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Semiparametric Methods in Nonlinear Time Series Analysis:1

A Selective Review2

Patrick Saart†12, Jiti Gao‡ and Nam Hyun Kim†3

University of Canterbury† and Monash University‡4

Abstract5

Time series analysis is a tremendous research area in statistics and econometrics. In a previous review, the6

author was able break down up to fifteen key areas of research interest in time series analysis. Nonetheless,7

the aim of the review in this current paper is not to cover a wide range of somewhat unrelated topics8

on the subject, but the key strategy of the review in this paper is to begin with a core, the “curse of9

dimensionality” in nonparametric time series analysis, and explore further in a metaphorical domino-effect10

fashion into other closely related areas in semiparametric methods in nonlinear time series analysis.11

JEL Classification: C12, C14, C2212

Keywords: Autoregressive time series; nonparametric model; nonstationary process; partially linear struc-13

ture, semiparametric method14

1. Introduction15

In time series regression, nonparametric methods have been quite popular both for pre-16

diction and for characterizing nonlinear dependence. Let {Yt} and {Xt} be the one-17

dimensional and d-dimensional time series data, respectively. For a vector of time series18

data {Yt, Xt}, the conditional mean function E[Yt|Xt = x] of Yt on Xt = x may be19

estimated nonparametrically by the Nadaraya–Watson (NW) estimator when the dimen-20

sionality d is less than or equal to three. When d is greater than three, the conditional21

mean can still be estimated using the NW estimator and asymptotic theory can be con-22

structed. However, due to a well-known problem often referred to in the literature as23

the curse of dimensionality, this may not be recommended in practice unless the number24

of data points is extremely large. There are multiple phenomena in the literature which25

are referred to as the curse of dimensionality in various domains, e.g. numerical analysis,26

sampling, combinatorics, etc. For the sake of clarity, let us give a simple example of the27

curse of dimensionality in nonparametric regression.28

Example 1. Let there be a set of data points (U, V ), where

U = g(V ) + noise with a mean of zero.
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The data (V,U)
.
= {(Vt, Ut)}nt=1 are assumed to be drawn identically and indepen-29

dently distributed (i.i.d.) from a distribution over a joint input-output space V × U .30

The input space V is usually assumed to be a subset of Rd, i.e. V is a vector of d31

features. The output space U is assumed to be a subset of Rd′ and is a random vec-32

tor satisfying E[U |V = v] = g(v). An objective of the nonparametric regression is to33

approximate g with a nonparametric regressor, say, gn. Under some smoothing condi-34

tion of g; e.g. Lipschitz, a number of nonparametric estimators can be shown to satisfy35

EV,U||gn− g||2 ≤ O
(
n−2/(2+d)

)
. For instance, this is the rate for a kernel estimator. Such36

a rate implies that we need a sample size n exponential in d in order to approximate g.37

Hence, when d is high, as is often the case in modern applications, n > 2d is impractical.38

Furthermore, to get some intuition into the reason for such a rate, consider that non-39

parametric approaches, such as the NW estimator, operate by approximating the target40

function locally (on its domain V) by simpler functions. There are necessarily some local41

errors and these errors aggregate globally. To approximate the entire function well, we42

need to do well in most local areas. Suppose, for instance, that the target function is well43

approximated by constants in regions with a radius of at most 0 < r < 1. In how many44

ways can we divide up the domain V into smaller regions with a radius of at most r ? If45

V is d-dimensional then the smallest such partition is of size O(r−d). We will need data46

points to fall into each such region if we hope to do well locally everywhere. In the other47

words, we will need a data set that is exponential in d in size. �48

Over recent years, a number of review papers on nonparametric and semiparametric49

methods have become available in the literature. Below, let us introduce a few of those50

that are the most relevant to the materials presented in the current paper. Firstly, there51

are two books by Härdle et al. (2000) and Gao (2007) that introduced some nonparametric52

and semiparametric nonlinear time series models as well as establishing various new results53

to enrich the literature. Meanwhile, a review by Fan (2005) focuses on nonparametric54

techniques used for estimating stochastic diffusion models, especially the drift and the55

diffusion functions, based on either discretely or continuously observed data. The paper56

begins with a brief review of some useful stochastic models for modeling stock prices and57

bond yields, which includes the Cox Ingersoll Ross model by Cox et al. (1985), Vasicek58

model by Vasicek (1977) and the Chan Karolyi Longstaff Sanders model of Chan et al.59

(2012). Furthermore, the paper reviews in the paper techniques for estimating state price60

densities and transition densities, and their applications in asset pricing and testing for61

parametric diffusion models. Some important references in that review are Aı̈t-Sahalia62

(1996), Aı̈t-Sahalia (2002), Aı̈t-Sahalia and Lo (2002), and Fan et al. (1996).63

Secondly, the review by Härdle et al. (2007) provides a fairly broad survey of many64
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nonparametric analysis techniques for time series. Specifically, the review discusses non-65

parametric methods for estimating the spectral density, the conditional mean, higher order66

conditional moments and conditional densities. Density estimation with correlated data,67

bootstrap methods for time series and nonparametric trend analysis were also reviewed.68

Finally, the two review papers by Gao (2012) and Sun and Li (2012) summarize some69

recent theoretical developments in nonparametric and semiparametric techniques as ap-70

plied to nonstationary or near-nonstationary variables. The first paper introduces a class71

of semi-linear time series models that incorporate both nonstationarity and endogeneity.72

The author also introduces and then discusses a class of the so–called “nearly integrated”73

time series models. The second paper begins with a review on various concepts of the in-74

tegrated series of order zero and of order one, and cointegration for a linear model as they75

are available in the literature. It then discusses some popular nonlinear parametric models76

beginning with those for stationary data, such as the self-exciting threshold autoregres-77

sive models (Tong and Lim (1980), Chan (1993)) and the smooth transition autoregressive78

models (Chan and Tong (1986), and Van Dijk et al. (2002)), then some nonlinear error79

correction models and nonlinear cointegrating models (Teräsvirta et al. (2011), Dufrénot80

and Mignon (2002)). Thirdly, it discusses nonparametric models with nonstationary data81

in a similar fashion to the above parametric cases (nonparametric autoregressive then82

nonparametric cointegrating models). The review concentrates on existing works on the83

consistency of nonparametric estimators, with some key studies being Wang and Phillips84

(2009a), Wang and Phillips (2009b), Karlsen and Tjøstheim (2001), Karlsen et al. (2007),85

Karlsen et al. (2010). Finally, it presents a discussion on semiparametric models with86

nonstationary data. The focus of the review is on semiparametric varying coefficient87

cointegrating models and on semiparametric binary choice models.88

The current paper complements these existing reviews by filling in some gaps, which89

are currently left unexplored. First, it discusses various issues (e.g. identification con-90

ditions, estimation procedures and asymptotic properties) involving semiparametric time91

series models, which are described as tools for circumventing the curse of dimensional-92

ity. Establishing ways to circumventing the curse of dimensionality is traditionally an93

important objective for a large number of studies in nonparametric statistics. There are94

essentially two approaches discussed in the literature. The first is largely concerned with95

dimension reduction; some well–known examples of studies that fall into this category are96

Li (1991), Cook (1998) and Xia et al. (2002). The review in the current paper focuses97

on studies in the second category, namely function approximation using semiparametric98

specifications. The paper first introduces three of the most well-known and successfully99

applied semiparametric time series regression specifications in the literature, namely the100
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partially linear (PL), additive and the single-index models. It then reviews various speci-101

fication tests for the semiparametric models in detail, including tests for linear regression.102

Since the focus is on time series, the current paper also presents a thorough discussion on103

re-specification of the above semiparametric models to form semiparametric autoregres-104

sive models and their specifications test. It is argued that although these semiparametric105

models are non-nested, they share some important similarities, especially their intolerance106

to the endogeneity of the error term in order to obtain consistent estimates of the mod-107

els. Addressing such a problem, in practice, involves directly estimating semiparametric108

models with generated regressors. The current paper presents (in Section 5) a review109

of a recent method of addressing the endogeneity problem in semiparametric time series110

models and other semiparametric models with generated regressors, which share similar111

characteristics. One model, in particular, has a direct application to financial econo-112

metrics and explores a similar research area to those reviewed in Fan (2005). Finally,113

the current paper reviews semiparametric models with nonstationary data. However, the114

focus of this review is quite different to that of Sun and Li (2012). Since the issues of115

semiparametric models with nonstationary data is such a large area of research, which in116

itself warrants a separated review, the current review focuses mainly on (i) semiparamet-117

ric models that have been established to help detect and estimate trend and seasonality,118

and (ii) semiparametric models involved both endogeneity and nonstationarity.119

In summary, the logic of this paper can be described metaphorically as a domino-effect120

as follows. The first point of impact is on nonlinear time series analysis. The second,121

third and the fourth dominoes to fall are the curse of dimensionality, the semiparametric122

time series models and their specification testings, respectively. The fifth is the required123

conditions shared by these popular semiparametric models, namely the exogeneity of124

the error term and stationarity of the time series. The stationarity condition can then125

be linked to the respecification of the semiparametric time series models to construct126

nonlinear autoregressive time series models. Furthermore, addressing the breakdown in127

the exogeneity condition leads to the emergence of semiparametric models with generated128

regressors, while addressing the breakdown in the stationarity leads to semiparametric129

models of nonstationary data.130

The remainder of this paper is structured as follows. Section 2 discusses semipara-131

metric models for time series, while Section 3 considers some specification tests for these132

models. Section 4 discusses nonlinear autoregressive models and their specification test-133

ing. Section 5 reviews the endogeneity problem in semiparametric time series models134

and models with generated regressors. Section 6 discusses semiparametric models with135

nonstationary data. Section 7 concludes and presents a discussion on future research.136
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2. Semiparametric Models for Time Series137

This section discusses various issues involving the estimation and identification of three138

of the most well known and successfully applied semiparametric time series regression139

models in the literature, namely the PL, additive and the single-index models. Below, let140

us begin with the semiparametric PL time series models.141

Partially Linear Semiparametric Model for Time Series142

Since their introduction to economic literature in the 1980s by Engle et al. (1986), the PL143

model has attracted much attention among econometricians and applied statisticians; see144

