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ASYMMETRIC CONDITIONAL CORRELATIONS IN
STOCK RETURNS
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University of Electronic Science and Technology of China‡

Modeling and estimation of correlation coefficients is a fundamental step
in risk management, especially with the aftermath of the financial crisis in
2008, which challenged the traditional measuring of dependence in the fi-
nancial market. Because of the serial dependence and small signal-to-noise
ratio, patterns of the dependence in the data cannot be easily detected and
modeled. This paper introduces a common factor analysis into the condi-
tional correlation coefficients to extract the features of dependence. While
statistical properties are thoroughly derived, extensive empirical analysis pro-
vides us with common patterns for the conditional correlation coefficients
that give new insight into a number of important questions in financial data,
especially the asymmetry of cross-correlations and the factors that drive the
cross-correlations.

1. Introduction. In the financial world, often financial market participants
must manage a large number of financial assets simultaneously. The obvious ex-
amples are equity investors who often face risks that affect assets in their portfolio
in various ways and must therefore find a position to hedge against these risks. In
practice, this is achieved by means of diversification across several stock markets
or asset classes, for instance. However, constructing an efficient portfolio to ben-
efit from diversification is not straightforward since it requires knowledge about
comovements and associations, that is, correlations, of the assets in question. In
addition, such knowledge about the correlations is required in a wide range of fi-
nancial applications, especially asset pricing models, capital allocation, risk man-
agement and option pricing.

The main focus of the research in the current paper is on successful measure-
ment and analysis of the comovements of returns for a portfolio consisting of a
large number of assets. In particular, the research in this paper concentrates on
a portfolio of thirty major American companies included in the Dow Jones In-
dustrial Average, Dow30 hereafter. Index members for the Dow30 include public
companies from various industries and should therefore be able to imitate those
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of a well-diversified portfolio. To be able to conduct a fruitful analysis, we will
develop in this paper a new method that is capable of thoroughly explaining what
drives correlations between financial assets and how. The new method, the re-
duced rank model for conditional correlation coefficients, is designed for studying
the pairwise conditional correlation structure of financial returns in a functional
context of a semiparametric factor model. From the empirical point of view, the
questions about the driving factor of the observed time-varying correlation struc-
ture in financial markets relate directly to a selection of the conditional variable
used in the estimation of our semiparametric model. Here, we examine sugges-
tions from two popular schools of thoughts that favor either market volatility or
market return. By using measures of the S&P500 as proxy, we are able to estab-
lish empirical evidence in support of the well-known asymmetric effect of market
return on correlations of the Dow30 returns, that is, a phenomenon whereby cor-
relations of the Dow30 returns are higher during a crisis period than in a stable
period. However, such evidence exists only when the possible leverage effect on
the market is taken into consideration. Otherwise, the volatility effect of the market
return leads to high correlations during the bull market so that the asymmetric ef-
fect is not statistically significant. A more detailed discussion about our empirical
findings is presented in Section 5.

In the remainder of this section, let us present a brief review on the existing
methods and discuss how our method fits among them. Traditionally, correla-
tion was modeled as a constant and unconditional variable. However, over the
years practitioners have come to realize that correlation actually varies through
time. This motivated a continuously growing amount of research on a wide variety
of conditional correlation models. The empirical evidence on the autocorrelation
structure of correlation motivated researchers to investigate whether conditional
volatility methods based on historical information, as in the Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) models, can be extended for the
purposes of modeling conditional correlation. However, new models established as
the result of this investigation are either too restrictive that they are unable to ex-
plain the roles market variables (e.g. return or volatility) play in driving changes in
the behavior of correlations between stock returns or too complex that the number
of parameters required explodes with the dimension of the models. An example of
models in the first category is the Constant Conditional Correlation GARCH model
of Bollerslev (1990). In addition, there are other alternative dynamic conditional
correlation GARCH models, which were discussed, for example, in Tse and Tsui
(2002), Engle (2002) and Aielli (2013), namely, the VC-GARCH, DCC-GARCH
and the cDCC models, respectively.

Even though they were introduced with some general specifications and do not
suffer from the curse of the dimensionality problem, these models have quite lim-
ited capability. In particular, these models are not able to explain the roles market
variables, such as return or volatility, play in driving changes in the behavior of cor-
relations between stock returns, which are of particular interest to financial analysts
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[see, for example, Ang and Chen (2002) and Amira, Taamouti and Tsafack (2011)].
As an alternative, Pelletier (2006) proposed a model with a regime-switching cor-
relation structure so that the correlations remain constant in each regime while the
change between the states was governed by transition probabilities. Silvennoinen
and Teräsvirta (2015) introduced an alternative, which they referred to as the
Smooth Transition Conditional Correlation GARCH (STCC-GARCH) model. The
model allows the conditional correlations to change smoothly from one state to an-
other as a function of a transition variable and so is associated to some extent with
a prespecified model structure on the covariance (e.g., the GARCH-type evolution
or regime-switching GARCH model, etc.). This leads to an important limitation
which resides in the fact that the number of parameters required explodes with the
dimension of the model [Kring et al. (2007) and Santos and Moura (2014)].

Since the ability to model comovements for portfolios with a large number of
assets is essential in many areas of financial management, existence of the above-
mentioned drawbacks suggests that directly modeling the assets by a multivari-
ate GARCH model might not be feasible. Instead, an asset manager must con-
sider some form of factor-model strategies to reduce the overall dimension of the
modeling problem. The use of factors to reduce the dimensionality of multivari-
ate GARCH models was proposed in a seminal paper by Engle, Ng and Roth-
schild (1990), and further developed by Vrontos, Dellaportas and Politis (2003)
and Lanne and Saikkonen (2007). More recently, Sheppard and Xu (2014) intro-
duced the so-called Factor-HEAVY (F-HEAVY) model utilizing high frequency
data, which has a deep root into the GARCH modeling of conditional volatil-
ity. Nonetheless, the purpose of most existing factor-based models, including the
F-HEAVY, is to study the way in which covariance matrix changes while these
changes are driven by the past information generated by the time series them-
selves. As for the results, the focus of the studies in multivariate factor GARCH
is on predictive models rather than on nonparametric measurement of past volatil-
ity and correlations. On the contrary, the semiparametric factor model introduced
in this paper enables examination of what and how exogenous forces drive the
changes in the correlations of returns. We focus on exploring the asymmetric ef-
fect of the exogenous variable on pairwise correlations and identifying the main
drivers of the asymmetry in pairwise correlations in a similar spirit to Ang and
Chen (2002) and Amira, Taamouti and Tsafack (2011). The importance of the fac-
tor approach is to summarize the common patterns in the pairwise correlations.
It will soon be clear that the method developed in this paper sits well within the
well-known functional data analysis framework, and hence inherits the ability to
deal with high-dimensional time series problems. Furthermore, it is based on non-
prametric smoothing and is thus model- free, which makes it less likely to suffer
modeling misspecification compared to the existing methods.

Our new technique begins with the empirical estimation of the pairwise cor-
relation coefficients of the returns conditional on a particular variable that is of
empirical interest, the selection of which is determined by the research problem
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under consideration. For the sake of clarity, one can think of the above conditional
variable as playing a similar role in our model to the transition variable in the
STCC-GARCH model. Since the (pairwise) conditional correlation coefficients
are derived based on unknown conditional mean and conditional variance, their
estimators must be constructed using empirical estimates. Under the assumption
that the conditional correlation coefficient functions share a finite number of com-
mon factors, we explore a method of common functional factor analysis along the
line of the existing techniques of principal component analysis. To this end, we
establish estimators of both the orthogonal functional factors and the correspond-
ing loading coefficients. The theoretical analysis in this paper concentrates on the
derivation of consistency and the asymptotic distribution of these estimators that
are needed in order to perform statistical inference in the analysis.

The paper is organized as follows. Section 2 discusses the basic construction of
our new method, including model assumptions, identification and estimation pro-
cedures. Section 3 presents the main asymptotic results of the paper, which focus
on the consistency and asymptotic distribution of all the nonparametric estimators
involved. These results are convincingly demonstrated by Monte Carlo simulations
in Section 4. We then perform empirical analysis in Section 5, while all technical
proofs are given in Jiang, Saart and Xia (2016).

