

City, University of London Institutional Repository

Citation: Feder, E., Paramonov, A., Mavrin, P., Salem, I., Aksenov, V. & Schmid, S. (2024).

Toward Self-Adjusting k-Ary Search Tree Networks. 32nd Annual European Symposium on
Algorithms (ESA 2024), 308, doi: 10.4230/LIPIcs.ESA.2024.52 ISSN 1868-8969 doi:
10.4230/LIPIcs.ESA.2024.52

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33909/

Link to published version: https://doi.org/10.4230/LIPIcs.ESA.2024.52

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Toward Self-Adjusting k-Ary Search Tree Networks
Evgeniy Feder #

ITMO University, St. Petersburg, Russia

Anton Paramonov #

EPFL, Lausanne, Switzerland

Pavel Mavrin #

JetBrains Research, Paphos, Cyprus

Iosif Salem #

TU Berlin, Germany
ZeroPoint Technologies AB, Göteborg, Sweden

Vitaly Aksenov #

City, University of London, UK
ITMO University, St. Petersburg, Russia

Stefan Schmid #

TU Berlin, Germany
Fraunhofer SIT, Berlin, Germany

Abstract
Datacenter networks are becoming increasingly flexible with the incorporation of new optical
communication technologies, such as optical circuit switches, enabling self-adjusting topologies
that can adapt to the traffic pattern in a demand-aware manner. In this paper, we take the
first steps toward demand-aware and self-adjusting k-ary tree networks. These are more powerful
generalizations of existing binary search tree networks (like SplayNet [22]), which have been at the
core of self-adjusting network (SAN) designs. k-ary search tree networks are a natural generalization
offering nodes of higher degrees, reduced route lengths, and local routing in spite of reconfigurations
(due to maintaining the search property).

Our main results are two online heuristics for self-adjusting k-ary tree networks. Empirical
results show that our heuristics work better than SplayNet in most of the real network traces and
for average to low locality synthetic traces, and are only a little inferior to SplayNet in all remaining
traces. We build our online algorithms by first solving the offline case. First, we compute an offline
(optimal) static demand-aware network for arbitrary traffic patterns in O(n3 · k) time via dynamic
programming, where n is the number of network nodes (e.g., datacenter racks), and also improve
the bound for the special case of uniformly distributed traffic. Then, we present a centroid-based
approach to demand-aware network designs that we use both in the offline static and online settings.
In the offline uniform-workload case, we construct this centroid network in linear time O(n).

2012 ACM Subject Classification Networks → Network algorithms; Networks → Network design
principles; Theory of computation → Online algorithms; Theory of computation → Data structures
design and analysis

Keywords and phrases self-adjusting networks, networks, splay-tree, k-ary tree

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.52

Related Version Full Version: https://arxiv.org/abs/2302.13113 [12]

Funding This research was partially supported by JetBrains and by German Federal Ministry of
Education and Research (BMBF), grant 16KISK020K (6G-RIC), 2021-2025.

© Evgeniy Feder, Anton Paramonov, Pavel Mavrin, Iosif Salem, Vitaly Aksenov, and Stefan Schmid;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dzaba67@yandex.ru
mailto:anton.paramonov2000@gmail.com
https://orcid.org/0009-0000-0760-8746
mailto:pavel.mavrin@gmail.com
mailto:iosif.salem@gmail.com
https://orcid.org/0000-0003-2810-2781
mailto:aksenov.vitaly@gmail.com
https://orcid.org/0000-0001-9134-5490
mailto:stefan.schmid@tu-berlin.de
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.4230/LIPIcs.ESA.2024.52
https://arxiv.org/abs/2302.13113
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Toward Self-Adjusting k-Ary Search Tree Networks

1 Introduction

With more services being offloaded to the cloud and the ever increasing numbers of devices
connected to the Internet, inter- and intra-datacenter traffic is growing explosively. Therefore,
datacenter network design has been attracting a lot of attention. Traditional datacenter
network designs are static and perform well only under certain workloads (e.g. all-to-all).
However, datacenter traffic follows patterns which can be exploited in the design of more
efficient networks. It has been shown that a small fraction of network nodes accounts for a
large fraction of datacenter traffic, the traffic distribution is sparse, and it exhibits locality
features that change over time [2].

As a result, innovative dynamic datacenter network topologies have emerged. Supported
by advances in networking hardware (e.g., optical circuit switches, 60 GHz wireless, or even
experimental designs based on free-space optics as in [15]), physical network topologies now
have the ability to self-adjust. That is, the physical network topology is now programmable
and can be reconfigured to serve traffic more efficiently. Leading cloud providers have already
started incorporating dynamic networks into their datacenters [15, 20].

This flexibility provided by networking hardware raises an optimization challenge: how
to optimally adjust the topology to improve network routing efficiency? There is a trade-off
between the cost of changing the network topology (reconfiguration cost) and the benefit of
reducing the distance (routing cost) of frequently communicating racks, henceforth called
nodes. We assume that the input of this optimization problem is a sequence of communication
requests. In the online case, where the input is revealed piecewise and future communication
demand is unknown, we would opt for topology updates that are likely to pay off in the
future. In the static case, we aim at computing an optimal demand-aware network topology
with low time complexity.

The developing field of Self-Adjusting Networks (SANs) aims to address these optimization
challenges. SANs often assume a family of allowed topologies, e.g., trees [1, 14, 10, 19, 22],
skip lists [7], bounded degree graphs [5, 9], etc., within which the network has to remain. This
restriction is not only practically motivated (e.g., optical switches are of bounded degree), but
also simplifies algorithm design and allows for theoretical performance guarantees. Specifically,
self-adjusting tree networks have been at the core of SAN designs. SplayNet [22], a self-
adjusting binary search tree network generalizing splay trees [24], was the first proposed SAN.
SplayNet has been extended to ReNet [9], a statically optimal SAN for sparse communication
patterns, but also to a distributed version, DiSplayNet [19]. The search property is particularly
useful for SANs, since maintaining it allows local and greedy routing despite changes in the
topology.

