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Abstract

This thesis focuses on perverse autoequivalences of �nite-dimensional sym-
metric algebras A over an algebraically closed �eld k. These are autoequiva-
lences, introduced by Chuang and Rouquier, of the bounded derived category
Db(A) of A-modules �ltered by shifted Morita equivalences. We pay special
attention to what we call two-step perverse autoequivalences, for which the
�ltration is of length two.

In particular, we demonstrate that two-step perverse autoequivalences of a
certain form give rise to distinguished modules in the endomorphism algebra
E of some projective A-module exhibiting a property we term strong period-
icity. Such modules are periodic, and the periodicity arises from an extension
of the E-E-bimodule E by itself.

We then prove a converse: given strongly periodic E-modules, we construct
endofunctors of Db(A), and prove that these endofunctors are two-step per-
verse autoequivalences. This is closely related to work of Grant on perverse
autoequivalences arising from periodic endomorphism algebras, and our re-
sult encompasses his. Building on Grant's work, we show that these autoe-
quivalences coincide with iterated combinatorial tilts, as de�ned by Rickard
and Okuyama.

Finally, we survey some applications of our result to blocks of symmetric
groups of weight two. This recovers equivalences of Craven and Rouquier,
arising from the geometry of the underlying groups, while our methods are
based only on the algebras themselves.
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Introduction

Representation theory was born out of the need to better understand ab-
stract �nite groups. Frobenius developed in the 1890s a theory of group
representations and group characters, by which one can represent elements
of a group by matrices. One can therefore tackle problems in group theory,
a remarkably protean subject, with the methods of linear algebra, which is
much better behaved. Frobenius and Burnside demonstrated the e�cacy of
this new approach by proving a number of results, most famously Burnside's
paqb theorem.

In the early 20th century, Frobenius and his student Schur realised that the
representation theory of �nite groups had the potential to be a fascinating
and exciting subject in its own right. In particular, Frobenius classi�ed
the irreducible representations of the symmetric group Sn over the complex
numbers, utilising combinatorial constructions of Young. Schur extended this
work in his doctoral thesis to determine the polynomial representations of
the general linear groupGLn(C). Many fundamental results in representation
theory, including Frobenius reciprocity and Schur's lemma, were formulated
by these two mathematicians at this time.

Later, Noether developed the theory of modules over rings and algebras.
Combined with work of Artin, this forms the bedrock of modern abstract
algebra. Noether's theory encompasses Frobenius's, as the study of the rep-
resentations of a �nite group G over C is equivalent to the study of modules
over the group algebra CG. Translated into this language, Maschke's Theo-
rem informs us that CG is a semisimple algebra, and the Artin-Wedderburn
Theorem informs us that any semisimple algebra, and hence CG, is a direct
product of some number of matrix algebras. In the language of block theory,
the decomposition of CG into indecomposable C-algebras is

CG ∼= Mn1(C)× . . .×Mnr(C)
for some integers ni ≥ 1, where Mni

(C) is the algebra of ni × ni matrices
over C.
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A natural extension of Frobenius's representation theory of �nite groups is to
replace the complex numbers C by an arbitrary �eld k. Dickson had proposed
doing exactly this around the time of Frobenius's �rst endeavours, coining
the term modular representation theory. However, one immediately faces
di�culty moving to a �eld of positive characteristic p dividing the order of
the group G: the algebra kG is no longer semisimple, so the structure given
by Artin-Wedderburn is lost. That is, in the language of block theory,

kG ∼= B1 × . . .× Br

as a direct product of indecomposable k-algebras, where not all of the Bi

are matrix algebras. It was not until the 1930s and Brauer that modular
representation theory would take o� in earnest.

Arguably Brauer's most signi�cant contributions are his Three Main Theo-
rems, relating the blocks of a �nite group G with the blocks of its p-local
subgroups: normalizers and centralizers of the p-subgroups of G. Most strik-
ing is the apparent relationship between a block Bi of kG and algebras built
from its defect groups, a conjugacy class of p-subgroups of G, measuring how
far Bi is from a matrix algebra. Given a p-subgroup D of G, Brauer deter-
mined a one-to-one correspondence between the set of blocks of kG with D
as a defect group and the set of blocks of kNG(D) with D as a defect group.
The block Ci of kNG(D) corresponding to Bi is the Brauer correspondent of
Bi.

This led inevitably to a trove of local-global counting conjectures, no-
tably Brauer's Height Zero Conjecture, the Alperin-McKay Conjecture, and
Alperin's Weight Conjecture, based on highly remarkable numerical equal-
ities on either side of this correspondence. The proof of many of these
conjectures remains a signi�cant outstanding problem in the representation
theory of �nite groups1. A very simple form of Alperin's Weight Conjecture
is the following.

Conjecture (Alperin). If B is a block of kG with abelian defect group D
and C is the Brauer correspondent block of kNG(D), then B and C have an
equal number of simple modules up to isomorphism.

A statement such as this is highly suggestive of a profound structural rela-
tionship between the two algebras, rather than a serendipitous equality of
sizes of sets. What, then, is this relationship?

1The author notes, with an unearned sense of self-satisfaction, that he was present
at the presentation of the proof of Brauer's Height Zero Conjecture by Gunter Malle at
Oberwolfach in 2023, based on joint work with Navarro, Schae�er-Fry and Tiep.
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In 1958, Kiiti Morita determined criteria for two algebras A and B to have
additively equivalent module categories A -mod and B -mod. This relation-
ship is known as Morita equivalence. Two Morita equivalent algebras have
essentially the same representation theory; it is thus an important problem
to determine the Morita equivalence classes of blocks of group algebras, and
of �nite-dimensional algebras more generally. It is tempting to hope that
Alperin's Conjecture is a result of a Morita equivalence between the algebras
B and C. However, a famous example of Rickard for the principal block B
of the alternating group A5 in characteristic p = 2 demonstrated that this is
too strong a requirement. While this block B and its Brauer correspondent
C are not Morita equivalent, they are in this case derived equivalent.

In the 1950s, Grothendieck revolutionised the study of algebra with his in-
troduction of the abelian category. This axiomatized homological algebra
and uni�ed aspects of algebraic topology, algebraic geometry and represen-
tation theory. The module category A -mod of a �nite-dimensional algebra
A is an abelian category, and therefore an appropriate setting in which to
perform homological algebra. Later, Grothendieck and his student Verdier
de�ned the derived category D(A) of an abelian category A. Two abelian
categories A and A′ are derived equivalent if their derived categories D(A)
and D(A′) are equivalent, with this being an equivalence of triangulated cat-
egories. For two �nite-dimensional algebras A and A′, a derived equivalence
D(A -mod) ≃ D(A′ -mod) is a weaker notion of equivalence than a Morita
equivalence, however many interesting properties of the algebras are pre-
served. Strikingly, derived equivalent algebras A and A′ must have the same
number of simple modules up to isomorphism. This observation, together
with the example of Rickard, results in the following famous conjecture of
Brou�e.

Conjecture (Brou�e). If B is a block of kG with abelian defect group D and C
is the Brauer correspondent block of kNG(D), then B and C have equivalent
derived categories of modules.

In the interceding years, the study of derived equivalence of blocks of �-
nite groups and, more generally, �nite-dimensional algebras has exploded.
Rickard formulated a complete working Morita theory for derived categories,
based partly on the concurrently emerging tilting theory of Brenner, But-
ler, Happel, Ringel and others. Subsequent developments include proving
Brou�e's conjecture for a large number of blocks, as well as characterising
derived equivalence for various interesting families of algebras, for example
Brauer tree algebras by Rickard, and Brauer graph algebras by Antipov, Op-
per and Zvonareva. In the �nite group setting, possibly the most exciting
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advancement came with Chuang and Rouquier's completion of the proof of
Brou�e's Conjecture for blocks of the symmetric groups. In this, they identi-
�ed a particularly combinatorially friendly subclass of derived equivalences,
intimately related to constructions in sheaf cohomology, which they termed
perverse equivalences.

Perverse equivalences are derived equivalences �ltered by shifted Morita
equivalences. They induce a one-to-one map between isomorphism classes
of simple modules, so in this sense are more appealing than an arbitrary
derived equivalence. They occur naturally in the representation theory of
�nite groups of Lie type, and have wider signi�cance in areas such as tilting
theory and cluster theory. It is an important problem to determine from
where these equivalences arise. Grant has shown the following.

Theorem (Grant). Let k be an algebraically closed �eld, A a �nite-
dimensional symmetric k-algebra, P a �nitely generated projective A-module,
and E = EndA(P )

op. If E is periodic as a k-algebra of period n, then there
is a autoequivalence

ΨP : Db(A) Db(A)∼

such that ΨP (P ) ∼= P [n] and ΨP (S) ∼= S for every simple A-module S with
HomA(P, S) = 0. Moreover, the equivalence ΨP is perverse.

This opens up a link between the existence of perverse autoequivalences of
an algebra A and the periodicity of its idempotent algebras. This thesis
investigates this link further.

In Chapter 1, we describe the relevant background for our results. We give
a basic overview of the representation theory of �nite-dimensional algebras
over an algebraically closed �eld, particularly symmetric algebras, and the
related tools of homological algebra, with a focus on triangulated categories
and derived categories. We then recount Chuang and Rouquier's de�nition
of perverse equivalences, presenting some useful formulations and key results.
We devote special attention to what we call two-step perverse equivalences
of width n, for which the �ltration has length two and the shift is by n, and
self-perverse equivalences, autoequivalences in which the �ltration matches
on either side.

The following chapter, Chapter 2, is the mathematical core of this thesis.
Firstly, in �2.1, we recall Grant's result in more detail, and see certain appli-
cations related to geometry. In �2.2, we demonstrate the relevance of twisted
periodic modules. We have our �rst key result, Theorem 2.2.2.

4



Theorem. With A as in Grant's Theorem, if Φ : Db(A) Db(A)∼ is a two-
step self-perverse equivalence of width n, then there are �nitely generated
projective A-modules P and Q such that, with E = EndA(P )

op, the E-module
M = HomA(P,Q) is σ-periodic of period n, for σ an automorphism of E.

This leads into an attempt to prove a converse, encompassing Grant's earlier
result. Naive e�orts to do so are discounted in �2.2.3.

We approach this problem in a novel way in �2.3. We introduce a notion of
strong periodicity of a module, by which a σ-periodic E-module M , for σ an
automorphism of E, is strongly σ-periodic if the periodicity ofM arises from
an element α ∈ ExtnE⊗kEop(E, σE). We then strengthen the previous theorem
into the following, Theorem 2.3.4.

Theorem. With A as above, if Φ : Db(A) Db(A)∼ is a two-step self-
perverse equivalence of width n such that there is a natural transforma-
tion IdDb(A) → Φ satisfying a restriction condition, then there are projec-
tive A-modules P and Q such that, with E = EndA(P )

op, the E-module
M = HomA(P,Q) is strongly σ-periodic and the Eop-module M∨ is strongly
σ−1-periodic, both of period n, relative to some α ∈ ExtnE⊗kEop(E, σE).

This point of view allows us to prove a converse in �2.3.3. Given a basic
algebra A and projective A-modules P and Q such that A ∼= P ⊕ Q as
A-modules, set E = EndA(P )

op and M = HomA(P,Q). Suppose that M
is a strongly periodic E-module of period n and M∨ is a strongly periodic
Eop-module of period n, with the periodicity arising from the same α ∈
ExtnE⊗kEop(E, σE). Following Grant's method, we construct an endofunctor

ΦP : Db(A) Db(A)

from α, called the generalised periodic twist at P . We have the following,
Theorem 2.3.8.

Theorem. The generalised periodic twist ΦP is a two-step self-perverse
equivalence of width n.

These two results constitute the main part of the thesis. In �2.3.4, we show
that, similarly to Grant's construction, our equivalence ΦP can be realised
as the inverse of an iterated combinatorial tilt, as de�ned by Rickard and
Okuyama, producing a cycle of length n of perverse equivalences between
di�erent algebras. One can follow this cycle from any starting point to pro-
duce a two-step self-perverse equivalence of width n, corresponding to our
construction.
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Finally, in Chapter 3, we look at applications of our result to blocks of the
symmetric groups. We �rst recall their representation theory and describe
important de�nitions and results of Scopes, Chuang and Rouquier, and oth-
ers. We then focus on the subclass of blocks of weight two in characteristic
p = 3. These are in some sense the smallest symmetric group blocks of wild
representation type, and therefore constitute an interesting and informative
source of examples. In �3.3, we survey some applications of our main results
to these blocks, most pertinently in �3.3.3 to a surprising example occurring
in the principal block of S8. Primarily, these examples show the intractabil-
ity of by-hand applications of our result, and suggest a potentially favourable
change of perspective for future work.
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Chapter 1

Background

1.1 Basic Representation Theory

We collect the necessary representation theoretic tools for this thesis. De�ni-
tions and results are taken from [Alp93] or [Lin18], unless otherwise stated.
A detailed primer on the tensor product can be found in [Lin18, �A.1].

Throughout, k is an algebraically closed �eld, and a k-algebra A is �nite-
dimensional, associative, and has an identity element 1A. Unless otherwise
stated, we will take an A-module to mean a left A-module. All A-modules are
assumed to be �nitely generated. Since A is �nite-dimensional, an A-module
M is �nitely generated if and only if it is �nite-dimensional. Given another
k-algebra B, we will always assume that k acts centrally on A-B-bimodules.
For an A-module M , we denote the n-fold direct sum of copies of M by
M⊕n. We denote by A -mod the k-linear category of all �nitely generated
left A-modules.

1.1.1 Algebras and modules

Let A be a �nite-dimensional k-algebra. Then A is a left and a right A-
module, with left and right action given by left and right multiplication in
A, respectively. These two actions commute, so A is an A-A-bimodule. We
call the A-module A the regular A-module. The zero A-module is the abelian
group {0}, which is both a left and a right A-module, with multiplication
a · 0 = 0 and 0 · a = 0 respectively.

The opposite algebra Aop of A is the k-module A, but with algebra multi-
plication reversed: a × b = ba. A right A-module is a left Aop-module, and
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vice versa. In this way, we identify the k-linear category mod-A of all �nitely
generated right A-modules with Aop -mod.

Given two k-algebras A and B, under our assumption that k acts centrally
on bimodules, an A-B-bimodule is a left A ⊗k B

op-module in the obvious
way. We may identify the k-linear category A-mod-B of all A-B-bimodules
with A⊗k B

op -mod.

An A-module M is simple if it is non-zero and has no proper non-zero sub-
modules. An A-module M is semisimple if it is a direct sum of simple
modules. An A-module M is indecomposable if it cannot be written as a
direct sum of two non-zero submodules. For a �nite-dimensional k-algebra
A, there are only �nitely many simple A-modules up to isomorphism, and
all are �nitely generated. A central problem of representation theory is to
identify the isomorphism classes of simple A-modules for a given A.

Given an A-module M and a submodule N ⊆ M , the usual abelian group
quotient M/N is another A-module. A composition series of M is a chain of
submodules

{0} =M0 ⊂M1 ⊂ . . . ⊂Mr =M

such that each quotient Mi+1/Mi is a simple A-module. An A-module M
has �nite length if there exists a �nite composition series of M . Since A is
�nite-dimensional, this happens if and only if M is �nitely generated. The
Jordan-H�older Theorem holds for �nite length modules: if the A-module M
has a �nite composition series, then the length of this composition series
is uniquely determined, and the simple quotients Mi+1/Mi are de�ned up
to isomorphism. The unique length of a compositions series is called the
composition length of M and the simple quotients Mi+1/Mi are called the
composition factors of M . Given A-modules M and S such that S is simple,
we will denote by [M : S] the multiplicity of S as a composition factor of M .

Given an A-module M , we denote by M -add the full additive subcategory
of A -mod, whose objects are �nite direct sums of direct summands of M .
One can extend this de�nition to X -add for X a collection of A-modules, in
the obvious way.

Given an A-module M , we denote by M∗ the k-linear dual of M ,

M∗ = Homk(M,k),

and by M∨ the A-linear dual of M ,

M∨ = HomA(M,A).

8



If M is a left A-module, then M∗ and M∨ are right A-modules, and vice
versa. The right A-module action of M∗ is given by

θ · a 7→
(
x 7→ θ(ax)

)
for θ :M → k, a ∈ A and x ∈M , and the right A-module action of M∨ by

θ · a 7→
(
x 7→ θ(x)a

)
for θ :M → A, a ∈ A and x ∈M .

For example, A∗, the k-linear dual of the regular A-A-bimodule A, is an A-
A-bimodule, with left action inherited from the right action of A on A, and
right action inherited from the left action of A on A.

The k-module HomA(M,M) = EndA(M) is a k-algebra, with algebra multi-
plication given by composition:

ψ1 · ψ2 = ψ1 ◦ ψ2.

We have an isomorphism of k-algebras

A ∼= EndA(A)
op,

given by
a 7→ (x 7→ xa)

for all a, x ∈ A.

While there are only �nitely many simple A-modules up to isomorphism for
a �nite-dimensional k-algebra A, the same is not true of indecomposable A-
modules in general. This determines the representation type of A. We have
the following de�nitions.

� The k-algebra A is of �nite representation type if and only if there are
�nitely many isomorphism classes of �nitely generated indecomposable
A-modules.

� The k-algebra A is of tame representation type if and only if all but
�nitely many isomorphism classes of �nitely generated indecomposable
A-modules fall into a �nite number of one-parameter families.

� If neither of the above hold, then the k-algebra A is of wild represen-
tation type.

For more details on the de�nition of tame and wild representation type, see
e.g. [Erd90]. Strictly, this is not the standard de�nition of wild representation
type, but Drozd's Trichotomy Theorem [Dro80] informs us that a k-algebra
A falls into exactly one of these three classes1, so this de�nition su�ces.

1Drozd's Trichotomy Theorem requires that the �eld k be algebraically closed.
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1.1.2 Semisimple algebras

Let A be a �nite-dimensional k-algebra. The radical of A, rad(A), is the
two-sided ideal of A de�ned as the intersection of all maximal ideals of A.

The k-algebra A is a semisimple algebra if rad(A) = 0. If A is a semisimple
k-algebra, then A is a semisimple A-module. The classical Artin-Wedderburn
Theorem tells us that A is semisimple if and only if A is a direct product of
a �nite number of matrix algebras over k. For any k-algebra A, the radical
of A is the smallest (two-sided) ideal I of A such that A/I is a semisimple
algebra.

For the sake of completeness, we note that a k-algebra A is a simple alge-
bra if and only if A is isomorphic to a matrix algebra over k. Thus, the
Artin-Wedderburn Theorem determines the analogous relationship between
semisimple and simple algebras, as between semisimple and simple modules.

If A/ rad(A) ∼= k, then A is a local algebra. This property characterises
endomorphism rings of indecomposable modules: an A-module M is inde-
composable if and only if EndA(M) is a local algebra.

Let M be an A-module. The radical of M , rad(M), is the submodule
rad(A)M of M . Then rad(M) is the smallest submodule N of M such
that the quotient M/N is a semisimple A-module. We call the quotient
M/ rad(M) the head of M . We de�ne inductively the radical series of M
by radi+1(M) = rad(radi(M)) for i ≥ 0, with the convention rad0(M) = M .
The radical length of M is the smallest ℓ for which radℓ−1(M) ̸= 0 but
radℓ(M) = 0. If M is a semisimple module, then rad(M) = 0, so M has
radical length ℓ = 1. The ith radical layer of M is the semisimple module

radi−1(M)/ radi(M)

for i ≥ 1. If every radical layer of M is simple, then the radical series of M
is a composition series of M , in fact the unique composition series of M , and
we say M is uniserial.

The socle of a �nite length A-module M , soc(M), is the largest semisimple
submodule of M . We de�ne inductively the socle series of M as follows.
The module soci+1(M) for i ≥ 1 is the submodule of M containing soci(M)
such that soci+1(M)/ soci(M) is the socle of the A-moduleM/ soci(M). The
semisimple module

soci(M)/ soci−1(M)

is the ith socle layer of M , with the convention that soc0(M) = 0. The
smallest ℓ such that socℓ(M) = M is the socle length of M . Every layer in
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the socle series ofM is a semisimple A-module. IfM is a semisimple module,
then soc(M) =M .

Given a �nitely generated A-module M , the radical length and socle length
of M are equal, and we call this common integer ℓ ≥ 0 the Loewy length of
M . We also call the radical series of M the Loewy series of M . We note that
M has Loewy length ℓ = 0 if and only if M is the zero module.

We call an A-module M of Loewy length ℓ stable if for every i, we have
soci(M) = radℓ−i(M). In short, M is stable if the radical and socle series of
M coincide.

1.1.3 Projective and injective modules

Let A be a �nite-dimensional k-algebra.

An A-module P is projective if for every surjective A-module homomorphism
f : N → M and every A-module homomorphism g : P → M , there is an
A-module homomorphism h : P → N such that g = f ◦ h:

N

P M

fh

g

A �nitely generated A-module M is free if M ∼= A⊕n for some n ≥ 1.
A �nitely generated A-module P is projective if and only if it is a direct
summand of a �nitely generated free A-module.

The dual construction to projective modules is injective modules. An A-
module I is injective if for every injective A-module homomorphism f :
X → Y and every A-module homomorphism g : X → I, there is an A-
module homomorphism h : Y → I such that g = h ◦ f .

X Y

I

f

g
h

A �nitely generated A-module is injective if and only if it is a direct summand
of a �nitely generated cofree module2.

2By a cofree module we mean a direct summand of copies of (the left A-module) A∗.
We note that this dual notion to a free module exists only because A is a �nite-dimensional
algebra over a �eld k; in general, we do not cannot make such a nice dual de�nition.
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Let P be a projective A-module. Then the head P/ rad(P ) is a semisimple
A-module. Any projective A-module P is a direct sum of projective indecom-
posable A-modules; the projective module P has simple head exactly when P
is indecomposable. Furthermore, the simple module in the head of a projec-
tive indecomposable A-module is unique up to isomorphism: if Q is another
projective indecomposable A-module such that Q/ rad(Q) ∼= P/ rad(P ), then
P ∼= Q. This gives a natural bijection between the (�nite, since A is �nite-
dimensional) set of isomorphism classes of simple A-modules and the set of
isomorphism classes of projective indecomposable A-modules. Suppose these
sets are {S1, . . . , Sn} and {P1, . . . , Pn}, such that Pi/ rad(Pi) ∼= Si. Then we
have an isomorphism of A-modules

A ∼= P⊕d1
1 ⊕ . . .⊕ P⊕dn

n ,

where d1 = dimk(Si). If di = 1 for all i, then we say A is a basic algebra.

There is a full additive subcategory A -proj of A -mod, whose objects are
the projective A-modules. Naturally, the subcategories A -proj and A -add
coincide, where A -add is the full additive subcategory of A -mod generated
by the regular A-module A, as in �1.1.1.

For 1 ≤ i, j ≤ n, set cij = [Pi : Sj], the multiplicity of Sj as a composition
factor of Pi. The integers cij are the Cartan numbers of A, and the matrix
CA with (i, j) entry cij is the Cartan matrix of A. We have that cij =
dimk HomA(Pj, Pi) for every pair (i, j).

LetM be an A-module. A projective cover ofM is a projective A-module P ,
together with a surjective A-module homomorphism p : P → M , such that
P/ rad(P ) ∼= M/ rad(M). Then (see [Alp93, Lemma 20.2]) the pair (P, p)
is unique up to isomorphism, in that if (Q, q) is any other such pair, then
there is an isomorphism φ : Q ∼= P such that q = p ◦φ. We may thus talk of
the projective cover of M , meaning a choice of a projective A-module P (M)
and a surjective A-module homomorphism πM : P (M) → M satisfying the
above. Every A-module has a projective cover3. If S is a simple A-module,
then the projective cover πS : P (S) → S is such that P (S) is the unique
projective indecomposable A-module with P (S)/ rad(P (S)) ∼= S.

Given an A-moduleM , we de�ne the Heller translate ΩA(M) ofM to be the
kernel of a projective cover πM of M :

0 ΩA(M) P M 0.
πM

3This is not true for a general ring, but is true for a �nite-dimensional algebra over an
algebraically closed �eld.
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We will spend signi�cantly more time with the Heller translate in �1.2.10.

Dually, an injective hull of M is an injective A-module I, together with an
injective A-module homomorphism ιM :M → I, such that soc(I) ∼= soc(M).
As above, an injective hull of M is unique up to isomorphism. We may
therefore speak of the injective hull of M , which we denote I(M), with the
injective homomorphism ιM : M → I(M). Every A-module has an injective
hull4.

Let S be a simple A-module and ιS : S → I(S) an injective hull of S. Then
I(S) is an indecomposable A-module such that soc(I(S)) ∼= S. Moreover,
the A-module I(S) is the unique indecomposable injective A-module with
simple socle S. We thus have a complete set of indecomposable injective
A-modules up to isomorphism, {I1, . . . , In}, in bijective correspondence with
the set of simple A-modules up to isomorphism, labelled so that soc(Ii) ∼= Si.

Given an A-module M , let ιM :M → I be an injective hull of M . We de�ne
Ω−1

A (M) to be the cokernel of ιM :

0 M I Ω−1
A M 0.

ιM

As the notation might indicate, we call Ω−1
A (M) the inverse Heller translate

of M .

Note that, as it is a free module, the regular A-module A is a projective
A-module. If the regular A-module A is also an injective A-module, then the
k-algebra A is self-injective. If A is self-injective, then projective A-modules
are injective modules, and vice versa5. The following characterisation of
self-injective algebras is due to Nakayama [Nak41].

Theorem 1.1.1. Let A be a �nite-dimensional k-algebra. Let {S1, . . . , Sn}
be a set of isomorphism classes of simple A-modules, and {P1, . . . , Pn} the
corresponding set of projective indecomposable A-modules. Then A is self-
injective if and only if there is a permutation νA of the set {1, . . . , n} such
that

Pi/ rad(Pi) ∼= Si
∼= soc(PνA(i)).

The permutation νA in Theorem 1.1.1 is called the Nakayama permutation
of A.

4This is true for a general ring.
5That is, the full additive subcategories A -proj and A -inj, the category of all injective

A-modules, coincide.
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As a �nal comment in this subsection, when A is self-injective and M is any
A-module with no non-zero projective summands, we have

Ω−1
A (ΩA(M)) ∼= M ∼= ΩA(Ω

−1
A (M)).

1.1.4 Functors between module categories

Let A andB be �nite-dimensional k-algebras. Consider the abelian categories
A -mod and B -mod. Let M be an A-B-bimodule. Then M gives rise to a
succession of functors:

� HomA(M,−) : A -mod → B -mod is a covariant left exact functor;

� HomBop(M,−) : Bop -mod → Aop -mod is a covariant left exact functor;

� HomA(−,M) : A -mod → B -mod is a contravariant left exact functor;

� HomBop(−,M) : Bop -mod → Aop -mod is a contravariant left exact
functor;

� M ⊗B − : B -mod → A -mod is a covariant right exact functor;

� −⊗A M : Aop -mod → Bop -mod is a covariant right exact functor.

The functor HomA(M,−) is exact if and only if M is a projective left A-
module (see �1.1.3), and the functor HomA(−,M) is exact if and only if M
is an injective left A-module. Similarly, the functor HomBop(M,−) is exact if
and only ifM is a projective right B-module, and the functor HomBop(−,M)
is exact if and only if M is an injective right B-module.

The functor −⊗A M (resp. M ⊗B −) is exact if and only if M is a �at left
A-module (resp. right B-module). An A-module is �at if and only if it is
projective6.

If M is projective as a left A-module, we have an isomorphism of functors

HomA(M,−) ∼= M∨ ⊗A −.

If M is projective as a right B-module, we have an isomorphism of functors

HomBop(M,−) ∼= −⊗B M
∨.

An exceedingly useful way to relate these functors is tensor-Hom adjunction.
The functors

M ⊗B − ⊣ HomA(M,−)

6This is not true in general, but is true for �nitely generated modules over Noetherian
rings. Note that a �nite-dimensional k-algebra A is always Noetherian.
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are left-right adjoint, as are the functors

−⊗A M ⊣ HomBop(M,−).

In particular, if A, B, C, D and E are k-algebras, M is an A-B-bimodule,
N a B-C-bimodule, U a D-C-bimodule, and V an A-E-bimodule, then we
have an isomorphism

HomCop(M ⊗B N,U) ∼= HomBop(M,HomCop(N,U))

of A-D-bimodules, and an isomorphism

HomA(M ⊗B N, V ) ∼= HomB(N,HomA(M,V ))

of C-E-bimodules.

The right derived functors of the left exact Hom functors are the Exti func-
tors, admitting the following description, due to Yoneda. Given two A-
modules M and N , ExtiA(M,N) is the set of Yoneda i-extensions of M by
N , up to chain map equivalence. That is, the set of short exact sequences of
A-modules

0 N Xi−1 . . . X0 M 0,

up to the symmetric closure of the relation ∼, where for two i-extensions ξ
and ξ′, ξ ∼ ξ′ if there is a chain map

0 N Xi−1 . . . X0 M 0

0 N X ′
i−1 . . . X ′

0 M 0

which is the identity on M and N . Then ExtiA(M,N) is a group, under an
operation known as the Baer sum (see e.g. [Wei95, De�nition 3.4.4]), and
forms a vector space over k. We have

Ext0A(M,N) = HomA(M,N),

and Ext1A(M,N) is the group of (homological) extensions of M by N .

There is a handy way to classify the extensions of a simple module by another
simple module. Given two simple A-module S and T , let PS and PT be the
indecomposable projective A-modules corresponding to S and T . Then

Ext1A(S, T )
∼= HomA(PT , rad(PS)/ rad

2(PS)).

15



Thus, the dimension of this extension group is equal to the number of times
T appears in the second radical layer of PS.

When M is an A-A-bimodule, the Exti groups de�ne the Hochschild coho-
mology of A with coe�cients in M ,

HH∗(A;M) = Ext∗A⊗Aop(A,M).

When we come to de�ne the derived category in �1.2.7, we will have the
following realisation of the Exti groups:

ExtiA(M,N) ∼= HomDb(A)(M,N [i]).

1.1.5 Morita equivalence

Let A and B be k-algebras. We say that A and B are Morita equivalent if
there is an equivalence of k-linear categories

F : A -mod B -mod .∼

The functor F is called a Morita equivalence. It is clear that isomorphic
algebras are Morita equivalent. The converse is not true in general.

Morita equivalence preserves a number of properties of an algebra. Let

F : A -mod B -mod∼

be a Morita equivalence. Then, for example, A is semisimple if and only ifB is
semisimple, and A is self-injective if and only if B is self-injective. Properties
of modules are also preserved. An A-module M is simple if and only if the
B-module F (M) is simple, andM is projective (resp. injective) if and only if
F (M) is projective (resp. injective). In particular, Morita equivalent algebras
have an equal number of simple modules, and of projective indecomposable
modules, up to isomorphism. This list of preserved properties is far from
exhaustive.

We can see the preservation of simple modules at the level of the Grothendieck
groups of A -mod and B -mod. Let A be an abelian category. The
Grothendieck group K0(A) of A is the free abelian group K0(A) on the
symbols [X] for objects X of A, modulo the relation

[Y ] = [X] + [Z]

for every short exact sequence
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0 X Y Z 0

in A.

For the abelian category A -mod, K0(A) = K0(A -mod) is the free abelian
group on the symbols [S], where S runs through a set of isomorphism classes
of simple A-modules. Then a Morita equivalence

F : A -mod B -mod∼

induces an isomorphism of abelian groups

[F ] : K0(A) K0(B),∼

that matches the classes of simple A-modules and simple B-modules7.

A remarkable result, due to Morita, characterises Morita equivalence entirely.
A projective generator or progenerator of an algebra A is a projective A-
module V such that the regular A-module A is a summand of V ⊕m for some
m > 0.

Theorem 1.1.2. The following are equivalent.

(i) The algebras A and B are Morita equivalent.

(ii) There exists a progenerator V of A such that B ∼= EndA(V )op.

(iii) There is an A-B-bimodule M and a B-A-bimodule N such that:

(a) M and N are projective as left and as right modules;

(b) M ⊗B N ∼= A as A-A-bimodules;

(c) N ⊗A M ∼= B as B-B-bimodules.

This result is foundational in the representation theory of �nite-dimensional
algebras. We shall see thematic echoes of it in Rickard's Morita theory for
derived categories, presented here as Theorem 1.2.17.

1.1.6 Blocks

Let A be a �nite-dimensional k-algebra. The Krull-Schmidt theorem for
algebras (see e.g. [Alp93, Theorem 13.1]) states that there is a well-de�ned
collection of subsets Ai of A such that there is a direct product decomposition

A ∼= A1 × A2 × . . .× Ar

7It is worth nothing that an arbitrary isomorphism K0(A) →̃ K0(B) need not preserve
classes of simple modules; this is a special property of a Morita equivalence.
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of A into indecomposable subalgebras. In particular, this direct product
decomposition is unique up to reordering. The k-algebras Ai are called the
blocks of A. We have Ai ∩Aj = {0} for i ̸= j, so if ai ∈ Ai and aj ∈ Aj, then
aiaj = 0. When A is semisimple, every block of A is a matrix algebra8. When
A is not semisimple, the blocks of A are not all matrix algebras, though some
might be. Fix this decomposition for the remainder of this subsection.

The decomposition of A may be understood in terms of primitive decompo-
sitions of idempotents in A. An idempotent in A is an element9 0 ̸= e ∈ A
such that e2 = e. Two idempotents e, f ∈ A are orthogonal if ef = 0 = fe.
An idempotent e ∈ A is primitive if e cannot be written as the sum of two
orthogonal idempotents. An idempotent e ∈ A is central if e ∈ Z(A). A
primitive central idempotent of A is a central idempotent e ∈ Z(A) primitive
in Z(A).

An algebra A is indecomposable if and only if the idempotent 1A is a primitive
central idempotent of A. The set of primitive central idempotents {e1, . . . , er}
corresponds to a primitive decomposition of the idempotent 1A in A. In
particular, the ei are pairwise orthogonal, and 1A = e1 + . . . + er. Such a
decomposition is unique in A. Further, if the k-algebra B is a direct factor
of A, then there is some primitive central idempotent b ∈ Z(A) such that
B = Ab. The decomposition of A into blocks is given by

A = A · 1A
= A(e1 + e2 + . . .+ er)

= Ae1 × Ae2 × . . .× Aer

= A1 × A2 × . . .× Ar.

For each i, the idempotent ei is the identity element of Ai = Aei. We call
the primitive central idempotents of A the block idempotents10 of A. The
uniqueness of the block decomposition of A up to reordering is a simple
consequence of the uniqueness of the primitive decomposition of 1A in A.

Let M be an A-module. If there is some bock idempotent ei such that
eiM = M and ejM = {0} for all j ̸= i, then the module M lies in the
block Ai. The set of modules lying in a block Ai is closed under taking
submodules, quotients and direct sums. For an arbitrary A-module M , we

8This is the Artin-Wedderburn Theorem referenced in �1.1.2.
9Some authors allow e = 0, however this will complicate subsequent de�nitions.
10Many authors call the idempotents ei the blocks of A, and the indecomposable direct

factors Ai = Aei the block algebras of A. Our choice of terminology is simply because we
will be working more with the algebras directly.
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have a decomposition

M = 1AM

= (e1 + . . .+ er)M

= e1M ⊕ . . .⊕ erM

=M1 ⊕ . . .⊕Mr,

where the submodule Mi = eiM of M lies in the block Ai of A.

There is a Krull-Schmidt Theorem for modules. For an A-moduleM , there is
decomposition ofM into a direct sum of indecomposable submodules, unique
up to isomorphism and reordering, say

M ∼= M1,1 ⊕ . . .M1,n1 ⊕ . . .⊕Mr,1 ⊕ . . .⊕Mr,nr ,

where for each 1 ≤ i ≤ r, 1 ≤ j ≤ ni, the indecomposable submodule
Mi,j of M lies in the block Ai of A. In short, the decomposition of M into
indecomposable submodules respects the decomposition of A into blocks.

To summarise the previous two paragraphs concisely, the k-linear category of
A-modules decomposes as the direct sum of the k-linear categories of modules
of its blocks:

A -mod ∼=
r⊕

i=1

Ai -mod .