2. Conditional correlation coefficients. In the current section and the next,
the conditioning variable, denoted by U , plays a similar role in our model to the
so-called transition variable in the STCC-GARCH model of Silvennoinen and
Teräsvirta (2015). In practice, the choice of U can be made in accordance to the
empirical question under investigation. Since the purpose here is to introduce the
model in the general context, we will illustrate and discuss this process in more
specific detail in Section 5. In this section, we first present the basic construction
of our new method, the reduced rank model for conditional correlation coefficients,
which includes model assumption and identification. Then we discuss the model’s
practical operation, which covers the estimation procedures and suggested meth-
ods of selecting the number of common factors.

2.1. Definitions. In the current paper, we first focus on the study of pairwise
conditional correlations. Suppose r1 and r2 are returns of two stocks with E(r1) =
E(r2) = 0 so that the unconditional correlation coefficient is defined as

(2.1) ρ1,2 = E(r1r2)√
Er2

1Er2
2

,

where the denominator, E(r1r2), measures the comovement of r1 and r2. We have,
by conditioning upon U ,

(2.2) E(r1r2|U) = μ1(U)μ2(U) + E
{(

r1 − μ1(U)
)(

r2 − μ2(U)
)|U}

,
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where μk(U) = E(rk|U), k = 1,2. In other words, the comovement between r1
and r2 is determined by U based on (i) the effect on the means of r1 and r2, and (ii)
the effect through the conditional covariance after the effect due to the conditional
mean is removed.

Expression (2.2) suggests that we need to consider these two effects separately.
After standardization, we may define the correlation due to the effect passing
through the conditional means as

(2.3) φ1,2(U) = E(r1|U)E(r2|U)√
E(r2

1 |U)E(r2
2 |U)

,

where |φ1,2(U)| ≤ 1 due to the Cauchy–Schwarz inequality. The quantity in (2.3)
measures the comovement in the conditional mean, and hence it is referred to as
the “conditional mean correlation.” Similarly, we may define the correlation due
to the effect passing through the conditional covariance as

(2.4) �1,2(U) = E{(r1 − μ1(U))(r2 − μ2(U))|U}√
E((r1 − μ1(U))2|U)E((r2 − μ2(U))2|U)

.

In (2.4), �1,2(U) is the effect of U on the cross-correlation between r1 −μ1(U) and
r2 − μ2(U) with the effect on the mean being removed, and is therefore referred
to as the “conditional correlation coefficient.”

Ang and Chen (2002) introduced a measure of conditional correlation, which
was defined as Corr(r1, r2|c1 ≤ U ≤ c2). However, this definition can cause confu-
sion. In this paper, we discuss the conditional correlation by considering c1 → c2,
that is, Corr(r1, r2|U). As an example, we consider the capital asset pricing model
in financial analysis, which states that

(2.5) rk = αk + βkU + ek, k = 1, . . . ,m,

where U is the market return with Var(U) = σ 2
U , and

E(ek|U) = 0, Cov(ek, e�|U) =
{
σ 2

k , if � = k,

0, otherwise.

We have the unconditional correlation

ρk,� = βkβ�σ
2
U

(β2
k σ 2

U + σ 2
k )1/2(β2

� σ 2
U + σ 2

� )1/2
,

but the conditional correlation

�k,�(U) = 0.

However, if the noises share some common innovations, for example, if

ek = ρk1(U)ε1 + ρk2(U)ε2, k = 1, . . . ,m,
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then

�k,�(U) = ρk1(U)ρ�1(U) + ρk2(U)ρ�2(U)

{ρ2
k1(U) + ρ2

k2(U)}1/2{ρ2
�1(U) + ρ2

�2(U)}1/2
.

It is thus important to note that the conditional correlation coefficient defined above
is not caused by the common factors in the conditional mean.

2.2. Model assumption and identification. Suppose there are m assets to be
considered and the return of the kth asset is written as

(2.6) rk = μk(U) + σk(U)εk, k = 1, . . . ,m,

where E(ε2
k |U) ≡ 1 almost surely. When U is selected as the market return, it is

not difficult to see that the CAPM model described in (2.5) can be taken as a special
case. When dealing with sample correlations, it should be taken into account that
the return of a given stock should be standardized before being used for estimation
of the correlation. Hence, it is useful for the estimation purpose to consider the
model (

rk − μk(U)
)2 = σ 2

k (U) + σ 2
k (U)ξk, k = 1, . . . ,m,

where ξk = (ε2
k − 1), as done in Fan and Yao (1998), for example.

For the comovement of εk, k = 1, . . . ,m, we assume that the conditional corre-
lation coefficient functions share p ≤ m common functional factors based on

E(εkε�|U) ≡ �k,�(U) = ak� + Gk�(U)
(2.7)

= ak� + b
[1]
k� F1(U) + · · · + b

[p]
k� Fp(U),

where, as usual, it is assumed that

E
{
Fj (U)

} = 0,

E
{
Fj1(U)Fj2(U)

} = 0, j, j1, j2 = 1, . . . , p, j1 �= j2;(2.8)

Var(F1) ≥ · · · ≥ Var(Fp)

for identification purposes. In our analysis, we incorporate uncorrelated measure-
ment errors to reflect additive measurement errors so that the model we consider
is

εkε� = �k,�(U) + εk,� = ak� + b
[1]
k� F1(U) + · · · + b

[p]
k� Fp(U) + εk,�,(2.9)

where εk,� are conditionally uncorrelated with each other for all 1 ≤ k < � ≤
m, that is, E{εk1,�1εk2,�2 |U} = 0, if {k1, �1} �= {k2, �2}. With observations at
{(rk,t ,Ut ) : t = 1, . . . , n, k = 1, . . . ,m}, where t and k denote respectively the t th
time point and the kth asset, our model of interest is thus (2.6) with

εk,t ε�,t = ak� + b
[1]
k� F1(Ut ) + · · · + b

[p]
k� Fp(Ut) + εk,�,t ,(2.10)

which we will refer to hereafter as the “reduced rank model.”
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The reduced rank model differs from existing models in longitudinal data or
panel data since here the common factors, F1(U), . . . ,Fp(U), are unobservable.
A similar model was considered in studies on semiparametric comparison of re-
gression curves. A few well-known examples are Härdle and Marron (1990) and
Munk and Dette (1998), who studied the comparison of two functions, and James,
Hastie and Sugar (2000), who used a similar model but under a random effect set-
ting. In addition, the semiparametric panel data model was also investigated by
Boneva, Linton and Vogt (2015). They examined the common component struc-
ture of nonparametric functions, however, their dependent variables are observ-
able. Under our model framework, εk,t , k = 1, . . . ,m, are latent variables and are
designed to be estimated nonparametrically based on a GARCH framework. Natu-
rally, the estimation error at the first stage will be inherited, which may increase the
difficulty in identifying common factors and estimating corresponding loadings.

In addition, the reduced model differs in a number of ways from existing mul-
tivariate GARCH models that also use a factor-based structure. Engle, Ng and
Rothschild (1990) generated the covariance structure by introducing a typical fac-
tor model for asset excess returns which allows the factors following GARCH pro-
cesses, but leaves the constant part unrestricted. As a variant of this factor model,
Vrontos, Dellaportas and Politis (2003) introduced the full-factor GARCH model
by assuming a triangular structure of the parameter matrix. Lanne and Saikko-
nen (2007) considered a similar model in which some of the diagonal elements
of the conditional covariance matrix are constants. For the sake of illustration, let
us discuss in more detail one of the most recent and well-known models, namely,
the F-HEAVY of Sheppard and Xu (2014). The model resembles the β-GARCH
model and relies on the return process

(2.11) rk,t = βk,t rf,t + εi,t = βk,t (σf,t ξf,t ) + σk,t ξk,t ,

where σf,t and σk,t are the conditional variance of the factor and that of rk,t given
the factor return, respectively. With this structure, the variance–covariance matrix
is

(2.12) Ht =

⎛
⎜⎜⎜⎜⎝

β2
1,t σ

2
f,t + σ 2

1,t β1,tβ2,t σ
2
f,t . . . β1,tβN,tσ

2
f,t

β1,tβ2,t σ
2
f,t β2

2,tσ
2
f,t + σ 2

2,t . . . β2,tβN,tσ
2
f,t

...
... . . .

...

