2π, recall that in this
region the m = k − 1 L excitations are lightest. We can therefore form bound states of the
m = k − 1 excitations, whose constituents will remain on the physical m = k − 1 momentum
sheet, as long as the bound state itself is on the physical sheet. In fact, this can further
be simplified, because, as we will show in section 7.1.3 below, m = k − 1 L excitations are
equivalent to m = 1 R excitations. Therefore, the bound states we are discussing here are
equivalent to bound states of R fundamentals in the region outside the R-scallion. But such
bound states are constructed in essentially an identical way to the construction of boundstates
from m = 1 L fundamentals that we discussed in the p > 0 and p > 2π paragraphs above.15

2.5 “Physical” regions

In the pure R-R theory, the dispersion relation (2.1) is periodic. This is an unusual property for
a theory on a decompactified worldsheet and allows for a periodic identification of momentum.
For example, upon this identification, analytically continuing past the p = 2π point, following
a path analogous to the blue line labelled 1 in figure 13, brings one back to the p = 0 region.16

As we have discussed at the begining of section 2, for mixed-flux backgrounds the
dispersion relation (1.1) is no longer periodic and no corresponding identification of the
momentum complex plane can be made. Since analytic continuation past the points p = 2πn,
for n ∈ Z, as shown by the blue paths in figure 13, does not cross the black E(p) cuts, it
leaves us on the physical momentum plane. Its effect is simply to increase the physical
excitation’s momentum. Unlike in the periodic R-R theory, this is conventional behaviour for
magnons on a decompactified worldsheet and implies that at least a neighbourhood of the
whole real momentum line needs to be included in the physical region. In turn, analyticity of
the S matrix requires that one cannot arbitrarily restrict to some sub-region of the complex
momentum plane which does not include the whole real momentum line.

Based on experiences with R-R theories [33], it may seem useful to identify the physical
region in the x± and u variables. In R-R theories the physical region is the minimal region
such that all excitations used to build up physical states are located in it. Conventionally,
it is taken to be the region outside the unit disc |x±| > 1 or equivalently the full “top” u

sheet with two cuts. As we have seen in section 2.3, in the mixed-flux setting, there are
an infinite number of u planes labelled by n ∈ Z, each one containing the image of a real
momentum interval p ∈ [2πn, 2π(n + 1)]. Analytically continuing past the points p = 2πn for
n ∈ Z, as shown by the blue paths in figure 13, takes one through the (pre-image) of a log
cut to new u-rapidity planes. Apart from the n = −1 plane, each of these u-planes contains

15For example, such R bound states are easily deduced from the L ones shown in figure 17(a) by reflecting
in the imaginary axis.

16The interested reader may find it instructive to set k = 0 in the accompanying visualisation programme [14]
to compare and contrast the R-R and mixed-flux complex momentum planes.
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a pair of “short” cuts, see figure 14, with the image of the corresponding real momentum
interval a horizontal line marked by a blue dot. The short cuts are images of scallions for
n > −1 and kidneys for n < −1.

For excitations with momentum p ∈ [0, 2π], we have seen in the preceding section
that fundamentals and bound state constituents are all located outside the scallions (cf.
figure 17(a)). Hence, the physical region is the whole n = 0 u plane with “short” red and
green cuts shown in figure 14(d). These cuts are the images of the x+ and x− scallions and
the physical u plane corresponds to the region outside the (red and green) scallions depicted
in figure 12.17 As mentioned in the preceding section and discussed more fully in section 7.1.1
below, bound states of momentum p0 with bound state number m = m0+kl, with l, m0 ∈ Z+,
are equivalent to bound states with m = m0 and p = p0 + 2πl. This equivalence means
that we can also include all the un>0 sheets with pairs of scallion cuts in our definition of
the p > 0 physical region. The inclusion of these sheets introduces a redundancy in the
physical region, by giving equivalent ways of describing the same excitaitons. At the same
time, including them allows us to understand the consequences of analytic continuation across
the full momentum plane using the identifications of section 7.1.1, without overcounting
the number of independent excitations.

For bound states with momenta p < −2π, we saw that it is most natural to think of
these as bound states made up of m = k − 1 L bound states or equivalently as m = 1 R
fundamentals,18 since these are the lightest massive excitations in this momentum region.
When expressed in terms of m = 1 R fundamentals, the physical region is outside the R
scallions, in direct analogy with the p > 0 physical region being outside the L scallions of the
preceding paragraph.19 Similarly, the physical region corresponds to the full uR,−2π<pR<0
sheet with two “short” cuts where the R scallions (a.k.a. L kidneys) sit. As in the case of
the un>0 sheets from the previous paragraph, the equivalence of bound states whose bound
state numbers differ by integer multiples of k and momenta differ by corresponding multiples
of 2π implies that all uR,pR<−2π sheets with single R scallions (equivalently L kidney cuts)
can also be included as part of the physical region.

In summary, ignoring the un=−1 sheet for now, we find that for n > −1, the physical
region is always outside the two L scallions, while for n < −1, the physical region is always
inside the two L kidneys. In terms of the u variable, the physical region is the union of all the
uL sheets with two L scallion cuts and uR sheets with two R scallion cuts, the latter being
equivalent to uL sheets with two L kidney cuts. This “outside/outside” and “inside/inside”
mnemonic for the physical Zhukovsky regions is shown in figure 15. All these regions are
therefore quite similar to those in the R-R cases and reduce to regions outside the unit
disc in the formal k → 0 limit.

The n = −1 u plane in figure 14(c) is rather different for two reasons. Firstly, with
“short” cuts, it has a novel 2k

h periodicity along the imaginary u direction. Secondly, the black
E(p) cuts are now visible on the same u sheet as the image of the real momentum interval
p ∈ [−2π, 0], as shown in figure 14(c). As we have discussed in the previous sub-section, for

17As in the R-R case, we take x+ to be in the UHP and x− in the LHP in order for the excitation to have
positive energy.

18See section 7.1.3 below, for more details.
19In terms of the m = k − 1 L variables, this is the region inside the L kidney.
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certain values of momenta the “fundamental” m = 1 excitations that make up an m > 1
bound state in this region inevitably end up crossing from the physical momentum sheet to
the crossed one by going through a black cut, cf. figure 22. This is an unavoidable consequence
of the mixed flux dispersion relation and shows that on the un=−1 sheet there is no intrinsic
notion of a physical u sheet beyond the one inherited from the momentum plane, when
viewing bound states. In fact, when establishing the periodicity of the u plane one crosses
the E(p) cut twice, going from physical to crossed and back to physical momentum sheets.
This point will be further emphasized when we consider the singlet states in section 7.1.1.
As we will see in detail there, singlet states consist of physical m = k − 1 L bound states
and crossed R fundamentals, whose Zhukovsky and u variables sit at the same locations.
Therefore, in this setting the only notion of “physical” or “crossed”, is inherited from the
momentum plane itself.20

2.6 The R representation

So far we have mainly discussed the L representation. As can be seen from the shortening
condition (2.6) the R representation is essentially the parity conjugate of the L representation.
Figure 23(a) shows the pR plane, which looks like the pL plane but reflected along the
imaginary axis. In figure 23(b) we show the xR plane, with the same scallion and kidney cuts
as in the L case, but again reflected along the imaginary axis. Note that we still put the log
cut along the negative real line. The uR rapidity is defined through the function

uR(x) = x + 1
x
+ 2k̄

h
log x, uR(x±

R ) = uR ± i

h
. (2.29)

The uR plane is shown in figure 23(c). We note that the scallion and kidney cuts in the uR

plane go in the opposite direction to those of the uL plane, and that the whole plane is shifted
by ik/h, so that the real line represents the momentum range (0, 2π), which for R excitations
corresponds to the region between the scallion and the kidney in the xR plane.

Note added. Preliminary discussions of mixed flux kinematics and bound states were
presented by OOS at the London Integrability Journal Club on the 4th of June 2020 and by
BS during the “Integrability in Lower Dimensional AdS/CFT” virtual workshop held between
the 17th and 20th of August 2021, where the scallion, kidney and constant m contours were
introduced.21 The recent paper [21] has also independently analysed the dispersion relation,
x± and u variables and bound states introduced for the mixed-flux backgrounds in [7, 11].
As we discussed in detail above, different choices can be made for the location of cuts in
the u plane, much as long or short cuts can be used in R-R backgrounds. We analysed
explicitly cut configurations where both kidney and scallion cuts are “long” and where both
are “short”. In [21], a combination of a “short” cut for the L-scallion and a “long” cut for
the L-kidney was studied in detail (similarly for the R excitations). While physical quantities
do not depend on the choice of cuts, the advantage of selecting all “short” cuts is that they

20Note that these conclusions remain unchanged if one considered “long” cuts instead of “short” ones, since
these cuts are unrelated to the cuts of E(p).