Further, the block decomposition

A = A1 × A2 × . . .× Ar

describes exactly the decomposition of the A-A-bimodule A. That is, the in-
decomposable A-A-bimodule summands of A are exactly the A-A-bimodules
Ai, up to isomorphism and reordering.

Having introduced idempotents in this subsection, we make a couple of re-
lated notes. If P is a projective A-module, then there is a primitive idem-
potent (not necessarily central) e ∈ A such that P ∼= Ae as a left A-module.
Further, given two projective A-modules P = Ae and Q = Af , there is an
isomorphism of vector spaces

HomA(P,Q) ∼= eAf.

Moreover, there is an algebra isomorphism

EndA(P )
op ∼= eAe,
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where eAe is a non-unital subalgebra11 of A, with multiplication inherited
from A.

Recall that we may write the left A-module A as a direct sum of projective
modules

A = P d1
1 ⊕ . . .⊕ P dn

n ,

where {P1, . . . , Pn} is a set of representatives of isomorphism classes of pro-
jective A-modules. We can phrase this in terms of idempotents. Take a
complete set of primitive orthogonal idempotents {e1, . . . , em}, m ≥ 1, in A.
Then there is an isomorphism of left A-modules

A ∼=
m⊕
i=1

Aei,

where for each i, Aei is a projective indecomposable A-module. Comparing
the two decompositions, we have that, for each l = 1, . . . , n, there are exactly
dl many Aei ∼= Pl, so that m = d1 + . . . + dn. In particular, A is a basic
algebra precisely when Aei ∼= Aej if and only if i = j.

Suppose A is an arbitrary �nite-dimensional k-algebra. Let {ea1 , . . . , ean} be
a subset of {e1, . . . , em} such that there is a bijection

{Aea1 , . . . , Aean} ↔ {P1, . . . , Pn}

In particular, Aeai
∼= Aeaj if and only if i = j. Set e = ea1 + . . . + ean and

Ã = eAe. Then Ã is a basic algebra by construction. Taking P = Ae, we
have that P is a progenerator of A, since A is a direct summand of P⊕d,
where d = max{d1, . . . , dn}, and

Ã = eAe ∼= EndA(P )
op,

so A and Ã are Morita equivalent by Theorem 1.1.2. We call Ã the basic
algebra of A. It is the unique basic algebra Morita equivalent to A, up to
isomorphism. Thus, up to Morita equivalence, we may always assume that
A is a basic algebra.

1.1.7 Symmetric algebras

Let A be an k-algebra. We recall the following well-known result, due to
Brauer, Nesbitt and Nakayama, here taken from [Ric02, Theorem 3.1].

11A non-unital subalgebra of A is a subalgebra whose unit element di�ers from that of
A. Here, a non-unital subalgebra is still a unital algebra.

20



Theorem 1.1.3. Let A be a �nite-dimensional k-algebra. The following
statements are equivalent.

(i) There exists a symmetric, non-degenerate trace form on A. That is, a
linear map tr : A→ k such that:

� tr(xy) = tr(yx) for all x, y ∈ A;

� for every 0 ̸= x ∈ A, there is a y ∈ A such that tr(xy) ̸= 0.

(ii) There is an isomorphism of A-A-bimodules

f : A→ A∗.

(iii) There is a natural isomorphism of contravariant functors

Homk(−, k) ∼= HomA(−, A)

from A -mod to Aop -mod.

(iv) Given a �nitely generated left A-module M and a �nitely generated
projective left A-module P , there is an isomorphism of k-vector spaces

HomA(M,P ) ∼= HomA(P,M)∗,

functorial in M and P .

An algebra A satisfying any of the above statements is symmetric. A sym-
metric, non-degenerate trace form tr : A → k on A is called a symmetrising
form12on A. Notice that condition (ii) is a special case of condition (iv).

We omit the full proof of this result, but it will be useful to show that the
�rst two statements are equivalent. Suppose that A admits a symmetrising
form tr : A→ k. De�ne a map f : A→ A∗ = Homk(A, k) by

f(x) = x · tr : y 7→ tr(yx).

Then f is an A-A-bimodule homomorphism, by the symmetry of tr, and
it is injective by non-degeneracy. It is hence an isomorphism, since A and
A∗ have equal (�nite) dimension over k. Conversely, if f : A → A∗ is an
A-A-bimodule isomorphism, we may take tr = f(1) : A→ k.

We have an immediate corollary.

12A non-degenerate trace form is called a Frobenius form on A. An algebra admitting a
Frobenius form is called a Frobenius algebra. As such, some authors use the terminology
symmetric Frobenius algebra for what we are calling a symmetric algebra.
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Corollary 1.1.4. The k-algebra A is symmetric if and only if the k-algebra
Aop is symmetric.

Proof. The symmetrising form tr : A → k on A can be applied to Aop and
condition (i) still holds.

Consider the decomposition

A = A1 × A2 × . . .× Ar

of A into blocks. The following is also well known.

Corollary 1.1.5. The k-algebra A is symmetric if and only if every block Ai

of A is symmetric.

Proof. If A is symmetric and tr : A → k is a symmetrising form on A,
then the restriction of tr to Ai for any i de�nes a symmetrising form on Ai.
Conversely, suppose for every i there is a symmetrising form tri : Ai → k.
Then tr1 +tr2 + . . .+ trr is a symmetrising form on A.

From condition (ii) of Theorem 1.1.3, one can immediately see that if A is
a symmetric k-algebra, then A is self-injective. Moreover, from condition
(iv), we also have that if A is symmetric, then the Nakayama permutation
νA of A, as de�ned in Theorem 1.1.1, is the identity permutation. That is, if
{S1, . . . , Sn} is a complete set of simple A-modules up to isomorphism, and
{P1, . . . , Pn} are the corresponding projective indecomposable A-modules,
then

Pi/ rad(Pi) ∼= Si
∼= soc(Pi).

In the symmetric algebra case, we have

dimk HomA(Pi, Pj) = dimk HomA(Pj, Pi),

so the Cartan matrix CA of a symmetric algebra is a symmetric matrix.

1.1.8 Quivers and relations

Let k be an algebraically closed �eld and A a �nite-dimensional k-algebra.

A quiver is a quadruple Q = (Q0, Q1, s, t) such that:

� (Q0, Q1) is a graph, with �nite vertex set Q0 and �nite edge set Q1;

� s : Q1 → Q0 is the map assigning to an arrow α ∈ Q1 its source s(α);
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� t : Q1 → Q0 is the map assigning to an arrow α ∈ Q1 its target t(α).

We say two arrows α and β in Q1 are compatible if t(α) = s(β). In this case,
we can de�ne a path βα in Q.

· · · • • • · ··α β

In general, a path in Q is a sequence of arrows in Q such that any two
successive arrows are compatible. The path algebra kQ of Q is the k-linear
span of all paths in Q, with formal addition, and multiplication induced by
concatenation of compatible arrows.

The radical of kQ is the two-sided ideal RQ = rad(kQ), generated by all
arrows in Q, called the arrow ideal. For every integer ℓ ≥ 1, there is a
subspace kQℓ of kQ, the k-linear span of all paths in Q of length ℓ. We have

RQ
∼=

⊕
ℓ≥1

kQℓ

as k-vector spaces. For every m ≥ 1, the mth radical is the two-sided ideal

radm(kQ) = Rm
Q =

⊕
ℓ≥m

kQℓ

of kQ, the k-linear span of all paths of length at least m. A two-sided ideal
I of kQ is an admissible ideal if there is an m ≥ 2 such that

Rm
Q ⊂ I ⊂ R2

Q.

Typically, we de�ne I by a �nite set of relations in kQ generating I. A
relation in kQ is an identity in kQ of the form

n∑
r=1

crµr = 0,

where, for each r, µr = α
(r)
1 . . . α

(r)
mr is a path in kQ of length mr ≥ 2, for

α
(r)
i ∈ Q1, and cr ∈ k∗.

Given an admissible ideal I of kQ, the quotient algebra kQ/I is a �nite-
dimensional k-algebra, called a bound quiver algebra. The algebra A = kQ/I
is a basic algebra, and it is indecomposable if and only if Q is a connected
graph. The simple A-modules are in one-to-one correspondence with the
vertices in Q0.

The following example is ubiquitous. Let Q be the following quiver.
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1 2
α

β

Let I be the admissible ideal ⟨αβα, βαβ⟩ of kQ. Then A = kQ/I is a
�nite-dimensional k-algebra with two simple modules S1 and S2, and inde-
composable projective A-modules P1 and P2 with Loewy structures

P1 =
1
2
1
, P2 =

2
1
2
.

This algebra A falls into the wider class of Nakayama algebras, as introduced
by Nakayama [Nak40a]. Given integers m,n ∈ Z+, the Nakayama algebra
Nm,n is the bound quiver algebra kQ/I, where Q is the quiver

1

m 2

3

α1αm

α2

and I = ⟨αn⟩. The projective indecomposable Nm,n-modules are uniserial of
length n. The algebra A above is the Nakayama algebra N2,3.

The Nakayama algebra Nm,n is self-injective, with Nakayama permutation
ν = νNm,n given by ν(i) = i − n + 1, with indices modulo m. In particular,
Nm,n is symmetric when m divides n− 1.

Note that this de�nition allows the cases m = 1 and n = 1. However, for
n = 1, the ideal I is not admissible, and the algebras Nm,1 are semisimple.
For m = 1, we have N1,n

∼= k[x]/⟨xn⟩, the truncated polynomial ring of
degree n.

Given a quiver Q and some ideal of relations I, we have a �nite-dimensional
k algebra kQ/I. It is natural to ask whether the converse is true: given a
�nite-dimensional k-algebra A, is there a quiver Q and an admissible ideal
I of kQ such that A ∼= kQ/I? For �nite-dimensional basic algebras over
algebraically closed �elds, the answer is yes, by Gabriel's Theorem.

Given a basic k-algebra A, we may construct the Ext1-quiver13 of A. This is
the quiver Q = (Q0, Q1), where Q0 is in one-to-one correspondence with

13This is not the only quiver construction for A. The other most prominent construction
is the Auslander-Reiten quiver of an Artinian algebra.
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a set of representatives of isomorphism classes of simple A-modules, say
{S1, . . . , Sr}, and the number of arrows Si → Sj in Q1 is equal to the dimen-
sion of Ext1A(Si, Sj) over k. Recall that

dimk Ext
1
A(Si, Sj) = dimk HomA(Pj, rad(Pi)/ rad

2(Pi)),

where Pi = Aei and Pj = Aej are projective covers of Si and Sj respectively,
for some idempotents ei, ej in A. Then an arrow α : Si → Sj in Q cor-
responds to an element of ej rad(A)ei. The structure of A then determines
an admissible ideal I ⊂ rad2(kQ), of paths of length at least 2, such that
A ∼= kQ/I. The paths in I de�ne a set of relations in A.

For example, we will see in �3.1.5 that the quiver Q and relations I in the
example above are the Ext1-quiver and relations of the Brauer tree algebra
of a star (or line) on two edges with exceptional multiplicity 1.

1.2 Homological Algebra

This section covers the homological underpinning of our work. We intro-
duce the key players in �1.2.1 and �1.2.3: chain complexes, homology, and
homotopy; before constructing the derived category of a �nite-dimensional
k-algebra A in �1.2.7 and focusing on equivalences at this level. To do this,
we require an interjectory subsection on triangulated categories, �1.2.5, of
which the homotopy and derived categories of A are the primary examples.
We will recount Rickard's Morita theory for derived categories in �1.2.7, the
analogue to Theorem 1.1.2 in this setting. Finally, we recall the de�nition of
the stable category in �1.2.10, brie�y discuss the existing Morita theory, and
relate this to the derived category in a systematic way.

Throughout, k is an algebraically closed �eld and A a �nite-dimensional
k-algebra. We will always be working with the k-linear, abelian category
A -mod of (�nitely generated, left) A-modules, but one may just as well
replace this with an arbitrary k-linear, abelian category A. Unless otherwise
stated, results come from Chapters 1, 2 and 10 of [Wei95].

1.2.1 Chain complexes

Let A be a �nite-dimensional k-algebra. All A-modules are assumed to be
�nitely generated.

A Z-graded (or simply graded) A-module is a sequence of A-modules X =
(Xn)n∈Z. If X = (Xn) and Y = (Yn) are graded A-modules, then a graded
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A-module homomorphism f : X → Y of degree i is a family of A-module
homomorphisms f = (fn : Xn → Yn+i). There is a category A -grmod of all
graded A-modules, whose Hom sets are graded A-module homomorphisms.

Graded A-modules occur naturally in many settings. The most familiar
example is a chain complex of A-modules. A chain complex of A-modules
is a pair (X, δ), where X = (Xn) is a graded A-module and δ : X → X is
a graded A-module homomorphism of degree -1, called the di�erential, such
that δ ◦ δ = 0. We display this as

. . . Xn+1 Xn Xn−1 . . .
δn+1 δn δn−1

with δn ◦ δn+1 = 0 for all n. A chain complex X is bounded above or to the
left if Xn = 0 for su�ciently large n, and bounded below or to the right if
Xn = 0 for su�ciently small n. A chain complex X is bounded if it is both
bounded above and bounded below.

Let (X, δ) and (Y, ϵ) be chain complexes of A-modules. A chain map f :
X → Y is a graded A-module homomorphism of degree 0, commuting with
the di�erentials on X and Y . That is, all squares in the following diagram
commute:

. . . Xn+1 Xn Xn−1 . . .

. . . Yn+1 Yn Yn−1 . . .

δn+2 δn+1

fn+1

δn

fn

δn−1

fn−1

ϵn+2 ϵn+1 ϵn ϵn−1

The category of chain complexes of A-modules Ch(A) is the category with
object class consisting of all chain complexes of A-modules. Given chain
complexes (X, δ) and (Y, ϵ), the morphism set HomCh(A)(X, Y ) is the set of
all chain maps f : X → Y . Each set HomCh(A)(X, Y ) is a k-vector space,
and the category Ch(A) is a k-linear abelian category. Direct sums of chain
complexes are taken degree wise.

The full subcategories Ch−(A), Ch+(A) and Chb(A) of Ch(A) have ob-
ject classes comprising respectively all bounded below, bounded above, and
bounded chain complexes of A-modules. All three are abelian subcategories.
By considering an A-module as a chain complex concentrated in degree 0,
there is a nice embedding of A -mod into Chb(A). Full subcategories of
A -mod also de�ne full subcategories of Ch(A): for example, Ch(A -proj)
is the subcategory of Ch(A) whose objects are chain complexes of projective
A-modules. If X is a chain complex, then we de�ne X -add to be the full
subcategory of Ch(A) whose objects are summands of direct sums of copies
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of X. We can extend this de�nition to X -add, for X a collection of objects
in Ch(A), in the obvious way.

For k-algebras A and B, we denote by Ch(A-B) the category of chain com-
plexes of A-B-bimodules, so that Ch(A-B) ∼= Ch(A⊗k B

op).

For every i ∈ Z, there is an equivalence of abelian categories [i] : Ch(A) →
Ch(A), where, for a chain complex (X, δ), the chain complex (X[i], δ[i]) is
de�ned by X[i]n = Xn−i and δ[i]n = (−1)iδn−i. We think of X[i] as the
complex X shifted i positions to the left. For a chain map f : X → Y , we
have f [i]n = fn−i.

One may make the de�nition of a chain complex in an arbitrary abelian
category A. A chain complex in A is a sequence

. . . Xn+1 Xn Xn−1 . . .
δn+1 δn δn−1

of objects Xn in A and homomorphisms dn in A such that δn◦δn+1 = 0 for all
n. Chain maps are de�ned similarly, and we may de�ne an abelian category
Ch(A) of chain complexes in A, so that the abelian subcategories Ch−(A),
Ch+(A) and Chb(A) exist. Similarly, a full subcategory B of A gives rise to
a full subcategory Ch(B) of Ch(A). In our notation, Ch(A) = Ch(A -mod).
Notice that Ch(A) is an abelian category, so we have chain complexes of chain
complexes, and chain complexes of chain complexes of chain complexes, and
so on.

The notion of a chain complex of chain complexes is usually described in
terms of double complexes. A double complex in A is a collection of objects
{Xi,j} of objects in A, together with maps δhi,j : Xi,j → Xi−1,j and δvi,j :
Xi,j → Xi,j−1 for all i and j, such that δhi−1,j ◦ δhi,j = 0, δvi,j−1 ◦ δvi,j = 0, and
δvi−1,jδ

h
i,j + δ

h
i,j−1δ

v
i,j = 0. One typically pictures a double complex as a lattice:

. . . . . . . . .

. . . Xi+1,j+1 Xi,j+1 Xi−1,j+1 . . .

. . . Xi+1,j Xi,j Xi−1,j . . .

. . . Xi+1,j−1 Xi,j−1 Xi−1,j−1 . . .

. . . . . . . . .

δv δv δv

δh

δv

δh

δv

δh

δv

δh

δv

δh

δv

δh

δv

δh

δv

δh

δv

δh

δv

A double complex is bounded if there are only �nitely many non-zero terms
Xi,j with i + j = n, for every n. That is, if there are only �nitely many
non-zero terms on each diagonal line in the above lattice. For example, any
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double complex {Xi,j} with non-zero terms concentrated in the upper left
quadrant of the plane (that is, for which Xi,j is zero whenever i is su�ciently
small or j is su�ciently small) is a bounded double complex. Such bounded
double complexes are called upper left quadrant double complexes.

From a bounded double complex {Xi,j}, one obtains complexes and chain
maps in Ch(A), in the following way. Each column Xi,∗ is a chain complex,
and fi,∗ = (δhi,j) is a chain map Xi,∗ → Xi−1,∗. Similarly, each row X∗,j is
a chain complex, and f∗,j = ((−1)iδvi,j) is a chain map X∗,j → X∗,j−1. Note
that the anticommutativity condition δvi−1,jδ

h
i,j+δ

h
i,j−1δ

v
i,j = 0 necessitates the

changes of sign here.

One can de�ne another chain complex in A from a bounded double complex
{Xi,j}, the total complex Tot⊕(X), with

Tot⊕(X)n =
⊕
i+j=n

Xi,j

and di�erential

δn : Tot⊕(X)n → Tot⊕(X)n−1

δn =
∑
i+j=n

δhi,j + δvi,j.

The anticommutativity condition of the double complex guarantees that
Tot⊕(X) is a well-de�ned complex in Ch(A). In particular, when {Xi,j}
is an upper left quadrant double complex, the total complex Tot⊕(X)n is a
bounded below chain complex in A.

For now, we return to the case that A is the module category of a �nite-
dimensional k-algebra. One uses the total complex construction to produce
the tensor product between two chain complexes.

Let A, B and C be k-algebras, where we allow any to be k. Recall that,
given an A-B-bimodule M and a B-C-bimodule N , there are covariant right
exact functors

M ⊗B − : (B ⊗k C
op) -mod → (A⊗k C

op) -mod

and
−⊗B N : (A⊗k B

op) -mod → (A⊗k C
op) -mod .

Let (X, δ) be a bounded below chain complex of A-B-bimodules and (Y, ϵ) a
bounded below chain complex of B-C-modules. Then X ⊗B Y is the chain
complex of A-C-bimodules, formed as the total complex of the double com-
plex
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. . . . . . . . .

. . . Xi+1 ⊗B Yj+1 Xi ⊗B Yj+1 Xi−1 ⊗B Yj+1 . . .

. . . Xi+1 ⊗B Yj Xi ⊗B Yj Xi−1 ⊗B Yj . . .

. . . Xi+1 ⊗B Yj−1 Xi ⊗B Yj−1 Xi−1 ⊗B Yj−1 . . .

. . . . . . . . .

(−1)i+1ϵ (−1)iϵ (−1)i−1ϵ
δ

(−1)i+1ϵ

δ

(−1)iϵ

δ

(−1)i−1ϵ
δ

(−1)i+1ϵ

δ

(−1)iϵ

δ

(−1)i−1ϵ
δ

(−1)i+1ϵ

δ

(−1)iϵ

δ

(−1)i−1ϵ

Notice that X and Y being bounded below makes this double complex an
upper left quadrant double complex, so that the total complex X ⊗B Y is a
bounded below complex of A-C-bimodules.

This construction is functorial in both arguments, so we obtain functors

X ⊗B − : Ch−(B-C) → Ch−(A-C)

and
−⊗B Y : Ch−(A-B) → Ch−(A-C).

As in the module category case, these are covariant right exact functors.
The former is an exact functor when X is a bounded below complex of A-B-
bimodules, each term of which is projective as a right B-module. The latter
is exact when Y is a bounded complex of B-C-bimodules, each term of which
is projective as a left B-module.

Similarly, recall that, given an A-B-module M and an A-C-bimodule N ,
there is a covariant left exact functor

HomA(M,−) : (A⊗k C
op) -mod → (B ⊗k C

op) -mod

and a contravariant left exact functor

HomA(−, N) : (A⊗k B
op) -mod → (B ⊗k C

op) -mod .

Given a bounded above chain complex X of A-B-bimodules and a bounded
below chain complex Y of A-C-bimodules, then HomA(X, Y ) is the chain
complex of B-C-bimodules, formed as the total complex of the double com-
plex
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. . . . . . . . .

. . . HomA(Xi−1, Yj+1) HomA(Xi, Yj+1) HomA(Xi+1, Yj+1) . . .

. . . HomA(Xi−1, Yj) HomA(Xi, Yj) HomA(Xi+1, Yj) . . .

. . . HomA(Xi−1, Yj−1) HomA(Xi, Yj−1) HomA(Xi+1, Yj−1) . . .

. . . . . . . . .

(−1)i+1ϵ∗ (−1)iϵ∗ (−1)i−1ϵ∗
δ∗

(−1)i+1ϵ∗

δ∗

(−1)iϵ∗

δ∗

(−1)i−1ϵ∗
δ∗

(−1)i+1ϵ∗

δ∗

(−1)iϵ∗

δ∗

(−1)i−1ϵ∗
δ∗

(−1)i+1ϵ∗

δ∗

(−1)iϵ∗

δ∗

(−1)i−1ϵ∗

Notice that X being bounded above and Y being bounded below makes this
double complex an upper left quadrant double complex, so that the total
complex HomA(X, Y ) is a bounded below complex of B-C-bimodules.

Again, this construction is functorial in both arguments, and we obtain a
covariant left exact functor

HomA(X,−) : Ch−(A-C) → Ch−(B-C)

and a contravariant left exact functor

HomA(−, Y ) : Ch+(A-B) → Ch−(B-C).

These functors are exact functors respectively when each term of X is pro-
jective as a left A-module, and when each term of Y is injective as a left
A-module.

Tensor-hom adjunction extends to chain complexes, too. If X ∈ Ch+(A-B),
Y ∈ Ch+(B-C), and Z ∈ Ch−(A-C), then

HomCh−(A-C)(X ⊗B Y, Z) ∼= HomCh−(A-B)(X,HomCop(Y, Z))

and
HomCh−(A-C)(X ⊗B Y, Z) ∼= HomCh+(B-C)(Y,HomA(X,Z)).

Both isomorphisms are given in each term by the usual tensor-Hom adjunc-
tion for modules.

1.2.2 Homology

Let (X, δ) be a chain complex in Ch(A). The homology of X is the graded
A-module H∗(X) = (Hn(X))n∈Z, where Hn(X) = ker(δn)/ im(δn+1). This is
well de�ned, as δn ◦ δn+1 = 0. A chain complex X is acyclic if Hn(X) = 0 for
every n. That is, an acyclic chain complex is an exact sequence of A-modules.
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Taking homology yields a functor H∗(−) : Ch(A) → A -grmod. If (X, δ) and
(Y, ϵ) are chain complexes of A-modules and f : X → Y is a chain map, then
the graded A-module homomorphism H∗(f) : H∗(X) → H∗(Y ) is de�ned as
H∗(f) = (Hn(f))n∈Z, where

Hn(f) : Hn(X) → Hn(Y ),

x+ im(δn+1) 7→ fn(x) + im(ϵn+1).

A chain map f : X → Y is a quasi-isomorphism if each Hn(f) : Hn(X) →
Hn(Y ) is an isomorphism.

We make reference to a result that will be relevant later on, the 5-Lemma
(see e.g. [Wei95, Exercise 1.3.3]). If there is a commutative diagram

X5 X4 X3 X2 X1

Y5 Y4 Y3 Y2 Y1

f5 ∼= f4 ∼= f3 f2 ∼= f1 ∼=

with exact rows such that f1, f2, f4 and f5 are all isomorphisms, then f3 is
also an isomorphism.

1.2.3 Chain homotopy

Let A be a �nite-dimensional k-algebra and let (X, δ) and (Y, ϵ) be chain
complexes of A-modules. A chain homotopy between X and Y is a graded
A-module homomorphism h : X → Y of degree 1.

. . . Xn+1 Xn Xn−1 . . .

. . . Yn+1 Yn Yn−1 . . .

δn+1 δn

hn hn−1

ϵn+1 ϵn

Notice that h ◦ δ + ϵ ◦ h is a chain map X → Y . The homotopy h is a
homotopy between two chain maps f, f ′ : X → Y if f − f ′ = h ◦ δ + ϵ ◦ h.
In this case, the chain maps f, f ′ are homotopic, f ∼ f ′. This relation is an
equivalence relation. We think of chain maps f and f ′ with f ∼ f ′ as being
the same up to homotopy.

A chain homotopy equivalence is a chain map f : X → Y such that there is
a chain map g : Y → X with g ◦ f ∼ IdX and f ◦ g ∼ IdY . If there is a chain
homotopy equivalence f : X → Y , we say the chain complexes X and Y are
chain homotopy equivalent, X ≃ Y .

We have two useful results regarding chain homotopy.
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Proposition 1.2.1. Let X, Y be chain complexes, and f, f ′ : X → Y chain
maps.

1. If f ∼ f ′, then H∗(f) = H∗(f
′).

2. If f is a chain homotopy equivalence, then f is a quasi-isomorphism.

The homotopy category of chain complexes of A-modules is the category
K(A -mod) = K(A) whose objects are chain complexes of A-modules, and
whose morphism sets are the sets

HomK(A)(X, Y ) = HomCh(A)(X, Y )/ ∼

of chain maps up to homotopy. Isomorphisms in K(A) are chain homotopy
equivalences. The categories K+(A), K−(A) and Kb(A) are the full sub-
categories of K(A) whose objects are bounded above, bounded below and
bounded chain complexes of A-modules, respectively. Again, A -mod embeds
nicely into Kb(A) by considering an A-module as a chain complex concen-
trated in degree 0. We can further de�ne the category K(A -proj) as the sub-
category ofK(A) whose objects are chain complexes of projective A-modules.
Similarly, Kb(A -proj) is the subcategory of bounded chain complexes of pro-
jective A-modules. There is a k-linear quotient functor Ch(A) → K(A),
restricting to a k-linear functor Chb(A) → Kb(A).

Given two k-algebras A and B, we denote by K(A-B) the homotopy cate-
gory of bounded chain complexes of A-B-bimodules. As before, under the
assumption that k acts centrally on bimodules, K(A-B) ∼= K(A⊗k B

op).

A more general construction of the homotopy category K(A) of an abelian
category A exists, built in much the same way out of the category of chain
complexes Ch(A) of objects of A.

1.2.4 Projective resolutions and mapping cones

Let A be a �nite-dimensional k algebra and let X be a bounded below chain
complex of A-modules. A projective resolution of X is a pair (P (X), πX)
comprising a bounded below chain complex of projective A-modules and a
quasi-isomorphism πX : P (X) → X. Every bounded below complex of A-
modules X has a projective resolution.

One useful result is the following, known as the Comparison Theorem,
[Wei95, Theorem 2.2.6].

Theorem 1.2.2. Let M , N be A-modules and
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. . . P2 P1 P0 M 0ϵ

a chain complex with each Pi a projective A-module. Let P = (Pn)n∈Z, with

Pi = 0 for i < 0. If f :M → N is an A-module homomorphism, and Q N
η

is a projective resolution of N , then there is a chain map f : P → Q, unique
up to homotopy, such that the following diagram commutes:

. . . P2 P1 P0 M 0

. . . Q2 Q1 Q0 N 0

f2 f1

ϵ

f0 f
η

In particular, f ◦ ϵ = η ◦ f0.

Note that we do not here require that P be a projective resolution of the
A-module M , considered as a complex concentrated in degree 0. When P
is a projective resolution of M , this says that a map between A-modules
M and N lifts to a unique (up to homotopy) map between their projective
resolutions.

We have one �nal de�nition in this section. If (X, δ) and (Y, ϵ) are chain
complexes of A-modules and f : X → Y is a chain map, then the mapping
cone of f is the chain complex (cone(f), d) such that cone(f)n = Xn−1 ⊕ Yn
and dn(x, y) = (−δn−1(x), ϵn(y)− fn−1(x)).

The mapping cone of f �ts into a short exact sequence of chain complexes

0 Y cone(f) X[1] 0,

where the left arrow sends elements y ∈ Yn to (0, y) and the right arrow sends
elements (x, y) ∈ Xn−1 ⊕ Yn to −x.

1.2.5 Triangulated categories

The notion of triangulated category was introduced by Verdier14 in 1963,
[Ver77]. He was primarily attempting to generalise his new de�nition of the
derived category of an abelian category, which we come onto in the next
section. In this sense, the exposition here is the reverse of Verdier's.

De�nition 1.2.3. Let T be a category (assumed additive, k-linear).

14This is disputed by some, who believe the idea was originally Grothendieck's. The for-
mal de�nition �rst appeared in print in the referenced paper of Verdier, however. Moreover,
a less complete notion of triangulated category appeared a year before Verdier's, due to
Puppe, described in [Pup67]. Puppe's de�nition is without the octahedral axiom, (TR4)
below. Puppe's motivation for a general de�nition was the stable homotopy category.
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� A shift or translation functor on T is an additive functor T : T → T .

� A triangle in a category T equipped with a translation functor is a
succession of morphisms

X Y Z T [X]
f g h

between objects of T . We also use the notation X Y Z to
denote a triangle in T .

� A morphism of triangles is a triple (u, v, w) of morphisms in T making
the following diagram, in which both rows are triangles in T , commute:

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v w T (u)

If all three of u, v and w are isomorphisms, then this is an isomorphism
of triangles.

Given a translation functor T on a category T , we will generally write X[1]
for T (X), where X is an object of T . We write iterated applications of T as
X[n] = T n(X).

We can now de�ne a triangulated category in general.

De�nition 1.2.4. We say the category T is a triangulated category if there is
a translation functor T on T and a family of distinguished or exact triangles

X Y Z X[1]

such that the following four axioms hold.

(TR1) (i) Every morphism f : X → Y in T can be embedded in an exact

triangle X Y Z X[1].
f g h The object Z of T is the mapping

cone of f .

(ii) For any objectX in T , the triangleX X 0 X[1]id is exact.

(iii) If X Y Z X[1]
f g h is an exact triangle in T and we have an

isomorphism of triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f

∼=

g

∼=

h

∼= ∼=

f ′ g′ h′
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in T , then the triangle X ′ Y ′ Z ′ X ′[1]
f ′ g′ h′

is also exact.

(TR2) If X Y Z X[1]
f g h is an exact triangle in T , then the rotated

triangles

Y Z X[1] Y [1]
g h −f [1]

and

Z[−1] X Y Z
−h[−1] f g

are also exact in T .

(TR3) Given two exact triangles

X Y Z X[1]
f g h and X ′ Y ′ Z ′ X ′[1]

f ′ g′ h′

in T and morphisms u : X → X ′ and v : Y → Y ′ such that f ′u = vf ,
there is a third morphism w : Z → Z ′ such that we have a morphism
of triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1].

f

u

g

v

h

w u[1]

f ′ g′ h′

This axiom is sometimes called the completion axiom for triangulated
categories.

(TR4) (The Octahedral Axiom)Given exact trianglesX Y Z ′ X[1],u j ∂

Y Z X ′ Y [1]v x i and X Z Y ′ X[1]vu y δ in T , there is an

exact triangle Z ′ Y ′ X ′ Z ′[1]
f g h such that h = j[1]i, ∂ = δf ,

x = gy, yv = fj and uδ = ig. We can picture this15 as follows:

15and justify the nomenclature
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Y ′

Z ′ X ′

X Z

Y

g

∂

f

j

j[1]i

i

u

δ

vu

x

y

v

Notice that the cone of a morphism, as de�ned in (TR1), is de�ned up to
non-unique isomorphism, as per (TR3). Some authors thus contend that
the triangulated category framework is not the right one and could lead to
errors. Alternative frameworks to avoid the non-uniqueness trap, such as the
stable ∞-category, have been proposed as more suitable. However, for our
purposes this is not important, as the derived category one recovers is still
triangulated, and all relevant results hold in the usual framework.

De�nition 1.2.5. Let T and T ′ be triangulated categories.

� An additive functor F : T → T ′ is a triangulated functor if it commutes
with the translation functors T and T ′ and sends distinguished triangles
to distinguished triangles.

� A triangulated functor F : T → T ′ is an equivalence of triangulated
categories if F is an equivalence of categories.

� A full subcategory C of T is a triangulated subcategory if C is a trian-
gulated category, and the inclusion functor ι : C → T is a triangulated
functor.

The 5-Lemma for abelian categories has its own triangulated version.

Lemma 1.2.6. Let T be a triangulated category and (u, v, w) a morphism
of distinguished triangles in T :

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u v w u[1] .

If u and v are isomorphisms, then so is w.

A useful application of Lemma 1.2.6 is the following.
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Proposition 1.2.7. Let T be a triangulated category, and

X1 Y1 Z1

X2 Y2 Z2

two distinguished triangles in T . Then the direct sum

X1 ⊕X2 Y1 ⊕ Y2 Z1 ⊕ Z2

is also a distinguished triangle in T .

Proof. By the axiom (TR1), there is a distinguished triangle

X1 ⊕X2 Y1 ⊕ Y2 Z

for some Z. Projecting X1 ⊕ X2 and Y1 ⊕ Y2 onto their factors, with the
completion axiom (TR3) gives morphisms of triangles

X1 ⊕X2 Y1 ⊕ Y2 Z

Xi Yi Zi

for i = 1, 2. Then one may take the direct sum to obtain a morphism of
triangles

X1 ⊕X2 Y1 ⊕ Y2 Z

X1 ⊕X2 Y1 ⊕ Y2 Z1 ⊕ Z2

∼= ∼=

and since the �rst two arrows are isomorphisms, by Lemma 1.2.6 the third
is, too.

Let A be a k-algebra. The homotopy category K(A) of A is a triangulated
category. The full subcategories K−(A), K+(A) and Kb(A) are triangulated
subcategories of the triangulated category K(A), as is Kb(A -proj). The
shift functor is T (X) = X[1]. A distinguished triangle X Y Z in
Kb(A) is any triple isomorphic to a strict triangle:

X Y Z X[1]

V W cone(u) V [1]

∼= ∼= ∼= ∼=
u
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Here, all arrows are chain maps, and the vertical arrows are isomorphisms in
K(A) (that is, chain homotopy equivalences).

Similarly, given an arbitrary abelian category A, the homotopy category
K(A) is a triangulated category, with translation functor −[1] : K(A) →
K(A), and distinguished triangles formed in much the same way. Again,
K−(A), K+(A) and Kb(A) are triangulated subcategories of K(A).

We introduce now an important class of subcategories of triangulated cate-
gories, that will play an signi�cant role in the context of derived equivalence,
notably in �1.2.9 and �1.3.1.

De�nition 1.2.8. A full triangulated subcategory C of a triangulated cate-
gory T is a thick or �epaisse subcategory if, for X, Y ∈ T , whenever X ⊕ Y is
isomorphic in T to an object in C, both X and Y are objects in C.

This de�nition of a thick subcategory is equivalent to the original Verdier
de�nition [Ver77], as proved by Rickard [Ric89a, Proposition 1.3]. Verdier's
own formulation is that C is a thick subcategory if and only if there is a
triangulated category T ′ and a triangulated functor F : T → T ′ such that C
is the full subcategory of T consisting of objects X in T such that F (X) ∼= 0
in T ′. In other words, C is the the kernel of the triangulated functor F .