β1,tβN,tσ
2
f,t βN,tβ2,t σ

2
f,t . . . β2

N,tσ
2
f,t + σ 2

2,t

⎞
⎟⎟⎟⎟⎠ .

For the sake of comparison, let us take Ut = σ 2
f,t as the factor (exogenous variable)

so that Ht has a parametric form as shown previously. On the other hand, our model
has a more general nonparametric form

(2.13) Ht =

⎛
⎜⎜⎝

s11
(
σ 2

f,t

)
s12

(
σ 2

f,t

)
. . . s1N

(
σ 2

f,t

)
...

... . . .
...

sN1
(
σ 2

f,t

)
sN2

(
σ 2

f,t

)
. . . sNN

(
σ 2

f,t

)
⎞
⎟⎟⎠ .
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While the way by which the conditional covariance evolves with the variable of
interest, such as σ 2

f,t , is assumed in F-HEAVY, our method in comparison allows
it to be recovered by the data using a nonparametric setting.

In the remainder of this section, we discuss in detail the theoretical construction
of our method. To do so, let us denote the vector of individual conditional correla-
tion coefficient functions by �(u) = (�1,2(u), . . . , �1,m(u), �2,3(u), . . . , �2,m(u),

. . . , �m−1,m(u))�. In addition, let G(U) = (G12(U), . . . ,G1m(U),G23(U), . . . ,

G2m(U), . . . ,Gm−1,m(U))� and a = (a12, . . . , a1m,a23, . . . , a2m, . . . , am−1,m)�.
Then write �(u) = a + G(u) and G(U) = BF(U),

(2.14) B = (b1, . . . , bp) and F(U) = (
F1(U), . . . ,Fp(U)

)�
,

where bk = (b
[k]
12 , . . . , b

[k]
1m,b

[k]
23 , . . . , b

[k]
2m, . . . , b

[k]
m−1,m)�, k = 1, . . . , p.

With observations at {Ut : t = 1, . . . , n}, we define the m(m − 1)/2×n matrices

G = (
G(U1), . . . ,G(Un)

)
, F = (

F(U1), . . . ,F(Un)
)
,

� = (
�(U1), . . . , �(Un)

)
and write

G = BF and � = a1�
n + G,

where 1n is a column vector of length n with all elements being 1. For ease of
exposition, hereafter we let M = m(m − 1)/2.

From (2.7), since it is reasonable to assume that the information of the pairwise
conditional correlation coefficients could be fully captured by the p uncorrelated
functional factors, our plan is to apply a similar technique used in principal com-
ponent analysis to our problem. Let us denote the covariance matrix of G(U) by

(2.15) � = Cov
(
G(U)

) = E
{
G(U)G�(U)

}
.

An immediate idea is to employ the eigenvalue–eigenvector decomposition. For
simplicity, we assume that eigenvalues λ1, . . . , λM of � satisfy λ1 > · · · > λp > 0
and λp+1 = · · · = λM = 0 and let V1, . . . ,VM denote the corresponding orthonor-
mal eigenvectors. Then � can be factorized as

(2.16) � = VDV� = V∗
1D∗V∗�

1 ,

where D = diag(λ1, . . . , λp,0, . . . ,0) is a M × M diagonal matrix, V = (V1, . . . ,

VM) = (V∗
1,V∗

2) is a M × M matrix, D∗ = diag(λ1, . . . , λp), V∗
1 = (V1, . . . ,Vp),

and V∗
2 = (Vp+1, . . . ,VM).

On the one hand, we have the eigenvalue–eigenvector decomposition stated in
(2.16). But on the other hand, we indicated previously that G(U) = BF(U) so that

(2.17) � = BE
{
F(U)F�(U)

}
B�.
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In order to proceed, we assume E{F(U)F�(U)} = D∗, which is equivalent to sug-
gesting that F(U) = V∗�

1 G(U). Another way of illustrating this point is to consider
the matrix E{G(U)F�(U)}, which is

E
{
G(U)G�(U)V∗

1
} = E

{
BF(U)F�(U)

}
,

�V∗
1 = BD∗,

V∗
1D∗ = BD∗,

since D∗ = diag(λ1, . . . , λp), thus,

(2.18) B = V∗
1 or bj = Vj .

This will be essential when we introduce the estimation procedure in the next
section.

2.3. Estimator of conditional correlation coefficients. Let μ̂k(u), μ̂�(u),
σ̂ 2

k (u) and σ̂ 2
� (u) be local linear estimators of μk(u), μ�(u), σ 2

k (u) and σ 2
� (u),

respectively. Note that εk and ε� are unobservable in practice, but can be estimated
by ε̂k,t = (rk,t − μ̂k(Ut ))/σ̂k(Ut ) and ε̂�,t = (r�,t − μ̂�(Ut ))/σ̂�(Ut ). We can then
write

ε̂k,t ε̂�,t = �k,�(Ut ) + εk,�,t + ε̂k,t ε̂�,t − εk,t ε�,t .

By applying the local linear method, an alternative estimator of �k,�(u) can be
constructed as

(2.19) �̂k,�(u) =
∑n

t=1 Wn,h(Ut − u)ε̂k,t ε̂�,t∑n
t=1 Wn,h(Ut − u)

,

where Wn,h(Ut − u) = sn,h,2Kh(Ut − u) − sn,h,1Kh(Ut − u)(Ut − u), K(·) is a
kernel function, Kh(Ut − u) = K(Ut−u

h
)/h, and sn,h,r = ∑n

t=1 Kh(Ut − u)(Ut −
u)r for r = 0,1,2. Moreover, by letting

�∗
k,�(u) =

∑n
t=1 Wn,h(Ut − u)εk,t ε�,t∑n

t=1 Wn,h(Ut − u)
,

then we are able to write

(2.20) �̂k,�(u) = �∗
k,�(u) +

∑n
t=1 Wn,h(Ut − u)(ε̂k,t ε̂�,t − εk,t ε�,t )∑n

t=1 Wn,h(Ut − u)
.

We will present in Section 3 the asymptotic properties of �̂k,�(u).

2.4. Estimators of common functional factors and coefficients. The basic con-
struction of the model discussed in Section 2.2 suggests that we can make use of
the eigenvalue–eigenvector decomposition to estimate the common functional fac-
tors and loading coefficients. To do so, we must first obtain an empirical estimate
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of the covariance matrix �, which will take the following approximation in the
current paper:

�G = 1

n
GG�.

Once the empirical estimate of the conditional correlation coefficients are ob-
tained, then we may estimate ak� by

âk� = n−1
n∑

t=1

�̂k,�(Ut ).

We then estimate each function Gk�(u) separately by

(2.21) Ĝk�(u) =
∑n

t=1(ε̂k,t ε̂�,t − âk�)Wn,h(Ut − u)∑n
t=1 Wn,h(Ut − u)

,

so that we may form Ĝ(U) = (Ĝ12(U), . . . , Ĝ1m(U), Ĝ23(U), . . . , Ĝ2m(U), . . . ,

Ĝm−1,m(U))�. With observations at {Ut : t = 1, . . . , n}, the M ×n matrices G can
be estimated by Ĝ = (Ĝ(U1), . . . , Ĝ(Un)). Accordingly, an estimate of �G can be
constructed as

�Ĝ = 1

n
ĜĜ�.

