

City, University of London Institutional Repository

Citation: De Giacomo, G., Di Stasio, A., Tabajara, L. M., Vardi, M. Y. & Zhu, S. (2022).

Finite-trace and generalized-reactivity specifications in temporal synthesis. Formal Methods
in System Design, 61(2-3), pp. 139-163. doi: 10.1007/s10703-023-00413-2

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33972/

Link to published version: https://doi.org/10.1007/s10703-023-00413-2

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Vol.:(0123456789)

Formal Methods in System Design (2022) 61:139–163
https://doi.org/10.1007/s10703-023-00413-2

1 3

Finite‑trace and generalized‑reactivity specifications
in temporal synthesis

Giuseppe De Giacomo1 · Antonio Di Stasio1 · Lucas M. Tabajara2 · Moshe Y. Vardi2 ·
Shufang Zhu1

Received: 2 April 2022 / Accepted: 25 January 2023 / Published online: 15 March 2023
© The Author(s) 2023

Abstract
Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that
complies with desired properties expressed in LTL. Unfortunately it has been proved to be
too difficult computationally to perform full LTL synthesis. There have been two success
stories with LTL synthesis, both having to do with the form of the specification. The first is
the GR(1) approach: use safety conditions to determine the possible transitions in a game
between the environment and the agent, plus one powerful notion of fairness, Generalized
Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace
temporal synthesis, with LTL f (LTL on finite traces) as the specification language. In this
paper we take these two lines of work and bring them together. We first study the case in
which we have an LTL f agent goal and a GR(1) environment specification. We then add to
the framework safety conditions for both the environment and the agent, obtaining a highly
expressive yet still scalable form of LTL synthesis.

Keywords Reactive synthesis · LTL f · GR(1) · Games

 * Shufang Zhu
 shufang.zhu@cs.ox.ac.uk

 Giuseppe De Giacomo
 giuseppe.degiacomo@cs.ox.ac.uk

 Antonio Di Stasio
 antonio.distasio@cs.ox.ac.uk

 Lucas M. Tabajara
 l.martinelli.tabajara@gmail.com

 Moshe Y. Vardi
 vardi@cs.rice.edu

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Computer Science, Rice University, Houston, USA

http://orcid.org/0000-0001-5475-2978
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00413-2&domain=pdf

140 Formal Methods in System Design (2022) 61:139–163

1 3

1 Introduction

Program synthesis is considered the culmination of the ideal of declarative programming
[1, 2]. By describing a system in terms of what it should do, instead of how it should do
it, we are able, on the one hand, to simplify the program design process while avoiding
human mistakes and, on the other hand, to allow an autonomous agent to self-program
itself just from high-level specifications. Linear Temporal Logic (LTL) synthesis [3] is pos-
sibly one of the most popular variants of program synthesis, being the problem of auto-
matically designing a reactive system with the guarantee that all its behaviors comply with
desired dynamic properties expressed in LTL, the most used system/process specification
language in Formal Methods. Unfortunately this dream of LTL synthesis has proven to be
too difficult, and, in spite of a full-fledged theory, we still do not have good scalable algo-
rithms after more than 30 years [4].

There have been two successful responses to these difficulties, both having to do
with limiting the expressive power of the formalism used for the specification. The first
approach, developed in Formal Methods, has been what we may call the GR(1), response
[5]: essentially you focus on safety conditions, determining the possible transitions in a
game between the environment and the agent, plus one powerful notion of fairness called
Generalized Reactivity(1), or GR(1). This approach has found numerous applications, for
example, in robotic motion-and-mission planning [6]. The second approach, developed
in AI and inspired by classical AI planning, is of finite-horizon temporal synthesis, with
LTL f (LTL on finite traces) [7] as the specification language. In this approach [8], we
specify the agent’s goal in LTL f , together possibly with environment specifications, such
as safety conditions, possibly specified as a nondeterministic planning domain [9–13], or
simple fairness and stability conditions (both special cases of GR(1) fairness) [14]. There
are also studies in which general LTL environment specifications are used for LTL f goals,
but in this case the difficulties of handling LTL can indeed manifest [12, 15, 16]. Since
LTL f is a fragment of LTL, as shown in [7], the problem of LTL f synthesis under LTL
environment specifications can be reduced to LTL synthesis, as, e.g., explicitly pointed out
by [12]. However, LTL synthesis algorithms do not scale well due to the difficulty of Büchi
automata determinization, see e.g., [1].

In this work we propose to take these two lines of work, which are really the only suc-
cessful stories in LTL synthesis, and bring them together. We first study the case in which
we have an LTL f agent goal and a GR(1) environment specification. We propose an
approach based on using the automaton corresponding to the LTL f goal as the game arena
on which the environment has to satisfy its GR(1) environment specification. This means
that we are able to reduce the problem to that of GR(1) synthesis over the new arena. We
prove the correctness of the approach.

We then add to the framework safety conditions for both the environment and the agent,
obtaining a highly expressive yet still scalable form of LTL synthesis. These two kinds
of safety conditions differ, since the environment needs to maintain its safety indefinitely
(as usual for safety), while the agent has to maintain its safety conditions only until s/he
fulfills its LTL f goal, i.e., within a finite horizon, something that makes them similar to
“maintenance goals” in Planning [17]. We show that we can specify these safety condi-
tions in a very general way by using LTL f . In particular, our safety conditions require
that all prefixes of a trace satisfy an LTL f formula. For the environment safety conditions,
we consider all finite prefixes of infinite traces, while for the agent safety conditions, we
consider all prefixes of the finite trace satisfying the agent’s LTL f goal. Again, we prove

141Formal Methods in System Design (2022) 61:139–163

1 3

the correctness of our approach and demonstrate its scalability through an experimental
analysis.

Differences to conference paper. This paper is an extension of the previous conference
version [18], we extend the content in the following way:

• Provide the full proofs for all the theorems and lemmas;
• Extend Sect. 2 to include more background knowledge to make the paper more self-

contained;
• Extend Sects. 3 and 5 by (i) new subsections consisting of detailed descriptions of how

to reduce our synthesis problem settings to LTL synthesis; (ii) complexity analysis of
our proposed synthesis approaches;

• Extend Sect. 6 by (i) a new subsection of detailed description and complete formulation
of the benchmarks; (ii) a new subsection to present a detailed reduction to LTL synthe-
sis of the studied synthesis problems with the proposed benchmarks;

• Add Sect. 7 for a thorough discussion with related work;
• Add Sect. 8 of conclusion and future work.

2 Preliminaries

2.1 LTL and LTL
f

LTL is one of the most popular logics for temporal properties [19]. Given a set of proposi-
tions Prop, the formulas of LTL are generated as follows:

where a ∈ Prop , ◦ (next) and U (until) are temporal operators. We use common abbrevia-
tions, so we have eventually as ◊� ≡ trueU� and always as □� ≡ ¬◊¬�.

LTL formulas are interpreted over infinite traces � ∈ (2Prop)� . A trace � = �0,�1,… is
a sequence of propositional interpretations (sets), where for every i ≥ 0 , �i ∈ 2Prop is the i-
th interpretation of � . Intuitively, �i is interpreted as the set of propositions that are true at
instant i. Given � , we define when an LTL formula � holds at position i, written as 𝜋, i ⊧ 𝜑 ,
inductively on the structure of � , as:

• 𝜋, i ⊧ a iff a ∈ 𝜋i (for a ∈ Prop);
• 𝜋, i ⊧ ¬𝜑 iff 𝜋, i ̸⊧ 𝜑;
• 𝜋, i ⊧ 𝜑1 ∧ 𝜑2 iff 𝜋, i ⊧ 𝜑1 and 𝜋, i ⊧ 𝜑2;
• 𝜋, i ⊧ ◦𝜑 iff 𝜋, i + 1 ⊧ 𝜑;
• 𝜋, i ⊧ 𝜑1 U𝜑2 iff there exists j ≥ i such that 𝜋, j ⊧ 𝜑2 , and for all k, i ≤ k < j we have

that 𝜋, k ⊧ 𝜑1.