21We would like to thank Sergey Frolov and Alessandro Sfondrini for their questions and discussions at the
time of those presentations.
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pR

pR

(a) The pR plane

x+
R

x−
R

xR

(b) The xR plane

uR

uR

(c) The uR plane

Figure 23. The pR, xR and uR planes. The blue dots show the location of a fundamental excitation
with momentum p ∈ (0, 2π). Red (green) solid lines represent the x+

R (x−
R ) scallion and red (green)

dashed lines represent the x+
R (x−

R ) kidney. The solid black lines in the pR and uR planes show the cut
of the R dispersion relation. These cuts are not shown in the xR plane since they would be located at
different spots for x+

R and x−
R .
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x+
L

1/x+
R

x−
L

1/x−
R

xL

(a)

x+
R

1/x+
L

x−
R

1/x−
L

xR

(b)

Figure 24. Location of x±
L (p), x±

R (p), 1/x±
L (p), and 1/x±

R (p) for real momentum in the range
0 ≤ p < 2π. Crossing of x±

L (p) is associated with going across the outer black scallion contour and
crossing of x±

R (p) is associated with going across the inner black dashed kidney contour.

exhibit more clearly the novel u-plane periodicity for excitations whose physical momenta
lie in the region between the scallion and kidney.

3 The crossing transformation

In this section we discuss the crossing transformation in mixed-flux kinematics. Analogously
to the R-R case, the mixed-flux crossing transformation sends22

p → p̄ = −p, E(p) → Ē(p̄) = −E(−p). (3.1)

In contrast to the R-R case, the mixed-flux model is not parity invariant. In particular,
the dispersion relations are not even functions of the momentum p, which means that the
negation of the momentum in the last expression above is important. To understand how
crossing acts in the Zhukovsky variables let us start at a position x±

L (p) = Ξ±
L (p, 1). Crossing

takes us through the cut in the dispersion relation so after crossing we should arrive at
x̄±

L (p̄) = Ξ̃±
L (p̄, 1). Now we can use the relations

Ξ̃±
L (p, m) = − 1

Ξ∓
L (p, m)

, Ξ±
R (p, m) = −Ξ∓

L (−p, m), (3.2)

to find that x̄±
L (p̄) = −1/Ξ∓

L (p̄, 1) = 1/Ξ±
R (p, 1) so that the crossing transformation can

be expressed as

x±
L (p) → x̄±

L (p̄) =
1

x±
R (p)

. (3.3)

The fact that crossing an L excitation gives an R excitation can be anticipated from (2.6):
1/x±

R (p) satisfy the L shortening conditions while 1/x±
L (p) do not.

22The bar over p, E and x±
I is often used in the literature to denote the values of variables at the crossed

point and should not be confused with complex conjugation.
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x+
L

1/x+
R

x−
L

1/x−
R

xL

(a)

x+
R

1/x+
L

x−
R

1/x−
L

xR

(b)

Figure 25. Location of x±
L (p), x±

R (p), 1/x±
L (p), and 1/x±

R (p) for real momentum in the range
−2π ≤ p < 0. Crossing of x±

L (p) is associated with going across the inner black dashed kidney contour
and crossing of x±

R (p) is associated with going across the outer black scallion contour.

1

1′

2

2′

p

Figure 26. A few of the possible choices for crossing paths in the p plane with short cuts.

Figures 24 and 25 show the points x±
L and x±

R of two physical excitations with real
momentum p, as well as the corresponding crossed points 1/x±

R and 1/x±
L , for momenta in

the ranges 0 ≤ p < 2π and −2π ≤ p < 0, respectively. These figures show that the scallion
and kidney contours make up a natural border between the physical and crossed regions,
for these ranges of momenta: the crossing transformation is an analytical continuation of
the S matrix from outside to inside these contours.

Since the Zhukovsky and u planes are made up of many sheets we need to have a
convention for how to perform the analytic continuation from a physical to a crossed point.
From the point of view of the p plane it is clear that we have to take a path from p to −p

and cross one of the black EI(p) cuts depicted in figure 1. A priori we can cross any one
of these cuts and some choices are depicted in figure 26. Depicted there are two dark blue
paths labelled 1 and 1′, which take a direct path between p and p̄. The image of path 1 in
Zhukovsky variables is shown in figure 27. The convention we adopt is that both x+

L and
x−

L scallions are entered from the lower-half-plane.23 We will adopt this path as our chosen
crossing path when solving the crossing equations below. Other crossing paths such as 1′,

23This convention is chosen in analogy with the R-R case and higher-dimensional integrable backgrounds,
where the crossing paths enter the unit discs from the LHP of both x+ and x−.
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x+

(a) x+
L

x−

(b) x−
L

Figure 27. Our chosen crossing path in the x±
L planes, for starting momenta p ∈ [0, 2π].

u

Figure 28. Our chosen crossing path in the uL plane, for starting momenta p ∈ [0, 2π].

or the light-blue and pink ones depicted in figure 26 as well as many others can also be
chosen and they lead to the same required transformations of the Zhukovsky variables (3.3).
However, their paths through the various cuts is often more complicated than our minimal
choice and would lead to more complicated expressions for dressing phase solutions.24

Our chosen crossing path takes a simple form in the u plane as depicted in figure 28. This
is entirely analogous to the familiar R-R case where crossing involves going through both the
x+ and x− cuts a single time in the same direction. Note that, unlike the R-R case, the end-
point of crossing in the u plane is not the same value of u, because of the modified definition of
the Zhukovsky map (2.10). Instead, it takes us from u = uL(x±

L (p))∓ i
h to ū = uR(x±

R (p))∓ i
h .

4 The two-particle S matrix

As discussed in detail in [7], given two short representations25 of psu(1|1)4
ce the two-particle

S matrix is fully determined by the psu(1|1)4
ce symmetry up to an overall scalar factor. If

24The path 1′ is equivalent in simplicity to the path 1. It does not go over naturally to the usual definition
of crossing for R-R theories and it is for this reason we do not adopt it. As in the R-R cases, it would be
straightforward to find dressing phases for this definition of crossing, whose form would be very similar to the
conventional ones.

25All (non-trivial) short representations of psu(1|1)4
ce consist of two bosons and two fermions and are

parameterised by the momentum p and the charge M , which in the mixed-flux case takes the form M = m± k̄p

with m ∈ Z.
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we consider only massive fundamental excitations that leaves us with four undetermined
functions, which we can take as the matrix element for scattering two highest weight states

A2
LL (p, q), A2

LR (p, q), A2
RL (p, q), A2

RR(p, q). (4.1)

These functions are further restricted by additional symmetries of the model

Physical unitarity. The S matrix of real momentum excitation should be pure phase

A2
LL (p, q)†A2

LL (q, p) = 1, A2
LR (p, q)†A2

LR (q, p) = 1,

A2
RL (p, q)†A2

RL (q, p) = 1, A2
RR(p, q)†A2

RR(q, p) = 1.
(4.2)

Braiding unitarity. For the Zamolodchikov-Faddeev algebra to be consistent we need to
impose the conditions [24]

A2
LL (p, q)A2

LL (q, p) = A2
LR (p, q)A2

RL (q, p) = A2
RR(p, q)A2

RR(q, p) = 1 (4.3)

Parity. The mixed-flux world-sheet theory is not parity invariant. However, a parity
transformation simply swaps the L and R representations.26 The parity transformation
acts on the Zhukovsky variables by sending x±

L → −x∓
R . From the matrix part of the S

matrix we find

St
RR(−p,−q)SLL (p, q) = A2

LL (p, q)F 2
RR(−p,−q)1,

St
RL (−p,−q)SLR (p, q) = A2

LR (p, q)F 2
RL (−p,−q)1.

(4.4)

From this we find the following constraints on the scalar factors

A2
RR(−p,−q)A2

LL (p, q) = x−

x+
y+

y−

(
x+ − y−

x− − y+

)2

,

A2
RL (−p,−q)A2

LR (p, q) = x+

x−
y+

y−

(
1− 1

x+y+

1− 1
x−y−

)2

,

(4.5)

Crossing symmetry. The crossing equations in the mixed-flux background were found
in [7]. It is useful to write them directly in terms of S matrix elements since those equations
are independent of the normalisation of the S matrix. Thus, let us define the matrix elements

ΥLL
pq = ⟨Y L

q Y L
p |S|Y L

p Y L
q ⟩ = A2

LL (p, q), ΥRL
pq = ⟨Y L

q Y R
p |S|Y R

p Y L
q ⟩ = D2

RL (p, q),
ΛRL

pq = ⟨ZL
q Y R

p |S|Y R
p ZL

q ⟩ = F 2
RL (p, q), ΛLL

pq = ⟨ZL
q Y L

p |S|Y L
p ZL

q ⟩ = B2
LL (p, q).

