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Variable selection is important for classification of data with many irrelevant predicting variables, 
but it has not yet been well studied in positive-unlabeled (PU) learning, where classifiers have to 
be trained without labelled-negative instances. In this paper, we propose a group kernel-free PU 
classifier with asymmetric loss (GKF-PUAL) to achieve quadratic PU classification with group-lasso 
regularisation embedded for variable selection. We also propose a five-block algorithm to solve 
the optimization problem of GKF-PUAL. Our experimental results reveal the superiority of GKF-

PUAL in both PU classification and variable selection, improving the baseline PUAL by more than 
10% in F1-score across four benchmark datasets and removing over 70% of irrelevant variables on 
six benchmark datasets. The code for GKF-PUAL is at https://github .com /tkks22123 /GKF -PUAL.

1. Introduction

Variable selection, also called feature selection, is an important and widely-studied topic in statistics and machine learning for 
supervised classification [2,4,13,29,32], as irrelevant variables can often damage the interpretability and generalizability of classifi-

cation models. Models focusing on the most predictive variables usually generalize better on unseen data. Additionally, having fewer 
variables included can offer easier interpretation of the model; this is especially important in areas such as finance and healthcare 
where interpretability is very much valued by professionals. There are mainly three ways to achieve variable selection: filter, wrapper, 
and embedded methods. Filter methods evaluate the relevance of variables to classification based on some metrics and then eliminate 
those variables with low relevance. Wrapper methods evaluate variable subsets based on the model performance and then select the 
best-performing subset. Embedded methods, such as lasso, aim to exploit the best of both filter methods and wrapper methods, by 
embedding variable selection into the model training. Hence, compared with filter methods and wrapper methods, embedded meth-

ods offer a better balance between computational complexity and variable-selection accuracy to the classifier training. However, for 
positive-unlabeled (PU) learning, variable selection, especially embedded variable selection, has not yet been well studied.

PU learning has a variety of applications in practice; for example, learning the political interests of Members of Parliament to 
assist document distribution [9], time series classification [10,15] and learning to rank in recommendation systems [18]. However, 
PU learning is a much harder task than supervised classification, because in PU learning only some positive instances are labelled

before the model training, i.e. there is no labelled-negative instances available in the training set of PU learning.
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Fig. 1. The t-SNE plots of the three trifurcate datasets OR1, OR2 and Pen; blue: positive instances; red: negative instances. The positive instances roughly scatter on 
both sides of the negative instances.

Therefore, it is quite natural to develop a two-step approach to PU learning [8,16,17,25,34], which involves firstly a method to 
identify some reliably negative instances from the unlabeled set, and then a semi-supervised method trained on three sets: the set of 
labelled-positive instances, the set of reliably negative instances as labelled negative instances, and the set of remaining unlabeled

instances. However, the performance of a two-step method heavily relies on the quality of the identified reliably negative instances 
in the first step. Hence, many one-step methods for PU learning, without firstly identifying reliably negative instances, have been 
proposed, e.g., unbiased PU learning (uPU) [11,12], non-negative PU learning (nnPU) [22], imbalanced nnPU [31], cost-sensitive PU 
learning [7], biased support vector machine [24], weighted unlabeled samples SVM [26], biased least squares SVM [21], GLLC [20], 
and PUAL [33].

As we can imagine, the unavailability of labelled-negative instances for the model training also makes variable selection a more 
challenging and less-studied task for PU learning than for supervised classification. [5] provided a pioneer method for variable 
selection in PU learning called puCFS, which is a filter method; however, the class prior is a hyper-parameter of this method and 
has to be set/estimated before variable selection; [19] evaluated some unsupervised filter methods for variable selection in PU 
learning. [30] built a robust wrapper method to maximise the area under curve (AUC) for the training of a linear classifier for PU 
learning; [14] proposed an embedded variable-selection method by combining 𝐿1-norm and logistic regression to generate a linear 
decision boundary for classification on PU data. However, these two methods mainly work on the classifiers generating linear decision 
boundary.

We build our model on PUAL [33], a PU classifier particularly effective on the datasets having trifurcate patterns as illustrated in 
Fig. 1 by using three UCI datasets (UCI Machine Learning Repository, https://archive .ics .uci .edu /ml /index .php), as such a pattern 
necessitates a non-linear classifier. The kernel trick is widely adopted by classifiers to generate nonlinear decision boundary. However, 
we note that the kernel trick is not compatible to the lasso or group-lasso regularisation term for embedding variable selection in 
PUAL. To resolve this issue, we propose a group kernel-free quadratic PU classifier (GKF-PUAL) with the ability of embedded variable 
selection in this paper.

Technically more specific, to construct GKF-PUAL, we firstly introduce the quadratic predictive score and objective functions of 
a kernel-free SVM [27] to PUAL to generate quadratic decision boundaries without relying on the kernel trick. Then, we incorporate 
the group-lasso regularisation [28,35] into the new objective function of PUAL, aiming to compress the coefficients of irrelevant 
variables to zero for variable selection. With these two improvements, we build GKF-PUAL on PUAL; and GKF-PUAL demonstrates 
superior classification and variable-selection performance on PU data (especially trifurcate PU data).

In summary, the technical novelties and contributions of this paper are three-fold:

1. In Section 3 we propose GKF-PUAL as an integration of PUAL, kernel-free SVM, and group lasso to generate quadratic classification 
with variable selection embedded.

2. We propose a five-block algorithm in Sections 3 to solve the optimization problem of GKF-PUAL.

3. Experiments in Section 4 on the real-world datasets verify the superiority of GKF-PUAL in classification and variable selection of 
PU data.

2. Related work

We first establish some notation. Suppose there are 𝑛𝑝 labelled-positive instances and 𝑛𝑢 unlabeled instances with 𝑚 predicting 
variables (aka features). Then 𝑿[𝑝𝑢] = (𝒙1, … , 𝒙𝑛𝑝 , … , 𝒙𝑛𝑝+𝑛𝑢 )

𝑇 ∈ ℝ(𝑛𝑝+𝑛𝑢)×𝑚 is the matrix with vector 𝒙𝑖 ∈ ℝ𝑚×1 to be the vector of 
predicting variables of the 𝑖th instance, and 𝑛𝑝 + 𝑛𝑢 = 𝑛. Similarly, 𝑿[𝑝] = (𝒙1, … , 𝒙𝑛𝑝 )

𝑇 ∈ℝ𝑛𝑝×𝑚 is the matrix for the labelled-positive 
instances and 𝑿[𝑢] = (𝒙𝑛𝑝+1, … , 𝒙𝑛𝑝+𝑛𝑢 )

𝑇 ∈ ℝ𝑛𝑢×𝑚 is the matrix for the unlabeled instances including both unlabeled positive and 
negative instances.

2.1. PUAL [33]

For better PU classification performance, especially on the trifurcate data like those illustrated in Fig. 1, PUAL [33] was proposed 
by replacing the squared loss in the objective function of GLLC [20] with the hinge loss for labelled-positive instances, thus providing 
2

an asymmetric structure of loss able to treat labelled-positive instances and unlabeled-positive instances differently.

https://archive.ics.uci.edu/ml/index.php
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Fig. 2. Illustration of the steps to construct the 𝑗th row of matrix 𝕏𝑖 : the elements marked with green circles in vector 𝜶 are equivalent to those represented by the 
green dashed lines in matrix 𝐀; the elements marked by the blue circles constitute 𝒙𝑖 , and their positions in the 𝑗th row of matrix 𝕏𝑖 correspond to the same positions 
as the elements marked by the green circles in vector 𝜶.