Heckman (1986), Robinson (1988), Fan et al. (1995), Härdle et al. (2000) and Gao (2007)145

for example. In some empirical studies, the PL model is able to help avoid the impact146

of the curse of dimensionality by allowing a priori information concerning the possible147

linearity of some of the components to be included in the model. More specifically, the148

PL models look at approximating the conditional mean function m(Xt) = m(Ut, Vt) =149

E[Yt|Ut, Vt] by a semiparametric function of the form:150

m1(Ut, Vt) = µ+ U τ
t β + g(Vt) (2.1)

such that E[Yt − m1(Ut, Vt)]
2 is minimized over a class of semiparametric functions of151

the form m1(Ut, Vt) subject to E[g(Vt)] = 0 for the identifiability of m1(Ut, Vt), where µ152

is an unknown parameter, β = (β1, . . . , βq)
τ is a vector of unknown parameters, g(·) is153

an unknown function over Rp, and Ut = (Ut1, . . . , Utq)
τ and Vt = (Vt1, . . . , Vtp)

τ may be154

vectors of time series variables. Such a minimization problem is equivalent to minimizing155

E[Yt − µ − U τ
t β − g(Vt)]

2 = E [E {(Yt − µ− U τ
t β − g(Vt))

2|Vt}] over some (µ, β, g). This156

implies that g(Vt) = E[(Yt − µ− U τ
t β)|Vt] and µ = E[Yt − U τ

t β], with β being given by:157

β = Σ−1E[(Ut − E[Ut|Vt])(Yt − E[Yt|Vt)], (2.2)

provided that the inverse Σ−1 = (E[Ut − E[Ut|Vt])(E[Ut − E[Ut|Vt])τ ])−1 exists. This158

also shows that m1(Ut, Vt) is identifiable under the assumption of E[g(Vt)] = 0. Some159

important motivations for using the functional form in (2.1) for both independent and160

time series data analysis can be found in Härdle et al. (2000). Based on an i.i.d. random161

sample, it has been shown that the parameter vector β in various versions of (2.1) can be162

consistently estimated at
√
n-rate, see Heckman (1986), Robinson (1988) and Fan et al.163

(1995), for example. For dependent processes, traditionally such a result is established164

under a set of somewhat more stringent conditions, e.g. the independence between {Ut}165

and {Vt}, as in Truong and Stone (1994). On the other hand, Fan and Li (1999b) extend166
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the
√
n-consistency and asymptotic normality results of Robinson (1988) and Fan et al.167

(1995) for independent observations to a strictly stationary, absolutely regular β-mixing168

processes under a similar set of conditions. However, these results are not applicable to a169

weaker condition of strong mixing processes and the case where p > 3.170

Although the PL specification can reduce the dimensionality of nonparametric time171

series regression significantly in some cases, it is also true that the PL time series model in172

(2.1) may still suffer from the curse of dimensionality when g(·) is not necessarily additive173

and p ≥ 3. A method of addressing such an issue in the literature is to establish an174

effective model selection procedure to ensure that both the linear and the nonparametric175

components of the model are of the smallest possible dimension. Gao and Tong (2004),176

for example, propose using a semiparametric leave nv out cross-validation function for the177

choice of both the parametric and nonparametric regressors, where nv > 1 is a positive178

integer satisfying nv →∞ as the number observations expands to infinity. Although the179

details of the test can be found in the paper (see also Gao (2007)), let us note an important180

advantage of such a method which is the fact that it provides a general model selection181

procedure in determining asymptotically whether both the linear time series component182

and the nonparametric time series component are of the smallest possible dimension.183

Hence, it can help to reduce the impact of the curse of dimensionality arising from using184

nonparametric techniques to estimate g(·) in (2.1).185

Additive Semiparametric Model for Time Series186

When g(·) is additive, i.e. g(x) =
∑p

i=1 gi(xi), the form of m1(Ut, Vt) can be written as187

m1(Ut, Vt) = µ+ U τ
t β +

p∑
i=1

gi(Vti), (2.3)

subject to E[gi(Vti)] = 0, for all 1 ≤ i ≤ p, for the identifiability of m1(Ut, Vt) in (2.3),188

where gi(·) for 1 ≤ i ≤ p are all unknown one dimensional functions over R1. The main189

ideas of the discussion on the semiparametric additive model above can be taken from190

Gao et al. (2006), who established an estimation procedure for semiparametric spatial191

regression. The semiparametric kernel estimation approach, as discussed in Gao et al.192

(2006), involves a few important steps. The first step is to estimate µ and g(·) by assuming193

that β is known. Observe that under such an assumption, we have:194

g(x) = g(x, β) = E[Yt−µ−U τ
t β)|Vt = x] = E[(Yt−E[Yt]−(Ut−E[Ut])

τβ)|Vt = x], (2.4)

using the fact that µ = E[Yt]−E[U τ
t β], which can be estimated by the standard local linear195

estimation. (See, e.g. Fan and Gijbels (1996)) The second step is to apply the marginal196
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integration technique of Linton and Nielsen (1995) to obtain g1, . . . , gp of (2.3) based on197

g(Vt) = g(Vt1, . . . , Vtp) =
∑p

t=1 gl(Vtl). Since E[gl(Vtl)] = 0 for l = 1, . . . , p, we have, for a198

fixed value of k, gk(xk) = E[g(Vt1, . . . , xk, . . . , Vtp)]. Therefore, this method of estimating199

g(·) is based on an additive marginal integration projection on the set of additive functions,200

where the projection is taken with the product measure of Vtl, for l = 1, . . . p, unlike in the201

backfitting case of Nielsen and Linton (1998), and Mammen et al. (1999). Although the202

marginal integration technique is inferior to backfitting in asymptotic efficiency for purely203

additive models, it seems well suited to the framework of PL estimation; see also Fan et al.204

(1998), and Fan and Li (2003) for details. The third and final step involves the estimation205

of β using the weighted least squares estimator β̂ of β derived in (2.2). The estimation206

procedure is completed by reintroducing β̂ into the previous steps. For the independent207

data case, orthogonal series estimation has been used as an alternative to some other208

nonparametric estimation method, such as the kernel method (see Eubank (1999), for209

example). By approximating each gi(·) using an orthogonal series
∑ni

j=1 fij(·)θij with210

{fij(·)} being a sequence of orthogonal functions and {ni} being a sequence of positive211

integers, we have an approximate model of the form:212

Yt = µ+ U τ
t β +

p∑
i=1

ni∑
j=1

fij(Vti)θij + et. (2.5)

Model (2.5) covers some natural parametric time series models. For example, when Utl =213

Ut−l and Vti = Yt−i, model (2.5) becomes a parametric nonlinear additive time series214

model:215

Yt = µ+

q∑
l=1

Ut−lβl +

p∑
i=1

ni∑
j=1

fij(Yt−i)θij + et (2.6)

The least squares estimators of (β, θ, µ) can be derived using (2.5):216

β̂ = β̂(n) =
(
Û τ Û

)+
Û τ Ŷ , θ̂ = (F τF )+ F τ

(
Ỹ − Ũ β̂

)
, and µ̂ = Ȳ − Ū τ β̂, (2.7)

where217

θ = (θτ1 , . . . , θ
τ
p)τ , θi = (θi1, . . . , θini)

τ ,
218

F = (F1, F2, . . . , Fp), Fi = Fini = (Fi(V1i), . . . , Fi(Vni))
τ ,

219

Ū =
1

n

n∑
t=1

Ut, Ũ =
(
U1 − Ū , . . . , Un − Ū

)τ
, Ȳ =

1

n

n∑
t=1

Yt, Ỹ =
(
Y1 − Ȳ , . . . , Yn − Ȳ

)τ
,

220

P = F (F τF )+F τ , Û = (I − P )Ũ , Ŷ = (I − P )Ỹ , n = (n1, . . . , np)
τ

and where A+ deontes the Moore-Penrose inverse of A. A detailed discussion about the221

orthogonal series estimation method is available in Chapter 2 of Gao (2007).222
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(Extended Generalized) Single-Index Semiparametric Model223

Alternatively, we may approximate the conditional mean function, m(Ut, Vt), using a224

semiparametric function of the form:225

m2(Ut, Vt) = U τ
t θ + ψ(V τ

t η), (2.8)

where θ and η are unknown vector parameters and ψ(·) is an unknown function. A more226

general model, which has recently become available in the literature, is the semiparametric227

single-index model:228

m3(Xt) = Xτ
t θ + ψ(Xτ

t η), (2.9)

where {Xτ
t } is a stationary and α-mixing sequence with a mixing coefficient α(k) = O(ck)229

for some large enough 0 < c < 1. Xia et al. (1999) refer to the functional form in (2.9) as230

the extended generalized partially linear single–index (EG–PLSI) model.231

Assumption 2.1. Suppose that Xτ
t θ+ψ(Xτ

t η) can be written as Xτ
t (θ+ cη) +ψ(Xτ

t η)−232

cXτ
t θ such that all the roots of the function xd− (θ1 + cη1)x

d−1− . . .− (θd+ cηd) are inside233

the unit circle. Moreover, suppose that lim
|u|→∞

|ψ(u)/u| = 0.234

In this case, the geometrical ergodicity of {Yt} is ensured under the conditions stated235

in Assumption 2.1. (See Theorem 3 of Xia et al. (1999) for details.) Furthermore, in236

order to ensure the estimatability of the model, it must also be the case that θ and η are237

perpendicular to each other with ‖η‖ = 1 and the first nonzero element must be positive.238

Now, let us define the following:239

S(θ,η) = E[Yt − ϕη(X
τ
t η)− {Xt − Γη(X

τ
t η)}τθ]2, (2.10)

where ϕη(u) = E[Yt|Xτ
t η = u] and Γη(u) = E[Xt|Xτ

t η = u], and W(η) = E[{X −240

Γη(X
τ
t η)}{X−Γη(X

τ
t η)}τ ] and V(η) = E[{X−Γη(X

τ
t η)}{Yt−ϕη(X

τ
t η)}. Xia et al. (1999)241

show that the minimum point of S(θ,η) with θ ⊥ η is unique at η and θ = {W(η)}+V(η),242

where {W(η)}+ is the Moore–Penrose inverse.243

To estimate the model, Xia et al. (1999) introduce an estimation procedure, which is244

a semiparametric extension of the one introduced in Härdle et al. (1993) for a nonpara-245

metric single-index model. The procedure consists of four important steps as follows: (i)246