Second, we obtain the empirical estimates of the eigenvalues λ1, . . . , λM and
the corresponding orthonormal eigenvectors V1, . . . ,VM of �. The asymptotic
results presented in Section 3 suggest that we can do so through computing the
eigenvalues and the corresponding orthonormal eigenvectors of �Ĝ, which are

defined in this paper as λ̂1, . . . , λ̂M and V̂1, . . . , V̂M , respectively. Recall that our
goal is to obtain

(2.22) B̂ = (b̂1, . . . , b̂p) and F̂(U) = (
F̂1(U), . . . , F̂p(U)

)�
,

where b̂k = (b̂
[k]
12 · · · b̂[k]

1m, b̂
[k]
23 , . . . , b̂

[k]
2m, . . . , b̂

[k]
m−1,m)�, k = 1, . . . , p. They are the

estimates of B and F(U) as defined in (2.14), respectively. The first p component
functions can be obtained by F̂j (u) = V̂�

j Ĝ(u) for j = 1, . . . , p. Finally, based on

(2.18) we can directly estimate bj by b̂j = V̂j .
Next, we present the estimators of the common functional factors and loading

coefficients under the assumption that there exist a number of common factors
p ≤ m such that λ1 > · · · > λp > 0, λp+1 = · · · = λM = 0. However, this quantity
is unknown in practice. Furthermore, previous experience of functional principal
component analysis shows that statistical inference is more difficult for higher-
order principal components. Estimation of the new reduced rank model does share
a similar difficulty, and so selecting the number of common factors is also an im-
portant model selection problem.
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To this end, Li, Wang and Carroll (2013) introduced a number of information
criteria which are useful in selecting the number of principal components within
the context of functional data analysis. In principle, these criteria should also be
useful for selecting the common factors in our context. Inspired by Bai and Ng
(2002), we consider the following class of information criteria:

(2.23) IC(p) = log
[
σ̂ 2[p]

] + pgM,n,

where

σ̂ 2[p] = 1

nM

n∑
t=1

m∑
k=1

m∑
� �=k

(
ε̂k,t ε̂�,t − âk� − b̂

[1]
k� F̂1(Ut ) − · · · − b̂

[p]
k� F̂p(Ut )

)2

is defined similarly to the estimated variance in Bai and Ng (2002) and

gM,n =
(

M + n

nM

)
log

(
nM

M + n

)
is a penalty function. Finally, we select the number of components as

p̂ = min
p

IC(p).

3. Asymptotics. We first present the asymptotic properties of the estimators
for �k,�(u). For the estimator �̂k,�(u) defined by (2.19), the following asymptotic
results are provided.

THEOREM 3.1. Suppose that the regularity conditions (C1)–(C6) in Jiang,
Saart and Xia (2016) hold. Then for particular k and �, as n → ∞, we have

(3.1) (nh)1/2
{
�̂k,�(u) − �k,�(u) − 1

2
wK

2 B�̂k,�
(u)h2

}
→ N

(
0, f −1

U (u)ω2,k,�(u)
)
,

where

B�̂(u) = �′′
k,�(u) − �k,�(u)(σ 2

k (u))′′

2σ 2
k (u)

− �k,�(u)(σ 2
� (u))′′

2σ 2
� (u)

,

ω2,k,�(u) = ν2
Kζ k,�

ε (u) + 1

4
ν2
K∗K�2

k,�(u)ζ
k,�
ξ (u) − �k,�(u)νK,K∗Kζ

k,�
ε,ξ (u),

with

ζ k,�
ε (u) = E

{
ε2
k,�,t |Ut = u

}
, ζ

k,�
ξ (u) = E

{
(ξk,t + ξ�,t )

2|Ut = u
}
,

ζ
k,�
ε,ξ (u) = E

{
εk,�,t (ξk,t + ξ�,t )|Ut = u

}
.

Next, we present asymptotic results for estimators of F̂j (u) and b̂
[j ]
k� . Let

ε̃t = (ε1,2,t , . . . , ε1,m,t , ε2,3,t , . . . , ε2,m,t , . . . , εm−1,m,t )
�,

ξ̃t = (ξ1,t + ξ2,t , . . . , ξ1,t + ξm,t , ξ2,t + ξ3,t , . . . , ξ2,t + ξm,t , . . . , ξm−1,t + ξm,t )
�,

and ε = (ε̃1, . . . , ε̃n), ξ = (ξ̃1, . . . , ξ̃n).
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THEOREM 3.2. Suppose that the eigenvalues of � satisfy λ1 > · · · > λp > 0,
λp+1 = · · · = λM = 0. Let I be the identity matrix of size M , and let (λj I−�)+ be
the Moore–Penrose inverse of λj I − �. Under conditions (C1)–(C6), as n → ∞,
for j = 1, . . . , p,

√
n

(
λ̂j − λj −

(
1

2
wK

2 h2
)
E

{
2Fj (U)F ′′

j (U) − b�
j Fj (U)

(
�(U) ◦ σ(U)

)})
(3.2)

d−→ N
(
0, σ 2

λj

)
,

where ◦ denotes the Hadamard product of two matrices having the same dimen-
sions, and

σ 2
λj

= E
{
I 2
j,1

} + 2
∞∑

s=1

E{Ij,1, Ij,s+1}

= E
{
F 2

j (U1)b
�
j Cov

(
2ε̃1 − �(U1) ◦ ξ̃1|U1

)
bj

} + E
{
F 4

j (U1)
} − λ2

j

+ 2
∞∑

s=1

E
{
Fj (U1)Fj (Us+1)b

�
j

× Cov
(
2ε̃1 − �(U1) ◦ ξ̃1,2ε̃s+1 − �(Us+1) ◦ ξ̃s+1|U1,Us+1

)
bj

}
+ 2

∞∑
s=1

E
{(

F 2
j (U1) − λj

)(
F 2

j (Us+1) − λj

)}
,

with

Ij,t = 2b�
j ε̃tFj (Ut ) − b�

j

(
�(Ut) ◦ ξ̃t

)
Fj (Ut ) + F 2

j (Ut ) − EF 2
j (U).

Moreover, for the corresponding estimated eigenvectors V̂1, . . . , V̂p, under condi-
tions (C1)–(C6), as n → ∞, for j = 1, . . . , p,

√
n

(
V̂j − Vj −

(
1

2
wK

2 h2
)
EWj,1

)
d−→ NM(0,�Vj

),(3.3)

where

EWj,1 = E

{
(λj I − �)+

[ p∑
i=1

ViFi(Ut )F
′′
j (Ut ) +

p∑
i=1

ViFj (Ut )F
′′
i (Ut )

− 1

2

p∑
i=1

ViFi(Ut )V
�
j

(
�(Ut) ◦ σ(Ut )

) − 1

2
Fj (Ut)

(
�(Ut) ◦ σ(Ut)

)]}
,

�Vj
= Cov(Hj,1) + 2

∞∑
s=1

Cov(Hj,1,Hj,s+1)
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= (λj I − �)+
[( p∑

i=1

ViV
�
j Fi(U1) + Fj (U1)I

)

× Cov
(
ε̃1 − 1

2
�(U1) ◦ ξ̃1

∣∣U1

)( p∑
i=1

Vj V�
i Fi(U1) + Fj (U1)I

)

+ 2
∞∑

s=1

Cov

(( p∑
i=1

ViV
�
j Fi(U1) + Fj (U1)I

)(
ε̃1 − 1

2
�(U1) ◦ ξ̃1

)
,

( p∑
i=1

ViV
�
j Fi(Us+1) + Fj (Us+1)I

)(
ε̃s+1 − 1

2
�(Us+1) ◦ ξ̃s+1

))

+
( p∑

i=1

ViFi(U1)Fj (U1)

)( p∑
i=1

V�
i Fi(U1)Fj (U1)

)

+ 2
∞∑

s=1

Cov

( p∑
i=1

ViFi(U1)Fj (U1),

p∑
i=1

ViFi(Us+1)Fj (Us+1)

)]

× (λj I − �)+,

with

Wj,t = (λj I − �)+
[ p∑

i=1

ViFi(Ut )F
′′
j (Ut ) +

p∑
i=1

ViFj (Ut )F
′′
i (Ut )

− 1

2

p∑
i=1

ViFi(Ut )V
�
j

(
�(Ut) ◦ σ(Ut)

) − 1

2
Fj (Ut )

(
�(Ut) ◦ σ(Ut )

)]
,

Hj,t = (λj I − �)+
[( p∑

i=1

ViV
�
j Fi(Ut ) + Fj (Ut )I

)(
ε̃t − 1

2
�(Ut) ◦ ξ̃t

)

+
p∑

i=1

ViFi(Ut )Fj (Ut )

]
.

Because bj = Vj by (2.18), and bj = (b
[j ]
12 , . . . , b

[j ]
1m,b

[j ]
23 , . . . , b

[j ]
2m, . . . ,

b
[j ]
m−1,m), the asymptotic results for the estimated coefficients vector b̂j are equiv-

alent to results for V̂j . In this case, the following corollary could be obtained
directly from the above theorem.