Given a full triangulated subcategory C of T , we denote by ⟨C⟩ the inter-
section of all the thick subcategories of T containing C; that is, ⟨C⟩ is the
smallest thick subcategory of T containing C. The subcategory ⟨C⟩ of T
consists of all objects in T isomorphic to direct summands of objects in C.

We may generalize this de�nition to any full subcategory of T , or indeed any
object or family of objects in T . Let X be a collection of objects in T . We
denote by ⟨X ⟩ the smallest thick subcategory of T containing all the objects
in X . We say that X generates T as a triangulated category if ⟨X ⟩ = T .

Strictly, the construction of the thick subcategory ⟨X ⟩ of T involves taking
iterative closures of certain full additive subcategories of T under shifts, di-
rect sums and direct summands. For a precise rendering of this construction,
the reader is encouraged to see [Stacks, Section 09SI].

1.2.6 Verdier localisation

Let T be a triangulated category and D a triangulated subcategory of T .
The Verdier quotient of T by D is the triangulated category speci�ed by
the following theorem of Verdier [Ver77]. In this subsection, we assume our
categories are such that we avoid any set theoretic di�culties.
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Theorem 1.2.9. There is a triangulated category T /D together with a tri-
angulated functor F : T T /D such that D is contained in the kernel of F ,
and F is universal with this property; that is, if F ′ : T T ′ is any triangu-
lated functor whose kernel contains D, then F ′ factors through F . Moreover,
the kernel of F is the thick subcategory ⟨D⟩.

The object class of the category T /D is the object class of T . The mor-
phism sets of T /D are the equivalence classes of left D-fractions or D-roofs,
as described below. We �rst need the following de�nition for an arbitrary
category.

De�nition 1.2.10. A collection of morphism Q in a category C is a multi-
plicative system if the following three conditions hold.

(i) The class Q is closed under composition and contains all identities and
isomorphisms.

(ii) (Ore condition) For t : Z → Y in Q and g : X → Y in C, there is a
commutative diagram

W Z

X Y

s

f

t

g

in C with s ∈ Q. Similarly, given maps s : W → X in and f : W → Z
with s ∈ Q, there are maps t : Z → Y and g : X → Y with t ∈ Q
making the above diagram commute.

(iii) For two morphisms f, g : X → Y in C, there is an s ∈ Q such that
s ◦ f = s ◦ g if and only if there is a t ∈ Q such that f ◦ t = g ◦ t.

Let T be a triangulated category. Let QD be the collection of morphisms s
in T such that cone(s) is an object in D. Then QD is a multiplicative system
in T .

To avoid set theoretic di�culties, we assume that the multiplicative system
QD is locally small. That is, for every object X of T , there is a set QX =
{h : X ′ → X} of morphisms in QD such that for every X1 → X in QD, there
is a morphism X2 → X1 in T such that the composition X2 → X1 → X is in
QX . This ensures that, for every pair of objects X and Y in T , the collection
HomQD(X, Y ) of morphisms X → Y in QD is a set.

A left D-fraction or D-roof in T is a chain of morphisms

X W Y
fs
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with s in QD.

The composition of two D-roofs X W1 Y
fs and Y W2 Z

gt is con-
structed using the Ore condition as below:

W

W1 W2

X Y Z

t′ f ′

s f t g

We note that the composition of two D-roofs is de�ned only up to isomor-
phism.

The fractions X W1 Y
fs and X W2 Y

gt are equivalent if there is a
fraction X W3 Y such that the following diagram commutes in T :

W1

X W3 Y.

W2

s f

t g

We denote by fs−1 the equivalence class of the roof X X1 Y.
fs Compo-

sition behaves nicely with respect to this equivalence relation.

Denote by HomT /D(X, Y ) the equivalence classes of roofs between X
and Y . Then the Verdier quotient T /D exists, and has morphism sets
HomT /D(X, Y ). We may also think of T /C as the Verdier localisation of T
at the class QD, denoted Q−1

D T . From this point of view, the category Q−1
D T

is the category we obtain from T by formally inverting the morphisms in
QD.

The functor F : T T /D in Theorem 1.2.9 is such that F (X) = X, and if

X Y
f

is a morphism in T , then F (f) is the roof X X Y.
fidX If f ∈ QD,

then fs−1 is invertible in T /D with inverse sf−1. In particular, F maps
morphisms in QD to isomorphisms in T /C.

The triangulated structure of T /D is inherited directly from T . The trans-
lation functor [1] on T /D is exactly the translation functor [1] on T . A
distinguished triangle in T /D is any triangle isomorphic to the image under
F of a distinguished triangle in T .
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1.2.7 Derived categories

Let A be a �nite-dimensional k-algebra. Recall the homotopy category K(A)
from �1.2.3. There is a thick subcategory Acy(A) whose objects are the
acyclic chain complexes of A-modules.

De�nition 1.2.11. The derived category of A is the Verdier quotient

D(A) = K(A)/Acy(A).

Recall from 1.2.3 that a morphism f : X → Y inK(A) is a quasi-isomorphism
if and only if cone(f) is an acyclic chain complex. Thus, D(A) = Q−1K(A),
where Q is the class of quasi-isomorphisms in K(A).

Verdier's Theorem 1.2.9 has the following form for the derived category.

Proposition 1.2.12. There is a triangulated functor F : K(A) → D(A)
satisfying the following two properties.

(i) Whenever f : X → Y is a homotopy class of quasi-isomorphisms, F (f)
is an isomorphism in D(A).

(ii) If F ′ : K(A) → T is any other functor sending quasi-isomorphisms to
isomorphisms, then there is a unique functor G : D(A) → D making
the following diagram commute:

K(A) D(A)

T .

F

F ′
∃G

The triangulated subcategories D−(A), D+(A) and Db(A) of D(A) of
bounded below, bounded above, and bounded chain complexes of A-modules
can be constructed identically from the triangulated subcategories K−(A),
K+(A) and Kb(A) of K(A) respectively. We call Db(A) the bounded derived
category of A, and it is this category that we will primarily be working
with. We denote by D(A-B) the derived category of chain complexes of A-
B-bimodules, for B another k-algebra. We have D(A-B) ≃ D(A⊗k B

op) as
triangulated categories. There are triangulated functors D(A-B) D(A)
and D(A-B) D(Bop), given by restricting to the action on either side.

Given an abelian category A, under some conditions (see [Wei95, Remark
10.4.5]) one can construct the derived category D(A), and its relevant sub-
categories16, in much the same way. When D(A) exists, the abelian category

16For D−(A) to exist, we require that A has enough projectives, while for D+(A) to
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A embeds as a full a subcategory of D(A), with objects of A viewed as chain
complexes concentrated in degree 0.

Quasi-isomorphisms of chain complexes do not in general have inverses, hence
the introduction of a method of formal inversion via roofs. Direct calculation
in the derived category D(A) can therefore be tricky. Fortunately, when
A = A -mod for A a �nite-dimensional algebra over a �eld k, for bounded
complexes of projective A-modules, we have the following result (see [Wei95,
Corollary 10.4.7]).

Proposition 1.2.13. Let P be a bounded below chain complex of projective
A-modules and X an arbitrary chain complex of A-modules. Then

HomD(A)(P,X) ∼= HomK(A)(P,X).

Further, we have (see [Wei95, Theorem 10.4.8]) an equivalence of triangulated
categories

D−(A) ≃ K−(A -proj).

We may realise Db(A) as the subcategory K−,b(A -proj) of K−(A -proj) of
bounded below chain complexes of projective A-modules with bounded homol-
ogy ; that is, objectsX ofK−(A -proj) such thatHn(X) = 0 for all but �nitely
many n. We thus have a triangulated subcategory Kb(A -proj) ⊂ Db(A). In
this way, we may consider a chain complex X which is unbounded above but
with bounded homology to be an object in the bounded derived category
Db(A).

We call an object X in D(A) a perfect complex if it is isomorphic in D(A)
to a bounded chain complex of �nitely generated projective A-modules; that
is, when X is isomorphic to an object of Kb(A -proj). Perfect complexes are
the compact objects17 of D(A). The perfect complexes form a triangulated
subcategory Perf(A) of D(A) (actually of Db(A)).

Remark 1.2.14. This de�nition of the derived category of A is slightly non-
standard. Typically, one de�nes the derived category of A to be D(A -Mod),
where A -Mod is the abelian category of all A-modules, not just �nitely gen-
erated ones. We note that the natural embedding A -mod A -Mod in-
duces a full embedding D(A -mod) D(A -Mod). Thus, although the state-
ments in �1.2.8 and �1.2.9 are generally given on D(A -Mod), for example in

exist, we require that A have enough injectives, see [Wei95, Theorem 10.4.8]. This is
always the case when A = A -mod, for A a �nite-dimensional algebra over a �eld k.

17The compact objects of a k-linear, triangulated category T are those objects X for
which the functor HomT (X,−) : T → k -mod commutes with coproducts (in our case,
direct sums).
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[Ric91], for �nite-dimensional algebras over a �eld, they apply just as well to
D(A) = D(A -mod).

1.2.8 Functors between derived categories

Recall that there is a right exact bifunctor

−⊗B − : Ch−(A-B)× Ch−(B-C) → Ch−(A-C).

This bifunctor respects chain homotopy, translation and mapping cones, so
extends to a triangulated bifunctor

−⊗B − : K−(A-B)×K−(B-C) → K−(A-C).

In general, however, the tensor product bifunctor does not extend nicely to
the derived category. This is because the tensor product of chain complexes
is not well de�ned up to quasi-isomorphism.

A functor F : A B between abelian categories extends to a triangulated
functor F : D−(A) D−(B) between their derived categories if F is exact.
If F is left exact, we may take the total right derived functor

RF : D−(A) D−(B),

and if F is right exact, we may take the total left derived functor

LF : D−(A) D−(B),

see [Wei95, De�nition 10.5.1]. The functors RF and LF restrict to triangu-
lated functors between the bounded derived categories Db(A) and Db(B).

Exactness of the tensor product functor between module categories is deter-
mined by projectivity of the modules. Let X ∈ D−(A-B) and Y ∈ D−(B-C).
When X is isomorphic in Db(Bop) to a bounded below complex of projective
Bop-modules, we have a triangulated functor

X ⊗B − : D−(B-C) → D−(A-C),

and when Y is isomorphic to a bounded below complex of projective B-
modules, a triangulated functor

−⊗B Y : D−(A-B) → D−(A-C).

Otherwise, we take the total left derived functors of the right exact tensor
product functors, giving a bifunctor
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−⊗L

B − : D−(A-B)×D−(B-C) D−(A-C)

called the derived tensor product.

Given objects X in D−(A-B) and Y in D−(B-C), to explicitly construct the
object X ⊗L

B Y of D−(A-C), one takes a projective resolution P of X, or
Q of Y , and sets X ⊗L

B Y to be P ⊗B Q, P ⊗B Y or X ⊗B Q. All three
are isomorphic in D(A-C). In this way, the object X ⊗L

B Y of D−(A-C) is
unambiguously de�ned.

By a similar process, the bifunctor

HomA(−,−) : Ch+(A-B)× Ch−(A-C) → Ch−(B-C),

left exact in both arguments, covariant in the right argument and contravari-
ant in the left, induces a bifunctor

RHomA(−,−) : D+(A-B)×D−(A-C) → D−(B-C).

The usual tensor-Hom adjunction extends to the derived functors on the
derived category. For objects X in D+(A-B), Y in D+(B-C) and Z in
D−(A-C), we have

RHomA(X ⊗L

B Y, Z)
∼= RHomB(Y,RHomA(X,Z))

and
RHomCop(X ⊗L

B Y, Z)
∼= RHomBop(X,RHomCop(Y, Z)).

1.2.9 Derived equivalence

Let A and B be �nite-dimensional k-algebras.

De�nition 1.2.15. A derived equivalence between A and B is an equivalence
of triangulated categories

F : D(A) D(B).∼

The algebras A and B are derived equivalent if such an equivalence exists.

A derived equivalence F as above descends to

F : D−(A) D−(B)∼

and

F : Db(A) Db(B).∼
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In fact, the categories D−(A) and D−(B) are equivalent as triangulated cat-
egories if and only if the categories Db(A) and Db(B) are, [Ric89b, Theorem
6.4].

It is obvious that Morita equivalent algebras are derived equivalent.

Recall in �1.1.5 that a Morita equivalence preserves a number of properties of
an algebra and its modules. A derived equivalence also preserves a number
of important properties, albeit fewer. Let

Φ : D(A) D(B)∼

be a derived equivalence. Then (see [Ric91, Corollary 5.3]) if A is symmetric,
then B is also symmetric.

Further, the number of simple A-modules is preserved, although Φ need not
send simple A-modules to simple B-modules. Again, one can see this at
the level of the Grothendieck group. For a triangulated category T , the
Grothendieck group K0(T ) of T is the free abelian group on symbols [X] for
objects X of T , subject to the relation that

[Y ] = [X] + [Z]

whenever

X Y Z

is a distinguished triangle in T . A triangulated functor

F : T → T ′

induces an abelian group homomorphism

[F ] : K0(T ) → K0(T ′),

and F is an equivalence of triangulated categories if and only if [F ] is an
isomorphism of abelian groups.

Here, the full embedding

A -mod D(A)

induces an isomorphism of abelian groups18

K0(A) K0(D(A)).∼

18This is a highly non-trivial statement, but the proof is not too important for us.
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In particular, K0(D(A)) captures the number of isomorphism classes of sim-
ple A-modules. The derived equivalence Φ induces isomorphisms

K0(A) K0(D(A)) K0(D(B)) K0(B),∼ ∼ ∼

so that A and B must have the same number of simple modules. However,
[Φ] does not preserve simple modules in the derived categories. It is an
interesting problem, given a derived equivalence Φ, to determine the images
of the simple A-modules in D(B). Work of Rickard and Okuyama, among
others, has determined in certain situations objects in D(B) that behave like
simple modules, and are thus candidate images of simple modules under a
derived equivalence.

Rickard introduced a Morita theory for derived categories in [Ric89b]. Here,
the role played by the progenerator in Theorem 1.1.2 is played by the tilting
complex.

De�nition 1.2.16. A one-sided tilting complex for A is an object X of
Kb(A -proj) which satis�es:

� HomD−(A)(X,X[i]) = 0 whenever i ̸= 0;

� X -add generates Kb(A -proj) as a triangulated category.

Rickard's result, [Ric89b, Theorem 6.4] is the following.

Theorem 1.2.17. The following are equivalent.

(i) There is a derived equivalence D−(A) D−(B)∼ .

(ii) There is a one-sided tilting complex X for A such that

EndD−(A)(X)op ∼= B

as k-algebras.

A ubiquitous class of one-sided tilting complexes for symmetric algebras is
de�ned as follows.

Let A be a �nite-dimensional symmetric k-algebra A. Let {S1, . . . , Sn}
be a set of representatives of isomorphism classes of simple A-modules,
and {P1, . . . , Pn} the projective indecomposable A-modules, such that
Pi/ rad(Pi) ∼= Si. Let I = {1, . . . , n}. Let J ⊂ I.

Let M be an A-module. Take a projective cover P (M) M
πM of M . De-

note by MJ the largest quotient of P (M) by a submodule of ker(πM) such
that all composition factors of the kernel of the induced map MJ M are

46



in J . Let QM,J ker(ϕM,J)
πM,J

be a projective cover of the kernel of the

canonical map P (M) MJ

ϕM,J
.

De�nition 1.2.18. Given J ⊂ I, the combinatorial tilting complex at J is
the complex

T =
⊕
j∈J

Tj ⊕
⊕
i∈I\J

Pi[1],

where, for j ∈ J , Tj is the complex

0 QSj ,J Pj 0,

concentrated in degrees 1 and 0.

We note that Grant [Gra13, De�nition 5.4] allows T =
⊕

i∈I T
ℓi
i , where ℓi ≥ 1

for all i, with Ti = Pi[1] for i ∈ I \ J . The complex T with ℓi = 1 is the basic
combinatorial tilting complex at J .

Typically, one takes J to be a proper, non-empty subset of I. This de�nition
is still valid when J = ∅ or J = I, though such cases are less interesting.

When J is such that Ext1A(Si, Sj) = 0 for every i, j ∈ J , then for j ∈ J , the
complex Tj is

P (rad(Pj)) Pj,
π

where P (rad(Pj)) rad(Pj)
π is a projective cover of rad(Pi). That is,

P (rad(Pj)) =
⊕

i∈I\J Pi ⊗k Ext
1
A(Si, Sj), where Ext

1
A(Si, Sj) is the multiplic-

ity module.

Combinatorial tilting complexes were introduced by Rickard [Ric88] for J a
single index, generalised to arbitrary subsets J by Okuyama [Oku97]. They
are also called Okuyama-Rickard two-term tilting complexes, among other
names. Combinatorial tilting complexes have wide-reaching applications, for
example in silting theory [AI12] and cluster tilting theory [Bua+04].

Given a subset J , the basic combinatorial tilting complex T at J exists and
is unique up to isomorphism, [Gra13, Lemma 5.5, Corollary 5.7]. Further.
T is a tilting complex, [Oku97, Proposition 1.1], [Gra13, Proposition 5.6].
Thus, by Theorem 1.2.17, given a combinatorial tilting complex T , there
is an algebra B = EndDb(A)(T )

op such that there is a derived equivalence

FJ : Db(A) Db(B)∼ . We call FJ the combinatorial tilt of A at J .

It is often bene�cial for a derived equivalence to be coming from a complex
of bimodules, rather than one-sided modules.

47



A standard derived equivalence between A and B is one of the form

X ⊗L

A − : D−(A) D−(B),∼

where X is an object of Db(B-A). The object X of Db(B-A) is a two-sided
tilting complex if X induces a standard derived equivalence as above. A
standard derived equivalences descends to an equivalence

X ⊗L

A − : Db(A) Db(B),∼

where here we must treat Db(A) as the homotopy category of bounded above
complexes of projective A-modules with bounded homology, K−,b(A).

The following theorem, [Ric91, Corollary 3.5], tells us that we can always
replace a derived equivalence by a standard derived equivalence, and it will
behave the same on objects.

Theorem 1.2.19. Let

F : D−(A) D−(B)∼

be a derived equivalence. Then there is a standard derived equivalence

X ⊗L

A − : D−(A) D−(B),∼

that agrees with F on A -proj, and is such that F (Y ) ∼= X ⊗L

A Y for every
object Y of D−(A).

We have that, if X is a two-sided tilting complex, then X is perfect in D(Aop)
and D(B). Further [Ric91, De�nition 4.2], X is a two-sided tilting complex
if and only if there is an object X̃ of Db(A-B) such that

X ⊗L

A X̃
∼= B in Db(B-B)

and
X̃ ⊗L

B X
∼= A in Db(A-A).

The object X̃ is called the inverse of X. It is itself a two-sided tilting
complex, inducing a standard derived equivalence

X̃ ⊗L

B − : D−(B) D−(A).∼

1.2.10 The stable category

Let A be a �nite-dimensional k-algebra. The stable module category, or sim-
ply stable category, A -mod of A is obtained from the module category A -mod
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by factoring out the projective modules. More formally, A -mod is the k-linear
category whose object class is the class of all A-modules, and with morphisms

HomA(M,N) = HomA(M,N)/PHomA(M,N),

where PHomA(M,N) is the space of A-module homomorphisms M → N
which factor through a projective module.

Given an A-module M , recall that the Heller translate ΩA(M) of M is the
kernel

0 ΩA(M) P M 0,π

where P Mπ is a projective cover of M . If M is an A-module with no
projective direct summands, we have ΩA(M) ∼= ΩA⊗kAop(A)⊗A M .

Similarly, the inverse Heller translate Ω−1
A (M) is the cokernel

0 M I Ω−1
A M 0ι

whereM Iι is an injective hull ofM . IfM is an A-module with no injective
summands, we have Ω−1

A (M) ∼= Ω−1
A⊗kAop(A)⊗A M .

When A is self-injective, we thus obtain endofunctors

ΩA = ΩA⊗kAop(A)⊗A − : A -mod A -mod∼

and

Ω−1
A = Ω−1

A⊗kAop(A)⊗A − : A -mod A -mod .∼

Moreover, the functors ΩA and Ω−1
A are mutually inverse k-linear autoequiv-

alences of A -mod.

Assume for the remainder of this section that A is a self-injective algebra. The
stable category A -mod is a triangulated category. The translation functor
is the inverse Heller translate T (M) = Ω−1

A (M). Exact triangles can be
described as follows.

First, we have isomorphisms (see e.g. [Lin18, Propositions 4.13.7, 2.5.15])

HomA(ΩA(N),M) ∼= Ext1A(N,M) ∼= HomA(N,Ω
−1
A (M))

for any two A-modules M,N . Thus, an element of Ext1A(N,M), that is, an
exact sequence

0 →M → E → N → 0

49



in A -mod, gives rise to an element of HomA(N,Ω
−1
A (M)). Hence, we obtain

a sequence
M → E → N → Ω−1

A (M).

Sequences of this form form the class of exact triangles in A -mod.

An explicit relationship between the stable category and the derived category
is due to Rickard, [Ric89a, Theorem 2.1]. Recall that there is a triangulated
subcategory Perf(A) of Db(A) whose objects are the perfect objects in D(A).
One can therefore form the Verdier quotient

Db(A)/Perf(A).

The diagram

Db(A) Db(A)/Perf(A)

A -mod A -mod

induces an equivalence of triangulated categories

A -mod Db(A)/Perf(A).∼

Following this diagram, given an object X ∈ Db(A), if X is the image of X
under the quotient map

Db(A) Db(A)/Perf(A),

then there is an A-module M such that M ∼= X in A -mod, under the above
equivalence. We will freely identify these two objects in A -mod in Chapter
2.

If B is another k-algebra, a stable equivalence between A and B is an equiv-
alence of triangulated categories

F : A -mod B -mod .∼

We say A and B are stably equivalent.

An immediate consequence of the above result of Rickard is that, if A and
B are derived equivalent, then A and B are stably equivalent. In particular,
[Ric91, Corollary 5.5], when A and B are derived equivalent, there is an
A-B-bimodule M and a B-A-bimodule N such that the functors

N ⊗A − : A -mod → B -mod
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and
M ⊗B − : B -mod → A -mod

induce mutually inverse equivalences of the stable categories A -mod and
B -mod.

This leads to the de�nition of a stable equivalence of Morita type, due to
Brou�e, [Bro94]. Suppose the A-B-bimodule M and the B-A-bimodule N are
such that the following all hold:

(i) M and N are projective as left and as right modules;

(ii) M ⊗B N ∼= A ⊕ P as A-A-bimodules, where P is a projective A-A-
bimodule;

(iii) N ⊗A M ∼= B ⊕ Q as B-B-bimodules, where Q is a projective B-B-
bimodule.

Then the mutually inverse equivalences of the stable categories induced by
the functors N ⊗A − and M ⊗B − are stable equivalences of Morita type.

1.3 Perverse Equivalences

Perverse equivalences, introduced by Chuang and Rouquier (described in
full in [CR17], earlier described in [Rou06, �2.6]), are a subclass of derived
equivalences, that are �ltered by shifted equivalences on successive quotients
of the underlying abelian category. They thus come with desirable com-
binatorial properties. In the block theory of �nite-dimensional symmetric
algebras, perverse equivalences appear to be foundational in constructing de-
rived equivalences. They seem to have particular signi�cance in the context
of �nite groups, especially �nite groups of Lie type, as we will discuss in
�3.1.2.

1.3.1 De�nitions

We shall not reproduce here the de�nition of Chuang and Rouquier in full
generality, [CR17, De�nition 4.1], but rather a de�nition for abelian cate-
gories.

We require some preliminary de�nitions, analogous to the notion of Verdier
localisation in �1.2.6, for abelian categories. Details on the following can be
found in [Stacks, Section 02MN].
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De�nition 1.3.1. Let A be an abelian category. A full abelian subcategory
B of A is a Serre subcategory if whenever

0 M ′ M M ′′ 0

is an exact sequence in A, the object M belongs to B if and only if both M ′

and M ′′ belong to B.

Kernels of exact functors between abelian categories are Serre subcategories.
That is, given abelian categories A and A′ and an exact functor F : A →
A′, the full subcategory of objects X of A such that F (X) = 0 is a Serre
subcategory of A.

In fact, all Serre subcategories occur as kernels of exact functors between
abelian categories.

Lemma 1.3.2. Let A be an abelian category and B a Serre subcategory of
A. There is an abelian category A/B and an essentially surjective exact
functor F : A → A/B such that B is the kernel of F , and for any exact
functor G : A → A′ whose kernel contains B, there is a unique exact functor
H : A/B → A′ such that G = H ◦ F .

Lemma 1.3.2 is an abelian category analogue of Verdier's Theorem 1.2.9 for
triangulated categories.

De�nition 1.3.3. The abelian category A/B in Lemma 1.3.2 is the Serre
quotient of A by B.

The Serre quotient A/B can be characterised as follows. The objects of
A/B are the objects of A. Morphism sets HomA/B(X, Y ) are the sets of
equivalence classes of left B-roofs or B-fractions, as follows.

The collection QB of morphisms s in A such that ker(s) and coker(s) are in
B is a multiplicative system in A, as per De�nition 1.2.10. A left B-roof or
B-fraction is a diagram

X W Y
fs

with s in QB. Two roofs X W Y
fs and X W ′ Y

gt are equivalent
if there is a map W ′ W making the following diagram commute:

W ′

X W Y

t g

fs
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Composition of roofs follows the Ore condition, as in �1.2.6. Again, we can
think of A/B as the localisation Q−1

B A of A at the multiplicative system QB.

Now, let Db(A) be the bounded derived category of the abelian category A.
If B is a Serre subcategory of A, then we de�ne Db

B(A) to be ⟨B⟩, the thick
subcategory of Db(A) generated by B. Then, since B is a Serre subcategory,
as in [CR17, �4.2.2], Db

B(A) is precisely the thick subcategory ofDb(A) whose
objects are the complexes with homology contained entirely in B.

Let A and A′ be abelian categories. Suppose we have �ltrations

0 = A0 ⊂ A1 ⊂ . . . ⊂ Ar = A,
0 = A′

0 ⊂ A′
1 ⊂ . . . ⊂ A′

r = A′

by Serre subcategories, and let p : {1, . . . , r} → Z be a function.

De�nition 1.3.4. A derived equivalence Φ : Db(A) Db(A′)∼ is perverse
relative to (A•,A′

•, p) if

� the functor Φ restricts to an equivalence Db
Ai
(A) Db

A′
i
(A′)∼ of trian-

gulated categories for every i, and

� for every i, Φ[p(i)] induces an equivalence Ai/Ai−1 A′
i/A′

i−1
∼ of

abelian categories.

We call p the perversity function.

Perverse equivalences occur naturally in the representation theory of �nite di-
mensional algebras. Standard examples can be found in Brauer tree algebras
(see �3.1.5) and blocks of �nite groups of Lie type (see �3.1.2).

An immediate consequence of the de�nition is the following, [CR17, Lemma
4.16].

Lemma 1.3.5. If Φ : Db(A) Db(A′)∼ is perverse relative to (A•,A′
•, p),

with perversity function p ≡ 0, then we have an equivalence A A′.∼

Another useful fact, clear from the de�nition, is the following, [CR17, Lemma
4.2].

Lemma 1.3.6. If Φ : Db(A) Db(A′)∼ is perverse relative to (A•,A′
•, p),

then the inverse Φ−1 : Db(A′) Db(A)∼ is perverse relative to (A′
•,A•,−p).

We can reframe the �nal clause of the de�nition diagrammatically, following
Grant [Gra13, Remark 3.21]. For each i, restricting Φ gives an equivalence
Db

Ai
(A) Db

A′
i
(A′)∼ , from which we obtain an equivalence
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Φ[p(i)] : Db(A)/Db
Ai−1

(A) Db(A′)/Db
A′

i−1
(A′),∼

which we require to �t into a commutative diagram:

Db(A)/Db
Ai−1

(A) Db(A′)/Db
A′

i−1
(A′)

Ai/Ai−1 A′
i/A′

i−1

∼

∃∼

To justify the vertical arrows, this commutative diagram can be seen to sit
inside a larger one:

Db(A) Db(A′)

Ai A′
i

Db(A)/Db
Ai−1

(A) Db(A′)/Db
A′

i−1
(A′)

Ai/Ai−1 A′
i/A′

i−1

∼

∼

∃∼

Here, the vertical arrows are quotients given by localisation, and the embed-
ding Ai Db(A) is via the usual embedding of A in Db(A).

The functor Ai/Ai−1 Db(A)/Db
Ai−1

(A) exists and is fully faithful by the
universal property of the quotient Ai Ai/Ai−1. An identical argument
works on the other side.

1.3.2 Composition of perverse equivalences

In general, the composition of two perverse equivalences need not remain
perverse; we will see an example of this in �3.2. In certain circumstances,
however, perversity upon composition is guaranteed.

Firstly, the composition of two perverse equivalences at a �xed middle �ltra-
tion is perverse, [CR17, Lemma 4.4].

Lemma 1.3.7. Let A, A′ and A′′ be abelian categories. Suppose we have
an equivalence F : Db(A) Db(A′),∼ perverse relative to (A•,A′

•, p), and an
equivalence F ′ : Db(A′) Db(A′′),∼ perverse relative to (A′

•,A′′
•, p

′). Then
the composition F ′ ◦ F is perverse relative to (A•,A′′

•, p+ p′).

Lemmas 1.3.7, 1.3.6 and 1.3.5 then produce the following result, [CR17,
Proposition 4.17].
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Proposition 1.3.8. Suppose we have equivalences F : Db(A) Db(A′),∼

perverse relative to (A•,A′
•, p), and F ′ : Db(A) Db(A′′),∼ perverse rela-

tive to (A•,A′′
•, p). Then the composition F ′ ◦ F−1 is perverse relative to

(A•,A•, p), with p ≡ 0, and thus induces an equivalence A′ A′′.∼

In other words, the �ltration on the left hand side and the perversity function
p completely determine the equivalence class of the abelian category A′.

1.3.3 Simple modules

We con�ne our discussion now to when the abelian categories in question are
module categories of �nite-dimensional symmetric algebras over a �eld. For
the remainder of this section, let k be a �eld, and let A and A′ be �nite-
dimensional symmetric k-algebras.

Set A = A -mod and A′ = A′ -mod. Suppose there exists a derived equiva-
lence Φ : Db(A) Db(A′)∼ , and let S = {S1, . . . , Sn} and S ′ = {S ′

1, . . . , S
′
n}

denote complete sets of non-isomorphic simple A- and A′-modules, respec-
tively. The Serre subcategories of A and A′ are in one-to-one correspondence
with the �nite subsets of S and S ′, respectively. In particular, given a �nite
subset S1 ⊂ S, the full subcategoryA1 ofA, whose objects are the A-modules
with composition factors are all in S1, is a Serre subcategory, called the Serre
subcategory generated by S1.

Suppose we have �ltrations

∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sr = S,
∅ = S ′

0 ⊂ S ′
1 ⊂ . . . ⊂ S ′

r = S ′

on the sets of simple modules. For each i, let Ai be the Serre subcategory of
A -mod generated by Si and A′

i the Serre subcategory of A′ -mod generated
by S ′

i.

De�nition 1.3.9. We say the equivalence Φ : Db(A) Db(A′)∼ is perverse
relative to (S•,S ′

•, p) if it is perverse relative to (A•,A′
•, p).

We call the information (S•,S ′
•, p) the perversity data for Φ.

For simplicity, we may take an indexing set I = {1, . . . , n} of S and set Ii to
be the subset of I corresponding to the indices of the simple modules in Si,
and I ′i the subset of I corresponding to the indices of the simple modules in
S ′
i. Then the �ltrations can be written as

∅ = I0 ⊂ I1 ⊂ . . . ⊂ Ir = I,

∅ = I ′0 ⊂ I ′1 ⊂ . . . ⊂ I ′r = I.
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One may then say that Φ is perverse relative to (I•, I
′
•, p).

We can rephrase the conditions in De�nition 1.3.4 to conditions wholly on
the simple modules themselves. The following is [CR17, Lemma 4.19].

Proposition 1.3.10. A derived equivalence Φ : Db(A) Db(A′)∼ is perverse
relative to (S•,S ′

•, p) if the following hold:

� for every i and every V ∈ Si\Si−1, the composition factors of Ht(Φ(V ))
for t ̸= p(i) are all in S ′

i−1, and there is a �ltration L1 ⊂ L2 ⊂
Hp(i)(Φ(V )) such that the composition factors of L1 and the compo-
sition factors of Hp(i)(Φ(V ))/L2 are all in S ′

i−1, and L2/L1 ∈ S ′
i \S ′

i−1;

� the map V 7→ L2/L1 described above is a bijection between Si\Si−1 and
S ′
i \ S ′

i−1.

In fewer words, for every V ∈ Si \ Si−1, the composition factors of Ht(Φ(V ))
are all in S ′

i−1, except for a single composition factor of Hp(i)(Φ(V )), which
lies in S ′

i \ S ′
i−1. Notationally, to highlight the e�ect of Φ on the simple

modules, we may write the �ltration as

∅ = S0 ⊂p(1) S1 ⊂p(2) . . . ⊂p(r) Sr = S,

or similarly on the other side. For the �ltration on indices, this is

∅ = I0 ⊂p(1) I1 ⊂p(2) . . . ⊂p(r) Ir = I,

and similarly on the other side.

Recall that, for an arbitrary derived equivalence

F : Db(A) Db(A′),∼

the induced abelian group isomorphism

[F ] : K0(D
b(A)) K0(D

b(A′))∼

does not preserve classes of simple modules. In particular, we know that the
sets S and S ′ of isomorphism classes of simple A- and A′-modules have the
same �nite cardinality, but the equivalence F does not induce a canonical
bijection between the two sets. However, when F is a perverse equivalence,
by Proposition 1.3.10, F does in fact induce a bijection Si \ Si−1 ↔ S ′

i \ S ′
i−1

between the layers of the two �ltrations for every i. Gluing these strati�ed
bijections together therefore de�nes a bijection between S and S ′. This is
one sense in which a perverse equivalence gives us more information than an
arbitrary equivalence.
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1.3.4 Projective modules

One can also rephrase the conditions for perversity in terms of projective
modules. The following is taken from [CR17, �4.2.4].

Suppose Φ : Db(A) Db(A′)∼ is a perverse equivalence, relative to (S•,S ′
•, p),

in the sense of De�nition 1.3.9. For each i, let Pi be the set of projective
indecomposable A-modules PV corresponding to the simple modules V ∈
S \ Sr−i, and P ′

i be the set of projective indecomposable A′-modules PV ′

corresponding to the simple modules V ′ ∈ S ′ \ S ′
r−i. This gives �ltrations

∅ = P0 ⊂ P1 ⊂ . . . ⊂ Pr = P

and
∅ = P ′

0 ⊂ P ′
1 ⊂ . . . ⊂ P ′

r = P ′

of the sets P and P ′ of projective A- and A′-modules respectively. De�ne a
function p : {1, . . . , r} → Z by p(i) = p(r − i+ 1).

De�nition 1.3.11. We say the equivalence Φ is perverse relative to
(P•,P ′

•, p).

We present this as a de�nition, but it is strictly speaking a consequence of
Chuang and Rouquier's de�nition for additive categories [CR17, De�nition
4.1, Lemma 4.7], that we do not reprint here. In particular, the equivalence
Φ restricts to

Φ : Kb(A -proj) Kb(A′ -proj).∼

A �ltration of A -proj by full additive subcategories is given by B•, where
Bi = Pi -add, with a similar �ltration for A′ -proj. Then Φ is perverse relative
to (B•,B′

•, p), in the sense of Chuang and Rouquier's more general de�nition.

The �ltration on the indexing set I of isomorphism classes of simple A-
modules is

∅ = Ī0 ⊂p̄(1) Ī1 ⊂p̄(2) . . . ⊂p̄(r) Īr = I,

where Īi = I \ Ir−i, and similar on the other side.

Given a perverse equivalence in terms of simple modules, we can thus recon-
�gure it in terms of projective modules by reversing the �ltrations and the
perversity, and vice versa. We have a natural analogue to Proposition 1.3.10,
using [CR17, Lemma 4.21].