We say � satisfies � , written as 𝜋 ⊧ 𝜑 , if 𝜋, 0 ⊧ 𝜑.
LTL f is a variant of LTL interpreted over finite traces instead of infinite traces [7]. The

syntax of LTL f is exactly the same as the syntax of LTL. We define 𝜋, i ⊧ 𝜑 , stating that �
holds at position i, as for LTL, except that for the temporal operators we have:

• 𝜋, i ⊧ ◦𝜑 iff i < ���(𝜋) and 𝜋, i + 1 ⊧ 𝜑;

�∶∶=a|(� ∧ �)|(¬�)|(◦�)|(�U�)

142 Formal Methods in System Design (2022) 61:139–163

1 3

• 𝜋, i ⊧ 𝜑1 U𝜑2 iff there exists j such that i ≤ j ≤ ���(�) and 𝜋, j ⊧ 𝜑2 , and for all
k, i ≤ k < j we have that 𝜋, k ⊧ 𝜑1.

where we denote the last position (i.e., index) in the finite trace � by ���(�) . In addition, we
define the weak next operator ∙ as abbreviation of ∙� ≡ ¬◦¬� . Note that, over finite traces,
¬◦� ≢ ◦¬� , instead ¬◦� ≡ ∙¬� . We say that a trace satisfies an LTL f formula � , written
𝜋 ⊧ 𝜑 , if 𝜋, 0 ⊧ 𝜑.

2.1.1 Generalized reactivity(1) formulas

Generalized Reactivity(1) [5], or GR(1), is a fragment of LTL that generalizes fairness
(□◊�) and stability (◊□�) formulas (cf. [14]). Given a set of propositions Prop, a GR(1)
formula � is required to be of the form

where Ji and Kj are Boolean formulas over Prop.

2.2 Deterministic automata

A deterministic automaton (DA, for short) is a tuple A = (Σ, S, s0, �, �) , where Σ is a finite
alphabet, S is a finite set of states, s0 ∈ S is the initial state, � ∶ S × Σ → S is the transition
function, 𝛼 ⊆ S𝜔 is an acceptance condition. Given an infinite word � = a0a1a2 … ∈ Σ� ,
the run of A on � , denoted by A(�) is the sequence r = s0s1s2 … ∈ S� starting at the initial
state s0 where si+1 = �(si, ai) . The automaton A accepts the word � if A(�) ∈ � . The lan-
guage of A , denoted by L(A) , is the set of words accepted by A . In this work we specifi-
cally consider reachability, safety, and reachability-safety acceptance conditions:

• Reachability conditions. Given a set T ⊆ S of target states,
Reach(T) = {s0s1s2 … ∈ S�|∃k ≥ 0 ∶ sk ∈ T} requires that a state in T is visited at
least once.

• Safety conditions. Given a set T ⊆ S of target states,
Safe(T) = {s0s1s2 … ∈ S�|∀k ≥ 0 ∶ sk ∈ T} requires that only states in T are visited.
This is the dual of reachability conditions.

• Reachability-Safety conditions. Given two sets T1, T2 ⊆ S of tar-
get states corresponding to reachability and safety conditions, respectively,
Reach-Safe(T1, T2) = {s0s1s2 … ∈ S�|∃i ≥ 0 ∶ si ∈ T1 and ∀j, i ≥ j ≥ 0 ∶ sj ∈ T2}
requires that a state in T1 is visited at least once, and until then only states in T2 are vis-
ited.

We define the complement of a DA A = (Σ, S, s0, �, �) as A = (Σ, S, s0, �, S
�⧵�) .

Note that L(A) = Σ�⧵L(A) . Note also that S�⧵Reach(T) = Safe(S⧵T) and
S�⧵Safe(T) = Reach(S⧵T) . Therefore, the complement of a DA with a reachability
acceptance condition is a DA with a safety acceptance condition, and vice-versa. We
also define the intersection of two DAs A1 = (Σ, S1, s

0
1
, �1, �1) and A2 = (Σ, S2, s

0
2
, �2, �2)

as A1 ∩A2 = (Σ, S1 × S2, (s
0
1
, s0

2
), ��, ��) , where ��((s1, s2), a) = (�1(s1, a), �2(s2, a)) and

�� = {(s0
1
, s0

2
)(s1

1
, s1

2
)(s2

1
, s2

2
)… ∈ (S1 × S2)

�|s0
1
s1
1
s2
1
… ∈ �1 and s0

2
s1
2
s2
2
… ∈ �2} . Note

� =

m⋀

i=1

□◊Ji →

n⋀

j=1

□◊Kj

143Formal Methods in System Design (2022) 61:139–163

1 3

that if �1 = Safe(T1) and �2 = Safe(T2) , then �� = Safe(T1 × T2) . If �1 = Reach(T1) and
�2 = Safe(T2) we define a bounded intersection, where �� = Reach-Safe(T1, T2).

2.3 GR(1) games

Following [5], we define a GR(1) game structure as a tuple G = ⟨V, I,O, �a, �p, �a, �p,�⟩
where:

• V = {v1,… , vk} is a set of Boolean state variables. A state of the game is given by an
assignment s ∈ 2V of these variables. I ⊆ V is the set of input variables controlled by
the antagonist. O = V ⧵ I is the set of output variables controlled by the protagonist.

• �a is a Boolean formula over I representing the initial states of the antagonist. �p is a
Boolean formula over V representing the initial states of the protagonist.

• �a is a Boolean formula over V ∪ I� , where I′ is the set of primed copies of I . This
formula represents the transition relation of the antagonist, between a state s ∈ 2V and a
possible input sI ∈ 2I for the next state.

• �p is a Boolean formula over V ∪ I� ∪O� , where O′ is the set of primed copies of
O . This formula represents the transition relation of the protagonist, relating a pair
(s, sI) ∈ 2V × 2I of state s and input sI to an output sO.

• � is the winning condition for the protagonist given by a GR(1) formula.

We use the terms antagonist and protagonist instead of environment and agent to avoid
confusion when we switch roles.

2.4 LTL
f
 synthesis under environment specifications

Let X and Y be Boolean variables, with X controlled by the environment and Y controlled
by the agent. An agent strategy is a function �ag ∶ (2X)∗ → 2Y , and an environment strat-
egy is a function �env ∶ (2Y)+ → 2X . A trace is a sequence (X0 ∪ Y0)(X1 ∪ Y1)⋯ ∈ (2X∪Y)� .
An agent strategy induces a trace (Xi ∪ Yi)i if �ag(�) = Y0 and �ag(X0X1 ⋯Xj) = Yj+1 for
every j ≥ 0 . An environment strategy induces a trace (Xi ∪ Yi)i if �env(Y0Y1 ⋯Yj) = Xj for
every j ≥ 0 . For an agent strategy �ag and an environment strategy �env let ����(�ag, �env)
denote the unique trace induced by both �ag and �env , and ����k(�ag, �env) be the finite trace
that is a prefix up to k.

Let �a
task

 be an LTL f formula over X ∪ Y . An agent strategy �ag realizes �a
task

 if for
every environment strategy �env there exists k ≥ 0 , chosen by the agent, such that the finite
trace ����k(�ag, �env) satisfies �a

task
 , that is, �a

task
 is agent realizable.

In standard synthesis the environment is free to choose an arbitrary move at each step,
but in AI typically the agent has some knowledge of how the environment works, which
it can exploit in order to enforce the goal, specified as an LTL f formula �a

task
 . Here, we

specify the environment behaviour by an LTL formula Env and call it environment specifi-
cation. In particular, Env specifies the set of environment strategies that enforce Env [20].
Moreover, we require that Env must be environment realizable, i.e., the set of environment
strategies that enforce Env is not empty. Formally, given an LTL formula � , we say that an
environment strategy enforces � , written �env ⊳ � , if for every agent strategy �ag we have
����(𝜎ag, 𝜎env) ⊧ 𝜑.

The problem of LTL f synthesis under environment specifications is to find an agent
strategy �ag such that

144 Formal Methods in System Design (2022) 61:139–163

1 3

As shown in [20], this can be reduced to solving the synthesis problem for the implica-
tion Env → LTL(�a

task
) , with LTL(�a

task
) being a suitable LTL f -to-LTL transformation [7],

which is 2expTime-complete [3].

3 LTL f synthesis under GR(1) environment specifications

In this section, we first study LTL f synthesis under GR(1) environment specifications.
Formally, we are interested in solving the following synthesis problem.

Definition 1 (LTL f synthesis under GR(1) Environment Specifications) The problem is
described as a tuple P = (X,Y,�e

GR(1)
,�a

task
) , where �e

GR(1)
 is a GR(1) formula and �a

task
 is

an LTL f formula. Realizability of P checks whether

Synthesis of P computes a strategy �ag if exists.

