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1. Introduction34

The studies of univariate time series of counts have received extensive attention35

because of its applicabilities in many different disciplines (see Davis et al. (2021) for36

a comprehensive list of applications in different areas). In the preceding decades, one37

of the most well-accepted approaches to modelling the dynamic counts applied the38

generalised linear model framework of Nelder and Wedderburn (1972) because of its39

convenient interpretation of covariates on the observed counts and an easy extension40

of the Gaussian linear regression to an exponential family distribution. For instance,41

the approach is taken by Zeger (1988), Davis et al. (2000), Davis and Wu (2009),42

and Samia and Chan (2011), to just name a few. The first three studies are closely43

related to a parameter-driven model of the broad classification of Cox (1981) within44

the generalised state-space framework, that of Samia and Chan (2011) is related45

to an observation-driven one. Subsequently, observation-driven models have been46

actively developed in the past two decades, particularly by Fokianos et al. (2009),47

Neumann (2011), Fokianos and Tjøstheim (2011), Fokianos and Tjøstheim (2012),48

Wang et al. (2014), and Doukhan et al. (2021) for a Poisson process, and Davis and49

Liu (2016) for the general one parameter exponential family case, because of their50

convenient accessibility of estimating these models (see Davis et al. (2021) for an51

excellent review on the topic including more comprehensive references and a review52

of other methodological approaches). While the dynamic evolution of the stochastic53

conditional mean of counts is driven by the past observed counts in the case of an54

observation-driven model, for instance Poisson integer-valued ARCH (INARCH) or55

GARCH (INGARCH) processes (see Fokianos et al. (2009) for details and references56

therein), it is driven by its own dynamic evolution in the case of a parameter-driven57

one. The computation of the likelihoods of those parameter-driven models is, there-58

fore, not straightforward, even for the simple AR(1) specification of the conditional59

mean (see Davis et al. (2021) for a more comprehensive discussion and references60

therein) because of its intrinsic latency. For instance, Harvey and Fernandes (1989)61

and Jørgensen et al. (1999) required the specific conjugate prior distributions to62

perform the linear filtering. Therefore, this paper aims to complement the recent63

development of the observation-driven models with a parameter-driven one for a64

general case in that the nonlinearity and complexity (see Doukhan et al. (2021) for65

details and references therein) of dynamic counts are described by modelling the66

latent stochastic conditional mean with the finite semiparametric mixture of self67

exciting threshold autoregressive (SETAR) processes.68

The current paper firstly proposes to represent the discrete two parameters ex-69

ponential family distributions within the structural state-space representation (see70

Harvey and Fernandes (1989) for details and references therein) by introducing a neg-71

ligibly marginal tuning parameter. Jørgensen (1987) provided the extensive study72

on the exponential family distributions and named these processes as exponential73

dispersion processes (EDPs). Hence, the current study adopts his abbreviation of74
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discrete EDPs for referring the discrete two parameters exponential family distri-75

butions. As a result of introducing the tuning parameter, a legitimately simple76

additive state-space representation of the proposed count process can be achieved77

via log-transformation. Although it seems to be quite similar to the case of the78

generalised linear regression model framework, the simple additive state-space rep-79

resentation of dynamic counts is nontrivial. Because it allows us straightforward80

implementation of the linear filtering, namely Kalman filter and, hence, accessible81

establishment of stationarity and geometric ergodicity for a mixture of nonlinear82

dynamic counts under a mild set of conditions. In that the explicit forms of up to83

the second moments are also presented. The unknown parameters in the proposed84

process are then estimated by using quasi maximum likelihood (QML) estimation85

and the asymptotic properties of quasi maximum likelihood estimators (QMLEs),86

particularly
√
T -consistency and normality, are also obtained under relatively prim-87

itive regularity conditions. Although one may advocate to apply other nonlinear88

filters such as the Extended Kalman, Unscented Kalman or Particle filters of the89

nonadditive form, it is not easy to establish the geometric convergence of these fil-90

ters for the state estimation. A set of strict and meticulous stability conditions,91

particularly the number of inequalities and random tuning parameters, needs to92

be imposed for the stability of the Lyapunov functions of those filters (see Särkkä93

(2013) for a comprehensive treatment of the nonlinear filters) compared to their94

linear counterpart of relatively mild observability and controllability conditions of a95

system (see Chapter 3 of Caines (1987) for details).96

The current paper is particularly related to those observation-driven ones, namely97

the work of Samia and Chan (2011), Wang et al. (2014), and Doukhan et al. (2021).98

The first two studies modelled the dynamic evolution of counts with SETAR of99

Chan (1993) for the generalised linear model framework of a discrete exponential100

family and Poisson INGARCH processes, respectively. The nonlinearity of the dy-101

namic counts in their studies were driven by modelling the conditional mean of102

counts with the observed past counts following the discontinuous SETAR process.103

Unlike these two studies, our proposed process attempts to model the nonlinearity104

of dynamic counts by modelling the nonlinear dynamic mechanism of the stochas-105

tic latent conditional mean of counts with the continuous SETAR of Chan and106

Tsay (1998) (see Chan and Tsay (1998), and Xia et al. (2007) for details). On the107

other hands, Doukhan et al. (2021) studied a mixture of nonlinear INARCH and108

INGARCH Poisson processes with a time-homogenous hidden Markov switching109

model and also provided the criterion for selecting the correct number of regimes.110

More specifically, they proposed the mixture of the Poisson processes themselves,111

not the conditional means. For our proposed case, the exponential mixture of the112

conditional means of the discrete EDPs is proposed. Because of the simple addi-113

tive state-space representation of the dynamic counts via log-transformation, the114

finite semiparametric exponential mixture of count processes through the condi-115

3



tional mean is easily deduced and the linear filtering is also easily implemented.116

Lindsay (1983a), Lindsay (1983b), and Van der Vaart (1996) studied the semipara-117

metric mixture of distributions including exponential family distributions without118

performing Kalman filtering.119

The rest of the paper is structured as follows. Section 2 proposes the discrete120

finite semiparametric exponential mixture of SETAR dynamic count processes and121

the QML estimation procedure, and establishes the asymptotic properties of the122

proposed QMLEs. The finite sample performances of the proposed QMLEs with123

simple but interesting Monte Carlo designs and the details of the proposed estima-124

tion procedure are presented in Section 3. In addition, Section 3 also illustrates our125

proposed process by applying to the intraday transaction counts per minute of As-126

traZeneca stock. The paper then concludes with the summary. The mathematical127

proofs of the main theoretical results of the paper are presented in the Appendix.128

2. Exponential Mixture of SETAR Count Processes129

2.1. Exponential Mixture of SETAR Count Processes130

In this section, a discrete finite semiparametric exponential mixture of the dis-131

crete EDPs is introduced. In particular, the exponential mixture of the stochastic132

conditional means of the discrete EDPs is proposed as follows133

Prob(It = i;µt) =
K∏
k=1

ED∗ (µk,t, βk, πk) , i = 0, 1, 2 . . . , (2.1.1)

where µt is a stochastic latent process specified in (2.1.2) below, πk ∈ (0, 1] is134

a mixing parameter such that
∑K

k=1 πk = 1 with K being assumed to be finite135

and known, and βk ≡ 1
λk

with λk being a dispersion parameter that varies in a136

subset of positive real values. Furthermore, ED∗(·, ·, ·) denotes a discrete EDP with137

the mixture parameter, which is specified with the conditional mean and variance138

of counts such that E(Ik,t;µk,t, πk) = µπkk,t ≡ τ(θk,t), where Ik,t takes nonnegative139

integers and τ(θk,t) =
∂κk(θk,t)

∂θk,t
with κk(·) and θk,t being a cumulant function and a140

canonical parameter, respectively, and Var(Ik,t;µk,t, πk) = βkV(Ik,t;µk,t, πk) where141

V(Ik,t;µk,t, πk) =
∂2κk(θk,t)

∂θ2k,t

∣∣∣
θk,t=τ−1(µπkk,t)