COROLLARY 3.1. Suppose that all assumptions in Jiang, Saart and Xia
(2016) are fulfilled. Then for a particular estimated vector b̂j , as n → ∞, for
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j = 1, . . . , p,
√

n

(
b̂j − bj −

(
1

2
wK

2 h2
)
EWj,1

)
d−→ NM(0,�Vj

),(3.4)

where EWj,1 and �Vj
are the same as which have been given in Theorem 3.2.

THEOREM 3.3. Assume that conditions (C1)–(C6) in Jiang, Saart and Xia
(2016) hold, and Section 2.4 shows that Fj (u) = V�

j G(u), F̂j (u) = V̂�
j Ĝ(u), as

n → ∞, we have
√

nh

(
F̂j (u) − Fj (u) −

(
1

2
wK

2 h2
)
EA1(u)

)
d−→ N

(
0, σ 2

Fj

)
,(3.5)

where

EA1(u) = [
F ′′

j (u) − EF ′′
j (U)

] − 1

2
V�

j

[(
�(u) ◦ σ(u)

) − E
(
�(U) ◦ σ(U)

)]

+E

[
Fi(U)F ′′

j (U)V�
i + Fj (U)F ′′

i (U)V�
i

− 1

2
V�

j

(
�(U) ◦ σ(U)

)
Fi(U)V�

i

− 1

2

(
��(U) ◦ σ�(U)

)
Fj (U)

]
(λj − �)+V∗

1F(u),

σ 2
Fj

=
(
V �

j

[
ν2
K Var(ε̃1) + 1

4
ν2
K∗K

((
�(u)��(u)

) ◦ Var(ξ̃1)
)

− νK,K∗KE
{
ε̃1

(
��(u) ◦ ξ̃�

1
)}]

Vj

)
/fU(u).

Finally, we present the asymptotic consistency of p̂, which is selected as the
minimizer of the above-introduced information criterion, to the true number of
common factors. Assume that the true value of p is p0. For p ≤ p0, denote
V∗

1,[p] = (V1, . . . ,Vp), V∗
1,[p+1:p0] = (Vp+1, . . . ,Vp0), D∗[p] = diag(λ1, . . . , λp),

and D∗[p+1:p0] = diag(λp+1, . . . , λp0).

THEOREM 3.4. Let p̂ be the minimizer of the information criteria defined
in (2.23) among 0 ≤ p ≤ pmax with pmax > p0 being a fixed search limit, and
the regularity conditions (C1)–(C6) hold. If the penalty function gn satisfies (i)

gm,n
P−→ 0, (ii) gm,n/(h

2 + (
logn
nh

)
1
2 )

P−→ ∞ as n → ∞, then limn→∞ P(p̂ =
p0) = 1.

4. Simulation studies. Although this section focuses mainly on experimental
studies that examine the finite sample performance of the proposed framework,
a complementary discussion is also presented about the performance comparison
between the existing models previously discussed and ours.
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4.1. Monte Carlo studies of the finite sample performance. The objective of
the studies is twofold. First, it is to examine the finite sample performance of (i)
the local linear estimator for the conditional comovement of returns, (ii) the newly
proposed estimators for the common factors, (iii) the information criterion for se-
lecting the number of the common factors, and (iv) the newly proposed estimators
for the common factors. Second, it is to conduct a robustness analysis of the fi-
nite sample performance under features which are common in finance. To achieve
these objectives, the studies are conducted based on simulated data from a known
data-generating process, specifically the return process

(4.1) rk = ak +bkμ(U)+ ck0ε0 + ck1ε1f1(U)+ ck2ε2f2(U), k = 1, . . . ,m,

where ak, bk, ck0, ck1, ck2 are constant coefficients and ε0, ε1, ε2 are random ren-
ovations with zero mean. For the model in (4.1), it is clear that E(rk|U) =
ak + bkμ(U). For all simulation studies in this section, let us define μ(U) = U

with U ∼ Uniform(0,1), while the required parameters are generated from in-
dependent normal distributions, that is, ak, bk, ck0, ck1, ck2 ∼ Normal(0,0.2). In
order to demonstrate the robustness of our method, we consider two illustrative
scenarios as follows:

Scenario 1: Let ε0, ε1, ε2
IID∼ Normal(0,1). In addition, let

f1(U) = √
1 + cos(vπU) and f2(U) = √

1 + sin(2πU).

The above specifications suggest that we have

(4.2) Cov(rk, r�|U) = Corr(rk, r�|U) ≡ Ck�(U) = αk� + βk�F1(U) + γk�F2(U),

where αk� = ck0c�0 + ck1c�1 + ck2c�2, βk� = ck1c�1 and γk� = ck2c�2. In other
words, Ck�(U) involves two common factors defined by

(4.3) F1(U) = cos(vπU) and F2(U) = sin(2πU).

In the simulation study that follows, we set the value of parameter v in (4.3) as ei-
ther 2 or 3. Note that the latter introduces a rougher first common factor compared
to the former, and hence the resulting conditional correlation functions are less
smooth as the results. These functions can be considered as representing structural
breaks in the conditional comovements of returns.

Scenario 2: Let f1(U) and f2(U) be defined as in Scenario 1, where v = 2, but

let ε0, ε1, ε2
IID∼ tν . Such specifications suggest that we have instead the Ck�(U)

with parameters αk� = ck0c�0σ
2
ε + ck1c�1σ

2
ε + ck2c�2σ

2
ε , βk� = ck1c�1σ

2
ε and γk� =

ck2c�2σ
2
ε , where σ 2

ε = ν/(ν −2) is the unconditional variance of εj , for j = 1,2,3.
In the simulation study that follows, we set the parameter ν to 20, 15, 10 or 5. In
the probability theory, it is well known that the Student’s t-distribution has heavier
tails than those of the normal distribution. Hence, from the finance point of view,
Scenario 2 simulates return processes with a heavy-tailed behavior. The first three
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TABLE 1
Finite Sample Performance of the Estimation Procedure

m = 15 m = 30

v ASE 100 300 600 100 300 600

2 ASEF1 0.1187 0.0467 0.0321 0.1046 0.0419 0.0279
ASEF2 0.1145 0.0592 0.0347 0.1011 0.0496 0.0329
ASEC 0.0057 0.0021 0.0009 0.0065 0.0018 0.0008

3 ASEF1 0.1834 0.0877 0.0552 0.1709 0.0838 0.0529
ASEF2 0.1070 0.0603 0.0318 0.1104 0.0472 0.0321
ASEC 0.0052 0.0019 0.0009 0.0063 0.0018 0.0009

parameter values, namely 20, 15 and 10, reflect the range of values we obtain
by fitting the Student’s t-distribution with the MLE to the empirically estimated
standardized returns of the Dow30, which is denoted in Section 5 by ε̂k,t . To this
end, it seems to be the case that multiple estimation and smoothing steps, which
are required, lead to confidence intervals that include point-estimates which are
relatively close to normality (see Section 5.1 for details). In addition, ν = 5 is
included as a benchmark.

We will concentrate first on the simulation work done based on Scenario 1. For
the first set of simulation results in Tables 1, 2 and Figure 1, we set the number of

TABLE 2
Finite Sample Performance of the Information Criteria

v m n p̂ = 0 p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4

2 15 100 0.2560 0.5960 0.1480 0.0000 0.0000
300 0.0640 0.3760 0.5600 0.0000 0.0000
600 0.0160 0.2520 0.7320 0.0000 0.0000

1000 0.0080 0.0800 0.9120 0.0000 0.0000

30 100 0.2360 0.5760 0.1680 0.0000 0.0000
300 0.0440 0.3760 0.5800 0.0000 0.0000
600 0.0000 0.0000 0.9960 0.0040 0.0000

1000 0.0000 0.0000 1.0000 0.0000 0.0000

3 15 100 0.2480 0.4520 0.3000 0.0000 0.0000
300 0.0360 0.1280 0.8360 0.0000 0.0000
600 0.0120 0.0800 0.9080 0.0000 0.0000

1000 0.0560 0.0160 0.9280 0.0000 0.0000

30 100 0.2400 0.4360 0.3240 0.0000 0.0000
300 0.0200 0.1000 0.8800 0.0000 0.0000
600 0.0120 0.0680 0.9200 0.0000 0.0000

1000 0.0000 0.0000 1.0000 0.0000 0.0000
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FIG. 1. Boxplots for eigenvalues calculated based on Ck�(·) and Ĉk�(·) at m = 30.