Reduction to LTL synthesis. A naive approach to solve P is to reduce it to standard
LTL synthesis. Since �e

GR(1)
 can be naturally considered as an LTL formula, we are able

to reduce the problem of �e
GR(1)

→ �a
task

 by directly reducing to LTL synthesis, applying
the reduction in [14, 16]. However, reducing to LTL synthesis has not shown promising
results. Hence specific techniques have been proposed that try to avoid, if possible, the
Büchi determinization and the solution of parity games, see e.g., [12, 16]. In the next,
we will show how to avoid the detour to LTL synthesis for our case.

3.1 Reduction to GR(1) game

To solve the problem P , we first observe that the agent’s goal is to satisfy ¬�e
GR(1)

∨ �a
task

 ,
while the environment’s goal is to satisfy �e

GR(1)
∧ ¬�a

task
 . Moreover, we know that �a

task

can be represented by a DA with a reachability condition [8]. Then, focusing on the
environment point of view, we show that P can be reduced into a GR(1) game in which
the game arena is the complement of the DA for �a

task
 , i.e., a DA with safety condition,

and �e
GR(1)

 is the GR(1) winning condition. Since we want a winning strategy for the
agent, we need to deal with the complement of the GR(1) game to obtain a winning
strategy for the antagonist. More specifically, we can solve the problem by taking the
following steps:

1. Translate �a
task

 into Aag = (2X∪Y, S, s0, �, Reach(T)) that accepts a trace � iff 𝜋 ⊧ 𝜑a
task

 [8].
2. Complement Aag into Aag = (2X∪Y, S, s0, �, Safe(T �)) with T � = S⧵T . Note that Aag

accepts a trace � iff � has no prefix satisfying �a
task

.
3. Define a GR(1) game GP with the environment as the protagonist, where the arena is

given by Aag and the winning condition is given by �e
GR(1)

.
4. Solve this game for the antagonist, i.e. the agent.

∃𝜎ag∀𝜎env ⊳ Env ∶ ∃k.����k(𝜎ag, 𝜎env) ⊧ 𝜑a
task

.

∃𝜎ag∀𝜎env ∶ 𝗉𝗅𝖺𝗒(𝜎ag, 𝜎env) ⊧ 𝜑e
GR(1)

→ ∃k.𝗉𝗅𝖺𝗒k(𝜎ag, 𝜎env) ⊧ 𝜑a
task

.

145Formal Methods in System Design (2022) 61:139–163

1 3

3.1.1 Building the GR(1) game

We now detail how to build the GR(1) game GP (c.f., step 3 above). Given
Aag = (2X∪Y, S, s0, �, Safe(T �)) , we start by encoding the state space S into a logarithmic set
of variables Z (similarly to [21]). In what follows we identify assignments to Z with states
in S, respectively. Given a subset Y ⊆ V and a state s ∈ 2V , we denote by s ∣Y the projection
of s to Y . We then construct the GR(1) game structure GP = ⟨V, I,O, �a, �p, �a, �p,�⟩ as
follows:

• V = X ∪ Y ∪ Z , I = Y , O = X ∪ Z;
• 𝜃a = ⊤ ; �p is a formula satisfied by an assignment s ∈ 2V iff s ∣Z= s0;
• 𝜂a = ⊤ ; �p is a formula satisfied by assignments s ∈ 2V and s� ∈ 2V

� iff
�(s ∣Z, s

� ∣X�∪Y�) = s� ∣Z� , s� ∣Z�∈ T �;
• � = �e

GR(1)
.

In the game GP , the environment takes the role of protagonist, and the agent of antagonist.
States in the game are given by assignments of X ∪ Y ∪ Z , where the X and Y components
represent respectively the last assignment of the environment and agent variables chosen
by the players, and the Z component represent the current state of Aag . The agent first
chooses the Y component of the next state. There is no restriction on what it can be, so
𝜃a = 𝜂a = ⊤ . Then, the environment chooses the X component, and based on the chosen
assignments assigns the Z variables as well. �p and �p enforce that the assignment to the Z
variables is consistent with Aag , and �p also enforces that the safety condition Safe(T �) is
not violated. Note that a play of GP , given by ���� = �0�1 … ∈ (2V)� , corresponds to the
run r = (�0 ∣Z)(�1 ∣Z)(�2 ∣Z)… of Aag on trace (�1 ∣X∪Y)(�2 ∣X∪Y)… . Since �0 satisfies �p ,
�0 ∣Z= s0 , and since every (�i, �i+1) satisfy �p , �(�i ∣Z, �i+1 ∣X∪Y) = �i+1 ∣Z . Therefore, r is a
valid run for Aag.

Given a play ���� of GP , there are two ways the environment can lose in ���� . The first is
by being unable to pick an assignment that satisfies �p . Since the transition relation � of Aag
is total, this can only happen if s ∣Z∉ T � , meaning that Aag rejects a run visiting s ∣Z . The
other is by failing to satisfy �e

GR(1)
 . These correspond to the two ways that the specification

can be satisfied: by satisfying �a
task

 or by violating the GR(1) environment specification.
Therefore, a play satisfies the specification iff it is losing for the protagonist of GP (i.e, the
environment) and thus wining for the antagonist (i.e., the agent).

3.1.2 Correctness

The correctness of the reduction described above is illustrated by the following theorem.

Theorem 1 P = ⟨X,Y,�e
GR(1)

,�a
task

⟩ is realizable iff the antagonist has a winning strategy
in the GR(1) game GP.

Proof Let Aag = (2X∪Y, S, s0, �, Safe(T �)) be the constructed DA of P . We now prove the
theorem in two directions.

←∶ If the antagonist has a winning strategy �a in GP , then every play �0, �1,… ∈ (2V)�
that is consistent with �a is an antagonist winning play. That is to say, either of the follow-
ing holds:

146 Formal Methods in System Design (2022) 61:139–163

1 3

• protagonist’s goal is violated, such that �e
GR(1)

 does not hold on this play. There-
fore, ignoring the initial state of �0 , the corresponding sequence (�1 ∣X∪Y),
(�2 ∣X∪Y),… ∈ (2{X∪Y})� violates �e

GR(1)
 . Thus �e

GR(1)
→ �a

task
 holds.

• There exists k, such that the protagonist’s transition constraint �p is violated, thus
�(�k ∣Z, �k+1 ∣X�∪Y�) ∉ T � . That is to say, the finite trace (�1 ∣X∪Y), (�2 ∣X∪Y),…(�k+1 ∣X∪Y)
satisfies �a

task
 , then �e

GR(1)
→ �a

task
 holds.

→∶ If P is realizable, then the agent has a winning strategy �ag . So for every trace
�0,�1,… ∈ (2X∪Y)� that is consistent with �ag , either of the following holds:

• �e
GR(1)

 is violated, therefore, starting from the initial state �0 , following �ag , the antago-
nist is able to force the corresponding play �0, �1, �2 … ∈ (2V)� to violate the protago-
nist’s goal. Thus this play is winning for the antagonist.

• There exists k such that 𝜋 = 𝜋0,𝜋1,…𝜋k ⊧ 𝜑a
task

 . Therefore, the corresponding run of �
on Aag ends in a state ∉ T � . That is to say, in the corresponding play � , the antagonist
is able to force the protagonist to violate its transition constraint �p , by having the move
from �k to �k+1 . Thus this play is winning for the antagonist.

 ◻

3.1.3 Complexity

We now discuss the computational properties of the synthesis algorithm described above.

Theorem 2 The algorithm described above algorithm solves the synthesis problem
P = (X,Y,�e

GR(1)
,�a

task
) in 2exptime (the problem is indeed 2exptime-complete).

Proof We first prove that the problem is 2expTime. Specifically, building the correspond-
ing DA with reachability condition for �a

task
 takes doubly exponential time in the size of

�a
task

 [8]. This allows us to exploit subset construction and minimization rather than Büchi
determinization, making it more scalable in practice, as for LTL f synthesis. The comple-
mentation takes linear time in the size of the automaton. Finally, building the GR(1) game
takes linear time in the size of the automaton and solving the corresponding GR(1) game is
quadratic in the size of the game [5].

The hardness is immediate from 2expTime-completeness of LTL f synthesis itself [8].
Notice that as a special case of our problem, we have standard LTL f synthesis by consid-
ering trivially Env to be true. ◻

4 Introducing safety conditions

Next we introduce safety conditions into the framework. Safety conditions are proper-
ties that assert that the behaviors of the environment or the agent always remain within
some allowed boundaries. A notable example of safety conditions for the environment
are effect specifications in planning domains that describe how the environment can
react to agent actions in a given situation. A notable example of safety conditions for the
agent are action preconditions, i.e. the agent cannot violate the precondition of actions.

