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1. Introduction21

Xia et al. (1999) introduced the extended generalized partially linear single-index22

(EGPLSI) model of the form23

Yi = X ′iβ0 + g(X ′iα0) + εi, (1.1)

where (i) (X, Y ) is a set of Rq ×R-valued observable random vectors; (ii) β0 and α024

are unknown parameters vectors such that β0 ⊥ α0 with ||α0|| = 1; (iii) g(·) is an25

unknown link function such that g(·) : R → R and g′′(·) 6= 0; and (iv) E(ε|X) = 026

suggesting that E(ε|V0) = 0 with V0 = X ′α0. In fact, the EGPLSI model is the27

extended version of the generalized partially linear single-index (GPLSI) model of28

Carroll et al. (1997) and Xia and Härdle (2006) and hence a number of non- and29

semiparametric models are special cases of the EGPLSI model. More importantly,30

the EGPLSI model is useful for modelling a flexible shape-invariant specification in31

pooling nonparametric regression curves (see Härdle and Marron (1990), and Robin-32

son and Pinkse (1995) for examples) to model an aggregate structural relationship33

incorporating the individual heterogeneity (see Blundell and Stoker (2007) for ex-34

amples). The EGPLSI model allows this type of shape-invariant specification with a35

functional flexibility because both scale and shift parameters can be incorporated in36

the model. Therefore, the paper aims to address endogeneity in the EGPLSI model37

causing an identification problem, to enhance its applicability to empirical studies.38

Recently, a number of methods have been discussed in the literature on how39

endogeneity can be best addressed in non- and semiparametric models. Among40

these, two of the most popular alternatives are the nonparametric instrumental41

variable estimation (NPIV) and the control function (CF) approach (see Blundell42

and Powell (2003) for an excellent review). The NPIV approach relies on different43

stochastic assumptions to the CF one and there are a few well-known difficulties that44

are intrinsic to the NPIV, particularly the so-called ill-posed inverse problem (see45

Ai and Chen (2003), and Blundell et al. (2007) for details). On the other hand, the46

CF approach alternatively allows the specification of endogeneity, which is based on47

an intuitive triangular structure of a model (see Blundell et al. (1998), and Blundell48
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and Powell (2003) for details).49

This paper particularly aims to develop the CF approach. Although the gener-50

ated covariates issue is intrinsic in the development of the CF approach, similar to51

the study of Mammen et al. (2016), the proposed method maintains the attractive52

features of the single-index (SI) model with relatively mild conditions in the litera-53

ture and shows an accessible extension to strictly stationary and α-mixing process.54

In a SI model, Härdle et al. (1993) showed that the optimal bandwidth for estimating55

a link function can be used for the
√
n-consistent estimation of the index coefficients.56

The current paper shows that this attractive feature is still valid with the CF ap-57

proach and under-smoothing for estimating a first-stage reduced-form equation is58

not required in order to archive
√
n-consistency. These results are developed in de-59

tails with the simplest data structure, namely IID random sample, then extended to60

a strictly stationary and α-mixing case. Furthermore, the convenient applicability61

of our proposed CF approach is explored by analyzing the empirical Engel curves62

based on the British data.63

The structure of the rest of the paper is as follows. In Section 2, the usefulness64

of the EGPLSI model for modelling a flexible shape-invariant specification is elabo-65

rated. In addition, the development of the CF approach in the EGPLSI model and66

a Monte Carlo exercise assessing the finite-sample performances of the proposed es-67

timators are also presented. In Section 3, the implementation of the empirical study68

of the cross sectional relationships between specific goods and the level of total ex-69

penditure are investigated. Finally, Section 4 concludes the paper with a summary70

of the main findings and the further issues to be investigated. All mathematical71

proofs of the main theoretical results are presented in the supplemental document.72

2. EGPLSI Model, Shape-Invariant Specification and Endogeneity73

In this section, the usefulness of the EGPLSI model introduced by Xia et al.74

(1999) is elaborated for specifying a flexible shape-invariant specification. This75

section then introduces endogeneity into the EGPLSI model, establishes the CF76

approach to address endogeneity and presents the asymptotic properties and finite77
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sample performances from a Monte Carlo simulation exercise for the estimators.78

2.1. Shape-Invariant Specification within EGPLSI Model Framework79

Let us discuss a flexible shape-invariant specification within the EGPLSI model80

framework by considering the two sets of observations. The first set of observations,81

(X1, Y1), . . . , (Xn, Yn), is assumed to follow the data generating process shown below82

Yi = m1(Xi) + εi, i = 1, . . . , n, (2.1)

where ε is assumed to be independent with mean 0 and the common variance σ2.83

Suppose the second set of observations, (X ′1, Y
′
1), . . . , (X ′n, Y

′
n), is from the following84

nonparametric regression model85

Y ′i = m2(X
′
i) + ε′i, (2.2)

where ε′ is independent from ε, but otherwise has the same stochastic structure as86

ε and has the common variance σ′2. The main interest here is to model the curves87

whose parametric nature is modelled by 3
88

m2(X
′) = S−1θ0 (m1(T

−1
θ0

(X ′))), (2.3)

where Tθ and Sθ are invertible transformations, particularly scalings and shifts of89

the axes indexed by parameters θ ∈ Θ ⊆ Rd, and θ0 is the vector of true values of90

the parameters. A good estimate of θ0 is provided by θ for which the curve m1(X)91

is closely approximated by92

m(X, θ) = Sθ(m2(Tθ(X))). (2.4)

For the sake of illustration, the simple models are considered as follows93

m1(X) = (X − 0.4)2 and m2(X
′) = (X ′ − 0.5)2 − 0.2, (2.5)

which fit in the framework described by (2.1) to (2.4) by defining the following94

Tθ(X) = θ(1)X + θ(2)

m2(Tθ(X)) =
(
θ(1)X + θ(2) − 0.5

)2 − 0.2

Sθ(m2(Tθ(X))) =
(
θ(1)X + θ(2) − 0.5

)2 − 0.2 + θ(3)X + θ(4),

3The case of (2.3) is available on the request from the author
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where θ0 =
(
θ
(1)
0 , θ

(2)
0 , θ

(3)
0 , θ

(4)
0

)
= (1, 0.1, 0, 0.2).95

When a curve comparison problem with a similar parametric nature to (2.3) is96

considered, Härdle and Marron (1990) suggested an estimation procedure by which97

separated kernel smoothers are used in order to compute the estimates of m1(·) and98

m2(·). The estimator of θ0 is then found by minimizing a L2-norm objective function99

of kernel estimates of m1(·) and m2(·), and the approximation in (2.4). Alternatively,100

pooling the two sets of observations is more desirable. Modelling the data within101

the EGPLSI model framework enables this type of pooling nonparametric regression.102