Proposition 1.3.12. A derived equivalence Φ : Db(A) Db(A′)∼ is perverse
relative to (P•,P ′

•, p) if and only if the following hold:
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� for every i and every indecomposable projective A-module P ∈ Pi\Pi−1,
the object Φ(P ) is isomorphic in Db(A′) to a complex X of projective A′-
modules, such that every term of X is a direct sum of modules in P ′

i−1,
except in degree p(i), which has exactly one indecomposable summand
in P ′

i \ P ′
i−1, say P

′, with all others in P ′
i−1;

� the map P 7→ P ′ as above de�nes a bijection between Pi \ Pi−1 and
P ′

i \ P ′
i−1.

In particular, gluing these strati�ed bijections produces a bijection P ↔ P ′,
matching (in reverse) the bijection S ↔ S ′. It will be useful to have these
two concrete formulations of perversity.

For symmetric algebras, it is clear from Proposition 1.3.12 and the discussion
following De�nition 1.2.18 that derived equivalences arising from combinato-
rial tilting complexes are perverse equivalences. The following can be found
in [CR17, Proposition 5.3].

Proposition 1.3.13. Let A be a �nite-dimensional symmetric k-algebra.
Let I be an indexing set of the isomorphism classes of simple A-modules.
Given J ⊂ I, the combinatorial tilt FJ : Db(A) Db(B)∼ at J is a perverse
equivalence, with �ltrations both given by

∅ ⊂0 J ⊂−1 I.

The �ltration on projectives is

∅ ⊂−1 I \ J ⊂0 I.

Chuang and Rouquier call these combinatorial tilts elementary perverse
equivalences. Concrete examples of such tilts can be found as Kauer moves
in Brauer graph algebras, [Kau98].

1.3.5 Self-perverse equivalences

A ubiquitous class of perverse equivalences is that of self-perverse equiva-
lences, as in [CR17, �4.3]. These are derived autoequivalences

Φ : Db(A) Db(A),∼

perverse relative to (S•,S•, p) for which the �ltration

∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sr = S
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of simple modules is the same on both sides. We may in such circumstances
say that Φ is perverse relative to (S•, p).

It is important to note that, given a self-perverse equivalence Φ, the induced
permutation on the layers of the �ltration of S, given by Proposition 1.3.10,
need not be the identity. Further, [CR17, Remark 4.27], a self-perverse equiv-
alence Φ whose perversity function is p ≡ 0 need not be isomorphic to the
identity functor on Db(A), even if the induced bijection on S is the iden-
tity map. Rather, by Lemma 1.3.5, Φ induces a self-Morita equivalence of
A -mod.

1.3.6 Two-step perverse equivalences

We will encounter a number of perverse equivalences whose �ltration on
simple modules is of the form

∅ = S0 ⊂n1 S1 ⊂n2 S2 = S.

When this occurs, one can always take a homological shift so that the per-
versity function satis�es

∅ = S0 ⊂0 S1 ⊂d S2 = S

for some d ∈ Z. We will call an equivalence with a �ltration of this form a
two-step perverse equivalence of width d.

Proposition 1.3.13 informs us that, with I the indexing set for the isomor-
phism classes of simple A-modules, and J ⊂ I, the combinatorial tilt (or
elementary perverse equivalence) at J is a two-step perverse equivalence of
width −1.

There is a natural dual construction to the combinatorial tilt at J , using
injective hulls rather than projective covers, which also gives rise to a two-step
perverse equivalence, this time of width 1. The inverse of the combinatorial
tilt FJ : Db(A) Db(B)∼ is the dual of the elementary perverse equivalence
at J for B:

F−1
J : Db(B) Db(A).∼

For details of the dual construction, see [CR17, Proposition 5.4].

1.3.7 Construction of perverse equivalences

Recall from �1.3.2 that the composition of perverse equivalences

59



Db(A) Db(A(1)) Db(A(2))
Φ1 Φ2

need not remain perverse. However, in certain circumstances the composition
will be perverse. For example, Lemma 1.3.7 tells us that iterated elementary
perverse equivalences at a �xed subset I0 of the common indexing set I will
remain perverse. We can take this analysis further, and produce a construc-
tion of a canonical perverse equivalence for a given �ltration and perversity
function.

Now, let I be an indexing set of isomorphism classes of simple A-modules.
Given a chain of subsets ∅ ⊂ I1 ⊂ I2 ⊂ I, we have a diagram

Db(A(1)) Db(B)

Db(A)

Db(A(2)) Db(B′)

FI2

FI1

FI2

FI1

where FI1 and FI2 are the elementary perverse equivalences (or combinatorial
tilts) at I1 and I2 respectively. By Proposition 1.3.13 and Lemma 1.3.7, both
compositions are perverse relative to the �ltration

∅ ⊂0 I1 ⊂−1 I2 ⊂−2 I.

By Proposition 1.3.8, the composition

FI1FI2F
−1
I1
F−1
I2

: Db(B) Db(B′)∼

is a perverse equivalence, with perversity function identically zero, so induces
an equivalence

B -mod B′ -mod .∼

That is, B and B′ are Morita equivalent.

More generally, [CR17, Proposition 5.5], given a chain of subsets

∅ = I0 ⊂ I1 ⊂ . . . ⊂ Ir = I,

and a function p : {1, . . . , r} → Z, the composition of elementary equivalences

F
p(r−1)−p(r)
Ir−1

. . . F
p(1)−p(2)
I1

F
−p(1)
I0

: Db(A) Db(B),∼
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for some �nite-dimensional symmetric k-algebra B, is perverse, relative to
the �ltration

∅ = I0 ⊂p(1) I1 ⊂p(2) . . . ⊂p(r) Ir = I,

and the �ltration I• and the perversity function p completely determine the
Morita equivalence class of the k-algebra B. That is, given any equivalence

F : Db(A) Db(B′)∼

perverse relative to the �ltration

∅ = I0 ⊂p(1) I1 ⊂p(2) . . . ⊂p(r) Ir = I,

the algebra B′ is Morita equivalent to B.

Similar statements are true when one takes the dual elementary perverse
equivalences, with the values of the function p negated.

In [CR17, Proposition 5.11], Chuang and Rouquier give conditions for the
composition of elementary perverse equivalences at two arbitrary subsets
J, J ′ ⊂ I to remain perverse. Further, in [CR17, Proposition 5.12], Chuang
and Rouquier give conditions for the braid relation FJFJ ′FJ

∼= FJ ′FJFJ ′ to
hold and remain perverse, between elementary perverse equivalences at two
arbitrary subsets J, J ′ ⊂ I.

1.3.8 Standard equivalences

Suppose Φ : Db(A) Db(B)∼ is a derived equivalence. Let S and S ′ be sets
of isomorphism classes of simple A- and B-modules respectively. Recall by
Theorem 1.2.19 that there is a complex X of B-A-bimodules such that, for
every V ∈ Db(A), Φ(V ) ∼= X ⊗L

A V in Db(B).

Proposition 1.3.14. If the equivalence Φ is perverse relative to (S•,S ′
•, p),

then the equivalence

X ⊗L

A − : Db(A) Db(B)∼

is perverse, with the same perversity data.

Proof. By Proposition 1.3.10, the perversity of the derived equivalence X⊗L

A

− depends only on the images of simple A-modules. But for every simple
A-module Si, X ⊗L

A Si
∼= Φ(Si). The result follows.

Let X be as above. Set X∨ = RHomB(X,B), a complex of A-B-bimodules.
Then by [Ric91, Proposition 4.1],
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X∨ ⊗L

B − : Db(B) Db(A)∼

is a derived equivalence, mutually inverse with the equivalence X ⊗L

A −, and
is the standard derived equivalence agreeing with Φ−1 on objects of Db(B).
By Lemma 1.3.6 and Proposition 1.3.12, X∨⊗L

B− and Φ−1 are both perverse
relative to (S ′

•,S•,−p).

The two-sided tilting complexes X and X∨ also induce perverse equivalences
on the derived categories of right modules. The following combines [Ric91,
Lemma 4.3] and [CR17, Lemma 4.20].

Proposition 1.3.15. The functor

−⊗L

B X : Db(Bop) Db(Aop)

is an equivalence, and is perverse relative to (S•,S ′
•,−p). Similarly, the

functor

−⊗L

A X
∨ : Db(Aop) Db(Bop)

is an equivalence, perverse relative to (S ′
•,S•, p). Moreover, these two equiv-

alences are mutually inverse.

Thus, the equivalences Φ and Φ−1 induce equivalences

Φ̃ : Db(Bop) Db(Aop),

perverse relative to (S•,S ′
•,−p), and

Φ̃−1 : Db(Aop) Db(Bop),

perverse relative to (S ′
•,S•, p).
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Chapter 2

Periodicity

In Chapter 3, we will encounter a number of perverse equivalences exhibiting
a degree of periodicity. This phenomenon is closely linked to work of Grant
[Gra13] on perverse equivalences arising from periodic endomorphism alge-
bras. In our examples, however, the relevant endomorphism algebras are not
periodic. This suggests we need a stronger result to capture the periodicity
governing these equivalences in general.

In �2.1, we recount Grant's statements for perverse equivalences arising from
periodic symmetric algebras, and demonstrate that, under his conditions, the
periodicity of the relevant modules is guaranteed. This is, in itself, a natural
consequence of the key result in �2.2, in which it is shown that any two-step
self-perverse equivalence gives rise to periodic modules over an idempotent
algebra. We strengthen this into an if-and-only-if statement in �2.3, where
we impose fairly strong conditions to determine the origin of these periodic
modules, and show that, if there are periodic modules originating in this way,
then the algebra admits a self-perverse equivalence with the desired �ltration.

2.1 Grant's Theorem

Throughout this section, let A be a �nite-dimensional, symmetric k-algebra.

2.1.1 Endomorphism algebras

Let P be a projective A-module. Set E = EndA(P )
op. We collect a few easy

facts about E.
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Proposition 2.1.1. The k-algebra E is a �nite-dimensional, symmetric k-
algebra.

Proof. By Theorem 1.1.3 part (iv), since A is symmetric we have EndA(P ) =
HomA(P, P ) ∼= HomA(P, P )

∗, and this isomorphism is functorial in both
arguments, so is an isomorphism of E-E-bimodules. Thus, Eop = EndA(P )
is symmetric by Theorem 1.1.3 part (ii), and so by Corollary 1.1.4, E is a
symmetric k-algebra. That E is �nite-dimensional is trivial.

The A-module P is an A-E-bimodule. The right action of E is

x · φ = φ(x)

for x ∈ P and φ ∈ E = EndA(P )
op. We thus have a functor

HomA(P,−) : A -mod → E -mod,

and since P is a projective A-module, this functor is exact.

The following is a special case of Auslander's projectivisation [Aus74], by
which objects in an additive category are transformed into projective mod-
ules.

Proposition 2.1.2. The functor HomA(P,−) restricts to an equivalence

P -add E -proj∼

of additive categories.

In particular, suppose P =
⊕r

i=1 P
mi
i , for pairwise non-isomorphic projective

indecomposable A-modules Pi. Then

E = HomA(P, P ) ∼=
r⊕

i=1

HomA(P, Pi)
mi ,

and the E-modules HomA(P, Pi) are precisely the projective indecomposable
E-modules.

2.1.2 Twisted modules

Let E be a �nite-dimensional k-algebra and M an E-module. If σ is an
automorphism of E, then we denote by σM the twisted module, with E-action

e ·m = σ(e)m
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for e ∈ E and m ∈ M . If M is an E-E-bimodule and τ is another auto-
morphism of E, then the twisted bimodule σMτ is the bimodule with left and
right E-action

e ·m · e′ = σ(e)mτ(e′)

for e, e′ ∈ E and m ∈ M . As a twisted bimodule, we have σM = σMid, and
we denote Mτ = idMτ .

Given an automorphism σ of E, there is a natural isomorphism of functors

σ(−) ∼= σE ⊗E −,

and so for any E-module M , we have σM ∼= σE ⊗E M . Similarly, given an
automorphism τ of E, there is a natural isomorphism of functors

(−)τ ∼= −⊗E Eτ ,

so that, for every Eop-module M , Mτ
∼= M ⊗E Eτ .

There is an E-E-bimodule isomorphism f : σE → Eσ−1 , given by f(x) =
σ−1(x) for all x ∈ E. Indeed, we have

f(e · x · e′) = f(σ(e)xe′)

= σ−1(σ(e)xe′)

= eσ−1(x)σ−1(e′)

= e · f(x) · e′,

for all x, e, e′ ∈ E. Similarly, Eτ
∼= τ−1E as E-E-bimodules. Given an E-E-

bimodule M , we therefore have σMτ
∼= τ−1Mσ−1 .

2.1.3 Periodic modules

Let E be a �nite-dimensional k-algebra and M an E-module. Recall that

the Heller translate of M is ΩE(M) = ker(πM), where P (M) M
πM is a

projective cover of M . One can iterate this construction: for n ≥ 1, we set

Ωn+1
E (M) = ΩE(Ω

n
E(M)).

De�nition 2.1.3. The E-module M is σ-periodic of period n if there is an
automorphism σ of E and an n ≥ 1 such that Ωn

E(M) ∼= σM .

That is, M is σ-periodic of period n if there is an exact sequence

0 σM Pn−1 . . . P1 P0 M 0
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of E-modules such that each Pi is projective. We call the complex

Pn−1 . . . P1 P0

a truncated projective resolution of M . To avoid reference to a speci�c σ, we
may say that M is twisted periodic. If σ = id, then we say simply that M is
periodic.

We note that, if there is some n such that M is σ-periodic of period n for
some automorphism σ, then there must exist some minimal such n. We
emphasise that we do not demand minimality, and in many of the examples
that follow, it will be expedient to consider di�erent periodicities of the same
M at once. We also note that there may be di�erent automorphisms σ of E
for which M is σ-periodic.

There is an obvious dual de�nition for right modules. The Eop-moduleN is τ -
periodic of period n for an automorphism τ of E and n ∈ Z+ if Ωn

Eop(N) ∼= Nτ .

Periodic modules occur in a number of settings. Let A = Nm,n be a Nakayama
algebra. Recall that A ∼= kQ/I, where Q is the quiver

1

m 2

3

α1αm

α2

and I = ⟨αn⟩. Given a simple A-module Si, we have an exact sequence

0 Si+n Pi+1 Pi Si 0,

so that Si is ν-periodic of period 2, where ν is the automorphism of A gen-
erating the Nakayama permutation νNm,n . In fact (see e.g. [ES08]), the
Nakayama algebras coincide with the class of self-injective algebras A for
which Ω2

A permutes the set of isomorphism classes of simple A-modules.

More generally (see e.g. [GSS03]), if A is a �nite-dimensional k-algebra for
which every simple A-module is periodic, then A is a self-injective algebra.
On the other hand (see e.g. [Dug10]), if A is a self-injective algebra of
�nite representation type, then every simple A-module (in fact, every non-
projective indecomposable A-module) is periodic.

Periodic modules also exist in blocks of group algebras. Many examples of
this can be found in [Ben].
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2.1.4 Periodic algebras

Let E be a �nite-dimensional k-algebra.

De�nition 2.1.4. The k-algebra E is σ-periodic of period n if there is an
automorphism σ of E and an n ≥ 1 such that E is σ⊗ idE-periodic of period
n as an E ⊗ Eop-module.

That is, E is σ-periodic of period n if there is an exact sequence of E-E-
bimodules

0 σE Yn−1 . . . Y1 Y0 E 0

such that each Yi is projective as an E-E-bimodule. Let Y be the object

Yn−1 . . . Y1 Y0

of Chb(E-E), the truncated resolution of E.

A survey of symmetric algebras with this property can be found in [ES08].
We will see a few examples in the next subsection. It remains an interesting
open problem to classify the �nite-dimensional periodic algebras.

If E is a �nite-dimensional k-algebra and there exists an automorphism σ of
E such that E is σ-periodic of period n, then every E-moduleM is σ-periodic
of period n. Indeed, one can apply the functor −⊗EM to the exact sequence
of projective E-E-bimodules above, to obtain an exact sequence

0 σM Yn−1 ⊗E M . . . Y1 ⊗E M Y0 ⊗E M M 0,

where every term Yi ⊗E M is projective as an E-module. This is thus a
truncated projective resolution of M , and we have Ωn

E(M) ∼= σM .

Green, Snashall and Solberg [GSS03, Lemma 1.5] have shown that peri-
odic algebras are necessarily self-injective. By way of a partial converse,
Dugas [Dug10, Theorem 5.1] has shown that if A is a �nite-dimensional self-
injective k-algebra of �nite representation type of which every block is not a
matrix algebra, then A is periodic. Further, [GSS03, Theorem 1.4], if A is
a �nite-dimensional k-algebra such that every simple A-module is a periodic
A-module, then there is an automorphism σ of A and an n ≥ 1 such that A
is a σ-periodic k-algebra of period n. For example, from the observations in
the previous subsection, we have that the Nakayama algebras are σ-periodic
of period 2. In fact (see e.g. [ES08]), if A is a Nakayama algebra, then there
is some n such that A is a periodic k-algebra of period n.
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2.1.5 Grant's result

We recall Grant's result on self-perverse equivalences arising from periodic
algebras.

Let A be a �nite-dimensional symmetric k-algebra, P a projective A-module,
and E = EndA(P )

op. Suppose that E is σ-periodic of period n with truncated
resolution Y . We have a map of chain complexes

f : Y → E.

There is a chain of isomorphisms

HomChb(E-E)(Y,E) = HomChb(E-E)(Y,HomA(P, P ))

∼= HomChb(A-E)(P ⊗E Y, P )

∼= HomChb(A-E)(P ⊗E Y,HomAop(P∨, A))

∼= HomChb(A-E)(P ⊗E Y ⊗E P
∨, A)

given by tensor-Hom adjunction. Let

g : P ⊗E Y ⊗E P
∨ → A

be the image of f under the above isomorphisms. Let X = cone(g) and set

ΨP = X ⊗A − : Db(A) Db(A).

Grant's result [Gra13, Theorem 3.9, Proposition 3.22] is the following.

Theorem 2.1.5. The functor

ΨP : Db(A) Db(A)

is a derived equivalence. Moreover, ΨP is a two-step self-perverse equivalence
with respect to the �ltration

∅ ⊂0 J ⊂n I

on both sides, where I is an indexing set for the isomorphism classes of simple
A-modules, and J ⊂ I is the subset such that I \ J is the subset of indices
corresponding to the simple summands of P/ rad(P ).

We call the equivalence ΨP the periodic twist at P .

Grant's key examples are symmetric algebra analogues of geometric construc-
tions of Seidel and Thomas and Huybrechts and Thomas.
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Seidel and Thomas [ST00] de�ned spherical objects in Db(X), the bounded
derived category of coherent sheaves on a smooth complex projective variety
X. These are objects E for which⊕

r∈Z

HomDb(X)(E , E [r]) ∼= H∗(Sd) ∼= k[x]/⟨x2⟩

as graded algebras, where Sd is the d-sphere, with d the dimension ofX. Such
objects give rise to twist functors TE , autoequivalences of D

b(X) such that
the twist functors arising from a collection of spherical objects are compatible
in a precise way.

Grant [Gra13, �6.1] de�nes spherical objects in Db(A) to be projective A-
modules P such that E = EndA(P )

op ∼= k[x]/⟨x2⟩. Then there is a short
exact sequence of (chain complexes of) E-E-bimodules

0 σE E ⊗k E E 0,ι m

where m is the multiplication map, σ is the automorphism of E generated by
σ(x) = −x, and ι is the map ι(e) = e⊗ x− ex⊗ 1. Thus, E is σ-periodic of
period 1. The spherical twist at P is the periodic twist ΨP of A at P , given
by a two-sided tilting complex

P ⊗k P
∨ A,ev

where ev is the usual evaluation map. This construction specialises to
Rouquier and Zimmerman's twists of Brauer tree algebras with exceptional
multiplicity 1, [RZ03], which have a natural link to the representation theory
of the symmetric groups.

Huybrechts and Thomas [HT05] generalised Seidel and Thomas's earlier con-
struction, de�ning autoequivalences of the derived category Db(X) of coher-
ent sheaves on a smooth complex projective variety arising from Pn-objects.
These are objects E in Db(X) for which⊕

r∈Z

HomDb(X)(E , E [r]) ∼= H∗(Pn;C) ∼= k[x]/⟨xn+1⟩

as graded algebras, where Pn denotes complex projective n-space. Such ob-
jects give rise to autoequivalences PE of Db(X) in such a way that, when
n = 1, PE = T 2

E .

Similarly, Grant [Gra13, �6.1] de�nes Pn objects in Db(A) to be projective
A-modules P such that E = EndA(P )

op ∼= k[x]/⟨xn+1⟩. In general, these
algebras are periodic of period 2, with a short exact sequence of chain com-
plexes of E-E-bimodules
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0 E[1] Y E 0,

where Y is the complex

E ⊗k E E ⊗k E
1⊗x−x⊗1

in degrees 1 and 0. The Pn-twist at P is the periodic twist ΨP of A at P ,
given by the two-sided tilting complex

P ⊗k P
∨ P ⊗k P

∨ A.
1⊗x−x⊗1 ev

In the case n = 1, the P1-twist at P is the square of the spherical twist at P .

2.1.6 Relatively periodic algebras

Grant in fact proves a more general version of Theorem 2.1.5, based on the
periodicity of the algebra E relative to some subalgebra.

Let E be a symmetric k-algebra and B a subalgebra of E. The algebra E is
σ-periodic of period n relative to B if there is an automorphism σ of E and
some n ∈ Z+ such that there is an exact sequence of E-E-bimodules

0 σE Yn−1 . . . Y1 Y0 E 0

such that for every i, Yi ∈ E ⊗B E -add. Again, let Y be the object

Yn−1 . . . Y1 Y0

of Chb(E-E), the truncated resolution of E relative to B.

Now, let A be a �nite-dimensional symmetric k-algebra, P a projective A-
module and E = EndA(P )

op. Let B be a subalgebra of E. Suppose E is
periodic of period n relative to B with truncated resolution Y . Let X be the
complex of A-A-bimodules constructed as in Theorem 2.1.5 and set

ΨP = X ⊗A − : Db(A) Db(A).

Grant's generalisation [Gra10, Theorem 4.3] is the following.

Theorem 2.1.6. Suppose P is projective as a right B-module and that P∨

is projective as a left B-module. Then the functor

ΨP : Db(A) Db(A)
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is a derived equivalence. Moreover, ΨP is a two-step self-perverse equivalence
with respect to the �ltration

∅ ⊂0 J ⊂n I

on both sides, where I is an indexing set for the isomorphism classes of simple
A-modules, and J ⊂ I is the subset such that I \ J is the subset of indices
corresponding to the simple summands of P/ rad(P ).

We call the equivalence ΨP the relative periodic twist at P . We note that
the perversity clause in Theorem 2.1.6 is not explicitly proved by Grant, but
his proof of Theorem 2.1.5 translates directly to this case. We note also that
Grant assumes that the subalgebra B is symmetric, but the symmetrising
form on B need not be that restricted from E. Dropping the symmetric
constraint, we requite the additional assumption that P∨ be projective as
a left B-module, but in the Grant setting this is a consequence of P being
projective as a right B-module. Observe that, setting B = k, we recover
Theorem 2.1.5 from Theorem 2.1.6.

Building on the idea of spherical twists, Grant [Gra10, �4.1.1] de�nes a toric
object in Db(A) to be a projective A-module P for which E = EndA(P )

op ∼=
k[x, y]/⟨x2, y2⟩, observing that this algebra with its natural grading is iso-
morphic to the coholomology algebra of the torus, H∗(S1×S1). The algebra
E has a subalgebra B = k[x]/⟨x2⟩, and there is a short exact sequence of
E-E-bimodules

0 E E ⊗B E E 0,

so that E is periodic of period 1 relative to B. Thus, a toric object P in A
gives rise to a relative periodic twist ΨP : Db(A) Db(A)∼ called the toric
twist of A at P .

2.1.7 Cycle of equivalences

Let A be a �nite-dimensional symmetric k-algebra and let I be an indexing
set for the isomorphism classes of simple A-modules. For i ∈ I, let Pi be the
projective indecomposable A-module with simple head Si.

Let J ⊂ I. Recall the de�nition of a (basic) combinatorial tilting complex
in A at J , De�nition 1.2.18. Then there is an algebra A(1) and a derived
equivalence

FJ : Db(A) Db(A(1)),∼
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the combinatorial tilt of A at J . Recall further that a combinatorial tilt is a
two-step perverse equivalence of width 1, Proposition 1.3.13, or an elementary
perverse equivalence at J , with �ltration

∅ ⊂0 J ⊂−1 I.

Given a subset J of I and a combinatorial tilt FJ : Db(A) Db(A(1))∼ at
J , the combinatorial tilt of A(1) at J again gives rise to an equivalence
FJ : Db(A(1)) Db(A(2))∼ , where A(2) ∼= EndDb(A(1))(T

(1))
op

for T (1) a com-

binatorial tilting complex of A(1) at J . One can iterate this procedure for
arbitrary n ≥ 1, so that the composition of n combinatorial tilts,

F n
J : Db(A) Db(A(n)),∼

the nth iterated combinatorial tilt of A at J , is a perverse equivalence, by
Proposition 1.3.13 and the discussion in �1.3.2, with �ltrations

∅ ⊂0 J ⊂−n I.

The link between Grant's periodic twists and iterated combinatorial tilts is
the following result, [Gra13, Theorem 5.11].

Theorem 2.1.7. Let P be a projective A-module and suppose that the k-
algebra E = EndA(P )

op is σ-periodic of period n. Let J ⊂ I be the subset of
indices such that P ∼=

⊕
i∈I\J P

di
i for some integers di ≥ 1. Then the periodic

twist ΨP at P agrees with the inverse of an nth iterated combinatorial twist
F−n
J at J .

In particular, A(n) ∼= A. A very similar statement holds in the relatively
periodic case.

One can picture this as a circle of n derived equivalences, starting and ending
at Db(A).

Db(A)

Db(A(n−1)) Db(A(1))

Db(A(n−2)) Db(A(2))

. . .

FJFJ

FJFJ
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If one can determine the algebras A(i), then we obtain for free a two-step
perverse autoequivalence of each A(i) by following this circle.

Consider an algebra A with a Pn-object P ; that is, a projective A-module
P such that EndA(P )

op ∼= k[x]/⟨xn+1⟩. The Pn-twist at P agrees with the
iterated combinatorial tilts

Db(A)

Db(A(1))

∼∼

at the appropriate set of indices J . In the case n = 1, the projective A-module
P is both a P1-object and a spherical object. We have that A(1) ∼= A, and
the combinatorial tilt at J is the inverse of the spherical twist at P . For an
arbitrary Pn-twist, n > 1, we do not expect to have A(1) ∼= A.

2.2 Periodic Modules

Let A be a �nite-dimensional, symmetric k-algebra. Assume A is basic and
indecomposable.

2.2.1 Periodic twists

Let P and Q be projective A-modules such that A = P ⊕Q as an A-module.
Set E = EndA(P )

op and M = HomA(P,Q).

In our examples, we are interested less in the periodicity of the algebra E,
and more in the periodicity of the E-moduleM . We know already that, when
E is σ-periodic of period n, so is every E-module, and thus M is σ-periodic
of period n. We can recover this same information in the relatively periodic
case.

Proposition 2.2.1. Suppose there is some automorphism σ of E and a sub-
algebra B of E such that E is σ-periodic of period n relative to B. Suppose
that P is projective as a Bop-module and that P∨ is projective as a B-module.
Then the E-module M is σ-periodic of period n and the Eop-module M∨ is
σ−1-periodic of period n.

Proof. We have an exact sequence

0 σE[n− 1] Y E 0
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in Chb(E-E), where Y is a truncated resolution of E relative to B. Each
term is a complex of bimodules, projective as Eop-modules, so we may apply
the functor −⊗E M to obtain another exact sequence

0 σM [n− 1] Y ⊗E M M 0

in Chb(E).

We thus need to show that each term of Y ⊗E M is a projective E-module.
By construction, it su�ces to show that E ⊗B E ⊗E M ∼= E ⊗B M is a
projective E-module.

We have

P∨ = HomA(P,A)
∼= HomA(P, P ⊕Q)
∼= HomA(P, P )⊕ HomA(P,Q)

= E ⊕M,

and since P∨ is a projective B-module, both E and M are projective B-
modules. Since M is a projective B-module, E ⊗B M is a projective E-
module. Thus, Y ⊗E M is a complex of projective E-modules, so we have

Ωn
E(M) ∼= σM.

For the Eop-module M∨, we �rst recall that σE ∼= Eσ−1 as E-E-bimodules,
and that by Theorem 1.1.3, since E is a symmetric algebra, we have

M∨ = HomA(P,Q)
∨ ∼= HomA(P,Q)

∗ ∼= HomA(Q,P ).

We similarly need to show that M∨ ⊗E Y is a complex of projective Eop-
modules, for which it again su�ces to show that

M∨ ⊗E E ⊗B E ∼= M∨ ⊗B E

is a projective Eop-module. We have

P = HomA(A,P )
∼= HomA(P ⊕Q,P )
∼= HomA(P, P )⊕ HomA(Q,P )

= E ⊕M∨,

74



and since P∨ is a projective B-module, both E and M are projective B-
modules. We can therefore similarly deduce that M∨ ⊗E Y is a complex of
projective Eop-modules, so that

Ωn
Eop(M∨) ∼= (M∨)σ−1 ,

and we are done.

The method of this proof suggests that we may rephrase Grant's conditions
in terms of the periodicity of M and M∨.

2.2.2 Two-step self-perverse equivalences

Proposition 2.2.1 tells us that a relative periodic twist of A at P gives rise to a
periodic module M over the endomorphism ring E of P . This is emblematic
of the following more general result for any two-step self-perverse equivalence.

Theorem 2.2.2. Suppose Φ : Db(A) Db(A)∼ is a two-step self-perverse
equivalence relative to the �ltration

∅ ⊂0 J ⊂n I

on the indexing set I of isomorphism classes of simple A-modules, for some
n ≥ 1. Then there are projective A-modules P and Q such that A ∼= P ⊕ Q
as an A-module, and an automorphism σ of E = EndA(P )

op such that, for
the E-module M = HomA(P,Q), we have Ωn

E(M) ∼= σM .

Proof. Let Q be the sum of the projective indecomposable A-modules corre-
sponding to the simple A-modules in J and let P be the sum of the projective
indecomposable A-modules corresponding to the simple A-modules in I \ J .
Clearly, A ∼= P ⊕ Q. We have Φ(P ) ∼= P [n], while Φ(Q) is isomorphic to a
complex

Xn−1 . . . X1 X0 Q
dn−1 d1 d0

with each X ∈ P -add such that applying the functor HomA(P,−) produces
a minimal projective resolution of the E-module M .

The equivalence Φ induces an isomorphism

HomDb(A)(P, P )
op HomDb(A)(Φ(P ),Φ(P ))

op.∼
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It is clear that

HomDb(A)(P, P )
op ∼= HomA(P, P )

op = E,

while Φ(P ) = P [n], so

HomDb(A)(Φ(P ),Φ(P ))
op = HomDb(A)(P [n], P [n])

op

∼= HomDb(A)(P, P )
op

∼= HomA(P, P )
op

= E.

Thus, Φ induces an automorphism

σ−1 : E →̃ E.

Further, via this automorphism, Φ induces an isomorphism of E-modules

HomDb(A)(P,Q) σ−1HomDb(A)(P [n],Φ(Q)).
∼

Here, HomDb(A)(P,Q) ∼= HomA(P,Q) = M , so twisting by the action of σ
we have

σM ∼= HomDb(A)(P [n],Φ(Q)),

where σ is the inverse of the automorphism σ−1. This right hand side is the
space of chain maps (up to homotopy)

P

Xn−1 . . . X1 X0 Q,

g
dn−1 d1 d0

that is, maps P Xn−1
g

such that the composition P Xn−1 Y
g dn−1

is zero
(here, Y is either Xn−2 in P -add, or it is Q). Since P is projective, the
functor HomA(P,−) is an exact functor, so we have an exact sequence

HomA(P,Xn−1) . . . HomA(P,X0) M
(dn−1)∗ (d0)∗

of E-modules. Since Φ(Q) is a minimal resolution of Q and the functor
HomA(P,−) is an equivalence P -add ≃ E -proj, this sequence is a minimal
resolution of M of length n, so Ωn

E(M) ∼= ker((dn−1)∗). But this kernel is
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the space of maps g : P → Xn−1 such that dn−1 ◦ g : P → Xn−2 is zero,
coinciding exactly with HomDb(A)(P [n],Φ(Q)). Thus, in conclusion,

Ωn
E(M) ∼= ker((dn−1)∗) ∼= HomDb(A)(P [n],Φ(Q)) ∼= σM,

so M is σ-periodic of period n.

Recall Proposition 1.3.15. There is an induced equivalence

Φ̃ : Db(Aop) Db(Aop)∼

such that the inverse Φ̃−1 is perverse relative to the �ltration

∅ ⊂0 J ⊂n I.

A near-identical argument to that in Theorem 2.2.2 will then tell us that the
Eop-module M∨ is σ−1-periodic of period n.

2.2.3 Towards a converse

Theorem 2.2.2 tells us that the existence of a two-step self-perverse equiv-
alence forces the existence of a periodic module M over an endomorphism
algebra E. One might ask: is the converse true? That is, does the existence
of a periodic module M over an endomorphism algebra E = EndA(P )

op in
A give rise to a two-step self-perverse equivalence

ΦP : Db(A) Db(A)∼

in a systematic way? That is, is the statement in Theorem 2.2.2 really an
if-and-only-if? This prompts the following conjecture.

Conjecture 2.2.3. Let A be a symmetric k-algebra and let P and Q be
projective A-modules such that A = P ⊕ Q. Set E = EndA(P )

op and M =
HomA(P,Q). If there is an automorphism σ of E and n ∈ Z such that the
E-module M is σ-periodic of period n, then there is a two-step self-perverse
equivalence

ΦP : Db(A) Db(A)∼

with �ltration
∅ ⊂0 J ⊂n I,
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where I is an indexing set for the isomorphism classes of simple A-modules
and J is the subset of indices of the simple summands of Q/ rad(Q). More-
over, a one-sided tilting complex for ΦP is

X =
⊕
i∈I

Xi,

where for i ∈ I \ J , Xi = Pi, where Pi is the indecomposable summand of P
with simple head corresponding to the index i, and for i ∈ J , Xi is lifted from
the truncated periodic resolution of the summand Mi = HomA(P,Qi), where
Qi is the summand of Q with simple head corresponding to the index i.

Consider the following example.

Example 2.2.4. Let A be the k-algebra with two simple modules S and T ,
with an Ext1-quiver

S Tε

α

β

η

and a set of relations

I = {ε2 − βα, ηα− αε, βη − εβ, αβ − η2, αε2, βη2}.

The projective indecomposable A-modules have Loewy series

S
S T
S T
S

,

T
T S
T S
T

.

The Cartan matrix of A is (
4 2
2 4

)
.

The endomorphism algebra E = EndA(PS)
op is such that E ∼= k[x]/⟨x4⟩,

so that PS is a P3-object in A in the sense of Grant. In particular, E is a
periodic algebra of period 2. Thus, by Theorem 2.1.5, there is a self-perverse
equivalence Db(A) → Db(A) with �ltration

∅ ⊂0 {T} ⊂2 {S, T},

the P3-twist at P . Grant's cycle of equivalences tells us that there is an al-
gebra A(1) such that iterated combinatorial tilts at J = {T} produce derived
equivalences
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Db(A)

Db(A(1))

∼∼ .

Unlike for P1-twists, we do not expect A(1) here to be isomorphic to A.

Let M = HomA(PS, PT ). Then as an E-module,

M ∼= k
k
,

the unique non-split extension of the simple E-module k by itself. Thus,
M is a periodic E-module of period 1. Conjecture 2.2.3 predicts a derived
equivalence Db(A) → Db(A) given by a tilting complex X with summands

X1 : PS

X2 : PS PT .

However, we have that

EndDb(A)(PT ) ∼= k[x]/⟨x4⟩,

but
EndDb(A)(X2) ∼= k[x, y]/⟨x2, y2⟩,

so that EndDb(A)(X)op ̸∼= A.