Compute the estimate θ̂η of θ given η and the delete-one estimators of ϕη and Γη. Let Θ247

denote all the unit vectors in Rp. (ii) Estimate η ∈ Θ and the bandwidth, h, using those248

values η̂ and ĥ that minimize Ŝ(η, h) (an estimate of S(θ,η)), where θ is replaced by θ̂η,249

and ϕη and Γη(·) are replaced by their nonparametric estimators; (iii) Re-estimate θ as in250
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the first step, but with η being replaced by η̂; (iv) Estimate ψ(·) using the nonparametric251

kernel estimates and the fact that ψ(x) = ϕ(x)− θΓ(x).252

In order to illustrate the statistical validity of such an estimation procedure, the253

following asymptotic results are established:254

(i)
√
n-consistency255

ñ
(
θ̂ − θ

)
→ N(0,C+) and ñ (η̂ − η)→ N(0,D+) (2.11)

in distribution, where ñ is the number of elements in A ⊂ R, i.e. the union of a number256

of open convex sets such that f(x) > M for some constant M > 0, and C+ and D+ are257

some positive, finite constants; see also the corollary in page 836 of Xia et al. (1999);258

(ii) Uniform convergence, where, almost surely:259

sup
v∈{xτη : x∈A}

∣∣∣ψ̂η̂(v)− ψ(v)
∣∣∣ = O

{
(n−4/5 log n)1/2

}
. (2.12)

See also Theorem 5 of Xia et al. (1999).260

These results warrant a few remarks. The asymptotic normality is a direct extension261

of the one presented in Härdle et al. (1993), but under α-mixing and a larger parameter262

cone Ωn such that Ωn = {η : ||η− η|| ≤Mn−δ} for some constant M, where 3
10
< δ < 1

2
.263

The proof of such results is made possible using a decomposition of Ŝ into various parts264

as follows.265

Xia et al. (1999) derive the decomposition of Ŝ(η, h) into a few important terms (see266

Theorem 4 of the paper). While one of these is shown to be o(1), the remaining are:267

S̃(η) =
∑
Xt∈A

{yt −Xτ
t θη − ψ(Xτ

t η)}2 and T (h) =
∑
Xt∈A

{ψ̂η(Xτ
t η)− ψ(Xτ

t η)}2, (2.13)

where {yt} is a stationary and α-mixing process. Such a result suggests that estimating268

the EG-PLSI model can also be done in iterative steps, such as: (i) estimating h given an269

initial estimator of η, e.g. η̌; (ii) update η̌ using ȟ from the previous step; (iii) repeat the270

first two steps. In this setting, since it is clear that Step (i) is simply an estimation of a271

PL model for time series, such a result highlights a close connection between the PL and272

the EG-PLSI models.273

Finally, some basic modifications to the formulation of the models bring about various274

special cases, which are well-known in the literature. For instance, if θ = 0, (2.9) reduces275

to:276

m4(Xt) = ψ(Xτ
t η), (2.14)

which is the single index model discussed in Härdle et al. (1993). Furthermore, by par-277

titioning Xt = (U τ
t , V

τ
t )τ and by taking θ = (βτ , 0, . . . , 0)τ and η = (0, . . . , 0, ατ )τ , the278

9

Electronic copy available at: https://ssrn.com/abstract=2180598



EG–PLSI model becomes the generalized partially linear single-index (G–PLSI) model279

introduced by Carroll et al. (1997) of the form280

m5(Xt) = U τ
t θ + ψ(V τ

t α), (2.15)

which is a special case of the multiple-index model of Ichimura and Lee (1991).281

In the next section, let us review some useful procedures for testing the semiparametric282

specifications of these time series models.283

3. Some Specification Tests for Semiparametric Models284

In this section, we focus first on tests for a semiparametric (either PL or single-index)285

form against a nonparametric form. We then introduce the corresponding PL model to286

the EG-PLSI model in order to, finally, discuss testing a linear regression model against287

a semiparametric model.288

Specification Tests for Semiparametric vs. Nonparametric Form289

Most nonlinear time series specification tests, discussed in the literature, concentrate290

mainly on testing either:291

Nonparametric model: yt = m(Xt)+et or Single-index model: yt = ψ(Xτ
t η)+et, (3.1)

where {Xt} is a sequence of strictly stationary time series variables. As we will discuss292

below, these tests can be conveniently adopted to hypothesis testing in the semiparametric293

time series models discussed above.294

Based on the nonparametric model in (3.1), Gao and Gijbels (2008) discuss a non-295

parametric testing procedure to test hypotheses of the form:296

H01 : m(x) = mθ0(x) versus H11 : m(x) = mθ1(x) + Cn∆n(x) for all x ∈ Rd,

where both θ0 and θ1 ∈ Θ are unknown parameters, Θ is a parameter space of Rd, Cn297

is a sequence of real numbers and ∆n(x) is a sequence of nonparametrically unknown298

functions over Rd, such that model (3.1) becomes a semiparametric time series model of299

the form:300

yt = mθ0(Xt) + et (3.2)

under H01. Gao and Gijbels (2008) assume that {Xt} is strictly stationary and α-mixing,301

with the mixing coefficient defined by302

α(t) = sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Ωs

1, B ∈ Ω∞s+t
}
≤ Cαα

t
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for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants and Ωj
i denotes the303

σ-field generated by {Xk : i ≤ k ≤ j}.304

Prior to Gao and Gijbels (2008), Härdle and Mammen (1993) suggest that one way of305

establishing the nonparametric kernel test statistic for such hypothesis is to do so based306

on the L2-distance function:307

M1n(h) = nh
d
2

∫ {
m̂h(x)− m̃θ̂(x)

}2
w(x)dx, (3.3)

where w(x) is some non-negative weight function, m̂h(x) is the nonparametric kernel308

estimator of m(·) defined by:309

m̂h(x) =

∑n
t=1Kh(x−Xt)yt∑n
t=1Kh(x−Xt)

(3.4)

and m̃θ̂(x) is its parametric counterpart:310

m̃θ̂(x) =

∑n
t=1Kh(x−Xt)mθ̂(Xt)∑n

t=1Kh(x−Xt)
, (3.5)

where θ̂ is a
√
n-consistent estimator of θ0. Recently, a number of studies derived the311

nonparametric test statistics based on a modified version of the L2-distance function in312

(3.3)). An example is the work by Horowitz and Spokoiny (2001), who used a discrete313

approximation to M1n(h) of the form314

M2n(h) =
n∑
t=1

(
m̂h(Xt)− m̃θ̂(Xt)

)2
, (3.6)

where {Xt} is only a sequence of fixed designs. They also considered a multiscale nor-315

malized version of the form:316

M2n = max
h∈Hn

M2n(h)− M̂n(h)

V̂n(h)
, (3.7)

where Hn is a set of suitable bandwidth:317

M̂n(h) =
n∑
t=1

(
n∑
s=1

Wh(Xs, Xt)

)
σ̂2
n(Xt)

and:318

V̂ 2
n (h) = 2

n∑
s=1

n∑
t=1

(
n∑
`=1

Wh(X`, Xt)

)2

σ̂2
n(Xs)σ̂

2
n(Xt),
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where Wh(·, Xt) = Kh(·−Xt)∑n
u=1Kh(·−Su)

and σ̂2
n(Xs) is a consistent estimator of the variance319

function σ2
n(Xt) = E[e2t ]. They then show that M2n is asymptotically consistent with an320

optimal rate of convergence for hypothesis testing.321

An alternative approach employed by Gao and Gijbels (2008) is to consider a different322

type of distance function for the nonparametric kernel test statistic. In order to discuss323

this method, let us first rewrite the nonparametric model into a notational version so324

that, under the H0, we have:325

Y = mθ0(X) + e, (3.8)

where X is assumed to be random, θ0 is the true value of θ under H0 and E[e|X] = 0. In326

this case, the distance function employed can be written as follows:327

E[eE(e|X)π(X)] = E[(E2(e|X))π(X)], (3.9)

where π(·) is the marginal density function of X. In order to establish the asymptotic328

distribution of their test statistic, Gao and Gijbels (2008) suggested studying asymptotic329

distribution and proposing an Edgeworth expansion for the quadratic form of the following330

type:331

Rn(h) =
n∑
s=1

n∑
t=1

esφn(Xs, Xt)et, (3.10)

where φn(·, ·) may depend on n, the bandwidth h and the kernel function K. This is332

because, to derive the test statistic, they are able to use a normalized kernel-based sample333

analogue of (3.9) of the form334

L1n(h) =
h
d
2

n

n∑
s=1

n∑
t=1

êsKh (Xt −Xs) êt, (3.11)

where êt = yt −mθ̂(Xt), which turns out to be simply the leading term of the quadratic335

form in (3.10). In order to proceed, let us now define the following:336

L̂1n(h) =
L1n(h)− E[L1n(h)]√

var[L1n(h)]
. (3.12)

For each given h, we may also define a stochastically normalized version of the form337

L̄1n(h) =

∑n
s=1

∑n
t=1,6=x êsKh(Xs −Xt)êt√

2
∑n

s=1

∑n
t=1 ê

2
sKh(Xs −Xt)ê2t

. (3.13)

Furthermore, it has been shown in Gao (2007), and Gao and Gijbels (2008) that we have:338

L̄1n(h) = L1n(h) + oP (1) (3.14)
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for each given h. Hence, we may use the distribution of L̄n(h) to approximate that of339

L̂n(h). Since the main objective of the research in Gao and Gijbels (2008) is to propose a340

suitable selection criterion for the choice of h (such that while the size function is appro-341

priately controlled, the power function is maximized at this h), they also give Edgeworth342

expansions of both the size and power functions of the test. Nonetheless, instead of dis-343

cussing these in detail here, we suggest that interested readers should consult Section 3344

of Gao and Gijbels (2008).345

In this review, let us proceed with hypothesis testing of the semiparametric time346

series specifications. We will begin with the corresponding hypothesis testing for the PL347

regression:348

H02 : m(x) = uτβ + g(v) versus H12 : m(x) = uτβ + g(v) + Cn∆n(x) for all x ∈ Rd,

where Cn and ∆n(·) are as defined previously, and u and v are subvectors of x = (uτ , vτ )τ .349