(4.6)

The crossing equations can then be written as

1 = ΥLL
pq ΥRL

p̄q = A2
LL (p, q)D2

RL (p̄, q) = y+

y−

(
x+ − y−

x+ − y+

)2

A2
LL (p, q)A2

RL (p̄, q),

1 = ΛRL
pq ΛLL

p̄q = F 2
RL (p, q)B2

LL (p̄, q) = y+

y−

( 1
x− − y−

1
x− − y+

)2

A2
RL (p, q)A2

LL (p̄, q).

(4.7)

26Compared to the R-R theory this symmetry combines parity symmetry theory with the so called “LR
symmetry”. These are separate symmetries in the R-R theory but in the mixed-flux model only the combination
of the two operations gives an actual symmetry.
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If we perform a second crossing transformation we find the double crossing relations

A2
LL (¯̄p, q) =

(
x+ − y−

x+ − y+
x− − y+

x− − y−

)2

A2
LL (p, q),

A2
RL (¯̄p, q) =

( 1
x+ − y+

1
x+ − y−

1
x− − y−

1
x− − y+

)2

A2
RL (p, q).

(4.8)

Since x±
I (¯̄p) = x±

I (p) the double crossing equations describe non-trivial monodromies of
the scalar factors.

5 The R-R scalar factors

In the R-R theory the scalar factors were chosen as [10, 34, 35]

A2
LL (p, q) = x+

x−
y−

y+
x− − y+

x+ − y−

1− 1
x−y+

1− 1
x+y−

σ−2
LL (p, q),

A2
RL (p, q) = x+

x−

1− 1
x+y+

1− 1
x−y−

1− 1
x−y+

1− 1
x+y−

σ−2
RL (p, q).

(5.1)

Inserting this into (4.7) we find the crossing equations for the dressing phases σIJ [27]

σ2
LL (p, q)σ2

RL (p̄, q) = (x+ − y−)(x− − y+)
(x+ − y+)(x− − y−)

(
y−

y+

)2 x− − y+

x+ − y−

1− 1
x−y+

1− 1
x+y−

,

σ2
RL (p, q)σ2

LL (p̄, q) =

(
1

x+ − y+
) (

1
x− − y−

)
(

1
x+ − y−

) (
1

x− − y+
)(y−

y+

)2 x− − y+

x+ − y−

1− 1
x−y+

1− 1
x+y−

.

(5.2)

In reference [27] the dressing phases were written as σ2
IJ(p, q) = exp [2iθIJ(x±, y±)] and then

expanded in a chi decomposition

θIJ(x±, y±) = χIJ(x+, y+)− χIJ(x+, y−)− χIJ(x−, y+) + χIJ(x−, y−). (5.3)

The crossing equations were then solved by splitting the dressing phases into two parts

χLL (x, y) = χBES(x, y) + χextra
LL (x, y), χRL (x, y) = χBES(x, y) + χextra

RL (x, y), (5.4)

where χBES is the BHL/BES phase [20, 22] and the extra terms can be written in terms
of the HL phase χHL and a new phase χ− as

χextra
LL (x, y) = −1

2χHL(x, y) + 1
2χ−(x, y),

χextra
RL (x, y) = −1

2χHL(x, y)− 1
2χ−(x, y).

(5.5)

Here we instead find it convenient to split the dressing factors into even and odd parts,
following [20]

σIJ = σIJ,evenσIJ,odd . (5.6)
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The even dressing factors are defined to be trivial/homogeneous under double crossing, with
the odd part containing the remainder of the dressing factors. Analogously, we may split
the χIJ into even and odd parts

χLL (x, y) = χeven
LL (x, y) + χodd

LL (x, y), χRL (x, y) = χeven
RL (x, y) + χodd

RL (x, y). (5.7)

The even parts are given by

χeven
LL (x, y) = χeven

RL (x, y) = χBES(x, y)− χHL(x, y) , (5.8)

and satisfy the

σ2
LL ,even(p̄, q)σ2

RL ,even(p, q) =
(

y−

y+

)2
x− − y+

x+ − y−

1− 1
x−y+

1− 1
x+y−

,

σ2
LL ,even(p, q)σ2

RL ,even(p̄, q) =
(

y−

y+

)2
x− − y+

x+ − y−

1− 1
x−y+

1− 1
x+y−

.

(5.9)

Since the right hand sides of (5.9) are invariant under x± → 1/x±, we see explicitly that the
even phases are homogeneous under double crossing. Note that the right hand sides of (5.9)
corresponds to the first term on the right-hand side of the full crossing equations (5.2). Using
these phases we can build the even matrix elements

A2
LL ,even(p, q) = x+

x−
y−

y+
x− − y+

x+ − y−

1− 1
x−y+

1− 1
x+y−

σ−2
LL ,even(p, q),

A2
RL ,even(p, q) = x+

x−
y−

y+ σ−2
RL ,even(p, q),

(5.10)

which satisfy the homogenous crossing equations27

A2
LL ,even(p̄, q)A2

RL ,even(p, q) = 1, A2
LL ,even(p, q)A2

RL ,even(p̄, q) = 1. (5.11)

Similarly, the odd matrix elements are given by

A2
LL ,odd(p,q)=σ−2

LL ,odd(p,q), A2
RL ,odd(p,q)= y+

y−

1− 1
x+y+

1− 1
x−y−

1− 1
x−y+

1− 1
x+y−

σ−2
RL ,odd(p,q). (5.12)

Inserting these into the crossing equations we find that the odd phases should satisfy the
odd crossing equation

σ2
LL ,odd(p̄, q)σ2

RL ,odd(p, q) =
1

x+ − y+

1
x+ − y−

1
x− − y−

1
x− − y+ ,

σ2
LL ,odd(p, q)σ2

RL ,odd(p̄, q) = x+ − y−

x+ − y+
x− − y+

x− − y−
.

(5.13)

Note that the right hand side of these equations corresponds to the second and third terms on
the right-hand side of the full crossing equations (5.2), with the first terms already accounted
for by the even crossing equations (5.9). As expected, the square of the right hand sides
of (5.13) are precisely the factors appearing in the double crossing equations (4.8).

27Note that even though the solutions (5.10) satisfy the homogenous crossing equation, they have a highly
non-trivial analytic structure associated to the BES factors.
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Figure 29. Integration contours for the odd R-R phases.

To find a solution to these equations let us start with the expression found in [27] and
call the two odd phases obtained from there ϕLL and ϕRL . We have

ϕLL (x, y) = +
∫
↶↶ dz

16π

( log (y−z)2

y

x − z
−

log (x−z)2

x

y − z

)
,

ϕRL (x, y) = −
∫
↶↶ dz

16π

( log (y−z)2

y
1
x − z

−
log (x− 1

z )
2

x

y − z

)
,

(5.14)

where the integration is taken over the contour shown in figure 29(a). If we want to understand
the cuts seen by x it is useful to integrate by parts

ϕLL (x, y) = +
∫
↶↶ dz

8π

log (y−z)2

y

x − z

− 1
16π

(
log (x − 1)2

x
log (y − 1)2

y
+ log (x + 1)2

x
log (y + 1)2

y

)
,

ϕRL (x, y) = −
∫
↶↶ dz

8π

log (y−z)2

y
1
x − z

+ 1
16π

(
log (x − 1)2

x
log (y − 1)2

y
− log (x + 1)2

x
log (y + 1)2

y

)
(5.15)

We expect the phases to have cuts along the unit circle, which we indeed do get from the
above expressions. However, the boundary terms have an additional unwanted log cut along
the negative real lines in both the x and y planes and the integral term also has such a log
cut in the y plane. To get of rid of these we can add an extra anti-symmetric term

δϕ(x, y) = 1
16π

log (x + 1)2

x
log (y − 1)2

y
− 1

16π
log (x − 1)2

x
log (y + 1)2

y
. (5.16)

The full phases χLL (x, y) = ϕLL (x, y) + δϕ(x, y) and χRL(x, y) = ϕRL(x, y) − δϕ(x, y) then
take the form

χLL (x,y)=+
∫
↶↶ dz

8π

log (y−z)2

y

x−z
+ 1
16π

log (x+1)2

(x−1)2

(
log (y+1)2

y
+log (y−1)2

y

)
,

χRL (x,y)=−
∫
↶↶ dz

8π

log (y−z)2

y
1
x−z

− 1
16π

log (x+1)2

(x−1)2

(
log (y+1)2

y
+log (y−1)2

y

)
.

(5.17)
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This modification of the phase of [27] was originally proposed by Andrea Cavaglià and Simon
Ekhammar [36] and leaves the crossing equation satisfied by the full phase θLL unchanged. It
is possible to show that [37] this simple modification of [27] reproduces the more involved
expressions given by [19], which were in turn found by generalising the expressions for
massless dressing factors given in [38]. It is easy to verify that the branch points of the S
matrix are not of square-root type, in line with the key finding of [27]. The analysis [28] of
Dorey-Hofman-Maldacena (DHM) double-poles also remains unchanged by the addition of δϕ.