147Formal Methods in System Design (2022) 61:139–163

1 3

Another notable example of safety conditions for the agent comes from planning with
maintenance goals (c.f. [17]). Observe though that there is a difference between the
safety conditions on the environment and those on the agent: the first must hold forever,
while the second must hold until the agent task is terminated, i.e., the goal is fulfilled.

4.1 Expressing safety as LTL
f
 formulas

Typically, we capture general safety conditions as LTL formulas that, if invalid, are
always violated within a finite number of steps. Alternatively, we can think of them
as properties that need to hold for all prefixes of an infinite trace. Under this second
view, we can also describe the finite variant of safety by simply requiring that the safety
condition holds for all prefixes of a finite trace determined by the LTL f agent task
requirement. This view of safety conditions as properties that must hold for all prefixes
also allows us to specify them in LTL f . Indeed, all prefixes are, in fact, finite traces.
Formally, in order to use LTL f formulas to specify safety conditions, we need to define
an alternative notion of satisfaction that interprets a formula over all prefixes of a trace:

Definition 2 A (finite or infinite) trace � satisfies an LTL f formula � on all pre-
fixes, denoted 𝜋 ⊧∀ 𝜑 , if every non-empty finite prefix of � satisfies � . That is,
𝜋k = 𝜋0𝜋1,… ,𝜋k ⊧ 𝜑 , for every 0 ≤ k <∣ 𝜋 ∣.

Next we show that we can specify all possible safety conditions expressible in LTL,
i.e., all first-order (logic) safety properties [22], using LTL f on prefixes.

It is known that every safety property expressible in LTL can be expressed by a for-
mula of the form □� , where � is a pure-past formula [22]. Let us denote by pLTL
f these pure-past formulas. For every pLTL f formula � , there exists an LTL f for-
mula �′ such that every finite trace � that satisfies � (i.e., 𝜋, ���(𝜋) ⊧ 𝜑) also satisfies
�′ (i.e., 𝜋, 0 ⊧ 𝜑′) [23]. As an example of the equivalence between pLTL f and LTL f ,
consider the pLTL f formula � = ((¬p)S q) , where S stands for pure-past connective
Since. We refer to [23] for more details about pLTL f . An equivalent LTL f formula is
�� = ◊(q ∧ ∙□(¬p)) . Considering this discussion, we can prove the following result.

Theorem 3 Every first-order safety property can be expressed as an LtL f formula on all
prefixes, and viceversa.

Proof It has been shown that every first-order safety property can be expressed by a for-
mula of the form □� , where � is pLTL f (pure-past) formula [22]. From the semantics of
□� when � is a pure-past formula, 𝜋 ⊧ □𝜑 iff every non-empty prefix �′ of � satisfies � .
Moreover, for every pLTL f formula � , there exists an LTL f formula �′ such that every
finite trace � that satisfies � (i.e., 𝜋, last(𝜋) ⊧ 𝜑) also satisfies �′ (i.e., 𝜋, 0 ⊧ 𝜑′) [23]. That
is to say, 𝜋 ⊧ □𝜑 happens iff every non-empty prefix �′ satisfies �′ , which by definition
happens iff 𝜋 ⊧∀ 𝜑�.

The other direction is proved by the definition of LTL f on all prefixes. Indeed, by defi-
nition, a trace 𝜋 ⊧∀ 𝜑 if every non-empty prefix of � satisfies � . Therefore, if 𝜋 ⊧∀ 𝜑 , then
there exists a finite prefix that does not satisfy � . Then, the LTL f formula � on all prefixes
expresses a safety property. ◻

148 Formal Methods in System Design (2022) 61:139–163

1 3

Turning to safety conditions for the agent, we observe that the fact that an LTL f for-
mula holds for every prefix of a finite trace (in our case the trace satisfying the task of the
agent), is expressible in first-order logic on finite traces, and hence directly as an LTL f
formula [7]. Nevertheless, translating an LTL f formula on all prefixes to an LTL f formula
may require exponential blowups in general.

5 Adding safety into LTL f synthesis under GR(1) environment
specifications

We now enrich our synthesis framework by adding safety conditions, expressed in LTL f ,
on both the environment and the agent, following the considerations made previously. In
this setting, we are interested in solving the synthesis problem defined as follows.

Definition 3 (LTL f under GR(1) Environment Specifications, adding safety conditions)
The problem is described as a tuple P� = ⟨X,Y,Env,Goal⟩ where Env = ⟨�e

GR(1)
,�e

safe
⟩ ,

Goal = ⟨�a
task

,�a
safe

⟩ , and �e
GR(1)

 is a GR(1) formula and �a
task

 , �e
safe

 and �a
safe

 are LTL f for-
mulas. Realizability of P checks whether

Synthesis of P computes a strategy �ag if exists.

This class of synthesis problem is able to naturally reflect the structure of many reactive
systems in practice. We illustrate this with a relatively simple example representing a three-
way handshake used to establish a TCP connection.

Example 1 In this example, the server and client involved in TCP connection are consid-
ered as environment and agent, respectively. Let X = {SynAck} and Y = {Syn,Ack}.

• The server can only send a SYN-ACK message after the client has sent a SYN mes-
sage. �e

safe
= □¬Syn → □¬SynAck Note that, �e

safe
 is an LTL f formula and represents

a safety property with respect to all prefixes semantic (see Definition 2).
• If the client keeps sending a SYN message, the server eventually responds with a SYN-

ACK message. �e
GR(1)

= □◊Syn → □◊SynAck

• The client should eventually send an ACK message, establishing the TCP connection.
�a
task

= ◊Ack

• The client can only send an ACK message after the server has sent a SYN-ACK mes-
sage. �a

safe
= □¬SynAck → □¬Ack

5.1 Reduction to LTL synthesis

Notice that there is a critical difference between the safety conditions of the environment
and the ones of the agent, where we require the environment safety conditions to hold for-
ever (leading to an infinite trace), and the agent safety conditions to hold until fulfilling the
agent task (expressed as an LTL f formula such that leading to a finite trace). We start with

∃𝜎ag∀𝜎env ∶ 𝗉𝗅𝖺𝗒(𝜎ag, 𝜎env) ⊧ 𝜑e
GR(1)

and 𝗉𝗅𝖺𝗒(𝜎ag, 𝜎env) ⊧∀ 𝜑e
safe

→

∃k.𝗉𝗅𝖺𝗒k(𝜎ag, 𝜎env) ⊧ 𝜑a
task

and 𝗉𝗅𝖺𝗒k(𝜎ag, 𝜎env) ⊧∀ 𝜑a
safe

.

149Formal Methods in System Design (2022) 61:139–163

1 3

considering the case of adding environment safety conditions only, and then discuss the
case of also adding agent safety conditions.

5.1.1 Adding environment safety conditions

Suppose Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal is an LTL f formula �a
task

 , we are still able to
reduce the problem of �e

GR(1)
∧ �e

safe
→ �a

task
 to LTL synthesis. The reduction here, how-

ever, is not as intuitive as the ones studied for LTL f synthesis [21] or LTL f synthesis
under LTL environment specifications [14, 16]. This is because the safety condition �e

safe

is interpreted over all prefixes, and there is no known linear translation from this type of
formula to LTL. Nevertheless, it is still possible to reduce P = ⟨X,Y,Env,Goal⟩ to LTL
synthesis. Note that the problem can be rewritten as

where ¬�e
safe

 is interpreted using standard LTL f semantics. That is to say, an agent strat-
egy �ag ∶ (2X)∗ → 2Y realizes Goal under environment specification Env, if for every
� = �0,�1,… ∈ (2X∪Y)� consistent with �ag it is the case that

• if 𝜋 ⊧ 𝜑e
GR(1)

 , then

– 𝜋 ⊧∀ 𝜑e
safe

 is violated, or
– there exists k ≥ 0 such that 𝜋k ⊧ 𝜑a

task
.