In this case, the test statistic can be written as:350

L2n(h) =
n∑
s=1

n∑
t=1

ŷsK

(
Xs −Xt

h

)
ŷt, (3.15)

where ŷs = ys − U τ
s β̂ − ĝ(Vs), β̂ = (Ũ τ Ũ)+Ũ τ ỹ, ĝ(Vs) =

∑n
t=1w2st(yt − U τ

t β̂), Ũ =351

(I −W2)U, U = (U1, . . . , Un)τ , ỹ = (I −W2)Y and W2 = {w2st} is a n × n matrix such352

that w2st =
K2(Vs−Vth )∑n
u=1K2(Vs−Vuh )

with K2(·) being a kernel function. Some existing results for353

a similar test statistic to L2n(h) as defined in (3.15) can be found in, for example, Fan354

and Li (1996) and Fan and Li (1997) (see also the detailed review of Fan and Li (1997)355

below).356

Fan and Li (1996) consider a consistent test for a PL model where {U τ
t , V

τ
t }nt=1 is357

a set of n i.i.d. observations on {U τ , V τ}τ with U being p × 1 and V being the q × 1358

regressors. Nonetheless, there are two useful results in the literature that may enable359

an extension of Fan and Li (1996) procedure to hypothesis testing in time series data,360

namely the Central Limit Theorem (CLT) established in Fan and Li (1999a) and the361

√
n-consistent estimation of partially linear time series models in Fan and Li (1999b).362

Together, these two results can be used in the generalization of the consistent test of Fan363

and Li (1996) for testing a PL model versus a nonparametric regression model in the time364

series framework. This work is done by Li (1999). An important issue that should be365

noted is the dependence structure assumed. Fan and Li (1999a), Fan and Li (1999b), and366

Li (1999) considered absolutely regular (β-mixing) processes (though it is well known that367

such absolute regularity is stronger than strong mixing). This is because their method368

of mathematical proof relied on an inequality for β-mixing processes due to Yoshihara369
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(1976), which was not available for α-mixing. However, there are other recent works that370

studied PL models of α-mixing processes, such as Gao and Yee (2000), and Härdle et al.371

(2000).372

With regard to the semiparametric single-index model, as a natural extension to the373

above tests, we may consider testing374

H03 : m(x) = uτβ+ψ(xτη) versus H13 : m(x) = uτβ+ψ(xτη) +Cn∆n(x) for all x ∈ Rd,

where both θ and η are vectors of unknown parameters, and ψ(·) is an unknown function.375

In this case, the test statistic can be written, similar to (3.15), as:376

L3n(h) =
n∑
s=1

n∑
t=1

ỹsK

(
(Xs −Xt)

τ η̂

h

)
ỹt, (3.16)

where θ̂, η̂ and ψ̂(·) are consistent estimators discussed previously, and we have:377

ỹt =
(
yt − U τ

t β̂ − ψ̂(Xτ
t η̂
)
f̂3(X

τ
t η̂),

in which f̂3(X
τ
t η̂) = 1

h

∑n
t=1K

(
(Xs−Xt)τ η̂

h

)
.378

Specification Test for Linear Regression vs. a Semiparametric Form379

For the case where {Xt} is a vector time series regressor and g(·) is an unknown function380

defined on Rp (where 1 ≤ p ≤ 3), an attempt is made in the work of Gao (2012) to extend381

the semiparametric PL models in (2.1) to the semi-linear (SL) model of the form382

m6(Xt) = µ+Xτ
t β + g(Xt), (3.17)

which is a direct counterpart of the EG–PLSI model in (2.9), where the SL model has383

different motivations and applications from the conventional semiparametric time series384

model presented in (2.1) as follows: (i) In (3.17), the linear component in many cases385

plays the leading role, while the nonparametric component behaves like a type of unknown386

departure from such classic linear model. In order to establish the empirical support for387

such a condition, Gao (2012) uses the SL model to investigate time series properties of388

quarterly consumer price index numbers of 11 classes of commodities for eight Australian389

capital cities between 1994 and 2008. The author has found that linearity remains the390

leading component of the trending component of the consumer price index data. (ii) The391

SL model can be motivated as a model to address some endogenous problems involved392

in a class of linear models of the form Yt = Xτ
t β + εt, where {εt} is a sequence of errors393

with E[ε] = 0 but E[εt|Xt] 6= 0, i.e. it might be the case that εt = g(Xt) + et, where et is394
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an i.i.d. error. Unfortunately, in the process of estimating β and g(·), existing methods395

are not directly applicable, especially given the fact that Σ = (E[Ut − E[Ut|Ut])(E[Ut −396

E[Ut|Ut])τ ]) = 0. To this end, Gao (2012) studies the estimation of the SL model and397

its asymptotic properties in two different contexts, namely (i) where {Xt} is a vector of398

stationary time series regressors; (ii) where {Xt} is stochastically nonstationary.399

In the following, we focus first on the case of stationary time series regressors, while400

the case of nonstationary regressors will be considered later. In this case, essential as-401

sumptions are the identifiability and the smallness conditions of g(·).402

Assumption 3.1. (Assumption 2.1(i) of Gao (2012)) Let g(·) be an integrable function403 ∫
||x||i|g(x)|idF (x) ≤ ∞

for i = 1, 2 and
∫
xg(x)dF (x) = 0, where F (x) is the cumulative distribution function of404

{Xt} and || · || denotes the conventional Euclidean norm.405

Under such conditions, the parameter β is identifiable and chosen such that E[Yt −406

Xτ
t β]2 is minimized over β, which implies β = (E[X1X

τ
1 ])−1E[X1Y1], provided that the407

inverse matrix exists. Such a definition of β suggests that
∫
xg(x)dF (x) = 0, so β can be408

estimated by the ordinary least squares estimator of the form:409

β̂ =

(
n∑
t=1

XtX
τ
t

)−1( n∑
t=1

XtYt

)
such that ĝ(x) =

n∑
t=1

wnt(x)
(
Yt −Xτ

t β̂
)
, (3.18)

where wnt(x) is a probability (kernel) weight function. Gao (2012) then establishes the410

asymptotic normality of such estimators. Nonetheless, the full proof of such results is not411

shown, since it is a straightforward result of the central limit theorems for partial sums412

of stationary and α-mixing time series; see Fan and Yao (2003), for example.413

To this end, an existing hypothesis testing procedure that can be used to determine414

whether g(·) is small enough to be negligible, is that developed by Gao (1995). The null415

hypothesis in this case is H0 : g(·) = 0, while the asymptotic distribution of the test416

statistic is derived as417

L̂1n =

√
n

σ̂1

(
1

n

n∑
t=1

(
Yt −Xτ

t β̂
)2
− σ̂2

0

)
D→ N(0, 1), (3.19)

where σ̂2
1 and σ̂2

0 are consistent estimators of σ2
1 = E[e41]−σ4

0 and σ2
0 = E[e21], respectively.418

Finally, let us note that the EG–PLSI model discussed in the previous section can419

always be used for the case where p ≥ 4. For the sake of convenience and clarity, we will420

leave the discussion on the case of a nonstationary time series to a later section.421
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In the next section, let us shift our attention to a number of nonlinear autoregressive422

models that can be derived based on the semiparametric models defined above and their423

specification testing in practice.424

4. Nonlinear Autoregressive Models and Their Specification Testing425

Since the focus of the current review is on time series, it is important that we also426

discuss the re-specification of the semiparametric models in the previous section to form427

semiparametric autoregressive models and their specification testing.428

If the observations are allowed to be taken over time, then the above mentioned semi-429

parametric models give rise to a number of well-known nonlinear autoregressive models430

discussed in the literature as follows:431

(i) A similar partitioning of Xt to that of (2.1) such that Ut = (Yt−c1 , Yt−c2 , . . . , Yt−cp)
τ

432

and Vt = (Yt−d1 , Yt−d2 , . . . , Yt−dp)
τ , where ci 6= dj for all 1 ≤ i ≤ p and 1 ≤ j ≤ q, giving433

rises to the autoregressive semiparametric PL additive model discussed in Gao and Yee434

(2000). Gao and Yee (2000) found that the PL regression is more appropriate than a435

completely nonparametric autoregression for the Canadian lynx data, which comprises of436

the annual record of the number of lynx trapped in the MacKenzie River district in the437

Canadian Northwest Territories from 1821 to 1934.438

(ii) The autoregressive single–index model discussed in Xia et al. (1999) is obtained439

simply by letting Xt = (Yt−1, Yt−2, . . . , Yt−p)
τ in (2.9). Using the projection pursuit440

method to investigate the autoregressive process of sunspot numbers in a year, Xia et al.441

(1999) found some strong empirical evidence in support of such a model. Furthermore, a442

specification test of linearity can be developed based on the fact that statistical insignif-443

icance of the nonlinear component signals the superiority of a linear model. To see this,444

let us write an autoregressive EG-PLSI model in the form:445

yt = βτXt + φ(ητXt) + εt, (4.1)

where Xt = (yt−1, yt−2, yt−3)
τ . Such a specification can be tested against a linear regressive446

model through testingH0 : φ(u) ≡ 0. Xia et al. (1999) suggested that the testing procedure447

can be developed based on the method discussed in Xia (1998). In their empirical analysis448

of the shape-invariant Engel curves in Australia, Kim et al. (2013) follow this suggestion449

and construct the Bonferroni-type variability bands in order to determine the statistical450

significance of, for example, φ(·).451

(iii) Another useful alternative is to establish an autoregressive SL model. In this case,452

the process {Yt} is stochastically stationary and α-mixing under the following conditions:453

16

Electronic copy available at: https://ssrn.com/abstract=2180598



Assumption 4.1. (Assumption 4.1 of Gao (2012)) (i) β = (β1, . . . , βp)
τ satisfy Y p −454

β1Y
p−1 − . . . − βp−1Y − βp 6= 0 for any |Y | ≥ 1; (ii) g(X) is bounded on any bounded455