The shift and scaling of the axes illustrated in the example above fit in the EGPLSI103

framework, shown below104

m3(X1, X2) = [β01X1 + β02X2] +
{

([α01X1 + α02X2]− 0.5)2 − 0.2
}
, (2.6)

where X1 =

 X

X ′
and X2 =

 1 if X1 = X

0 if X1 = X ′
. The model examples in (2.5) can105

be obtained by defining106

(β01, β02, α01, α02) = (0, 0.2, 1, 0.1). (2.7)

Five hundred simulated observations of the model are represented by circles107

in Figure 2.1, where X1i on the x-axis is a uniform random variable on [0, 1] for108

i = 1, . . . , 500. The two sets of observations are determined by X2, which is a109

Bernoulli random variable with the parameter p = 0.5. It should be noted, however,110

that the set of values of the parameters in (2.7) do not satisfy the identification111

conditions which require that β0 ⊥ α0 with ||α0|| = 1. An approximate model that112

satisfies these identification conditions is obtained by first setting β02 = 0.2 and113

α02 = 0.1, so that β01 = −0.02 and α01 = 0.99 can be derived. Five hundred114

simulated observations of this type of a model are represented by triangles in Figure115

2.1. In practice, when there is enough reason to believe (perhaps based on economic116

theory) that β01 = 0 and α01 = 1, then such a model can be obtained by scaling and117

shifting, respectively, as follows118

X2 = v01 − β01X1 and X1 +
α02

α01

X2 =
v02
α01

,
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where β01X1 + β02X2 = v01 and α01X1 + α02X2 = v02. This method is illustrated in119

the empirical analysis in Section 3.120

Figure 2.1. 500-simulated observations based on m3(·, ·).

121

2.2. Endogeneity and Newly Proposed Estimation Procedure122

Despite its ability to model a flexible shape-invariant specification, the applica-123

bility of EGPLSI model to an empirical study is limited because of its shortfalls in124

addressing endogeneity. There are two potential sources of endogeneity in the model,125

namely endogeneity in the parametric and in the nonparametric components. If it126

is present, endogeneity in the parametric component is relatively easy to deal with.4127

Hence, to simplify the argument, the parametric covariates are assumed to belong to128

a subset X1 ⊆ Rq1 , for q1 < q, of X such that E(ε|X1) = 0, namely the parametric129

covariates are exogenous, without loss of generality. In this case, endogeneity in the130

nonparametric component exists when E(ε|X) 6= 0, which implies that E(ε|V0) 6= 0.131

An unanticipated property from the SI type of semiparametric models is that es-132

timators of the index coefficients are still
√
n-consistent even with the presence of133

endogeneity because of the partialling-out process in estimating the index coeffi-134

cients (see Ichimura (1993), Härdle et al. (1993), and Xia and Härdle (2006) for135

4A comprehensive discussion on the presence of endogeneity in the parametric component can

be found in Li and Racine (2007).

6



details). Nonetheless, the link function in the EGPLSI model is unidentifiable by136

using the conditional expectation relationship in the presence of endogeneity.137

In the following, let us present the development of the CF approach in the138

EGPLSI model. For the sake of the notational simplicity, the simplest case is con-139

sidered, namely the presence of an endogenous nonparametric covariate denoted by140

X2.
5 Hereafter, let Z denote a vector of valid instruments for X2 as follows141

X2i = gx(Zi) + ηi, (2.8)

where E(η|Z) = 0, and E(ε|X2) = E(ε|Z, η) = E(ε|η) ≡ ι(η) with (X2, Z) is a142

set of R× Rqz -valued observable random vectors, and gx(Z) and ι(η) are unknown143

real functions such that gx(·) : Rqz → R and ι(·) : R → R, respectively. The144

above stochastic assumption on ε is standard in the CF literature suggesting the145

exogeneity condition of Z, particularly E(ε|Z, η) = E(ε|η) (see Newey et al. (1999),146

Blundell and Powell (2004), and Su and Ullah (2008) for examples). Furthermore,147

the necessary identification condition for the link function as discussed in Newey148

et al. (1999) is non-existence of a linear functional relationship between X2 and η.149

By imposing the structure of (2.8), the EGPLSI model in (1.1) in the presence150

of endogeneity is rewritten as151

Yi = X ′iβ0 +m(V0i, ηi) + ei, (2.9)

where m(v0, η) ≡ g(v0) + ι(η) with ι(η) 6= 0 being the endogeneity control func-152

tion, and E(e|X) = 0. The conditional expectation relationship, based on (2.9), is153

obtained as follows154

my(v0, η) ≡ m(v0, η) +mx(v0, η)′β0, (2.10)

where my(v0, η) ≡ E(y|V0, η) and mx(v0, η) ≡ E(x|V0, η).155

In the following, the performance of the CF approach in the EGPLSI model156

based on (2.8) to (2.10) is discussed. The identification issue is first presented as157

5The generalized version, namely more than one endogenous nonparametric covariates, is avail-

able by a request to the author.
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follows. Given α and β, let158

J(α, β) = E [Y − E(Y |V, η)− {X − E(X|V, η)}′β]
2

159

V = E({X−E(X|V, η)}{X−E(X|V, η)}′);W = E({X−E(X|V, η)}{Y−E(Y |V, η)}),

where V = X ′α. Suppose that g(·) is twice differentiable and that X has a positive160

density function on a union of a finite number of open convex subset in Rq. The min-161

imum point of J(α, β) with α ⊥ β is then unique at α0 and βα0 = {V(α0)}+W(α0),162

where {V(α0)}+ is the Moore-Penrose inverse.163

Before we discuss the optimization procedure, the necessary notation is defined164

for the sake of convenience. We assume that the random sample {(X ′i, Z ′i, Yi); i =165

1, . . . , n} is IID. Let fx(x) and fz(z) denote the joint density functions of X ′ and166

Z ′, respectively. Let us also denote fα(v) as the density function of V = X ′α. We167

assume that Aj ⊂ Rk is the union of a finite number of open sets such that fj(s) > C168

on Aj, where k = q or qz and j = x or z for some constant C > 0. Hereafter, this169

region is considered to avoid the boundary points. Because the region is not known170

in practice, Xia and Härdle (2006) suggested using the weight function such that171

In(s) = 1 if 1
n

∑n
i=1Kj,i(s) > C and 0 otherwise, where Kj is a corresponding kernel172

function. In this paper, In(s) is omitted for the notational simplicity. In addition,173

C, C ′ and C ′′ denote generic constants varying from one place to another.174

The conditional expectations, namely E(Y |V, η) and E(X|V, η), are then esti-175

mated with the leave-one-out nonparametric estimation as follows176

Êi(Yi|Vi, ηi) =

∑
j 6=i Lhvhη(Vj − Vi, ηj − ηi)Yj∑
j 6=i Lhvhη(Vj − Vi, ηj − ηi)

(2.11)