This interpretation allows us to shift environment specification �e
safe

 to be part of the agent
goal, such that Goal is satisfied by � if 𝜋 ⊧∀ 𝜑e

safe
 is violated or there exists k ≥ 0 such that

𝜋k ⊧ 𝜑a
task

.
Regarding the first case, note that 𝜋 ⊧∀ 𝜑e

safe
 requires that every non-empty finite prefix

of � satisfies �e
safe

 . That is, 𝜋0,… ,𝜋k ⊧ 𝜑e
safe

 , for every 0 ≤ k <∣ 𝜋 ∣ . Therefore, 𝜋 ⊧∀ 𝜑e
safe

is violated iff there exists a non-empty finite prefix of � that falsifies �e

safe
 in the standard

LTL f semantics. That is, 𝜋0,… ,𝜋k ⊧ ¬𝜑e
safe

 , for some 0 ≤ k <∣ 𝜋 ∣ , which is equivalent
to 𝜋 ⊧ ¬𝜑e

safe
 in standard LTL f semantics. Therefore, Goal is satisfied by � if there exists

k ≥ 0 such that 𝜋k ⊧ (¬𝜑e
safe

) ∨ 𝜑a
task

.
Consequently, the original problem of Goal under environment specification Env is real-

ized by agent strategy �ag ∶ (2X)∗ → 2Y , if for every � = �0,�1,… ∈ (2X∪Y)� consistent
with �ag it is the case that

• if 𝜋 ⊧ 𝜑e
GR(1)

 , then
• there exists k ≥ 0 such that 𝜋k ⊧ (¬𝜑e

safe
) ∨ 𝜑a

task

Since �e
GR(1)

 is an LTL formula, this is a standard problem of LTL f synthesis under
LTL environment specifications. Therefore, following the reduction in [14, 16],
consider synthesis problem P = ⟨X,Y,Env,Goal⟩ , where Env = ⟨�e

GR(1)
,�e

safe
⟩

and Goal is �a
task

 , we are able to reduce it to solving the LTL synthesis problem
⟨X,Y ∪ {alive},�e

GR(1)
→ LTL((¬�e

safe
) ∨ �a

task
)⟩ . The operation of LTL(�) takes an LTL f

formula � as input, applies the LTL f -to-LTL translation introduced in [7], and returns the
corresponding LTL formula � , that is equa-satisfiable to � . Moreover, proposition alive is
introduced by LTL f -to-LTL translation and assigned as agent variable.

The following theorem guarantees the correctness of this reduction.

�e
GR(1)

→ (¬�e
safe

∨ �a
task

)

150 Formal Methods in System Design (2022) 61:139–163

1 3

Theorem 4 Let P = ⟨X,Y,Env,Goal⟩ , where Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal is �a
task

 , be
the defined synthesis problem, P� = ⟨X,Y ∪ {alive},�e

GR(1)
→ LTL((¬�e

safe
) ∨ �a

task
)⟩ be the

reduced LtL synthesis problem. We have P is realizable if and only if P′ is realizable.

Proof We prove the two directions separately.

• ←∶ Since P′ is realizable with respect to ⟨X,Y ∪ {alive}⟩ , there exists a winning strat-
egy ��

ag
∶ (2X)∗ → 2Y∪{alive} such that every trace �′ that is consistent with �′

ag
 satisfies

¬�e
GR(1)

∨ LTL((¬�e
safe

) ∨ �a
task

) . Therefore, one of the following conditions holds for �′:

– ¬�e
GR(1)

 is true, and therefore the environment specification �e
GR(1)

 is violated. �′ thus
realizes P by violating environment specification �e

GR(1)
.

– LTL((¬�e
safe

) ∨ �a
task

) is true, and therefore there exists a position k such that either
𝜋�
0
,… ,𝜋�

k
⊧ ¬𝜑e

safe
 or 𝜋�

0
,… ,𝜋�

k
⊧ 𝜑a

task
 . The former happens, then environment

specification �e
safe

 is violated, and �′ thus realizes P by violating environment speci-
fication �e

safe
 . The latter happens when agent task �a

task
 is accomplished, and �′ thus

realizes P.

 Finally, in order to obtain the winning strategy �ag , we have �ag(�) = ��
ag
(�) ∣Y ,

where � ∈ (2X)∗.
• →∶ Since P is realizable, there exists a winning strategy �ag ∶ (2X)∗ → 2Y such that

every trace � that is consistent with �ag realizes �a
task

 under environment specification
Env. Therefore, one of the following conditions holds:

– The environment behaves in a way that violates �e
GR(1)

 , in which case environ-
ment specification �e

GR(1)
 does not hold. Therefore, � realizes P′ by satisfying

�e
GR(1)

→ LTL((¬�e
safe

) ∨ �a
task

).
– The environment behaves such as violating �e

safe
 , in which case environment

specification �e
safe

 does not hold. That is to say, there exists a position k such that
𝜋0,… ,𝜋k ⊧ ¬𝜑e

safe
 . Since alive is assigned as an agent variable, we can construct �′

such that ��
i
= �i ∪ {alive} for 0 ≤ i ≤ k and ��

i
= �i for i > k . Thus, we have �′ such

that 𝜋� ⊧ LTL(¬𝜑e
safe

) . Therefore, 𝜋� ⊧ 𝜑e
GR(1)

→ LTL((¬𝜑e
safe

) ∨ 𝜑a
task

) by satisfying
the right side of the implication LTL((¬�e

safe
) ∨ �a

task
).

– Goal is accomplished, and therefore �a
task

 holds. That is to say, there exists k such
that 𝜋k ⊧ 𝜑a

task
 . We again construct �′ similarly as above, and 𝜋� ⊧ LTL(𝜑a

task
) holds.

Therefore, 𝜋� ⊧ 𝜑e
GR(1)

→ LTL((¬𝜑e
safe

) ∨ 𝜑a
task

) by satisfying the right side of the
implication LTL((¬�e

safe
) ∨ �a

task
).

 Finally, we obtain the agent winning strategy as follows. Given k the position in which
LTL((¬�e

safe
) ∨ �a

task
) is satisfied, we have that ��

ag
(X0,… ,Xi) = �ag(X0,… ,Xi) ∪ {alive}

for 0 ≤ i ≤ k , and ��
ag
(X0,… ,Xi) = �ag(X0,… ,Xi) , for i > k.

 ◻

5.1.2 Adding environment and agent safety conditions

We now have Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , where �a
safe

 is expressed in
LTL f on all prefixes. As mentioned above, the agent safety condition requires that the
agent remains in desired boundaries until fulfilling the task. In this case, there is no known
linear translation from an arbitrary �a

safe
 directly to LTL f or LTL. However, later in the

151Formal Methods in System Design (2022) 61:139–163

1 3

experiments, we show that for specific �a
safe

 formulas, one can still obtain an equivalent
LTL f formula � by analyzing the properties specified by �a

safe
 . Let P = ⟨X,Y,Env,Goal⟩ ,

where Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , be the defined synthesis problem.
Suppose there is an LTL f formula � that is equivalent to �a

safe
 , we are able to reduce the

original problem to P̂ = ⟨X,Y,Env, Ĝoal⟩ , where Env = ⟨�e
GR(1)

,�e
safe

⟩ , Ĝoal = ⟨�̂a
task

⟩ ,
and �̂a

task
= �a

task
∧ � . This reduction allows us to solve P by applying the reduction from

P̂ to LTL synthesis described in Sect. 5.1.1.

5.2 Reduction to GR(1) game

We now show that the synthesis problem P′ can be reduced into a GR(1) game GP′ , analo-
gously to the construction of GP in Sect. 3. To solve this problem, the first thing to note is
that �a

task
∧ �a

safe
 can be represented by a DA with reachability-safety condition. As we will

show later in this section, this DA can then be reduced into one with a pure reachability
condition. Now, since the environment’s goal is to satisfy �e

GR(1)
∧ �e

safe
∧ ¬(�a

task
∧ �a

safe
) ,

then we can reduce P′ to solving a GR(1) game whose game arena is the product of the DA
for �e

safe
 with safety condition and the complement of the DA for �a

task
∧ �a

safe
 with reach-

ability condition, i.e. a DA with safety condition. Note that in what follows, we consider
Σ = 2X∪Y.

To solve the synthesis problem P′ we proceed as follows:

1. Build the DA Aa
t
= (Σ, S1, s

0
1
, �1, Reach(T1)) of �a

task
 [8].

2. Build the DA Aa
s
= (Σ, S2, s

0
2
, �2, Safe(T2 ∪ {s0

2
})) that accepts a trace � iff 𝜋 ⊧∀ 𝜑a

safe
 (see

Sect. 6.3.1).
3. T a k e t h e b o u n d e d i n t e r s e c t i o n o f Aa

t
 a n d Aa

s
 i n t o

Aa
t∧s

= (Σ, S1 × S2, (s
0
1
, s0

2
), ��, Reach-Safe(T1, T2 ∪ {s0

2
}) . Note that Aa

t∧s
 accepts a trace

� iff there exists k ≥ 0 such that 𝜋k ⊧ 𝜑a
task

 and 𝜋k ⊧∀ 𝜑a
safe

.
4. Reduce Aa

t∧s
 to Aag = (Σ, S1 × S2, (s

0
1
, s0

2
), ��, Reach(T)) , as described later in this section.