Borel measurable set and satisfy g(X) = o(||X||) as ||X|| → ∞, where || · || denotes the456

conventional Euclidean norm.457

In this case, the test statistic described in (3.19) above can be used to test a linear autore-458

gressive model against a semiparametric alternative. Clearly, this is the corresponding459

test to that in Xia et al. (1999) above.460

In order to provide a brief background and introduction into issues surrounding the461

specification testing of the autoregressive semiparametric models, let us first consider the462

following general autoregressive model of a finite order p:463

Yt = g(Yt−1, . . . , Yt−p) + εt, (4.2)

where the autoregressive function g is unknown and {εt} is a sequence of martingale464

differences. The process {Yt} is absolutely regular with a coefficient φτ = O(ρτ ), where ρ465

is a constant 0 < ρ < 1. One of the first natural steps in the analysis of time series is to466

decide whether to use a nonlinear model. For convenience, we let Xt = (Yt−1, . . . , Yt−p)
τ

467

so that we observe X1, . . . , Xn+1. To this end, Fan and Li (1997) establish a consistent468

nonparametric test for the linearity of AR(p) models. In terms of Xt, the hypotheses can469

be written as:470

H03 : P (g(Xt) = ατXt) = 1 and H13 : P (g(Xt) = ατXt) < 1 (4.3)

for some α ∈ (−1, 1)p and for all α ∈ (−1, 1)p, respectively. If the null hypothesis holds,471

then the ordinary least squares estimator α̂, for example, provides a consistent estimator472

of α. Furthermore, by letting ε̂t = Yt − α̂τXt, the test statistic of Fan and Li (1997) is473

based on the kernel estimate of the sample analogue of E[εtE(εt|Xt)f(Xt)], i.e.:474

In =
1

n(n− 1)hp

∑∑
s 6=t

ε̂tε̂sKst, (4.4)

where h ≡ hn → 0 is a sequence of smoothing parameters, Kst = K((Xs−Xt)/h), K(·) is475

a kernel function satisfying certain conditions and
∑∑

s 6=t =
∑n

s=1

∑n
t6=s,t=1 . Under the476

null hypothesis, it is the case that ε̂t = εt− (α̂−α)τXt so that the asymptotic distribution477

of In is determined by that of nhp/2In1, where478

In1 =
1

n(n− 1)hp

∑∑
s 6=t

εtεsKst. (4.5)
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To this end, Fan and Li (1997) derive the asymptotic normality of nhp/2In1 by invoking on479

the CLT for degenerate U-statistics of absolutely regular processes of Khashimov (1993).480

In addition, Fan and Li (1999a), focus on one of the conditions in Khashimov (1993)481

which requires the error term εt to bounded and to provide a new CLT that can be used482

to relax such a boundedness. (Note that in the model specification testing introduced in483

Fan and Li (1999a) the error term is defined instead as Yt − g(Xt, γ) to reflect the null484

hypothesis which involves a specific parametric family.)485

In the previous sections, we have noted results in the literature which suggested a486

close connection between the semiparametric models reviewed above. Another important487

feature that these models share is their intolerance of the endogeneity of the error term488

in order to obtain consistent estimates of the models. In the following section, we review489

the literature on the endogeneity problem in semiparametric models and a few methods490

of dealing with it. It will soon be clear that these can be directly related to studies of491

model estimation with generated regressors.492

5. Endogeneity and Semiparametric Models with Generated Regressors493

As noted previously, consistent estimation of the above mentioned PL and EG-PLSI494

models for time series relies on the exogeneity of the error term with respect to both the495

parametric and nonparametric regressors. The breakdown of such a condition is famously496

known in the literature as the endogeneity problem (see Blundell and Powell (2003), for497

example). Let et (for t = 1, 2, . . . , n) form a sequence of i.i.d. random errors with a mean498

of zero and a finite variance of σ2, so that the PL model for time series can be written as:499

yt = µ+ U τ
t β + g(Vt) + et. (5.1)

An important assumption, which is required to ensure the consistent estimation of β500

and g(·), is the exogeneity of the error term with respect to both the parametric and501

nonparametric regressors, mathematically described as E[e|U = u] = 0 and E[e|V = v] =502

0. Such an exogeneity condition is also needed for the EG-PLSI model:503

yt = Xτ
t θ + ψ(Xτ

t η) + et, (5.2)

where, in this case, it is necessary that E[e|Xτη = v] = 0. Kim and Saart (2013), and504

Kim et al. (2013) discuss in detail a set of simulation exercises to illustrate the seriousness505

of the impacts of endogeneity problem in semiparametric regression models.506

While Kim and Saart (2013) attempted to address the endogeneity problem in the507

PL model, Kim et al. (2013) did so for the EG-PLSI model. In principle, the methods508

18

Electronic copy available at: https://ssrn.com/abstract=2180598



considered in Kim and Saart (2013) closely followed the logic of Robinson’s (1988) two-step509

estimation procedure mentioned previously, i.e. first obtaining consistent estimators of510

the unknown parameters and then using them in order to identify an unknown structural511

function. If the parametric regressors are exogenous, then the least-squares estimators of512

the parametric parameters are consistent. Otherwise, if parametric endogeneity is present,513

then the parametric instrumental variable (PIV) estimation can be used. The consistency514

of the parametric estimators is important not only in its own right but also for identifying515

an unknown nonlinear function, g(·).516

The presence of nonparametric endogeneity can induce further complication in the517

identification of the unknown function. There are two alternative methods in the literature518

which may be helpful in identifying the unknown function in such a case, namely the519

nonparametric instrumental variable (NpIV) estimation and the control function (CF)520

approach. Newey and Powell (2003), Hall and Horowitz (2005), and Darolles et al. (2011)521

developed the NpIV estimation for a pure nonparametric model, while Ai and Chen (2003)522

did so for semiparametric models, which included the PL model as a special case. One523

of the difficulties with using NpIV estimation resides in the well-known ill-posed inverse524

problem; see O’Sullivan (1986), for example. To overcome such an obstacle, Ai and525

Chen (2003) based their estimation on a complex sieve estimation under some regularity526

conditions on the inversion matrix and a constraint on the space of the reduced relation527

to keep it compact. On the other hand, Newey et al. (1999) and Pinkse (2000) considered528

the CF approach in a pure nonparametric model, while Blundell and Powell (2004) did529

so for a special case of a single index model, i.e. a case where only the discrete dependent530

variable was considered. With regard to the nonparametric estimation employed, Newey531

et al. (1999) and Pinkse (2000) relied on series approximation, while Su and Ullah (2008)532

used the local polynomial estimation of Fan and Gijbels (1996). Blundell and Powell533

(2004), on the other hand, relied on the local constant kernel estimation method.534

Kim and Saart (2013) addressed nonparametric endogeneity in the estimation and535

inference of the PL model in a simple but widely-used framework of nonparametric si-536

multaneous equations, specifically a nonparametric triangular model. Although the full537

details can be found in the paper, let us discuss this briefly here. They considered the538

following model:539

y = x′β + g(v) + ε, (5.3)

where x may be either exogenous or endogenous, while v is endogenous. In addition, the540

following nonparametric reduced-form equation exists:541

v = mv(z) + η, (5.4)
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where z is a vector of the instrumental variables such that E(η|z) = 0 and E(ε|z, η) =542

E(ε|η) 6= 0. In order to identify and to estimate the structural function g(·), they take543

the CF approach, as in Newey et al. (1999), namely544

E(y|v, η) = E(x|v, η)′β + g(v) + ι(η), (5.5)

where the endogeneity (i.e. E(ε|η) = ι(η) 6= 0) is controlled by introducing an additional545

unknown function. This structure enabled Kim and Saart (2013) to write the model as546

a simple nonparametric additive structure and, therefore, to employ the local constant547

kernel estimation and the marginal integration technique of Linton and Nielsen (1995),548

and Tjøstheim and Austad (1996) to identify the unknown function. As discussed in Kim549

et al. (2013), this procedure can also be used to address an endogeneity problem in the550

EG-PLSI model for the time series of Xia et al. (1999).551

Nonetheless, this estimation procedure involves a generated regressor in the sense552

that an estimate of η must be used in estimating the conditional expectation in (5.5).553

In fact, there are many nonparametric and semiparametric models in econometrics that554

contain generated regressors. For example, Lewbel and Linton (2007) dealt with non-555

parametrically generated regressors when considering homothetically separable functions.556

Moreover, Newey et al. (1999) and Su and Ullah (2008) studied the nonparametric estima-557

tion of triangular simultaneous equation models. Li and Wooldridge (2002) considered the558

semiparametric estimation of PL models for dependent data with generated regressors. In559

a sense, Li and Wooldridge’s (2002) model can be seen as a special case of the regression560

model in (5.5). Let Wt = {Yt, U τ
t , St, Z

τ
t } be a stationary and absolutely regular process,561

i.e., as τ →∞:562

βτ = sup
s∈N

E

[
sup

A∈M∞s+τ
{|P (A|Ms

−∞(W))− P (A)|}

]
→ 0, (5.6)

where Mt
s(W) denotes σ(Ws, . . . ,Wt), the sigma algebra generated by (Ws, . . . ,Wt), for563

s ≤ t. Li and Wooldridge’s (2002) model can be written as:564

Yt = U τ
t β + g(ηt) + εt (5.7)

ηt = St − Zτ
t α (5.8)

such that E(εt|Ut, Zt, ηt) = 0 and E(ηt|Zt) = 0, where Ut is p×1, Zt is q×1, Yt and St are565

scalars, β and α are the vectors of unknown parameters, and g(·) is an unknown smooth566

function. The model can be modified so that nested within it are a nonlinear regression567

model and a Tobit–3 model. These modifications have been found to be very useful in568

practice. Bachmeier (2002), for example, applies a modified version of Li and Wooldridge’s569
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(2002) model, which is written in the form of a semiparametric error correction model, to570

investigate nonlinearity in the term structure; see also Galego and Pereira (2010) for an571

application of the model to labour economics.572

Overall, the model’s estimation procedure is similar to that introduced in Robinson573

(1988), which we discussed earlier. The only exception in this case is the fact that the574

parametric estimation of η, as defined in (5.8), is now required in the first step. Hence,575

the mathematical proof of the
√
n-consistency of the unknown parameters must rely576

on an assumption that a
√
n-consistent estimator of α exists. Compared to those in577