Online SAN algorithms can vary from being fully reactive, in which case they reconfigure
the topology after every communication request [7, 22] (e.g., when traffic is bursty), to being
partially reactive [14], in which case they update the topology periodically. In [14], the
topology changes every time the routing cost reaches a threshold α since the last topology
update, the new topology is computed using SplayNet, and it remains static until the routing
cost reaches the threshold again. This approach can be generalized to a meta-algorithm,
where the topology changes upon a new chunk of the input, a subroutine is used to decide
the new topology, and in between reconfigurations it remains static. Therefore, the efficient
computation of static demand-aware topologies is also relevant in online SAN algorithm
design.

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:3

In this work, we take the first steps to generalizing binary to k-ary search tree networks,
since they provide higher node degrees and shorter routes than binary search trees (BSTs) for
a fixed number of nodes, in addition to local and greedy routing regardless of reconfigurations
due to the search property. We present offline static and online self-adjusting networks and
evaluate our newly proposed SANs experimentally.

We note that designing k-ary search tree networks is different than designing a k-ary
search tree. This holds due to the need of having a node identifier that stays the same across
rotations in the network case (the assignment of identifiers to nodes is a bijection and does
not change) as each tree node represents a network node. That is, in the case of k-ary search
trees each node contains up to k − 1 keys which are used for routing (traversing from root
to searched key) in the data structure and are also the data. In contrast, in the network
case each node can use up to k − 1 nodes’ keys for routing (hence called routing keys), but
each node should have an extra fixed key that serves as its identifier (node key) which is the
data. Self-adjusting k-ary search trees have been studied, for example, by Sherk in [23] and
by Martel in [18]. However, none of the existing approaches, to the best of our knowledge,
apply in our case due to the requirement of having one key (identifier) per node.

Contributions. We present offline static and online self-adjusting k-ary search tree networks.
As for the static results, we have:

1. We construct a static “almost-optimal” k-ary tree network in O(n3 · k) time using
dynamic programming. Then, we reduce the complexity to O(n2 · k) for the special case of
uniformly distributed traffic to obtain optimal tree. The latter case is non-trivial, since we
do not restrict the topology to full balanced trees.

2. We present a new static k-ary tree network topology which is built by k + 1 trees with
almost equal size connected around a centroid node. We present a linear offline algorithm
that constructs it and prove that its total cost is close to the optimal.

As for the dynamic case, we have:
1. We then present two novel variants for online k-ary self-adjusting search tree networks:

k-ary SplayNet, which is a generalization of SplayNet, and (k +1)-SplayNet which is obtained
by applying a centroid heuristic. For both networks, we propose novel rotation operations
that allow network nodes to keep their identifiers across tree rotations. To achieve the latter,
we distinguish the set of node identifiers from the set of routing keys. We show how the
known upper bounds for SplayNet can be applied for our networks.

2. We perform two types of experiments with synthetic network traces and real ones from
datacenter network traffic. First, we show that our k-ary SplayNet indeed has better routing
cost than SplayNet. Then, we compare 3-SplayNet to SplayNet, and to static demand-aware
and demand-oblivious trees. The results show that 3-SplayNet (centroid topology) performs
better than the standard SplayNet in most real network traces and in synthetic ones that
have average to low temporal locality, while its performance is similar to SplayNet for the
remaining datasets.

Related work. Self-Adjusting Networks were introduced with SplayNet [22]. SplayNet is a
binary search tree network that generalizes Splay Trees [24]. SplayNet uses the tree rotations
of splay trees to reduce the distance of communicating nodes to one; it uses splay operations
to move the source and destination to their lowest common ancestor for each communication
request. The same paper presents a dynamic programming algorithm for computing an
optimal binary search tree network when the demand is known, among other results. SANs
were further surveyed and classified in [8]. The authors present a classification of network

ESA 2024

52:4 Toward Self-Adjusting k-Ary Search Tree Networks

topologies, which depends on whether they are (i) oblivious to or aware of traffic patterns,
(ii) fixed or reconfigurable, and (iii) aware of the input sequence of communication requests
(offline, online, generated by a distribution). This taxonomy allows for optimizing for certain
properties according to each case, e.g. diameter or competitive ratio. A survey including
first solutions and enabling networking technologies can be found in [17].

Tree-based SANs were further studied following SplayNet, due to being more easy to
analyze and deploy. ReNets [9] are bounded-degree SANs based on combining ego-trees,
which are trees where the source is a node and the remaining nodes are the destinations to
which the source node has communicated with. In this design, ego-trees are stars or splay
trees, depending on whether the number of destinations exceeds the degree bound. ReNets
achieve static optimality for sparse communication patterns, which is a desirable optimality
property [3, 8]. Ego-trees were further studied in the form of self-adjusting single-source tree
networks in [1, 6], which provided a number of constant competitive (dynamically optimal)
randomized and deterministic algorithms with good experimental performance. SplayNet
has also been the basis of distributed tree SANs [10, 19] and of SANs in a cost model with
non-unit cost for changing a link in the topology [14]. All the results mentioned above are
for binary tree networks.

Alternative directions have also been studied. [4] studied how to construct offline SANs
when the demand is known, under certain assumptions on the communication patterns (e.g.
sparse demand). [16] presents a topology adjustment algorithm that uses static or dynamic
topologies according to the identified traffic patterns (latency-sensitive, all-to-all, elephant
flows). SANs that are not tree-based have also been studied, e.g. Skip List Networks [7].

Paper organization. In Section 2, we introduce all the necessary definitions. In Section 3,
we explain how to build demand-aware optimal tree network using dynamic programming
and how to build a quasi-optimal tree for the uniform workload. In Section 4, we present
novel rotations for k-ary SplayNet and present two heuristics. In Section 5, we experimentally
evaluate the cost of our new network structures. Finally, we conclude in Section 6.

2 Model

We consider a network of n nodes V = {1, . . . , n} (e.g., top-of-the-rack switches in a
datacenter networks) and a finite or infinite communication sequence σ = (σ1, σ2, . . .), where
σt = (u, v) ∈ V 2 is a communication request from source u to destination v. The network
topology G must be chosen from a family of desired topologies G, for example, search trees,
expander graphs, etc. Each topology G ∈ G is a graph G = (V, E). The routing cost of
σt is given by the distance between the two endpoints in the topology when serving the
request. The topology can be reconfigured between requests with a cost equal to the number
of links (edges) added or removed. The total service cost of σ is the sum of routing and
reconfiguration costs. Our goal is to serve the communication sequence with minimum total
cost.