The linear predictive score function of PUAL is simple as

𝑓 (𝒙) = 𝒙𝑇 𝜷 + 𝛽0, (1)

where 𝜷 = (𝛽1, … , 𝛽𝑚)𝑇 ∈ℝ𝑚×1 and 𝛽0 are the model parameters to learn.

The objective function of PUAL can be expressed as

min
𝜷,𝛽0

𝜆

2
‖𝜷‖22 +𝐶𝑝𝟏𝑇𝑝 [𝟏𝑝 − (𝑿[𝑝]𝜷 + 𝟏𝑝𝛽0)]+

+𝐶𝑢[𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]𝑇 [𝟏𝑢 + (𝑿[𝑢]𝜷 + 𝟏𝑢𝛽0)]

+ (𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0)𝑇𝑹(𝑿[𝑝𝑢]𝜷 + 𝟏𝑝𝑢𝛽0),

(2)

where 𝐶𝑝, 𝐶𝑢 and 𝜆 > 0 are hyper-parameters of model, 𝟏𝑝,𝑢 = (1,1,⋯ ,1
⏟⏞⏟⏞⏟

𝑘

)𝑇 with 𝑘 = 𝑛𝑝 or 𝑛𝑢, and 𝑹 denotes a matrix of local similarity 

between instances based on their 𝐾 -nearest neighbours and a hyper-parameter 𝜎 (See the details of calculation of 𝑹 in [20,33]), and 
[𝑔(⋅)]+ is a column vector of the maximum between each element of 𝑔(⋅) and 0.

To generate non-linear decision boundary for PUAL, the kernel trick can be adopted. However, the kernel trick cannot be applied 
to the objective function of PUAL if an additional lasso or group-lasso regularisation term is introduced for variable selection. This 
is because in that case the terms of the feature maps (from the original feature space to an infinite-dimensional space) cannot be 
rewritten in the form of self-inner products for kernel matrices to replace them.

2.2. Soft quadratic surface support vector machine (SQS-SVM)

As a kernel-free SVM, SQS-SVM [27] is a classifier holding the following quadratic predictive score function

𝑓 (𝒙) = 1
2
𝒙𝑇𝐀𝒙+ 𝒙𝑇 𝜷 + 𝛽0, (3)

where the symmetric matrix 𝐀 = {𝛼𝑖𝑗}, 𝑖, 𝑗 = 1, … , 𝑚 is an 𝑚 ×𝑚 matrix of the quadratic model parameters to be learnt. We note that 
GKF-PUAL, which is to be proposed in this paper, also uses the same predictive score function as that of SQS-SVM in Equation (3).

To train SQS-SVM, the objective function can be formulated as

min
𝐀,𝜷,𝛽0

𝜆2
2

𝑛∑
𝑖=1

‖‖𝐀𝒙𝑖 + 𝜷‖‖22 + 𝑛∑
𝑖=1

[
1 − 𝑦𝑖(

1
2
𝒙𝑇𝑖 𝐀𝒙𝑖 + 𝒙𝑇𝑖 𝜷 + 𝛽0)

]
+
, (4)

where 𝑛 is the size of the training set and 𝑦𝑖 is the ground-truth class label of the 𝑖th instance. To solve this optimization problem, [27]

offers a way to first transform Equation (4) into a form similar to the objective function of classic supervised SVM, by converting 
matrix 𝐀 to a vector, briefly described as follows.

Firstly, place the upper triangle elements of matrix 𝐀 into 𝑚
2+𝑚
2 -dimensional vector

𝜶 = (𝛼11, 𝛼12,…𝛼1𝑚, 𝛼22,…𝛼2𝑚,… , 𝛼𝑚𝑚)𝑇 . (5)

Then, map the 𝑖th independent variable 𝒙𝑖 into an 𝑚 × 𝑚2+𝑚
2 matrix 𝕏𝑖 in the following steps, which is illustrated in Fig. 2:

1. Initialise 𝕏𝑖 as a {𝟎}
𝑚× 𝑚2+𝑚

2
matrix.

2. Record the coordinate 𝑔 of the element in vector 𝜶 if it is originally from the 𝑗th row or column of matrix 𝐀. The other coordinate 
than 𝑗 of this element in matrix 𝐀 is subsequently recorded as 𝑘.

3. The 𝑔th element in the 𝑗th row of matrix 𝕏𝑖 is determined as 𝒙𝑖𝑘.

4. Repeat Step 2 and Step 3 until the position of all the elements in vector 𝜶 originally from the 𝑗th row or column of matrix 𝐀 is 
3

recorded for a fixed 𝑗.
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5. Repeat Step 4 until 𝑗 has taken the value from 1 to 𝑚.

6. Repeat Step 5 until 𝑖 has taken the value from 1 to 𝑛.

After obtaining 𝜶 and 𝕏𝑖, 𝑖 = 1, … , 𝑛, and by defining 𝜶∗ = [𝜶𝑇 , 𝜷𝑇 ]𝑇 and 𝕏∗
𝑖
= [𝕏𝑖, 𝑰𝑚], then the objective function of SQS-SVM 

can be reformulated as

min
𝜶∗ ,𝛽0

𝜆2
2
𝜶∗𝑇𝑮𝜶∗ + 𝟏𝑇𝑛

[
𝟏𝑛 − (𝑺𝜶∗ + 𝟏𝑛𝛽0)

]
+ , (6)

where 𝑮 =
∑𝑛

𝑖=1
(
𝕏∗
𝑖

)𝑇 𝕏∗
𝑖
, 𝒔𝑖 =

1
2 [𝕏

∗
𝑖
𝑇 𝒙𝑖 + (𝟎𝑇

𝑚2+𝑚
2

, 𝒙𝑇
𝑖
)𝑇 ], 𝑺 = {𝒔𝑇

𝑖
}𝑛×𝑚∗ , and 𝑚∗ = 𝑚2+3𝑚

2 .

3. GKF-PUAL

3.1. Objective function

To propose the objective function of GKF-PUAL, we adopt two steps: 1) first modify the objective function of linear PUAL in 
Equation (2) to obtain kernel-free quadratic PUAL; and 2) then introduce a group-lasso regularisation to the kernel-free quadratic 
PUAL for variable selection.