177

Êi(Xi|Vi, ηi) =

∑
j 6=i Lhvhη(Vj − Vi, ηj − ηi)Xj∑
j 6=i Lhvhη(Vj − Vi, ηj − ηi)

, (2.12)

where Lhvhη is a product kernel function constructed from the product of univariate178

kernel functions of khv(·)×khη(·) with the relevant bandwidth parameters, hv and hη.179

Furthermore, the first stage leave-one-out nonparametric estimation of the reduced180

equation in (2.8) used to estimate ηi is as follows181

η̂i = Xi − ĝx,i(Zi), (2.13)
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where ĝx,i(Zi) =
∑
j 6=iKhz (Zj−Zi)Xj∑
j 6=iKhz (Zj−Zi)

with Khz(·) being the product kernel function182

constructed from khz1 (·) × · · · × khzqz (·), and hzj , for j = 1, . . . , qz, is the relevant183

bandwidth parameter. The LS estimates of the unknown parametric coefficients are184

then computed, given the initial values of the index coefficients denoted by α, as185

follows186

β =
(
SÛ2

)−
SÛ2Ŵ2

, (2.14)

where SAB = 1
n

∑n
i=1AiB

′
i, SA = SAA, (SA)− is a generalized inverse of (SA) ,187

Ŵ2i ≡ Yi − Êi(Yi|Vi, η̂i) and Û2i ≡ Xi − Êi(Xi|Vi, η̂i). Next, based on β ∈ Bn, α̂, ĥv188

and ĥη̂ are computed by minimizing the objective function as follows189

min
α∈An,hv ,hη̂∈Hn

Ĵ(α, hv, hη̂) ≡ min
α∈An,hv ,hη̂∈Hn

1

n

n∑
i=1

(Ŵ2i − Û ′2iβ)2, (2.15)

where An = {α : ||α − α0|| ≤ Cn−1/2}, Bn = {β : ||β − β0|| ≤ Cn−1/2} and190

Hn =
{
hz, hv, hη : Cn−1/5 ≤ hz, hv, hη ≤ C ′n−1/5

}
for 0 < C < C ′ < ∞. Finally,191

re-estimate β0 by using α̂, ĥv̂ and ĥη̂ as follows192

β̂ =
(
SÛ3

)−
SÛ3Ŵ3

, (2.16)

where Ŵ3i ≡ Yi − Êi(Yi|V̂i, η̂i) and Û3i ≡ Xi − Êi(Xi|V̂i, η̂i) with V̂i = X ′iα̂.193

Remark 2.1. The conditions for α and β below (2.15) are not as restrictive as it194

seemed because α̂ and β̂ are
√
n-consistent. Furthermore,

√
n-consistency is achieved195

without under-smoothing in the first-stage of the proposed estimation procedure (i.e.196

estimation of the reduced-form equation in (2.8)). In general, under-smoothing in the197

first-stage of the estimation procedure is not required when qz < 3 and q− q1 < 3/2.198

The remaining task is then to identify the unknown link function. It is plau-199

sible to apply the marginal integration technique of Linton and Nielsen (1995),200

and Tjøstheim and Auestad (1994) to identify each of the functions because of201

the additive specification of the conditional expectation relation (see below (2.9)).202

The standard identification condition in the literature is assuming that E(g(V0)) =203

E(ι(η)) = 0 (see Hastie and Tibshirani (1990), Gao et al. (2006) and Gao (2007) for204
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details). Hence, the marginal integration technique identifies g(·) and ι(·) functions205

up to some constant values as follows206

m1(V0) ≡
∫
m(V0, η) dQ(η) = g(V0)+C andm2(η) ≡

∫
m(V0, η) dQ(V0) = ι(η)+C ′,

where C ≡
∫
ι(η)dQ(η), C ′ ≡

∫
g(V0)dQ(V0) and Q is a probability measure in R207

with
∫
dQ(η) =

∫
dQ(V0) = 1. The estimate of the link function can therefore be208

obtained by209

m̂1(V̂ ) =
1

n

n∑
i=1

m̂(V̂ , η̂i) and ĝ(V̂ ) = m̂1(V̂ )− Ĉ, (2.17)

where m̂(V̂ , η̂i) = Ê(Y |V̂ , η̂i) − Ê(X|V̂ , η̂i)′β̂, Ĉ = 1
n

∑n
i=1 m̂1(V̂i), and m̂1(V̂ ) is210

estimated by keeping V̂i at V̂ while taking average over η̂i.211

Before discussing the main theoretical results of the estimators proposed above,212

the estimation procedure is briefly summarized as follows.213

Step 2.1: Estimate the endogeneity control covariate, η̂, as in (2.13).214

Step 2.2: Estimate β as in (2.14) with η̂i from Step 2.1 and α.215

Step 2.3: Estimate α̂ and β̂ as in (2.16) and (2.18), respectively.216

Step 2.4: Estimate m̂(V̂i, η̂i) by using (2.10) with α̂ and β̂ from Step 2.3, then217

perform the marginal integration technique to estimate ĝ(V̂ ) as in (2.17).218

2.3. Asymptotic Properties of Proposed Estimators219

In this subsection, the asymptotic properties of the estimators are discussed as220

follows. The required necessary conditions are presented first. Given ρ, let Aρj′221

denote the set of all points in Rk′ , where k′ = q or 1, at a distance no greater than222

ρ from Aj′ for j′ = x, η. Let U = {(V0, η) : X ∈ Aρx and η ∈ Aρη} and f(V0, η)223

denote the joint density function of (V0, η) with random arguments of X ′ and η.224

The necessary regularity conditions are then as follows.225

Assumption 2.1. The vector of instrumental variables {Zi : i ≥ 1} satisfy (2.8).226

Assumption 2.2. The joint density functions of fz(Z) and f(V, η) are bounded and227

are bounded away from zero with bounded and continuous second derivatives on Az228

and U for all values of α ∈ An, respectively.229
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Assumption 2.3. Assume that gx(Z), and m(V, η), my(V, η) and mx(V, η) have230

bounded and continuous second derivatives on Az and U for all values of α ∈ An.231

Assumption 2.4. Assume that a univariate kernel function k(·) and its first deriva-232

tive k(1)(·) are supported on the interval (−1, 1) and k(·) is a symmetric density233

function. Furthermore, both k(·) and k(1)(·) satisfy the Lipschitz conditions.234

Assumption 2.5. Let E(η|Z) = 0 and E(η2|Z) = σ2
1(Z), E(e|X, η) = 0 and235

E(e2|X, η) = σ2(X, η), E(u|X, η) = 0 and E(u2|X, η) = σ2
2(X, η), and the func-236

tions σ2, σ2
1 and σ2

2 are bounded and continuous. In addition, sup
i
E||Xi||l < ∞,237

sup
i
E|Yi|l <∞ and sup

i
E||Zi||l <∞ for some large enough l > 2.238

Assumption 2.2 is necessary to avoid the random denominator problem. As-239

sumptions 2.2 and 2.3 ensure that the kernel function in Assumption 2.4 leads to a240

second-order bias in kernel smoothing. A higher-order bias can be achieved by im-241

posing more restrictive conditions on the smoothness of the functions (see Robinson242