We distinguish two problem variants. In the offline static variant, σ is known in the
form of an n × n demand matrix D, but no reconfiguration can occur. The matrix entry
D[u, v] is the number of requests from u to v in σ. We have to build a network topology
Gstatic ∈ G that does not change during or in between requests. Such a graph Gstatic needs
to optimize the total distance function,

TotalDistance(D, Gstatic) =
∑

(u,v)∈[n]2

dGstatic
(u, v) · D[u, v]

where dGstatic
(u, v) is the distance between nodes u, v in Gstatic and [n] = {1, . . . , n}.

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:5

In the online self-adjusting variant, σ is not known in advance but revealed piece-
wise, and we can change the topology after serving a request. We are provided with an
arbitrary initial network (before the first request arrives), which we denote by G0 ∈ G. Our
task is to build an online algorithm A that adjusts the network Gi at every time instant
i = 1, . . . , m and minimizes the total cost, which is calculated as sumCost(A, G0, σ) =∑m

i=1 (routingCost(Gi−1, σi) + adjustmentCost(Gi−1, Gi)), where routingCost(Gi−1, σi) is
the path length in edges of Gi−1 to route request σi and adjustmentCost(Gi−1, Gi) is the
adjustment cost to reconfigure the network from step i − 1, Gi−1 ∈ G, to step i, Gi ∈ G, i.e.,
the number of edges added or deleted. Note that A can skip a reconfiguration step.

This paper focuses on both problem variants when the set of allowed topologies G is the
set of k-ary search trees. These trees are the generalization of binary search trees, which
were investigated in [22] in the context of SANs. The main advantage of using search trees as
self-adjusting network topologies is that we can route locally and greedily: given a destination
identifier (or address), each node can decide locally to which neighbor to forward the packet
using the search property. This is particularly useful in the online setting, as routing tables
do not need to be updated upon reconfiguration: a node given a packet can just use the
information from the routing keys to forward the packet, accordingly. Also, with increasing
k, route lengths decrease and node degrees increase.

▶ Definition 1.
(i) A k-ary Search Tree is a rooted tree on keys (node identifiers) 1, . . . , n, where each node

stores a key (node identifier), a routing array r = (r1, r2, . . . , rk−1) containing routing
elements (not keys), and has at most k children defined by r as follows: keys of nodes
in the i-th child are between ri and ri+1 for i ∈ [1, k − 2], keys of nodes to the left of r1
are smaller than r1, and keys of nodes to the right of rk−1 are larger than rk−1. Note
that the key does not necessarily belong in the routing array.

(ii) A routing-based k-ary Search Tree is a k-ary search tree in which the node identifiers
are contained in the routing array.

Key (node id)

r1 r2 r3r1 rk-1

Figure 1 Node in k-ary search tree.

Definition 1 defines the standard search route in a k-ary tree, when starting from the
root. A routing path between two nodes is the unique path connecting them. Routing from
a node containing source routing key i to a destination node containing routing key j occurs
by following the upward (reverse search) path until their lowest common ancestor and then
the standard downward search path to the destination. The local transformations of search
tree networks are called rotations. A rotation in a k-ary search tree changes some adjacency
relationships, while keeping subtrees intact and maintaining the search property (Definition
1). Such rotations can be implemented in a different manner. We introduce k-splay, a novel
rotation procedure, in Section 4.

ESA 2024

52:6 Toward Self-Adjusting k-Ary Search Tree Networks

3 Optimal static k-ary search tree networks

In this section we construct an optimal static routing-based k-ary search tree network via
dynamic programming. By analysing the optimal tree for a uniform workload, we show a
linear-time but non-exact offline static algorithm that constructs a topology with a centroid
node and k + 1 trees connected to it for the chosen workload. The latter result will be the
basis for an online self-adjusting network proposed in Section 4.

3.1 Dynamic programming algorithms
As our first result, we construct an offline (optimal) static routing-based k-ary search tree
network. The algorithm is similar to the one for binary search tree from [22]: it just works
as the dynamic programming on segments but a little bit more involved. Its complexity is
O(n3 · k).

The idea is that we compute the dynamic programming dp[i][j][t] – what is the minimum
cost if we partition the elements from i to j into t disjoint trees. For 2 ≤ t ≤ k, we can
calculate it by adding trees by one: dp[i][j][t] = min

l∈[i,j−1]
(dp[i][l][1] + dp[l + 1][j][t − 1]). When

t = 1 the calculation is a little bit more complicated. We need to choose a root with the
value r on the interval [i, j], split the left part of the interval [i, r − 1] on dl trees, and split
the right part of the interval [r + 1, j] on dr trees with dl + dr ≤ k, and, finally, we need to
account for the total number of requests coming through the root W [i, j], i.e., the number of
requests outside the interval. The last part can be precalculated in O(n3) time as shown
in [22]. As the formula, we get: dp[i][j][1] = min

r∈[i,j]
min

dl+dr≤k
(dp[i][r − 1][dl] + dp[r + 1][j][dr].

▶ Theorem 2. An offline static routing-based k-ary search tree network, i.e., one with the
minimal total distance given the requests in advance, can be constructed in O(n3 · k).

▶ Remark 3. We remark that computing an optimal static non-routing-based k-ary search
tree network is an open problem. That is, there is neither a trivial dynamic programming
extension for it nor an NP-hardness proof.

Then, we consider a uniform workload. That workload is an infinite workload where each
pair of nodes is requested uniformly at random. In this case, we can improve the algorithm
to O(n2 · k) since the dynamic programming in this case does not depend on the position of
the segment and depends only on its length, i.e., we can replace dp[i][j] with dp[j − i + 1].
Our goal is to find a static k-ary search tree that serves an infinite uniform workload as fast
as possible, i.e., the expectation of the cost of each query is minimal. So, we can represent
the uniform workload as a workload with the demand matrix filled with ones.