3.1.1. Kernel-free quadratic PUAL

Firstly, we consider an objective function similar to the objective function of PUAL in Equation (2), but we replace the linear terms 
of 𝑿 in Equation (2) by their quadratic counterparts and replace the 𝐿2-norm of 𝜷 in Equation (2) by the corresponding regularisation 
term of SQS-SVM in Equation (4):

min
𝐀,𝜷,𝛽0

𝜆2
2

𝑛𝑝𝑢∑
𝑖=1

‖‖𝐀𝒙𝑖 + 𝜷‖‖22 +𝐶𝑝

𝑛𝑝∑
𝑖=1

[
1 − (1

2
𝒙𝑇𝑖 𝐀𝒙𝑖 + 𝒙𝑇𝑖 𝜷 + 𝛽0)

]
+

+𝐶𝑢

𝑛𝑝𝑢∑
𝑖=𝑛𝑝+1

[
1 + (1

2
𝒙𝑇𝑖 𝐀𝒙𝑖 + 𝒙𝑇𝑖 𝜷 + 𝛽0)

]2
+ 𝒃𝑇𝑹𝒃

𝑠.𝑡. 𝑏𝑖 =
1
2
𝒙𝑇𝑖 𝐀𝒙𝑖 + 𝒙𝑇𝑖 𝜷 + 𝛽0, 𝑖 = 1,… , 𝑛𝑝𝑢.

(7)

To solve this optimization problem, we follow the strategy in SQS-SVM as discussed in Section 2.2, by converting 𝐀 to a vector 
𝜶. Then terms involving 𝐀 can be written as

𝑛𝑝𝑢∑
𝑖=1

‖𝐀𝒙𝑖 + 𝜷‖22 = 𝑛𝑝𝑢∑
𝑖=1

‖𝕏𝑖𝜶 + 𝜷‖22 = 𝑛𝑝𝑢∑
𝑖=1

‖‖‖‖‖[𝕏𝑖,𝑰𝑚]
[
𝜶

𝜷

]‖‖‖‖‖
2

2

=
𝑛𝑝𝑢∑
𝑖=1

‖𝕏∗
𝑖 𝜶

∗‖22 = 𝜶∗𝑇𝑮𝜶∗,

(8)

where 𝜶∗ = [𝜶𝑇 , 𝜷𝑇 ]𝑇 , 𝕏∗
𝑖
= [𝕏𝑖, 𝑰𝑚] and 𝑮 =

∑𝑛𝑝𝑢

𝑖=1
(
𝕏∗
𝑖

)𝑇 𝕏∗
𝑖
, and

1
2
𝒙𝑇𝑖 𝐀𝒙𝑖 + 𝒙𝑇𝑖 𝜷 + 𝛽0 =

1
2
𝒙𝑇𝑖 𝕏𝑖𝜶 + 𝒙𝑇𝑖 𝜷 + 𝛽0

= [ 1
2
𝒙𝑇𝑖 𝕏𝑖,𝒙

𝑇
𝑖 ]

[
𝜶

𝜷

]
+ 𝛽0

= 𝑠𝑇𝑖 𝜶
∗ + 𝛽0,

(9)

where 𝒔𝑖 =
1
2

(
𝕏∗
𝑖
𝑇 𝒙𝑖 + [𝟎𝑇

𝑚2+𝑚
2

,𝒙𝑇
𝑖
]𝑇
)

and 𝟎 𝑚2+𝑚
2

is a (𝑚
2+𝑚
2 × 1)-dimensional column vector of zeros.

Thus, the objective function in Equation (7) can be transformed to

min
𝜶∗ ,𝛽0

𝜆2
2
𝜶∗𝑇𝑮𝜶∗ + 𝒃𝑇𝑹𝒃+𝐶𝑝𝟏𝑇𝑝

[
𝟏𝑝 − (𝑺[𝑝]𝜶

∗ + 𝟏𝑝𝛽0)
]
+

+𝐶𝑢

[
𝟏𝑢 + (𝑺[𝑢]𝜶

∗ + 𝟏𝑢𝛽0)
]𝑇 [

𝟏𝑢 + (𝑺[𝑢]𝜶
∗ + 𝟏𝑢𝛽0)

]
𝑠.𝑡. 𝒃 = 𝑺[𝑝𝑢]𝜶

∗ + 𝟏𝑝𝑢𝛽0,

(10)
4

where 𝑺[𝑝𝑢] = {𝒔𝑇
𝑖
} for 𝑖 = 1, … , 𝑛, 𝑺[𝑝] = {𝒔𝑇

𝑖
} for 𝑖 = 1, … , 𝑛𝑝, and 𝑺[𝑢] = {𝒔𝑇

𝑖
} for 𝑖 = 𝑛𝑝+1, … , 𝑛.
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3.1.2. Introduction of group-lasso regularisation for variable selection

Now we introduce a group-lasso regularisation to the objective function in Equation (10), to generate sparse coefficient vector 
𝜶∗. The reason why here we adopt group lasso rather than lasso is because we need to enforce a group-wise penalty; that is, once 
a coefficient associated with a variable is compressed to zero, all other coefficients associated with this variable should also be 
compressed to zero so that this variable can be removed from the model [28]. Hence we propose the objective function of GKF-PUAL 
as

min
𝜶∗ ,𝛽0

𝜆2
2
𝜶∗𝑇𝑮𝜶∗ + 𝒃𝑇𝑹𝒃+𝐶𝑝𝟏𝑇𝑝

[
𝟏𝑝 − (𝑺[𝑝]𝜶

∗ + 𝟏𝑝𝛽0)
]
+

+𝐶𝑢

[
𝟏𝑢 + (𝑺[𝑢]𝜶

∗ + 𝟏𝑢𝛽0)
]𝑇 [

𝟏𝑢 + (𝑺[𝑢]𝜶
∗ + 𝟏𝑢𝛽0)

]
+
𝜆1
2

𝑚∑
𝑖=1

‖𝜶∗
[𝑖]‖2

𝑠.𝑡. 𝒃 = 𝑺[𝑝𝑢]𝜶
∗ + 𝟏𝑝𝑢𝛽0,

(11)

where the column vector 𝜶∗
[𝑖], 𝑖 = 1, … , 𝑚, is the 𝑖th subset of 𝜶∗ containing the coefficients associated with the 𝑖th variable. The 

cardinality of subset 𝜶∗
[𝑖] fo 𝑖 = 1, … , 𝑚 is 𝑚 + 1 since there is one overlap element between 𝜶∗

[𝑖] and 𝜶∗
[𝑗], ∀𝑖 ≠ 𝑗.

3.2. Parameter estimation

3.2.1. Five-block ADMM for the optimization of GKF-PUAL

It should be noted that one element in 𝜶∗ may be associated with up to two variables, therefore there exist group overlaps 
among 𝜶∗

[1], 𝜶
∗
[2], … , 𝜶∗

[𝑚], i.e., 𝜶∗
[𝑖] ∩𝜶∗

[𝑗] ≠ ∅, ∀𝑖, 𝑗 = 1, 2, … , 𝑚. This causes difficulty in ADMM for optimization, so firstly we consider 
representing the objective function by five blocks (terms) and optimize the parameters in them separately:

min
𝜶∗ ,𝛽0 ,𝒉,𝒂,𝒕,𝒃

𝜆1
2

𝑚∑
𝑖=1

‖𝒕[𝑖]‖2 + 𝜆2
2
𝜶∗𝑇𝑮𝜶∗ + 𝒃𝑇𝑹𝒃+𝐶𝑝𝟏𝑇𝑝 [𝒉]+ +𝐶𝑢𝒂

𝑇 𝒂

𝑠.𝑡. 𝒉 = 𝟏𝑝 − (𝑺[𝑝]𝜶
∗ + 𝟏𝑝𝛽0),

𝒂 = 𝟏𝑢 + (𝑺[𝑢]𝜶
∗ + 𝟏𝑢𝛽0),

𝒕 =𝑫∗𝜶∗,

𝒃 = 𝑺[𝑝𝑢]𝜶
∗ + 𝟏𝑝𝑢𝛽0,

(12)

where 𝑫∗ is the 𝑚(𝑚 + 1) × 𝑚2+3𝑚
2 design matrix. More specifically, to construct 𝑫∗, firstly we initialise it as an 𝑚(𝑚 + 1) × 𝑚2+3𝑚