We have that L(Aa
t∧s
) = L(Aag).

5. Complement Aag into Aag = (Σ, S1 × S2, (s01, s
0
2
), ��, Safe(T �)) with T � = (S1 × S2)⧵T .

6. Build the DA AEnv = (Σ,Q, q0, �
e, Safe(R)) that accepts a trace � iff 𝜋 ⊧∀ 𝜑a

safe
.

7. Intersect Aag and AEnv into a DA B = (Σ, S1 × S2 × Q, (s0
1
, s0

2
, q0), �, Safe(T

� × R)) . Note
that B accepts exactly the safe prefixes for the environment.

8. Define a GR(1) game GP′ with the environment as the protagonist, where the arena is
given by B and the winning condition is given by �e

GR(1)
 (see Sect. 3).

9. Solve this game for the antagonist, i.e. the agent.

We now detail the construction at Step 4 above. Let A = (Σ, S, s0, �, �) be a DA with a
reachability-safety condition � = Reach-Safe(T1, T2) . We describe a reduction to a
A� = (Σ, S, s0, �

�, ��) with a reachability condition �� = Reach(T) such that L(A�) = L(A) .
We define the transition relation of A′ as follows:

Intuitively, the only change we make is to turn all non-safe states (states not in T2) into sink
states. We then define the reachability condition as �� = Reach(T1 ∩ T2) . Intuitively, we

��(s, �) =

{
�(s, �) if s ∈ T2
s if s ∉ T2

152 Formal Methods in System Design (2022) 61:139–163

1 3

want to reach a goal state (a state in T1) that is also safe (i.e., it is in T2). The two automata
are indeed equivalent:

Lemma 5 Let A and A′ be as above, then L(A�) = L(A).

Proof (⊇) Assume � = �0�1 … ∈ L(A) . Then, the run r = s0s1s2 … = A(�) has a prefix
rk that ends in T1 and for which every state visited (including the last one) is in T2 . Let
r� = A�(�) be the corresponding run in A′ . We prove that (r�)k = rk and (r�)k satisfies the
reachability condition �′.

To prove that (r�)k = rk , note that both start at s0 and that every state si in rk is in T2 .
Therefore, ��(si,�i) = �(si,�i) for every state si in rk , by the definition of �′ . By induction,
(r�)k = rk.

To prove that (r�)k satisfies the reachability objective �′ , we need to prove that
���((r�)k) ∈ T1 ∩ T2 . But we already know that ���(rk) ∈ T1 and ���(rk) ∈ T2 . Since (r�)k = rk ,
the conclusion follows.

(⊆) Assume � = �0�1 … ∈ L(A�) . Then, the run r� = s0s1s2 … = A�(�) has a pre-
fix (r�)k that ends in T1 ∩ T2 . Let r = A(�) be the corresponding run in A . We prove that
rk = (r�)k and rk satisfies the reachability-safety condition �.

To prove both of these, we first prove that all states in (r�)k are in T2 . By the definition of
�′ , if there was a state s in (r�)k that was not in T2 , then every following state would also be
s, and therefore not in T2 . But we already know that ���((r�)k) ∈ T1 ∩ T2 , and therefore the
last state is in T2 . Thus, all states in (r�)k must be in T2.

To prove that rk = (r�)k , note that both rk and (r�)k start at s0 , and that �(si,�i) = ��(si,�i)
for every state in T2 . Since we have already proved that all states in (r�)k are in T2 , it follows
by induction that rk = (r�)k.

To prove that rk satisfies the reachability-safety condition � , note that ���((r�)k) ∈ T1 ∩ T2 ,
and therefore ���((r�)k) ∈ T1 . We have also proved that all states in (r�)k are in T2 . Since
rk = (r�)k , this is enough to prove that rk satisfies � . ◻

Hence, we are able to reduce the synthesis problem P� = ⟨X,Y,Env,Goal⟩ to a GR(1)
game as well.

5.3 Correctness

The correctness of the reduction described above is illustrated by the following theorem.

Theorem 6 P� = ⟨X,Y,Env,Goal⟩ , with Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , is
realizable iff the antagonist has a winning strategy in the GR(1) game GP′.

Proof The proof here naturally follows the proof for Theorem 1. This is because the
accomplishing Goal = ⟨�a

safe
,�a

task
⟩ can be reduced to a reachability condition �a

task

′ , as
stated by Lemma 5. Moreover, violating environment safety condition �e

safe
 can be con-

sidered as a reachability condition as well, thus we have ¬�e
safe

 . Consequently, following
the detailed constructions described in Sect. 5, we can consider the original problem of
(�e

GR(1)
∧ �e

safe
) → (�a

task
∧ �a

safe
) as �e

GR(1)
→ (¬�e

safe
∨ �a

task

�) , where (¬�e
safe

∨ �a
task

�) can
be considered as a reachability condition, as in the problem defined in Sect. 3. Therefore,
the solution of reducing to a GR(1) game remains correct. ◻

153Formal Methods in System Design (2022) 61:139–163

1 3

5.3.1 Complexity

We study the computational properties of the synthesis technique presented in this section,
and analyze the operations required in our synthesis technique in detail.

Theorem 7 The synthesis problem P = (X,Y,Env,Goal) can be solved with the algorithm
described above in 2exptime (the problem is indeed 2exptime-complete).

Proof We first prove the membership. Specifically, building the DAs for �a
task

 and �a
safe

takes doubly exponential time in the size of �a

task
 and �a

safe
 , respectively. Second, the com-

putation of the bounded intersection between the two DAs, and the reduction to a DA with
reachability condition and complementation is done in linear time in the size of the autom-
aton. Then, building the corresponding DA with safety condition for �e

safe
 takes double

exponential time in the size of �e
safe

 , complementing it and performing the intersection with
the DA built previously takes linear time in the size of the automaton. Finally, building the
GR(1) game takes linear time in the size of the automaton and solving the corresponding
GR(1) game is quadratic in the size of the game.

The hardness is immediate from 2expTime-completeness of LTL f synthesis itself [8].
Notice that as a special case of our problem, we have standard LTL f synthesis by consid-
ering trivially �e

GR(1)
 and �e

safe
 to be true. ◻

6 Experimental analysis

We implemented the approach described in Sect. 5, which subsumes the method described
in Sect. 3, in a tool called GFSynTh .1 In this section, we first describe the implementation
of GFSynTh, and then introduce two representative benchmarks that are able to capture

Fig. 1 Illustration of Finding
Nemo with n = 4 1 2

3

4

56

7

8

1 Tool (also benchmarks) available at https:// github. com/ Shufa ng- Zhu/ GFSyn th.

https://github.com/Shufang-Zhu/GFSynth

154 Formal Methods in System Design (2022) 61:139–163

1 3

commonly used sensor-based robotic tasks. An empirical evaluation is shown at the end to
show the performance of our approach.

6.1 Implementation

GFSynTh runs in three steps: automaton construction, reduction to GR(1) game, and
GR(1) game solving. In the first step, we use code from the LTL f -synthesis tool SyFT
[21] to read and parse the input and construct corresponding DAs. All DAs in GFSynTh
are symbolically represented by Binary Decision Diagrams (BDDs), as in [21], with each
explicit state represented as an assignment over a set of state variables. Therefore, each
state in the automaton for the bounded intersection of �a

safe
 and �a

task
 is a concatenation of

the state assignments from both automata. In symbolic representation, the transition func-
tion is given by a sequence of BDDs, each computing the next assignment for one of the
state variables. Analogously, the transition function in the bounded-intersection automaton
can be obtained by concatenating the transition functions from both automata. Regarding
the reachability-safety to reachability reduction, where the key part is turning all non-safe
states into sink states, consider the set of non-safe states represented by BDD Bunsafe . For
each BDD Bz in the transition function corresponding to state variable z, if the current state
is a non-safe state, we restrict Bz to return the same value as in the current state assign-
ment. Otherwise, we don’t change the value that Bz is supposed to return. This can be com-
puted as (¬Bunsafe ∧ Bz) ∨ (Bunsafe ∧ z) . The necessary BDD operations are available in the
CUDD−3.0.0 [24] BDD library. Finally, we solve the GR(1) game in the input format of
the GR(1)-synthesis tool SLuGS [25]. To solve and compute a strategy for the antagonist,
we call SLuGS using the -CounterStrategy option.