To see this, we have non-zero irreducible maps in EndDb(A)(X2)

PS PT

PS PT

ε

α

η

α

and

PS PT

PS PT

0

α

η2

α

.

Label these f1, f2 : X2 → X2. That f
2
2 = 0 is clear, while for f 2

1 , we have a
homotopy to zero

PS PT

PS PT

ε2

α

η2

α

given by PT PS.
β

That f2f1 = f1f2 is also clear:
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PS PT

PS PT

0

α

η3

α

.

Thus, this equivalence Φ is between the derived category of A and that of
another algebra A′, with the same Cartan matrix as A, but such that A and
A′ are not Morita equivalent. In particular, A′ has an Ext1-quiver

S Tε
α

β

η

and a set of relations

I = {ε2 − βα, ηα− αε, βη − εβ, ηαβ − αβη, αε2, η2}.

The projective indecomposable A′-modules have Loewy series

S
S T
S T
S

,

T
S T
T S
S

.

One can see that the Loewy series of projective indecomposable A-modules
and projective indecomposable A′-modules are the same. This equivalence is
thus between two algebras with the same Cartan matrix, without being an
autoequivalence.

Example 2.2.4 informs us that Conjecture 2.2.3 is not true in general. How-
ever, it is apparent from Theorem 2.2.2 that periodic modules are of great
relevance to two-step self-perverse equivalences. We thus need to be more
careful in determining the precise relationship.

2.3 Periodicity and Perversity

We come now to the main result of this chapter, Theorem 2.3.3. This theorem
gives necessary and su�cient conditions for the existence of a two-step self-
perverse equivalence

Ψ : Db(A) Db(A),∼

arising as the cone of a map A→ X in Db(A-A).

We will �x some notation throughout this section. We will always denote
by A a �nite-dimensional symmetric k-algebra, {S1, . . . , Sr} a complete set
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of simple A-modules up to isomorphism, {P1, . . . , Pr} the set of projective
indecomposable A-modules such that Pi/ rad(Pi) ∼= Si

∼= soc(Pi), and I =
{1, . . . , r} the indexing set.

2.3.1 The main theorem

Before stating our main theorem, it is necessary that we make the following
de�nitions.

De�nition 2.3.1. Let E be a �nite-dimensional self-injective k-algebra, M
an E-module, σ an automorphism of E, n ∈ Z+, and α ∈ ExtnE⊗kEop(E, σE).
We say that M is strongly σ-periodic of period n relative to α if α ⊗L

E M
induces an isomorphism Ωn

E(M) ∼= σM . Dually, we say that an Eop-module
N is strongly τ -periodic of period n relative to α, for τ an automorphism of
E, if there exists some α ∈ ExtnE⊗kEop(E,Eτ ) such that N ⊗L

E α induces an
isomorphism Ωn

Eop(N) ∼= Nτ .

It is worth taking the time to unpack this de�nition. Recall that α⊗L

E M ∈
ExtnE(M, σM), and

ExtnE(M, σM) ∼= HomDb(E)(M, σM [n]) ∼= HomE -mod(M,Ω−n
E (σM)).

The extension α therefore induces an E-module homomorphism M →
Ω−n

E (σM). Since E is self-injective, this in turn induces an E-module ho-
momorphism Ωn

E(M) → σM . The condition in De�nition 2.3.1 is that this
induced E-module homomorphism is an isomorphism.

Proposition 2.2.1 demonstrates that, with A a �nite-dimensional symmet-
ric k-algebra, P and Q projective A-modules, E = EndA(P )

op and M =
HomA(P,Q), if there is an automorphism σ of E, n ∈ Z and a subalgebra
B of E such that E is σ-periodic of period n relative to B, then there is
an α ∈ ExtnE⊗kEop(E, σE) such that M is strongly σ-periodic relative to α.
Indeed, with Y the truncated resolution of E relative to B, there is a triangle

Y E σE[n]
α

in Db(E-E), and the proof of Proposition 2.2.1 shows that applying the
functor −⊗L

E M induces an isomorphism Ωn
E(M) ∼= σM .

One may wonder if other examples of strongly periodic modules exist. That
is, does there exist a �nite-dimensional self-injective k-algebra E and an
E-module M such that M is strongly σ-periodic, but E is not σ-periodic,
relative or otherwise? In �3.3, we will see examples of strongly periodic
modulesM over symmetric algebras E, which are not known to be (relatively)
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σ-periodic. However, it remains open to �nd a strongly σ-periodic module
over an algebra known to not be (relatively) σ-periodic.

Recall that a Serre subcategory of A -mod is generated by a set of simple
A-modules.

De�nition 2.3.2. Let P be a projective A-module. There is some subset
J ⊂ I such that P =

⊕
i∈I\J P

mi
i for some integers mi ≥ 1. We call the Serre

subcategory A1 of A -mod generated by the set {Sj}j∈J the Serre subcategory
prime to P .

Clearly, the Serre subcategory A1 of A -mod prime to P depends only on the
isomorphism classes of summands of P , and not their multiplicities.

The remainder of this section is dedicated to proving the following theorem.

Theorem 2.3.3. Let A be a �nite-dimensional, symmetric k-algebra. Let
P and Q be projective A-modules with no common direct summands up to
isomorphism, and such that P ⊕ Q is a projective generator of A. Set E =
EndA(P )

op andM = HomA(P,Q). Let A1 be the Serre subcategory of A -mod
prime to P . Then there exists a standard derived equivalence

Φ : Db(A) Db(A)∼

self-perverse relative to
0 ⊂0 A1 ⊂n A -mod,

together with a natural transformation IdDb(A) Φ restricting to a natural

isomorphism IdA1 Φ|A1

∼ if and only if there exists an automorphism σ of
E and an extension α ∈ ExtnE⊗kEop(E, σE) such that the E-module M is
strongly σ-periodic and the Eop-module M∨ is strongly σ−1-periodic, both of
period n and relative to α.

The statement that P ⊕ Q is a projective generator of A means that there
is some m ∈ Z+ such that the regular A-module A is a direct summand of
(P ⊕Q)⊕m. Further, we are assuming that P and Q have no common direct
summands. Then there is some J ⊂ I and integers mi,mj ≥ 1 such that
P =

⊕
i∈I\J P

mi
i and Q =

⊕
j∈J P

mj

j .

We will prove Theorem 2.3.3 in two parts. Firstly, Theorem 2.3.4 tells us that
the existence of such a derived autoequivalence Φ guarantees thatM andM∨

are twisted strongly periodic. Theorem 2.3.8 demonstrates the converse: that
twisted strong periodicity of the modulesM andM∨ guarantee the existence
of a derived autoequivalence Φ with the requisite properties.
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2.3.2 Necessary conditions

Our �rst main result is the following.

Theorem 2.3.4. Suppose

Φ : Db(A) Db(A)∼

is a standard derived autoequivalence, perverse relative to a �ltration

0 ⊂0 A1 ⊂n A -mod

of Serre subcategories. Suppose also that there is a natural transformation
of functors IdDb(A) → Φ restricting to a natural isomorphism IdA1 Φ|A1

∼ .
Then there are projective A-modules P and Q, with no common direct sum-
mands, such that A1 is the Serre subcategory prime to P , P⊕Q is a projective
generator of A and, with E = EndA(P )

op, there is an automorphism σ of E
such that E-module M = HomA(P,Q) is strongly σ-periodic of period n, and
the Eop-module M∨ is strongly σ−1-periodic of period n, relative to some
α ∈ ExtnE⊗kEop(E, σE).

We �rst note that the standard restriction on the derived equivalence Φ is
not too strong. Indeed, if we were to drop this assumption, then by Theorem
1.2.19, there is a standard derived equivalence

X ⊗L

A − : Db(A) Db(A)∼

agreeing with Φ on objects of Db(A). Moreover, by Proposition 1.3.14, if Φ
is perverse relative to the stated �ltration, then X ⊗L

A − is, too.

It will also be prudent to investigate the condition on the natural transforma-
tion IdDb(A) → Φ. Since Φ is standard, there is some X ∈ Db(A-A) such that
Φ = X ⊗L

A −. Similarly, the identity functor is such that IdDb(A) = A⊗L

A −.
Thus, we have a natural transformation

A⊗L

A − X ⊗L

A −,

which by Yoneda's Lemma must come from a morphism

A Xh

in Db(A-A). Since Φ is perverse relative to the given �ltration, we have a
commutative diagram
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Db(A) Db(A)

Db
A1
(A) Db

A1
(A)

A1 A1

Φ[n]

∼

∼

and Φ restricts in this way to an autoequivalence Φ|A1 of A1. For every
A-module V ∈ A1, the induced map

A⊗L

A V X ⊗L

A V

V Φ(V )

h⊗LAV

∼

is an isomorphism.

Now, in order to prove Theorem 2.3.4, we will need an alternative character-
isation of strong σ-periodicity.

Let α ∈ ExtnE⊗kEop(E, σE). Then, since

ExtnE⊗kEop(E, σE) ∼= HomDb(E-E)(E, σE[n]),

the element α gives rise to a triangle

Y E σE[n]
α

in Db(E-E).

Recall that, for any �nite-dimensional k-algebra A, we have a quotient func-
tor

Db(A) Db(A)/Perf(A)

and this right hand side is canonically equivalent to the stable module cate-
gory A -mod. Given an object X in Db(A), denote by X the image of X in
A -mod under this quotient, as described in �1.2.10.

The functor

Y ⊗L

E − : Db(E) Db(E)

induces the functor

Y ⊗E − : E -mod E -mod

84



so that, for any E-module U , we have Y ⊗E U ∼= Y ⊗L

E U in E -mod.

By a similar construction, one may show that, for any Eop-module V , we
have V ⊗E Y ∼= V ⊗L

E Y in Eop -mod.

This gives us the following characterisation of strongly periodic modules over
E and Eop.

Lemma 2.3.5. The E-module M is strongly σ-periodic relative to α if and
only if Y ⊗L

E M is a perfect complex of E-modules. Dually, the Eop-module
N is strongly σ−1-periodic relative to α if and only if N ⊗L

E Y is a perfect
complex of Eop-modules.

Proof. The triangle

Y ⊗L

E M M σM [n]
f⊗LEM α⊗LEM

in Db(E) induces a triangle

Y ⊗E M M Ω−n
E (σM)

in E -mod. If M is strongly σ-periodic relative to α, then this second arrow
is an isomorphism, and thus Y ⊗E M ∼= Y ⊗L

E M
∼= 0 in E -mod, so Y ⊗L

E M
is a perfect complex of E-modules. But on the other hand, if Y ⊗L

E M is

a perfect complex of E-modules, then Y ⊗L

E M
∼= Y ⊗E M ∼= 0, giving an

isomorphism M Ω−n
E (σM)∼ , so that M is strongly σ periodic relative to α.

The proof of the dual statement is similar.

Next, we note that we may assume that the projective A-modules P and Q
are direct sums of projective indecomposable modules, no two of which are
isomorphic.

Proposition 2.3.6. Let P and Q be projective A-modules such that P ⊕ Q
is a projective generator of A. Let J ⊂ I be such that P =

⊕
i∈I\J P

mi
i

and Q =
⊕

j∈J P
mj

j for some integers mi,mj ≥ 1. Set P ′ =
⊕

i∈I\J Pi

and Q′ =
⊕

j∈J Pj. With E = EndA(P )
op and M = HomA(P,Q), and

E ′ = EndA(P
′)op and M ′ = HomA(P

′, Q′), there is an automorphism σ of E
and n ∈ Z+ such that the E-module M is strongly σ-periodic of period n if
and only if there is an automorphism σ′ of E ′ such that the E ′-module M ′ is
strongly σ′-periodic of period n.
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Proof. Let V = HomA(P, P
′) ∼= P∨ ⊗A P

′. Then V is an E-E ′-bimodule,
projective as a left E-module and as a right E ′-module. As an E-module, V
is a projective generator, so by Theorem 1.1.2 induces a Morita equivalence
E -mod E ′ -mod .∼ In particular, V ⊗E′ V ∨ ∼= E, and V ∨ ⊗E V ∼= E ′.

Let ε be the counit of the adjunction P ⊗E − ⊣ P∨ ⊗A −. Then, since
P ⊗E P

∨ ⊗A P ∼= P ⊗E E ∼= P , the map

εP : P ⊗E P
∨ ⊗A P P

is an isomorphism, and hence so is

εP ′ : P ⊗E P
∨ ⊗A P

′ P ′

as P ′ ∈ P -add. Since V = P∨ ⊗A P
′, we thus have P ⊗E V ∼= P ′, and P ∼=

P ′⊗E′ V ∨. Similarly, if η is the unit of the adjunction −⊗E′ (P ′)∨ ⊣ −⊗AP ,
then the map

ηP∨ : P∨ P∨ ⊗A P
′ ⊗E′ (P ′)∨

is an isomorphism, since P∨ ∈ (P ′)∨ -add. Again, P∨ ⊗A P
′ ∼= V , so we have

P∨ ∼= V ⊗E′ (P ′)∨, and V ∨ ⊗E P
∨ ∼= (P ′)∨.

Suppose �rst that there is some automorphism σ of E such thatM is strongly
σ-periodic of period n, relative to α ∈ ExtnE⊗kEop(E, σE). There is a distin-
guished triangle

Y E σE[n]
α

in Db(E-E), and by Lemma 2.3.5, the object Y ∈ Db(E-E) is such that
Y ⊗L

EM is a perfect complex of E-modules. Since V = P∨⊗AP
′ is projective

as a left E-module, the functor V ∨ ⊗E − ⊗E V is exact. Thus, we obtain a
triangle

Y ′ E ′
σ′E ′[n] ,α′

where Y ′ = V ∨ ⊗E Y ⊗E V , α
′ = V ∨ ⊗E α⊗E V , and σ

′ is the restriction of
σ to E ′, noting that V ∨ ⊗E E ⊗E V ∼= V ∨ ⊗E V ∼= E ′. Then

Y ′ ⊗L

E′ M ′ ∼= (V ∨ ⊗E Y ⊗E V )⊗L

E′ ((P ′)∨ ⊗A Q
′)

∼= V ∨ ⊗E Y ⊗L

E P
∨ ⊗A Q

′,
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since V ⊗E′ (P ′)∨ ∼= P∨. Since Q′ ∈ Q -add and Y ⊗L

E M
∼= Y ⊗L

E P
∨ ⊗A Q

is a perfect complex of E-modules by assumption, the same is true of Y ⊗L

E

P∨ ⊗A Q
′. Thus, since V ∨ is projective as a right E-module, the complex of

E ′-modules Y ′⊗L

E′M ′ is perfect. By Lemma 2.3.5, M ′ is strongly σ′-periodic
as an E ′-module, relative to α′.

Conversely, suppose that there is some automorphism σ′ of E ′ and α′ ∈
ExtnE′⊗kE′op(E ′, σE

′) such that M ′ is strongly σ′-periodic relative to α′. Sim-
ilarly to the above, we have a triangle

Y ′ E ′
σ′E ′[n] ,α′

and an exact functor V ⊗E′ − ⊗E′ V : Db(E ′-E ′) → Db(E-E). Set Y =
V ⊗E′ Y ′ ⊗E′ V . We have E ∼= V ⊗E′ E ′ ⊗E′ V . We thus have a triangle

Y E W ,α

where W = V ⊗E′ σ′E ′[n] ⊗E′ V . It is clear that W ∼= E[n] in Db(Eop).
Thus, as an object of Db(E-E), W is isomorphic to the E-E-bimodule E
concentrated in degree n, with the regular right action of E. The left action
of E then passes through an algebra homomorphism σ : E → E. But it is
clear that W ∼= E[n] in Db(E), too. Therefore, W ∼= σE[n] in D

b(E-E), and
we have a triangle

Y E σE[n] ,α

from which, by an analogous argument to the above, it follows that M is
strongly σ-periodic relative to α.

The obvious dual statement for right modules is also true, in a very similar
way. In particular, we may assume that A is basic and that A ∼= P ⊕ Q as
A-modules.

Finally, we require a lemma.

Lemma 2.3.7. Let P be a projective A-module. Let A1 be the Serre subcat-
egory of A -mod prime to P . Then for a perfect complex Z ∈ Db(Aop), we
have Z ∈ ⟨P∨⟩ if and only if Z ⊗L

A V = 0 for all V ∈ Db
A1
(A).

We comment that the V in Lemma 2.3.7 is di�erent from the V in Proposition
2.3.6.
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Proof. First, note that for V ∈ Db
A1
(A), since A1 is prime to P , we have

P∨ ⊗L

A V = HomA(P, V ) ∼= 0, so one direction is clear.

For the other, suppose that Z ⊗L

A V = 0 for all V ∈ Db
A1
(A). It incurs no

loss of generality to assume that Z is a bounded below complex of projective
Aop-modules, with Z0 ̸= 0 and Zm = 0 for all m < 0. Assume Z is such that
the maximum non-zero degree

NZ = max{m ≥ 0 : Zm ̸= 0}

is minimal among objects of Db(Aop) with these properties. Since Z is per-
fect, NZ is �nite.

Suppose for a contradiction that Z ̸∈ ⟨P∨⟩. By assumption, we have

0 = Z ⊗L

A V
∼= RHomA(Z

∨, V ),

for every V ∈ Db
A1
(A), and for every t ∈ Z,

Ht(RHomA(Z
∨, V )) = HomDb(A)(Z

∨, V [t]) = 0.

Let X = Z∨ ∈ Db(A). Suppose that X0 ∈ P -add. Then there is a commu-
tative diagram

0 X0 0

0 XNZ
. . . X1 X0 0

0 XNZ
. . . X1 0

giving rise to a triangle

X X ′ X0[1]

in Db(A), with X ′ the complex de�ned by the third row of the diagram. Since
X0 ∈ P -add and by the assumption on Z, we must have RHomA(X

′, V ) ∼= 0
for every V ∈ Db

A1
(A). This contradicts the minimality of Z, since (X ′)∨ has

strictly smaller maximum non-zero degree. Therefore X0 ̸∈ P -add.

Then, with X0 ̸∈ P -add, there is some simple module S in Db
A1
(A) such that

S is a summand of X0/ rad(X0). But then the morphism
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0 XNZ
. . . X1 X0 0

0 S 0

is a non-zero element of HomDb(A)(X,S) = HomDb(A)(Z
∨, S). This is a con-

tradiction. Hence, Z ∈ ⟨P∨⟩.

We now have all the tools to prove Theorem 2.3.4.

Proof of Theorem 2.3.4. We will assume that A is basic. By Proposition
2.3.6, this is a legitimate assumption.

Let J ⊂ I be such that set {Sj}j∈J generates A1. Set P = ⊕i∈I\JPi and
Q = ⊕j∈JPj. Then by construction, A1 is the Serre subcategory prime to P ,
P and Q have no common direct summands, and A ∼= P ⊕Q as A-modules,
so P ⊕Q is a projective generator of A.

Since Φ is standard, there is some X ∈ Db(A-A) such that Φ = X ⊗L

A −. By
assumption, we have a map A Xh in Db(A-A). This gives rise to a triangle

Z A Xh

in Db(A-A), say ∆. Applying the triangulated functor

RHomA-A(P ⊗k P
∨,−) : Db(A-A) Db(E-E)

to ∆, we obtain a triangle

P∨ ⊗L

A Z ⊗L

A P P∨ ⊗L

A A⊗L

A P P∨ ⊗L

A X ⊗L

A P

in Db(E-E). First, we have

P∨ ⊗L

A A⊗L

A P
∼= E.

Next, we note that by Proposition 1.3.15, the equivalence

−⊗L

A X : Db(Aop) Db(Aop)∼
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is also a perverse equivalence, relative to

0 ⊂0 A′
1 ⊂n A

op -mod,

where A′
1 is the Serre subcategory of Aop -mod prime to P∨. In particular,

we have P∨ ⊗L

A X
∼= P∨[n] as an object of Db(Aop). We thus have that

P∨ ⊗L

A X ⊗L

A P
∼= P∨[n]⊗L

A P
∼= E[n]

in Db(Eop). We are interested in this as an object of Db(E-E). That is,
we have a complex of E-E-bimodules, isomorphic to the E-E-bimodule E
concentrated in degree n, with the regular right action of E. The left ac-
tion of E on this E-E-bimodule must therefore pass through some algebra
homomorphism σ : E E. But note that X ⊗L

A P
∼= P [n] in Db(A), so that

P∨ ⊗L

A X ⊗L

A P
∼= P∨ ⊗L

A P [n]
∼= E[n]

in Db(E), too. Thus, the homomorphism σ must be an isomorphism. In
other words,

P∨ ⊗L

A X ⊗L

A P
∼= σE[n]

in Db(E-E).

Setting Y = P∨ ⊗L

A Z ⊗L

A P , we therefore have a triangle

Y E σE[n]

in Db(E-E), say ∇. This de�nes an element α ∈ ExtnE-E(E, σE[n]). By
Lemma 2.3.5, to prove that M is strongly σ-periodic relative to α, it su�ces
to show that Y ⊗L

E M is a perfect object in Db(E).

To this end, take the object Y ⊗L

E M of Db(E). We have

Y ⊗L

E M
∼= P∨ ⊗L

A Z ⊗L

A P ⊗L

E P
∨ ⊗A Q.

Consider the adjunction

Db(Aop) Db(Eop).
−⊗LAP

−⊗LEP∨

For any object W in the thick subcategory ⟨P∨⟩ of Db(Aop), we have W ⊗L

A

P ⊗L

E P
∨ ∼= W in Db(Aop). Thus, if we can show that P∨ ⊗L

A Z ∈ ⟨P∨⟩, then
we will have P∨ ⊗L

A Z ⊗L

A P ⊗L

E P
∨ ∼= P∨ ⊗L

A Z, so that

Y ⊗L

E M
∼= P∨ ⊗L

A Z ⊗L

A Q.
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Since P∨ ⊗L

A Z is a summand of A⊗L

A Z, we need only show that Z ∈ ⟨P∨⟩,
considered as an object of Db(Aop). By Lemma 2.3.7, this is equivalent to
showing that Z ⊗L

A V = 0 for all V ∈ Db
A1
(A).

Given V ∈ Db
A1
(A), we have a triangle ∆⊗L

A V ,

Z ⊗L

A V A⊗L

A V X ⊗L

A V .
h⊗LAV

By assumption, h⊗L

A V is an isomorphism, so Z⊗L

A V = 0. Thus, Y ⊗L

EM
∼=

P∨ ⊗L

A Z ⊗L

A Q.

It thus su�ces to show that this right hand side is a perfect complex of left
E-modules. The complex P∨ ⊗L

A Z �ts into a triangle

P∨ ⊗L

A Z P∨ ⊗L

A A P∨ ⊗L

A X .

Clearly, P∨ ⊗L

A A
∼= P∨ is a perfect complex of Aop-modules. Since Φ is a

standard equivalence induced by X by assumption, X is a perfect complex
in Db(A) and in Db(Aop). Thus, P∨ ⊗L

A X is a perfect complex in Db(Aop),
so P∨ ⊗L

A Z is, too. Then, since Q is a projective A-module, the object
P∨ ⊗L

A Z ⊗L

A Q
∼= Y ⊗L

E M is perfect in Db(E). This completes the proof of
the claim for M .

For the claim on M∨, it su�ces to show that

M∨ ⊗L

E Y
∼= Q∨ ⊗A P ⊗L

E P
∨ ⊗L

A Z ⊗L

A P

is perfect in Db(Eop). A similar argument to the above, using a dual state-
ment to Lemma 2.3.7, will show that Z⊗L

AP ∈ ⟨P ⟩, so that by the adjunction

Db(A) Db(E)
P∨⊗LA−

P⊗LE−

we have

M∨ ⊗L

E Y
∼= Q∨ ⊗A P ⊗L

E P
∨ ⊗L

A Z ⊗L

A P
∼= Q∨ ⊗L

A Z ⊗L

A P.

Then, the triangle

Z ⊗L

A P A⊗L

A P X ⊗L

A P
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guarantees that Z ⊗L

A P is perfect in Db(A), so that, since Q is projective
and A is symmetric, M∨ ⊗L

E Y
∼= Q∨ ⊗L

A Z ⊗L

A P is perfect in Db(Eop).

We thus have the �rst part of our main theorem.

2.3.3 Su�cient conditions

The next step is to show that the converse to Theorem 2.3.4 also holds true.
That is, twisted strongly periodic E-modules of period n give rise to two-step
self-perverse equivalences of width n of the appropriate form.

Theorem 2.3.8. Let P and Q be projective A-modules with no common
direct summands such that P ⊕ Q is a projective generator of A. Let E =
EndA(P )

op and M = HomA(P,Q). If there is an automorphism σ of E,
an α ∈ ExtnE⊗kEop(E, σE) and an n ∈ Z+ such that the E-module M is
strongly σ-periodic and the Eop-module M∨ is strongly σ−1-periodic of period
n relative to α, then there is a standard derived equivalence

ΦP : Db(A) Db(A),∼

perverse relative to
0 ⊂ A1 ⊂ A -mod,

where A1 is the Serre subcategory of A -mod prime to P .

Our proof of Theorem 2.3.8 closely follows the method of Grant [Gra13],
itself based on Ploog's simpli�ed proof that (geometric) spherical twists are
derived autoequivalences [Plo05]. We require the following de�nitions.

De�nition 2.3.9. Let S be a collection of objects in a triangulated category
T . The right orthogonal complement of S is

S⊥ = {V ∈ T : HomT (U, V [i]) = 0 for all U ∈ S, i ∈ Z}.

The left orthogonal complement ⊥S of S is de�ned similarly.

By a result of Rickard [Ric02, Corollary 3.2], if Z is a bounded complex of
projective A-modules and V is any object of Db(A), since A is symmetric,
HomDb(A)(Z, V ) and HomDb(A)(V, Z) are naturally dual as k-vector spaces1.
In such instances, the right and left orthogonal complements Z⊥ and ⊥Z
coincide, and we may refer unambiguously to the orthogonal complement Z⊥

of Z. In particular, if P is a projective A-module, the orthogonal complement
P⊥ is unambiguously de�ned. We comment that P⊥ = Db

A1
(A), while the

proof of Lemma 2.3.7 shows that ⊥Db
A1
(A) = Perf(A) ∩ ⟨P ⟩.

1Such objects Z are 0-Calabi-Yau objects.
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De�nition 2.3.10. A collection of objects S in a triangulated category T
is a spanning class for T if for every V ∈ T , if HomT (U, V [i]) = 0 for every
U ∈ S and all i ∈ Z, then V ∼= 0, and if HomT (V [i], U) = 0 for every U ∈ S
and all i ∈ Z, then V ∼= 0.

The following lemma is [Gra13, Lemma 3.14].

Lemma 2.3.11. If P is a projective A-module, then the collection of objects
S = {P} ∪ P⊥ is a spanning class for Db(A).

Suppose the conditions of Theorem 2.3.8 hold. We now identify our functor
Φ : Db(A) Db(A).

The extension α ∈ ExtE⊗kEop(E, σE) gives rise to a triangle

Y E σE[n]
f α

in Db(E-E), say ∇. We have a chain of isomorphims

HomDb(E-E)(Y,E) ∼= HomDb(E-E)(Y,RHomA(P, P ))

∼= HomDb(A-E)(P ⊗L

E Y, P )

∼= HomDb(A-E)(P ⊗L

E Y,RHomAop(P∨, A))

∼= HomDb(A-A)(P ⊗L

E Y ⊗L

E P
∨, A)

given by tensor-Hom adjunction. Let

P ⊗L

E Y ⊗L

E P
∨ A

g

be the image of Y E
f

under this chain of isomorphisms. As in [Gra13,
Lemma 3.4] we can characterise the map g as the resulting map in the com-
mutative diagram

P ⊗L

E Y ⊗L

E P
∨ A

P ⊗L

E E ⊗L

E P
∨ P ⊗L

E P
∨

P⊗LEf⊗LEP∨

g

∼

εRA

where εR is the counit of the adjunction −⊗L

E P
∨ ⊣ − ⊗L

A P . We note that
εRA is the usual evaluation map P ⊗L

E P
∨ → A. This in turn gives rise to a

triangle

P ⊗L

E Y ⊗L

E P
∨ A X

g

in Db(A-A), say ∆.
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De�nition 2.3.12. The functor

ΦP = X ⊗L

A − : Db(A) Db(A)

is the generalised periodic twist of A at P .

Our task is to show that the generalised periodic twist ΦP is an equivalence.
We �rst show that we may again reduce to the case that P and Q are direct
sums of projective indecomposable modules, no two of which are isomorphic.

Proposition 2.3.13. Let J ⊂ I such that P =
⊕

i∈I\J P
mi
i and Q =⊕

j∈J P
mj

j for integers mj,mi ≥ 1. Let P ′ =
⊕

i∈I\J Pi and Q
′ =

⊕
j∈J Pj,

E ′ = EndA(P
′)op and M ′ = HomA(P

′, Q′). Then the generalised periodic
twists of A at P and at P ′ coincide, ΦP

∼= ΦP ′.

Proof. By construction, P ′ and Q′ have no common direct summands and
P ′ ⊕ Q′ is a projective generator of A. By Proposition 2.3.6, with E ′ =
EndA(P

′)op and M ′ = HomA(P
′, Q′), the E ′-module M ′ and the (E ′)op-

module (M ′)∨ are strongly σ′-periodic relative to α′, where σ′ and α′ are the
restrictions of σ and α respectively to E ′. The generalised periodic twist ΦP ′

therefore exists as constructed.

Recall from the proof of Proposition 2.3.6, there is an E-E ′-bimodule V
such that P ′ ⊗E′ V ∨ ∼= P and V ⊗E′ (P ′)∨ ∼= P∨, and applying the functor
V ∨ ⊗L

E −⊗L

E V to ∇, we have a triangle

Y ′ E ′
σ′E ′[n]

f α′

in Db(E ′-E ′), with Y ′ ∼= V ∨ ⊗L

E Y ⊗L

E V . Observe then that

P ′ ⊗L

E′ Y ′ ⊗L

E′ (P ′)∨ ∼= P ′ ⊗L

E′ (V ∨ ⊗E Y ⊗E V )⊗L

E′ (P ′)∨

∼= P ⊗L

E Y ⊗L

E P
∨.

By the completion axiom for triangulated categories, we have a morphism of
triangles

P ′ ⊗L

E′ Y ′ ⊗L

E′ (P ′)∨ A X ′

P ⊗L

E Y ⊗L

E P
∨ A X

∼
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in Db(A-A), and by the 5-Lemma for triangulated categories, this third arrow
is an isomorphism. Thus,

ΦP = X ⊗L

A − ∼= X ′ ⊗L

A − = ΦP ′ ,

and this completes the proof.

In particular, we may assume that A is basic and that A ∼= P ⊕ Q as A-
modules.

We now work towards demonstrating that ΦP is an equivalence. Recall that
a functor is an equivalence if and only if it is fully faithful and essentially
surjective. The following theorem of Bridgeland [Bri99, Theorem 2.3] will be
useful.

Theorem 2.3.14. Let T , T ′ be triangulated categories and F : T T ′ a
triangulated functor with a left and a right adjoint. Then F is fully faithful if
and only if there is a spanning class S for T such that the homomorphisms

HomT (U, V [i]) HomT ′(F (U), F (V [i]))

are bijective for every U, V in S and i ∈ Z.

Our functor ΦP satis�es the �rst clause of this theorem.

Lemma 2.3.15. The object X is perfect in Db(A) and Db(Aop).

Proof. Consider the triangle ∆,

P ⊗L

E Y ⊗L

E P
∨ A X .

The A-A-bimodule A is projective as an A-module and as an Aop-module.
We have that

P∨ = HomA(P,A) ∼= HomA(P, P ⊕Q) ∼= E ⊕M

as an E-module, so that

Y ⊗L

E P
∨ ∼= Y ⊕ Y ⊗L

E M.

Similarly,

P ∼= HomA(A,P ) ∼= HomA(P ⊕Q,P ) ∼= E ⊕M∨,

so that
P ⊗L

E Y
∼= Y ⊕M∨ ⊗L

E Y.

95



By assumption and Lemma 2.3.5, Y ⊗L

EM is perfect in Db(E), andM∨⊗L

E Y
is perfect in Db(Eop). The triangle ∇,

Y E σE[n]

informs us that Y is a perfect object in Db(E) and Db(Eop). Then

P ⊗L

E Y ⊗L

E P
∨ ∼= P ⊗L

E Y ⊕ P ⊗L

E Y ⊗L

E M

in Db(A). Since P is a projective A-module, the functor

P ⊗L

E − : Db(E) Db(A)

sends perfect objects to perfect objects, so since Y and Y ⊗L

E M are perfect
objects in Db(E), P ⊗L

E Y ⊗L

E P
∨ is perfect in Db(A). Similarly, since P∨ is

a projective Aop module,

P ⊗L

E Y ⊗L

E P
∨ ∼= Y ⊗L

E P
∨ ⊕M∨ ⊗L

E Y ⊗L

E P
∨,

and Y andM∨⊗L

E Y are perfect objects of Db(Eop), P ⊗L

E Y ⊗L

E P
∨ is perfect

in Db(Aop). Thus, X �ts into the triangle ∆ with two objects perfect in
Db(A) and in Db(Aop), so X must be, too.

Thus, the functor

X∨ ⊗L

A − : Db(A) Db(A)

is both left and right adjoint to ΦP . In order to apply Theorem 2.3.14, we
now investigate how ΦP acts on the spanning class S = {P} ∪ P⊥.

Proposition 2.3.16. For any V in P⊥, ΦP (V ) ∼= V .

Proof. Consider the triangle ∆⊗L

A V in Db(A),

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A V A⊗L

A V X ⊗L

A V .

Clearly, A⊗L

A V
∼= V . We have P∨⊗L

A V
∼= HomA(P, V ); as P is a projective

A-module, we need not derive these functors. Also since P is projective,
we have HomKb(A)(P, V ) ∼= HomDb(A)(P, V ), so that the homology of the
complex HomA(P, V ) is given by

Hi(HomA(P, V )) ∼= HomKb(A)(P, V [i]) ∼= HomDb(A)(P, V [i])
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for every i ∈ Z. But V ∈ P⊥, so Hi(HomA(P, V )) = 0 for every i. Thus,
P∨ ⊗L

A V
∼= HomA(P, V ) ∼= 0 in Db(A). The triangle ∆ ⊗L

A V is therefore
isomorphic to the triangle

0 V X ⊗L

A V .

Thus, ΦP (V ) = X ⊗L

A V
∼= V .

Proposition 2.3.17. We have ΦP (P ) ∼= P [n].

Proof. Consider the triangles P ⊗L

E ∇ and ∆⊗L

A P in Db(A). The former is

P ⊗L

E Y P ⊗L

E E P ⊗L

E Eσ−1 [n]

and the latter

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A P A⊗L

A P X ⊗L

A P .

Observe �rst that P ⊗L

E Eσ−1 [n] ∼= P [n] in Db(A). We wish to build a
commutative diagram

P ⊗L

E Y P ⊗L

E E

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A P A⊗L

A P

P⊗LEf

α β

g⊗LAP

,

in which the vertical arrows are isomorphisms, from which the completion
axiom and the 5-Lemma give an isomorphism of triangles

P ⊗L

E Y P ⊗L

E E P ⊗L

E σE[n]

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A P A⊗L

A P X ⊗L

A P

∼ ∼ ∼ ,

so that
ΦP (P ) = X ⊗L

A P
∼= P ⊗L

E σE[n] ∼= P [n].

Let β be the obvious isomorphism induced by the isomorphisms

P ⊗L

E E
∼= P ∼= A⊗L

A P.
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Consider the adjunction − ⊗L

E P
∨ ⊣ − ⊗L

A P . Let εR and ηR be the counit
and unit of this adjunction. De�ne α by

P ⊗L

E Y P ⊗L

E Y ⊗L

E P
∨ ⊗L

A P.
ηR
P⊗L

E
Y

The triangle P ⊗L

E ∇ informs us that P ⊗L

E Y ∈ ⟨P ⟩ in Db(Eop), so α is an
isomorphism.