2
matrix of zeros; then if the 𝑗th element of 𝜶∗

[𝑖] is 𝜶∗
𝑘
, the (𝑗 + (𝑖 − 1)(𝑚 + 1), 𝑘) element of 𝑫∗ will be set to 1; after repeating this 

step for all 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑚 + 1, we finally obtain 𝑫∗ in Equation (12). Hence the 𝑚(𝑚 + 1)-dimensional column vector 
𝒕 = (𝒕𝑇[1], 𝒕

𝑇
[2], … , 𝒕𝑇[𝑚])

𝑇 , and the cardinality of 𝒕[𝑖], 𝑖 = 1, … , 𝑚, is 𝑚 +1. The introduced local variable 𝒕 can eliminate the group overlaps 
among the group-lasso regularisation terms, i.e., ∀𝑖 ≠ 𝑗, 𝒕[𝑖] ∩ 𝒕[𝑗] = ∅.

The Lagrangian formulation of Equation (12) can be written as

(𝜽) =
𝜆1
2

𝑚∑
𝑖=1

‖𝒕[𝑖]‖2 + 𝜆2
2
𝜶∗𝑇𝑮𝜶∗ + 𝒃𝑇𝑹𝒃+𝐶𝑝𝟏𝑇𝑝 [𝒉]+ +𝐶𝑢𝒂

𝑇 𝒂

+ 𝒖𝑇
𝒉
(𝟏𝑝 − (𝑺[𝑝]𝜶

∗ + 𝟏𝑝𝛽0) − 𝒉) + 𝒒𝑇 (𝑺[𝑝𝑢]𝜶
∗ + 𝟏𝑝𝑢𝛽0 − 𝒃)

+ 𝒖𝑇
𝒂
(𝟏𝑢 +𝑺[𝑢]𝜶

∗ + 𝟏𝑢𝛽0 − 𝒂) + 𝒗𝑇 (𝑫∗𝜶∗ − 𝒕)

(13)

where 𝒖ℎ ∈ℝ𝑛𝑝×1, 𝒖𝑎 ∈ℝ𝑛𝑢×1, 𝒗 ∈ℝ𝑚(𝑚+1)×1, 𝒒 ∈ℝ(𝑛𝑝+𝑛𝑢)×1 are dual variables.

Then, the augmented Lagrangian function is

𝑎(𝜽) =(𝜽) +
𝜇1
2

‖‖‖𝟏𝑝 − (𝑺[𝑝]𝜶
∗ + 𝟏𝑝𝛽0) − 𝒉

‖‖‖22
+
𝜇2
2

‖‖‖𝟏𝑢 + (𝑺[𝑢]𝜶
∗ + 𝟏𝑢𝛽0) − 𝒂

‖‖‖22
+
𝜇3
2

‖‖𝑫∗𝜶∗ − 𝒕‖‖22
+
𝜇4
2

‖‖‖𝑺[𝑝𝑢]𝜶
∗ + 𝟏𝑝𝑢𝛽0 − 𝒃

‖‖‖22 ,
(14)

where the augmented Lagrangian terms are introduced to make the sub-optimizations “more convex”. According to [6], the values 
of non-negative hyper-parameters 𝜇1, 𝜇2, 𝜇3 and 𝜇4 only affect the times of iteration for ADMM to converge but will not affect the 
5

values of the converged solutions of model parameters.
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Finally, we solve the following five sub-optimizations to update the values of model parameters, 𝜶∗, 𝛽0, and slack variables, 𝒉, 𝒂, 
𝒕 and 𝒃, iteratively:

(𝜶∗(𝑘+1), 𝛽(𝑘+1)0 ) = arg min
𝜶∗ ,𝛽0

𝑎(𝜶∗, 𝛽0,𝒉
(𝑘),𝒂(𝑘), 𝒕(𝑘),𝒃(𝑘),𝒖(𝑘)

𝒉
,𝒖(𝑘)

𝒂
,𝒗(𝑘),𝒒(𝑘)),

𝒉(𝑘+1) = argmin
𝒉

𝑎(𝜶∗(𝑘+1), 𝛽(𝑘+1)0 ,𝒉,𝒖
(𝑘)
𝒉
),

𝒂(𝑘+1) = argmin
𝒂

𝑎(𝜶∗(𝑘+1), 𝛽(𝑘+1)0 ,𝒂,𝒖(𝑘)
𝒂
),

𝒕(𝑘+1) = argmin
𝒕

𝑎(𝜶∗(𝑘+1), 𝛽(𝑘+1)0 , 𝒕,𝒗(𝑘)),

𝒃(𝑘+1) = argmin
𝒃

𝑎(𝜶∗(𝑘+1), 𝛽(𝑘+1)0 ,𝒃,𝒒(𝑘)).

(15)

Dual variables 𝒖ℎ, 𝒖𝑎, 𝒗, 𝒒 are updated subsequently in the same round of iteration:

𝒖
(𝑘+1)
𝒉

= 𝒖
(𝑘)
𝒉

+ 𝜇1[𝟏𝑝 − (𝑺[𝑝]𝜶
∗(𝑘+1) + 𝟏𝑝𝛽

(𝑘+1)
0 ) − 𝒉(𝑘+1)],

𝒖(𝑘+1)
𝒂

= 𝒖(𝑘)
𝒂

+ 𝜇2(𝟏𝑢 +𝑺[𝑢]𝜶
∗(𝑘+1) + 𝟏𝑢𝛽

(𝑘+1)
0 − 𝒂(𝑘+1)).

𝒗(𝑘+1) = 𝒗(𝑘) + 𝜇3(𝑫∗𝜶∗(𝑘+1) − 𝒕(𝑘+1)),

𝒒(𝑘+1) = 𝒒(𝑘) + 𝜇4(𝑺[𝑝𝑢]𝜶
∗(𝑘+1) + 𝟏𝑝𝑢𝛽

(𝑘+1)
0 − 𝒃(𝑘+1)).

(16)

3.2.2. Closed-form solutions to the five sub-optimizations

In this section, we derive the closed forms of the five sub-optimizations, i.e., the update of (𝜶∗, 𝛽0), 𝒉, 𝒂, 𝒃, 𝒕.