We find it useful to bring the cuts down from the unit circle to the interval [−1, 1]. If x

and y are outside the unit circle the LL phase remains unchanged

χLL (x, y) = +
∫ −1

1

dz

2π

log(y − z)
x − z

+ 1
4π

log x + 1
x − 1

(
log(y + 1) + log(y − 1)

)
. (5.18)

However, when we deform the integration contour in the RL phase from the two half circles
in figure 29(a) to the interval in figure 29(b) we pick up a pole at 1/x whose residue depends
on which half-plane x sits in

χRL (x, y) = −
∫ −1

1

dz

2π

log(y − z)
1
x − z

− 1
4π

log x + 1
x − 1

(
log(y + 1) + log(y − 1)

)
− i

2 sign(Im x) log(y − 1
x
).

(5.19)

Note that the integral in the RL phase gives long cuts along (−∞,−1] ∪ [1,∞), but the
expression in the second line exactly cancels these discontinuities so that the full expression
has a cut only along the short interval [−1, 1].

Using the above expression we can check the crossing equations. Going through the
cut from below the phases pick up additional terms

δ↑ϕLL (x, y) = −i log(y − x) + i

2
(
log(y + 1) + log(y − 1)

)
,

δ↑ϕRL (x, y) = +i log
(
y − 1

x

)
− i

2
(
log(y + 1) + log(y − 1)

)
.

(5.20)

Combining this with the results of [27] we find

χLL
(1
x

, y
)
+ χRL (x, y) = − i

2 log
(
y − 1

x

)
+ i

4
(
log(y + 1) + log(y − 1)

)
,

χLL (x, y) + χRL
(1
x

, y
)
= + i

2 log(y − x)− i

4
(
log(y + 1) + log(y − 1)

)
.

(5.21)

The last term on each line cancels out in the full dressing phase (5.3).
Before ending this section let us consider the poles of the R-R S matrix. We have split the

R-R matrix elements into two parts. The odd part transforms non-trivially under crossing,
but does not have any singularities in the physical or crossed regions. This is easy to see for
the LL phase: neither the rational pre-factor nor the phase has any relevant poles. For the
RL case we note that for excitations with real momenta (so that x+ and x− is in the upper
and lower half-planes respectively) the term on the last line in equation (5.19) exactly cancels
the rational factor in A2

RL ,odd. The even parts of the matrix elements, on the other hand, are
trivial under crossing but responsible for all physically relevant poles. We could thus think of
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Figure 30. Mixed-flux integration contours.

it as a CDD factor [39], though in general we expect it to have an intricate analytic structure.
In A2

LL ,even in (5.11) we directly find an S channel zero28 at x− = y+ which corresponds to
the formation of a bound state. The even phase has a pole at x− = 1/y+ which cancels the
zero in A2

LL ,even and provides us with the expected T channel pole in A2
RL ,even.29 Finally the

BES part of the phase gives rise to DHM double poles corresponding to the formation of
an on-shell bound state in an intermediate channel [28, 40].

6 The mixed-flux scalar factors

In this section we will construct the scalar factors in the mixed-flux theory. As in the pure
R-R theory, we split the scalar factors into odd and even parts (5.7).

6.1 The odd scalar factor

For the odd scalar factor we start with the odd matrix elements which are similar to the
odd R-R matrix elements

A2
LL ,odd(p, q) =

(
α(x−)α(y+)
α(x+)α(y−)

)1/k

σ−2
LL ,odd(p, q),

A2
RL ,odd(p, q) =

(
α(1/x+)α(y−)
α(1/x−)α(y+)

)1/k
y+

y−

1− 1
x+y+

1− 1
x−y−

1− 1
x−y+

1− 1
x+y−

σ−2
RL ,odd(p, q),

(6.1)

where
α(x) = (x − s)

(1
x
+ s

)
. (6.2)

The additional factors in (6.1) compared to the R-R case (5.12) trivially cancel in the crossing
equations.30 As we discuss in section 7.2 below, these terms play an important role in

28A bound state corresponds to a pole on the right hand side of the Bethe equations, but the Bethe equations
contain the inverse matrix element A−2

LL ,even, so here we find a zero instead of a pole.
29The BES phase does not have any simple poles, but the HL phase does [27] which means that the even

phase has a corresponding zero.
30Ignoring the discrete nature of k, in the formal k → 0 limit these factors are not well behaved. This is

consistent with the expectation that the k = 0 and k ̸= 0 theories are very different: the latter being a modulus
deformation of the WZW theory, while the former being a pure R-R flux background. While the k → 0 limit
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fusion. The generalisation of the R-R odd phases presented in the previous section to the
mixed-flux case is

χLL (x, y) = +
∫ −s−1

s

dz

2π

log(y − z)
x − z

+ 1
4π

log x + s−1

x − s

(
log(y + s−1) + log(y − s)

)
,

χRL (x, y) = −
∫ −s−1

s

dz

2π

log(y − z)
1
x − z

− 1
4π

log x + s

x − s−1

(
log(y + s−1) + log(y − s)

)
− i

2 sign(Im x) log
(
y − 1

x

)
.

(6.3)

The integrals are taken over the interval [−1/s, s] as shown in figure 30(b). It is simple to
check that these phases satisfy the same crossing equations as in the pure R-R case31

σ2
LL ,odd(p̄, q)σ2

RL ,odd(p, q) =
1

x+ − y+

1
x+ − y−

1
x− − y−

1
x− − y+ ,

σ2
LL ,odd(p, q)σ2

RL ,odd(p̄, q) = x+ − y−

x+ − y+
x− − y+

x− − y−
.

(6.4)

The above integrals over [−1/s, s] are useful in checking the crossing equation. It is sometimes
also useful to do an integration by parts on half of the integrands above to find32

χLL (x, y) = +
∫ −s−1

s

dz

4π

[ log(y − z)
x − z

− log(x − z)
y − z

]
+ 1

4π

[
log(x + s−1) log(y − s)− log(x − s) log(y + s−1)

]
,

χRL (x, y) = −
∫ −s−1

s

dz

4π

log(y − z)
1
x − z

+
∫ −s

s−1

dz

4π

log(x − z)
1
y − z

− 1
4π

[
log(x + s) log(y − s)− log(x − s−1) log(y + s−1)

]
,

− i

4 sign(Im x) log
(
y − 1

x

)
+ i

4 sign(Im y) log
(
x − 1

y

)

(6.5)

As we discussed in section 3, the scallion and kidney contours are natural boundaries when
considering crossing. It is therefore natural to deform [−1/s, s] into scallion and kidney
contours, analogously to what is depicted in figure 29 for the R-R case. Notice that the
integral over [−1/s, s] has no monodromy around infinity. To preserve this property after
deforming the integration contour to a scallion and kidney (for non-quadratic cuts), it is
necessary to introduce additional integrals over (−∞, 0]. The deformed contour is shown in
figure 30(a) and the mixed-flux expressions for χLL and χRL take the same form as in (6.5),

in classical and semi-classical near-BMN worldsheet theories is smooth, it is known that 1-loop worldsheet
dressing phases do not match with exact ones even in the R-R background, see for example point 3 on page 35
of [19]. The above factors have 1-loop (or 1/k) scaling, and based on the experience with the R-R theory, we
do not expect the formal divergence in the k → 0 limit of the exact S matrix to be visible in perturbation
theory. Nevertheless, it will be important to revisit this issue once the full dressing phases are known.

31In the mixed-flux case there are extra terms proportional to log s on the right hand side of the analogue
of (5.21), which cancel out in the full dressing phase.

32Here we have dropped some terms that do no contribute to the full phase θRL .
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but with the following replacement of integrals∫ −s−1

s
−→

∫
IL

+2
∫ 0

−∞
,

∫ −s

s−1
−→

∫
IR

+2
∫ ∞

0
(6.6)

where the contours IL and IR are defined as

IL = S+
L − S−

L + K+
L − K−

L , IR = S+
R − S−

R + K+
R − K−

R , (6.7)

with K+
L and K−

L the upper and lower halves of the L kidney contour traversed in an
anti-clockwise direction, and similarly S+

L and S−
L for the L scallion, K+

R and K−
R for the

R kidney and S+
R and S−

R for the R scallion.
It will sometimes be useful to do a “complete” integration by parts for χRL (x, y) to make

its analytic structure in the y-plane clear

χRL (x, y) = +
∫ −s

s−1

dz

2π

log(x − z)
1
y − z

+ 1
4π

logy + s−1

y − s

(
log(x + s) + log(x − s−1)

)
+ i

2 sign(Im y) log
(
x − 1

y

)
.

(6.8)

The analogous expression for the LL phase follows trivially from the anti-symmetry of χLL ,
χLL (x, y) = −χLL (y, x).