. Importantly, the data generating processes142

of each clusters are assumed to be independent. Additionally, the conditional mean143

of Ik,t is specified by the continuous SETAR process for a flexible dynamic evolution144

of counts (see (2.2.4) below). Hence, it is transpired that the conditional mean and145

variance of It in (2.1.1) are as follows. Firstly, the conditional mean is146

E(It;µt) ≡ µt (2.1.2)

=
K∏
k=1

µπkk,t, (2.1.3)
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where147

µk,t = αk,0

pk∏
l=1, ̸=dk

µ
ak,l
k,t−l

{
mk∏
jk=1

(
µk,t−dk
rk,jk

)ak,dk,jk
ϵk,jk,t

}Ik(rk,jk−1<µk,t−dk≤rk,jk )

(2.1.4)

with αk,0 ≥ 0 ensuring the nonnegativeness of µk,t, pk being a nonnegative inte-148

ger, dk being a positive integer such that dk ≤ pk, rk,jk being a positive real value149

and rk,0 = 0, and ϵk,jk,t being independently, identically, absolutely and continu-150

ously distributed (i.i.a.c.d.) over the positive real values with E(ϵk,jk,t) = 1 and151

Var(ϵk,jk,t) = σ2
ϵ,k,jk

< ∞, and Ik(·) denoting an indicator function. Note that the152

log-transformation of (2.1.4) is the standard continuous SETAR process (see (2.2.4)153

below). Then the conditional variance is154

Var(It;µt) =
K∏
k=1

{
σ2
k,t +

(
µπkk,t
)2}−

K∏
k=1

(
µπkk,t
)2
, (2.1.5)

where σ2
k,t denotes Var(Ik,t;µk,t, πk) for the sake of notational simplicity, respectively.155

The unconditional first two moments of counts are then obtained by applying156

the law of iterated expectations to (2.1.3) and (2.1.5), and they are as follows157

E(It) = E [E(It;µt)] (2.1.6)

and158

Var(It) = E [Var(It;µt)] + Var [E(It;µt)] . (2.1.7)

The unconditional autocovariance is also obtained by applying the law of iterated159

expectation, similar to Davis and Wu (2009), as follows160

Cov(It, It+τ ) = 0 + Cov[E(It;µt), E(It+τ ;µt+τ )]. (2.1.8)

In addition, it is plausible to analyse the over or under-dispersion of the proposed161

process by applying Fisher’s index to (2.1.6) and (2.1.7) as follows162

E [Var(It;µt)] + Var[E(It;µt))]

E[E(It;µt)]
≶ 1. (2.1.9)

According to (2.1.9), E [Var(It;µt)] + Var[E(It;µt)] < E[E(It;µt)] indicates the163

under-dispersed case and otherwise it is over-dispersed.164

In order to obtain the unconditional first two moments in (2.1.6) to (2.1.8) and165

thus (2.1.9), µk,t in (2.1.4) is first rewritten in terms of ϵ′k,jk,ts under the following166

condition below167

max
1≤k≤K

(
max

1≤j≤mk

(
pk∑

l=1,̸=dk

ak,l + ak,dk,jk

))
< 1. (2.1.10)
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The condition in (2.1.10) is the necessary condition for the stationarity and geometric168

ergodicity of the conditional mean of the log-transformed µt (see Assumption 2.1 (i)169

below). Therefore, the condition in (2.1.10) leads to the stationarity and geometric170

ergodicity of µt. Now the law of iterated expectations is applied to obtain the first171

two unconditional moments of It. Therefore, they are given below172

E(It) =
K∏
k=1

E
(
µπkk,t
)

=
K∏
k=1

α πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) πkak,dk,jk

1−
∑pk
l

ak,j,l

{ ∞∏
l=1

E
(
ϵπkk,jk,tϵ

πkbk,l
k,jk,t−l

)}Ik,jk

,

(2.1.11)

where
∑∞

l=1 |bk,l(L)| < ∞ with L being a lag-operator, Ik,jk = I(rk,jk−1 < µk,t−dk ≤173

rk,jk) and
∑pk

l ak,j,l denotes
∑pk

l=1,̸=dk ak,l+ak,dk,jk for the sake of notational simplicity,174

and175

Var(It) =
K∏
k=1

E
{
σ2
k,t + µ2πk

k,t

}
−

K∏
k=1

{
E
(
µπkk,t
)}2

=
K∏
k=1

E {σ2
k,t

}
+

α
2πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) 2πkak,dk,jk

1−
∑pk
l

ak,j,l

∞∏
l=1

E
(
ϵ2πkk,jk,t

ϵ
2πkbk,l
k,jk,t−1

)


−

 K∏
k=1

α

πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) πkak,dk,jk

1−
∑pk
l

ak,j,l

{
∞∏
l=1

E
(
ϵπkk,jk,lϵ

πkbk,l
k,jk,t−l

)}2Ik,jk

.

(2.1.12)

In addition, the unconditional autocovariance between It and It+τ is given below176

Cov(It, It+τ ) =
K∏
k=1

α 2πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) 2πkak,dk,jk

1−
∑pk
l

ak,j,l

{
τ−1∏
n=0

∞∏
l=0

E
(
ϵ
πkbk,j,n
k,jk,t+τ−nϵ

2πkbk,j,t+l
k,jk,t−l

)

−
∞∏
l=0

E
(
ϵ
πkbk,j,l
k,jk,t+l

)
E
(
ϵ
πkbk,j,l
k,jk,t+τ−l

)}]Ik,jk
. (2.1.13)

The first two moments of (2.1.11) to (2.1.13) show that our proposed count process is177

weakly stationary under the condition of (2.1.10). Furthermore, the under and over-178

dispersion of the dynamic counts can be evaluated by applying the law of iterated179

expectations to (2.1.9) as follows180
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K∏
k=1

E {σ2
k,t

}
+

α
2πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) 2πkak,dk,jk

1−
∑pk
l

ak,j,l

∞∏
l=1

E
(
ϵ2πkk,jk,t

ϵ
2πkbk,l
k,jk,t−1

)
Ik,jk

≶

 K∏
k=1

α

πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) πkak,dk,jk

1−
∑pk
l

ak,j,l

{
∞∏
l=1

E
(
ϵπkk,jk,tϵ

πkbk,l
k,jk,t−l

)}

+
K∏
k=1

α

2πk

1−
∑pk
l

ak,j,l

k,0

(
1

rk,jk

) 2πkak,dk,jk

1−
∑pk
l

ak,j,l

{
∞∏
l=1

E
(
ϵπkk,jk,tϵ

πkbk,l
k,jk,t−l

)}2
Ik,jk

.

Moreover, the explicit forms of the above unconditional moments are obtained by181

considering the first few fractional moments of ϵk,jk,t. For example, consider a simple182

case where K = 1, m = 1, p = 1, α0 = 1, a1 = 0.5, and ϵ1,t is independently, identi-183

cally and exponentially distributed with E(ϵ1,t) = 1. The geometric approximation184

of |a1| < 1 produces the unconditional mean of It such that E(It) ≈ E
(
ϵ

1
1−a1

)
= 2;185

however, this is far from our expectations. In particular, the t-fold product of the186

fractional expectation of ϵ1,t terms is expected to exponentially converge to 1 as187

the value of a1 increases by the independence assumption. A fractional moment of188

ϵ1,t can be obtained by applying the Riemann–Liouville fractional differ-integration189

technique to the moment generating function of ϵ1,t. Because the details of the190

Riemann–Liouville fractional differ-integration technique are easily found in Old-191

ham and Jerome (1974), only the brief application of the technique to the moment192

generating function is given below193

dqMϵ(s = 0)

dsq
=

∫ ∞

0

(−ϵ)q exp(−sϵ)f(ϵ)dϵ
∣∣∣∣
s=0

= (−)qE(ϵq),

where q denotes a positive noninteger, s ∈ R is a neighbourhood value of 0, Mϵ(·) is194

a moment generating function of ϵ, and f(·) denotes a probability density function.195