1. Update of 𝜶∗ and 𝛽0 The update of 𝜶∗ and 𝛽0 is

arg min
𝜶∗ ,𝛽0

𝜆2
2
𝜶∗𝑇𝑮𝜶∗ + 𝒖𝒉

(𝑘)𝑇 [𝟏𝑝 − (𝑺[𝑝]𝜶
∗ + 𝟏𝑝𝛽0) − 𝒉(𝑘)]

+ 𝒖𝒂
(𝑘)𝑇 (𝟏𝑢 +𝑺[𝑢]𝜶

∗ + 𝟏𝑢𝛽0 − 𝒂(𝑘)) + 𝒗(𝑘)
𝑇 (𝜶∗ − 𝒕(𝑘))

+ 𝒒(𝑘)
𝑇 (𝑺[𝑝𝑢]𝜶

∗ + 𝟏𝑝𝑢𝛽0 − 𝒃(𝑘)) +
𝜇1
2

‖‖‖𝟏𝑝 − (𝑺[𝑝]𝜶
∗ + 𝟏𝑝𝛽0) − 𝒉(𝑘)

‖‖‖22
+
𝜇2
2

‖‖‖𝟏𝑢 +𝑺[𝑢]𝜶
∗ + 𝟏𝑢𝛽0 − 𝒂(𝑘)

‖‖‖22 + 𝜇3
2

‖‖‖𝜶∗ − 𝒕(𝑘)
‖‖‖22

+
𝜇4
2

‖‖‖𝑺[𝑝𝑢]𝜶
∗ + 𝟏𝑝𝑢𝛽0 − 𝒃(𝑘)

‖‖‖22 ,
(17)

which is a quadratic optimization with every term differentiable. Thus the update of the model parameters 𝜶∗, 𝛽0 can be obtained 
by computing

(𝜶∗(𝑘+1)𝑇 , 𝛽(𝑘+1)0 )𝑇 =
[
𝜇3𝑫

∗[0]𝑇𝑫∗[0] + 𝜆2𝑮
[0] + 𝜇1𝑺

∗𝑇
[𝑝]𝑺

∗
[𝑝]

+ 𝜇2𝑺
∗𝑇
[𝑢]𝑺

∗
[𝑢] + 𝜇4𝑺

∗𝑇
[𝑝𝑢]𝑺

∗
[𝑝𝑢]

]−1
[
𝑺∗𝑇
[𝑝]𝒖𝒉

(𝑘) −𝑺∗𝑇
[𝑢]𝒖𝒂

(𝑘) −𝑫∗[0]𝑇 𝒗(𝑘)[0]

+𝜇1𝑺∗𝑇
[𝑝] (𝟏𝑝 − 𝒉(𝑘)) − 𝜇2𝑺

∗𝑇
[𝑢] (𝟏𝑢 − 𝒂(𝑘))

+𝜇3𝑫∗[0]𝑇 𝒕(𝑘)[0] + 𝜇4𝑺
∗𝑇
[𝑝𝑢]𝒃

(𝑘) −𝑺∗𝑇
[𝑝𝑢]𝒒

(𝑘)
]
,

(18)

where

𝑺∗
[𝑗] = [𝑺[𝑗],𝟏𝑗 ], 𝑗 = 𝑝, 𝑢, 𝑫∗[0] =

[
𝑫∗ 0
0 0

]
.

2. Update of 𝒉 The update of 𝒉 is

𝒉(𝑘+1) =argmin
𝒉

𝐶𝑝𝟏𝑇𝑝 [𝒉]+ + 𝒖
(𝑘)
𝒉

𝑇
[𝟏𝑝 − (𝑺[𝑝]𝜶

∗(𝑘+1) + 𝟏𝑝𝛽
(𝑘+1)
0 ) − 𝒉]

+
𝜇1
2

‖‖‖𝟏𝑝 − (𝑺[𝑝]𝜶
∗(𝑘+1) + 𝟏𝑝𝛽

(𝑘+1)
0 ) − 𝒉

‖‖‖22 . (19)
6

Considering the following threshold function,
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𝑠𝑐(𝑑) = argmin
𝑥

𝑐[𝑥]+ + 1
2
‖𝑥− 𝑑‖22 =

⎧⎪⎨⎪⎩
𝑑 − 𝑐, 𝑑 > 𝑐,

0,0 ≤ 𝑑 ≤ 𝑐,

𝑑, 𝑑 < 0,
(20)

we can solve the 𝑖th element of 𝒉(𝑘+1) as

ℎ
(𝑘+1)
𝑖

= 𝑠 𝐶𝑝
𝜇1

[
1 +

𝑢
(𝑘)
𝒉𝑖

𝜇1
− (𝒔𝑇𝑖 𝜶

∗(𝑘+1) + 𝛽
(𝑘+1)
0 )

]
. (21)

3. Update of 𝒂 The update of 𝒂

𝒂(𝑘+1) = argmin
𝒂

𝐶𝑢𝒂
𝑇 𝒂+ 𝒖(𝑘)

𝒂

𝑇 [𝟏𝑢 +𝑺[𝑢]𝜶
∗(𝑘+1) + 𝟏𝑢𝛽

(𝑘+1)
0 − 𝒂]

+
𝜇2
2

‖‖‖(𝟏𝑢 +𝑺[𝑢]𝜶
∗(𝑘+1) + 𝟏𝑢𝛽

(𝑘+1)
0 − 𝒂)‖‖‖22 , (22)

which is also a quadratic problem, similar to that for the update of 𝜶∗ and 𝛽0. Thus we can find the following solution:

𝒂(𝑘+1) = 1
2𝐶𝑢 + 𝜇2

[𝒖(𝑘)
𝒂

+ 𝜇2(𝟏𝑢 +𝑺[𝑢]𝜶
∗(𝑘+1) + 𝟏𝑢𝛽

(𝑘+1)
0 )]. (23)

4. Update of 𝒃 The update of 𝒃 is

𝒃(𝑘+1) = argmin
𝒃

𝒃𝑇𝑹𝒃+ 𝒒(𝑘)
𝑇 (𝑺[𝑝𝑢]𝜶

∗(𝑘+1) + 𝟏𝑝𝑢𝛽
(𝑘+1)
0 − 𝒃)

+
𝜇4
2

‖‖‖𝑺[𝑝𝑢]𝜶
∗(𝑘+1) + 𝟏𝑝𝑢𝛽

(𝑘+1)
0 − 𝒃

‖‖‖22 , (24)

which is also a quadratic problem. Thus 𝒃(𝑘+1) can be obtained as

𝒃(𝑘+1) = (2𝑹 + 𝜇4𝑰𝑛𝑝+𝑛𝑢 )
−1

[
𝒒(𝑘) + 𝜇4(𝑺[𝑝𝑢]𝜶

∗(𝑘+1) + 𝟏𝑝𝑢𝛽
(𝑘+1)
0 )

]
. (25)

5. Update of 𝒕 The update of 𝒕 is

𝒕(𝑘+1) =argmin
𝒕

𝜆1
2

𝑚∑
𝑖=1

‖𝒕[𝑖]‖2 + 𝒗(𝑘)
𝑇 (𝑫∗𝜶∗(𝑘+1) − 𝒕) +

𝜇3
2

‖‖‖𝑫∗𝜶∗(𝑘+1) − 𝒕
‖‖‖22 ,

=argmin
𝒕

𝜆1
2

𝑚∑
𝑖=1

‖𝒕[𝑖]‖2 + 𝜇3
2

‖‖‖‖𝑫∗𝜶∗(𝑘+1) + 𝒗(𝑘)

𝜇3
− 𝒕

‖‖‖‖
2

2
,

(26)

which can be treated as a special case of the following group-lasso regression:

argmin
𝒕

𝜆1
2𝜇3

𝑚∑
𝑖=1

‖𝒕[𝑖]‖2 + 1
2
‖‖𝒚∗ −𝑿∗𝒕‖‖22 , (27)

where 𝒚∗ =𝑫∗𝜶∗(𝑘+1) + 𝒗(𝑘)

𝜇3
and 𝑿∗ = 𝑰𝑚(𝑚+1).