observations on the time series dimension as n = 100,300,600 or 1000. We would
like to also investigate the importance of the number of assets in the portfolio on
the finite sample performance, and therefore set the parameter m as either 15 or 30.
The number of simulation replications is 250. We focus first on the finite-sample
performance of the local linear estimator for the conditional comovement and the
proposed estimators for the common factors. The relevant simulation results are
summarized in Table 1 and Figure 1. In the table, the short abbreviation “ASE”
stands for the “average squared errors.” For j = 1,2,

ASEFj
= 1

n

n∑
t=1

{
F̂j (Ut ) − Fj (Ut )

}2

and

ASEC = 1

nM

n∑
t=1

m∑
k=1

m∑
� �=k

{
Ĉk�(Ut ) − Ck�(Ut )

}2

measure the finite-sample performance of the proposed estimator for the j th com-
mon factor and for the estimator of the conditional comovement of returns for
any one simulation replication, respectively. For given values of m and n, Table 1
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reports the averages of ASEFj
over the simulation replications. In all cases, the

estimation errors have a strong tendency to converge to zero as the number of ob-
servations increases. An interesting point to make is the fact that increasing the
number of assets from m = 15 to m = 30 is able to slightly improve the overall
finite sample performance. In addition, the short abbreviations “R” and “E” (for
example, as in “1R” and “1E”) in Figure 1 indicate that the eigenvalues are com-
puted based on Ck�(·) [as defined in (4.2)] and Ĉk�(·), respectively. Since there are
two common factors, that is, p0 = 2, in our model example, 3R and 4R in Figure 1
are appropriately equal to zero. From the figures, it is apparent that the estima-
tion of the eigenvalues performs well, especially since 3E and 4E in the figures
are virtually zero across all simulation replications and since the distributions of
the estimates tend to follow closely those of the true eigenvalues. Therefore, we
have convincing evidence that the proposed esimation procedure for the common
factors perform well especially for the number of observations of above 500, i.e.
about two years of sample for daily return data.

The important factor contributing to this success is the ability of our method
to accurately estimate the conditional comovement of the simulated returns. In Ta-
ble 1, this is demonstrated by the small magnitude and the tendency of the averaged
ASEC to converge to zero. Let us also point out that specifying the conditional
variable U as in Section 4.1 of the current paper contains a special case, which is
consistent to taking τ = t

n
∈ (0,1), for t = 1, . . . , n. When such a special case is

considered, our experimental design is of a similar nature to that of Engle (2002),
which was also used in Aslanidis and Casas (2013), CS hereafter, to illustrate the
finite sample performance of the local-linear estimator introduced in their paper.
Note that for this special case the CS estimator is merely a simplified version of
the local linear estimator introduced in the current paper. On the one hand, this
suggests that satisfactory simulation results in Section 4.1 can be interpreted as
the ability of our method to nonparametrically model the conditional covariance
matrix of returns under misspecification. On the other hand, it also means that the
finite-sample superiority of the nonparametric estimator found in CS over the DCC
and cDCC models should also hold for the local linear estimator introduced in the
current paper.

Our attention is now shifted to the finite sample performance of the above-
introduced information criterion for selecting the number of common factors. Note
that the error terms, which are required in the calculation, are estimated based on

εk = (rk − ak − bkU)/
√

σ 2
k (U), where σ 2

k (U) = c2
k0 + c2

k1f
2
1 (U)+ c2

k2f
2
2 (U). The

empirical distribution of the selected number of components summarized in Ta-
ble 2 is obtained by setting pmax = 4 with p0 = 2, which should be obvious from
the specification of (4.2). In Table 2, it is clear that lower numbers of common
factors than p0 are often wrongly selected when n = 100. However, the results im-
prove substantially as we increase the number of observations to n = 300. Further
improvement is made when n = 600 and 1000, where the right number of common
factors is selected up to 100% of the replications for m = 30.
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TABLE 3
Finite-Sample Performance with Non-normal Renovations at m = 30

ν = 20 ν = 10 ν = 5

ASE 100 600 100 600 100 600

ASEF1 0.1377 0.0283 0.1591 0.0404 0.3558 0.2777
ASEF2 0.1564 0.0382 0.1985 0.0642 0.4443 0.2719
ASEC 0.0072 0.0012 0.0116 0.0017 0.0314 0.0054

We will now concentrate on the simulation work done based on Scenario 2.
Since the importance of the size of the portfolio has already been examined previ-
ously, it is sufficient for our purpose to set the number of observations, n, to either
100 or 600 with m = 30. The simulation results are presented in Tables 3 and 4.
In Table 3, the effects of the deviation from the normality assumption within the
range found in our empirical data, that is, ν is between 20 to 10, seem to be mini-
mal. Significance changes in the results only become apparent by a reduction of the
degree of freedom to ν = 5, that is, a level by which data transformation might be
required for an application where empirical support for the Student’s t-distribution
and the degree of freedom can be established. Nonetheless, such negative changes
are not apparent in Table 4, which shows the finite sample performance of the in-
formation criteria. The information criteria seem to have performed consistently
well across the degree of freedom in question.

4.2. Models performance comparisons. The objective of this section is to dis-
cuss the evidence that our method, which is model-free, is able to provide a more
accurate estimation of the covariance matrix as the true data-generating process
deviates further away from the prespecified parametric specification. Since it has
already been discussed in the previous section, the most convenient experimental
example is based on the F-HEAVY framework as specified by (2.11) and (2.12).

TABLE 4
Finite Sample Performance with Non-normal Renovations at m = 30

ν n p̂ = 0 p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4

20 100 0.2600 0.6200 0.1200 0.0000 0.0000
600 0.0040 0.0080 0.9800 0.0000 0.0000

10 100 0.1050 0.7100 0.1850 0.0000 0.0000
600 0.0000 0.0150 0.9850 0.0000 0.0000

5 100 0.1950 0.6100 0.1950 0.0000 0.0000
600 0.0000 0.0750 0.9250 0.0000 0.0000
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TABLE 5
Models performance comparisons

n = 500 n = 1000 n = 2000

c MLE NP MLE NP MLE NP

0.0 0.0556 0.0932 0.0325 0.0757 0.0272 0.0582
0.1 0.0783 0.1001 0.0575 0.0819 0.0486 0.0626
0.2 0.1142 0.1073 0.0943 0.0885 0.0808 0.0676
0.3 0.1549 0.1149 0.1344 0.0954 0.1169 0.0728
0.4 0.1995 0.1228 0.1783 0.1026 0.1543 0.0783
0.5 0.2464 0.1309 0.2223 0.1099 0.1953 0.0841

In particular, we design the experimental model to check the accuracy as follows:

sij
(
σ 2

f,t

) = aiajσ
2
f,t + c

(
σ 2

f,t − σ0
)
+

and

sii
(
σ 2

f,t

) = aiaiσ
2
f,t + c

(
σ 2

f,t − σ0
)
+ + σ 2

i ,

where x+ = 0 if x < 0 (or x+ = x otherwise) and σ 2
f,t is the conditional variance

under the GARCH(1,1) specification, that is,

ξt = σf,t εt , σ 2
f,t = 0.01 + 0.1ξ2

t−1 + 0.89σ 2
f,t−1

with εt IID N(0,1). We estimate σ 2
f,t by the maximum likelihood estimation

within the model as a F-HEAVY framework, which actually focuses on estimating
the parameters a and σ 2

1 , . . . , σ 2
p , while the alternative is to follow our nonparamet-

ric estimation by letting Ut = σ 2
f,t . In addition, we calculate the estimation error

as

1

np2

n∑
t=1

p∑
i=1

p∑
j=1

∣∣sij (
σ 2

f,t

) − ŝij
(
σ 2

f,t

)∣∣.
Table 5 presents the average of the estimation errors of the maximum likelihood

and the nonparametric method, which are denoted respectively by MLE and NP
over 100 simulation replications. The results suggested that as c becomes bigger
(in other words, as the misspecification becomes more serious), our approach has
better accuracy.