Robinson (1988), Li and Wooldridge (2002) have to impose slightly stronger moment and578

smoothness conditions on the regression, density and kernel functions. This is mainly579

because they have to use Taylor expansions in their proof to deal with the regressor ηt,580

which was initially generated parametrically.581

A similar generated regressor problem was also encountered by Saart et al. (2013)582

in order to develop their so–called semiparametric autoregressive conditional duration583

(SEMI–ACD) model. This is with an exception to the fact that, in their study, the584

unobservable regressor is computed semiparametrically based on an iterative estimation585

algorithm instead of using a linear regression as stated in (5.8). Saart et al. (2013) first586

derived the uniform consistency of the estimation algorithm, then used the Taylor expan-587

sions (together with the uniform convergence rates for kernel estimation with dependent588

data derived in Hansen (2008)) in the proof to deal with the generated regressor. Below,589

let us discuss the SEMI-ACD model in more detail. Let Yt denotes financial duration, i.e.590

the waiting time between two consecutive financial events, associated with the t-th event.591

Engle and Russell (1998) develop the ACD model by assuming that592

Yt = ψtεt, (5.9)

where {εt} is an i.i.d. innovation series with non-negative support density p(ε;φ), in which593

φ is a vector of parameters and:594

ψt ≡
p∑
j=1

αjYt−j +

q∑
k=1

βkψt−k, (5.10)

where {ψt} denotes the process of conditional expectation, which summarizes the dynam-595

ics of the duration process. Suppose that the processes {Yt} and {ψt} are both strictly596

stationary and α-mixing with the mixing coefficients αx(n) and αψ(n) satisfying αx(n) ≤597

Cx q
n
x and αψ(n) ≤ Cψ q

n
ψ, respectively, where 0 < Cx, Cψ <∞ and 0 < qx, qψ < 1.598

The ACD model in (5.9) is considered by many to be too restrictive to take care of the599

dynamics of the duration process in practice. Furthermore, estimating the model requires600
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the imposition of a distributional assumption on εt, a requirement that is not popular in601

the literature; see Pacurar (2008) for an excellent review of the ACD literature. Saart602

et al. (2013) attempt to minimize impacts of such issues by introducing the SEMI–ACD603

model such that604

ψt ≡
p∑
j=1

γjYt−j +

q∑
k=1

gk (ψt−k) , (5.11)

where γj is an unknown parameter and gk(·) is an unknown function on the real line.605

Even though the above mentioned distributional assumption is not required to estimate606

these semiparametric models, a latency problem arises because the conditional duration607

(ψ) is not observable in practice.608

To estimate the model, the authors rely on an iterative estimation algorithm. For a609

special case of the model where p = q = 1, i.e. the so–called SEMI–ACD(1,1) model, the610

algorithm can be summarized as follows: Step 1: Choose the starting values for the vector611

of the n conditional durations. Index these values with a zero. Let {ψ̂t,0; 1 ≤ t ≤ n} satisfy612

ψ̂t,0 = ψt,0. Set m = 1. Step 2: Compute γ̂m and ĝh,m, by regressing {Yt; 2 ≤ t ≤ n}613

against {Yt−1; 2 ≤ t ≤ n} and the estimates of ψ computed in the previous step, i.e.614

{ψ̂t−1,m−1; 2 ≤ t ≤ n}. Step 3: Compute {ψ̂t,m; 2 ≤ t ≤ n}. Furthermore, use the average615

of {ψ̂t,m; 2 ≤ t ≤ n} as a proxy for ψ̂1,m, which cannot be computed recursively. Step616

4: For 1 ≤ m < m∗, where m∗ = O (log(n)) is the (pre-specified) maximum number of617

iterations, increment m and return to Step 2. At m = m∗, perform the final estimation618

to obtain the final estimates of γ and g.619

Saart et al. (2013) studied the asymptotic properties of such a procedure for the620

SEMI–ACD(1,1) model by first deriving the consistency of the estimation algorithm, i.e.621 ∣∣∣∣∣∣Ψ̂m −Ψ
∣∣∣∣∣∣

1e
≤ ∆1n(ψ̂) Cm(G) +Gm ∆2n(ψ), (5.12)

where 0 < G < 1, Ψ̂m = (ψ̂m+1,m, . . . , ψ̂n,m)τ and Ψ = (ψm+1, . . . , ψn)τ . Although the622

details are shown in Theorem 3.1 of the paper, let us simply note that while the first623

term on the right side of (5.12) converges to zero uniformly over all the possible values of624

the bandwidth, h, at the same rate as the mean squared error of a usual PL time series625

model, the limit of the second term is zero as m→ 0. Hence, m∗ in this case is selected so626

that the second term is bounded in probability by the first. Note that the proof of (5.12)627

requires the following contraction property on g.628

Assumption 5.1. (Assumption 3.1 of Saart et al. (2013)) Suppose that the function g629

on the real line satisfies the following Lipschitz type condition:630

|g(x+ δ)− g(x)| ≤ ϕ(x)|δ| (5.13)
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for each given x ∈ Sω, where Sω is a compact support. Furthermore, ϕ(·) is a nonnegative631

measurable function such that with probability one and for some 0 < G < 1:632

max
t≥1

E
[
ϕ2(ψt)|(ψt−1, · · · , ψ1)

]
≤ G2; max

t≥1
E
[
ϕ2(ψt,m)|(ψt−1,m−1, · · · , ψ1,1)

]
≤ G2.

The asymptotic normality of the least squares estimator of the unknown parameter is633

then proved using the Taylor expansions together with the convergence rates for kernel634

estimation derived in Hansen (2008). Saart et al. (2013) also showed that an extension635

of the SEMI–ACD(1,1) model to, for example, a SEMI–ACD(p,q) model, where q ≤ 3,636

is also possible without requiring an additional assumption. This is in the sense that the637

√
n-asymptotic normality of the relevant estimators still holds, provided that q ≤ 3. Such638

a claim is supported by the results found in Robinson (1988) and Fan and Li (1999b).639

Let us finish this section with discussion of some important issues on the use of the640

SEMI-ACD model in practice. Firstly, the construction of the ACD models is done under641

the assumption that the duration process is stationary. However, it is well known that642

intraday financial data often involve some strongly diurnal patterns. Hence, the first643

step toward the econometric analysis of financial duration is always to perform a diurnal644

adjustment.645

Figure 5.1. Diurnal Patterns of Financial Trading for Monday to Friday646
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Nonetheless, the remaining problems are other trading patterns, for example day of647

the week effects, that have not been taken care of. To illustrate the problem, let us648

consider Figure 5.1, which is a reproduction of Figure 7 of Meitz and Teräsvirta (2006).649

The figure presents the nonparametric kernel estimate of diurnal components of the price650

duration series for IBM for each of the trading days. The data are high-frequency data651

for IBM shares between July 2002 and December 2002. The results show a similar but652

not exactly identical inverted U-shaped pattern in the moving average of durations over653

the days. An idea, which is a work in progress, is to use the fact that the EG-PLSI model654

in (2.9) allows the nonparametric shape-invariant analysis (Härdle and Marron (1990))655

and to jointly model the regular components of the duration process without unpooling656

the data. We have applied the idea to the total number of daily hospital admissions of657

circulatory and respiratory patients in Hong Kong between 1994 to 1996, i.e. the data set658

originally used in Xia et al. (2002). Figure 5.2 below presents the estimated time trend659

taking day-effects into account (◦ Monday, 5 Tuesday, ×Wednesday, � Thursday and 4660

Friday). (Details of this work are available from the authors upon request.)661

Figure 5.2. Trend and Day-Effects for Hong Kong Patients662
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Finally, the SEMI-ACD model can potentially be used in various empirical studies of663

financial market microstructure. Saart and Gao (2012), for example, applied the SEMI-664

ACD model to model the intertemporal dynamics of the price change duration process665

in stock exchange markets. The probability distribution of the resulting estimates of the666

so-called standardized durations were then hypothetically tested in order to obtain some667

information about that of the true duration processes. Although the details can be found668

in the paper, it is noted here that the outcomes of the above mentioned test are different669

when it is implemented based on the SEMI-ACD model compared to when it is based670

on the parametric ACD model. Furthermore, a work in progress is being conducted in671

the use of the resulting standardized duration from the SEMI-ACD model to study the672

exogeneity of trade arrivals in the financial market (details of this work are available from673

the authors upon request).674

6. Semiparametric Models with Nonstationary Data675

Firstly, in this section we will review a number of semiparametric models, which have676

been established to help detect and estimate trend and seasonality. Furthermore, since677

we have discussed the endogeneity problem in semiparametric models in detail in the678

previous section, it will also be of particular interest to also review the estimation of679

semiparametric models that involves both endogeneity and nonstationarity.680

Semiparametric Detection and Estimation of Trend and Seasonality681

Many important macroeconomic and financial data, such as income, unemployment and682

retail sale, are found to exhibit deterministic/stochastic trends. The closest semipara-683

metric model to the PL model that explicitly allows for a trend detection is the PL time684

series error model introduced by Gao and Hawthorne (2006), of the form:685

Yt = U τ
t β + g

(
t

n

)
+ εt, t = 1, 2, . . . , n, (6.1)

where {Yt} is a response variable (e.g. the mean temperature series), Ut = (Ut1, . . . , Utq)
τ

686

is a vector of q-explanatory variables (e.g. the southern oscillation index), t is the time687

in years, β is a vector of unknown coefficients for the explanatory variables, g(·) is an688

unknown smooth function of time representing the trend and {εt} represents a sequence689

of stationary time series errors with E[et] = 0 and 0 < var[et] = σ2 < ∞. In order to690

estimate the model, Gao and Hawthorne (2006) introduce an estimation procedure, which691

is closely similar to that of the above mentioned PL time series model: (i) compute an692

estimate of g(·) for a given β, i.e. similar to the second term of (3.18); (ii) compute the693

25

Electronic copy available at: https://ssrn.com/abstract=2180598



least-squares estimate of β; (iii) compute the new estimate of g(·) based on that of β694

estimated in the previous step. Gao and Hawthorne (2006) also consider an alternative695

case where {εt} is allowed to be I(1). This is to say that {εt} itself may be nonstationary,696

but its differences δt = εt − εt−1 are assumed to be stationary. In this case, we need only697

to consider the first differenced version of (6.1) of the form698

Vt = W τ
t β +m

(
t

n

)
+ δt, t = 1, 2, . . . , n, (6.2)

where Vt = Yt − Yt−1, Wt = Ut − Ut−1, and m
(
t
n

)
= g

(
t
n

)
− g

(
t−1
n

)
.699

These models enable us to study an important issue in practice, which is to deter-700

mine whether a linear trend is able to approximate the behavior of the series in question701

adequately. Using the model in (6.1), such a problem can be written as the hypotheses702