6.2 Benchmarks

For the experimental evaluation, we use two sets of benchmarks based on examples of
reactive synthesis from the literature, slightly modified to adapt them to our framework.
Both examples involve an agent navigating around an environment in order to perform a
task. In both cases, we can use a parameter n to scale the number of regions, and thus
measure how our tool performs as the size of the problem grows.

6.2.1 Finding Nemo

This example is based on the running example from [6]. The agent is a robot that moves
in a workspace consisting of a circular hallway with n sections, each of which leads to two
rooms with no other exits, adding up to 3n regions in total. Figure 1 shows an illustration
with n = 4.

The agent is searching for “Nemo”, who can move around the odd-numbered rooms.
The robot has a sensor that detects if Nemo is in the current region the robot is in, and
has a camera that it can use to record Nemo if it finds him. The input variable SenseNemo
indicates whether the sensor has detected Nemo in the current room. The sensor can also
detect if Nemo is leaving the region, which is represented by the input variable NemoLeav-
ing. The output variables R = {Hallway1,… ,Hallwayn,Room1,… ,Room2n} indicate
which region the robot is currently at. The output variable CameraOn indicates whether
the robot’s camera is turned on. We use T ⊆ R2 to denote the transition relation between

155Formal Methods in System Design (2022) 61:139–163

1 3

regions. Specifically, (r, r�) ∈ T iff the robot can move directly from region r to region r′ .
Following the room layout described above, we define T as follows:

The following are the components of the specification, and note that all the safety condi-
tions are expressed in LTL f on all prefixes:

• Nemo can only be found in the odd-numbered rooms. (environment safety condition)

• Nemo leaves a room if and only if the sensor has detected so in the previous
timestep. (environment safety condition)

• If Nemo is found in a room, then Nemo will stay in that room for at least one time
step after it is found. (environment safety condition)

• If the rooms where Nemo appears are visited infinitely often, then Nemo is found
infinitely often. (environment GR(1) condition)

• Only one region can be visited at a time. (agent safety condition)

T =
⋃

1≤i≤n

{(Hallwayi,Hallway(i−1) mod n),

(Hallwayi,Hallwayi),

(Hallwayi,Hallway(i+1) mod n),

(Hallwayi,Room2i−1),

(Hallwayi,Room2i),

(Room2i−1,Room2i−1),

(Room2i−1,Hallwayi),

(Room2i,Room2i),

(Room2i,Hallwayi)}

safe1
env

= □

((
n⋀

i=1

¬Room2i−1

)
→ ¬SenseNemo

)

safe2
env

= □((SenseNemo ∧

2n⋁

i=1

(
Roomi ∧ ◦Roomi

)
)

→ (◦SenseNemo ↔ ¬NemoLeaving))

safe3
env

= □((¬SenseNemo ∧ ◦SenseNemo∧
2n⋁

i=1

(
◦Roomi ∧ ◦◦Roomi

)
) →

◦◦SenseNemo)

GR(1)env =

(
n⋀

i=1

□◊Room2i−1

)
→ □◊SenseNemo

156 Formal Methods in System Design (2022) 61:139–163

1 3

• The robot can only move to a region that has a connection to the region it is currently
in. (agent safety condition)

• The camera should not be on if Nemo is not present to be recorded. (agent safety
condition)

• The robot should get 3 timesteps worth of footage of Nemo. (agent task)

6.2.2 Workstation resupply

This example is based on the scenario presented in [26] of a robot responsible for resup-
plying workstations in a factory with parts from a stockroom, as illustrated in Fig. 2

There are n stations that the robot needs to resupply. In order to resupply a station,
the robot must first pick up a part from the stockroom, then bring it to the workstation.
A workstation may be occupied, in which case the robot has to wait until it is vacated
before going inside. The environment must guarantee that the workstations will be

safe1
agn

= □
⋀

r∈R

(
r →

⋀

r�≠r

¬r�

)

safe2
agn

= □
⋀

r∈R

(
r →

⋁

(r,r�)∈T

∙r�

)

safe3
agn

= □(¬SenseNemo → ¬CameraOn)

taskagn = ◊(SenseNemo ∧ CameraOn∧

◦◊(SenseNemo ∧ CameraOn∧

◦◊(SenseNemo ∧ CameraOn)))

Fig. 2 Illustration of Workstation
Resupply

Stockroom

Workstation_1

Workstation_2

Workstation_3

Workstation_n

.

.

.

157Formal Methods in System Design (2022) 61:139–163

1 3

vacated infinitely often and that they won’t become occupied when the robot is already
inside.

We use a map consisting of 2n + 2 regions. The set of regions R is repre-
sented by the output variables Stockroom, Station1,… , Stationn , OutsideStockroom,
OutsideStation1,… ,OutsideStationn . We define the transition relation T as follows:

The output variables also include PickUpPart and Resupply, representing the actions that
the robot can take in the stockroom and workstations, respectively. The input variables are
Occupied1,… ,Occupiedn , which indicate if each workstation is occupied at a given point
in time.

The following are the components of the specification, and note that all the safety condi-
tions are expressed in LTL f on all prefixes:

• A station cannot become occupied after the robot is already inside. (environment safety
condition)

• Every workstation must be vacated infinitely often. (environment GR(1) condition)

• Only one region can be visited at a time. (agent safety condition)

• The robot can only move to a region that has a connection to the region it is currently
in. (agent safety condition)

T =(Stockroom,OutsideStockroom) ∪

(OutsideStockroom, Stockroom) ∪
⋃

1≤i≤n

{(Stationi,OutsideStationi),

(OutsideStationi, Stationi),

(OutsideStationi,OutsideStockroom),

(OutsideStockroom,OutsideStationi)} ∪⋃

1≤i≤n

⋃

1≤j≤n

{(OutsideStationi,OutsideStationj)} ∪

{(r, r)|r ∈ R}

safeenv =

n⋀

i=1

□((¬Occupiedi ∧ ◦Stationi) →

¬◦Occupiedi)

GR(1)env = □◊⊤ →

(
n⋀

i=1

□◊¬Occupiedi

)

safe1
ag

= □
⋀

r∈R

(
r →

⋀

r�≠r

¬r�

)

safe2
ag

= □
⋀

r∈R

(
r →

⋁

(r,r�)∈T

∙r�

)

158 Formal Methods in System Design (2022) 61:139–163

1 3

• The robot cannot be in a station if it is occupied. (agent safety condition)

• The robot needs to be inside the stockroom to pick up a part. (agent safety condition)

• The robot needs to be inside a station to resupply. (agent safety condition)

• The robot can only resupply a station if it has picked up a part since last resupplying.
Intuitively, this also requires that whenever Resupply holds, it only holds for one time
step. (agent safety condition)2

• The robot should resupply all workstations. (agent task)

6.3 Empirical evaluation

In this section, we describe in detail the techniques that allow us to compare GFSynTh
against a state-of-the-art LTL synthesis tool STRix [27], the winner of the LTL-synthesis
track of the synthesis competition SYNTCOMP 2020 [28], using it as the baseline of com-
parison to our tool. Note that since our benchmarks assume that the agent moves first,
while STRix assumes the environment moves first, we had to slightly modify the specifica-
tions by adding a ◦ before all variables controlled by the environment, a transformation that
essentially corresponds to ignoring the first move by the environment.

Consider synthesis problem P = ⟨X,Y,Env,Goal⟩ , the alternative approach of reducing
to LTL synthesis exists regarding different configurations of Env and Goal, as shown in
Sects. 3 and 5. In particular, when considering both GR(1) and environment safety condi-
tions (no agent safety conditions), there exists a linear time reduction to LTL synthesis.
However, for the case of adding also agent safety conditions, although the reduction to
LTL synthesis works, there is no naive reduction to LTL synthesis. This is because there is
no known linear translation from an arbitrary �a

safe
 directly to LTL f or LTL. Nevertheless,

in both of benchmarks Finding Nemo and Workstation Resupply, we are able to obtain an

safe3
ag

= □
n⋀

i=1

(
Occupiedi → ¬Stationi

)

safe4
ag

= □(PickUpPart → Stockroom)

safe5
ag

= □

(
Resupply →

n⋁

i=1

Stationi

)

safe6
ag

= ◊(last ∧ Resupply) →

(◊(PickUpPart∧

¬Resupply U (last ∧ Resupply)))

taskag =

n⋀

i=1

◊(Resupply ∧ Stationi)

2 We use last as a shorthand for ∙⊥ , denoting the last point in the prefix.

159Formal Methods in System Design (2022) 61:139–163

1 3

equivalent LTL f formula by analyzing the properties specified by �a
safe

 . We now elaborate
their details.