5. Effects of market variables on the correlation structure. The empirical
study in this section focuses on estimation and analysis of the conditional correla-
tion coefficients for returns of a portfolio of the Dow30 for the observation period
between 1 July 1990 to 31 July 2014. Important questions that will be the subject
of main interest are what drives the observed time-varying correlation structure of
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the Dow30 portfolio and how. In the literature, while there is broad agreement that
the correlation structure in financial markets is not constant over time, an outstand-
ing issue of concern is on the driving factor (or factors) behind the observed time
variation. Generally, there are two schools of thought which are contradictorily in
favor of the market volatility and the market return, respectively. The following
paragraphs provide a brief review of these.

A number of previous studies have found that the cross-correlations estimated
during volatile periods are significantly larger compared to those computed dur-
ing calm periods. Using multivariate GARCH models, Longin and Solnik (1995)
show that cross-correlations between international markets tended to increase es-
pecially in periods of high volatility. Similarly, Ramchand and Susmel (1998) ex-
amined the relation between variance and correlation in a conditional time and
state-varying framework, and found that the correlations are much higher when
the U.S. market is in a high variance state. Furthermore, Chesnay and Jondeau
(2001) applied a multivariate Markov-switching model, where the correlation ma-
trix is varied across regimes, to investigate the relationship between international
correlation and stock market turbulence, and found that correlation significantly
increased during the turbulent periods. In addition, there were also other studies
based on the Markov-switching models which have also found that correlation was
generally higher in a high-volatility regime [see, e.g., Ang and Bekaert (2002)].

On the other hand, Longin and Solnik (2001) established a pattern of asymmet-
ric dependence using extreme value theory, which implied that international stock
markets were more highly correlated during extreme market downturns than dur-
ing extreme market upturns. Later, Ang and Chen (2002) developed a statistic for
testing the asymmetries in conditional correlations based on the exceedance corre-
lation and established evidence in support of Longin and Solnik (2001). Another
strand of literature attempted to connect the variability of stock return correlations
to the overall economic condition, which was represented by a proxy of market
return. Erb, Harvey and Viskanta (1994), for example, suggested that correlations
were time varying and dependent on the state of the economy. More importantly,
they found a strong tendency for correlation to rise during periods of recession.

It is noteworthy that these schools of thought often consider the market return
and volatility as two separate and competing entities. Hence, in order to perform
the empirical analysis of interest, we may select the conditional variable, U , as ei-
ther a measure of the market return or that of the market volatility. However, in the
literature it has long been discussed the observed tendency of an asset’s volatility
to be negatively correlated with the asset’s return, that is, what is commonly re-
ferred to as the “leverage effect.” Furthermore, it has also been documented that
the leverage effect is generally asymmetric, that is, other things’ equal declines in
stock prices are accompanied by larger increases in volatility than the decline in
volatility that accompanies rising stock markets. Hence, it is also the main inter-
est of the research in this section to also examine if and how the presence of the
leverage effect affects our investigation on the driving factor behind the observed
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time variation of stock correlations. For the sake of clarity, we will present first
in Section 5.1 relevant methodological details and estimation results, while a thor-
ough discussion on the financial implications and interpretation will be given in
Section 5.2.

5.1. Relevant methodological remarks and estimation results. Let us begin
with the following empirical details: (i) The data used, which consist of the daily
close prices (adjusted for dividends and splits) of the Dow30 components and
S&P500, and the Chicago Board Options Exchange Market Volatility Index (VIX)
between 1 July 1990 to 31 July 2014, are retrieved from Yahoo Finance. (ii) As
usual, the closing prices are transformed into returns by taking natural logarithms
and differencing. These leads, therefore, to m = 30 with M = 30 × (30 − 1)/2 =
435 conditional correlation coefficients and n = 6068 number of observations.
(iii) The market volatility is represented in our study by the VIX, which is a pop-
ular measure of the implied volatility of S&P 500 index options. (iv) The market
return is represented in our study by the return of the S&P500. Furthermore, it
is assumed that the return follows an AR(1) + GARCH(1,1) process. Intuitively,
this assumption implies that the leverage effect may influence the market return
through both volatility and its persistence that leads to temporally dependence of
the market return, that is, autocorrelation. As for the results, the leverage effect for
the market can be excluded by first modeling the conditional mean and volatility
using the AR(1)+ GARCH(1,1) model, then devolatilizing the raw market return
using the resulting conditional variances. Hereafter, let us refer to the resulting
process as the devolatilized market return such that raw the S&P500 return coun-
terpart is referred to as the nondevolatilized market return. (v) We also apply a
similar devolatilization to the Dow30 returns.

For the sake of clarity, let us also collect a list of methodological remarks here:
(vi) The estimation procedure employed can be summarized as the following steps.
Step 1: For a given selection of U (either as the nondevolatilized/devolatilized
market return or the VIX for market volatility), the first step in our estimation pro-
cedure is to obtain the local linear estimates of μk(U), μ�(U), σ 2

k (U) and σ 2
� (U).

Step 2: These are then used in the calculation of the estimates for the conditional
correlation functions, that is, �̂k,�(u) in (2.19). Step 3: The asymptotic results in
Section 3 suggest that we can calculate Ĝk,�(u) as �̂k,�(u) − âk�, then construct
Ĝ in order to obtain the covariance matrix �Ĝ = 1

n
ĜĜ�. Step 4: We are then

able to calculate V∗
1p for each value of p ≤ m so that the common factor analysis

can be conducted based on the IC(p) criterion defined in (2.23). Step 5: Once the
number of common factors is selected, we are then able to obtain the empirical
estimate of the common factor based on F̂1(u) = V̂ �

1 Ĝ(u). The 99% point-wise
confidence bands are computed based on the asymptotic variance formula, σ 2

F1
,

which was defined in Theorem 3.3. This calculation requires the use of V̂1, which
is calculated under the condition ‖ V1 ‖= 1, where ε̂k,t = (rk,t − μ̂k(Ut ))/σ̂k(Ut ),
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ε̂�,t = (r�,t − μ̂�(Ut ))/σ̂�(Ut ) and ξ̂k,t = ε̂2
k,t − 1. Step 6: To compute the non-

parametric estimators involved, we choose the normal kernel function given by
K(x) = 1√

2π
e−(x2/2) with h = std(U)/n0.2. The above choice of kernel function

leads to ν2
K = 1/2

√
π , ν2

K∗K = 1/2
√

2π and νK,K∗K = 1/(
√

3
√

2π). (vii) The
methods and associated results introduced in the current paper are readily applica-
ble to higher frequency financial data. For example, we should be able to employ,
as conveniently as in our empirical analysis, the intraday return at the one-minute
(or five-minute, ten-minute, etc.) sampling frequency. Nonetheless, it is impor-
tant to note that the main motivation of the current study is on the identification
and estimation of the asymmetry of the overall cross-correlations. This differs sig-
nificantly from other studies that motivate the use of higher frequency financial
data such as Sheppard and Xu (2014). (viii) We have also tried different specifi-
cations on the conditional mean and conditional variance equations. However, the
functional-based nature of the method and use of the smooth technique mean that
they do not bring about significant changes to the results. (ix) We have also at-
tempted to incorporate the asymmetry in the leverage effect into our analysis. This
was done by modeling the volatility based on the GJR-GARCH model of Glosten,
Jagannathan and Runkle (1993). Although the asymmetric effect of market vari-
ables was felt more strongly in magnitude, the differences in the results were not
statistically significant. (x) Comparing to, for example, the cDCC model, where
O(m3) [alternatively, O(m2) or smaller] calculations are required for the full like-
lihood function (for the composite likelihood function) because of the computation
of the inverse matrix and constant matrix, our proposed factor approach is based
on a nonparametric model structure in which m conditional variance functions
are estimated at the first stage, and then m(m − 1)/2 conditional correlations are
estimated nonparametrically. In addition, the eigenvectors of a m(m − 1)/2 by
m(m − 1)/2 matrix need to be computed to obtain the common functional factors.

The first picture in each panel in Figure 2 displays empirical estimates of 435
correlation functions of the Dow30 components conditioned on a given selection
of U , that is, UDv, UNv and UV which denote the devolatilized, nondevolatilized
market return and the market volatility, respectively. Although the correlation func-
tions in each of these pictures seem to have their own pattern, overall they tend to
share some essential common features. Let us take the first picture of panel (a),
which represents the case for UDv, as an example. In most cases, large negative
or positive returns on the S&P500 index imply high correlations, that is, a con-
vex v-shaped conditional correlation function. The common feature is even more
apparent in the first picture of panel (c), which represents the case of UV , where
we witness (almost linearly) positive correlation functions with a low degree of
variation.