It thus remains to show that (g⊗L

AP )◦α = β◦(P⊗L

Ef). From the construction
of g, we have a commutative diagram

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A P A⊗ P

P ⊗L

E E ⊗L

E P
∨ ⊗L

A P A⊗L

A P ⊗L

E P
∨ ⊗L

A P

P⊗LEf⊗LEP∨⊗LAP

g⊗LAP

β⊗LEP∨⊗LAP

εRA⊗LAP

so that

(g⊗L

A P ) ◦α = (εRA ⊗L

A P ) ◦ (β⊗L

E P
∨ ⊗L

A P ) ◦ (P ⊗L

E f ⊗L

E P
∨ ⊗L

A P ) ◦ ηRP⊗LEY .

Since P∨ ⊗L

A P
∼= E, by the naturality of ηR we have that

(g ⊗L

A P ) ◦ α = (εRA ⊗L

A P ) ◦ ηRA⊗LAP ◦ β ◦ (P ⊗L

E f),

and since
(εRA ⊗L

A P ) ◦ ηRA⊗LAP = idA⊗LAP ,

we have (g ⊗L

A P ) ◦ α = β ◦ (P ⊗L

E f). The claimed commutative diagram
therefore exists, and the result follows.

Putting this all together, we conclude the following

Corollary 2.3.18. The functor ΦP : Db(A) Db(A) is fully faithful.

Proof. By Lemma 2.3.15, ΦP has a left and a right adjoint. By Proposition
2.3.17,

HomDb(A)(ΦP (P ),ΦP (P [i])) ∼= HomDb(A)(P [n], P [i][n])
∼= HomDb(A)(P, P [i])

By Proposition 2.3.16, if U, V ∈ P⊥, then

HomDb(A)(Φ(U),Φ(V [i])) ∼= HomDb(A)(U, V [i]),

98



and for V ∈ P⊥,

HomDb(A)(Φ(P ),Φ(V [i])) ∼= HomDb(A)(P [n], V [i])
∼= HomDb(A)(P, V [i]),

and by [Ric02, Corollary 3.2], the spaces HomDb(A)(P, V [i]) and

HomDb(A)(V [i], P ) ∼= HomDb(A)(V, P [−i])

are naturally dual. Thus, for any U, V in the spanning class S = {P} ∪ P⊥,
the induced homomorphism

HomDb(A)(U, V [i]) HomDb(A)(Φ(U),Φ(V [i]))

is an isomorphism. Therefore, by Theorem 2.3.14, the functor ΦP is fully
faithful.

We can now show that Φ is an equivalence.

Proposition 2.3.19. The functor ΦP : Db(A) Db(A) is an equivalence.

Proof. First, we note that, since X is perfect in Db(A) and in Db(Aop) by
Lemma 2.3.15, ΦP restricts to a functor

Φ̂P : Perf(A) Perf(A).

Moreover, since ΦP is fully faithful by Corollary 2.3.18, this restriction is
fully faithful, too. The image ΦP (Perf(A)) is therefore a thick subcategory
of Perf(A).

By Proposition 2.3.17, ΦP (P ) ∼= P [n]. Thus, ⟨P ⟩ is contained in the image
ΦP (Perf(A)). Applying the functor − ⊗L

A Q to the triangle ∆, we obtain a
triangle

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A Q A⊗L

A Q X ⊗L

A Q

in Db(A). We have P∨ ⊗L

A Q
∼= M , and since Y ⊗L

E M is isomorphic to a
perfect complex of E-modules,

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A Q
∼= P ⊗L

E Y ⊗L

E M

is isomorphic to an object in ⟨P ⟩, and is therefore in ΦP (Perf(A)). Since Q
is projective, X ⊗L

A Q
∼= ΦP (Q) ∈ ΦP (Perf(A)). But ΦP (Perf(A)) is closed
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under triangles, so A ⊗L

A Q
∼= Q ∈ ΦP (Perf(A)). But then A ∼= P ⊕ Q ∈

ΦP (Perf(A)), so ΦP (Perf(A)) must contain all of Perf(A). In particular, the
restriction of ΦP to Perf(A) is essentially surjective, so is an equivalence

ΦP : Perf(A) Perf(A).∼

By [Ric89b, Theorem 6.4], ΦP is therefore an equivalence

ΦP : Db(A) Db(A),∼

and we are done.

The �nal step is to show that ΦP is a perverse equivalence with the expected
perversity.

Proposition 2.3.20. The generalised periodic twist ΦP : Db(A) Db(A)∼

is perverse relative to the �ltration

0 ⊂0 A1 ⊂n A -mod

on both sides.

Proof. We appeal to Proposition 1.3.12. Firstly, ΦP (P ) ∼= P [n] by Proposi-
tion 2.3.17. Next, the triangle ∆⊗L

A Q in the proof of Proposition 2.3.19,

P ⊗L

E Y ⊗L

E P
∨ ⊗L

A Q A⊗L

A Q X ⊗L

A Q

informs us that ΦP (Q) ∼= X ⊗L

A Q is isomorphic in Db(A) to a complex with
Q in degree 0, and all other terms contained in ⟨P ⟩. Thus, if P is the set of
all projective indecomposable A-modules and P1 is the subset consisting of
summands of P , we have demonstrated that ΦP is perverse relative to the
�ltration

∅ ⊂n P1 ⊂0 P .

The result then follows from De�nition 1.3.11.

Combining Proposition 2.3.19 with Proposition 2.3.20 completes the proof
of Theorem 2.3.8. Combining Theorem 2.3.8 with Theorem 2.3.4 completes
the proof of Theorem 2.3.3.
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2.3.4 Cycle of equivalences

Grant's cycle of equivalences carries over to this generalised setting, with a
slight adaptation.

Assume the �nite-dimensional symmetric k-algebra A is basic. Again by
Proposition 2.3.6 and 2.3.13, this restriction incurs no loss of generality. Let
P and Q be projective A-modules such that A ∼= P ⊕Q as A-modules. Let
J ⊂ I be the subset such that P ∼=

⊕
i∈I\J Pi and Q ∼=

⊕
j∈J Pj.

Let F
(0)
J be the elementary perverse equivalence for A at J ,

F
(0)
J : Db(A) Db(A(1)).∼

This is induced by a combinatorial tilting complex T =
⊕

i∈I Ti, as in Def-

inition 1.2.18. For each i ∈ I, let P
(1)
i = F

(0)
J (Ti). Then the P

(1)
i form a

complete set of projective indecomposable A(1)-modules up to isomorphism.
If P (1) =

⊕
i∈I\J P

(1)
i and A(1)

1 is the Serre subcategory of A(1) -mod prime

to P (1), then F
(0)
J is perverse relative to the �ltrations

0 ⊂0 A1 ⊂−1 A -mod

and
0 ⊂0 A(1)

1 ⊂−1 A
(1) -mod .

As before, we may iterate this construction. For each i, with A(0) = A, let

F
(i)
J : Db(A(i)) Db(A(i+1))∼

be the elementary perverse equivalence for A(i) at J . Set F == F
(n−1)
J ◦ . . . ◦

F
(0)
J , so that

F : Db(A) Db(A(n))∼

is the nth iterated combinatorial tilt at J . Let P
(n)
i be the projective inde-

composable A(n)-modules, obtained as the image point of the ith summand
of iterative combinatorial tilting complexes. Set P (n) =

⊕
i∈I\J P

(n)
i , and

A(n)
1 the Serre subcategory of A(n) -mod prime to P (n). Then the equivalence

F is perverse relative to the �ltrations

0 ⊂0 A1 ⊂−n A -mod

and
0 ⊂0 A(n)

1 ⊂−n A
(n) -mod .
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Now, set E = EndA(P )
op andM = HomA(P,Q). Suppose for some automor-

phism σ of E and some α ∈ ExtnE⊗kEop(E, σE) that M is strongly σ-periodic
and M∨ is strongly σ−1-periodic of period n relative to α. Then by Theorem
2.3.8, the generalised periodic twist

ΦP : Db(A) Db(A)∼

exists and is an equivalence. Moreover, ΦP is self-perverse relative to

0 ⊂0 A1 ⊂n A -mod .

By Lemma 1.3.7,

G = F ◦ ΦP : Db(A) Db(A(n))∼

is a perverse equivalence with perversity function identically zero. Thus, this
induces a Morita equivalence

G : A -mod A(n) -mod .∼

By Theorem 1.1.2, G(A) is a progenerator of A(n), but since A is basic by
assumption, and A(n) is basic by construction, taking opposites of endomor-
phism rings produces an isomorphism, A ∼= A(n). Identifying A and A(n) via
this isomorphism, we have a commutative diagram

Db(A) Db(A)

Db(A)

F−1

G
ΦP

in which all the arrows are equivalences, and the two functors F−1 and ΦP

are naturally isomorphic. We have therefore shown the following.

Theorem 2.3.21. The generalised periodic twist ΦP : Db(A) Db(A)∼ at P
coincides with the inverse F−1 of the nth iterated combinatorial tilt F at J .
That is, for every V ∈ Db(A), ΦP (V ) = X ⊗L

A V
∼= F−1(V ).

Thus, as in Grant's case, we obtain a cycle of derived equivalences
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Db(A)

Db(A(n−1)) Db(A(1))

Db(A(n−2)) Db(A(2))

. . .

FJFJ

FJFJ

such that the complete cycle, starting and ending at Db(A), agrees with the
inverse of the generalised periodic twist ΦP . As in Grant's case, we obtain
for free a two-step self-perverse equivalence

Db(A(i)) Db(A(i))∼

for every i, agreeing with the inverse of the generalised periodic twist ΦP (i) .
Determination of the algebras A(i) is far from trivial, but it will play an
important role in our examples in Chapter 3.

2.3.5 Self-duality

It is natural to wonder if, in Theorem 2.3.3, the strong periodicity conditions
on M and M∨ are both necessary. This question appears to be related to a
question of the self-duality of the class α.

Let A, P , Q, E and M be as in the statement of Theorem 2.3.3. Let α ∈
ExtnE⊗kEop(E, σE). Then α gives rise to a triangle

Y E σE[n] Y [1]
f α h

in Db(E-E). Recall that M is strongly σ-periodic relative to α if Y ⊗L

E M
is a perfect object in Db(E). If Y is a self-dual object of Db(E-E), that
is Y ∗ ∼= Y , then, by Theorem 1.1.3, since A is a symmetric algebra and
M = HomA(P,Q), we have

(Y ⊗L

E M)∗ ∼= M∗ ⊗L

E Y
∗ ∼= M∨ ⊗L

E Y

is a perfect object ofDb(Eop). Similarly, assuming the perfectness ofM∨⊗L

EY
would give the perfectness of Y ⊗L

EM . In this case, then, we need only assume
the strong periodicity of one of M or M∨.

Returning to the general setting, taking duals of the above triangle produces
a triangle
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Y ∗ E σ−1E[n] Y ∗[−1],
f∗

α∗ h∗

since by Proposition 2.1.1 and Theorem 1.1.3, E ∼= E∗ as E-E-bimodules.
Applying the shift functor [n] and twisting the left action of E by σ produces
a further triangle

σY
∗[n− 1] E σE[n] σY

∗[n]
σh∗[n] σα∗[n] σf∗[n]

in Db(E-E). The morphism σα
∗[n] corresponds to an element

β = σα
∗[n] ∈ ExtnE⊗kEop(E, σE).

Let W = σY
∗[n− 1].

Proposition 2.3.22. The E-module M is strongly σ-periodic of period n
relative to α if and only if it is strongly σ-periodic of period n relative to β.
Similarly, the Eop-module M∨ is strongly σ−1-periodic of period n relative to
α if and only if it is strongly σ−1-periodic of period n relative to β.

Proof. Firstly, suppose M is strongly σ-periodic of period n relative to α.
Applying −⊗L

E M to the triangle above, we have

W ⊗L

E M M σM [n]
β⊗LEM

in Db(E). With the notation of �1.2.10 and the discussion preceding Lemma
2.3.5, passing to the stable category E -mod, we have a triangle

W ⊗E M M Ω−n
E (σM) .

By assumption and the discussion following De�nition 2.3.1, M ∼= Ω−n
E (σM)

in E -mod. Thus, this second arrow is an isomorphism, and we have

W ⊗L

E M
∼= W ⊗E M ∼= 0

in E -mod. In other words, W ⊗L

E M is a perfect object of Db(E), so by
Lemma 2.3.5, M is strongly periodic of period n relative to β. The other
direction is analogous, and the dual statement is entirely similar.

Now, Theorem 2.3.8 produces from the strong periodicity of M relative to α
a two-step self-perverse equivalence

ΦP,α : Db(A) Db(A).∼
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However, the strong periodicity of M relative to β also produces such an
equivalence

ΦP,β : Db(A) Db(A).∼

Following a similar argument to that in �2.3.4, the equivalences ΦP,α and
ΦP,β di�er only by a self-Morita equivalence of A, which in turn induces
some automorphism of A, so that via this automorphism, the functors ΦP,α

and ΦP,β are naturally isomorphic.

What, then, does this tell us about the classes α and β? Does the coincidence
of ΦP,α and ΦP,β guarantee that α and β are, in fact, representatives of the
same class in ExtnE⊗kEop(E, σE)?

If α and β are representatives of the same class, then the uniqueness of
mapping cones in De�nition 1.2.4 tells us that Y ∼= σY

∗[n − 1] in Db(E-E),
in which case the perfectness of Y ⊗L

EM begets the perfectness of M∨⊗L

E Y ,
as in the case where Y is self-dual, and we need only assume the strong
periodicity of only one of M or M∨.

Unfortunately, to show that α and β are representatives of the same class
appears di�cult, if it is even the case at all. As such, we leave this for future
work, possibly building on the work in this subsection, or that in [Gra13,
�4.2].
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Chapter 3

Application to Symmetric Groups

An interesting, and surprising, application of Theorem 2.3.3 occurs in the
block theory of the symmetric groups. In this chapter, we brie�y recount
the representation theory of the symmetric groups, via some general group
representation theory, before focusing on the class of blocks of symmetric
group algebras of weight two in characteristic 3. It is in this context that we
will see our examples, and some proposed further examples. We will then
discuss the relevance of this to Brou�e's famous conjecture on blocks with
abelian defect groups.

3.1 Representation Theory of the Symmetric

Groups

We denote by Sn the symmetric group on n letters. We will always take this
to mean the group of permutations of the numbers {1, 2, . . . , n}. Elements of
Sn can always be written uniquely as a product of disjoint cycles of weakly
decreasing length.

The representation theory of the symmetric group is a broad and fascinating
subject in its own right. We illustrate in �3.1.3 the relevant combinatorics
of partitions and the p-abacus, before recounting in �3.1.4 the block theory
of kSn. The class of Brauer tree algebras play a key role in this story, as
discussed in �3.1.5, and in �3.1.6, in which we describe an important class of
blocks, named for Rouquier, Chuang and Kessar, as well as a combinatorial
method of Scopes by which we may relate blocks of symmetric groups of
di�erent degrees.
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In this section, classical results on the representation theory of Sn are taken
from [Jam06], unless otherwise stated. General de�nitions and results from
representation theory are taken from [Alp93].

3.1.1 Finite group representation theory

Let G be a �nite group and p a prime. Let K be a �eld of characteristic 0
and k a �eld of characteristic p.

For R ∈ {K, k}, the R-algebra RG is symmetric. The canonical symmetrising
form on RG is

tr : RG→ R,
∑
g∈G

λgg 7→ λ1G ,

where 1G ∈ G is the identity element.

By Maschke's Theorem, the K-algebra KG is semisimple. In particular, by
Wedderburn's Theorem, if {U1, . . . , Um} is a complete set of non-isomorphic
simple KG-modules, corresponding to the ordinary irreducible representa-
tions of G, then

KG ∼=
m⊕
i=1

EndK(Ui),

and each EndK(Ui) is a matrix algebra over K of degree equal to the dimen-
sion of the KG-module Ui. We note that the number of simple KG-modules
is equal to the number of conjugacy classes of the group G. In general, there
is no canonical bijection between these two sets.

The k-algebra kG has a block decomposition

kG = B1 × . . .× Br.

The blocks Bi are symmetric k-algebras, because kG is a symmetric k-
algebra. There is a trivial kG-module: a kG-module V such that g · v = v
for every g ∈ G, v ∈ V . Then V ∼= k as k-vector spaces. The trivial module
V ∼= k is simple and one-dimensional, and we call the block Bi such that
V ∼= k lies in Bi the principal block of kG.

If G ≤ H, then kG is a kH-kH-bimodule. The restriction functor

ResGH : kG -mod → kH -mod

sends a kG-module U to the kH-module ResGH(U) by restricting scalars. A
kG-module homomorphism φ : V → V ′ is sent to the kH-module homomor-
phism

ResGH(φ) : Res
G
H(V ) → ResGH(V

′)
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by restricting scalars. The induction functor

IndG
H : kH -mod → kG -mod

sends a kH-module U to the kG-module

IndG
H(U) = kG⊗kH U

by extension of scalars. Tensor-Hom adjunction specialises in this case to
Frobenius reciprocity : if V is a kG-module and U is a kH-module, then we
have an isomorphism

HomkG(Ind
G
H(U), V ) ∼= HomkH(U,Res

G
H(V ))

of vector spaces. In other words, the functors

IndG
H ⊣ ResGH

are left-right adjoint.

A kG-module M isomorphic to IndG
H(U) for some kH-module U is a rela-

tively H-free kG-module. A kG-module Q is relatively H-projective if it is
isomorphic to a summand of a relatively H-free module M . Free and projec-
tive kG-modules correspond respectively to relatively {1}-free and relatively
{1}-projective kG-modules.

We do not expect kG to be a semisimple algebra. That is, the blocks Bi will
not all be matrix algebras, although some might be. We would like to have
a way of measuring how close a block is to a matrix algebra. Whence the
notion of the defect of a block.

To each block B = Bi of kG one assigns an important invariant: the defect
group D of B. The subgroup D of G is a defect group of B if D is minimal
with the property that, for every B-module M , M is relatively D-projective
as a kG-module.

For a given block B of kG, the defect groups of B are all conjugate in G,
and hence D is de�ned up to isomorphism. Furthermore, if D is a defect
group of B, then D is a p-subgroup of G. Thus, there is some d ≥ 0 such
that |D| = pd. We call the integer d the defect of the block B. When B is a
principal block of kG, the defect groups of B and the Sylow p-subgroups of
G coincide. At the other extreme, blocks of defect d = 0 are matrix algebras.
In this sense, the defect measures how far a block is from being a matrix
algebra.

Brauer's First Main Theorem, [Bra44, Theorem 4], here rephrased following
[Alp93, Theorem 14.2], relates blocks of kG and blocks of kH, for certain
subgroups H ≤ G, that have common defect groups.
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Theorem 3.1.1. Let D be a p-subgroup of G and let H be a subgroup of
G containing NG(D). There is a one-to-one correspondence between the set
of blocks of kG with defect group D and the set of blocks of kH with defect
group D.

In the case H = NG(D), we call the block C of kNG(D) corresponding to
the block B of kG the Brauer correspondent of B. By Brauer's Second Main
Theorem [Bra44, Theorem 5], when B is a principal block, so that D is a
Sylow p-subgroup of G, the Brauer correspondent C is the principal block of
kNG(D).

3.1.2 Brou�e's conjecture

The p-local representation theory of �nite groups is replete with so-called
local-global counting conjectures, predicting many striking relationships be-
tween the representation theory of a �nite group and that of its p-local sub-
groups. For example, Alperin's Weight Conjecture [Alp87] predicts that, if B
is a block of kG with an abelian defect group D and C the Brauer correspon-
dent block of kNG(D), then there are an equal number of simple B-modules
as C-modules. One might expect that this equality comes from a deeper
structural result; for example, that B and C are Morita equivalent. A fa-
mous example of Rickard [Ric88] regarding a block of the alternating group
A5 in characteristic 3 discounts this possibility, but prompts the following
profound conjecture of Brou�e.

Conjecture 3.1.2. Let B be a block of kG and D a defect group of B such
that D is abelian. Let b be the Brauer correspondent of B. Then there is a
derived equivalence

Db(B) Db(b).∼

For obvious reasons, this conjecture is widely known as Brou�e's Abelian De-
fect Group Conjecture. The derived equivalence class of a block encodes the
information of the number of isomorphism classes of simple modules lying in
that block. Consequently, Conjecture 3.1.2 implies the stated conjecture of
Alperin.

Conjecture 3.1.2 is known to hold in a number of cases, including for the
symmetric groups, as we discuss in �3.1.7. A proof in full generality remains
elusive. We point out a glaring insu�ciency: what happens when the defect
group D of B is non-abelian? In such cases, the block B may have more
simple modules than the Brauer correspondent, immediately ruling out the
possibility of a derived equivalence. One can take as an example the principal
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block of S4 in characteristic 2, with Brauer correspondent the principal block
of D8. Conjecture 3.1.2 is then patently false. Unfortunately, a re�nement
allowing for non-abelian defect groups, or an alternative conjecture in these
cases, is as of yet unforthcoming. For a broader discussion, see [CR07, �10].

3.1.3 Symmetric group representation theory

In characteristic 0, the isomorphism classes of simple KSn-modules are in
one-to-one correspondence with the set of partitions of n. That is, sequences
of non-negative integers λ = (λ1, λ2, λ3, . . .) such that λi ≥ λi+1 for every i,
and

∑
i λi = n. The length of λ, ℓ(λ), is the largest integer l ≥ 1 such that

λl is non-zero.

The classi�cation of the simple modules in positive characteristic is due to
James [Jam76]. To every partition λ of n, we assign a kSn module Sλ, called
a Specht module. The Specht modules are not in general simple. A partition
λ is p-regular if λ does not have p non-zero parts of the same size. When
λ is p-regular, Sλ has a unique simple quotient Dλ. The Dλ for p-regular
partitions λ form a complete set of simple kSn-modules up to isomorphism.

One can therefore naturally describe the mathematics of the representation
theory of the symmetric groups through the combinatorics of partitions. To
utilise the power of this, James pioneered the use of the p-abacus. The
presentation here is slightly non-standard, based on [CMT08].

Suppose λ is a partition, and take r ∈ Z with r ≥ ℓ(λ). For i = 1, . . . , r, let
βi = λi + r − i. The set Br(λ) = {β1, . . . , βr} is called the r-beta set for λ.
Distinct integers r give distinct r-beta sets for λ.

Let p be prime. The (empty) p-abacus is an abacus with p vertical runners
of arbitrary (theoretically in�nite) length, labelled 0, 1, . . . , p − 1 from left-
to-right, with positions indicated by dashes on the runners. The positions
on runner i have values i, i+ p, i+ 2p, . . . from top-to-bottom. If a, b ∈ Z≥0,
then we say a comes before b in the p-abacus if a < b, and a comes after b in
the p-abacus if a > b.

For example, for p = 5, the p-abacus is:

0 1 2 3 4
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From top-to-bottom, the positions on runner 0 are 0, 5, 10, 15, . . ., on runner
1 are 1, 6, 11, 16, . . ., and so on. The position indicated in red is after the
position indicated in green.

Let λ be a partition and Br(λ) its r-beta set. The r bead p-abacus display
for λ is the p-abacus with a bead placed in position βi for i = 1, . . . , r. If
p is understood, we call this the r bead abacus display for λ, or simply an
abacus display for λ. When an abacus display is �xed, we may refer to it as
the abacus display for λ.

For example, suppose p = 5, λ = (6, 52, 42, 2, 12), and r = 15. Then Br(λ) =
{20, 18, 17, 15, 14, 11, 9, 8, 6, 5, 4, 3, 2, 1, 0}, and the r-bead p-abacus display
for λ is

0 1 2 3 4

By counting the gaps in a left-to-right, top-to-bottom manner, one can easily
read a partition o� its abacus display. The bead corresponding to β1 = 20
occurs after six gaps, so λ1 = 6; the bead corresponding to β2 = 18 appears
after �ve gaps, so λ2 = 5; and so on.

A position on an abacus display for λ is occupied if it has a bead in it, and
empty if not. In other words, position b is occupied if and only if b ∈ Br(λ),
for our chosen r. We say the bead at position β1 ∈ Br(λ) in this display is
in the last occupied position.

We call a bead in position b in an abacus display for λ moveable if b −
p ̸∈ Br(λ). Pictorially, the bead at position b is moveable if the position
immediately above it is empty. In the previous example, the bead at position
18 is moveable, but the bead at position 8 is not.

Given a moveable bead in position b, we may draw an arrow from position b to
b−p on the abacus to indicate the movement of the bead up the runner. One
can repeat this process, simulating the movement of each bead and recording
the movement of a moveable bead on the resulting abacus display with an
arrow, until no more beads can be moved. One is then left with an abacus
display with no moveable beads, decorated with arrows. We call these arrows
the bead movements of λ; note that the number of bead movements does not
depend on the choice of r. In absolute terms, the number of bead movements
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on each runner is also independent of r, but the choice of r dictates the order
in which the runners with each number of bead movements appears.

In our previous example:

0 1 2 3 4

The total number of bead movements is the p-weight of λ. The abacus display
resulting from the completion of all bead movements (that is, following the
movements indicated by the arrows) is the abacus display of a partition τ ,
the p-core of λ. A partition τ is an p-core partition if it has p-weight 0. If λ
is a partition with p-weight w and p-core τ , then |λ| = |τ |+ wp.

In our example, the partition λ = (6, 52, 42, 2, 12) has 5-weight 5 and 5-core
(13); see Figure 3.1.3.

0 1 2 3 4

λ = (6, 52, 42, 2, 12)

0 1 2 3 4

τ = (13)

Figure 3.1: Our example partition and its 5-core.

3.1.4 Blocks of kSn

The p-weight and p-core of a partition determine the block in which it lies.
This is due to the following result, still known, several decades after its proof
by Brauer and Robinson in [Bra47], as Nakayama's conjecture, as originally
conjectured by Nakayama in [Nak40b].

Proposition 3.1.3. Let λ, µ be partitions of n. Then Sλ and Sµ lie in the
same block of kSn if and only if λ and µ have the same p-core.

Note that two partitions λ and µ of the same n with the same p-core are
necessarily of the same p-weight. Consequently, a block of kSn is completely
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determined by an integer w ≥ 0 and a p-core partition τ of n−pw. We call w
the weight and τ the p-core of the block. We write Bτ,w to indicate the block
of kSn with p-core τ and of p-weight w. When the weight w is understood,
we may write this as Bτ .

As an example, the Specht module S(6,52,42,2,12) lies in the block B(13),5 of
kS28.

Suppose B = Bτ,w is a block of kSn, with p-core τ and of p-weight w.
Necessarily, n ≥ wp. To construct the defect groups of B, we �rst do so
for the principal block B∅,w of kSwp. In this case, the defect groups are the
Sylow p-subgroups of Swp.

Let P be a Sylow p-subgroup of Swp. By a result of Kaloujnine [Kal48], P
is a direct product of iterated wreath products of the cyclic group of order
p. Write wp = a0 + a1p+ . . .+ arp

r, with 0 ≤ ai < p. Then

P ∼= (Wp,1)
a1 × (Wp,2)

a2 × . . .× (Wp,r)
ar ,

where Wp,i is an iterated wreath product of i copies of Cp.

As in Conjecture 3.1.2, we focus our attention to the blocks whose defect
groups are abelian. The group P is abelian exactly when it is a direct product
of cyclic groups. This occurs if and only if r = 1; that is, when w < p.
Assume then that w < p and P = Cp × . . . × Cp = (Cp)

w is a Sylow p-
subgroup ofSwp. The defect of B∅,w is equal to the weight w. The normalizer
is N = NSwp(P )

∼= (Cp ⋊ Cp−1) ≀ Sw. The Brauer correspondent of B∅,w
is the principal block b0 of kN . By general group representation theory,
k(Cp⋊Cp−1) is an indecomposable, non-semisimple k-algebra. The k-algebra
kN = k((Cp ⋊ Cp−1) ≀ Sw) is indecomposable and non-semisimple, too (see
e.g. [CT03]). Thus, b0 = kN .

With this w �xed and τ a p-core partition, the group P is also a defect group
of B = Bτ,w (see e.g. [JK84, �6.2.39]). Hence, for all blocks of symmetric
groups, the defect groups are abelian if and only if w < p. In this case, B
also has defect w. Thus, for blocks of symmetric groups with abelian defect,
we may use the terms weight and defect synonymously.

We assume henceforth that w < p. Suppose B = Bτ,w is a block of kSn and
P , N are as above. Then

NSn(P )
∼= N ×Sn−wp.

By a result of Robinson [Rob51], the Brauer correspondent b of B is the block
b0 ⊗ Bτ,0 of k(N × Sn−wp). Here, Bτ,0 is a block of kSn−wp of defect zero,
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and is hence a matrix algebra. The block b is thus Morita equivalent to b0,
and we shall treat b0 as the Brauer correspondent for our block B.

Observe that we have a chain of subgroups

N = (Cp ⋊ Cp−1) ≀Sw ≤ Sp ≀Sw ≤ Sn.

Let b̃0 be the principal block of k(Sp ≀Sw). We will call b̃0 the intermediate
block and b0 the local block.

3.1.5 The local and intermediate blocks

The only non-trivial cyclic blocks of kSn are blocks of weight w = 1. If
B = Bτ,1 is a block of some kSn of weight 1, then abacus combinatorics tells
us that there are p partitions of n with p-core τ and p-weight w, of which
only one is not p-regular, and thus there are p− 1 simple kSn-modules lying
in B. By a result of Dade [Dad66], B is Morita equivalent to a Brauer tree
algebra on p− 1 edges with exceptional multiplicity m = 1.

A Brauer tree is a quadruple (Γ, o, v,m), where Γ = (Γ0,Γ1) is a connected,
acyclic graph (i.e. a tree) with vertex set Γ0 and edge set Γ1, o is a cyclic
ordering of the edges incident with each vertex u ∈ Γ0, v ∈ Γ0 is an excep-
tional vertex, and m ∈ Z+ is the exceptional multiplicity of the vertex v. To a
Brauer tree Γ we may associate a k-algebra AΓ, called a Brauer tree algebra;
see [Alp93, �17] for details. The Brauer tree algebras are �nite-dimensional,
symmetric, basic and indecomposable. Two important Brauer tree and as-
sociated Brauer tree algebras are the star Γe,m on e edges with exceptional
multiplicity m

1

23

e
m

and the line Γ̃e,m on e edges with exceptional multiplicity m

1 2 3 e

m .

We denote by Ae,m and Ãe,m the Brauer tree algebras associated to Γe,m and
Γ̃e,m, respectively.
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The intermediate block b̃0 in weight 1, the principal block of kSp, is Morita
equivalent to the Brauer tree algebra Ãp−1,1 of a line on p − 1 edges with
exceptional multiplicity m = 1. Further, the weight 1 local block b0 is the
indecomposable algebra k(Cp ⋊ Cp−1). The algebra k(Cp ⋊ Cp−1) is Morita
equivalent to the Brauer tree algebra Ap−1,1 of a star on p − 1 edges with
exceptional multiplicity m = 1 (see e.g. [Alp93, Theorem 17.2]).

For higher weights w ≥ 2, the block b̃0 is Morita equivalent to the k-algebra
Ãp−1,1 ≀ Sw, while b0 is Morita equivalent to the k-algebra Ap−1,1 ≀ Sw; see
[CT03] for the notion of a wreath product of algebras.

3.1.6 Rouquier blocks and Scopes pairs

We de�ne an important family of blocks, making use of the p-abacus.

Let B = Bτ,w be a block of kSn. The block B is a weight w Rouquier block
or RoCK block (for Rouquier, Chuang, Kessar) if there is an abacus display
for τ in which, for every i with 1 ≤ i ≤ e− 1, there are at least w − 1 more
beads on runner i than on runner i− 1.

For example, with p = 3, the blocks B(3,12),2 and B(7,5,32,22,12),3 are weight 2
and weight 3 Rouquier blocks respectively.

0 1 2 0 1 2

We can relate all the blocks of kSn for all n of a given weight w to the
Rouquier blocks, by the following construction.

Let B = Bτ,w be a block of kSn. Suppose in some abacus display of the
p-core partition τ , there are m ≥ 0 more beads on runner i than runner i−1.
Swap the runners i and i− 1 to obtain an abacus display for another p-core
partition partition, τ . Let B = Bw,τ , a block of Sn−m. Then we say the
blocks B and B form a Scopes [w : m] pair. Scopes de�ned such pairs �rst
in [Sco91] for m ≥ w, and in general in [Sco95, De�nition 2.1].

For example, with p = 5, the blocks B = B(7,3,2,14),w and B = B(6,22,14),w form
a Scopes [w : 2] pair, for any w:
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0 1 2 3 4 0 1 42 3

As an immediate remark, we are allowing the case m = 0. In this case, the
blocks B and B are the same block, however the induced derived equivalence,
described in �3.1.9, is not the identity functor.

A second important remark: we are taking the labels of the runners modulo
p. That is, we allow i = 0, with a slight alteration: for i = 0, we require
m+1 more beads on runner 0 than runner p− 1, rather than m more beads.
A clunky rewording of the condition will recover all cases: B and B form a
[w : m] pair if, in the abacus display for the p-core τ of B, the last occupied
positions on runner i and i− 1 respectively are i+ cp and (i− 1)+ (c−m)p.
Here, the labels of runners are taken modulo p, but the positions are not.

For example, with p = 3, the following abacus display for the block B(2),w

has two more beads in runner 0 than runner 2. The last occupied position
in runner 0 is 0 + 3(3) = 9, while in runner 2 the last occupied position is
−1+2(3) = 5. By interchanging runners 0 and 2 as below, we have a Scopes
[w : 1] pair between B(2),w and B(1),w, for any w > 0.

0 1 2 10 2

Note also the manner of runner interchange for i = 0. The bead at position
i+ cp is moved to position (i− 1) + cp, while the bead at position (i− 1) +
(c −m)p is moved to position i + (c −m)p. For all practical purposes, the
claim that runner i has more beads than runner i−1 includes this i = 0 case
without further mention.

The motivation for Scopes's de�nition is the following observation, [Sco91,
Theorem 5.1]. Given blocks A and A′ of kSn and kSn′ of the same weight
w, there is a sequence of blocks

A = B1, B2, . . . , Bt = A′

such that Bi and Bi+1, in either order, form a [w : m] pair. Thus, all the
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blocks of a given weight communicate through a chain of Scopes pairs. This
communication will be key �3.1.7.

The following result of Scopes, [Sco91, Theorem 4.2], is foundational.

Theorem 3.1.4. If the blocks B and B form a [w : m] pair and m ≥ w,
then there is a Morita equivalence

B -mod B -mod .∼

Other Morita equivalences exist between blocks of symmetric groups, so we
will call an equivalence arising from a Scopes [w : m] pair with m ≥ w a
Scopes-Morita equivalence. This naturally gives rise to an equivalence rela-
tion on the set of all blocks of kSn of weight w as n varies, whose equivalences
classes we call the Scopes-Morita equivalence classes. For a given w and p,
there are �nitely many Scopes-Morita equivalence classes1 of blocks of sym-
metric groups of weight w, by [Sco91, Theorem 5.1].

For the weight w = 1 blocks, we have the following consequence.

Corollary 3.1.5. All blocks of symmetric groups of weight w = 1 are Morita
equivalent.

From their de�nition, it is clear that all of the Rouquier blocks for a given
w and p fall into the same Scopes-Morita equivalence class. We typically
choose as representative of this equivalence class the block Bτ,w such that τ
has an abacus display for which, for every i with 1 ≤ i ≤ p − 1, there are
exactly w − 1 more beads on runner i than on runner i − 1. For example,
with p = 5 and w = 2, we would choose the block B(10,62,33,14),2.

0 1 2 3 4

We then call this block the (weight w) Rouquier block.

1The alert reader may recall here Donovan's conjecture that, for a given �nite p-group
P , there are only �nitely many Morita equivalence classes of blocks of kG for �nite groups
G with defect group isomorphic to P , see [Alp80, Conjecture M]. Scopes's result explicitly
proves Donovan's conjecture for blocks of symmetric groups, [Sco91, Corollary 5.2]. For
more on Donovan's conjecture, the interested reader is encouraged to visit the webpage
[Eat19] dedicated to the status of the conjecture.

117



We note that the principal block of kSwp lies in a Scopes-Morita equivalence
class on its own. We will call this block the weight w principal block. For a
given w, the Rouquier block and the principal block are the blocks separated
by the largest number of non-Morita equivalence Scopes pairs in a shortest
chain of Scopes pairs between the two blocks. In this sense, they are the two
extreme blocks on the scale.