The expressions presented in this sub-section for χLL and χRL are valid for momenta
in the region outside the left and right kidneys, i.e. for pL ∈ (0, 2π) and pR ∈ (−2π, 0).
These regions shares many similarities with the physical region of the R-R theory, which
is outside the unit disc. In particular, it is useful to expand the dressing phases at large
values of the Zhukovsky parameters. Expanding the integrand in the expression for χLL

in (6.4) and then integrating gives

χLL = 1
4π

∞∑
m,n=1

x−my−n

mn

[
m−n

m+n

(
sn+m−(−s−1)n+m)+(−1)msn−m−(−1)nsm−n

]
. (6.9)

In the case of χRL , it is helpful to deform the integration contour in (6.4) to two semi-circles,
similar to those in the R-R case shown in figure 29(a), but now going between z = s and
z = −s−1. These semi-circles appeared in [25] and are useful here, because they remove the
term proportional to sign(Im x),33 After this contour deformation, it is again straightforward
to expand the integrand at large values of the Zhukovsky parameters and the integrate to get

χRL = log s

π

∞∑
n=1

1
n

y−nx−n + 1
4π

∞∑
n=1

(−1)n
(
s−2n − s2n

)
n2 y−nx−n (6.10)

+ 1
4π

∞∑
m,n=1
m ̸=n

x−my−n

mn

[
n + m

n − m

(
sn−m − (−s)m−n)+ (−1)ns−n−m − (−1)msn+m

]

− log s

π
log y + 1

2π

∞∑
n=1

sn − (−s)−n

n2 y−n ,

where the terms on the last line can be dropped, since they are x-independent and so cancel
out in the expression for θRL .

Note added. The odd dressing phase found here is the same as the odd part of the phase
that has since been proposed in [41].

33On the pR ∈ (−2π, 0) sheet 1/x±
R sit inside the left kidney, while the circle contours are outside it.
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6.2 The even scalar factor

As in the R-R case the even scalar factors satisfy the homogeneous crossing equations but
provide us with physical poles and zeros. We expect the LL S matrix to have a simple
pole corresponding to the formation of a bound state as discussed in section 2.4. This can
be accommodated by a simple rational factor as in the pure R-R case. However, after a
proper analytical continuation we also expect to find double poles corresponding to the
exchange of an on-shell bound state [28, 40]. In the R-R case the double poles were provided
by the BES phase, and in the mixed-flux case it seems natural to expect a generalisation
of this phase to appear.

A new feature of the mixed-flux theory is the appearance of an infinite number of
momentum regions (2πn, 2π(n + 1)). Here we will discuss what poles the fundamental S
matrix is expected to have in different regions, and what constraints that gives for the
even dressing phases.

6.2.1 Scalar factors in the (0, 2π) region

Let us start by considering the case of two fundamental excitations with momenta in
(0, 2π). Here we take the even matrix element to be the same as in the R-R model (see
equation (5.10)), when expressed in terms of the rapidity34 uL

A2
LL ,even(p, q) = x+

x−
y−

y+
uL(x−)− uL(y+)
uL(x+)− uL(y−)

σ−2
LL ,even(p, q),

A2
RL ,even(p, q) = x+

x−
y−

y+ σ−2
RL ,even(p, q).

(6.11)

The even dressing phases satisfy the crossing equations (cf. (5.9))

σ2
LL ,even(p̄, q)σ2

RL ,even(p, q) =
(

y−

y+

)2
uL(x−)− uL(y+)
uL(x+)− uL(y−)

,

σ2
LL ,even(p, q)σ2

RL ,even(p̄, q) =
(

y−

y+

)2
uR(x−)− uL(y+)
uR(x+)− uL(y−)

.

(6.12)

The LL factor has the expected S channel zero at x+ = y−, and as in the R-R case we expect
the even dressing phase to cancel any other relevant zero or pole in A2

LL ,even(p, q) and to
provide us with the T channel pole of A2

RL ,even(p, q).

6.2.2 Scalar factors in the (2π, 4π) region

Consider bringing x± into the (2π, 4π) region. The Beisert-Dippel-Staudacher (BDS) fac-
tor [42] in (6.11) is clearly analytic as a function of uL and thus does not change when we go
to a different momentum region. However, let us consider the poles and zeros we expect in
the LL S matrix. As above we expect a zero when x− = y+ and a pole when x+ = y−, but

34In the R-R case uL(x−) − uL(y+) = (x− − y+)(1 − 1
x−y+ ), but in the mixed-flux theory these expressions

are not equivalent.
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the analytic continuation has taken us to a different sheet of the uL plane. If we follow a path
where x+ goes around the origin we then find that the LL matrix element should be given by

A2
LL ,even(p, q) = x+

x−
y−

y+
uL(x−)− uL(y+)

uL(x+)− uL(y−) + 2ik
h

σ−2
LL ,even(p, q). (6.13)

If we instead take both x± and y± to be in the (2π, 4π) region we instead expect

A2
LL ,even(p, q) = x+

x−
y−

y+
uL(x−)− uL(y+)− 2ik

h

uL(x+)− uL(y−) + 2ik
h

σ−2
LL ,even(p, q). (6.14)

Both of these expressions indicate that we should pick up a factor from the dressing phase
when we change momentum region. In particular when we take p to p + 2π with p and q

in (0, 2π) we should pick up a factor

uL(x+)− uL(y−)
uL(x+)− uL(y−) + 2ik

h

(6.15)

when we go into the scallion contour from below and exit it on the top.

6.2.3 Scalar factor for pL in (−2π, 0)

In the (−2π, 0) region we have seen that the uL plane is periodic with period 2ik/h, and we
expect the S matrix to respect this. To accommodate this we propose that in this region
the scalar factor takes the form

A2
LL ,even(p, q) =

sinh
(

πh
2k

(
uL(x−)− uL(y+)

))
sinh

(
πh
2k

(
uL(x+)− uL(y−)

))σ−2
LL ,even(p, q). (6.16)

Note that up to the dressing factor this is the S matrix for the XXZ model at a root of
unity, i.e., with anisotropy of the form ∆ = cos π

k with k an integer [43–45]. To see this more
explicitly we introduce the rapidities u and v such that

uL(x±) = u ± i

h
, uL(y±) = v ± i

h
, (6.17)

which gives

A2
LL ,even(p, q) =

sinh
(

πh
2k

(
u − v − 2i

h

))
sinh

(
πh
2k

(
u − v + 2i

h

))σ−2
LL ,even(p, q). (6.18)

The above factor provides us with the expected poles and zeros at x± = y∓. For the even RL
matrix element with the L excitation in (−2π, 0) and the R excitation in (0, 2π), i.e., with
both excitation between respective scallion and kidney, we take

A2
RL ,even(p, q) =

sinh
(

πh
2k

(
uR(x+)− uL(y−)

))
sinh

(
πh
2k

(
uR(x−)− uL(y+)

))σ−2
RL ,even(p, q). (6.19)

With the above choice of normalisation the dressing phases in this region satisfy the ho-
mogeneous crossing equations

σ2
LL ,even(p̄, q)σ2

RL ,even(p, q) = 1 = σ2
LL ,even(p, q)σ2

RL ,even(p̄, q). (6.20)
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u

(b)

− 2π
k

p

(c)

u

(d)

Figure 31. The p and u planes with k = 5 in the relativistic limit. Figures (a) and (b) show the p

and u planes for h = 1/10. As we lower h even more the scallion and kidney cuts in the u plane move
further away from the imaginary axis and the black cuts become flatter. The relativistic limit zooms
in at a narrow strip around the imaginary axis in the u plane, which corresponds to the a region close
to p = −2π/k in the p plane, as shown in figures (c) and (d). The p plane now looks like that of a
standard massive relativistic excitation, and the u plane goes to the corresponding rapidity plane.
The blue dots in each plot show the location of an excitation with p = −2π/k.

We could also ask what happens to the LL matrix element when p is in (−2π, 0) and
q is in (0, 2π). In principle we could have an S channel pole when, e.g., x− = y+ is exactly
on the scallion, but as we will see soon we expect that pole to not be present which means
that we should take the matrix element to be

A2
LL ,even(p, q) = x+

x−
y−

y+ σ−2
LL ,even(p, q). (6.21)

6.3 Relation to relativistic limit

In this sub-section we consider the relativistic limit of the mixed-flux odd dressing phases found
above. Relativistic limits have been used in integrable AdS3 models in R-R backgrounds [38]
to investigate massless modes, where a difference form of the S matrix and dressing phases
was observed [46, 47], leading to novel expressions for massless dressing factors. In mixed-
flux backgrounds such limits helped identify a close relationship to relativistic integrable
models [48, 49] as well as q-deformed holographic ones [50–52]. In [21] a modified version
of such relativistic limit was proposed, in which the Hopf algebra and hence S matrix and
dressing phases were the same as in [47], but a different scaling of momentum was introduced.
In this limit, h → 0 and momentum is expanded around

pL = −2πm

k
, pR = 2πm

k
, (6.22)

with the corrections scaling with h

pL = −2πm

k
+ 4πh

k

∣∣∣∣sin(mπ

k

)∣∣∣∣ sinhϑ,

pR = +2πm

k
+ 4πh

k

∣∣∣∣sin(mπ

k

)∣∣∣∣ sinhϑ.