▶ Theorem 4. An offline static k-ary search tree network for the uniform workload can be
constructed in O(n2 · k).

We remark that the resulting tree for the uniform workload is not required to be routing-
based as in the generic case.

More details on these algorithms appear in the full version of the paper [12].

3.2 Centroid static k-ary search tree network in O(n) time on uniform
workload

Now, we present a linear-time construction of an almost-optimal offline k-ary search tree
network for the uniform workload. We show the cost difference to the optimal tree in
Theorem 6 and comment on experimental results in Remark 10. This construction will serve

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:7

us as a basis of an online heuristic in Section 4. In general, faster computations of static
network topologies are relevant for scaling to larger self-adjusting networks for which we
compute new (demand-aware) topologies periodically. Also, the uniform workload is relevant
to the all-to-all traffic pattern.

A k-ary search tree can be split in levels: the i-th level consists of nodes that are at
distance i − 1 from the root. The tree is weakly-complete when all its levels, except for the
last one, are fully filled (i.e., the i-th level has ki−1 nodes). Nodes on the last level can be
distributed arbitrarily as long as the search property holds.

Since in this case we consider only the uniform workload we can ignore the search property:
we can first fix the tree structure and then distribute the keys so that the search property
is respected. Our goal is to find an optimal (k + 1)-degree tree (instead of a k-ary search
tree) that minimizes TotalDistance(Duniform, T) =

∑
(u,v)∈[n]×[n]

dT (u, v). A (k + 1)-degree

tree is a non-rooted tree where each node has at most k + 1 neighbours. Such trees represent
the same set of trees as k-ary search trees: you can root a (k + 1)-degree tree by a leaf and
obtain a k-ary search tree (by correctly distributing keys). Intuitively, we propose a topology
where the root has k + 1 children, in contrast to common a k-ary tree with a k-degree root,
with the potential of reducing the total cost of routing communication requests.

▶ Definition 5. A centroid (k + 1)-degree tree is a tree with the root having k + 1 weakly-
complete k-ary trees. All the levels of the tree are fully filled, possibly except for the last one.
We can change the relative positions of subtrees such that the leaves on the last level are all
grouped together to the left. The tree is shown on Figure 2.

Figure 2 A centroid tree after the reposition of subtrees. Lined rectangles represent leaves.

We prove (Theorem 6) that the centroid (k + 1)-degree tree T has total distance in the
uniform workload close to the total distance in the optimal (k + 1)-degree tree. Intuitively,
the proof works as follows. First, we show that all sibling subtrees, i.e., subtrees with the
same parent, should either have the same height or their heights should be different by one.
If not, we can move the leaf from one subtree to another and decrease the total cost. The
latter move does not always decrease the cost, but sometimes it leads to a small overhead.
Then, we show that if for some subtree not all leaves on the last level are aligned to the
“left”, then we can move them and decrease the cost. By that we show that the centroid tree
is almost optimal. The complete proof is provided in the full version of the paper [12]. Here
we just state the main results.

▶ Theorem 6. Assuming k is a constant, the difference in the total distance between an
optimal (k + 1)-degree tree T and our centroid (k + 1)-degree tree is O(n2k log k) while the
total distance in the optimal (k + 1)-degree tree is Ω(n2 log n).

▶ Remark 7. We can get a k-ary search tree out of (k + 1)-degree centroid tree by rooting at
some leaf and setting the identifiers correspondingly. We name such a tree a centroid k-ary
search tree.

ESA 2024

52:8 Toward Self-Adjusting k-Ary Search Tree Networks

Since we consider the uniform workload we know that our centroid tree has the total cost
of requests close to the optimal, i.e., misses by at most O(n2) while the total optimal cost is
Ω(n2 log n). Thus, our centroid k-ary search tree has an approximation ratio 1 + O(1

log n).

Then, it is quite straightforward to build that centroid tree.

▶ Theorem 8. The centroid k-ary search tree can be built in O(n) time.

Finally, we show that the full k-ary tree also has total distance close to the cost of the
optimal tree.

▶ Lemma 9. The total distance in the full k-ary tree and the total distance in the centroid
(k + 1)-degree tree are both n2 logk n + O(n2). That is, their total distance differs from the
total distance in the optimal tree by O(n2).

▶ Remark 10. The results of the last Lemma show that the full and centroid trees are close
to the optimal. However, in the uniform workload the centroid tree should have better total
cost, since we split in the centroid vertex by k + 1 balanced subtrees. In our experiments, we
found that our centroid k-ary search tree is indeed optimal for all n less than 103 when k

is up to 10, but we were not able prove its optimality formally.

4 Online self-adjusting k-ary search tree networks

We present online algorithms for self-adjusting k-ary search tree networks. The first one
is the k-ary SplayNet, which is a self-adjusting network based on a k-ary search tree and
a generalization of SplayNet [22]. We prove that k-ary SplayNet has the same complexity
bounds as SplayNet (we show its benefits experimentally in Section 5). The second one
is (k + 1)-SplayNet, a centroid-based structure, that is based on k-ary SplayNet and the
centroid k-ary search tree network presented in the previous section.

4.1 k-ary SplayNet
In the literature, only one proposal for k-ary self-adjusting trees exists [23]. The tree rotations
proposed in [23] cannot be directly generalized to SANs: multiple keys appear in each node
and a node’s keys change upon a rotation, so they cannot be used as network node identifiers
and it is not clear how to maintain node identifiers across tree rotations. In this section,
we propose new splay operations: k-semi-splay and k-splay. These rotations mimic the
rotations in the binary splay tree and allow for persistent node identifiers, while re-shuffling
routing arrays. For example, the routing array of the node with identifier X in Figure 3
is (a1, a2, a3, . . . , ak−1) and key X has value in between a3 and a4. Thus, any key can be
located by the search property and the routing algorithm is the same as in SplayNet [22]: we
rotate the source and destination to the lowest common ancestor and then route the request
through a direct link. We now present splay operations that preserve the search property.