(1988) for details). The condition on the first derivative of the kernel function in243

Assumption 2.4 permits the use of the Taylor expansion argument to address the244

generated covariate, η̂i (a similar condition on the derivatives of the kernel func-245

tion can be found in Hansen (2008)). The Lipschitz conditions for both the kernel246

function and its derivative provide the convenience for the proof of the uniform247

convergence. Finally, Assumption 2.5 grants the use of the Chebyshev inequality.248

Now let us introduce a few necessary notations used in the main theoreti-249

cal results below. Let Kz,2 =
∫
z2Khz(z)dz, Kη,2 =

∫
η2khη(η)dη and Kv,2 =250 ∫

v20khv(v0)dv0. Furthermore, let Kz =
∫
khz,j(z)2dz and K = KvKη, where Kv =251 ∫

khv(v0)
2dv0 and Kη =

∫
khη(η)2dη. Let f

(r)
z,j be the r-th derivatives of fz(z) with252

respect to Zj, for j = 1, · · · , qz, and let f
(r)
v0 (v0, η) and f

(r)
η (v0, η) be the r-th partial253

derivatives of f(v0, η) with respect to V0 and η, respectively. Moreover, let g
(r)
x,j(z)254

be the r-th partial derivatives of gx(z) with respect to Zj, and let m
(r)
v0 (V0, η) and255

m
(r)
η (v0, η) be that of m(v0, η) with respect to V0 and η, respectively. Then, let256

Bz(z) ≡ Kz,2
2f(z)

{
2f

(1)
z,j (z)g

(1)
x,j(z) + fz(z)g

(2)
x,j(z)

}
Bv(v0, η) ≡ Kv,2

2f(v0,η)

{
2f

(1)
v0 (v0, η)m

(1)
v0 (v0, η) + f(v0, η)m

(2)
v0 (v0, η)

}
11



257

Bη(v0, η) ≡ Kη,2
2f(v0, η)

{
2f (1)

η (v0, η)m(1)
η (v0, η) + f(v0, η)m(2)

η (v0, η)
}
.

In addition, let258

IMSE1(hz) �

∫ 
[

qz∑
j=1

Bz,j(z)h2z,j

]2
+

Kqzz
nhz,1 . . . hz,q2

σ2
1(z)

fz(z)

 f(z)dz

IMSE2(hv, hη) �

∫  [Bv(v0, η)h2v +Bη(v0, η)h2η
]2

+
K

nhvhη

σ2(V0, η)

f(v0, η)

 f(x, η)dxdη,

where � means that the quotient of the two sides tends to 1 as n→∞.259

Theorem 2.1. Under Assumptions 2.1 to 2.5, the minimizing objective function in260

(2.15) is rewritten as follows261

Ĵ(α, hv, hη̂) = J̃(α) + T1(hz) + T2(hv, hη) +R1(α, hv, hη) +R2(α, hv, hη, hz), (2.18)

where T1(hz) ≡ 1
n

∑n
i=1 {ĝx,i(Zi)− gx(Zi)}

2 = IMSE1(hz) + R3(hz), T2(hv, hη) ≡262

1
n

∑n
i=1 {m̂i(V0i, ηi)−m(V0i, ηi)}2 = IMSE2(hv, hη)+R4(hv, hη), sup

α∈An,hv ,hη∈Hn
|R1(α, hv, hη)| =263

op(n
−1/2), and sup

α∈An,hv ,hη ,hz∈Hn
|R2(α, hv, hη, hz)| = op(n

−1/2) with m̂i(·) and ĝx,i(·) be-264

ing the leave-one-out local constant estimators of m(·) and gx(·), respectively. More265

importantly266

J̃(α) =
1

n

n∑
i=1

{Wi − U ′iβ}
2
,

where Wi ≡ Yi−E(Yi|Vi, ηi) and Ui ≡ Xi−E(Xi|Vi, ηi). Furthermore, sup
hz∈Hn

|R3(hz)| =267

op(n
1/5) and sup

hv ,hη∈Hn
|R4(hv, hη)| = op(n

1/5) because they do not depend on α.268

The results of Theorem 2.1 show the attractive properties of our proposed CF ap-269

proach. Similar to the results of Härdle et al. (1993) and Xia et al. (1999), Theorem270

2.1 shows that the properties of the bandwidth parameter estimators can be studied271

while assuming α0 is known. Moreover, the asymptotically optimal bandwidth pa-272

rameters for estimating m(·) function are assumed to be used for the
√
n-consistent273

estimation of α0. In addition, under-smoothing is not required in estimating the274

first-stage reduced-form equation, as already stated in Remark 2.1. In particular,275

Theorem 2.1 suggests that minimizing Ĵ(α, hv, hη̂) simultaneously with respect to α,276
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hv and hη̂, is asymptotically equivalent to separately minimizing J̃(α) with respect277

to α, T1(hz) with respect to hz, and T2(hv, hη) with respect to hv and hη, assuming278

that α0 and η are known. This is because the remainder terms, namely R1(α, hv, hη)279

and R2(α, hz, hv, hη), are shown to be asymptotically negligible.280

Next, the asymptotic properties of α̂ and β̂ are shown as a corollary of Theorem281

2.1 given that ΦU0 = [{X − E(X|V0, η)}{X − E(X|V0, η)}′].282

Corollary 2.1. Under the assumptions of Theorem 2.1, the asymptotic properties283

of α̂ and β̂ are as follows284

√
n(β̂ − β0)→D N(0,Var1), (2.19)

where Var1 = σ2

[
Φ−U0
−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−]
, and285

√
n(α̂− α0)→D N(0,Var2), (2.20)

where Var2 = σ2

[{(
m

(1)
0

)2
ΦU0

}−
−
{
m

(1)
0 ΦU0

}−
ΦU0

{
m

(1)
0 ΦU0

}−]
.286

Finally, the asymptotic properties of ĝ(v̂) are presented in Theorem 2.2 below.287

Theorem 2.2. Under the assumptions of Theorem 2.1, and inf
z∈Az

fz(z) > 0 and288

inf
x,η∈U

f(v0, η) > 0, the asymptotic results of ĝ(v̂) are as follows289 √
nhv (ĝ(v̂)− g(v0)−Bias)→D N(0, V ar),

where Bias = h2vBv(v0, η)+h2ηBη(v0, η) and V ar = fα(v0)Kv
∫ σ2(V0,η)f2η (η)

f2(v0,η)
dQ(η) with290

fα(v0) and fη(η) denoting the density functions of V0 and η, respectively.291

Remark 2.2. In these results, it is clear the first stage nonparametric estimation292

does not contribute to the asymptotic variance of the estimators in the final stage.293