(6.23)
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Above, ϑ is a direct analogue of the rapidity variable present in relativistic integrable models.
Notice that in taking this limit we are zooming in on momenta between the scallions and
kidneys, in other words on

pL ∈ (−2π, 0), pR ∈ (0, 2π). (6.24)

Furthermore, in the limit the EI branch-points inside those regions move closer to the real
axis and the effective dynamics, to leading order, matches that of a massive relativistic
theory. Similarly, the u variable becomes

u(x) → − k

πh
(ϑ − iπ) , (6.25)

in other words, up to some simple shifts and rescalings we can identify u and ϑ. Indeed,
as shown in figure 31, in this limit the (−2π, 0) sheet of the u-plane matches the usual θ

plane of relativistic theories. From (2.16) we note that

s → ∞, s−1 → 0. (6.26)

It is worth pointing out that the expansion around the momenta in (6.22), which restricts the
momenta to lie on the sheets (6.24) de facto puts an upper bound on the bound state number
to be no more than k. This is because bound states with m > k and p in the range (6.22)
are related to states with bound state number m − k but momentum p + 2π, as we discuss
in section 7.1.2. The latter states necessarily decouple in the relativistic limit, since their
momenta are not near the minimal values (6.22).

In this relativistic limit the crossing equations [47] can be solved [21, 47], with an explicit
expression in terms of Barnes G-function, or equivelently an infinite product of ratios of Γ
functions for both dressing phases given in [21]. While those expressions are complicated,
the ϑ derivative of the dressing phases is simple

∂ϑθLL , FPS =
sin π

k

coshϑ − cos 2π
k

(2
k
cos π

k
− ϑ

π
coth ϑ

2 sin π

k

)
∂ϑθRL , FPS =

sin π
k

coshϑ + cos 2π
k

((
1− 2

k

)
cos π

k
+ ϑ

π
tanh ϑ

2 sin π

k

) (6.27)

where ϑ ≡ ϑ1 − ϑ2.
We would like to compare this with relativistic limit of the exact odd phases and scalar

factors found in the previous sub-sections. The expressions for χLL and χRL given in section 6.1
are valid on the (0, 2π) Zhukovsky sheets with the logarithms appearing in these expressions
being on the principal branch. To compare to the relativistic limit we need to analytically
continue all left momenta to the (−2π, 0) sheet as discussed in section 2.3. When analytically
continuing x±

L and y±L to the (−2π, 0) region via path −1 in figure 13, x+ and y+ cross the
(−∞,−1/s] interval from below. As a result, the logarithms with arguments involving x+

and y+ continue to a different branch, for example

log
(
x+ + s−1

)
−→ log

(
x+ + s−1

)
− 2πi. (6.28)

However, the complete expression for χLL is analytic across (−∞,−1/s] and, as one can check
explicitly, the change in branches cancels between the integral and non-integral terms in (6.3).
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For analytic continuation of χRL in y± to the (−2π, 0) sheet, it is useful to use (6.8). While
the integral part of the expression explicitly has no cuts along path −1, the non-integral
terms on the other hand do not. However, it is straightforward to check that e−2iθRL has
no cuts. As a result, we can also use the principal branch of the logarithm in (6.3) when
finding the relativistic limit of χLL and χRL .

It is then straightforward to check that in the relativistic limit the non-integral part of
χLL in (6.3) cancels out in θLL . Similarly, the non-integral part in the first line of χRL in (6.3)
cancels out in θRL , while the non-integral term on the second line cancels the contribution
of the rational term in A2

RL ,odd in (6.1).
Turning to the integral parts of χLL and χRL , we note that in the relativistic limit

y±∂y± → ∂ϑ. (6.29)

Using this, we find

y±∂y±χLL (x±′
, y±) −→ 1

2π

eθ2∓ iπ
k

eθ1∓′ iπ
k − eθ2∓ iπ

k

(
log

(
eθ1∓′ iπ

k

)
− log

(
eθ2∓ iπ

k

))
, (6.30)

from which one can check that the relativistic limit of our ∂ϑθLL reduces to the expression
in (6.27). Similarly, the integral part of χRL gives in the relativistic limit

y±∂y±χRL (x±′
, y±) −→ − 1

2π

eθ2∓ iπ
k

eθ1∓′ iπ
k + eθ2∓ iπ

k

(
log

(
eθ1∓′ iπ

k

)
− log

(
eθ2∓ iπ

k

))
, (6.31)

from which one can check that the relativistic limit of our ∂ϑθRL reduces to the expression
in (6.27).35

In addition to matching the dressing phase in the relativistic limit we can also consider
the even matrix elements. If we assume that the even phase becomes trivial in the relativistic
limit we find

A2
LL ,even ≈

sinh
(

πh
2k

(
uL(x−)− uL(y+)

))
sinh

(
πh
2k

(
uL(x+)− uL(y−)

))σ−2
LL ,even(p, q) →

sinh
(

ϑ
2 + iπ

k

)
sinh

(
ϑ
2 − iπ

k

) ,
A2

RL ,even ≈
sinh

(
πh
2k

(
uR(x+)− uL(y−)

))
sinh

(
πh
2k

(
uR(x−)− uL(y+)

))σ−2
RL ,even(p, q) →

cosh
(

ϑ
2 − iπ

k

)
cosh

(
ϑ
2 + iπ

k

) .
(6.32)

This perfectly agrees with the relativistic “CDD” factors of [21].
We have further checked that in a neighbourhood of physical values of momenta near (6.22)

our odd phase matches numerically the one in [21]. Together with the matching of the crossing
equations, even phase and the derivatives above this completes the check that our S matrix
reduces in the relativistic limit to the one in [21]. In particular, it indicates that the even
part of a putative mixed-flux BES phase will have to trivialise in the relativistic limit, if the
proposed relativistic limit is to correctly capture some of the dynamics of the full mixed-flux
theory. It will be interesting to verify this in the future.

35In verifying this, we take into account the cancellation between the rational term in A2
RL ,odd in (6.1) and

the non-integral term on the second line of χRL in (6.3) discussed in the preceding paragraph.
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7 Constraints from the bound state S matrix

In integrable models the bound-state S matrix, i.e., the S matrix describing scattering of a
bound state with either a fundamental excitation or a second bound state, can be obtained
from the S matrix for two fundamental excitations through the fusion procedure. [29, 30, 33, 53]
This procedure is simpler in the AdS3×S3×T4 world-sheet theory than in a general integrable
field theories, because all short representations of psu(1|1)4

ce are the same up to the values of
the central charges, and it is straightforward to check that the matrix part of the S matrix fuses.

7.1 Special bound state configurations

As we have discussed in section 2.5, the non-periodicity of the mixed-flux dispersion relations
implies that physical fundamental and bound state excitations can be analytically continued
to any value of real total momentum. Because of the shift symmetry (2.3), L states with
momentum p = p0 + 2πn, for n ∈ Z and bound state number m = m0 have the same
energy and charge M ≡ m + k̄P , as states with momentum p = p0 and bound state number
m = m0 + n. In section 2.4 we already saw an example of this, when we compared a state
with ptot ∈ [0, 2π] and m = 7 with a state with ptot ∈ [2π, 4π] and m = 2, cf. figure 17. Since
we can continue to any real value of momentum, analytic continuation appears to lead to
an infinite degeneracy of identically-charged states. Fortunately, as we now discuss, this
physically undesirable conclusion can be avoided if we demand that all states that are singlets
under the symmetry algebra scatter trivially.36 We focus on configurations with bound state
numbers close to k which do not have direct counterparts in the pure R-R model, begining
with the m = k singlet states. We then consider m = k + 1 bound states and show how they
are equivalent, up to a singlet, to fundamentals with higher momentum. Finally, we turn to
m = k − 1 bound states, which up to a singlet are equivalent to fundamental R excitations.
In the next sub-section we discuss how fusion relations place additional constraints on the
world-sheet S matrix that follow from these equivalences.

7.1.1 Singlet states

Consider a state consisting of a bound state with m = k − 1 and momentum p ∈ (0, 2π),
described by bound state Zhukovsky parameters X± = Ξ±

L (p, k − 1), plus a fundamental
crossed excitation with momentum −2π − p. According to equation (2.19), the crossed
excitation has parameters x̄± = Ξ∓

L (p, k − 1). The full state has total momentum −2π and
vanishing energy and charge M ≡ m + k̄P = 0, which makes it a singlet of the psu(1|1)4

ce
algebra. Since the dynamics of the theory, i.e., the S matrix, is fully determined through
psu(1|1)4

ce representation theory we expect this singlet state to completely decouple from the
theory, which means that is should scatter trivially with any other state.