We first present k-semi-splay, which generalizes the zig and zag operations in splay trees
[24]. Suppose that we have two nodes: a node with id X and a child node with id Y (Figure 3).
Our goal is to make Y a parent of X. To that end, we merge the routing arrays from these
nodes and search for the position for X in this array. Then, we take X as a key and some
k − 1 consecutive routing elements “covering” X as a routing array, i.e., X as the value lies
in the segment built on a consecutive set of k − 1 elements. Finally, we set this node as a
child of a new node with key Y and the routing elements left.

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:9

X

Y

a1 a2 a3 ai ai+1 ak-1

b1 b2 b3 bk-1

Figure 3 The initial state for k-semi-splay.

X

Y

Z

Figure 4 Example state before k-splay.

Now, we explain the k-splay rotation, which generalizes the combination of two zig or
zag operations in splay trees. Suppose we have three nodes with identifiers X, Y , and Z

(Figure 4), and we want to make Z the top node. First, we merge the routing arrays of these
three nodes into one array and find the positions of X and Y there. There are two cases:
1) X and Y are located distant to each other, i.e., separated by more than k − 1 routing
elements; or 2) X and Y are close to each other. In the first case, we make two new nodes:
one with X and k − 1 consecutive routing elements “covering” X; and the one similar for
Y . Finally, we set these new nodes as children of a node with key Z and routing elements
left (Figure 5). In the second case, we make two new nodes: the one with Y is a parent of
the new node with X. Then, we set the node with Y as a child of a node with key Z and
routing elements left (Figure 6).

X

Z

Y

a1 a2 a3 ai ai+1 aj aj+1 a3k-3

Figure 5 k-splay rotation. The first case.

Y

a1 a2

Z

X

a3 ai ai+1 aj aj+1 a3k-3

Figure 6 k-splay rotation. The second case.

Using these rotations, we design a data structure called k-ary SplayNet which works
similarly to binary SplayNet: upon serving a request between two keys, we use k-splay and
k-semi-splay rotations to move the nodes to their lowest common ancestor, replacing it and
one of its children. By that, after adjustments, the request can be served in constant time.

Here, we designed only two types of rotations. These rotations can be seen as the
generalization of the zig/zag and zigzag rotations in binary splay tree. Now, we prove that
a k-ary splay tree, i.e., all the routing requests are from the root, based on our rotations
is statically-optimal. Please note that the lower bound to serve the search requests for
k-ary splay tree is the same as for the standard splay tree [24]: suppose the lower bound is
asymptotically better for k-ary splay tree, then we can represent k-ary tree as the splay tree
with the constant multiplier log k on the total cost.
▶ Remark 11. The k-semi-splay and k-splay operations cannot be applied to routing-based
trees. For example, after collapsing three nodes in k-splay (the second case, as in Figure 6)
we might get routing keys Z, Y , and X (in this order) as the leftmost ones in the joint
array of routing keys. At that point, we cannot distribute the routing keys in the required

ESA 2024

52:10 Toward Self-Adjusting k-Ary Search Tree Networks

order, since these keys X, Y , and Z should be node identifiers and routing keys at the same
time and X should be on top. When taking X as a node identifier and a routing key of the
topmost node, we will get only Y and Z keys in the leftmost subtree, which restricts us from
filling in X with routing keys.

▶ Theorem 12. The k-ary splay tree based on the k-semi-splay and k-splay rotations is
statically-optimal. In other words, the total cost to serve nx search requests to node x is
O(m +

∑
x nx · log m

nx
) where m is the total number of requests.

Sketch. The theorem can be proven in the almost identical way as the result for binary
splay tree [24]. As in the splay tree proof, we present the potential of the node with key v as
r(v) = log w(v), where w(v) is the total weight of all nodes in the subtree of v. Then, we can
reprove the Access Lemma from [24], where the difference of the potential moving a node to
the top does not exceed 3 · (r(root)−r(v))+1. This lemma holds since all the inequalities on
the potentials of nodes from the proof in [24] remain the same since k-semi-splay changes the
potential exactly as zig does; our first case rotation of k-splay changes the potential exactly
as zig-zag does, and, finally, our second case rotation of k-splay changes the potential exactly
as like zig-zig does. Thus, with the proved access lemma we can get the main theorem. ◀

Because of this theorem, the complexity bound proven for binary SplayNet in [22] holds
for our k-ary SplayNet.

▶ Theorem 13. k-ary SplayNet performs requests σ = ((u1, v1), (u2, v2), . . . , (um, vm)) with
the cost of entropies of sources and destination: O(

n∑
x=1

ax · log m
ax

+ bx · log m
bx

), where ax

is the number of requests with x as a source and bx is the number of requests with x as a
destination.

Moreover, since each node has k children instead of two, we expect that the total
routing costs in k-ary SplayNet are smaller than in the original SplayNet. The experimental
comparison between them appears in Section 5.1.

We note that there can be more alternatives to k-semi-splay and k-splay. For example,
we can take any d connected nodes in the tree and modify them in a manner that the node
with a chosen key will be in the topmost one after the update. This can be done as follows:
1) merge all d routing arrays into one; 2) find the positions of our d identifiers in this array;
3) choose some order of keys k1, k2, . . . , kd in the nodes; 4) consider the i-th key ki, take the
k − 1 consecutive routing keys “covering” ki, and use them to form a new node with key
ki; 5) remove these routing elements from the total routing array and repeat the previous
phase for next keys. At the end, the topmost node will contain the required key kd. Thus,
we can have different versions of k-ary SplayNet depending on the rotations we choose. In
the remainder, we refer to k-ary SplayNet as any (black-box) implementation that maintains
the search property and one identifier per node.

4.2 Application of the centroid heuristic
Our theoretical studies in Section 3.2 show that the total cost for the uniform workload of
both structures, the full k-ary tree and the centroid one, is very close. But we know from our
experiments that for n up to 103 and k up to 10 the centroid tree is actually optimal. With
this practical motivation, we designed an online heuristic based on the centroid idea. We
present (k + 1)-SplayNet, which is a centroid-based structure and the online self-adjusting
equivalent of the static tree from Section 3.2. The topology is presented in Figure 8. We split

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:11

c1

c2

SplayNet

SplayNet SplayNet

Figure 7 3-SplayNet structure

…

…

k

k-1

c1

c2

k-ary
SplayNet

k-ary
SplayNet

k-ary
SplayNet

k-ary
SplayNet

k-ary
SplayNet

Figure 8 (k + 1)-SplayNet structure.

the nodes in k + 1 almost equal parts and specify two centroid nodes: c1 and c2. Centroid
c2 corresponds to the centroid from the previous section; its subtrees have (n − 2)/(k + 1)
nodes.