The closed form of a fractional moment of ϵ can be obtained from the distributional196

assumption on ϵ.197

2.2. Quasi Maximum Likelihood Estimation198

The intrinsic difficulty of estimating our proposed discrete finite exponential199

mixture of the SETAR discrete EDPs is the presence of the latent stochastic con-200

ditional means and the unknown mixing parameters in the likelihood. Hence, a201

legitimate state-space representation of (2.1.1) is proposed. Before proceeding with202

the proposed state-space representation, it is imperative to discuss a few underlying203

remarks. Let us first introduce a stochastic process ζt, where ζt is defined below204
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(2.2.1), such that E(Itζt|µt) = µt. Therefore, It can be rewritten by using ζt as205

follows206

Itζt = µt, (2.2.1)

where ζt is i.i.a.c.d. over the positive real values with E(ζt) = 1 and Var(ζt) = σ2
ζ <207

∞.208

It seems attractive to make an immediate logarithmic transformation of (2.2.1);209

however, this is not plausible because counts take nonnegative integers. This paper210

therefore proposes to introduce a tuning parameter, the so-called negligible marginal,211

such that ∆T = O
(
c
T
2
+δ
)
, where c ∈ (0, 1) is unknown and δ > 0 is arbitrarily212

small, in order to obtain the logarithmic transformation of (2.2.1). In fact, the213

tuning parameter in ∆T = O
(
c
T
2
+δ
)

is c ∈ (0, 1). The regularity condition on214

the rate of the tuning parameter, particularly T
2
+ δ where δ is fixed with a very215

small value, produces a fast enough convergence rate of ∆T (faster than
√
T ). This216

ensures the asymptotic uniform equivalence between lnµt and ln(µt + ∆T ζt) (see217

(2.2.2) below) with a faster rate than
√
T , and ultimately generalises the existing218

state-space representation of dynamic count processes and consolidates the mixture219

of the discrete EDPs within a legitimately simple but general enough framework.220

The state-space representation of (2.2.1) is thus as follows221

yt = X̃t + ξt and Xt = lnµt, (2.2.2)

where yt = ln(It+∆T ), X̃t = ln(µt+∆T ζt) and ξt = − ln ζt. At first glance, it seems222

implausible to apply the filtering to (2.2.2). However, X̃t is shown to be asymptoti-223

cally equivalent toXt uniformly over the parameter space of (a′s, r′s, β′s, c, π′s, d′s)⊤ ∈224

D, where a′s includes lnα′
k,0s hereafter, and D is a compact parameter space of225

RK+
∑K
k=1mk+pk ×R

∑K
k=1 2mk−K

+ ×RK
+ ×R(0,1) ×RK

(0,1] × ZK0,1,...,pK with R+, R(0,1) and226

Z0,1,··· ,pK representing the positive real values, real values between 0 and 1 and227

integer values from 0 to pK (pK denotes max
1≤k≤K

(pk)), respectively, for the sake of228

notational simplicity. Additionally, the vectors of the parameters with a 0 subscript229

denote the vector of the true parameters hereafter. Before discussing the asymptotic230

equivalence between X̃t and Xt uniformly over D, the geometric ergodicity of Xt is231

presented in Remark 2.1 under the appropriate regularity conditions as follows.232

Assumption 2.1. (i) The logarithmic transformed conditional mean of Ik,t, Xk,t,233

requires that max
1≤jk≤mk

∣∣∣∑pk
l=1, ̸=dk ak,l + ak,dk,jk

∣∣∣ < 1 for all k = 1, . . . , K. (ii) The234

stochastic process, ϵk,jk,t, is i.i.a.c.d. over positive real values with E(ϵk,jk,t) = 1,235

Var(ϵk,jk,t) = σ2
ϵ,k,jk

and E(ϵ4+δk,jk,t
) < ∞ for all jk = 1, . . . ,mk and k = 1, . . . , K. In236

addition, ϵk,jk,t is independent to the initial state variable, µk,1, for all k = 1, . . . , K237

and t = 1, . . . , T .238
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Remark 2.1. Under Assumption 2.1, An and Huang (1996) showed that Xt is239

geometrically ergodic by using Tweedie’s drift criterion (see Tweedie (1976)) and240

Tjøstheim’s h-step criterion (see Tjøstheim (1990)).241

The additional regularity conditions of the asymptotic equivalence between X̃t242

and Xt are then as follows.243

Assumption 2.2. (i) The negligible marginal, △T = O
(
c
T
2
+δ
)
, where c ∈ (0, 1) is244

unknown and δ is arbitrarily small. (ii) The stochastic process, ζt, is i.i.a.c.d. over245

positive real values with E(ζt) = 1, Var(ζt) = σ2
ζ and E(ζ4+δt ) < ∞. In addition,246

ζt is independent from the initial state variable, µk,1, for all k = 1, . . . , K and247

t = 1, . . . , T .248

Firstly, the regularity condition on the rate of the tuning parameter is necessary249

to ensure the faster rate of convergence of X̃t to Xt, particularly a faster rate than250 √
T . Furthermore, the positive distributional assumption on ζt is necessary to ensure251

the positivity of µt and the finite moments of ζt up to fourth moments are necessary252

to apply the Cauchy–Schwartz inequality to establish the stochastic equi-continuity253

of the remainder term of X̃t − Xt. The independence of ζt from the initial state254

variable µ1,k for all k = 1, . . . , K is also a necessary condition for the stability of255

the state-space representation in (2.2.2) (see Chapter 3 of Caines (1987) for details).256

The asymptotic equivalence between X̃t and Xt uniformly over D is now ready to257

be presented.258

Lemma 2.1. Under Assumptions 2.1 and 2.2, and where ϑ0 = (a′0s, r
′
0s, β

′
0s, c0, π

′
0s, d

′
0s)

⊤ ∈259

D, it can be shown that260

sup
ϑ∈D

∣∣∣X̃t −Xt

∣∣∣ = o(T−1/2) a.s., as T → ∞,

where a.s. denotes almost surely.261

As a result of Lemma 2.1, the current paper finally proposes to represent the262

discrete finite semiparametric exponential mixture of the nonlinear dynamic count263

processes in (2.1.1) by the state-space representation below264

yt =
K∑
k=1

πkXk,t + ξt (2.2.3)

and265

Xk,t = ak,0 +

pk∑
l=1, ̸=dk

ak,lXk,t−l +

{
mk∑
jk

ak,dk,jk(Xk,t−dk − rk,jk) + ηk,jk,t

}
Ik,jk , (2.2.4)

where Xk,t = lnµk,t, rk,jk = ln rk,jk , and ηk,jk,t = ln ϵk,jk,t.266
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Let us now briefly discuss the estimation procedure of our proposed discrete finite267

exponential mixture of the discrete EDPs in (2.1.1). The first step is to apply the268

Expectation Maximisation (EM) algorithm of Shumway and Stoffer (1982) to (2.2.3)269

and (2.2.4), given the tuning and threshold parameters. The estimation procedure270

of the algorithm is similar to that of Chan and Tsay (1998). In particular, we271

firstly estimate (a′s, β
′
s, d′s)⊤ given r′s. r′s is then estimated by maximising the272

log-likelihood in (2.2.5) but substituting with (â′s, β̂
′
s, d̂′s)⊤. The EM algorithm273

is the iterative estimation procedure of alternating between Kalman filtering and274

recursive smoothing, and QML estimation (see Shumway and Stoffer (1982) for275

details). Note that linear piecewise Kalman filtering and smoothing are required276

for the proposed procedure in our case. The tuning parameter is then estimated by277

maximising the Gaussian likelihood of ξts in (2.2.3). The second step is to perform278

the EM algorithm above with the estimated tuning parameter. The monotonicity of279

the sequence of the conditional log-likelihoods at each iterations of the EM algorithm280

ensures the convergence of the sequence of the conditional log-likelihoods to the one281

defined in (2.2.5) below (see Wu (1983) for details). Further details of the estimation282

procedures are presented in Section 3.1 below.283

As a result of Lemma 2.1, ĉ = c0 as T → ∞, and the parameter space is modified284

accordingly such that ψ0 = (a′0s, r
′
0s, β

′
0s, d

′
0s)

⊤ ∈ Dψ, where Dψ ⊂ D is a compact285

parameter space. The feasible conditional log-likelihood of It is then as follows286