H0 : g

(
t

n

)
= α0 + γ0t versus H1 : g

(
t

n

)
6= α + γt (6.3)

for some θ0 = (α0, γ0) ∈ Θ and all θ = (α, γ) ∈ Θ, where Θ is a parameter space in R2.703

Hence, this issue is coherent with the general interest in statistics and econometrics, which704

involves testing the hypotheses of a parametric form against a nonparametric alternative.705

Inspired by Horowitz and Spokoiny (2001), Gao and Hawthorne (2006) propose a novel706

test for linearity in the trend function g(·) under such semiparametric settings such as707

(6.1) and (6.2). For each given value of bandwidth h, to test H0, Gao and Hawthorne708

(2006) propose using the following:709

L4n(h) =

∑n
t=1

∑n
s=1, 6=tK

(
s−t
nh

)
ε̃sε̃t

S̃n
, (6.4)

where S̃2
n = 2

∑n
t=1

∑n
s=1K

2
(
s−t
nh

)
ε̃2sε̃

2
t , ε̃t = Yt − U τ

t β̃ − f(t, θ̃) in which f(t, θ̃) is the710

least-squares estimate of f(t, θ0).711

By applying the above method, Gao and Hawthorne (2006) shows that the trend esti-712

mate of the global temperature series for 1867 to 1993 appears to be distinctly nonlinear.713

Figure 5.3 below is a reproduction Figure 4 of Gao and Hawthorne (2006), which shows714

the global temperature series for 1867 to 1993 and the estimated trend. Furthermore,715

Gao and Hawthorne (2006) also consider the possible nonstationarity of the residuals in716

the models by applying the first differenced version of the model defined in (6.2). The hy-717

pothesis testing described in (6.3) and (6.4) is then employed. They report that a similar718

conclusion – rejecting the linearity in the trend – can be drawn by using either the level719

or differenced version of the data. Note that in order to perform a nonparametric kernel720

testing such as this, bandwidth selection can be crucial and may significantly affect the721
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outcome of the test. A novel idea about the testing procedure in Gao and Hawthorne722

(2006) is the use of a maximized version of the test such that:723

L∗ = max
h∈Hn

L4n(h). (6.5)

The main theoretical results of the paper show the consistency of such a test; see also Gao724

and King (2004), Gao and Gijbels (2008), and Saart and Gao (2012) for related works on725

nonparametric kernel testing and bandwidth selection.726

Figure 5.3. Global temperature series for 1867 to 1993 (light line) and the estimated trend (solid curve)727

More recently, there is a new semiparametric PL time series model has been developed728

by Chen et al. (2011). Although this model does not assist us with the dimension reduction729

problem, Chen et al. (2011) procedure provides a convenient estimation of the following730

extended version of the PL time series model:731

Yt = β(Ut, θ1) + g(Ut) + εt, (6.6)

where β(·, θ1) is the known link function indexed by an unknown parameter vector θ1 ∈732

Θ ⊂ Rp (p ≥ 1). An important point to note about the model in (6.6) is the fact that733

{Ut} is allowed to be generated by734

Ut = H

(
t

n

)
+ ut, (6.7)

where H(t) is unknown functions defined on Rd and {ut} is a sequence of i.i.d. random735

errors. In other words, it allows for the existence of deterministic trends in the regressors.736

Chen et al. (2011) studied a case where nonstationarity was allowed and was driven by737

a deterministic trending component. Regarding the model’s estimation procedure, Chen738

27

Electronic copy available at: https://ssrn.com/abstract=2180598



et al. (2011) provided two alternative methods, namely the nonlinear least squares (see739

Gao (1995) and Gao (2012) for example) and the semiparametric weighted least squares740

estimations (see Härdle et al. (2000) for example). Among these methods, the former741

first estimates θ1; such an estimate is then used in order to compute that of g(·), while742

the latter operates in just the reverse order. More important issues, however, are the743

identifiability and estimatability of the model. The following conditions are needed in744

Chen et al. (2011) in order to ensure that θ1 in (6.6) is identifiable and estimable.745

Assumption 6.1. (Assumption A2 of Chen et al. (2011)) (i) β(Ut, θ) is twice differen-746

tiable with respect to θ, and both g(·) and H(·) are continuous. (ii) Denoting the partial747

derivative of β(Ut, θ) with respect to θ by β̇(Ut, θ), then748

Γ(θ) :=
∫ 1

0

{∫
g(v)β̇(v, θ)pu(v −H(r))dv

}
dr = 0749

for all θ ∈ Θ and
∫ 1

0

{∫
[β(v, θ1)− β(v, θ)]β̇(v, θ)pu(v −H(r))dv

}
dr 6= 0 uniformly in750

θ ∈ Θ(δ) = {θ : ||θ − θ1|| ≤ δ} for any δ > 0.751

In addition, there is an alternative model that is closely related to (6.6), which is dis-752

cussed in Gao (2012). Unfortunately, due to the unavailability of the asymptotic results,753

the study focuses only on the case where p = 1. Gao’s (2012) model can be obtained sim-754

ply by replacing the parametric component with xtβ and the nonparametric component755

with g(xt), whereby the regressor is defined as in the assumption below.756

Assumption 6.2. (Assumption 3.2(i) of Gao (2012)) Let xt = xt−1 + ut with x0 = 0757

and ut =
∑∞

i=0 ψiηt−i, where {ηt} is a sequence of independent and identically distributed758

random errors, and {ψi : i ≥ 0} is a sequence of real numbers such that
∑∞

i=0 i
2|ψi| <∞759

and
∑∞

i=0 ψi 6= 0.760

The required smallness conditions on g(·) are provided for two cases: stationary and761

nonstationary regressors. While the conditions of the stationary regressors are discussed762

in details in our discussion of the SL model for time series, those required for the nonsta-763

tionary regressor case are the following:764

Assumption 6.3. (Assumption 3.1 of Gao (2012)) (i) Let g(·) be a real function on765

R1 = (−∞,∞) such that
∫
|x|i|g(x)|idx < ∞ for i = 1, 2, and

∫
xg(x)dx 6= 0; (ii) In766

addition, let g(·) satisfy
∫ ∣∣∫ eixyyg(y)dy

∣∣ dx <∞ when
∫
xg(x)dx = 0.767

An important point to note about these assumptions is the fact that both exclude768

the case where g(x) is a simple linear function of x. An interesting application of this769

28

Electronic copy available at: https://ssrn.com/abstract=2180598



smallness condition in practice is presented in Example 5.3 of Gao (2012). The author770

considers the logarithm of British pound/American dollar real exchange rate defined by:771

yt = log(et) + log(pUKt )− log(pUSt ), (6.8)

where {et} is the monthly average of the nominal exchange rate, and {pjt} denotes the772

consumer price index of country j. He finds that {yt} approximately follows a threshold773

model of the form774

yt = yt−1 − 1.1249yt−1I[|yt−1| ≤ 0.0134] + et. (6.9)

This result suggests that, although {yt} does not necessarily follow an integrated time775

series model, e.g. yt = yt−1 + et, it behaves like a nearly integrated time series, since776

the nonlinear component is a small departure function (see also the discussion on the777

semiparametric threshold models in Section 7).778

In the literature, there is a number of mathematical approaches which have been779

established as tools for deriving an asymptotic theory for the nonparametric estimation780

of univariate models of nonstationary data. Below, let us mention a couple (see also the781

review in Sun and Li (2012) for details). Firstly, we have the Markov splitting technique782

used in; for example, Karlsen and Tjøstheim (2001) and Karlsen et al. (2007) that is783

used to model univariate time series with a null recurrent structure. Secondly, we have784

the local time methods developed by Phillips (2009) and Wang and Phillips (2011) used785

to derive an asymptotic theory for the nonparametric estimation of univariate models786

with an integrated time series. In Gao’s (2012) model, since {xt} is nonstationary, the787

parameter β is identifiable and chosen such that 1
n

∑n
t=1[yt − xtβ]2 is minimized over β788

leading to789

β̂ =

(
n∑
t=1

x2t

)−1( n∑
t=1

xtyt

)
, (6.10)

which is closely related to the results of (3.18). Although the details are discussed in790

the paper, we note here that in order to establish an asymptotic distribution for β̂, it is791

necessary that, as n→∞, we have:792

1

n

n∑
t=1

xtg(xt)→P 0.

Regarding the case of a nonstationary regressor,
∫
xg(x)dx may or may not be zero.793

The asymptotic distribution of the estimators, namely the above ordinary least squares794

estimator of the unknown parameter β and the nonparametric estimator of g(·), are based795

very much on Theorem 2.1 of the studies by Wang and Phillips (2009a), and Wang and796

Phillips (2011).797
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Semiparametric Estimation in Multivariate Nonstationary Time Series Models798

In the case of independent and stationary time series data, semiparametric methods have799

been shown to be particularly useful in modelling economic data in a way that retains800

generality where it is most needed while reducing dimensionality problems. Gao and801

Phillips (2013) sought to pursue these advantages in a wider context that allows for802

nonstationarities and endogeneities within a vector semiparametric regression model. In803

their study, the time series {(Yt, Xt, Vt) : 1 ≤ t ≤ n} were assumed to be modeled in a804

system of multivariate nonstationary time series models of the form:805

Yt = AXt + g(Vt) + et; (6.11)

Xt = H(Vt) + Ut t = 1, 2, . . . , n;

E[et|Vt] = E[et] = 0; and (6.12)

E[Ut|Vt] = 0, (6.13)

where n is the sample size, A is a p×d-matrix of unknown parameters, Yt = (yt1, . . . , ytp)
τ ,806