Centroid c1 has k − 1 children (in addition to c2), that are k-ary SplayNets of size
[(n − 2)/(k + 1)]/(k − 1). The k children of c2 are k-ary SplayNets of size (n − 2)/(k + 1).
When serving a request (u, v), we k-splay u and v to their lowest common ancestor, as was
done in k-ary SplayNet, but we never move nodes c1 and c2. That is, requests within the
same subtree are served exactly as in k-ary SplayNet and for requests originating in different
subtrees of c1 and c2, we splay the endpoints to their subtree roots and then we route the
request via the path u → c1 → c2 → v. The sets of nodes in the 2k − 1 subtrees remain
intact, but these subtrees still can self-adjust. We study (k + 1)-SplayNet and k-ary SplayNet
experimentally in the next section.

5 Experimental evaluation

We have two presented approaches to evaluate: 1) we compare the cost of our k-ary SplayNet
with the static balanced k-ary search tree, the optimal static routing-based k-ary search
tree (Section 3.1), and the standard SplayNet, i.e., 2-ary SplayNet; 2) we compare our new
3-SplayNet based on the centroid heuristic ((k + 1)-SplayNet for k = 2) with the standard
SplayNet and the two static data structures from item 1), for k = 2. That is, in the first item
we study the benefit of increasing k across diverse workloads, while in the second item we
compare the two heuristics of Section 4 and two static trees for k = 2. In all our experiments,
we set the routing and rotation costs to one.

The code for the algorithms was written in C++ and Python. We perform three types
of experiments: (i) on the uniform workload with 100 nodes, (ii) on synthetic workloads
with 1023 nodes and the temporal complexity parameter (the probability of repeating the
last request [2]) taking the values 0.25, 0.5, 0.75, and 0.9, and (iii) on the data from three
real-world datasets of datacenter network traces: a high performance computing (HPC)
workload [11], a workload on ProjectToR [15], and a workload from Facebook’s datacenter
network traces [21]. We restrict all datasets to 106 requests on: uniform workload with 100
nodes, HPC with 500 nodes, ProjectToR with 100 nodes, and Facebook with 104 nodes.

5.1 k-ary SplayNet
In this section, we study how k-ary SplayNet performs on the chosen workloads. Our main
goal is to investigate how the routing cost depends on k. For now, we assume that each of
our rotations costs one. This assumption was also made in [13].

In Tables 1-7, we present how k-ary SplayNet works for k ∈ [2, 10] against the static full
and routing-based optimal k-ary trees. Note that we implicitly compare our data structures
with the standard SplayNet which is the equivalent of our 2-ary SplayNet. In the first

ESA 2024

52:12 Toward Self-Adjusting k-Ary Search Tree Networks

row, we show the total routing cost for 2-ary SplayNet and the relative cost of other k-ary
SplayNets (the lower the better). In the second row, we show how our k-ary SplayNet works
in comparison to the static full k-ary tree, i.e., the relative performance of our tree against
the static one (the lower the number, the better our tree is). In the third row, we show
how our structure works in comparison to the optimal static routing-based k-ary tree (the
lower the better). We compare all workloads except for the uniform one, since we proved
in Section 3.2 that full k-ary tree is almost optimal. The green color means that our tree
performs better, otherwise, worse.

We make two main observations from the tables. Firstly, as expected, the higher the k the
lower the total routing cost in k-ary SplayNet. Secondly, with the low temporal locality, as
for HPC, Facebook, 0.25, and 0.5 workloads, the full k-ary tree typically performs better on
higher k, while the optimal routing-based k-ary tree works better but no more than 3 times.
The latter means that our data structure is constant-away from optimality in practice. This
behaviour can be simply explained; the higher k the better the cost for k-ary full trees on
uniform workloads. On high locality, i.e., 0.75 and 0.9, our k-ary SplayNet outperforms both
static trees. Also, we need to note that the algorithm building the optimal routing-based tree
has high-complexity and we were not able to compute this tree for the Facebook workload.

Table 1 The comparison of k-ary SplayNet on HPC workload.

2 3 4 5 6 7 8 9 10
SplayNet 4798648 0.87x 0.82x 0.75x 0.76x 0.73x 0.70x 0.69x 0.70x
Full Tree 0.78x 0.94x 1.04x 1.07x 1.16x 1.17x 1.25x 1.25x 1.29x

Optimal Tree 1.52x 1.90x 2.15x 2.22x 2.45x 2.48x 2.49x 2.58x 2.75x

Table 2 The comparison of k-ary SplayNet on ProjectToR workload.

2 3 4 5 6 7 8 9 10
SplayNet 3151626 0.93x 0.91x 0.87x 0.84x 0.86x 0.86x 0.84x 0.83x
Full Tree 0.40x 0.49x 0.46x 0.52x 0.70x 0.50x 0.58x 0.57x 0.92x

Optimal Tree 1.45x 1.81x 2.09x 2.10x 2.08x 2.20x 2.22x 2.22x 2.25x

Table 3 The comparison of k-ary SplayNet on Facebook workload.

2 3 4 5 6 7 8 9 10
SplayNet 12320225 0.85x 0.77x 0.74x 0.72x 0.70x 0.70x 0.68x 0.67x
Full Tree 0.69x 0.87x 0.94x 1.00x 1.07x 1.11x 1.15x 1.19x 1.28x

Optimal Tree - - - - - - - - -

Table 4 The comparison of k-ary SplayNet on synthetic workload with temporal complexity
parameter 0.25.

2 3 4 5 6 7 8 9 10
SplayNet 1389359 0.82x 0.75x 0.71x 0.69x 0.68x 0.68x 0.65x 0.62x
Full Tree 0.99x 1.15x 1.23x 1.30x 1.37x 1.39x 1.47x 1.51x 1.55x

Optimal Tree 1.75x 2.12x 2.32x 2.49x 2.64x 2.71x 2.88x 2.99x 3.03x

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:13

Table 5 The comparison of k-ary SplayNet on synthetic workload with the temporal complexity
parameter 0.5.