This construction of a singlet as a k − 1 physical bound state with momentum p plus a
crossed fundamental excitation with momentum −2π − p works for p in any range. Moreover,
we can generalise it by starting with a bound state with nk − 1 excitations and a crossed
excitation with momentum −2π(n + 1)− p, which leads to a singlet with total momentum
−2π(n + 1). Figure 32 shows two such singlet configurations.

36Trivial scattering of singlets in the context of R-R theories was first considered in [31, 32].
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x̄−=x+
1

x−
1 =x+

2

x−
2 =x+

3

x−
3 =x+

4

x−
4 =x̄+

x̄−=x+
1

x−
1 =x+

2

x−
2 =x+

3

x−
3 =x+

4

x−
4 =x̄+

x±

Figure 32. Two singlet configurations. The blue filled dots show a singlet made up of excitations
outside the scallion, while the red hollow dots show a singlet made up of excitations sitting between
the scallion and the kidney. Note that all such singlets carry exactly the same charges.

We can also decompose the singlet in various other ways. The exact same state can be
viewed as a physical L bound state with bound state number m with 1 ≤ m < k − 1 and
a crossed L bound state with bound state number k − m.

7.1.2 The m = k + 1 bound state as a fundamental excitation

Let us now consider an m = k + 1 bound state. It is described by the parameters

x+
1 = Ξ+

L (p, k + 1),
x−

1 = x+
2 = Ξ+

L (q1, k − 1),
...

x−
k = x+

k+1 = Ξ−
L (q1, k − 1),

x−
k+1 = Ξ−

L (p, k + 1).

(7.1)

We now rename the parameters

x+ = x+
1 , x− = x−

k+1, ȳ+ = x+
k+1, ȳ− = x−

1 ,

y±j = x±
j+1, for j = 1, . . . , k − 1.

(7.2)

The parameters y±j and ȳ± describe a singlet of exactly the same form discussed above.
It contributes −2π to the momentum but has no energy or charge. We are left with
x± = Ξ±

L (p, k + 1). This is exactly the parameters for a fundamental physical excitation
with momentum p + 2π.

This construction too works for any momentum range. Since we expect the singlet state
to decouple from the theory we are left to conclude that a m = k + 1 bound state with
momentum p should scatter in the same way as a fundamental excitation with momentum
p + 2π. We may also repeat the construction n times and we are led to conclude that an
m = nk+1 bound state with momentum p should be identified with a fundamental excitation
at momentum p + 2πn. If we did not make such identification, we would have an infinite
degeneracy of representations which would in turn lead to an unphysically large spectrum.
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7.1.3 The m = k − 1 bound state as an R excitation

Let us now consider an m = k − 1 bound state. As we saw above, we can construct a singlet
from this bound state by adding a fundamental crossed excitation. Hence, the m = k − 1
bound state acts as an anti-particle to the fundamental excitation. But from representation
theory we expect the anti-particle of an L excitation to be an R excitation. Indeed if we
let the bound state have momentum p − 2π we find that it has energy

EL(p − 2π, m = k − 1) =
√
(1− k̄p)2 + 4h2 sin2 p

2 = ER(p, m = 1) (7.3)

which is exactly the same as that of an R excitation of momentum p. This means that
from the perspective of representations, the m = k − 1 bound state at momentum p − 2π

is indistinguishable from a fundamental R excitation with momentum p. Since we demand
that the singlet scatters trivially, we therefore conclude that also the S matrix for these
two states is identical.

To make this identification more precise, we note that the Zhukovsky parameters X± for
an m = k − 1 bound state with momentum p − 2π and the parameters x±

R for a fundamental
R excitation of momentum p satisfy

X±(p − 2π, k − 1) = −
1− k̄p −

√
(1− k̄p)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 = 1

x∓
R (p)

(7.4)

It is straightforward to check for the matrix part of the S matrix [7] that this replacement
maps the LL S matrix to the S matrices for RL, LR and RR scattering. However, because
of fusion, the identification does put constraints on the scalar factors of these S matrices,
as we discuss in the next sub-section.

7.1.4 The m = k bound state as a massless excitation

Finally, we will consider a physical bound state with m = k. Such a state has energy

EL(p, m = k) =
√

k̄2(p + 2π)2 + 4h2 sin2 p

2 = EL(p + 2π, m = 0). (7.5)

When such a bound state exists it will thus look just like a massless excitation in a higher
momentum region. Taking into account the identification of an m = k − 1 L bound state
with momentum p and an R fundamental excitation of momentum p+2π, this massless mode
can also be seen as a bound state between fundamental L and R excitations.

In summary, we have shown that the full massive sector of the mixed-flux world-sheet
theory is captured by considering only L excitations with bound state numbers in the range
m ≤ k and any momenta.

7.2 Constraints on the S matrix

In this section we will check some of the above constraints on the S matrix, focusing on the
LL S matrix in the (−2π, 0) region. As discussed in section 6 the even part of the highest
weight matrix element takes the form

A2
LL ,even(x±, y±) =

S
[
uL(x−)− uL(y+)

]
S
[
uL(x+)− uL(y−)

]σ−2
LL ,even(x±, y±) (7.6)
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where we have introduced the functions

S[u] = sinh
(

πh
2k u

)
, C[u] = cosh

(
πh
2k u

)
, (7.7)

satisfying

S
[
u ± ik

h

]
= ±iC[u], S

[
u ± 2ik

h

]
= −S[u], C

[
u ± 2ik

h

]
= −C[u]. (7.8)

It is straightforward to fuse this matrix element m times37

A2
LmL,even(X±,y±)=

S
[
uL(X−)−uL(y+)

]
S
[
uL(X+)−uL(y−)

] S
[
uL(X−)−uL(y−)

]
S
[
uL(X+)−uL(y+)

]σ−2
LmL,even(X±,y±).

=
S
[
UL−vL− i(m+1)

h

]
S
[
UL−vL+ i(m+1)

h

] S
[
UL−vL− i(m−1)

h

]
S
[
UL−vL+ i(m−1)

h

]σ−2
LmL,even(X±,y±),

(7.9)

where we have introduced UL and vL defined through the relations

uL(X±) = UL ± im

h
, uL(y±) = vL ± i

h
. (7.10)

In particular for m = k − 1 we get

A2
L(k−1)L,even(X

±, y±) =
S
[
UL − vL − ik

h

]
S
[
UL − vL + ik

h

] S
[
UL − vL + 2i

h − ik
h

]
S
[
UL − vL − 2i

h + ik
h

]σ−2
L(k−1)L,even(X

±, y±)

=
C
[
UL − vL + 2i

h

]
C
[
UL − vL − 2i

h

]σ−2
L(k−1)L,even(X

±, y±) (7.11)

To compare this with the RL matrix element A2
RL we should use the relations X± = 1/x∓

R .
In terms of the u-plane this translates to

uL(X+) = uR(x−
R ) +

2ik

h
, uL(X−) = uR(x+

R ), (7.12)

or
uR = UL − ik

h
. (7.13)

Inserting this into the above matrix element we find

A2
L(k−1)L,even(1/x∓

R , y±) =
S
[
uR(x+

R )− uL(y−)
]

S
[
uR(x−

R )− uL(y+)
]σ−2

L(k−1)L,even(1/x∓
R , y±)

=
S
[
uR − vL + 2i

h

]
S
[
uR − vL − 2i

h

]σ−2
L(k−1)L,even(1/x∓

R , y±).
(7.14)

This exactly matches the even RL matrix element (6.19) as long as the even dressing phases
satisfy the fusion condition by themselves

σ2
L(k−1)L,even(1/x∓

R , y±) = σ2
RL ,even(x±

R , y±). (7.15)
37All cancellations in the fusion procedure become manifest if we multiply the matrix element A2

LL by
identity in the form

1 =
S
[
uL(x−) − uL(y−)

]
S
[
uL(x+) − uL(y+)

] .
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Let us now turn to the odd S matrix element. Fusing the odd LL matrix element
k − 1 times we get

A2
L(k−1)L,odd(1/x∓, y±) =

(
α(1/x+)
α(1/x−)

)1/k (
α(y+)
α(y−)

)1− 1
k

e−2iθLL (1/x∓,y±). (7.16)

To compare this with the RL matrix element we first note that the RL phase in (6.3) can
be rewritten (up to terms that do not contribute to θRL ) as

χRL (x, y) = −
∫ −s−1

s

dz

2π

log(y − z)
1
x − z

− 1
4π

log
1
x + s

1
x − s−1

(
log(y + s−1) + log(y − s)

)
− i

2 sign(Im x)
(
log
(
y − 1

x

)
− 1

2
(
log(y + s−1) + log(y − s)

))
,

(7.17)

where the first line equals −χLL (1/x, y). For a physical real momentum excitation Im x+ > 0
and Im x− < 0 and we can use the expression in the second line above to simplify the
rational terms in (6.1) to

A2
RL ,odd(x±, y±) =

(
α(1/x+)
α(1/x−)

)1/k (
α(y+)
α(y−)

)1− 1
k

e2iθLL (1/x±,y±), (7.18)

which perfectly matches what we got by fusing the odd LL matrix element. Even though
we found this expression by assuming that the momentum of the x± excitation is real it is
straight forward to extend it to the whole complex plane by picking up the right branch
of the dressing phase.