L(ψ|Ft−1) =
1

T

T+pK∑
t=pK+1

(
K∑
k=1

ln ÊD
∗
k,t

)
, (2.2.5)

where ÊD
∗
k,t denotes ED

∗(µ̂k,t|t−1, βk, π̂k), and π̂k and µ̂k,t|t−1 are obtained by using287

the result of X̂k,t|t−1 which is the minimum conditional mean squared error estimate288

of Xk,t given the sigma-field, Ft−1, generated by (I1, I2, . . . , It−1) (see Chapters 3 and289

7 of Caines (1987) for details). The asymptotic properties of our proposed QMLEs290

are then established by showing the almost sure convergence of the feasible likeli-291

hood to the infeasible one uniformly over Dψ with additional regularity conditions292

on EDPs. Hereafter, let us use ED∗
k,t to denote ED∗(µk,t, βk, πk) for the sake of293

notational simplicity.294

Assumption 2.3. (i) max
1≤k≤K

E

(
sup
ψk∈Dψ

lnED∗
k,t

)2

<∞ and max
1≤k≤K

E

(
sup
ψk∈Dψ

ED
∗(1)
k,t,π

ED∗
k,t

)4

<295

∞ for all t = 1, . . . , T , where ED
∗(1)
k,t,π denotes the first derivative of ED∗

k,t with re-296

spect to πk. (ii) max
1≤k≤K

E

(
sup
ψk∈Dψ

ED∗
k,t

ED
∗(1)
k,t,µ

)4

< ∞ and max
1≤k≤K

E

(
sup
ψk∈Dψ

ED
∗(1)
k,t,π

ED
∗(1)
k,t,µ

)4

< ∞297

for all t = 1, . . . , T , where ED
∗(1)
k,t,µ denotes the first derivative of ED∗

k,t with respect298

to µk,t. (iii) max
1≤k≤K

E

(
sup
ψk∈Dψ

ED∗
k,t

ED
∗(2)
k,t,µ,π

)4

<∞, max
1≤k≤K

E

(
sup
ψk∈Dψ

ED
∗(1)
k,t,π

ED
∗(2)
k,t,µ,π

)4

<∞ and299
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max
1≤k≤K

E

(
sup
ψk∈Dψ

ED
∗(1)
k,t,µ

ED
∗(2)
k,t,µ,π

)4

< ∞ for all t = 1, . . . , T , where ED
∗(2)
k,t,µ,π denotes the300

second derivative of ED∗
k,t with respect to µk,t and πk.301

The above conditions are required to establish the almost sure convergence of the302

feasible log-likelihood to the infeasible one uniformly over the compact parameter303

space. The main strategy of showing the almost sure convergence is to show the304

almost sure negligibility of the remainder term of the difference between the two305

log-likelihoods over the parameter space by using the Taylor expansion arguments306

of a logarithmic function. This produces a number of first and second derivatives of307

ED∗
k,t with respect to πk and µk,t for all k = 1, . . . , K. Therefore, the finite moments308

of the suprema of their derivatives up to fourth moment over the parameter space are309

required to the apply Cauchy–Schwartz inequality. With these regularity conditions310

on EDPs, the strong convergence of the feasible likelihood to the infeasible one311

uniformly over the parameter space is established as follows.312

Lemma 2.2. Under Assumptions 2.1 to 2.3, and with ψ0 = (a′0s, r
′
0s, β

′
0s, d

′
0s)

⊤ ∈313

Dψ, it is shown that314

sup
ψ∈Dψ

|L(ψ|Ft−1)− L∗(ψ)| = O(T−1/2) a.s., as T → ∞,

where315

L∗(ψ) =
1

T

T∑
t=1

(
K∑
k=1

lnED∗
k,t

)
.

Next, the almost sure convergence and asymptotic normality of the QMLEs are316

discussed below with additional regularity conditions as follows.317

Assumption 2.4. (i) µk,t is an α-mixing process such that α(T ) = O
(
T− (2+δ)

2

)
318

for all k = 1, . . . , K. (ii) max
1≤k≤K

E

(
sup

ψ∗
k∈Dψ∗

∣∣∣∂ lnED∗
k,t

∂ψ∗

∣∣∣2+δ) < ∞ for all t = 1, . . . , T ,319

where ψ∗ = (a′s, r′s, β
′
s)⊤ ∈ Dψ∗ and Dψ∗ ⊂ Dψ is the compact parameter space.320

(iii) max
1≤k≤K

E

(
sup

ψ∗
k∈Dψ∗

∂2 lnED∗
k,t

∂ψ∗∂ψ∗⊤

)2

< ∞ and max
1≤k≤K

E

(
sup

ψ∗
k∈Dψ∗

∂3 lnED∗
k,t

∂ψ∗∂ψ∗⊤∂ψ∗

)2

< ∞ for321

all t = 1, . . . , T .322

The first condition of Assumption 2.4, particularly the mixing condition, is the323

least restrictive serial dependence of the time series and the regularity condition of324

the rate on the mixing coefficient ensures the convergence rate
√
T (see Chapter 2325

of Fan and Yao (2008) for more details). The rest of the regularity conditions are326

necessary to establish the strong consistency uniformly over the parameter space and327
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the asymptotic normality of our proposed QMLEs (see Chapter 4 of Amemiya (1985)328

for an example). In particular, these conditions are used to apply the Chebyshev329

inequality and the Borel–Cantelli lemma.330

Theorem 2.1. Under Assumptions 2.1 to 2.4, and with lim sup
T→∞

(
E max
ψ∈D̄δ(ψ0)∩Dψ

L∗(ψ)

)
̸=331

lim sup
T→∞

EL∗(ψ0) for any ψ ∈ Dψ, where D̄δ(ψ0) is the complement of an open δ-332

neighbourhood of ψ0, ψ0 is uniquely identified and ψ̂ = ψ0 + O(T−1/2) a.s., as333

T → ∞.334

As a result of Theorem 2.1 and the discreteness of d′s, d̂′s = d′0s as T → ∞335

(see Chan and Tsay (1998) for details), the parameter space is modified accordingly.336

The asymptotic normality of our proposed QMLEs can then be as follows.337

Theorem 2.2. Under Assumptions 2.1 to 2.4, and when ψ∗
0 is an interior of Dψ∗,338

√
T (ψ̂∗ − ψ∗

0) ∼ N(0,Σ),

where Σ = B−1
0 (ψ∗

0)A0(ψ
∗
0)B

−1
0 (ψ∗

0) with B0(ψ
∗
0) = lim

T→∞
E ∂2L∗(ψ∗)
∂ψ∗∂ψ∗⊤

∣∣∣
ψ∗=ψ∗

0

and339

A0(ψ
∗
0) = lim

T→∞
E
(√

T ∂L∗(ψ∗)
∂ψ∗

)(√
T ∂L∗(ψ∗)

∂ψ∗

)⊤∣∣∣∣
ψ∗=ψ∗

0

, as T → ∞.340

3. Simulation and Illustration341

In this section, the finite sample performance of our proposed QMLEs is in-342

vestigated with Monte Carlos simulation exercises. In addition, we illustrate the343

proposed process and estimation procedure by applying those to the intraday trans-344

action counts of AstraZeneca stock.345

3.1. Simulation Study346

The finite sample performances of the QMLEs are investigated with the most347

fundamental data generating process of counts, namely a Poisson process, and its348

extensions. This simulation exercise also focuses on how to implement the proposed349

estimation procedure presented in Section 2.2. The number of replications in all the350

simulation exercises is 10,000.351

Let us firstly define the Poisson process with the conditional mean specified by352

the rudimentary SETAR process below353

Prob(It = i;µt) =
µItt exp(−µt)