2 3 4 5 6 7 8 9 10
SplayNet 963150 0.83x 0.76x 0.72x 0.70x 0.69x 0.69x 0.67x 0.64x
Full Tree 0.69x 0.80x 0.86x 0.91x 0.97x 0.98x 1.03x 1.06x 1.10x

Optimal Tree 1.21x 1.49x 1.64x 1.76x 1.87x 1.91x 2.04x 2.12x 2.15x

Table 6 The comparison of k-ary SplayNet on synthetic workload with the temporal complexity
parameter 0.75.

2 3 4 5 6 7 8 9 10
SplayNet 530049 0.85x 0.78x 0.75x 0.73x 0.72x 0.72x 0.70x 0.67x
Full Tree 0.38x 0.45x 0.49x 0.52x 0.55x 0.56x 0.59x 0.61x 0.64x

Optimal Tree 0.68x 0.84x 0.94x 1.02x 1.09x 1.12x 1.19x 1.24x 1.26x

Table 7 The comparison of k-ary SplayNet on synthetic workload with the temporal complexity
parameter 0.9.

2 3 4 5 6 7 8 9 10
SplayNet 271838 0.88x 0.83x 0.80x 0.79x 0.78x 0.78x 0.76x 0.74x
Full Tree 0.20x 0.24x 0.27x 0.29x 0.31x 0.31x 0.33x 0.34x 0.36x

Optimal Tree 0.36x 0.46x 0.53x 0.58x 0.62x 0.64x 0.68x 0.72x 0.73x

5.2 A case study of the centroid heuristic for k = 2
In this subsection, we study the online centroid heuristic experimentally for the case of k = 2.
We compare our centroid-based 3-SplayNet (Figure 7) with the 2-ary SplayNet, which is
the standard SplayNet. We implemented and compared them on different workloads that
simulate real request patterns. As a result, it appears that on workloads with low temporal
complexity 3-SplayNet works better than SplayNet.

We run the workloads described above on four different structures: 3-SplayNet, SplayNet,
static full binary search tree, and static optimal binary search tree. In Table 8, one can see
the average request cost by 3-SplayNet and the relative difference with other approaches.
The green cell means that our 3-SplayNet is better and red means otherwise.

We observe that 3-SplayNet performs better or similarly to SplayNet on average and low
temporal complexity workloads (0.25 and 0.5), while on high temporal complexity workloads
(0.75 and 0.9) it works a bit worse. Also, 3-SplayNet outperforms SplayNet for the uniform,
ProjecToR and Facebook workloads, but not for the HPC workload (higher locality than
the other two real-world workloads). We interpret this as the effect of having fixed centroid
nodes.

6 Conclusion and future work

We presented online and offline algorithms for k-ary search tree networks. Specifically, we
presented dynamic programming algorithms for computing an optimal static network for
generic and uniformly distributed traffic. Then, we presented an online k-ary search tree
network and a variant that utilizes our centroid structure. We proposed novel splay operations
that are applicable in the context of self-adjusting networks. Our experimental results show:
1) the total routing cost for k-ary SplayNet is smaller than for standard SplayNet and is

ESA 2024

52:14 Toward Self-Adjusting k-Ary Search Tree Networks

Table 8 The comparison of 3-SplayNet with other known nets. Green means that 3-SplayNet is
better.

3-SplayNet SplayNet Full Binary Net Static Optimal Net
Uniform 17.730 x1.059 x0.789 x0.759

HPC 9.269 x0.956 x1.206 x1.034
ProjecToR 2.865 x1.132 x3.040 x0.800
Facebook 8.210 x1.104 x0.939 x0.852

Temporal 0.25 13.332 x1.046 x1.046 x0.937
Temporal 0.5 9.414 x1.021 x1.482 x1.326
Temporal 0.75 5.520 x0.963 x2.527 x2.250
Temporal 0.9 3.186 x0.856 x4.380 x3.862

smaller than for full k-ary trees on traces with high locality; 2) on binary trees for real and
synthetic traces of medium to low locality our centroid network outperforms SplayNet and
its performance is always close to the best out of the algorithms tested. We believe that
our work paves the way to new SANs for k-ary search tree networks for general and specific
traffic patterns.

References
1 Chen Avin, Marcin Bienkowski, Iosif Salem, Robert Sama, Stefan Schmid, and Paweł Schmidt.

Deterministic self-adjusting tree networks using rotor walks. In 42nd IEEE International
Conference on Distributed Computing Systems, ICDCS 2022, Bologna, Italy, July 10-13, 2022,
pages 67–77. IEEE, IEEE, 2022. doi:10.1109/ICDCS54860.2022.00016.

2 Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the complexity of traffic
traces and implications. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 4(1):1–29, 2020. doi:10.1145/3379486.

3 Chen Avin, Bernhard Haeupler, Zvi Lotker, Christian Scheideler, and Stefan Schmid. Locally
self-adjusting tree networks. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pages 395–406. IEEE, 2013. doi:10.1109/IPDPS.2013.40.

4 Chen Avin, Kaushik Mondal, and Stefan Schmid. Demand-aware network designs of bounded
degree. Distributed Computing, pages 1–15, 2019. doi:10.1007/s00446-019-00351-5.

5 Chen Avin, Kaushik Mondal, and Stefan Schmid. Demand-aware network design with minimal
congestion and route lengths. IEEE/ACM Transactions on Networking, 30(4):1838–1848, 2022.
doi:10.1109/TNET.2022.3153586.

6 Chen Avin, Kaushik Mondal, and Stefan Schmid. Push-down trees: optimal self-adjusting
complete trees. IEEE/ACM Transactions on Networking, 30(6):2419–2432, 2022. doi:10.
1109/TNET.2022.3174118.

7 Chen Avin, Iosif Salem, and Stefan Schmid. Working set theorems for routing in self-adjusting
skip list networks. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications,
pages 2175–2184. IEEE, 2020. doi:10.1109/INFOCOM41043.2020.9155495.