Xt = (xt1, . . . , xtd)
τ and Vt is a sequence of univariate integrated time series regressors,807

g(·) = (g1(·), . . . , gp(·))τ and H(·) = (h1(·), . . . , hd(·))τ are all unknown functions, and808

both et and Ut are vectors of stationary time series. Note that {Xt} can be stationary only809

when {Xt} and {Vt} are independent. The identification condition E[et|Vt] = E[et] = 0810

in (6.12) eliminates endogeneity between et and Vt while retaining endogeneity between et811

and Xt and potential nonstationarity in both Xt and Vt. In this setting, such a condition812

corresponds to the condition E[et|Vt, Ut] = E[et|Ut] that is assumed in Newey et al. (1999),813

for example. The rational behind (6.12) is the fact that814

E[et|Vt] = E(E[et|Ut, Vt]|Vt) = E(E[et, |Ut]|Vt) = E(E[et|Ut]) = E[et]

when Ut is independent of Vt and E[et] = 0. These conditions are less restrictive than815

the exogeneity condition between et and (Xt, Vt) that is common in the literature for the816

stationary case. In the study by Gao and Phillips (2013), the model is treated as a vector817

semiparametric structural model, and considers the case where Xt and Vt may be vectors818

of nonstationary regressors and Xt may be endogenous. The main contribution of the819

study resides in the derivation of a semiparametric instrumental variable least squares820

estimate of A to deal with endogeneity in Xt and a nonparametric estimator for the821

function g(·). Let us assume that there exists a vector of stationary variables ηt for which822

we have:823

E[Utη
τ
t ] 6= 0 and E[et|ηt] = 0.
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The derivation of the semiparametric instrumental variable least squares estimate of A824

can now be done based on the following expanded version of the system (6.11):825

Yt = AXt + g(Vt) + et t = 1, 2, . . . , n (6.14)

Xt = H(Vt) + Ut

Qt = J(Vt) + ηt

E[et|Vt] = E[et] = 0, E[Ut|Vt] = 0 and E[ηt|Vt] = 0, (6.15)

where Qt = (qt1, . . . , qtd)
τ is a vector of possible instrumental variables for Xt generated826

by a reduced form equation involving Vt, and I(·) = (J1(·), . . . , Jd(·))τ is a vector of827

unknown functions. The limiting theory in this kind of nonstationary semiparametric828

model depends on the probabilistic structure of the regressors and errors et, Ut, ηt and Vt,829

as well as the functional forms of g(·), H(·) and J(·). Gao and Phillips (2013) provide a830

list of the conditions required including, their detailed explanation in Appendix A of the831

paper.832

7. Conclusions and Discussion833

We have seen in the literature that theoretical and empirical research in time series analy-834

sis may be conducted on a large number of topics. Among these, we personally believe that835

perhaps nonlinear time series models are the most studied over recent years. In order to836

take the nonlinearity in time series regression in to account, nonparametric methods have837

been very popular both for predicting and characterizing nonlinear dependence. However,838

their developments has been significantly dampened by the so-called curse of dimension-839

ality. Firstly, we reviewed a number of semiparametric time series models offered in the840

literature as the methods for combating the curse of dimensionality and their specifica-841

tion testings. In order to proceed along a linked sequence of materials, we identified two842

links between these semiparametric models, namely exogeneity and stationarity condi-843

tions. Addressing the breakdown in the former led to the emergence of semiparametric844

models with generated regressors, while addressing the breakdown in stationarity led to845

semiparametric models of nonstationary data. We presented a detailed review of recent846

developments of these models. Nonetheless, since time series models for nonstationary847

data provide a large field of research, the review in this paper focused on semiparametric848

models established to help detect and estimate trend and seasonality, and semiparametric849

models that involve both endogeneity and nonstationarity.850

In many places throughout the previous sections, we have provided our views on future851

research. In the following, let us discuss some additional open questions about this area of852
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research. In our view, the problems of endogeneity and nonstationarity are both impor-853

tant issues that future research in the area of semiparametric time series should be based854

on. As reviewed previously, Kim and Saart (2013) and Kim et al. (2013) successfully ad-855

dressed the endogeneity problem in the PL and the EG-PLSI models. However, a number856

of questions are left unanswered, especially the importance of weak/strong instruments857

and the characteristics of the control function on the performance of the CF approach.858

Furthermore, a more detailed comparison between the CF and the NpIV approaches than859

what was done in Kim et al. (2013) is required, especially on the characteristics of the860

endogeneity for which these methods would be more advantageous. An advantage of the861

CF approach is its ability to disentangle the structural nonparametric relationship and the862

effect of endogeneity. Hence, a simple test of exogeneity can be developed by testing the863

statistical significance of the above mentioned effect of endogeneity. The first attempt by864

Kim et al. (2013) was to use bias-corrected confidence bands in nonparametric regression865

of Xia (1998). However, we believe that a more formal test can be developed based on866

this idea.867

More recently, there has also been an attempt by Gao et al. (2013) to detect and to868

estimate a structural change from a nonlinear stationary regime to a linear nonstationary869

regime using a semiparametric threshold autoregressive model, which can be conveniently870

expressed as871

Yt = g(Yt−1)I[Yt−1 ∈ Cτ ] + αYt−1I[Yt−1 ∈ Dτ ] + εt

=

 g(Yt−1) + εt if Yt−1 ∈ Cτ
αYt−1 + εt if Yt−1 ∈ Dτ ,

(7.1)

where Cτ is either a compact subset of R1 or a set of the type (−∞, τ ] or [τ,∞), Dτ872

is the complement of Cτ , g(x) is an unknown and bounded function when x ∈ Cτ and873

α = 1. Lemma 3.1 of the paper shows a special case of the model where α = 1 is a874

β-null recurrent Markov Chain process; see also a detailed discussion on a null recurrent875

process in Karlsen et al. (2007). The existing asymptotic results for the stationary non-876

linear time series models (for instance in Fan and Yao (2003), and Gao (2007)) are not877

directly applicable. While Gao et al. (2013) studied the asymptotic behavior of both a878

nonparametric estimator of g(·) and the least square estimator of α, their mathematical879

proof relied heavily on a number of general results of the β-null recurrent Markov chains880

discussed in Karlsen and Tjøstheim (2001).881

As an alternative, we could establish a new threshold autoregressive model such that882

the response variable Y depends on the vector of stochastic explanatory variables or883
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stochastic covariates X = (X1, . . . , Xp)
T , where (p ≥ 2) as follows:884

Y = βT0 X + φ(θT0X)I[θT0X ∈ Cτ ] + ε

=

 βT0 X + φ(θT0X) + ε, if θT0X ∈ Cτ
βT0 X + ε, otherwise,

(7.2)

where the conditions stated in Assumption 2.1 hold and Cτ is either a compact subset of R1
885

or a set of the type (−∞, τ ] or [∞, τ). We refer to the model as the partially-linear single-886

index threshold autoregressive (PlSi–TAR) model. Let us state a few remarks regarding887

the PlSi–TAR model: (i) Compared to the SEMI–TAR model of Gao et al. (2013), the888

PlSi–TAR model offers alternative types of flexibility, which can be quite useful when889

attempting to perform dimension reduction in modeling time series data. (ii) The model890

can be used to detect the structural change from a nonlinear stationary regime to a linear891

stationary regime. However, by relaxing some of the conditions in Assumption 2.1 the892

model can also be used to detect the structural change from a nonlinear stationary regime893

to a linear nonstationary regime. As another alternative, we may introduce an extended894

PlSi–TAR model of the form:895

Yt = g(Xt, θ1) + φ(θT0Xt)I[θT0Xt ∈ Cτ ] + εt

=

 g(Xt, θ1) + φ(θT0Xt) + εt if θT0Xt ∈ Cτ ,

g(Xt, θ1) + εt otherwise,
(7.3)

where g(·, θ1) is a known link function indexed by an unknown parameter vector θ1 ∈896

Rp (p ≥ 1).897

Finally, let us give a remark on another important research direction, which focuses898

instead on improving parametric time series modeling. This line of development may be899

worth further exploration in parallel with those methods discussed previously. Clearly, an900

important benefit of the above semiparametric models resides in the additional flexibility901

that they provide given a constraint in the form of the curse of dimensionality. However,902

if we take a different point of view, for example, that all models are wrong, but some are903

useful (Box (1976)), then the usual arguments in favor of non/semi parametric models are904

substantially weakened (especially in time series analysis). As suggested by an anonymous905

referee, in this case, it is perhaps particularly relevant to explore ways to fit mis-specified906

parametric models more earnestly. An example of the studies in this area is that of Xia907

and Tong (2011).908
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Meitz, M., Teräsvirta, T., 2006. Evaluating models of autoregressive conditional duration. Journal of

Business & Economic Statistics 24 (1).

Newey, W., Powell, J., 2003. Instrumental variable estimation of nonparametric models. Econometrica

71 (5), 1565–1578.

Newey, W., Powell, J., Vella, F., 1999. Nonparametric estimation of triangular simultaneous equations

models. Econometrica 67 (3), 565–603.

Nielsen, J., Linton, O., 1998. An optimization interpretation of integration and back-fitting estimators

for separable nonparametric models. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 60 (1), 217–222.

O’Sullivan, F., 1986. A statistical perspective on ill-posed inverse problems. Statistical Science 1 (4),

502–518.

Pacurar, M., 2008. Autoregressive conditional duration models in finance: a survey of the theoretical and

empirical literature. Journal of Economic Surveys 22, 711–751.

Phillips, P., 2009. Local limit theory and spurious nonparametric regression. Econometric Theory 25 (06),

1466–1497.

Pinkse, J., 2000. Nonparametric two-step regression estimation when regressors and error are dependent.

The Canadian Journal of Statistics 28 (2), 289–300.

Robinson, P., 1988. Root-N-consistent semiparametric regression. Econometrica 56, 931–954.

Saart, P. W., Gao, J., 2012. An alternative nonparametric specification test in nonlin-

ear autoregressive conditional duration model. Working Paper Series. Available at SSRN:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2130454 (accessed on 18 June 2013).

Saart, P. W., Gao, J., Allen, D., 2013. Semiparametric autoregressive conditional duration model: theory

and practice. Econometric Reviews (in press) 33.

Su, L., Ullah, A., 2008. Local polynomial estimation of nonparametric simultaneous equations models.

Journal of Econometrics 144 (1), 193–218.

Sun, Y., Li, Q., 2012. Nonparametric and semiparametric estimation and hypothesis testing with non-

stationary time series. Working Paper.
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