Then, based on the techniques for the optimization of group variables in [35], we can find the Karush–Kuhn–Tucker (KKT) 
conditions for 𝒕[𝑖] in Equation (27):

−𝑿∗𝑇
[𝑖] (𝒚∗ −𝑿∗𝒕) +

𝜆1𝒕[𝑖]

2𝜇3
‖‖‖𝒕[𝑖]‖‖‖2 = 𝟎 if 𝒕[𝑖] ≠ 𝟎,‖‖‖−𝑿∗𝑇

[𝑖] (𝒚∗ −𝑿∗𝒕)
‖‖‖2 ⩽ 𝜆1

2𝜇3
if 𝒕[𝑖] = 𝟎,

(28)

where 𝑿∗
[𝑖] =𝑿∗[⋅, (𝑖 − 1)(𝑚 + 1) + 1 ∶ 𝑖(𝑚 + 1)]. When 𝑿∗ = 𝑰𝑚(𝑚+1), we can find 𝑿∗𝑇

[𝑖] 𝑿
∗
[𝑖] = 𝑰𝑚+1.

Therefore, by denoting 𝕊𝑖 =𝑿∗𝑇
[𝑖]

(
𝒚∗ −𝑿∗

[−𝑖]𝒕[−𝑖]

)
=𝑿∗𝑇

[𝑖] 𝒚∗, it follows Equation (28) that

𝒕[𝑖] =

[
1 −

𝜆1
2𝜇3 ‖‖𝕊𝑖‖‖2

]
+

𝕊𝑖, (29)

and thus the closed form of the updated 𝒕[𝑖] is

𝒕
(𝑘+1)
[𝑖] =

⎡⎢⎢1 − 𝜆1‖ ∗𝑇 ∗ 𝒗(𝑘) ‖
⎤⎥⎥ 𝑿∗𝑇

[𝑖] (𝑫
∗𝜶∗(𝑘+1) + 𝒗(𝑘)

𝜇3
). (30)
7

⎢⎣ 2𝜇3 ‖‖‖𝑿[𝑖] (𝑫 𝜶∗(𝑘+1) +
𝜇3

)‖‖‖2 ⎥⎦+
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3.2.3. Stopping criteria of the five-block ADMM

According to [3], there are dual stopping criteria to verify the convergence of ADMM. In our case, the dual stopping criteria can 
be formulated as

‖‖‖𝜇1[𝑺[𝑝],𝟏𝑝]𝑇 (𝒉(𝑘) − 𝒉(𝑘−1))‖‖‖2 ≤ 𝜖abs

√
𝑚2 + 3𝑚

2
+ 1 + 𝜖rel ‖‖‖[𝑺[𝑝],𝟏𝑝]𝑇 𝒖

(𝑘)
ℎ

‖‖‖2 ,‖‖‖𝜇2[𝑺[𝑢],𝟏𝑢]𝑇 (𝒂(𝑘) − 𝒂(𝑘−1))‖‖‖2 ≤ 𝜖abs

√
𝑚2 + 3𝑚

2
+ 1 + 𝜖rel ‖‖‖[𝑺[𝑢],𝟏𝑢]𝑇 𝒖(𝑘)𝑎

‖‖‖2 ,‖‖‖𝜇3𝑫∗𝑇 (𝒕(𝑘) − 𝒕(𝑘−1))‖‖‖2 ≤ 𝜖abs

√
𝑚2 + 3𝑚

2
+ 1 + 𝜖rel ‖‖‖𝑫∗𝑇 𝒗(𝑘)

‖‖‖2 ,‖‖‖𝜇4[𝑺[𝑝𝑢],𝟏𝑝𝑢]𝑇 (𝒃(𝑘) − 𝒃(𝑘−1))‖‖‖2 ≤ 𝜖abs

√
𝑚2 + 3𝑚

2
+ 1 + 𝜖rel ‖‖‖[𝑺[𝑝𝑢],𝟏𝑝𝑢]𝑇 𝒒(𝑘)

‖‖‖2 ,
(31)

where hyper-parameter 𝜖rel denotes the relative tolerance of convergence and hyper-parameter 𝜖abs denotes the absolute tolerance 
of convergence.

Finally, we summarise the algorithm of GKF-PUAL with quadratic decision boundary for PU classification in Algorithm 1.

Algorithm 1 GKF-PUAL.

Input: PU dataset, 𝐶𝑝 , 𝐶𝑢 , 𝜆1 , 𝜆2 , 𝜎 and 𝜇1 , 𝜇2 , 𝜇3 , 𝜇4
Output: 𝑨, 𝜷 and 𝛽0
1: Initialise 𝑨 to be a zero matrix, 𝜷 to be a vector of ones, and 𝛽0 to be 1
2: Initialise 𝒉, 𝒂, 𝒕, 𝒃 via the constraints in Equation (12)

3: Initialise 𝒖ℎ , 𝒖𝑎 , 𝒗 and 𝒒 to be vectors of ones

4: Convert 𝑨 and 𝜷 to 𝜶∗ following the steps in Section 3.1.2

5: while not fulfil the stopping criteria in (31) do

6: Update 𝜶∗(𝑘+1) and 𝛽(𝑘+1)0 via Equation (18)

7: Update 𝒉(𝑘+1) via Equation (21)

8: Update 𝒂(𝑘+1) via Equation (23)

9: Update 𝒃(𝑘+1) via Equation (25)

10: Update 𝒕(𝑘+1) via Equation (30)

11: Update 𝒖(𝑘+1)
𝒉

, 𝒖(𝑘+1)𝒂 , 𝒗(𝑘+1) and 𝒒(𝑘+1) via Equation (16)

12: end while

13: Convert 𝜶∗ back to 𝑨 and 𝜷 .

4. Experiments

In this section, experiments on real datasets were conducted to compare our proposed GKF-PUAL with PUAL and other established 
PU, classifiers, i.e., GLLC, uPU and nnPU.

4.1. Datasets and preprocessing

For the evaluation of PU classifiers, researchers usually generate PU datasets from publicly-available benchmark datasets where 
both positive and negative labels are available [5,14,20]. Following this strategy, we choose 13 UCI datasets of various types of 
real-world data, such as handwritten digit images, clinical records and ecoli bacteria. Specifically, the datasets chosen in this study 
are Accelerometer (Acc), Ecoli, Pen-based recognition of handwritten digits (Pen), Online retail (OR1), Online retail II (OR2), Sepsis 
survival minimal clinical records (SSMCR), Raisin Dataset (RD), Occupancy detection (OD), User knowledge modelling (UMD),

Seeds, Energy efficiency (ENB), Liver disorders (LD) and Heart disease (HD). The details of these 13 datasets are summarised in 
Table 1.