3.1.7 Brou�e's conjecture for Sn

Brou�e's Conjecture 3.1.2 is known to hold for the symmetric groups. Reach-
ing this point took a lot of e�ort and the best part of 20 years, so it is worth
recounting the story of the proof here. The �rst point of call is the following
result of Rickard [Ric89a, Theorem 4.2].

Theorem 3.1.6. Let Γ be a Brauer tree on e edges with exceptional multi-
plicity m. Then there is a derived equivalence

Db(AΓ) Db(Ae,m).
∼

Thus, all Brauer tree algebras of Brauer trees on a given number of edges with
a given exceptional multiplicity are derived equivalent. Moreover, Rickard's
proof is constructive. Let v be the exceptional vertex of Γ. For every edge i
in Γ, there is a unique shortest path in Γ from v to the vertex at the furthest
end of i. This de�nes a sequence of edges i0, i1, . . . ir = i in Γ. For each i, let
Xi be the complex of projective AΓ-modules

0 P (i0) P (i1) . . . P (ir) 0,

where by P (j) we denote the projective cover of the simple AΓ-module cor-
responding to the edge j. Set

X =
⊕
i∈Γ1

Xi ∈ Kb(A -proj).

Then Rickard proves that X is a one-sided tilting complex for A, so that
Theorem 1.2.17 applies, and

EndDb(AΓ)(X)op ∼= Ae,m.

By construction, one can see from Proposition 1.3.12 that Rickard's equiva-
lences are perverse, with the layers of the �ltration and the perversity func-
tion determined by the distance of the furthest end of each edge from the
exceptional vertex.
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To prove Conjecture 3.1.2 for blocks of weight 0 is trivial, as every algebra
in question is a matrix algebra. For blocks of weight 1, every algebra is a
Brauer tree algebra, so by Theorem 3.1.6, Brou�e's Conjecture holds. One
can say something stronger: all weight 1 blocks of all kSn in characteristic
p are Morita equivalent, by Corollary 3.1.5 to Scopes's Theorem 3.1.4. In
particular, all weight 1 blocks are Morita equivalent to the principal block of
kSp; that is, the Brauer tree algebra Ãp−1,1. Thus, with Γ = Γ̃p−1,1, a single
derived equivalence

FΓ : Db(Ãp−1,1) Db(Ap−1,1),
∼

induced by the tilting complex constructed by Rickard in the proof of Theo-
rem 3.1.6, su�ces.

The next step is to consider larger weights w ≥ 2. This is immediately a
harder problem, as the local block b0 has a wreath product factor of Sw.
Further, Scopes's Morita equivalences are only for blocks in a [w : m] pair
with m ≥ w. For 1 ≤ m < w, such blocks are not Morita equivalent. It
was conjectured, initially by Rickard, that blocks in a [w : m] pair with
m < w are rather derived equivalent. In an unpublished theorem of 1990,
Rickard proved this for w ≤ 5 and all relevant p, so that, for a �xed p and a
�xed w ≤ 5, by this result and Scopes's, all blocks of weight w are derived
equivalent.

This did not, however, tell us anything about how a given block B of kSn

of weight w ≥ 2 relates to either the intermediate weight w block b̃0 or the
local weight w block b0. It was not until Okuyama [Oku97, Examples 4.3,
4.4] that concrete examples of derived equivalences between blocks of weight
w ≥ 2 and the local block b0 appeared, here for the principal blocks of kS8

and kS6, both of weight w = 2 in characteristic p = 3.

After this, a systematic proof began to build. Rouquier had conjectured that
the Rouquier blocks2 should be Morita equivalent to the intermediate block
b̃0. By the following result of Marcus [Mar96, Example 5.7], this would prove
Conjecture 3.1.2 for the Rouquier blocks.

Proposition 3.1.7. There is a derived equivalence

FΓ,w : Db(Ãp−1,1 ≀Sw) Db(Ap−1,1 ≀Sw).
∼

This derived equivalence comes from an explicit lifting of the derived equiv-
alence of Rickard in Theorem 3.1.6.

2Whence the name.
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Chuang proves the conjecture on Rouquier blocks of weight 2 for any p ≥ 3
in [Chu99, Theorem 3.1]. He further identi�es tilting complexes inducing de-
rived equivalences between blocks in a [2 : 1] pair, giving a proof of Rickard's
unpublished result in the case w = 2. Chuang's results combined with Propo-
sition 3.1.7 thus prove Conjecture 3.1.2 for all blocks of weight w = 2.

The next major breakthrough came from Chuang and Kessar [CK02, The-
orem 2], who proved that Rouquier's conjecture was true3 for the Rouquier
blocks of any weight w. Thus, by Proposition 3.1.7, Conjecture 3.1.2 holds
for all Rouquier blocks, and by the unpublished result of Rickard, Conjecture
3.1.2 holds for all blocks of weight w ≤ 5.

The �nal piece in the puzzle was then to improve Rickard's result to arbitrary
weights. The resolution �nally came from Chuang and Rouquier [CR08,
Theorem 7.2], who proved that there is a derived equivalence between any
two blocks of weight w for a �xed p. In particular, suppose the blocks B and
B occur in a [w : m] pair. Then there is a derived equivalence

Db(B) Db(B),∼

given by what they termed sl2-categori�cation. Consequently, Brou�e's Con-
jecture 3.1.2 holds for all blocks of the symmetric groups with abelian defect
groups.

To summarise, given a block B of weight w and C the weight w Rouquier
block, there is a sequence of blocks of weight w

B = B0, B1, . . . , Br = C,

such that the blocks Bi and Bi−1 form a [w : m] pair. Each of these pairs
of blocks are derived equivalent, by Chuang and Rouquier, and by Chuang
and Kessar, C is Morita equivalent to the intermediate block b̃0, which is in
turn derived equivalent to the local block b0 by Proposition 3.1.7. We may
picture this as

Br -mod b̃0 -mod

Db(B0) Db(B1) . . . Db(Br) Db(b̃0) Db(b0).

∼

∼ ∼ ∼ ∼ ∼

The equivalences for [w : m] pairs constructed by Chuang and Rouquier
are perverse, as discussed in the next subsection. However, in general their
composition fails to remain perverse. One may thus ask if there exists a

3Whence the other name.
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single perverse equivalence, realising Conjecture 3.1.2 for any given block B
of some kSn.

Conjecture 3.1.8. When B is a block of kSn, the equivalence realising
Conjecture 3.1.2 can be chosen to be perverse.

The motivation for this conjecture comes partly from the representation the-
ory of �nite groups of Lie type. For such groups G, Conjecture 3.1.2 has
a particular geometric form: it is predicted that there is a derived equiv-
alence coming from the cohomology of a Deligne-Lusztig variety for G. A
great deal of progress has occurred on this problem in the last two decades,
primarily due to work of Craven, Rouquier and Dudas, [Cra12], [CR13],
[CDR20]. Craven [Cra12, Conjecture 1.4] has conjectured that these derived
equivalences should be perverse. This is proved for many examples of blocks
of defect 2 and 3 in [Cra12] and [CR13], some of which occur as blocks of
symmetric groups.

3.1.8 Derived equivalences from sl2-categori�cation

The concept of sl2-categori�cation is based on the representation theory of
the Lie algebra sl2(C). The standard basis of the vector space sl2(C) consists
of the matrices

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Given a �nite-dimensional sl2(C)-module V , we have a decomposition

V =
⊕
λ∈Z

Vλ

of V into weight spaces, where the Vλ are the (integral) eigenspaces of the
action of h on V . The action of e on V maps a weight space Vλ to the weight
space Vλ+2, while the action of f maps Vλ to Vλ−2:

. . . Vλ−2 Vλ Vλ+2 . . .
e

f

e

f

Since V is �nite-dimensional, we may integrate to an action of the Lie group
SL2(C), for which the element

θ =

(
0 1
−1 0

)
∈ SL2(C)

acts on the weight spaces as
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θ : Vλ V−λ.
∼

The action of θ on V is given by

θ = exp(−f) exp(e) exp(−f) =
∑

a,b,c≥0

(−1)a+cf (a)e(b)f (c),

where by f (a) we denote the divided power

f (a) =
fa

a!
.

Chuang and Rouquier's idea was to replace the vector space V with the
complexi�ed Grothendieck group

V = KC,0(A) = C⊗k K0(A)

of a k-linear abelian category A, for which we assume that objects have �nite
composition series. Their result [CR08, Theorem 6.4] is as follows.

Suppose we have the following.

� There exist exact functors E,F : A A such that E is both left and
right adjoint to F and the action of [E] and [F ] on V = KC,0(A) induces
a locally �nite action of sl2(C) corresponding to the action of e and f .

� There is a decomposition A = ⊕λ∈ZAλ corresponding to the weight
space decomposition of V as an sl2(C)-module; that is, KC,0(Aλ) ∼= Vλ.

� There are natural transformations X : E → E and T : EE → EE
satisfying some technical conditions (see statement in [CR08, Theorem
6.4]).

Then there is a complex of functors Θ inducing a derived equivalence

Θ : Db(A) Db(A)

lifting the action of θ on V , restricting to equivalences

Θ(λ) : Db(Aλ) Db(A−λ).

Moreover [CR17, Proposition 8.4], when every object of A has �nite com-
position series and S is the set of simple objects in A, the equivalence thus
constructed is perverse, relative to (S•,S ′

•, p), where the �ltrations are given
by

Si = {V ∈ S : F i+1(V ) = 0}
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and
S ′
i = {V ∈ S : Ei+1(V ) = 0},

and p(i) = i.

The ith degree terms of the complexes Θ(λ) are E−(λ+i)F (i), where the di-
vided powers are F (n) = cnF

n and E−(n) = c−nE
n, where cn =

∑
σ∈Sn

σ ∈
kSn and c−n =

∑
σ∈Sn

sgn(σ)σ ∈ kSn.

The construction of the complex of functors Θ generalises that of Rickard, in
his unpublished theorem on blocks of the symmetric groups of weight w ≤ 5.
The applicability of Chuang and Rouquier's result to the symmetric groups is
due to work of Lascoux, Leclerc and Thibon [LLT96], who utilised a method
by which one can work with all blocks of all symmetric groups over a �xed
�eld k of characteristic p > 0 simultaneously.

For every n, we have Sn−1 ≤ Sn in the obvious way. Thus, given any mod-
ule U in kSn -mod, the restriction ResSn

Sn−1
(U) is an object in kSn−1 -mod.

The group (kSn)
Sn−1 of elements of the group algebra kSn that commute

with every element of Sn−1 acts naturally on the restriction ResSn
Sn−1

(U). In
particular, the action of the Jucys-Murphy element

Ln = (1, n) + (2, n) + . . .+ (n− 1, n)

on U has eigenvalues all lying in the prime sub�eld Fp, and thus we have a
decomposition

ResSn
Sn−1

(U) =

p−1⊕
i=0

Ei(U).

The functor Ind is both left and right adjoint to Res, and we have a similar
decomposition

IndSn
Sn−1

(V ) =

p−1⊕
i=0

Fi(U)

for every module V in kSn−1 -mod, where the functor Fi is both left and
right adjoint to Ei.

Consider the abelian category

F =
⊕
n≥0

kSn -mod,

called the Fock space. The functors Res and Ind are endofunctors of F , and
they decompose as

Res =

p−1⊕
i=0

Ei
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and

Ind =

p−1⊕
i=0

Fi.

The functors Ei and Fi are exact, and Ei is both left and right adjoint to
Fi. On blocks, they act as Robinson's i-restriction and i-induction functors,
respectively. By a result of Puig, for every n we have isomorphisms of functors

En
i
∼= (E

(n)
i )⊕n! ∼= (E

−(n)
i )⊕n!

and
F n
i
∼= (F

(n)
i )⊕n! ∼= (F

−(n)
i )⊕n!.

Lascoux, Leclerc and Thibon's result is the following.

Theorem 3.1.9. The action of ei = [Ei] and fi = [Fi] on the Grothendieck
group K0(F) extends to an action of the a�ne Kac-Moody algebra ŝlp(C),
with weight space decomposition

K0(F) =
⊕

B blocks of kSn

K0(B).

Moreover, the action of the a�ne Weyl group W is transitive on blocks of a
�xed weight.

The action ofW is generated by re�ections, which correspond to pairs (ei, fi),
and thus we need only consider the action of sl2(C). Thus, by Chuang and
Rouquier's method of sl2-categori�cation, the functors Ei and Fi give rise
to a derived autoequivalence of the Fock space F , restricting to derived
equivalences between blocks of the symmetric groups of the same weight. In
particular, these give the derived equivalences between blocks in a [w : m]
pair.

3.1.9 Scopes pair derived equivalences

Suppose the blocks B = Bτ,w of kSn and B = Bτ ,w of kSn−m form a [w : m]
pair. Then for some 0 ≤ i ≤ p− 1, the derived equivalence

Db(B) Db(B)∼

is induced by a complex of functors of the form

. . . E
(m+2)
i F

−(2)
i E

(m+1)
i F

−(1)
i E

(m)
i .
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Similarly, the equivalence

Db(B) Db(B)∼

is induced by a complex of functors of the form

. . . F
(m+2)
i E

−(2)
i F

(m+1)
i E

−(1)
i F

(m)
i .

The index i here can be recovered from the combinatorics of the partitions
lying in the blocks B and B, as per the usual de�nition of i-restriction and
i-induction.

One can describe this complex of functors using the p-abacus. Fixing an
abacus display for τ , for some j there are m more beads on runner j + 1
than on runner j. Without loss of generality, we may assume that there is
at least one bead on runner j. The i-induction functor Fi maps the block B
to the block B′ of kSn+1 of weight w −m − 1, whose p-core has an abacus
display identical to τ , but with one additional bead on runner j + 1 and one
fewer bead on runner j. The i-restriction functor Ei maps the block B to the
block B′ of kSn−m−1 of weight w−m−1, whose p-core has an abacus display
identical to τ , but with one additional bead on runner j and one fewer bead
on runner j + 1. Runners j and j + 1 appear as the following for the blocks
B′, B, B and B′ from left to right, in the case m = 2.

Consider the blocks B(2),2 of kS8 and B(1),2 of kS7 in characteristic 3. These
blocks form a [2 : 1] pair. The derived equivalence

Φ : Db(B(2),2) Db(B(1),2)
∼

is induced by a complex of functors of the form

E
(2)
1 F

−(1)
1 E1,

where F1 is the induction functor to the block B(5,3,1),0 of kS9. The equiva-
lence

Φ : Db(B(1),2) Db(B(2),2)
∼

is induced by the complex of functors
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F
(2)
1 E

−(1)
1 F1,

where E1 is the restriction functor to the block B(4,2),0 of kS6. Abacus
displays for the 3-cores of the relevant blocks are below.

0 1 2 0 1 2 0 1 2 0 1 2

3.2 Blocks of Weight Two

Blocks of weight w = 0 are matrix algebras and blocks of weight w = 1 are
Brauer tree algebras. These blocks are well understood: they are all Morita
equivalent for w �xed, and are all of �nite representation type. Blocks of
weight w ≥ 2 in characteristic p ≥ 3 are of wild representation type, and
are thus harder to pin down. In some sense, however, this makes them more
interesting objects of study.

We will survey the landscape for blocks of weight w = 2 in characteristic
p = 3. It is for these blocks that we will �nd examples of applications of
Theorem 2.3.3. Fix an algebraically closed �eld k of characteristic p = 3. In
what follows, by a block B, we will always mean the basic algebra Morita
equivalent to B.

We start by collecting known information about these blocks. We present
Ext1-quivers of the blocks as k-algebras and the Loewy series of the projective
indecomposable modules lying in each block.

Representatives of Scopes classes of the blocks (that is, choices of 3-core par-
titions) can be chosen as in the following diagram, with blue arrows denoting
[2 : 1]-pairs between Scopes classes. For each class, we choose as representa-
tive the block of the symmetric group of smallest degree.
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(3, 12)

(2) (12)

(1)

∅

Projective indecomposable modules are known to have �xed Loewy length
5 and be stable (that is, the radical and socle layers coincide) [Sco95, Prop-
erty 5.7], and methods for calculating composition multiplicities of simple
modules can be found in [Ric96, Theorem 4.4, Conjecture 4.7] and [Fay12,
Proposition 3.1]. The Scopes pairs are an easy application of [Sco95, Corol-
lary 3.7, Lemma 4.3].

For a kG-module V , the k-linear dual V ∗ = Homk(V, k) is also a left kG-
module, under the action

g · φ : v 7→ φ(g−1 · v).

We note that, for all blocks B in question, every simple module S is self-dual,
S ∼= S∗ as kG-modules (see [Gre06, (3.5a), (3.3e)]). Hence, Ext1B(S, T )

∼=
Ext1B(T, S) for all simple B-modules S and T . Further, dimExt1B(S, T ) ≤ 1
(see [CT01, Theorem 3.1]). Additionally, the Ext1-quivers of these blocks are
bipartite (see [CT01, Corollary 3.2]), which greatly simpli�es computation.
Speci�c Ext1-quivers come from [EM94, Theorem 7.1] and [Oku97, Examples
4.3, 4.4], with the general shape determined by [DE20, Theorem 4.1].

Fayers [Fay12, �2.3] has introduced a square bracket labelling convention
for the p-regular partitions lying in a block B: if µ is such a partition, it is
assigned a label [i] for 1 ≤ i < p, or [i, j] for 1 ≤ i ≤ j < p, based on the more
familiar angle bracket notation for a (not necessarily p-regular) partition and
Richards's pyramid numbers for B. We will not cover the full details of this
labelling here. For p = 3, we �x the following ordering on the simple modules
in any block:

[2] > [2, 2] > [1, 2] > [1] > [1, 1].

We label the simple modules S1 to S5 from left to right. We will typically
represent the simple module Si as i. We denote by Pi the projective inde-

composable module with simple head (and socle) Si. In particular, Pi Si
πi

is a projective cover of Si.

This labelling and ordering is non-standard. In particular, we may have two
simple modules S and T such that S > T in this ordering, but T > S or
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T ▷ S in the usual lexicographic and dominance orderings4. The main ben-
e�t, however, is that the labels are �xed in a Scopes [2 : k]-pair, regardless
of whether k ≥ w or k < w, and thus the positions of a label in the quiver
also remain �xed. A further bene�t is that it allows us to continue without
any reference to the partitions themselves. As all the combinatorial consid-
erations here are at the level of the block (that is, the abacus combinatorics
of the p-core), a detailed study of the partitions would be super�uous. Addi-
tionally, this means that, while we give a concrete realisation of each Scopes
class, one can easily choose another, and we need only change the p-core and
its abacus realisation; the ordering of the simple modules and the structure
of the projective indecomposable modules remain exactly the same.

As a �nal comment before detailing the blocks in question, the composition
of [2 : 1] pairs

Db(B(3,12)) Db(B(2)) Db(B(1))
∼ ∼

remains perverse; one way to see this is via [CR17, Proposition 5.11]. How-
ever, the composition

Db(B(2)) Db(B(1)) Db(B∅)
∼ ∼

is not perverse. In order to resolve Conjecture 3.1.8 for the block B∅, one
must thus utilise other methods.

3.2.1 The block B(3,12)

Consider the block B(3,12) of kS11, the Rouquier block for p = 3. Uniquely
among the Rouquier blocks for di�erent values of p, this block is Morita
equivalent to the local block b, not just the intermediate block b0, due to the
exceptional coincidence that the Brauer tree algebras A2,1 and Ã2,1 coincide:

1 2

m = 1

1 2

m = 1 .

The algebra B(3,12) is isomorphic to kQ/I, where Q is the quiver

4For a description of these orderings, see [Jam06, De�nitions 3.2, 3.4]
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1 4

2 5

3

γ1
γ4

γ2

γ5δ2

δ1 δ4
δ5

and I the admissible ideal of kQ generated by the relations (see [Oku97, �4
Case 2]):

� δ4γ1 = 0, δ1γ4 = 0, δ5γ2 = 0, δ2γ5 = 0;

� γ1δ1 + γ4δ4 = γ2δ2 + γ5δ5;

� γ2δ2γ1 = γ5δ5γ1, γ1δ1γ2 = γ4δ4γ2, γ2δ2γ4 = γ5δ5γ4, γ1δ1γ5 = γ4δ4γ5;

� δ1γ2δ2 = δ1γ5δ5, δ2γ1δ1 = δ2γ4δ4, δ4γ2δ2 = δ4γ5δ5, δ5γ1δ1 = δ5γ4δ4;

� all paths of length four starting and ending at distinct vertices are 0.

The projective indecomposable modules, Pi corresponding to the simple i,
have Loewy series

1
3

1 2 5
3
1

2
3

1 2 4
3
2

3
1 2 4 5
3 3 3

4 5 1 2
3

4
3

2 4 5
3
4

5
3

1 4 5
3
5

.

3.2.2 The block B(2)

Consider the blockB(2) of kS8. There is a [2 : 1] pairDb(B(3,12)) Db(B(3,1))
∼ .

By composing this with the [2 : 2] pair Db(B(3,1)) Db(B(2))
∼ , actually a

Morita equivalence, we interpret this as an equivalenceDb(B(3,12)) Db(B(2))
∼ .

0 1 2 0 1 2 0 1 2

The algebra B(2) is isomorphic to kQ/I, where Q is the quiver
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1 4

2 5

3

γ1

ε

γ4

α

γ2

βη

δ2

δ1

δ4

and I the admissible ideal of kQ generated by the relations (see [Oku97,
Example 4.3]):

� βε = δ4γ1, ηα = δ1γ4, εδ1 = αδ4, γ1η = γ4β;

� αβ = εη, γ1δ1 + γ4δ4 = γ2δ2;

� αδ4γ2 = 0, δ2γ4β = 0;

� γ1δ1γ1 = 0, δ1γ1δ1 = 0, γ4δ4γ4 = 0, δ4γ4δ4 = 0;

� δ2γ1δ1 = δ2γ4δ4, γ1δ1γ2 = γ4δ4γ2;

� all paths of length four starting and ending at distinct vertices are 0.

Note that this list of relations is not minimal.

The projective indecomposable modules have Loewy series

1
3 5

1 2 4 1
5 3
1

2
3

1 2 4
3
2

3
1 2 4
3 5 3
4 2 1

3

4
3 5

4 1 2 4
5 3
4

5
1 4
3 5
4 1
5

.

3.2.3 The block B(12)

Consider the blockB(12) of kS8. There is a [2 : 1] pairDb(B(3,12)) Db(B(2,12))
∼ .

By composing this with the [2 : 2] pair Db(B(2,12)) Db(B(12))
∼ , actually a

Morita equivalence, we interpret this as an equivalenceDb(B(3,12)) Db(B(2))
∼ .

0 1 2 0 1 2 0 1 2
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The blocks B(12) and B(2) of kS8 are Morita equivalent, via the map

−⊗kS8 sgn : B(12) -mod B(2) -mod,

with sgn the one-dimensional sign kS8-module, though the two blocks are
in strictly di�erent Scopes-Morita equivalence classes. One can visualise this
map as a re�ection in the central vertical axis of the quiver. The 3-cores (12)
and (2) are mutually conjugate as partitions; the blocks B(12) and B(2) are
conjugate blocks.

The algebra B(12) is isomorphic to kQ/I, where Q is the quiver

1 4

2 5

3

γ1

α′ γ4ε′
β′

η′

γ5

δ5

δ1

δ4

and I the admissible ideal in kQ generated by the relations as in �3.2.2, but
with the obvious re�ections in the central vertical axis of the quiver.

The projective indecomposable modules have Loewy series

1
2 3

1 4 5 1
3 2
1

2
1 4
2 3
4 1
2

3
1 4 5
3 2 3
5 4 1

3

4
2 3

4 1 5 4
3 2
4

5
3

1 5 4
3
5

.

3.2.4 The block B(1),2

Consider the block B(1) of kS7. There is a [2 : 1] pair Db(B(2)) Db(B(1))
∼ .

0 1 2 0 1 2

There is also [2 : 1] pair Db(B(12)) Db(B(1))
∼ .
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0 1 2 0 1 2

The algebra B(1) is isomorphic to kQ/I, with Q a quiver of the form (see
[DE20, Appendix C])

1 4

2 5

3

α′

ε

γ1

α

ε′

γ4

β′

η′

β
η

δ1

δ4

.

The projective indecomposable modules have Loewy series

1
2 3 5

1 4 1 4 1
5 3 2

1

2
1 4
2 3
4 1
2

3
1 4

2 3 5
4 1
3

4
2 3 5

4 1 4 1 4
5 3 2

4

5
1 4
3 5
4 1
5

.

3.2.5 The block B∅,2

Consider the principal blockB∅ of kS6. There is a [2 : 1] pairDb(B(1)) Db(B∅)
∼ .

0 1 2 0 1 2

The algebra B∅ is isomorphic to kQ/I, where Q is the quiver
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1 4

2 5

3

α′

ε

α

ε′

γ′

β′

η′

γ

β

η

δ′

δ

with I the admissible ideal in kQ generated by the relations (see [Oku97,
Example 4.4] or [EM94, Theorem 7.1]):

� αη′ = εβ′ = δγ′, α′η = ε′β = δ′γ;

� βε = η′α′, β′ε′ = ηα, γδ + γ′δ′ = 0;

� γ′α′ = γε, γα = γ′ε′, β′δ′ = ηδ, βδ = η′δ′;

� δ′γ′ = α′β′ + ε′η′, δγ = αβ + εη;

� all paths of length four starting and ending at distinct vertices are 0.

The projective indecomposable modules have Loewy series

1
2 5

1 3 4 1
5 2
1

2
1 3 4
2 5 2
4 3 1

2

3
2 5

1 3 4
5 2
3

4
2 5

4 1 3 4
5 2
4

5
1 3 4
5 2 5
4 3 1

5

.

3.3 Periodic Equivalences of Blocks of Sym-

metric Groups

We now explore some possible applications of Theorem 2.3.3 to the weight
two blocks of symmetric groups in characteristic 3.

3.3.1 [2 : 1] pairs

Recall from �3.1.9 that a [w : m] pair derived equivalence

Db(B) Db(B)

is induced by a complex of functors of the form

. . . E
−(m+2)
i F

(2)
i E

(m+1)
i Fi E

(m)
i .
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We can give a more precise description of the action on simple modules for
[2 : 1] pairs.

Let k be an algebraically closed �eld of arbitrary odd prime characteristic
p ≥ 3. Let B be a block of kSn of p-weight w = 2 and B a block of kSn−1

of p-weight w = 2 such that B and B are linked by a [2 : 1] pair. With the
square bracket notation of Fayers [Fay12], we �x an ordering of the simple
modules lying in B and B,

[p− 1] > [p− 1, p− 1] > [p− 2, p− 1] > . . . > [1] > [1, 1],

extending the ordering described in �3.2. Let S1, . . . , Sr be the simple B-
modules corresponding to the above list from left to right, and S1, . . . , Sr

the simple B-modules corresponding to the above list from left to right. Let
I = {1, . . . , r} be an indexing set for both sets of isomorphism classes of
simple modules.

In [Sco95], Scopes identi�es an exceptional p-regular partition α such that
the simple kSn-module Dα lies in B. Let iα be the index in I such that
Siα = Dα. Then [Sco95, Corollary 3.7, Remark 4.4], for i ̸= iα, we have
ResB

B
Si

∼= Si, and IndB
B
Si

∼= Si.

There is a B-B-bimodule V , projective as a left B-module and as a right
B-module, such that

ResB
B
∼= V ⊗B −.

Let PV Vδ be a projective cover of V as a B-B-bimodule. By [Sco95,
Corollary 3.7, Remark 4.4, Lemma 5.7] and [Rou95, Lemma 2],

PV
∼=

⊕
i∈I

P i ⊗k P
∨
i ,

where Pi Si
πi is a projective cover of the B-module Si and P i Si

πi is a
projective cover of the B-module Si. Let P be the direct summand P iα ⊗P∨

iα

of PV , and δP the restriction of δ to P . Let X be the complex of B-B-
bimodules

0 P V 0,
δP

with V in degree 0. The �rst part of the following is taken from [Chu99,
�2], based on the aforementioned unpublished result of Rickard, and the
second part follows from [CR17, Remark 8.5], though it is also an immediate
consequence of the construction of X.

134



Theorem 3.3.1. The complex X of B-B-bimodules is a two-sided tilting
complex, inducing a derived equivalence

F : Db(B) Db(B).∼

Moreover, the equivalence F is perverse relative to the �ltration

∅ ⊂0 I \ {iα} ⊂1 I

on both sides.

One can similarly construct a derived equivalence

F : Db(B) Db(B)∼

from the induction functor IndB
B
∼= V ⊗B−, perverse relative to the �ltration

∅ ⊂0 I \ {iα} ⊂1 I

on both sides. By construction, the equivalence F is the inverse of a combina-
torial tilt or elementary perverse equivalence of B at {iα} and the equivalence
F is the inverse of a combinatorial tilt of B at {iα}.

The compositions F ◦F and F ◦F are derived autoequivalences of the blocks
B and B respectively, both self-perverse relative to the �ltration

∅ ⊂0 I \ {iα} ⊂2 I.

By Theorem 2.3.4, we therefore expect projective B-modules P and Q, with
no common direct summands and such that P ⊕Q is a projective generator
of B, and an autoequivalence σ of E = EndA(P )

op and α ∈ ExtnE⊗kEop(E, σ)
such that M = HomA(P,Q) is a strongly σ-periodic E-module of period 2
relative to α.

For the blocks in characteristic p = 3, as in �3.2, the [2 : 1] pairs and
exceptional simple modules are as follows.

� F : Db(B(3,12)) Db(B(2)),
∼ Siα = S5;

� F : Db(B(3,12)) Db(B(12)),
∼ Siα = S2;

� F : Db(B(2)) Db(B(1)),
∼ Siα = S2;

� F : Db(B(12)) Db(B(1)),
∼ Siα = S5;

� F : Db(B(1)) Db(B∅),
∼ Siα = S3.
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Observe that, in these examples, if the blocks B and B are linked by a [2 : 1]
pair, and Siα is the exceptional simple module in B, then EndA(Piα)

op ∼=
k[x]/⟨x3⟩. In other words, the projective module Piα is a P2-object in B.
Thus, there is a Grantian P2-twist

ΨPiα
: Db(B) Db(B),∼

perverse relative to the �ltration

∅ ⊂0 I \ {iα} ⊂0 I.

By Theorem 2.1.7, there is a cycle of equivalences

Db(B)

Db(B(1))

F−1
JF−1

J
.

However, the inverse of the combinatorial tilt at J is isomorphic to the [2 : 1]
pair derived equivalence Db(B) Db(B)∼ . In this way, we recover the [2 : 1]
pair from the periodic twist, and vice versa.

This is not an especially groundbreaking observation, but it is interesting,
and natural from the point of view of this thesis, to reframe the more classical
understanding of derived equivalence for blocks of symmetric groups in terms
of periodicity.

3.3.2 [2 : 0] pairs

Let k be an algebraically closed �eld of characteristic p. Let B be a block of
kSn of p-weight w, such that there is an abacus display of the p-core τ of B
in which two consecutive runners have an equal number of beads.

This de�nes a [w : 0] pair of B, corresponding to a derived autoequivalence

Φ : Db(B) Db(B).∼

induced by a complex of functors of the form
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. . . E
−(2)
i F

(2)
i EiFi Id,

or dually with the functors Ei and Fi switched. By [CR17, Remark 8.5], this
equivalence is self-perverse relative to a two-step �ltration

∅ ⊂0 I1 ⊂1 I

where I is an indexing set for the simple B-modules and I1 ⊂ I is a non-
empty, proper subset.

Now, suppose the abacus display for τ has three consecutive runners with an
equal number of beads.

We then have two derived autoequivalences

Φ1,Φ2 : D
b(B) Db(B),∼

self-perverse relative to some two-step �ltrations

∅ ⊂0 I \ I1 ⊂1 I

and
∅ ⊂0 I \ I2 ⊂1 I.

By a result of Cautis and Kamnitzer [CK12, Theorem 2.10], the braid relation
Φ1Φ2Φ1

∼= Φ2Φ1Φ2 holds for these equivalences. Moreover, by a result of
Halacheva, Licata, Losev and Yacobi [Hal+23, Theorem 6.8, Remark 6.9],
the equivalence

Φ1Φ2Φ1 : D
b(B) Db(B)∼

is perverse relative to the isotypic �ltration

∅ ⊂0 I \ (I1 ∪ I2) ⊂2 I.

Now, let k be an algebraically closed �eld of characteristic 3, and let A be
the basic algebra of the block B∅, as in �3.2.5.
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1 4

2 5

3

α′

ε

α

ε′

γ′

β′

η′

γ

β

η

δ′

δ

An abacus display for the p-core ∅ is

0 1 2

Clearly, we have two derived autoequivalences arising from [2 : 0] pairs

Φ1,Φ2 : D
b(A) Db(A)∼

as above. We claim that the perversity of the braid Φ1Φ2Φ1
∼= Φ2Φ1Φ2 can

be understood at the level of periodicity, in a manner we outline below.

The equivalence Φ1 is induced by a complex of functors

F1E1 Id,

where E1 is the 1-restriction functor to the weight 1 block B(12) of kS5. The
functor E1 is zero on all simple A-modules except S2 and S4. Thus, Φ1 is
perverse relative to the �ltration

∅ ⊂0 {1, 3, 5} ⊂2 I.

Let P = P2 ⊕ P4, Q = P1 ⊕ P3 ⊕ P4 and E = EndA(P )
op. Then E has an

Ext1-quiver

2 4α

η′

ε′
β

with relations

{η′ε′η′, ε′η′ε′, η′α− βη′, ε′β − αε′, α2, β2}.
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The projective indecomposable E-modules, P 2 and P 4, have Loewy series

2
2 4
4 2
2

and

4
2 4
4 2
4

.

We point out that neither of these is biserial, and

EndE(P 2) ∼= k[x, y]/⟨x2, y2⟩ ∼= EndE(P 4),

so that P 2 and P 4 are both toric objects, as described in �2.1.6, in E.

Let M = HomA(P,Q). Then as an E-module, M has three indecomposable
summands with Loewy and socle series

2
4
2
⊕
2
4
2
⊕
4
2
4
.

It is clear that ΩE(M) ∼= M , so that M is periodic of period 1. We claim
that M is in fact strongly periodic of period 1.

Let B be the subalgebra of E generated by the arrows η′ and ε′. Then B has
a quiver

2 4
η′

ε′

with relations
{η′ε′η′, ε′η′ε′}.

In particular, B is isomorphic to the Brauer tree algebra A2,1 of a star on 2
edges with exceptional multiplicity m = 1. The projective indecomposable
B-modules, say Q2 and Q4, have Loewy series

2
4
2

and
4
2
4
.

One can see that M is a projective B-module. We have E ∼= P 2 ⊕ P 4 as an
E-module, and B ⊗B P

∨
j
∼= Qj ⊕Qj, so that E ⊗B E ∼= P 2 ⊕ P 2 ⊕ P 4 ⊕ P 4.

We claim that there is an exact sequence of E-E-bimodules

0 E E ⊗B E E 0.
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Then E is periodic of period 1 relative to B, and this sequence de�nes a
self-extension α ∈ Ext1E⊗kEop(E,E). Then E ⊗B E is perfect in Db(E) and
in Db(Eop), and, since E is projective as a B-module and an Bop-module,

E ⊗B E ⊗L

E M
∼= E ⊗B M

is perfect in Db(E), and

M∨ ⊗L

E E ⊗B E ∼= M∨ ⊗B E

is perfect in Db(Eop).

In conclusion, the [2 : 0] pair Φ1 corresponds to a generalised periodic twist,
in this instance a Grantian relative periodic twist at P ,

ΦP : Db(A) Db(A),∼

by Theorem 2.1.6.

A very similar description applies for the [2 : 0] pair Φ2, if we instead take P
to be the projective A-module P1 ⊕ P5.

By the result of Halacheva, Licata, Losev and Yacobi, the braid

Φ1Φ2Φ1 : D
b(A) Db(A)∼

is perverse, relative to the �ltration

∅ ⊂0 {3} ⊂2 I.