Next we perform the common factor analysis based on the information crite-
rion presented in (2.23). The relevant IC(p̂) values are shown in Table 6. For
each of the rows, minimization of these values suggests that a single common
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FIG. 2. Empirical estimates of �k,�(U) based on �̂k,�(U) and �̂
[j ]
k,�(U) for j = 1.
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TABLE 6
Information Criterion for Common Factor Analysis

U IC(p̂ = 1) IC(p̂ = 2) IC(p̂ = 3) IC(p̂ = 4) IC(p̂ = 5) IC(p̂ = 6)

UDv 0.7893 0.8435 0.8981 0.9521 1.0063 1.0598
UNv 1.0833 1.1370 1.1910 1.2450 1.2988 1.3527
UV 0.4641 0.5194 0.5730 0.6271 0.6800 0.7350

factor, p = 1, should be selected for all cases. The second pictures in panels
(a) to (c) of Figure 2 present the empirical estimates of the conditional correla-
tion coefficient functions calculated according to the suggestion made by the in-
formation criterion that there exists only one common factor, that is, �k,�(U) =
ak� + Gk�(U) = ak� + b

[1]
k� F1(U). Hereafter, let us denote these estimates by

�̂
[1]
k,�(U) = âk� + b̂

[1]
k� F̂1(U), where the upper subscript [1] indicates an involvement

of a single common factor. In all cases of U , the graphs seem to provide graphical
evidence in support of a single common factor, that is, a conclusion reached due
to the fact that the shape of �̂

[1]
k,�(U) closely follows that of �̂k,�(U). As for the re-

sults, the financial discussion in the next section will focus heavily on F1(U). For
the sake of completion, we present in panels (a), (b) and (c) of Figure 4 empirical
estimates of F1(U) computed based on UV , UNv and UDv, respectively. The 99%
point-wise confidence bands were calculated as discussed in Step 4. The red solid
curve in each of the figures will be discussed in detail in the next section.

We will now focus on the coefficients b
[j ]
k� . In a sense, b

[j ]
k� should quantify the

contribution of the j th common factor on the k� conditional correlation function,
that is, a role which is usually played by the so-called functional principal com-
ponent scores in the functional data analysis literature. This is not the case in our
model, however, due to the necessity of the assumption B = V∗

1, which is stated
in (2.18). Nonetheless, since a single common factor was selected, the shape of
�̂

[1]
k,�(U) depends on b

[1]
k� , and so it is important that we perform inferences for b̂

[1]
k� .

To do so, we calculate the standard errors and, consequently, the 90% confidence
intervals of b̂

[1]
k� . Figure 3 presents b̂

[1]
k� in ascending order together with the as-

sociated 90% confidence intervals for the cases of UDv, UNv and UV [see panels
(a), (b) and (c), respectively]. In panel (a), the fact that most of the b̂

[1]
k� presented

are positive further suggests that the shape of the common factor is well taken by
the (pairwise) conditional correlation functions under consideration. In addition,
a similar conclusion can also be obtained in panels (b) and (c) but with stronger
statistical significance. Observe, however, that the confidence bands in (c) seem
to be smaller than those in panels (a) and (b). This is due mostly to the empirical
estimate of �V1 , which is quite small compared to those for cases of the mar-
ket returns. Such a result was influenced by �̂k,�(UV ), in which we witnessed in
Figure 2(c) that they were (almost linearly) positive correlation functions with a
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FIG. 3. b̂
[1]
k� presented in ascending order and the 90%.

relatively low degree of variation. In this case, higher correlation leads to a larger
value of the largest eigenvalue, but also the eigenvector with lower variance. In ad-
dition, the first common factor explains up to 97% of the total variations compared
to only 70% and 77% in panels (a) and (b), respectively.

5.2. Financial implications and interpretations. In this section, we will first
discuss important implications of the above results about the effects of the market
variables on the correlation structure of the Dow30 portfolio. We will then focus
more specifically on the asymmetric effect of the market return.

Let us begin with the kind of effect that market volatility has on the corre-
lations of the returns of the Dow30. Here, the VIX is used as a proxy for the
market volatility. The estimation result in Figure 4(a) suggests that correlation sig-
nificantly increases during volatile periods. This finding is in agreement with the
conclusion made by many existing studies (some studies of which are mentioned
in the paragraph just above Section 5.1). We consider next the empirical estimates
of the common factors presented in Figure 4(b) and (c) which are associated with
the nondevolatilized and devoatilized market returns, respectively. In these cases,
the first common factor provides a strong evidence against the constant correlation
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FIG. 4. Empirical estimate of common factors.

hypothesis, which was championed by a number of earlier studies [see Kaplanis
(1988), e.g.].

An important question often investigated in the literature is whether comove-
ments in the returns are stronger during general market recession than they are
during boom periods [see Andersen et al. (2001) and Chesnay and Jondeau (2001),
e.g.]. In order to shed some light on this issue, we draw in Figure 4(b) a solid red
line, which represents the exact replication of the blue estimate that runs across the
negative region of UNv. The fact that the solid red line lays almost everywhere in
between the pairwise confidence bands provides empirical evidence (at least at the
1% significance level) against such an asymmetry. In the next step, we perform a
similar analysis to the above, but this time based on UDv, that is, the devolatilized
market return, and the result is reported in Figure 4(c). We find that the correlations
decrease quite significantly in the positive region of the market return compared
to those presented in Figure 4(b). The fact that the solid red line lays almost ev-
erywhere outside the pairwise confidence bands provides empirical evidence in
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support of the asymmetric effect of market return on the conditional correlations
of the stock returns. Such a finding can be interpreted as follows. Once the leverage
effect in the market is disentangled and the volatility effect is removed, correlations
of the stock returns drop significantly during the bull while remaining unchanged
in the bear market. In effect, the tailing off in the correlations leads to the apparent
asymmetric effect of the market return, which is clearly apparent in Figure 4(c).

The above discussion considered two extreme cases, where the conditional vari-
able is either the devolatilized, UDv, or nondevolatilized, UNv. For the sake of
comparison, we also consider a case by which devolatilization is done based on
AR(0) + GARCH(1,1). This practice reflects the point we have made that the
leverage effect does influence market return not only through volatility, but also
through volatility persistence, which leads to temporally dependence of the return,
that is, autocorrelation. However, we have found the result to be closely similar to
that in Figure 4(c), and so it is not reported.

6. Conclusions. In this paper, we examined the comovements of returns for
a portfolio which comprised thirty major American companies included in the
Dow30. Such a portfolio was of particular interest since it should be able to rep-
resent a well-diversified portfolio. To be able to thoroughly investigate the factors
that drive correlations between returns of financial assets and how, we introduced
in this paper a new semiparametric factor model. We first derived and provided the-
oretical discussion of an alternative local linear smoothing estimator for the (pair-
wise) conditional correlation coefficients of asset returns. The new method was
then developed along the lines of tools in principal component analysis, which
consist of selecting the number and estimation of the common factors together
with the corresponding loadings. In the empirical analysis, we followed sugges-
tions provided in a number of existing studies and specified market volatility and
market return as the driving factors of the comovements of the Dow30 returns,
where the corresponding measures of the S&P500 were used as proxy. We were
able to establish empirical evidence in support of the well-known asymmetric ef-
fect of market return on the correlations of the Dow30 returns. Specifically, returns
correlations were higher during the extreme market downturns compared to those
during the extreme market upturns. Nonetheless, this was the case only when the
possible leverage effect on the market was taken into consideration. It was ap-
parent that the volatility effect of the market return led to high correlations of
the Dow30 returns during the bull market so that the asymmetric effect was not
evidenced. Nonetheless, once the leverage effect in the market was disentangled
and the volatility effect was removed, the correlations dropped significantly, which
then led to the apparent asymmetric effect of the market return.

SUPPLEMENTARY MATERIAL

suskaldyti doi Supplement to “Asymmetric conditional correlations
in stock returns.” (DOI: 10.1214/16-AOAS924SUPP; .pdf). Assumptions and
proofs.

http://dx.doi.org/10.1214/16-AOAS924SUPP
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