It!
, i = 0, 1, 2 . . . , (3.1.1)

where µt =

{
µ0.5
t−1ϵ1t if µt ≤ 1

µ−0.5
t−1 ϵ2t if µt > 1

with ϵ1t and ϵ2t ∼ Lognormal(0, 1). The vector354

of parameters, namely (α0,1,1 = 0.5, α0,1,2 = −0.5, r0 = 1, c0)
′, is estimated by the355
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proposed estimation procedure as follows. First, the EM algorithm with linear356

piecewise Kalman filtering and smoothing is applied, given the initial tuning and357

threshold parameters below358

yt = Xt + ξt and Xt =

{
0.5(Xt−1 − 0)− + η1t

−0.5(Xt−1 − 0)+ + η2t,

where yt = ln
(
It + c

T
2
+δ
)

with 0 < c < 1 and 0 < δ < 1 being arbitrary, and359

(Xt−1 − 0)− and (Xt−1 − 0)+ denote Xt−1 ≤ 0 and Xt−1 > 0, respectively, until the360

sequence of the conditional likelihoods converges to the below361

L(α1,1, α1,2|Ft−1, r) =
1

T

T+pK∑
t=pK+1

µ̂Itt|t−1 exp(−µ̂t|t−1)

It!
,

where µ̂t|t−1 = exp(X̂t|t−1) with X̂t|t−1 being obtained by implementing Kalman362

filtering with (α̂1,1, α̂1,2)
′ from the last iteration of the EM algorithm. We then363

estimate r by maximising the following364

L(r|Ft−1, α̂1,1, α̂1,2) =
1

T

T+pK∑
t=pK+1

µ̂Itt|t−1 exp(−µ̂t|t−1)

It!
,

where µ̂t|t−1 = exp(X̂t|t−1), and X̂t|t−1 =

{
α̂1,1X̂t−1|t−1 if X̂t−1|t−1 ≤ 0

α̂2,1X̂t−1|t−1 otherwise
. The tuning365

parameter is then estimated by maximising the Gaussian likelihood of ξ̂ts, where366

ξ̂t = log
(
It + c

T
2
+δ
)
− X̂t|t−1. The next step is to apply the EM algorithm with the367

estimated tuning parameter to the below368

ŷt = Xt + ξt and Xt =

{
0.5(Xt−1 − 0)− + η1t

−0.5(Xt−1 − 0)+ + η2t,

where ŷt = ln
(
It + ĉ

T
2
+δ
)
. The estimation procedure is similar to that of the two-369

step estimation procedure. First, estimate (α1,1, α1,2)
′ then r. The results for (3.1.1)370

are presented in Table 1.371

Next, the Type II Negative Binomial (NB) process is considered. Although372

it is a simple extension of a Poisson process, it is one of the most popular count373

processes in practice because of its over-dispersion property. The Type II NB process374

is commonly obtained by mixing a Poisson process with Gamma distribution as375

follows376

Prob(It = i;µt) =
γItt exp(−γt)

It!
, i = 0, 1, 2 . . . , (3.1.2)

where γt = µtνt with µt =

{
µ0.2
t−1ϵ1t if µt ≤ 1

µ−0.2
t−1 ϵ2t if µt > 1

with ϵ1t and ϵ2t ∼ Exp(1), and377

νt ∼ Gamma(β, 1/β) with β = 1. The count process in (3.1.2) can be rewritten as378
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Table 1: Simulation results for (3.1.1)

T α̂1,1 s.e.(β̂1,1) mse(β̂1,1) α̂1,2 s.e.(β̂1,2) mse(β̂1,2)

100 0.4925 0.0665 0.0046 -0.4870 0.1007 0.0111

250 0.4976 0.0378 0.0015 -0.4951 0.0570 0.0033

500 0.4984 0.0258 0.0006 -0.4977 0.0383 0.0015

700 0.4989 0.0214 0.0005 -0.4986 0.0317 0.0010

1000 0.4996 0.0177 0.0003 -0.4990 0.0263 0.0007

T r̂ s.e.(r̂) mse(r̂) ĉ s.e.(ĉ)

100 1.0096 0.1155 0.0125 0.9963 0.0027 ·
250 1.0051 0.0670 0.0044 0.9985 0.0006 ·
500 1.0012 0.0464 0.0021 0.9992 0.0002 ·
700 1.0013 0.0389 0.0014 0.9994 0.0001 ·
1000 1.0012 0.0323 0.0010 0.9996 0.0001 ·

Table 2: Simulation results for (3.1.3)

T α̂1,1 s.e.(α̂1,1) mse(α̂1,1,) α̂1,2 s.e.(α̂1,2) mse(α̂1,2) ĉ s.e.(ĉ)

100 0.2208 0.1200 0.0105 -0.2276 0.2510 0.0196 0.9923 0.0024

250 0.2070 0.0754 0.0049 -0.2120 0.1579 0.0114 0.9969 0.0006

500 0.2024 0.0529 0.0026 -0.2014 0.1030 0.0067 0.9984 0.0002

700 0.2010 0.0447 0.0020 -0.1989 0.0849 0.0052 0.9989 0.0001

1000 0.2011 0.0376 0.0014 -0.1976 0.0698 0.0039 0.9992 0.0001

T r̂ s.e.(r̂) mse(r̂) β̂ s.e.(β̂) mse(β̂)

100 0.9360 0.8529 0.4956 0.9467 0.3660 0.0378 · ·
250 0.9774 0.5135 0.1751 0.9723 0.2355 0.0209 · ·
500 0.9966 0.3500 0.0770 0.9869 0.1704 0.0134 · ·
700 0.9963 0.2917 0.0539 0.9900 0.1446 0.0110 · ·
1000 1.0008 0.2410 0.0365 0.9579 0.1136 0.0054 · ·

follows379

Prob(It = i;µt) =
Γ(β + It)

Γ(β)Γ(It + 1)

(
β

β + µt

)β (
µt

β + µt

)It
, i = 0, 1, 2 . . . , (3.1.3)

where Γ(·) denotes a gamma function. The vector of the parameters, (α0,1,1 =380

0.2, α0,1,2 = −0.2, r0 = 1, β0 = 1, c0)
′, are estimated by the similar procedure as381

above, and the results are presented in Table 2.382

The last exercise involves a mixture of a Poisson process with the conditional383

means specified by a SETAR and a simple autoregressive (AR(1)) processes as fol-384

lows385

Prob(It = i;µt) =
µItt exp(−µt)

It!
, i = 0, 1, 2 . . . , (3.1.4)

where µt =
∏2

k=1 µ
πk
k,t with π1 = π2 = 0.5,386

µ1,t

{
µ0.5
1,t−1ϵ11,t if µ1,t ≤ 1

µ−0.5
1,t−1ϵ12,t if µ1,t > 1

with ϵ11,t and ϵ12,t ∼ Lognormal(0, 1)
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Table 3: Simulation results for (3.1.4)

T α̂1,1,1 s.e.(α̂1,1,1) mse(α̂1,1,1) α̂1,1,2 s.e.(α̂1,1,2) mse(α̂1,1,2) ĉ s.e.(ĉ)

100 0.4689 0.1672 0.0333 -0.4511 0.2143 0.0643 0.9977 0.0028

250 0.4864 0.0931 0.0096 -0.4826 0.1319 0.0187 0.9992 0.0007

500 0.4946 0.0621 0.0042 -0.4934 0.0878 0.0080 0.9996 0.0002

700 0.4969 0.0516 0.0029 -0.4956 0.0727 0.0056 0.9997 0.0001

1000 0.4979 0.0428 0.0020 -0.4967 0.0602 0.0038 0.9998 0.0001

T r̂1 s.e.(r̂1) mse(r̂1) α̂2,1 s.e.(α̂2,1) mse(α̂2,1)

100 0.9270 0.3858 0.0148 0.1847 0.1870 0.0375 · ·
250 0.9073 0.1749 0.0106 0.1950 0.1123 0.0130 · ·
500 0.9050 0.1098 0.0100 0.1984 0.0774 0.0064 · ·
700 0.9048 0.0900 0.0100 0.1989 0.0648 0.0044 · ·
1000 0.9048 0.0741 0.0100 0.1997 0.0540 0.0030 · ·
T π̂1 s.e.(π̂1) mse(π̂1) π̂2 s.e.(π̂2) mse(π̂2)

100 0.490 0.080 0.005 0.481 0.085 0.007 · ·
250 0.496 0.049 0.002 0.489 0.052 0.003 · ·
500 0.498 0.034 0.001 0.493 0.037 0.001 · ·
700 0.498 0.029 0.001 0.495 0.031 0.001 · ·
1000 0.498 0.024 0.001 0.496 0.026 0.001 · ·

and387

µ2,t = µ0.2
2,t−1ϵ2,t with ϵ2,t ∼ Lognormal(0, 1).