Let P = P1 ⊕ P2 ⊕ P4 ⊕ P5, Q = P3 and E = EndA(P )
op. Then E ∼= kQ/I,

where Q is the quiver

1 5

2 4

ε

δ
η

γ′γ
η′

ε′

δ′

and I is the ideal of kQ generated by the relations

{εηε, ηεη, ε′η′ε′, η′ε′η′, γ′ε− η′δ, γε′ − ηδ′}.

The projective indecomposable E-modules, P 1, P 2, P 4, P 5, have Loewy series

1
2 5

1 4 1
5 2
1

,

2
1 4

2 5 2
4 1
2

,

4
2 5

4 1 4
5 2
4

,

5
1 4

5 2 5
4 1
5

.
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There is an automorphism σ of E, induced by the graph automorphism of
the quiver given by re�ecting through the horizontal line of symmetry. The
automorphism σ acts on I as the permutation (1, 2)(4, 5).

Let M = HomA(P,Q). Then as an E-module, M has coinciding Loewy and
socle series

M =
2 5
1 4
2 5

and a truncated projective resolution

P 1 ⊕ P 4 P 2 ⊕ P 5 M.

One can calculate that

Ω2
E(M) =

1 4
2 5
1 4

∼= σM,

so that M is σ-periodic of period 2. We claim that M is strongly σ-periodic
of period 2, and, noting that σ−1 = σ, so is M∨.

Let B be the subalgebra of E generated by the horizontal arrows:

1 5

2 4

ε

η

η′

ε′

Then B ∼= A2,1 × A2,1 as k-algebras. The automorphism σ restricted to
B swaps the two factors. The projective indecomposable B-modules, say
Q1, Q2, Q4, Q5, have Loewy series

1
5
1
,

2
4
2
,

4
2
4
,

5
1
5
.

The relatively B-projective E-modules are U1, U2, U4 and U4, with Loewy
series

U1 =
1
2
1
, U2 =

2
1
2
, U4 =

4
5
4
, U5 =

5
4
5
.

We claim that there is an exact sequence of E-E-bimodules of the form
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0 σE σE ⊗B E E ⊗B E E 0.d

Indeed, applying the functors −⊗L

E Si, where Si are the simple E-modules,
gives complexes of the form

0 S2 U2 U1 S1 0,

0 S1 U1 U2 S2 0,

0 S5 U5 U4 S4 0,

0 S4 U4 U5 S5 0.

We have a triangle

Y E σE[2]
α

de�ning
α ∈ HomDb(A)(E, σE[2]) ∼= Ext2E⊗kEop(E, σE).

Similarly to before, the complex Y is perfect in Db(E) and in Db(Eop), and
since E is a projective B-module and a projective Bop-module, Y ⊗L

E M is
perfect in Db(E), and M∨ ⊗L

E Y is perfect in Db(Eop). Noting that σ−1 = σ,
this shows that both M and M∨ are strongly σ-periodic of period 2, relative
to α.

The resulting generalised periodic twist, given by Theorem 2.3.8, is the
Grantian relative periodic twist at P ,

ΨP : Db(A) Db(A),∼

perverse relative to the �ltration

∅ ⊂0 {3} ⊂2 I,

coinciding with the braid of the [2 : 0] pairs Φ1Φ2Φ1.

A crucial aspect of this proposed construction is the role of the subalgebra B.
Since B ∼= A2,1×A2,1, the formulation here appears to be masking the restric-
tion and induction to the two weight one blocks in the sl2-categori�cation
picture, as both of these blocks are Morita equivalent to the Brauer tree al-
gebra A2,1. In this sense, this example is not really saying anything new, but
reinterpreting the usual setting in terms of periodicity.
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3.3.3 An autoequivalence of B(2),2

In the previous two subsections, we saw examples of perverse equivalences in
blocks of the symmetric groups arising from periodic and relatively periodic
modules, in the sense of Grant. The example in this section is not known
to fall into the Grantian setting, but rather o�ers an interesting application
directly of Theorem 2.3.3.

Let A be the basic algebra of the block B(2), as in �3.2.2.

1 4

2 5

3

γ1

ε

γ4

α

γ2

βη

δ2

δ1

δ4

Let P = P2 ⊕P3 ⊕P4 ⊕P5, Q = P1, E = EndA(P )
op and M = HomA(P,Q).

Then E has an Ext1-quiver

2 3 4 5
γ2

δ2

δ4

γ4

α

β

with relations:

� αδ4γ2 = 0 = δ2γ4β;

� δ4γ4δ4 = 0 = γ4δ4γ4;

� γ2δ2γ2 + γ4δ4γ2 = 0 = δ2γ2δ2 + δ2γ4δ4;

� δ4γ2δ2 + βαδ4 = 0 = γ2δ2γ4 + γ4βα;

� αδ4γ4 + αβα = 0 = δ4γ4β + βαβ;

� all paths of length four between distinct vertices are zero.

We note that all paths involving arrows in A with source or target 1 between
the remaining vertices are in the ideal of A generated by the arrows in E.

The projective indecomposable E-modules have coinciding Loewy and socle
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series
2
3

2 4
3
2

3
2 4

3 5 3
4 2
3

4
3 5

4 2 4
5 3
4

5
4

3 5
4
5

.

There is an automorphism σ of E, induced by the graph automorphism of
the above quiver given by rotating the quiver 180◦ about the centre. Then
σ acts on the set {2, 3, 4, 5} as the permutation (2, 5)(3, 4).

The E-module M has Loewy and socle series given by

M =
3 5
2 4
3 5

and a truncated projective resolution

P 2 ⊕ P 4 P 4 ⊕ P 3 P 3 ⊕ P 5 M

One can then see that

Ω3
E(M) =

2 4
3 5
2 4

∼= σM.

Thus, M is a σ-periodic E-module of period 3. We claim that there is an
α ∈ Ext3E⊗kEop(E, σE) such that M is strongly σ-periodic relative to α.

We describe a construction, Grantian in nature, with a complex of E-E-
bimodules constructed from terms projective relative to some subalgebras of
E. We �rst identify these subalgebras.

For i ∈ {2, 3, 4, 5}, let ei be the primitive idempotent of E such that P i = Eei.
Let B be the subalgebra of E generated by the idempotents e = e2 + e4 and
f = e3 + e5 and the arrows ζ = γ2 + γ4 +α and ξ = δ2 + δ4 + β. Then B has
an Ext1-quiver

e f
ζ

ξ

with relations ζξζ = 0 = ξζξ. To see this, we have

ζξ = (γ2 + γ4 + α)(δ2 + δ4 + β)

= γ2δ2 + γ4δ4 + γ4β + αδ4 + αβ

144



so that

ζξζ = (γ2δ2 + γ4δ4 + γ4β + αδ4 + αβ)(γ2 + γ4 + α)

= γ2δ2γ2 + γ2δ2γ4 + γ4δ4γ2 + γ4δ4γ4 + γ4βα + αδ4γ2 + αδ4γ4 + αβα

= (γ2δ2γ2 + γ4δ4γ2) + (γ2δ2γ4 + γ4βα) + γ4δ4γ4 + (αδ4γ4 + αβα) + αδ4γ2

= 0 + 0 + 0 + 0 + 0

= 0,

and

ξζξ = (δ2 + δ4 + β)(γ2δ2 + γ4δ4 + γ4β + αδ4 + αβ)

= δ2γ2δ2 + δ2γ4δ4 + δ2γ4β + δ4γ2δ2 + δ4γ4δ4 + δ4γ4β + βαδ + βαβ

= (δ2γ2δ2 + δ2γ4δ4) + δ2γ4β + (δ4γ2δ2 + βαδ4) + δ4γ4δ4 + (δ4γ4β + βαβ)

= 0 + 0 + 0 + 0 + 0

= 0.

We comment that B ∼= A2,1 as k-algebras, where A2,1 is the Brauer tree
algebra of a star on two edges with exceptional multiplicity m = 1.

Next, let C be the subalgebra of E generated by the idempotents e2, e3, e4, e5
and the arrows γ4, δ4. Then C has an Ext1-quiver

2 3 4 5
δ4

γ4

with relations γ4δ4γ4 = 0 = δ4γ4δ4. Then C ∼= k × A2,1 × k as k-algebras.
Note that C is not an indecomposable algebra.

Finally, letD be the subalgebra generated by the four idempotents e2, e3, e4, e5.
Then D has an Ext1-quiver

2 3 4 5

and, clearly, D ∼= k × k × k × k as k-algebras. Again, D is not an indecom-
posable algebra.

Consider the sequence of E-E-bimodules

0 σE σE ⊗C E E ⊗τD E E ⊗B E E 0
d3 d2 d1 d0

where E ⊗τD E denotes the E-E-bimodule E ⊗D τD ⊗D E, where τ is the
automorphism of D acting as the permutation (2, 4)(3, 5) on labels of simple
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D-modules. We comment that

E ⊗τD E =
5⊕

i=2

P iτ(i),

where P iτ(i) = P i ⊗k P
∨
τ(i), so this term is projective as an E-E-bimodule.

We de�ne the maps di below and claim that this sequence is exact.

The map d0 : E ⊗B E → E is the multiplication map, d0(x ⊗ y) = xy. The
map d1 : E ⊗τD E → E ⊗B E is given by d1(ei ⊗ eτ(i)) = ei ⊗ eτ(i). These
elements generate E ⊗τD E, so this completely de�nes d1. Further, d1 well-
de�ned, as we need only consider the action of idempotents in E on either
side. Then d0 ◦ d1 = 0, since

d0(d1(ei ⊗ eτ(i))) = d0(ei ⊗ eτ(i)) = eieτ(i) = 0.

Next, we de�ne d2 : σE ⊗C E → E ⊗τD E as follows. We �rst set

d2(e2 ⊗ e2) = α⊗ e2 − e5 ⊗ γ2,

d2(e5 ⊗ e5) = δ2 ⊗ e5 − e2 ⊗ β.

Next, set

d2(e3 ⊗ e3) =δ4γ4 ⊗ δ2 + β ⊗ γ4δ4 + δ4 ⊗ αδ4 + δ4γ2 ⊗ δ4

− βαβ ⊗ e3 − e4 ⊗ δ2γ2δ2

and

d2(e4 ⊗ e4) =γ4δ4 ⊗ α + γ2 ⊗ δ4γ4 + γ4 ⊗ δ2γ4 + γ4β ⊗ γ4

− γ2δ2γ2 ⊗ e4 − e3 ⊗ αβα.

Then one can show that d2(δ4⊗e3) = d2(e4⊗δ4) and d2(e3⊗γ4) = d2(γ4⊗e4),
so that d2 is well-de�ned.

We have

d2(e2 ⊗ e2) = e5αe4 ⊗ e2 − e5 ⊗ e3γ2e2

= e5ζe4 ⊗ e2 − e5 ⊗ e3ζe2

= e5(ζ ⊗ 1E − 1E ⊗ ζ)e2

in E ⊗τD E, so that

d1(d2(e2 ⊗ e2)) = d1(e5(ζ ⊗ 1E − 1E ⊗ ζ)e2)

= e5(ζ ⊗ 1E − 1E ⊗ ζ)e2

= 0
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in E ⊗B E, while

d2(e5 ⊗ e5) = e2δ2e3 ⊗ e5 − e2 ⊗ e4βe5

= e2ξe3 ⊗ e5 − e2 ⊗ e4ξe5

= e2(ξ ⊗ 1E − 1E ⊗ ξ)e5

in E ⊗τD E, so that

d1(d2(e5 ⊗ e5)) = d1(e2(ξ ⊗ 1E − 1E ⊗ ξ)e5)

= e2(ξ ⊗ 1E − 1E ⊗ ξ)e5

= 0

in E ⊗B E.

Next, we have that

d2(e3 ⊗ e3) = e4(ξζ ⊗ ξ + ξ ⊗ ζξ − 1E ⊗ ξζξ − ξζξ ⊗ 1E)e3

in E ⊗τD E, so that

d1(d2(e3 ⊗ e3)) = e4(ξζ ⊗ ξ + ξ ⊗ ζξ − 1E ⊗ ξζξ − ξζξ ⊗ 1E)e3

= 0

in E ⊗B E, while

d2(e4 ⊗ e4) = e3(ζξ ⊗ ζ + ζ ⊗ ξζ − 1E ⊗ ζξζ − ζξζ ⊗ 1E)e4

in E ⊗τD E, so that

d1(d2(e4 ⊗ e4)) = e3(ζξ ⊗ ζ + ζ ⊗ ξζ − 1E ⊗ ζξζ − ζξζ ⊗ 1E)e4

= 0

in E ⊗B E, since ζξζ = 0 = ξζξ in B. Thus, d2 ◦ d1 = 0.

Finally, we de�ne d3 : σE → σE ⊗C E by

d3(1E) = y2 + y34 + y5,

where

y2 = e2 ⊗ δ2γ2δ2γ2 + δ2γ2 ⊗ δ2γ2 + δ2γ2δ2γ2 ⊗ e2

+ γ2δ2γ2 ⊗ δ2 + γ2 ⊗ δ2γ2δ2 − δ4γ2 ⊗ δ2γ4 ∈ Ee2 ⊗C e2E,

y34 = δ2 ⊗ γ2 − α⊗ β + γ2δ2 ⊗ e3 − βα⊗ e4 + e3 ⊗ γ2δ2

− e4 ⊗ βα− γ4 ⊗ δ4 + δ4 ⊗ γ4 ∈ E(e3 + e4)⊗C (e3 + e4)E,

y5 = e5 ⊗ αβαβ + αβ ⊗ αβ + αβαβ ⊗ e5

+ βαβ ⊗ α + β ⊗ αβα− γ4β ⊗ αδ4 ∈ Ee5 ⊗C e5E.
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Observe that y5 = σ(y2). The element d3(1E) is central in E⊗C E, so d3 is a
well-de�ned homomorphism of bimodules. A rather painstaking calculation
will then show that d2(d3(1E)) = 0 in E⊗τDE, and our sequence is a complex
of E-E-bimodules.

To show that this complex is an exact sequence, one considers the complexes
obtained by applying the functors − ⊗E Si, for Si the simple E-modules.
There are relatively B-projective E-modules U24 and U35, with Loewy series

U24 =
2 4
3

2 4
and U35 =

3 5
4

3 5
.

The projective E-modules P 2 and P 5 are relatively C-projective, as are the
modules V3 and V4, with Loewy series

V3 =
3
2
3

and V4 =
4
5
4
.

Applying −⊗E S2, we obtain a sequence

0 S5 P5 P4 U24 S2 0 .

Applying −⊗E S3, we obtain a sequence

0 S4 V4 P5 U35 S3 0 .

Applying −⊗E S4, we obtain a sequence

0 S3 V3 P2 U24 S4 0 .

Applying −⊗E S5, we obtain a sequence

0 S2 P2 P3 U35 S5 0 .

The exactness of these sequences shows that the above sequence of E-E-
bimodules is exact.

Now, given this exact sequence of E-E-bimodules, we have a triangle

Y E σE[3]
α

in Db(E-E), with Y perfect in Db(E) and Db(Eop). This de�nes an element

α ∈ HomDb(E-E)(E, σE[3]) ∼= Ext3E⊗kEop(E, σE).
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Similarly to in �3.3.2, since E is projective as a left and a right B-module,
C-module and D-module, we have that Y ⊗L

E M is perfect in Db(E) and
M∨ ⊗L

E Y is perfect in Db(Eop). Noting that σ−1 = σ, both M and M∨ are
thus strongly σ-periodic of period 3, relative to α. Thus, Theorem 2.3.8 then
gives a generalised periodic twist

ΦP : Db(A) Db(A),∼

self-perverse relative to the �ltration

∅ ⊂0 {1} ⊂3 {1, 2, 3, 4, 5}.

We comment that an autoequivalence of Db(B(2)), perverse with respect to
this �ltration, does indeed exist by other means. To produce it, one composes
the equivalence

Φ1 : D
b(B(2)) Db(B(3,12))

∼

constructed by Craven and Rouquier in [CR13, �5.5.3], perverse with respect
to the �ltrations

∅ ⊂0 {1} ⊂3 {1, 5} ⊂4 {1, 5, 4} ⊂5 {1, 5, 4, 2} ⊂6 {1, 5, 4, 2, 3}

and

∅ ⊂0 {1} ⊂3 {1, 2} ⊂4 {1, 2, 3} ⊂5 {1, 2, 3, 4} ⊂6 {1, 2, 3, 4, 5}

with the inverse of the equivalence

Φ2 : D
b(B(3,12)) Db(A2,1 ≀S2)

∼

of Rickard and Marcus, noting that A2,1 ≀S2 and B(3,12) are Morita equivalent,
perverse with respect to the �ltration

∅ ⊂0 {1, 2} ⊂−1 {1, 2, 3} ⊂−2 {1, 2, 3, 4, 5}

on both sides, and the equivalence

Φ3 : D
b(B(3,12)) Db(B(2))

∼

perverse with respect to the �ltration

∅ ⊂0 {1, 2, 3, 4} ⊂−1 {1, 2, 3, 4, 5}

on both sides, arising from the [2 : 1] pair between B(3,12) and B(2). The
equivalence
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Φ3 ◦ Φ−1
2 ◦ Φ1 : D

b(B(2)) Db(B(2))
∼

thus obtained is a self-perverse equivalence, relative to the �ltration

∅ ⊂0 {1} ⊂3 {1, 2, 3, 4, 5}.

Note here again that the algebra B is isomorphic to the Brauer tree algebra
A2,1 and that C has an irreducible constituent isomorphic to A2,1. This is
highly suggestive of the functor ΦP masking some restriction and induction
functors to some weight one blocks. We conjecture that this is related to
the self-stable equivalences of the Brauer correspondent block described by
Craven and Rouquier in [CR13, �5.5], though it is not entirely clear precisely
how.

3.3.4 Autoequivalences of B(1),2 and B(3,12),2

Let A = B(3,12) and recall the description of this block in �3.2.1.

1 4

2 5

3

γ1
γ4

γ2

γ5δ2

δ1 δ4
δ5

Let P = P2 ⊕P3 ⊕P4 ⊕P5, Q = P1, E = EndA(P )
op and M = HomA(P,Q).

Then E has an Ext1-quiver

4

2 5

3

γ4

γ2

γ5δ2

δ5

δ4

with relations:

� δ5γ2 = 0, δ2γ5 = 0;

� γ2δ2γ2 + γ4δ4γ2 = 0;

� γ2δ2γ4 = γ5δ5γ4, γ4δ4γ4 + γ2δ2γ4 = 0;
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� γ5δ5γ5 + γ4δ4γ5 = 0;

� δ2γ2δ2 + δ2γ4δ4 = 0;

� δ4γ2δ2 = δ4γ5δ5, δ4γ2δ2 + δ4γ4δ4 = 0;

� δ5γ4δ4 + δ5γ5δ5 = 0.

We comment that the loop γ1δ1 in A falls into the ideal generated by the
remaining arrows in E.

The projective indecomposable E-modules, P 2, P 3, P 4, P 5, have Loewy series

2
3

2 4
3
2

3
2 4 5
3 3 3
5 4 2

3

4
3

2 4 5
3
4

5
3

4 5
3
5

.

The E-module M has Loewy series

M =
3

2 5
3

and a truncated projective resolution

P 3 P 3 ⊕ P 4 P 2 ⊕ P 4 ⊕ P 5 P 2 ⊕ P 4 ⊕ P 5 P 4 ⊕ P 3 P 3 M

from which one can calculate that Ω6
E(M) ∼= M . Thus, M is a periodic

E-module of period 6. Let N = Ω3
E(M). Then

N =
2 4 5
3 3

2 4 5

and N is an E-module not isomorphic to M , also periodic of period 6. A
truncated projective resolution of N is

P 2 ⊕ P 4 ⊕ P 5 P 4 ⊕ P 3 P 3 P 3 P 3 ⊕ P 4 P 2 ⊕ P 4 ⊕ P 5 N.

We claim that M and N are strongly periodic of period 6, relative to some
α ∈ Ext6E⊗kEop(E,E). We outline a method of demonstrating this.

Let B be the subalgebra of E generated by the idempotents e2 + e4, e3 and
e5 and the arrows ξ = γ2 + γ4 and ζ = δ2 + δ4.
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2 + 4

5

3

ξζ

Then ξζξ = 0 = ζξζ, so B ∼= A2,1×k, where A2,1 is the Brauer tree algebra of
a star on 2 edges with exceptional multiplicity 1. The relatively B-projective
E-modules are

U24 =
2 4
3

2 4
, U3 =

3
5
3
, U5 = P 5.

Let C be the subalgebra of E generated by the idempotents e2, e3 and e4+e5
and the arrows ξ′ = γ4 + γ5 and ζ

′ = δ4 + δ5.

3

2

4 + 5

ζ′ξ′

Then ξ′ζ ′ξ′ = 0 = ζ ′ξ′ζ ′, so C ∼= A2,1 × k, too. The relatively C-projective
E-modules are

V2 = P 2, V3 =
3
2
3
, V45 =

4 5
3

4 5
.

Let D be the subalgebra of E generated by the idempotents e2, e3, e4 and
e5.

2 3 4 5

Then D ∼= k × k × k × k. Let τ1, τ2, τ3 be the automorphisms of D which
act on the simple labels via the following permutations:

� τ1 = (2, 5, 4, 3);

� τ2 = (2, 4, 3, 5);

� τ3 = (2, 5)(3, 4).

We claim that there is an exact sequence of E-E-bimodules of the form

0 E Y5 Y4 Y3 Y2 Y1 Y0 E 0,

where:
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� Y0 = (E ⊗B E)⊕ (E ⊗C E);

� Y1 = (E ⊗τ1D
E)⊕ (E ⊗D E)⊕ (E ⊗τ2D

E);

� Y2 = (E ⊗τ1D
E)⊕ (E ⊗τ3D

E)⊕ (E ⊗τ2D
E);

� Y3 = (E ⊗τ1D
E)⊕ (E ⊗τ3D

E)⊕ (E ⊗τ2D
E);

� Y4 = (E ⊗τ1D
E)⊕ (E ⊗D E)⊕ (E ⊗τ2D

E);

� Y5 = (E ⊗B E)⊕ (E ⊗C E).

For exactness, one checks the complexes obtained by applying the functors
−⊗L

E Si for the simple E-modules Si. These complexes are

0 S2 U24 ⊕ P 2 P 234 P 455 P 455 P 234 U24 ⊕ P 2 S2 0,

0 S3 U3 ⊕ V3 P 235 P 245 P 245 P 235 U3 ⊕ V3 S3 0,

0 S4 U24 ⊕ V45 P 245 P 333 P 333 P 245 U24 ⊕ V45 S4 0,

0 S5 P 5 ⊕ V45 P 345 P 224 P 224 P 345 P 5 ⊕ V45 S5 0,

where, given a sequence {ij}j∈J ′ of elements of {2, 3, 4, 5}, we denote by P {ij}

the projective E-module
⊕

j∈J ′ P ij .

The complex of E-E-bimodules above then de�nes a triangle

Y E E[6]α

in Db(E-E), and thus an element

α ∈ HomDb(E-E)(E,E[6]) ∼= Ext6E⊗kEop(E,E)

By construction, the complex Y is perfect in Db(E) and Db(Eop). We also
note that, with reference to the proof of Proposition 2.2.1, E is projective as
a left and a right B-module, C-module and D-module, so that, for each i,
Yi⊗L

EM is a projective E-module and M∨⊗L

E Yi is a projective E
op-module.

Therefore Y ⊗L

E M is perfect in Db(E) and M∨ ⊗L

E Y is perfect in Db(Eop),
so that M and M∨ are both strongly periodic of period 6, relative to α.

By Theorem 2.3.8, the generalised periodic twist

ΦP : Db(A) Db(A),∼
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is a perverse equivalence, relative to the �ltration

∅ ⊂0 {1} ⊂6 {1, 2, 3, 4, 5}.

Now, for i ∈ {2, 3, 4, 5}, let Xi be the image of the simple module Si. We
observe that, for every i, H3(Xi) ∼= Sσ(i), where here we identify the automor-
phism σ with the permutation (2, 5)(3, 4). This is related to the following.

Take A′ = B(1), and recall the description in �3.2.4.

1 4

2 5

3

α′

ε

γ1

α

ε′

γ4

β′

η′

β
η

δ1

δ4

.

Let P ′ = P ′
2⊕P ′

3⊕P ′
4⊕P ′

5 and E
′ = EndA(P )

op. Then E ′ has an Ext1-quiver
of the form

4

2 5

3

γ4

α

ε′

η′

β

δ4

.

We claim that, by calculating relations in A′, one can see that E ∼= E ′, with a
change of simple labels given by the permutation (2, 3)(4, 5). The E ′-module
M ′ has Loewy and socle series

M ′ =
2 3 5
4 4

2 3 5
.

Then under the change of simple labels, as an E-module M ′ ∼= N = Ω3
E(M).

Thus, the periodicity analysis above should apply to M ′, too. We claim that
this then induces a generalised periodic twist

ΦP ′ : Db(A′) Db(A′),∼

perverse relative to the �ltration

∅ ⊂0 {1} ⊂6 {1, 2, 3, 4, 5}.
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We believe the signi�cance of the modulesM andN appearing as each other's
third Heller translate is related to certain perverse equivalences of Craven and
Rouquier. In [CR13, �5.5.1], Craven and Rouquier construct an equivalence

Db(B∅) Db(B(3,12)),
∼

perverse relative to the �ltrations

∅ ⊂0 {1} ⊂3 {1, 2, 4, 5} ⊂4 {1, 2, 4, 5, 3}

and
∅ ⊂0 {1} ⊂3 {1, 5, 3, 2} ⊂4 {1, 5, 3, 2, 4}

The inverse of the derived equivalence arising from the [2 : 1] pair between
B(1) and B∅ is an equivalence

Db(B(1)) Db(B∅),
∼

perverse relative to the �ltration

∅ ⊂0 {1, 2, 4, 5} ⊂−1 {1, 2, 4, 5, 3}

on both sides. Composing the two thus induces an equivalence

Db(B(1)) Db(B(3,12)),
∼

perverse relative to the �ltrations

∅ ⊂0 {1} ⊂3 {1, 2, 3, 4, 5}

and
∅ ⊂0 {1} ⊂3 {1, 5, 4, 3, 2}.

Composing this equivalence with its inverse in either direction therefore gives
perverse autoequivalences of Db(B(1)) and D

b(B(3,12)), with perversity func-
tions and �ltrations matching our proposed generalised periodic twists ΦP

and ΦP ′ . This also o�ers an explanation for the degree three homology of
the images Xi of simple modules Si above being simple, and isomorphic to
Sσ(i) for every i.

We again observe that the subalgebras B and C of E have irreducible con-
stituents isomorphic to the Brauer tree algebra A2,1, suggesting the involve-
ment of some restriction and induction functors to weight one blocks. It is
likely that this is related to the self-stable equivalences of the Brauer cor-
respondent in [CR13, �5.5], in a way that is slightly easier to see in this
example, by comparing images of simple modules above to those in [CR13,
�5.5.1].
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3.3.5 Autoequivalences of B∅,2 and B(2),2

Let A = B∅ and recall the description in �3.2.5.

1 4

2 5

3

α′

ε

α

ε′

γ′

β′

η′

γ

β

η

δ′

δ

Let P = P2 ⊕P3 ⊕P4 ⊕P5, Q = P1, E = EndA(P )
op and M = HomA(P,Q).

Then E has an Ext1-quiver

2 4

3 5

η′

γ′ ε′
α

δ
δ′

γ

β

with relations:

� αη′ = δγ′, ε′β = δ′γ;

� γδ + γ′δ′ = 0;

� γα = γ′ε′, βδ = η′δ′;

� all paths of length four between distinct vertices are zero.

The projective indecomposable E-modules, P 2, P 3, P 4, P 5, have Loewy series

2
3 4

2 5 2
4 3
2

3
2 5
3 4
5 2
3

4
2 5

4 3 4
5 2
4

5
3 4

5 2 5
4 3
5

.

The E-module M has Loewy series

M =
2 5
3 4
2 5

,

and a truncated projective resolution
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P 2 ⊕ P 5 P 3 ⊕ P 4 P 4 P 4 P 3 ⊕ P 4 P 2 ⊕ P 5 M

One can calculate that

Ω6
E(M) =

2 5
3 4
2 5

∼= M,

so M is a periodic E-module of period 6. Let N = Ω3
E(M). Then

N =
4

2 5
4

and N is another E-module, not isomorphic to M . A truncated projective
resolution of N is

P 4 P 3 ⊕ P 4 P 2 ⊕ P 5 P 2 ⊕ P 5 P 3 ⊕ P 4 P 4 N

Now let A′ = B(2) and recall the description in �3.2.2.

1 4

2 5

3

γ1

ε

γ4

α

γ2

βη

δ2

δ1

δ4

Let P ′ = P ′
1 ⊕P ′

3 ⊕P ′
4 ⊕P ′

5, Q
′ = P ′

2, E
′ = EndA(P )

op, M ′ = HomA′(P ′, Q′).
Then E ′ has an Ext1-quiver

1 5

3 4

ε

γ1
η

β
δ4

δ1

γ4

α

with relations:

� βε = δ4γ1, ηα = δ1γ4, εδ1 = αδ4, γ1η = γ4β;

� αβ = εη;

� γ1δ1γ1 = 0, δ1γ1δ1 = 0, γ4δ4γ4 = 0, δ4γ4δ4 = 0;

� all paths of length four between distinct vertices are 0.
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We claim that E ∼= E ′, with a change of simple labels given by

2 7→ 1, 3 7→ 5, 4 7→ 3, 5 7→ 4.

The E ′-module M ′ has Loewy series

M ′ =
3

1 4
3
.

Then, as an E-module, M ′ ∼= N = Ω3
E(M). So again, M ′ is periodic of

period 6.

We believe that there is an α ∈ Ext6E⊗kEop such that M , M∨, N and N∨ are
all strongly periodic of period 6 relative to α. This being the case, we would
obtain an autoequivalence

Db(B∅) Db(B∅)
∼

self-perverse relative to the �ltration

∅ ⊂0 {1} ⊂6 {1, 2, 3, 4, 5},

and an autoequivalence

Db(B(2)) Db(B(2))
∼

self-perverse relative to the �ltration

∅ ⊂0 {2} ⊂6 {2, 1, 3, 4, 5}.

We also hope that, as in �3.3.4, this produces an equivalence

Db(B∅) Db(B(2))
∼

perverse relative to the �ltrations

∅ ⊂0 {1} ⊂3 {1, 2, 3, 4, 5}

and
∅ ⊂0 {2} ⊂3 {2, 1, 5, 3, 4}.

Unfortunately, standard methods to produce this extension α have proved
fruitless. Moreover, it does not appear obvious from the equivalences of
Craven and Rouquier [CR13] and Chuang and Rouquier [CR08] that there
are two-step self-perverse equivalences
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Db(B∅) Db(B∅)
∼

and

Db(B∅) Db(B∅)
∼

of width 6, relative to the appropriate �ltrations.

This suggests at least two possibilities. Firstly, the periodicity of these mod-
ules is a pure coincidence, and there is no such α relative to which they
are strongly periodic. However, this would be a remarkable coincidence, es-
pecially considering our other examples that have at least some reasoning
behind their existence. Secondly, it may be that one will have to appeal to
the structure of Ext6E⊗kEop(E,E) itself to produce the correct α abstractly.
This would rely on a good working knowledge of the sixth Hochschild coho-
mology class

HH6(E) ∼= Ext6E⊗kEop(E,E).

Because the algebra E has arisen in a rather ad hoc manner and does not
obviously fall into a well-studied class of algebras, its Hochschild cohomology
is not immediately apparent. It is suggestive, though, that studying the
Hochschild cohomology classes

HH∗(E) ∼= Ext∗E⊗kEop(E,E)

and the twisted Hochschild cohomology classes

HH∗(E; σE) ∼= Ext∗E⊗kEop(E, σE)

will greatly bene�t potential future applications of Theorem 2.3.3. Moreover,
this would largely sidestep the arduous task of producing explicit exact se-
quences, like those presented in �3.3.3 and �3.3.4, to demonstrate the wider
practicality of our main result.

3.3.6 Relevance to Brou�e's Conjecture

We note that Conjecture 3.1.8 is known to be true for the symmetric group
blocks of weight w = 2 in characteristic p = 3, due to the examples of Craven
and Rouquier [CR13, �5.5] and Chuang and Rouquier [CR08, Theorem 7.2,
Remark 7.5]. However, this is reliant on the exceptional coincidence that
the Rouquier block B(3,12) and the Brauer correspondent A2,1 ≀S2 are Morita
equivalent, rather than just derived equivalent. It o�ers greater evidence in
favour of Conjecture 3.1.8 in generality if the equivalences realising Brou�e's
Conjecture 3.1.2 remain perverse on composition with the equivalence
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Db(B(3,12)) Db(A2,1 ≀S2)
∼

of Rickard and Marcus.

We note that there are two such equivalences, one, say ΦRoCK, perverse rel-
ative to the �ltration

∅ ⊂0 {1, 2} ⊂1 {1, 2, 3} ⊂2 {1, 2, 3, 4, 5}

on the left hand side, and one, say Φ′
RoCK

, perverse relative to the �ltration

∅ ⊂0 {4, 5} ⊂1 {4, 5, 3} ⊂2 {4, 5, 3, 1, 2}

on the left hand side.

In particular, the previously known perverse equivalence

Db(B(1)) Db(A2,1 ≀S2)
∼

is the composition of two [2 : 1] pair derived equivalences, perverse relative
to the �ltration

∅ ⊂0 {2, 5} ⊂1 {4, 5, 3, 1, 2}
This does not remain perverse on composition with either ΦRoCK or Φ′

RoCK
.

Instead, consider the equivalence

Φ̂P ′ : Db(B(1)) Db(B(3,12))
∼

given as the half-way point of the conjectured generalised periodic twist

ΦP ′ : Db(B(1)) Db(B(1))
∼

in �3.3.4. This is perverse relative to the �ltrations

∅ ⊂0 {1} ⊂3 {1, 2, 3, 4, 5}

and
∅ ⊂0 {1} ⊂3 {1, 5, 4, 3, 2}.

The composition

ΦRoCKΦ̂P ′ : Db(B(1)) Db(A2,1 ≀S2)
∼

is a perverse equivalence, relative to the �ltration

∅ ⊂0 {1} ⊂3 {1, 5} ⊂4 {1, 5, 4} ⊂5 {1, 5, 4, 2, 3}

on the left hand side. This therefore gives stronger evidence supporting
Conjecture 3.1.8 in general.
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Further Work

The central result of this thesis, Theorem 2.3.3, provides necessary and suf-
�cient conditions for the existence of two-step perverse autoequivalences of
the derived category of a �nite-dimensional symmetric algebra of a particu-
lar form. We have seen that attempts to apply this result can be sti�ed by
unwieldy sequences of bimodules. The role of the extension

α ∈ ExtnE⊗kEop(E, σE) = HHn(E; σE)

indicates that it is perhaps better to attempt to apply our result more ab-
stractly, using knowledge of the Hochschild cohomology of the idempotent
algebras E.

One may then wonder how widely applicable our result is. In the context of
the symmetric groups, for example, can we �nd strongly periodic modules in
idempotent algebras of blocks of larger weight, or in higher characteristic?
Moreover, one might ask the same question for blocks of the Iwahori-Hecke
algebras, whose representation theory is intimately related to that of the
symmetric groups.

Attempts to produce any such examples have thus far proven futile. This
suggests attempting to relax the conditions in Theorems 2.3.4 and 2.3.8. For
example, what, if anything, can we say about periodicity for a self-perverse
equivalence

Φ : Db(A) Db(A)∼

with a �ltration
∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sr = S

of arbitrary length? It is not immediately obvious, though examples suggest
that some periodicity statement should hold.

Finally, we observe that the projectivity of P is not really the important
aspect, but rather the Calabi-Yau property. Thus, we believe we should be

161



able to replace P with some perfect object, say Z, in Db(A), and E with
the endomorphism di�erential graded algebra EZ of Z. Seidel and Thomas's
geometric spherical twists are highly suggestive that such a result is plausible.
However, this would require a rephrasing of our statements in the language
of dg-categories, and is therefore left as work for a future date.
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