This characteristic is common among multi-stage nonparametric estimation proce-294

dures (see Su and Ullah (2008) for an example). However, this differs from the295

work of Li and Wooldridge (2002) which considers parametrically generated covari-296

ates in a PL semiparametric regression model. Li and Wooldridge (2002) showed297

that the variance of the first stage estimation is not asymptotically negligible instead298

contributes to the variances of the estimators of the finite-dimensional parameters299

in the final stage.300
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Remark 2.3. It is also interesting to explore the case of performing the CF approach301

without the presence of endogeneity. The essential stochastic assumption of the CF302

approach below (2.8) implies no existence of any endogeneity control function and,303

hence there is no identification problem in estimating the link function. Therefore,304

performing the CF approach without the presence of endogeneity causes an unneces-305

sary multi-stage nonparametric estimation and the presence of redundant covariates306

in estimating the link function. However, the theoretical results of the proposed es-307

timators particularly Theorems 2.1 and 2.2 and Corollary 2.1 are still valid with308

minor modifications, especially in terms of IMSE2(hv, hη), Var1 and Var2, and the309

bias and the variance of ĝ(v̂). The minor modifications are as follows310

IMSE2(hv, hη)
∗ �

∫  [B∗v(v0, η)h2vh
2
η

]2
+
K

nhvhη

σ∗2(V0, η)

f(v0, η)

 f(x, η)dxdη

Bias∗ = h2vB
∗
v(v0, η) and Var∗ = fα(v0)Kv

∫
σ∗2(V0)f

2
η

f 2(v0, η)
dQ(η),

where B∗v(v0, η) = Kv,2
2f(v0,η)

{
2fv0(v0, η)g(1)(v0) + f(v0, η)g

(2)
v0 (v0, η)

}
and σ∗2 = E(ε2|X, η)311

= E(ε2|X), and Var∗1 and Var∗2 are obtained by replacing m
(1)
0 with g

(1)
0 in (2.19)312

and (2.20) with g
(1)
0 being the first derivative of g(v0) with respect to V0.313

Remark 2.4. Our results can also be extended to more general data structure where314

a random sample {(X ′t, Z ′t, Yt); t = 1, . . . , n} is a strictly stationary and α-mixing315

process under Assumptions 2.6 and 2.7 below in addition to 2.1 to 2.5 above.316

In the rest of this section, we discuss about how to extend these established317

theoretical results to stationary time series data as in Remark 2.4. First, let ξt ≡318

(X ′tα0, ηt) and fξ(ξ) denote the joint density function of X ′α0 and η. The necessary319

regularity conditions for the strictly stationary and α-mixing case are then as follows.320

Assumption 2.6. (i) The conditional densities satisfy the following conditions321

fξ1,ξl|X1,Xl(ξ1, ξl) ≤ C <∞; fξ1,ξl|Y1,Yl(ξ1, ξl) ≤ C ′ <∞; fZ1,Zl|X1,Xl(Z1, Zl) ≤ C ′′ <∞

for some constants C,C ′, C ′′ > 0 and for all l ≥ 1. (ii) The mixing and moment322

conditions are as follows323 ∑
l

la[α(l)]1−2/l <∞, E||X0||l <∞ and fξ1|X1(ξ|X) ≤ C <∞;
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∑
l

la
′
[α(l)]1−2/l <∞, E|Y0|l <∞ and fξ1|Y1(ξ|Y ) ≤ C ′ <∞;

324 ∑
l

la
′′
[α(l)]1−2/l <∞, E||Z0||l <∞ and fZ1|X1(z|X) ≤ C ′′ <∞,

where l > 2 and a, a′, a′′ > 1− 2/l. (iii) There is a sequence of positive integer sT ,325

which satisfies sT →∞ and sT = o
{

(nhqzz,T )1/2
}

, such that (n/hqzz,T )1/2α(sT )→ 0 as326

T →∞.327

Assumption 2.7. (i) Let the density functions fz(z) and f(v0, η) satisfy inf
z∈Az

fz(z) >328

0 and inf
x,η∈U

f(v0, η) > 0. (ii) In addition, we require the following moments condi-329

tions330

E||X||s <∞, sup
ξ∈U

∫
||X||sf(x, ξ)dx, E|Y |s <∞, sup

ξ∈U

∫
|Y |s(y, ξ)dy;

∫
x∈Az

||X||sf(x, z)dx,

for some s > 2. (iii) The bandwidth sequences, hv, hη and hz, tend to zero as331

T →∞ and satisfy, for some δ > 0,332

T 1−2s−1−2δhqzz →∞; T 1−2s−1−2δhvhη →∞;T 1−2s−1−2δ (hqzz hvh3η)1/2 →∞.
In the proof of the

√
n-consistency of α̂ and β̂ in the case of Remark 2.4, Propo-333

sitions A.1 to A.15 in the supplementary document encompass the extra covari-334

ance terms caused by the serial dependences in the sample. Under Assumptions335

2.1 to 2.5 and 2.6(i)(ii), those covariance terms can be shown to be op(n
−1/2).336

For instance, the extra covariance term in Proposition A.1 might be derived as337 ∑n−1
l=1 (1 − t/n)Cov(ϕ̂1, ϕ̂l+1) = o(hvhη). However the consistency of ĝ(v̂) requires338

stronger conditions than the case of α̂ and β̂, namely the uniform convergence of339

f̂(v0, η), which requires the uniform convergences of Qj, where j = 1, · · · , 5 in (B.1)340

in the supplementary document. Under Assumptions 2.1 to 2.5, 2.6(i)-(ii) and 2.7,341

Qj are shown to be op(1) as follows342

sup
ξ∈U ,z∈Az

|Q2i| = sup
ξ∈U ,z∈Az

|Q5i| = Op


(

(lnn)2

n2hqzz hvh3η

)1/2

+ h2z(h
2
v + h2η)

 .