To verify both the classification and variable selection performance, the 13 datasets were preprocessed through the following two 
steps:

1. Standardise the 13 real-world datasets in Table 1.

2. Add irrelevant variables into the standardised dataset. Each of these irrelevant variables follows standard normal distribution, 
and the number of these irrelevant variables is twice the number of the original variables.

The standardisation in Step 1 is to ensure that the introduced irrelevant variables in Step 2 exert sufficient disturbance on the original 
datasets for model training.

4.2. Training-test split
8

The training-test split for the 13 real-world datasets was done through the steps:
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Table 1

Summary of the datasets used in experiments.

Dataset positive instances negative instances #variables

Acc 100 red 100 blue 4

Ecoli 116 im & 52 pp 143 cp & 25 om 6

Pen 200 one & 200 eight 400 four versicolor 16

OR1 301 UK 301 Germany 4

OR2 500 UK 500 Germany 4

SSMCR 391 alive 109 dead 3

OD 100 occupied 300 not occupied 5

UMD 83 Low 63 high 5

Seeds 70 Kama 70 Rosa 7

ENB 144 TypeII 144 Type III 7

RD 450 Kecimen 450 Besni 7

LD 144 class 1 200 class 2 6

HD 150 absence 119 presence 13

1. 𝛾 ′ of the positive instances in the real-world dataset were selected randomly into the labelled-positive set, and the rest of the 
positive instances were put into the unlabeled set.

2. The whole labelled-positive set and 70% of the unlabeled set formed the training set. The rest 30% of the unlabeled set formed 
the test set.

Let label frequency 𝛾 denote the proportion of labelled positive instances among all the positive instances in the training set. In 
this case, we obtained 10 pairs of PU training and test sets for each of the 13 datasets with a certain label frequency 𝛾 = 0.5 or 0.25
in the case-control scenario [1], where the unlabeled set and the test set can be regarded as i.i.d. samples from the same population. 
We chose two challenging situations with relatively low label frequencies, i.e. 𝛾 = 0.5 or 0.25. To achieve these two label frequencies, 
𝛾 ′ is set to 7

17 and 7
37 , respectively, given 𝛾 = 𝛾 ′∕(0.3𝛾 ′ + 0.7).

4.3. Compared methods and model setting

PUAL, GLLC, uPU and nnPU were trained on the 13 real-world datasets as the compared methods with GKF-PUAL. Furthermore, 
to demonstrate the effectiveness of variable selection by group lasso, we also test the classification performance of the kernel-free 
quadratic PUAL (KF-PUAL) without group lasso, using the objective function in Equation (7).

It should be noted that F1-score needs the information of ground-truth labels to be computed, which is not available for the 
negative instances during the training of PU classifiers. In this case, PUF-score [23] was chosen as the metric for hyper-parameter 
tuning, which holds a similar pattern to F1-score and does not need the information of ground-truth labels of negative instances.

By fixing 𝐶𝑝 to 1 and the number 𝐾 of the nearest neighbors to 5, 𝜆1, 𝜆2 and 𝜎 were firstly tuned by 4-fold CV, according to 
average PUF-score

recall2

𝑃 [sgn(𝑓 (𝒙)) = 1]
,

where ‘recall’ can be estimated by 1
𝑛𝑝

∑
𝒙𝑖∈𝑝 𝕚(sgn(𝑓 (𝒙𝑖)) = 1) with 𝕚(⋅) an indicator function and 𝑃 [sgn(𝑓 (𝒙)) = 1] can be estimated by 

1
𝑛𝑢

∑
𝒙𝑖∈𝑢 𝕚(sgn(𝑓 (𝒙𝑖)) = 1), since the unlabeled set can be regarded as i.i.d. samples from the population in the case-control scenario. 

Specifically, 𝜆1, 𝜆2 and 𝜎 were tuned from the set {10−4, 10−3, … , 103, 104}; 𝐶𝑢 was tuned from the set {0.5, 0.3, 0.1, 0.05, 0.01}. Then 
𝜆1, 𝜆2 and 𝐶𝑢 were continually tuned by following a greedy algorithm as

1. Set 𝜆1, 𝜆2, 𝜎 and 𝐶𝑢 to the best combination from the grid search.

2. Sequentially update one of hyper-parameters 𝜆1, 𝜆2, 𝜎 and 𝐶𝑢 by increasing/decreasing 10% of its current value with the rest of 
the hyper-parameters unchanged. The optimal scenario on 4-fold CV is set to be the final update of this step.

3. Repeat Step 2 until there is no better scenario appearing.

As mentioned in Section 3.2.1, the positive hyper-parameters 𝜇1, 𝜇2, 𝜇3 and 𝜇4 will not affect the value of the converged solution 
of model parameters, hence we fixed 𝜇1, 𝜇2, 𝜇3 and 𝜇4 to 0.01. In addition, the hyper-parameters 𝜖rel and 𝜖𝑎𝑏𝑠 for the stopping criteria 
in Section 3.2.3 were set to 0.001 and 0.25 respectively by following [3].

The hyper-parameter tuning of PUAL and GLLC follows the same steps after we substitute 𝜆 for 𝜆1 and 𝜆2. The recommended set 
in [22] was used as the hyper-parameters of uPU and nnPU as at https://github .com /kiryor /nnPUlearning. Finally, the Radial Basis 
9

Function (RBF) kernel was applied to PUAL and GLLC for non-linear decision boundaries.

https://github.com/kiryor/nnPUlearning
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Table 2

The average F1-score (%) with the standard deviation of the classifiers trained on the 13 real-world PU datasets; 
for each dataset, the two rows were obtained under label frequencies 𝛾 = 0.5 and 0.25, respectively; the best 
result is in blue.