Note that the k − 1 times fused S matrix element (7.11) does not have an S channel
pole. This means that we cannot extend it to an m = k bound state. This has a direct
parallel in the XXZ model [43]. However, in [45] it was pointed out that the XXZ model
in fact does contain zero modes that correspond to m = k bound states, even though they
do not appear as solutions to the Bethe ansatz equations. Since our proposed scalar factor
has the same form as the XXZ chain, we expect similar results to hold for AdS3 also. In
particular, this should clarify how massless states appear as a results of fusion. We hope
to return to these questions in the near future.

Here we have focused our discussion about the relation between different bound states to
the case where the bound state sits in the region between the scallion and the kidney. We
expect similar results to hold in other momentum regions. For the odd part of the matrix
elements the above calculation should be easy to analytically continue to a different region.
However, it is clear that the even part of the matrix element requires more care. Consider
for example a k + 1 bound state with momentum in (0, 2π) scattering with a fundamental
excitation in the same region. From (6.11) we find

A2
L(k+1)L,even(X

±, y±) = uL(X−)− uL(y+)
uL(X+)− uL(y−)

uL(X+)− uL(y+)
uL(X−)− uL(y−)

× X+

X−

(
y−

y+

)k+1

σ−2
L(k+1)L,even(X

±, y±). (7.19)
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Since the rapidity plane is not periodic we cannot drop the second factor here. This matrix
element should equal A2

LL ,even(p + 2π, q) with two fundamental excitations. For this to be
possible we need to pick up a compensating factor from the even dressing phase when we
analytically continue from p to p + 2π. This should provide a test of the even dressing phase.

8 Conclusions

We have analysed the kinematical structure of worldsheet excitations in mixed-flux AdS3 ×
S3 × T4 geometries and found a structure far richer than in the case of R-R backgrounds.
Momenta of these excitations are no longer periodic and the related Zhukovsky variables have
infinitely many sheets, which we have shown can be reached through analytic continuations
around the singular p = 2πn (n ∈ Z) points. Similarly, the variable u that is commonly
used in integrable holography has a mixed-flux generalisation for each pair of Zhukovsky
sheets. We have identified one set of Zhukovsky sheets and corresponding u variable, which
exhibit a novel type of periodicity. Alongside this paper we include a graphics programme
that can be used to visualise this complicted analytic structure for both fundamental and
bound state excitations [14].

Using these analyticity insights, we have shown that excitations which appear fundamental
are equivalent to bound states upon suitable shifts of momenta. Similarly, R excitations can
be constructed from L bound states. These constraints place restrictions on the S matrix of
the theory, particularly on its scalar factors. We have solved the odd part of the crossing
equations and proposed scalar factors for the S matrices that have the correct pole structure
for the bound state spectrum of the theory. Focusing on the (−2π, 0) momentum region,
we showed that these odd dressing phases and scalar factors have the required properties
under fusion. Further, we proposed a scalar factor closely resembling38 the XXZ model at a
root of unity, i.e., with anisotropy of the form ∆ = cos π

k . This factor ensures consistency
with u-periodicity in this region, the correct bound-state simple poles expected in the theory,
as well as the required properties under fusion. Because of the known connections between
XXZ models and quantum groups, it would be interesting to investigate whether there is an
underlying quantum group structure in the mixed flux backgrounds. Such connections have
been studied in η-like deformations of both R-R [54, 55] and mixed flux backgrounds [56],
as well as in more general “elliptic” deformations [57]. We leave to future work finding a
more precise relation between these deformations and our results.

Unlike AdS5, integrable AdS3 theories’ dressing factors remain non-trivial in the h → 0
limit, both in R-R and mixed-flux cases, signalling the non-square-root nature of the branch
points [27]. This is an important difference in the weakly-coupled regime: the AdS5 case
reduces to an XXX spin-chain in the su(2) sector, while in the AdS3 case, depending on the
momentum region we would get XXX or XXZ spin-chains, dressed by non-trivial phases.
Intriguingly, this suggests that the planar spectrum of the WZW model deformed by the
axion modulus should be governed by such “dressed” spin-chains.

Having gained a better understanding of the analyticity properties of the mixed-flux
theory across the full range of p, we revisited its relativistic limit. Related limits were

38Up to simple rescalings of the rapidity variable.
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introduced in R-R backgrounds [38] where they led to a difference-form for the massless S
matrix and dressing factors [46, 47], fixing certain potential CDD ambiguities and leading to
novel expressions for massless dressing factors. Relativistic limits were also studied in mixed-
flux backgrounds [47], where a close relationship to relativistic integrable models [48, 49]
as well as q-deformed holographic ones [50–52] was identified. An improved version of this
relativistic limit was proposed in [21], for which the Hopf algebra and hence S matrix and
dressing phases were the same as in [47], but whose dispersion relation matched the bound-
state structure more closely to the AdS3 case. We showed that the correct way to interpret
the relativistic limit is as coming from the region between the scallion and kidney, zooming
in on momenta near the EI branch points, as illustrated in figure 31. As we explained, from
this perspective the truncation of the bound state spectrum is natural, with all but a finite
number of bound states decoupling because they can equivalently be viewed as states whose
momenta are not near the minimal values (6.24). With these clarifications, we then showed
that the odd dressing phase and scalar factors we have found in this paper reduce to the
corresponding expressions given in [21, 47].

In section 7, we discussed the role of fusion and bound states in the mixed flux backgrounds.
There, we showed that singlet states of the type first introduced in [31, 32] play an important
role in mixed flux theories. As in those higher-dimensional examples, our crossing equations
follow from the trivial scattering of such singlets. In turn, this implies the equivalence of,
for example, m = k + 1 bound states with momentum p and m = 1 fundamentals with
momentum p + 2π, as well as the equivalence of m = k − 1 L bound states with momentum
p − 2π and m = 1 R fundamentals with momentum p. As we discussed in section 2.5, these
equivalences are important because they ensure that the spectrum of excitations does not
include an infinite degeneracy of identically charged states when analytically continuing in the
full p plane. These equivalences of the excitations provide a unified description for allowed
values of excitation momenta and on bound state numbers.39

Further, consistency of these equivalences with fusion places constraints on the scalar
factors of the S matrix that we discussed in section 7.2. For the odd dressing phases, it is this
important consistency that has led us to include the α1/k factors in the normalisations (6.1).
From semi-classical near-BMN worldsheet intuition, one might have expected a smooth
k → 0 limit. However, it is well known that in AdS3 integrable theories 1-loop worldsheet
calculations often do not match with corresponding expansions of 1-loop results, see for
example point 3 on page 35 of [19]. There is an expectation that the one-loop cancellation
between massless bosons and fermions, analogous to what happens in flat space, does not
fully capture the contributions to the S matrix or energies of states at that order and that
naively sub-leading terms should be included.40 Nevertheless, it will be important to revisit
these fusion constraints and the α1/k factors when including the even dressing phases, for
example those proposed recently in [41].

The relations between massless modes and bound states with shifted momenta discussed
in section 7.1 suggests that wrapping corrections coming from massless and mixed mass effects

39Specifically, the kinematics at k = 1 is similar to the cases of k > 1 and so a shift of momentum by 2π is
equivalent to a shift of m by k = 1. Hence, from the point of view of kinematics, viewing the excitations as
fundamental massive or massless in the case of k = 1 should be equivalent.

40We would like to thank Kolya Gromov and Arkady Tseytlin for discussions about this.
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may be easier to analyse in the mixed-flux setting than in the R-R case, because one may be
able to view all modes as being massive, under suitable momentum shift. In light of this, it may
be worth revisiting the findings of [58], as well as generalising the QSC computations of [59].

To complete the determination of the S matrix of mixed-flux backgorunds it remains to
find the even dressing factors, which should amount to finding the mixed-flux generalisation
of the BES phase. We leave this for future work. It would be interesting to understand the
mixed-flux TBA and QSC and use them to solve the spectral problem on AdS3 × S3 × T4

backgrounds. This would provide much needed data for testing the AdS3/CFT2 duality
and understanding the connection to the SymN (T4) dual CFT, the k = 1 results using the
hybrid formalism [60], as well as the appearance of integrability on the Higgs branch of the
infrared limit of the D1-D5-brane gauge theory [61].
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