The vector of the parameters, (α0,1,1,1 = 0.5, α0,1,1,2 = −0.5, r0,1 = 1, α0,2,1 =388

0.2, π0,1 = 0.5, π0,2 = 0.5, c0)
′, are estimated by a similar procedure to (3.1.1) and389

(3.1.3). The results for (3.1.4) are presented in Table 3.390

For all these cases, the simulation exercise shows the satisfactory finite sam-391

ple performance of our proposed QML estimation procedure. The estimates of the392

tuning parameters are close to the value of 1, as we expected. Additionally, notice393

that our proposed process is the special cases of those parametric-driven specifica-394

tions within the generalised linear regression framework of Nelder and Wedderburn395

(1972), particularly Zeger (1988) for a Poisson process and Davis and Wu (2009) for396

a negative binomial process, where there is no covariate. The simulation results for397

the simple Poisson and negative binomial processes of Zeger (1988) and Davis and398

Wu (2009) without a covariate can be obtained by requesting the authors. In the399

following, we apply the proposed process and estimation procedure to the intraday400

transaction counts of AstraZeneca stock.401

3.2. Illustration of Real Data Analysis402

We now illustrate our proposed count process by applying it to analyse the403

number of transactions per minute for AstraZeneca stock, closely following Fokianos404

et al. (2009). The randomly selected trading day is 30 July 2019. There are about405

500 observations after eliminating the first and last minutes of transactions for about406
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Table 4: Estimation results of (3.2.1)

α̂0 α̂1 β̂ ĉ

estimates 3.2034 -0.1511 0.7650 0.9503

s.e. (0.1664) (0.0559) (0.0459) ( 0.0028)

8 trading hours. The autocorrelation function of this data (see Figure 1 (b)) shows407

the moderate dependence between transactions not as strong as the case of Ericsson408

B stock in Fokianos et al. (2009). Furthermore, it is an over-dispersed case. The409

value of the sample mean is 10.0266 with the variance of 65.3661. The over-dispersion410

in this data might be caused by the frequent zero transactions and a few large number411

of transactions (see Figure 1(a)). Therefore, the Type II NB process discussed in412

Section 3.1 is considered in this analysis.413

Applying first the simple AR(1) process to the conditional mean of the transac-414

tion counts, the Type II NB process is415

Prob(It = i;µt) =
Γ(β + It)

Γ(β)Γ(It + 1)

(
β

β + µt

)β (
µt

β + µt

)It
, i = 0, 1, 2 . . . , (3.2.1)

where µt = α0µ
α1
t−1ϵt. The results of this estimation are reported in Table 4. For416

examining the adequacy of the fit, an analysis of the Pearson residuals is performed.417

The Pearson residuals are defined as et = It−µ̂t√
µ̂t

(
1+

µ̂t
β̂

) in the case of Type II NB418

process, and et is an white noise process under a correct specification of It. The419

cumulative periodogram plot of ets (see Figure 1(d)) indicates that (3.2.1) is not420

adequate enough to model the intraday transactions of this data. The prediction of421

It of (3.2.1) is also shown in Figure 1(c). Furthermore, the mean squared error of422

(2.2.3) for the case of (3.2.1) is 6.6976.423

424

Now let us apply the continuous two-regime SETAR with p = d = 1 to the425

conditional mean of the transaction counts, the Type II NB process is426

Prob(It = i;µt) =
Γ(β + It)

Γ(β)Γ(It + 1)

(
β

β + µt

)β (
µt

β + µt

)It
, i = 0, 1, 2 . . . , (3.2.2)

where µt = α0

∏2
k=1

{(
µt−1

r

)α1,k ϵk,t
}Ik . The results of this estimation are reported in427

Table 5. The cumulative periodogram plot of ets and the prediction of It of (3.2.2)428

are shown in Figure 1(e) and (f), respectively. The improvement on the Pearson’s429

residuals (see Figure 1(f)) supports the use of (3.2.2), namely the nonlinear Type430

II NB process, instead of the linear one. There is also improvement on the mean431

squared error for the case of (3.2.2), it is 6.3317.432

433
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Table 5: Estimation results of (3.2.2)

α̂0 α̂1,1 α̂1,2 r̂ β̂ ĉ

estimates 3.3202 0.2700 -0.2023 1.2825 0.7493 0.9486

s.e. (0.1498) (0.0977 ) (0.0490 ) (0.3375) (0.0455) (0.0027)

Figure 1: Intraday transaction counts of AstraZeneca stock on 30 July, 2019434

435

436

(a) Number of transactions per minute for AstraZeneca stock on 30 July, 2019. (b) Autocorrelation437

function of the transaction data. (c) Observed and predicted (red) number of transactions per438

minute calculated by using (3.2.1). (d) Cumulative periodogram plot of the Pearson residuals439

calculated by using (3.2.1). (e) Observed and predicted (red) number of transactions per minute440

calculated by using (3.2.2). (f) Cumulative periodogram plot of the Pearson residuals calculated by441

using (3.2.2)442

4. Summary443

This paper aims to complement the recent development of the observation-driven444

models of dynamic counts with a parameter-driven one for the general case, specif-445

ically the discrete two parameters exponential family distributions. In particular,446

we propose to model the mixture of nonlinear dynamic counts by representing a dy-447

namic count process with a simple additive state-space representation. As a result448

of this, a more flexible dynamic evolution than a stationary AR(p) process of the449

conditional mean, particularly continuous SETAR process, and the discrete finite450

semiparametric exponential mixture of dynamic count processes are analysed with451

the well established linear filtering in that stationarity and geometric ergodicity of452

17



the process are obtained under a mild set of conditions. Furthermore, the unknown453

parameters are proposed to be estimated with quasi maximum likelihood estima-454

tion and the asymptotic properties of the QMLEs, particularly
√
T -consistency and455

normality, are established under a relatively primitive set of conditions.456
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Appendix522

In this section, the mathematical proofs of the main theoretical results of the523

paper, particularly Lemmas 2.1 and 2.2, and Theorems 2.1 and 2.2, are presented.524

The proofs of these are mainly shown within the conventional QML estimation525

literature, particularly the two main steps. The first step is to show the almost sure526

pointwise convergence, then to establish the almost sure stochastic equi-continuity.527

Hereafter, we omit Ijk for notational simplicity.528

Proof of Lemma 2.1529

This proof shows the almost sure equivalence between Xt and X̃t uniformly over530

ϑ ∈ D in the two steps mentioned above, under Assumptions 2.1 and 2.2. Firstly,531

let us approximate X̃t by using the Taylor expansion of a logarithmic function such532

that X̃t = Xt + Rt, where Rt =
∆T ζt
µt

+
∑

l=2
(−1)(l+1)

l

(
∆T ζt
µt

)l
. The first main term533

in Rt, particularly
∆T ζt
µt

≡ R1,t, is then easily shown to be o(T−1/2) a.s. as follows.534

By using the Cauchy–Schwartz inequality,535

E

(
∆T ζt
µt

)
≤ ∆T

{
E

(
1

µ2
t

)1/2

E(ζ2t )
1/2

}
= o(cT/2)

then apply the Markov inequality and Borel–Cantelli Lemma.536

The proof is completed by showing the almost sure stochastic equi-continuity of537

R1,t as follows538

sup
||ϑ−ϑ̃||<δ

∣∣∣R1,t(ϑ)−R1,t(ϑ̃)
∣∣∣ ≤ sup

||ϑ−ϑ̃||<δ

{∣∣∣∣∣∣R(1)
1,t (ϑ̄−d)

∣∣∣∣∣∣+ ∣∣∣∣∣∣R1,t(d)−R1,t(d̃)
∣∣∣∣∣∣} ·

∣∣∣∣∣∣ϑ− ϑ̃
∣∣∣∣∣∣

= o(1) a.s., (A.1.1)

where ϑ̃ is an δ-neighbourhood of ϑ such that lim
δ→0

sup
||ϑ−ϑ̃||<δ

||ϑ− ϑ̃|| → 0, ϑ̄ lies on the539

line segment of {ρϑ+(1−ρ)ϑ̃; ρ ∈ (0, 1)}, R(1)
1,t (ϑ̄−d) denotes the gradients of R1,t with540

respect to the vector of the parameters, ϑ̄−d = (ā′s, r̄′s, β̄
′
s, c̄, π̄′s)⊤. (A.1.1) can be541

established by showing that
∣∣∣∣∣∣R(1)