8 Chen Avin and Stefan Schmid. Toward demand-aware networking: A theory for self-adjusting
networks. ACM SIGCOMM Computer Communication Review, 48(5):31–40, 2019. doi:
10.1145/3310165.3310170.

9 Chen Avin and Stefan Schmid. Renets: Statically-optimal demand-aware networks. In
Symposium on Algorithmic Principles of Computer Systems (APOCS), pages 25–39. SIAM,
2021. doi:10.1137/1.9781611976489.3.

10 Otávio Augusto de Oliviera Souza, Olga Goussevskaia, and Stefan Schmid. Cbnet: Minimizing
adjustments in concurrent demand-aware tree networks. In 35th IEEE International Parallel

https://doi.org/10.1109/ICDCS54860.2022.00016
https://doi.org/10.1145/3379486
https://doi.org/10.1109/IPDPS.2013.40
https://doi.org/10.1007/s00446-019-00351-5
https://doi.org/10.1109/TNET.2022.3153586
https://doi.org/10.1109/TNET.2022.3174118
https://doi.org/10.1109/TNET.2022.3174118
https://doi.org/10.1109/INFOCOM41043.2020.9155495
https://doi.org/10.1145/3310165.3310170
https://doi.org/10.1145/3310165.3310170
https://doi.org/10.1137/1.9781611976489.3

E. Feder, A. Paramonov, P. Mavrin, I. Salem, V. Aksenov, and S. Schmid 52:15

and Distributed Processing Symposium, IPDPS 2021, Portland, OR, USA, May 17-21, 2021,
pages 382–391. IEEE, IEEE, 2021. doi:10.1109/IPDPS49936.2021.00046.

11 US DOE. Characterization of the doe mini-apps. https://portal.nersc.gov/project/CAL/
doe-miniapps.htm, 2016.

12 Evgenii Feder, Anton Paramonov, Iosif Salem, Stefan Schmid, and Vitaly Aksenov. Toward
self-adjusting k-ary search tree networks. arXiv preprint arXiv:2302.13113, 2023. doi:
10.48550/arXiv.2302.13113.

13 Evgeniy Feder, Ichha Rathod, Punit Shyamsukha, Robert Sama, Vitaly Aksenov, Iosif Salem,
and Stefan Schmid. Toward self-adjusting networks for the matching model. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, pages 429–431,
2021. doi:10.1145/3409964.3461824.

14 Evgeniy Feder, Ichha Rathod, Punit Shyamsukha, Robert Sama, Vitaly Aksenov, Iosif Salem,
and Stefan Schmid. Lazy self-adjusting bounded-degree networks for the matching model. In
41th IEEE Conference on Computer Communications, INFOCOM 2020, Virtual Conference,
May 2-5, 2022. IEEE, 2022. doi:10.1109/INFOCOM48880.2022.9796885.

15 Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janardhan Kulkarni,
Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar, Madeleine Glick, and Daniel
Kilper. Projector: Agile reconfigurable data center interconnect. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 216–229, 2016. doi:10.1145/2934872.2934911.

16 Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen
Avin. Cerberus: The power of choices in datacenter topology design-a throughput perspective.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 5(3):1–33, 2021.
doi:10.1145/3491050.

17 Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
A survey of reconfigurable optical networks. Optical Switching and Networking, 41:100621,
2021. doi:10.1016/j.osn.2021.100621.

18 Charles Martel. Self-adjusting multi-way search trees. Information Processing Letters, 38(3):135–
141, 1991. doi:10.1016/0020-0190(91)90235-A.

19 Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaya, Chen Avin, and Stefan
Schmid. Distributed self-adjusting tree networks. IEEE Transactions on Cloud Computing,
11(1):716–729, 2023. doi:10.1109/TCC.2021.3112067.

20 Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muhammad Mukarram Bin
Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve D. Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein,
Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan
Zhou, and Amin Vahdat. Jupiter evolving: Transforming google’s datacenter network via
optical circuit switches and software-defined networking. In SIGCOMM ’22: ACM SIGCOMM
2022 Conference, Amsterdam, The Netherlands, August 22 - 26, 2022, pages 66–85, 2022.
doi:10.1145/3544216.3544265.

21 Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. Inside the social
network’s (datacenter) network. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, pages 123–137, 2015. doi:10.1145/2785956.2787472.

22 Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler,
and Zvi Lotker. Splaynet: Towards locally self-adjusting networks. IEEE/ACM Trans. Netw.,
24(3):1421–1433, 2016. doi:10.1109/TNET.2015.2410313.

23 Murray Sherk. Self-adjusting k-ary search trees. Journal of Algorithms, 19(1):25–44, 1995.
doi:10.1006/jagm.1995.1026.

24 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM (JACM), 32(3):652–686, 1985. doi:10.1145/3828.3835.

ESA 2024

https://doi.org/10.1109/IPDPS49936.2021.00046
https://portal.nersc.gov/project/CAL/doe-miniapps.htm
https://portal.nersc.gov/project/CAL/doe-miniapps.htm
https://doi.org/10.48550/arXiv.2302.13113
https://doi.org/10.48550/arXiv.2302.13113
https://doi.org/10.1145/3409964.3461824
https://doi.org/10.1109/INFOCOM48880.2022.9796885
https://doi.org/10.1145/2934872.2934911
https://doi.org/10.1145/3491050
https://doi.org/10.1016/j.osn.2021.100621
https://doi.org/10.1016/0020-0190(91)90235-A
https://doi.org/10.1109/TCC.2021.3112067
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1109/TNET.2015.2410313
https://doi.org/10.1006/jagm.1995.1026
https://doi.org/10.1145/3828.3835

	1 Introduction
	2 Model
	3 Optimal static k-ary search tree networks
	3.1 Dynamic programming algorithms
	3.2 Centroid static k-ary search tree network in O(n) time on uniform workload

	4 Online self-adjusting k-ary search tree networks
	4.1 k-ary SplayNet
	4.2 Application of the centroid heuristic

	5 Experimental evaluation
	5.1 k-ary SplayNet
	5.2 A case study of the centroid heuristic for k = 2

	6 Conclusion and future work