Furthermore, the asymptotic normality of ĝ(v̂) is then obtained by applying As-343

sumption 2.6 (iii) for the standard nonparametric small-block and large-block ar-344

guments. Nonetheless, the asymptotic normalities of α̂ and β̂ are obtained by ap-345

plying the part of Assumption 2.6 (ii), namely
∑

l l
a[α(l)]1−2/l <∞, E||X0||l <∞,346
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∑
l l
a′ [α(l)]1−2/l < ∞ and E|Y0|l < ∞, to (A.6) and (A.10) for the small-block and347

large-block arguments of a standard strictly stationary and α-mixing process.348

2.4. Simulation Studies349

In this section6, the finite-sample performance of the proposed estimator is in-350

vestigated by making a comparison between the performances of the estimation351

method introduced in Xia et al. (1999) referred as the XTL procedure and the CF352

approach established in Section 2.2 as the KS procedure in the presence of endo-353

geneity. Throughout this section, optimization is implemented by using a limited354

memory Broyden-Fletcher-Goldfarb-Shanno algorithm for the bound constrained355

optimization of Byrd et al. (1995). All simulation exercises are conducted in R with356

the Gaussian kernel function and the number of replications Q = 200. To compare357

and evaluate the finite sample performances of the procedures, the mean and mean358

absolute errors of the estimates of both coefficients, α0 and β0, across Q replications359

are computed in Tables 2.1 and 2.2. The averaged absolute error of the estimates360

of the unknown structural function is also computed as follows361

aeĝ =
1

n

n∑
i=1

∣∣∣ĝ(V̂i)− g(V0i)
∣∣∣ ,

where n is the number of samples.362

In the analysis that follows, an example model of the following form is considered363

Yi = β01X1i + β02X2i + β03X3i + g(V0i) + εi, (2.21)

where V0 = α01X1 + α02X2 + α03X3, g(V0) = exp {−2(α01X1 + α02X2 + α03X3)
2} ,364

and Xj is independently and uniformly distributed on [−1, 1] for j = 1, 2. It is365

required that β0 ⊥ α0 with ‖ α0 ‖= 1. In order for these conditions to be satisfied,366

define β02 = 0.4, β03 = 0, α01 = 0.7, α02 = −0.6, then β01 and α03 are defined as367

follows368

α03 =
√

1− α2
01 − α2

02 and β01 = −β02α02

α01

.

6The results of extensive simulation exercises for GPLSI model are available by a request to the

author.
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In this example, endogeneity is introduced by letting X3 = Z + η, where Z and η369

are independently and uniformly distributed on [−0.5, 0.5] and [−1, 1], respectively,370

and ε = η + e with e is independent and standard normally distributed. Tables 2.1371

and 2.2 present the results based on the XTL and KS procedures, respectively.372

The simulation results in Table 2.1 show the strong evidence against the use373

of XTL procedure in the presence of endogeneity. This evidence is clear when the374

averaged absolute errors, aeĝ, in Table 2.1 are considered. On the other hand, the375

simulation results in Table 2.2 suggest that the KS procedure is able to identify the376

link function, namely g(·) function, in the presence of endogeneity.377

Table 2.1. EGPLSI model with endogeneity and the XTL’s procedure.378

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.3130 0.4332 0.8884 -0.7748 0.5597
150 0.3088 0.4340 0.8993 -0.7671 0.5279
300 0.3142 0.4264 0.8988 -0.7674 0.5225
500 0.3135 0.4288 0.8960 -0.7653 0.5179

379

n |β̂1 − β01| |β̂2 − β02| |α̂1 − α01| |α̂2 − α02| |α̂3 − α03| aeĝ

50 0.0656 0.0714 0.1691 0.1253 0.1586 0.0905
150 0.0428 0.04572 0.0859 0.0559 0.0910 0.0891
300 0.0331 0.03377 0.0629 0.0548 0.0426 0.0895
500 0.0306 0.0319 0.0229 0.0156 0.0181 0.0906

380

Table 2.2. EGPLSI model with endogeneity and the KS procedure.381

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.2645 0.4652 0.9638 -0.8249 0.5483
150 0.3260 0.4135 0.8975 -0.7852 0.4756
300 0.3486 0.3945 0.8090 -0.6997 0.4382
500 0.3555 0.3891 0.7353 -0.6295 0.3992

382

n |β̂1 − β01| |β̂2 − β02| |α̂1 − α01| |α̂2 − α02| |α̂3 − α03| aeĝ

50 0.0816 0.0684 0.1678 0.1389 0.1195 0.0632
150 0.0307 0.0264 0.1244 0.0962 0.0769 0.0265
300 0.0213 0.0183 0.0446 0.0327 0.0285 0.0160
500 0.0189 0.0159 0.0416 0.0319 0.0263 0.0124

383

3. Semiparametric CF approach to Shape-Invariant Empirical Engel Curves384

In this section, a flexible shape-invariant Engel curves system is analyzed within385

the framework of the EGPLSI model with the proposed CF approach above. The386

consumer optimization theory suggests to include a scale and a shift parameters387
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within a flexible shape-invariant empirical Engel curve for the individual household388

heterogeneity (see Pendakur (1999), Blundell and Powell (2003) and Blundell et al.389

(2007) for examples). In addition, the endogeneity of total expenditure is well-known390

which is caused by the two-stage budgeting model (see Blundell et al. (1998) and391

Blundell et al. (2007) for details). Hence, it is natural to study a shape-invariant392

Engel curves system within the framework of the EGPLSI model with the newly393

developed CF approach.394

3.1. The Empirical Model and Estimation395

Hereafter, let {Yil, X1i, X2i}ni=1 represent an IID sequence of n household obser-396

vations on the budget share Yil of good l = 1, . . . , L ≥ 1 for each household i facing397

the same relative prices, the log of total expenditure X1i, and a vector of household398

composition variables X2i. For each commodity l, budget shares and total outlay are399

related by a general stochastic Engel curve, namely Yl = Gl(X1) + εl, where Gl(·)400

is an unknown function that can be estimated by using a standard nonparametric401

method under the exogeneity assumption of total expenditure (i.e. E(εl|X1) = 0.)402

Nonetheless, a number of previous studies have reported that household expendi-403

tures typically display great variation with demographic composition. A simple404

approach for estimating the model is to stratify by each distinct discrete outcome405

of X2 and then carry out our estimation with nonparametric smoothing within each406

cell. At some point, however, it may be useful to pool the Engel curves across407

different household demographic types and to allow X1 to enter each Engel curve408

semiparametrically. This idea leads to the specification below409

Yil = β′0lX2i + gl(X1i − φ(γ′0X2i)) + εil, (3.1)

where gl(·) is an unknown function and φ(γ′0X2i) is a known function up to a finite set410

of unknown parameters γ0, which can be interpreted as the log of general equivalence411

scales for household i. In the current paper, φ(γ′0X2i) = γ′0X2i is chosen so that (3.1)412

is specified as follows413

Yil = β′0lX2i + gl(X1i − γ′0X2i) + εil. (3.2)
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In this application, total expenditure is allowed to be endogenous and a measure of414

earning of the head of each household is used as an instrument.415

Following the CF approach discussed above, the empirical model to be estimated416

is the following form below417

Yil = β01,lX1i + β′0lX2i + gl(α01X1i + α′02X2i) + εil (3.3)

X1i = mX1(Zi) + ηi, where E(η|Z) = 0 and E(εl|Z, η) = E(εl|η) 6= 0, (3.4)

with mX1(Z) = E(X1|Z) and {Zi}ni=1 represents an IID sequence of the measure of418

earning of n heads of households and (3.3) is a semiparametric model that satisfies419

all the identification conditions required in the construction of the EGPLSI model.420