1,t (ϑ̄−d)
∣∣∣∣∣∣ = O(1) a.s. because ||R1,t(d)−R1,t(d̃)|| =542

o(1) a.s., given the discreteness of d′s. Now let us consider R
(1)
1,t (ϑ̄−d) as follows543

E
(∣∣∣∣∣∣R(1)

1,t (ϑ̄−d)
∣∣∣∣∣∣) ≤ E||R(1)

ak,0,1,t
||+ E||R(1)

ajk ,1,t
||+ E||R(1)

rjk ,1,t
||+ E||R(1)

πk,1,t
||

+E||R(1)
βk
||+ E|R(1)

c,t |

= O

((
T

2
+ δ

)
c
T−2
2

+δ

)
with the similar arguments to those. The each components ofR

(1)
1,t (ϑ̄−d) areR

(1)
ak,0,1,t

=544

−∆T ζtπk
µt

, R
(1)
ajk ,1,t

= −∆T ζt{πkXk,t−l}
µt

, R
(1)
rjk ,1,t

= −∆T ζt
µt

πkak,dk,jk , R
(1)
πk,t

= −∆T ζt lnµk,t
µt

,545
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R
(1)
βk

= ∆T ζt
2µt

πkV (Ik,t;µk,t) and R
(1)
c,1,t =

ζt
µt
O
((

T
2
+ δ
)
c
T−2
2

+δ
)
. Note that the deriva-546

tive of Xk,t with respect to rjk is not well defined, so we set
∂Xk,t
∂rjk

= ak,dk,jk , following547

the arguments in Chan and Tsay (1998). By applying the Markov inequality and548

Borel–Cantelli Lemma, ||R(1)
1,t (ϑ̄−d)|| = o(1) a.s. □549

Proof of Lemma 2.2550

This proof establishes (A.2.1) below, under Assumptions 2.1 to 2.3 and the551

independence assumption of the data generating processes of each cluster.552

sup
ψ∈Dψ

|L(ψ|Ft−1)− L∗(ψ)| = sup
ψ∈Dψ

∣∣∣∣∣ 1T
T+pK∑
t=pK+1

{
K∑
k=1

(
ln ÊD

∗
k,t − lnED∗

k,t

)}∣∣∣∣∣
= O(T−1/2) a.s.. (A.2.1)

Let us firstly consider the strong pointwise convergence of L(ψ|Ft−1) − L∗(ψ). By553

using the Taylor expansion argument of a logarithmic function and the results in554

Chapters 3 and 7 of Caines (1987), particularly µ̂k,t|t−1 = µk,t + o(cT/2) a.s. and555

π̂k = πk +O(T−1/2) a.s., and hence556

ln ÊD
∗
k,t = lnED∗

k,t +
ED

∗(1)
k,t,π(π̂ − πk)

ED∗
k,t

+
ED∗

k,t,µ(µ̂k,t|t−1 − µk,t)

ED∗
k,t + ED

∗(1)
k,t,π(π̂ − π)

+ o(cT/2) a.s..

We can then rewrite L(ψ|Ft−t)− L∗(ψ) as follows557

L(ψ|Ft−1)− L∗(ψ)

=
1

T

T+pK∑
t=pK+1

K∑
k=1

{
ED

∗(1)
k,t,π(π̂ − πk)

ED∗
k,t

+
ED

∗(1)
k,t,µ(µ̂k,t|t−1 − µk,t)

ED∗
k,t + ED

∗(1)
k,t,π(π̂ − π)

}
+ o(T−1/2) a.s..

By using the Cauchy–Schwartz inequality,558

E (L(ψ|Ft−1)− L∗(ψ))2

=
K∑
k=1

 1

T 2

T+pK∑
t=pK+1

E


(π̂k − πk)

2

(
ED

∗(1)
k,t,π

ED∗
k,t

)2

+

(
ED

∗(1)
k,t,µ(µ̂k,t|t−1 − µt)

ED∗
k,t + ED

∗(1)
k,t,π(π̂k − πk)

)2

+2(π̂k − πk)(µ̂k,t|t−1 − µk,t)
ED

∗(1)
k,t,π

ED∗
k,t

ED
∗(1)
k,t,µ

ED∗
k,t + ED

∗(1)
k,t,π(π̂k − πk)

)}

+2
1

T 2

T+pK∑
t=pK+1

T=pK∑
ι̸=t

E

{
(π̂k − πk)

2

(
ED

∗(1)
k,t,π

ED∗
k,t

)(
ED

∗(1)
k,ι,π

ED∗
k,ι

)

+

(
ED

∗(1)
k,t,µ(µ̂k,t|t−1 − µk,t)

ED∗
k,t + ED

∗(1)
k,t,π(π̂k − πk)

)(
ED

∗(1)
k,ι,µ(µ̂k,ι|ι−1 − µk,ι)

ED∗
k,ι + ED

∗(1)
k,ι,π(π̂k − πk)

)

+2(π̂k − π)(µ̂k,ι|ι−1 − µk,ι)

(
ED

∗(1)
k,t,π

ED∗
k,t

)(
ED

∗(1)
k,ι,µ

ED∗
k,ι + ED

∗(1)
k,ι,π(π̂k − πk)

)})
= O(T−1),
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particularly under Assumption 2.3. Then, by applying the Chebyshev inequality559

and Borel–Cantelli Lemma,560

L(ψ|Ft−1)− L∗(ψ) = O(T−1/2) a.s..

The next step is then to show the stochastic equi-continuity of L(ψ|Ft−1)−L∗(ψ).561

Hereafter, let us denote L(ψ|Ft−1) − L∗(ψ) as L1(ψ) for the sake of notational562

simplicity.563

sup
||ψ−ψ̃||<δ

∣∣∣L1(ψ)− L1(ψ̃)
∣∣∣ ≤ sup

||ψ−ψ̃||<δ

{
||L(1)

1 (ψ̄−d)||+ |L1(d)− L1(d̃)|
}
· ||ψ − ψ̃||

= o(1) a.s.,

where L(1)
1 (ψ̄−d) denotes the first gradients of L1(ψ̄) with respect to ψ̄−d = (ā′s, r̄′s, β̄

′
s)⊤.564

Hence, it is565

∂L1(ψ̄−d)

∂ψ̄−d
=

1

T

T+pK∑
t=pK+1


K∑
k=1

ÊD∗(1)
k,t,µ(µ̂k,t|t−1)

′
ψ̄−d

ÊD
∗
k,t

−
ED

∗(1)
k,t,µ(µk,t|t−1)

′
ψ̄−d

ED∗
k,t

 ,

(A.2.2)

where ÊD
∗(1)
k,t,µ is the first derivative of ÊD

∗
k,t with respect to µ̂k,t|t−1, and (µk,t)

′
ψ̄−d

566

and (µ̂k,t|t−1)
′
ψ̄−d

denote the first gradients of µk,t and µ̂k,t|t−1 with respect to ψ̄−d,567

respectively, and which are as follows568

(µk,t)
′
ψ̄−d

=
(
µk,t µk,tXk,t−l µk,tak,j,d− µk,t(Xk,t)

′
β̄k

)⊤
and569

(µ̂k,t|t−1)
′
ψ̄−d

=


µ̂k,t|t−1

µ̂k,t|t−1X̂k,t−l|t−1

µ̂k,t|t−1ak,j,d−
µ̂k,t|t−1{(Xk,t)

′
β̄k

+ (Xk,t)
′′
β̄k,µ̄k,t

(X̂k,t|t−1 −Xk,t)}


with X̂k,t−l|t−1 denoting the minimum conditional mean-squared error estimate of570

Xk,t−l given Ft−1, and (Xk,t)
′
β̄k

=
V (Ik,t;µk,t)

2µ2k,t
and (Xk,t)