Dataset GKF-PUAL KF-PUAL PUAL GLLC uPU nnPU

OD 100.0 ± 0.0 92.54 ± 1.74 85.7 ± 6.1 100.0 ± 0.0 80.0 ± 42.2 100.0 ± 0.0

91.4 ± 12.3 84.24 ± 1.88 80.6 ± 7.9 100.0 ± 0.0 70.0 ± 48.3 100.0 ± 0.0

OR1 88.3 ± 3.5 75.57 ± 2.89 78.4 ± 2.4 74.3 ± 4.3 15.8 ± 31.6 78.5 ± 6.5

79.3 ± 12.3 72.66 ± 8.30 73.7 ± 3.4 70.6 ± 6.0 19.6 ± 31.3 67.6 ± 6.6

OR2 80.3 ± 8.2 71.09 ± 2.66 73.4 ± 1.8 71.6 ± 5.9 71.8 ± 6.2 76.9 ± 4.2

80.7 ± 7.1 70.96 ± 5.33 70.2 ± 6.8 67.4 ± 5.8 69.3 ± 4.5 72.7 ± 3.8

UMD 91.3 ± 3.1 78.24 ± 9.80 74.4 ± 4.1 85.3 ± 7.4 100.0 ± 0.0 100.0 ± 0.0

90.0 ± 4.6 72.14 ± 6.81 72.4 ± 4.6 84.5 ± 4.3 100.0 ± 0.0 100.0 ± 0.0

Acc 71.2 ± 5.3 64.35 ± 2.36 70.0 ± 4.9 69.8 ± 5.1 19.2 ± 26.4 19.7 ± 27.6

71.6 ± 5.4 64.89 ± 1.79 69.8 ± 5.1 57.0 ± 8.3 21.3 ± 28.7 22.6 ± 30.3

Ecoli 89.0 ± 0.9 82.25 ± 2.30 91.6 ± 3.6 89.0 ± 3.5 76.1 ± 5.6 77.7 ± 6.1

85.4 ± 7.2 80.42 ± 4.84 83.4 ± 5.7 86.0 ± 3.9 76.1 ± 6.4 77.7 ± 5.9

ENB 66.6 ± 5.3 47.94 ± 1.10 45.3 ± 7.4 44.1 ± 4.7 28.9 ± 20.2 29.3 ± 21.7

64.4 ± 6.5 44.21 ± 2.88 44.6 ± 9.4 35.1 ± 6.2 24.5 ± 28.5 24.9 ± 29.1

HD 75.3 ± 4.3 74.68 ± 3.67 80.5 ± 3.1 81.7 ± 5.3 67.5 ± 4.1 70.6 ± 2.1

76.3 ± 3.0 74.64 ± 2.13 81.2 ± 5.1 80.1 ± 5.2 66.7 ± 4.0 68.9 ± 2.8

Pen 88.3 ± 10.8 76.38 ± 12.45 82.5 ± 21.2 79.0 ± 12.1 83.7 ± 9.4 84.5 ± 12.9

85.8 ± 12.5 75.95 ± 14.37 80.8 ± 23.9 77.9 ± 9.0 79.8 ± 10.7 80.5 ± 12.3

LD 58.2 ± 5.0 44.78 ± 2.93 47.3 ± 6.3 51.5 ± 6.8 10.9 ± 23.5 29.1 ± 25.6

58.8 ± 4.1 39.45 ± 5.45 45.4 ± 5.3 50.8 ± 3.9 9.5 ± 21.7 18.8 ± 24.6

SSMCR 88.2 ± 1.3 80.48 ± 5.92 82.8 ± 2.8 89.2 ± 1.7 79.5 ± 1.5 80.7 ± 1.3

87.9 ± 1.9 74.09 ± 2.75 82.3 ± 2.2 88.6 ± 1.8 79.6 ± 1.9 81.9 ± 1.4

Seeds 86.3 ± 4.2 78.15 ± 4.01 74.2 ± 7.2 75.4 ± 11.3 84.1 ± 4.0 91.4 ± 5.4

89.9 ± 3.4 73.80 ± 1.71 70.8 ± 21.2 74.9 ± 13.6 81.0 ± 5.9 85.6 ± 5.2

RD 32.1 ± 2.2 24.64 ± 4.05 77.1 ± 2.9 78.1 ± 4.8 68.6 ± 14.7 69.9 ± 16.3

31.8 ± 2.6 23.82 ± 7.39 71.8 ± 4.3 75.1 ± 5.8 67.0 ± 14.1 69.5 ± 12.7

4.4. Results and analysis

4.4.1. Classification performance

The results of the experiments are summarised by average F1-score in Table 2, from which we can make the following observations.

Firstly, GKF-PUAL outperformed PUAL on 21 out of a total of 26 cases. This supports our motivation that GKF-PUAL can achieve 
better PU classification performance than PUAL on datasets containing irrelevant variables. Moreover, GKF-PUAL consistently out-

performed KF-PUAL, indicating the effectiveness of variable selection through group lasso. It is also worth noting that KF-PUAL only 
surpassed PUAL in 7 out of 26 cases, suggesting that quadratic decision boundary lacks flexibility. However, when variable selection 
was enabled, GKF-PUAL demonstrated dominant classification performance against PUAL. Secondly, there are 14 out of 26 cases 
where GKF-PUAL performs the best among all the five methods compared in the experiments. This indicates superior classification 
performance of GKF-PUAL. Thirdly, on all 6 cases of the 3 trifurcate PU datasets, OR1, OR2 and Pen, GKF-PUAL performs the best. 
This verifies that GKF-PUAL not only preserves the superior classification performance of PUAL addressing trifurcate data, but also 
does so without being affected by a large number of irrelevant variables.

4.4.2. Variable selection performance

The variable-selection performance of GKF-PUAL for each dataset is summarised in Table 3. The kernel trick adopted by PUAL 
made it impossible to observe the coefficients of individual variables in the model trained by PUAL. Hence Table 3 only summarises 
for GKF-PUAL, from which we can observe the following patterns.

Firstly, generally GKF-PUAL can remove a large proportion of irrelevant variables from most datasets. Secondly, on two datasets

HD and RD, the proportion of irrelevant variables removed by GKF-PUAL is lower than 25% on average. As GKF-PUAL does not 
perform well as PUAL on these two datasets, especially on RD, a potential reason for this under-performed variable selection is that 
the quadratic boundary generated in the kernel-free setting in Equation (11) is not sufficiently complex for the data distribution of

HD and RD. This can be verified by the 𝑡-SNE plots of the two datasets in Fig. 3. Clearly, the two classes are heavily mixed together, 
10

indicating the need for a more flexible decision boundary.
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Table 3

The average percentage (with the standard deviation) 
of the irrelevant variables whose coefficients were com-

pressed to zero relative to the total number of irrelevant 
variables. For each dataset, the two rows are for 𝛾 = 0.25
and 0.5, respectively.

OD 84.00 ± 6.99 SSMCR 55.00 ± 15.81

86.00 ± 6.99 53.33 ± 20.49

OR1 75.00 ± 11.79 UMD 86.00 ± 9.66

73.75 ± 10.94 76.00 ± 23.66

OR2 52.50 ± 11.49 RD 24.29 ± 9.04

46.25 ± 13.76 15.71 ± 8.11

Pen 70.94 ± 8.21 Seeds 47.14 ± 9.04

67.19 ± 6.95 51.43 ± 11.07

Ecoli 77.08 ± 11.85 HD 17.69 ± 4.87

72.92 ± 12.87 15.00 ± 6.14

ENB 48.57 ± 7.38 LD 56.67 ± 11.65

47.86 ± 9.55 55.83 ± 11.15

Acc 91.25 ± 9.22

85.00 ± 6.45

Fig. 3. The 𝑡-SNE plots of HD and RD. The rest of the caption is as in Fig. 1.

5. Conclusion

In this paper, we propose GKF-PUAL, a kernel-free quadratic PU classifier with the group-lasso regularisation for embedded 
variable selection. The key novelty of GKF-PUAL is to integrate the idea of PUAL to introduce an asymmetric structure of loss on 
positive instances, the idea of SQS-SVM to generate quadratic decision boundary without using the kernel trick, and the idea of 
group lasso to achieve embedded variable selection. The superior classification and variable selection performance of GKF-PUAL is 
demonstrated by experiments on real-world datasets.

We identify two areas for improvement in future work. First, the quadratic decision boundary limits GKF-PUAL’s capacity to 
classify the data that are beyond quadratically separable. Second, as indicated in Table 3, the group-lasso regularisation still does not 
remove irrelevant features completely. Hence, a more flexible kernel-free method with stronger variable-selection capacity needs to 
be investigated as our future work.
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