The theoretically consistent model in (3.1) can then be solved based on (3.3). To421

this end, a similar scaling transformation to that explained in Section 2 is used. In422

the remainder of this section, some specific details about the estimation procedure423

are discussed. Rather than basing the discussion on (3.3) to (3.4), it is statistically424

more equivalent to do so based on as follows425

Yil = β′0lX2i + gl(X1i − γ′0X2i) + εil (3.5)

X1i = mX1(Zi) + ηi, where E(η|Z) = 0 and E(εl|Z, η) = E(εl|η) 6= 0. (3.6)

These models suggest the conditional expectation relationship shown below426

E (Yl|(X1 − γ′0X2), η)− β′0lE (X2|(X1 − γ′0X2), η) = gl(X1 − γ′0X2) + ιl(η), (3.7)

where E (εl|(X1 − γ′0X2), η) = E (εl|η) ≡ ιl(η) 6= 0, which immediately leads to427

Yil = β′0lX2i + gl(X1i − γ′0X2i) + ιl(ηi) + eil, (3.8)

X1i = mX1(Zi) + ηi, (3.9)

where E(el|X1, X2, η) = 0. Let ml ({X1i − γ′0X2i}, ηi) = gl(X1i − γ′0X2i) + ιl(ηi). In428

order to use (3.8), it is important to note that429

m1,l(X1−γ′0X2) =

∫
ml({X1−γ′0X2}, η) dη and gl(X1−γ′0X2) = m1,l(X1−γ′0X2)−C,

(3.10)

where C =
∫
ι(η)dQ(η) and E(gl(·)) = 0.430
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If a linear specification is imposed on ιl(·), (3.8) would be similar to the extended431

partially linear (EPL) model discussed in Blundell et al. (1998). In this case, Blun-432

dell et al. (1998) showed that a test of the endogeneity null can be constructed by433

testing H0 : ιl = 0, where ιl is an unknown parameter. The current paper, however,434

suggests more flexible functional form for testing the endogeneity null by construct-435

ing the variability bands for ι(·). To do so, the following procedure is employed.436

Step 3.1.1: Obtain an empirical estimate of gl(X1 − γ′0X2) in (3.10).437

Step 3.1.2: Regress (3.8) using the estimates in Step 3.1.1 to obtain the nonpara-438

metric estimates of ιl(·).439

Step 3.1.3: Compute the bias-corrected confidence bands for the nonparametric440

smoothing using the procedure introduced by Xia (1998). Finally, the Bonferroni-441

type variability bands are obtained by using a similar procedure discussed in Eubank442

and Speckman (1993).443

To perform Step 3.1.1, the estimation procedure introduced in Section 2 is used.444

However, some modifications are required to take the vector of index coefficients, γ0445

(a general equivalence scale for household i), into account. In this case, the objec-446

tive function (2.15) is only used for a particular commodity l. The new objective447

function, min
γ∈An,hv,l,hη̂,l∈Hn

Ĵ(γ, hv,l, hη̂,l), is the summation of these individual functions448

that is minimized with respect to γ and 14 smoothing parameters, particularly two449

for each commodity. Finally, the estimation procedure is completed by using γ̂ as450

well as ĥv̂,l and ĥη̂,l.451

In addition, the model in (3.8) can also be re-stated as452

Y ∗il = gl(X1i − γ′0X2i) + eil, (3.11)

where Y ∗l ≡ Yl − β′0lX2 − ιl(η). The use of (3.11) relies on453

m2,l(η) =

∫
ml(v, η) dv = ιl(η) + C ′ and ιl(η) = m2,l(η)− C ′, (3.12)

where V = X1 − γ′X2, C
′ =

∫
g(v)dQ(v) and E(ιl(·)) = 0, which corresponds to454

(3.10) above. Hence, the model in (3.11) suggests that the estimates of the shape-455

invariant Engel curves and the related confidence bands are obtained as follows.456

Step 3.2.1: Obtain empirical estimates of ιl(η) in (3.12).457
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Step 3.2.2: Regress (3.11) using the estimates in Step 3.2.1 to obtain the nonpara-458

metric estimates of gl(·).459

Step 3.2.3: Compute the bias-corrected confidence bands about the nonparametric460

estimator in Step 3.2.2 using the procedure introduced by Xia (1998).461

3.2. The Engel Curve Data462

In our application, the data set is drawn from the British Family Expenditure463

Survey (FES) 1995-96. The seven broad categories of goods are considered as follows:464

(1) fuel, light and power (fuel hereafter); (2) fares, other travel costs and running of465

motor vehicles (fares); (3) food; (4) alcoholic drink and tobacco (alcohol); (5) leisure466

goods & services (leisure goods); (6) clothing and footwear (clothing); (7) personal467

goods & services (personal goods).468

Table 3.1. Descriptive statistics.469

Couples with 1 or 2 children Couples without children

Mean Std. Dev Mean Std. Dev

Budget shares:
Fuel 0.0692 0.0011 0.0618 0.0012
Fares 0.1537 0.0025 0.1715 0.0031
Food 0.3235 0.0028 0.2768 0.0031
Alcohol 0.0844 0.0022 0.1144 0.0031
Leisure goods 0.2155 0.0038 0.2298 0.0045
Clothing 0.0926 0.0024 0.0872 0.0029
Personal goods 0.0606 0.0016 0.0581 0.0019

Expenditure and income:
log (total expenditure) 5.4374 0.0130 5.4524 0.0161
log (income) 5.9205 0.0153 6.0397 0.0166

Sample size 1072 1278

470

To maintain some demographic homogeneity, a subset of married or cohabiting471

couples are selected from the FES, particularly categories 1 and 3 of variable ms in472

table adult. In addition, those where the head of household is aged between 20 and473

55 (i.e. variable age in table adult) and in work (i.e. excluding the category 1 of the474

variable fted in the table adult and category 6 of the variable a093 in the table set8 )475

are considered. Finally, all households with three or more children are excluded.476

Our demographic variable, X2, is a binary dummy variable that reflects whether a477

couple has 1 or 2 children (where X2 = 1) or no children (where X2 = 0). Overall,478

there are 2350 observations, 1278 are couples with one or two children. Table 3.1479

shows larger expenditure shares for fuel, food, clothing and personal goods for the480
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households with children as expected. Also as expected, households without children481

are able to spend higher proportions of their total expenditure on alcohol and leisure482

goods. Overall, there are clear differences in the consumption patterns between the483

two demographic groups. The estimates of the scale and the shift coefficients are484

expected to reflect these differences.485

Furthermore, the log of total expenditure on the nondurables and services is our486

measure of the continuous endogenous explanatory variable, X1. In our analysis that487

follows, the log of normal weekly disposable head of household income, specifically488

variable p389 of the table set3, is used as an instrument. The two variables show489

strongly-positive correlation with the correlation coefficients of 0.5660 and 0.5954490

for couples with and without children, respectively. Figures 3.1 and 3.2 present491

plots of the kernel estimates of the joint density for these variables. Finally, in the492

empirical application the instrument variable Z = Φ(log earnings) is taken, similar493

to Blundell et al. (2007).494

Figure 3.1. Kernel joint density estimates for log total expenditure and log weekly income – couples495

with 1 or 2 children.496

3.3. Empirical Findings497

The important empirical findings are now presented and summarized in Table498

3.2. Although exact definitions of the data are not given in Blundell et al. (1998),499

Blundell et al. (1998) estimated the shape-invariant Engel curves for four broad500

categories of nondurables and services by using the FES data, namely fuel, fares,501

alcohol and leisure similar to this paper. The empirical estimate, γ̂, of 0.36355502

reported in the first column is very close to 0.3698 as found in Blundell et al. (1998).503