′′
β̄k,µ̄k,t

= −V (Ik,t;µk,t)

µ3k,t
. We next571

use the Taylor expansion argument below572

ÊD
∗(1)
k,t,µ = ED

∗(1)
k,t,µ + ED

∗(2)
k,t,µ(µ̂k,t|t−1 − µk,t) + o(T−1/2) a.s.,

(A.2.2) is then rewritten as follows573

L(1)
1 (ψ̄−d) = L(1)

11 (ψ̄−d) + L(1)
12 (ψ̄−d) +O(T−1) a.s.,
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where574

L(1)
11 (ψ̄−d)

=
1

T

T+pK∑
t=pK+1


K∑
k=1

(
ED∗

k,tED
∗(2)
k,tµ,π(µ̂k,t|t−1)

′
ψ̄−d

− ED
∗(1)
k,t,µED

∗(1)
k,t,π(µk,t|t−1)

′
ψ̄−d

)
(π̂k − πk)

ED∗
k,t

(
ED∗

k,t + ED
∗(1)
k,t,π(π̂k − πk) + ED

∗(1)
k,t,µ(µ̂k,t|t−1 − µk,t)

)
+ o(T−1)


and575

L(1)
12 (ψ̄−d)

=
1

T

T=pK∑
t=pK+1

K∑
k=1

 ED∗
k,tED

∗(1)
k,tµ

{
(µ̂k,t|t−1)

′
ψ̄−d

− (µk,t|t−1)
′
ψ̄−d

}
ED∗

k,t

(
ED∗

k,t + ED
∗(1)
k,t,π(π̂k − πk) + ED

∗(1)
k,t,µ(µ̂k,t|t−1 − µk,t)

)
+ o(T−1)

+

(
ED∗

k,tED
∗(2)
k,t,µ,π(µ̂k,t|t−1)

′
ψ̂−d

−
(
ED

∗(1)
k,t,µ

)2
(µk,t|t−1)

′
ψ̄−d

)
(µ̂k,t|t−1 − µk,t)

ED∗
k,t

(
ED∗

k,t + ED
∗(1)
k,t,π(π̂k − πk) + ED

∗(1)
k,t,µ(µ̂k,t|t−1 − µk,t)

)
+ o(T−1)

 .

By applying the Cauchy–Schwartz and Chebyshev inequalities, and the Borel–Cantelli576

lemma to L(1)
11 (ψ̄−d), and the Markov inequality and Borel–Cantelli lemma to L(1)

12 (ψ̄−d),577

respectively, we obtain L(1)
1 (ψ̄−d) = o(1) a.s.. □578

Proof of Theorem 2.1579

This proof can be shown in the two steps under Assumptions 2.1 to 2.4, with the580

independence assumption on the data generating process of each cluster. The first581

step is to show the almost sure convergence of ψ̂ to ψ uniformly over Dψ by using582

similar arguments to those in Lemma 2.2. We can then verify the identification583

condition of ψ0.584

The first step can be shown by establishing (A.3.1) below585

sup
ψ∈Dψ

|L∗(ψ)− EL∗(ψ)| = O(T−1/2) a.s.. (A.3.1)

Firstly, it is586

E (L∗(ψ)− EL∗(ψ))2 =
1

T 2

pK+T∑
t=pK+1

{
K∑
k=1

E
(
lnED∗

k,t − E lnED∗
k,t

)2}

+2
1

T 2

T+pK∑
t=pK+1

T+pK∑
ι̸=t

{
K∑
k=1

E
({

lnED∗
k,t − E lnED∗

k,t

}{
lnED∗

k,ι − E lnED∗
k,ι

})}

then apply the Chebyshev inequality and Borel–Cantelli lemma. We thus obtain587

that L∗(ψ) = EL∗(ψ) + O(T−1/2) a.s.. The next step is to show the stochas-588

tic equi-continuity of L∗(ψ) − EL∗(ψ). This can be established by showing that589
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E
(
∂L∗(ψ−d)
∂ψ−d

)2
= O(T−1) as follows590

E

(
∂L∗(ψ−d)

∂ψ−d

)2

=
K∑
k=1

1

T 2

 T∑
t=1

E
(
ED

∗(1)
k,t,ψ−d

ED∗
k,t

)2

+
T∑
t=1

T∑
ι̸=t

E

(
ED

∗(1)
k,t,ψ−d

ED∗
k,t

ED
∗(1)
k,ι,ψ−d

ED∗
k,ι

)


= O(T−1) (A.3.2)

particularly under Assumptions 2.4 (i) and (ii). By applying the Chebyshev inequal-591

ity and Borel–Cantelli lemma to (A.3.2), (A.3.1) is shown.592

The identification condition of ψ0 is then verified by using the counter argument593

as follows. Consider the Jensen’s inequality in (A.3.3), taking the expectation with594

ψ0 as follows595

EL∗(ψ)− EL∗(ψ0) ≤ 1

T

T+pK∑
t=pK+1

{
K∑
k=1

lnE

(
ED∗(µk,t, βk, πk)

ED∗(µ0,k,t, β0,k, πk)

)}
≤ 0. (A.3.3)

The equality of (A.3.3) holds when ψ → ψ0. Hence, ψ0 is not uniquely identified596

when there is a sequence such that ψT ∈ Dδ(ψ
∗) converges to ψ∗ ∈ D̄δ(ψ0) ∩ Dψ,597

where Dδ(·) and D̄δ(·) represent an open δ-neighbourhood and its complement,598

respectively, and lim
T→∞

EL∗(ψ∗) → lim
T→∞

EL∗(ψ0). Hence, the unique identification599

condition requires that lim sup
T→∞

(
max

ψ∈D̄δ(ψ0)∩Dψ
EL∗(ψ)

)
̸= EL∗(ψ0) for any ψ. □600

Proof of Theorem 2.2601

The asymptotic normality of our proposed QMLEs can be obtained by consid-602

ering the extension of the mean value theorem of ∂L∗(ψ̂∗)
∂ψ∗ as follows603

∂L∗(ψ̂∗)

∂ψ∗ =
∂L∗(ψ∗

0)

∂ψ∗ +
∂2L∗(ψ̄∗)

∂ψ∗∂ψ∗⊤ (ψ̂∗ − ψ∗
0),

where ψ̄∗ is between ψ̂∗ and ψ∗
0. Therefore, the asymptotic normality of ψ̂∗ can be ob-604

tained by showing that
√
T ∂L∗(ψ∗)

∂ψ∗

∣∣∣
ψ∗=ψ∗

0

∼ N(0, A0(ψ
∗
0)) and

∂2L∗(ψ∗)
∂ψ∗∂ψ∗⊤ = lim

T→∞
E ∂2L∗(ψ∗)

∂ψ∗ψ∗⊤ +605

OP (T
−1/2) uniformly over Dψ∗ . Particularly under Assumptions 2.4 (i) and (iii),606 √

T ∂L∗(ψ∗)
∂ψ∗ ∼ N(0, A0(ψ

∗
0)) can be easily shown by using the small and large blocks607

arguments (see Chapter 2 of Fan and Yao (2008) for details).608

The last step of this proof is to establish below609

sup
ψ∗∈Dψ∗

||BT (ψ
∗)−B0(ψ

∗)||F = OP (T
−1/2), (A.4.1)
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where ||·||F denotes the Frobenius norm, BT (ψ
∗) = ∂2L∗(ψ∗)

∂ψ∗∂ψ∗⊤ andB0(ψ
∗) = lim

T→∞
E ∂2L∗(ψ∗)
∂ψ∗∂ψ∗⊤ .610

The result of (A.4.1) is obtained by applying the Chebyshev inequality. Next, the611

stochastic equi-continuity of BT (ψ
∗) can be established by showing that612

||CT (ψ̄∗)− C0(ψ̄
∗)||F ≤ ||CT (ψ̄∗)||F = Op(T

−1/2), (A.4.2)

where CT (ψ̄
∗) = ∂BT (ψ̄

∗)
∂ψ̄∗ and C0(ψ̄

∗) = lim
T→∞

ECT (ψ̄
∗). The result of (A.4.2) is then613

obtained by applying the Chebyshev inequality. □614
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