Furthermore, the signs of the parameter estimates, β̂l, for the four broad categories504
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are all consistent with those of Blundell et al. (1998); specifically they are positive505

for food and leisure, but negative for alcohol, fares and fuel.506

Figure 3.2. Kernel joint density estimates for log total expenditure and log weekly income – couples507

without children.508

Table 3.2. Empirical results509

510

γ̂ Categories of goods β̂l ĥv,l ĥη̂,l

0.36355 Fuel, light and power -0.01401 0.14021 0.93631

Fares, other travel costs and running of motor vehicles -0.02027 0.19545 0.26831
Food 0.00537 0.15120 0.25826

Alcoholic Drink and Tobacco -0.05205 0.30802 0.22569
Leisure goods and services 0.05077 0.14663 0.40277
Clothing and footwear 0.02079 0.14846 0.27234
Personal goods and services 0.00738 0.49331 0.49335

511

The first columns of Figures 3.3 to 3.6 present the empirical estimates of the512

Engel curves for seven of the goods in our system based on the CF approach discussed513

in Section 3.1. For these plots, the smoothing parameters presented in the fourth514

and fifth columns of Table 3.2 are used. Furthermore, the third columns of these515

figures show the empirical estimates of the Engel curves computed from the Xia516

et al. (1999)’s procedure by which the exogeneity assumption is imposed on the517

total expenditure. Together with the estimated Engel curves, their 90% point-wise518

confidence bands are also reported. The bands are obtained by using the procedure519

discussed in Section 3.1. Let us now concentrate on the first columns. For fuel, food520

and alcohol, the Engel curves appear to demonstrate that the Working-Leser linear521

logarithmic formulation may provide a reasonable approximation. Nonetheless, for522

other shares, especially for fares, a nonlinear relationship between the shares and523

the log expenditure is evident. A detailed investigation of the data shows that on524

average, up to 70% of fares belongs to running of motor vehicles. Hence, motor525
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vehicles seemed to be a necessity good for a household for which the log of total526

expenditure is more than around 5.3 for those with children, for those without527

children, it is up to around 4.8. It seemed that motor vehicles are a superior good528

for those household where the log of total expenditure, is below these levels. The529

estimated shares for the couples with children are higher than those for couples530

without children, except extremely lower quantile of the log of total expenditure.531

This could lead to the nonlinear relationship witnessed in Figure 3.3.532

Figure 3.3. Fuel and fares (90% confidence bands drawn for households with children)533

As expected, the estimated shares of fuel and food for households with children534

are consistently above those for households without children. Couples without chil-535

dren spends around 3% more of their budget on fuel and food than couples with536

children. In addition, the estimated shares of alcohol, leisure, clothing and per-537

sonal goods for households with children are consistently below those for households538

without children. Couples with children spend around 3%, 8% and 2% more of their539

budget on leisure, clothing and personal than couples with children at the same540

level of expenditure. In all but one case (i.e. fares), there seem to be a broadly541

parallel shift in the Engel curves from one demographic group to another. Our re-542

sults suggest that fuel, food and alcohol may be categorized as necessity goods in543

the sense that the demand for these goods increases proportionally less than the544
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increase in the total expenditure. These goods whose demand increases with the545

total expenditure are leisure, clothing and personal. The second column presents the546

nonparametric estimates of the control functions, ιl(·). With the estimated control547

functions, the two sets of bands, namely the 90% bias-corrected confidence bands548

for the nonparametric smoothing of Xia (1998) (blue) and the 90% Bonferroni-type549

variability bands of Eubank and Speckman (1993) (red) are also reported. Regarding550

fuel and personal, ιl(·) for these cases do not seem statistically significant. How-551

ever, the opposite is found for fares, food, leisure and clothing. Hence, neglecting552

potential endogeneity in the estimation can lead to incorrect estimates of the shape553

of Engel curves for these goods. This can be seen by comparing the first and the554

third columns of the figures. For these goods it is clear that the curvature changes555

significantly as the presence of endogeneity is allowed.556

Figure 3.4. Food and alcohol (90% confidence bands drawn for households with children)557

4. Conclusion558

In this paper, the usefulness of the EGPLSI model in its ability to model a559

flexible shape-invariant specification is elaborated. A flexible shape-invariant speci-560

fication is easily studied within the EGPLSI framework because both scale and shift561

parameters are easily incorporated in the EGPLSI model. However, the applicability562
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of the EGPLSI model to an empirical study is limited because of its shortfalls in ad-563

dressing endogeneity. Hence, the current paper develops the CF approach to address564

endogeneity in the EGPLSI model. The proposed CF approach inherits an intrin-565

sic feature of the generated endogeneity control covariates and hence multi-stage566

nonparametric estimation procedure. This paper establishes the theoretical validity567

of the proposed estimation procedure and closes with the theoretical discussion by568

providing the straightforward extension of the results to a strictly stationary and α-569

mixing process. The paper also presents the satisfactory finite sample performance570

of proposed estimators from a Monte Carlo simulation exercise. Finally, the semi-571

parametric analysis of a system of shape-invariant empirical Engel curves using the572

FES (1995-96) data set within the framework of the EGPLSI model with our pro-573

posed CF approach is conducted. Not only are the findings interesting empirically574

but the accessible applicability of our proposed CF approach is also explored.575

Figure 3.5. Leisure and clothing (90% confidence bands drawn for households with children)576

Additionally, the development of the CF approach in this paper also provides the577

foundation for addressing the presence of weak instruments in the EGPLSI model.578

Han (2011) discussed how the intuitive triangular structure of the CF approach in a579

simple nonparametric regression model translates the difficult problem (the presence580

of weak instruments in a reduced-form equation) into a much simpler one, particu-581

larly the multicollinearity problem in a structural equation. Hence it is plausible to582
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develop the current paper further to the presence of weak instruments case. How-583

ever, a thorough investigation is required to examine a number of important issues,584

particularly examining the
√
n-consistent estimation of α0 and β0, and the proper-585

ties of the smoothing parameters in each stage of an estimation procedure, and how586

to address the presence of weak instruments in the EGPLSI model.587

Figure 3.6. Engel curves for personal (90% confidence bands drawn for households with children)588
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