6.3.1 Reduction to LTL synthesis with proposed benchmarks

Suppose Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , where �a
safe

 is expressed in LTL f
on all prefixes. Note that in both of benchmarks Finding Nemo and Workstation Resup-
ply, �a

safe
 is a conjunction over smaller safety conditions safe∗

ag
 . Basically, safe∗

ag
 is speci-

fied in one of the following three patterns, where � denotes a propositional formula:

1. safe∗
ag

= □(�)
2. safe∗

ag
= □(� →

⋁
i ∙�i)

3. safe∗
ag

= ◊(last ∧ Resupply) → (◊(PickUpPart ∧ ¬Resupply U (last ∧ Resupply)))

We now describe the corresponding equivalent LTL f formula safe∗
ag

� that accepts the same
language as each pattern of safe∗

ag
 :

1. safe∗
ag

� = □(�) (no changes)
2. safe∗

ag
� = □(� →

⋁
i ∙�i) (no changes)

3. safe∗
ag

� = ((¬Resupply)WPickUpPart) ∧□(Resupply → (∙((¬Resupply)WPickUpPart)))

The equivalence between each pattern of safe∗
ag

 of the corresponding LTL f for-
mula safe∗

ag
� can be shown by comparing the corresponding DAs respectively. It is

worth noting that, we only consider finite safety of agent safety conditions. There-
fore, we reload the definition of DA in Sect. 2 with finite-trace interpretation. Basi-
cally, the reachability condition is reloaded as Reach(T) = {s0s1s2 … sk ∈ S∗|sk ∈ T}
requires that the run of finite trace � on D ends in T. The safety condition is reloaded as
Safe(T) = {s0s1s2 … sk|∀0 ≤ i ≤ k ∶ si ∈ T} requires that the run of finite trace � on D
only visits states in T.

We now show how to obtain a DA of an LTL f formula on all prefixes. Consider for-
mula safe∗

ag
 on all prefixes. In order to obtain a DA D such that � is accepted by D iff

𝜋 ⊧∀ safe∗
ag

 , we proceed as follows:

1. Construct the DA A = (Σ, S, s0, �, Reach(T)) such that � is accepted by A iff 𝜋 ⊧ safe∗
ag

.
2. We construct D = (Σ, S, s0, �

�, Safe(T)) based on A = (Σ, S�, s0, �, Reach(T)) as follows.
Note that a sink state is a non-accepting state that has only one outgoing edge but going
back to itself.

• S� =

{
S if there is a sink state in A

S ∪ {sink} if there is no sink state in A

• ��(s, �) =

{
sink if �(s, �) ∉ T

�(s, �) if �(s, �) ∈ T

Consider an arbitrary trace � ∈ Σ∗ . By the construction of D , � is accepted by D iff the
corresponding run of � only visits T. That is, for every 0 ≤ k <∣ 𝜋 ∣ , the corresponding run
of �0,… ,�k ends in T, and therefore 𝜋0,… ,𝜋k ⊧ 𝜑 . By definition, 𝜋 ⊧∀ safe∗

ag
.

The DA D′ of the corresponding LTL f formula safe∗
ag

� can be achieved directly using
existing LTL f -to-DA tools [21]. By checking the equivalence between the DA D and the
DA D′ , we can address the equivalence check between LTL f formula safe∗

ag
 over all pre-

fixes and LTL f formula safe∗
ag

�.

160 Formal Methods in System Design (2022) 61:139–163

1 3

We now can reduce to LTL synthesis following the subsequent steps described in
Sect. 5.1.2.

Baseline and Experiment Setup. All tests were run on a computer cluster. Each test had
exclusive access to a node with Intel(R) Xeon(R) CPU E5-2650 v2 processors running at
2.60GHz. Time out was set to two hours (7200 s).

Correctness. Our implementation was verified by comparing the results returned by
GFSynTh with those from STRix. No inconsistency encountered for the solved cases.

6.3.2 Results

We compared GFSynTh against STRix by performing an end-to-end (from specification
to winning strategy if realizable) comparison experiment over the benchmarks described
in Sect. 6.2. Comparison on both classes of benchmarks show that GFSynTh outperforms
STRix.

Figures 3 and 4 show the running time of GFSynTh and STRix on both benchmarks,
respectively. The x-axis indicates the value of the scalable parameter n for each benchmark.
The y-axis is in log scale. Results of cases on which both tools failed are not shown. For
benchmark Finding Nemo, in small cases where n ≤ 2 , there is no large gap in the time
cost. However, as n grows, the time cost of GFSynTh increases linearly, while the time cost
of STRix increases exponentially. Regarding benchmark Workstation Resupply, the expo-
nential gap is not so obvious. Nevertheless, as the benchmark grows, STRix almost always
takes around 10 times longer than GFSynTh. STRix also failed for n = 5.

1 2 3 4
#Number of sections

10−1

100

101

102

103

R
un

nn
in
g
tim

e
(s
ec
on
ds
)

Strix
GFSynth

Fig. 3 Benchmark Finding Nemo

161Formal Methods in System Design (2022) 61:139–163

1 3

7 Related work

There has been extensive studies on the problem of LTL f synthesis under environment
specifications. The paper [29] introduces environment specifications in LTL making the
observation that even if the agent goal is expressed in LTL f the environment specifications
should be expressed in LTL on infinite traces, since it is the agent and not the environment
that decides when to stop. This observation was already implicit in earlier works [9, 10] on
planning for LTL f goals (the planning domain can be considered as environment safety
specifications), indeed in FOND planning the environment fairness specification of FOND
is already on infinite traces, but [12] spells this point out in details. [12] also gives a reduc-
tion of the LTL f synthesis under environment specifications problem to LTL synthesis and
a specific technique to work with environment safety and co-safety specifications. Interest-
ingly, environment specifications were also studied in [11, 30] and then in [15] under the
perspective of seeing environment specifications as sets of environment strategies.

In [31] one of the bases of our technique was developed: create the game arena out of
the LTL f goals, and impose on that arena simple fairness and stability conditions, both
subsumed by GR(1). Note, however, that in general the arena built from the LTL f for-
mula must be combined with the arena coming from the environment specifications, and
if expressed in LTL this will lead to solving a parity game, but above all the construction
of the arena for the LTL part will require determinization of Büchi automata for which we
have no scalable algorithms. This is spelled out in [16].

In this paper, we consider as environment specifications only safety conditions and
GR(1) formulas, again avoiding Büchi determinization. GR(1) has been used before in syn-
thesis/planning to specify temporally extended goal on infinite traces, e.g., in [32], or in
fact much earlier in [29, 33]. Here instead we are using GR(1) for the environment specifi-
cations, while keeping the goal on finite traces in LTL f . In this way we take advantage of
the two most successful cases in synthesis, namely GR(1) and LTL f .

1 2 3 4 5

#Number of stations

10−1

100

101

102

103

104

R
un

nn
in
g
tim

e
(s
ec
on
ds
)

Strix
GFSynth

Fig. 4 Benchmark Workstation Resupply

162 Formal Methods in System Design (2022) 61:139–163

1 3

8 Conclusion and future work

In this paper, we brought together the two most successful stories in LTL synthesis, GR(1)
and LTL f , obtaining a form of reactive synthesis which is highly expressive yet still scal-
able. More specifically, we studied the problem in the form of LTL f synthesis under
environment specifications, where the environment specification is expressed as a GR(1)
formula, and the agent task is specified as an LTL f formula. Our approach bases on a
reduction to GR(1) game, where the game arena only derivates from the LTL f part, and
the game winning condition comes from by the GR(1) part. In particular, the crux of the
reduction is that we aim to obtaining a winning strategy of the antagonist of the GR(1)
game, which, in fact, leads to solving a dual GR(1) game. Moreover, we enriched the prob-
lem setting by allowing safety conditions on both players. To do so, we first presented a
different way of specifying safety properties via LTL f formulas, which is able to cover
all first-order expressible safety properties, and provide a natural way of expressing safety
properties. We showed that, with additional safety conditions on both players, our synthesis
approach of reducing to GR(1) game stills works. Finally, we integrated our approach in a
tool GFSynTh, and proved its efficiency through empirical evaluations.

Looking deeper into GFSynTh, we observed that on those cases where GFSynTh fails,
the automata can not be constructed by the mOnA library employed by SyFT for automata
construction from LTL f . There have been various studies on LTL f -to-automata transla-
tion. Possibly the most successful attempt is the compositional approach presented in [34,
35]. For future work, we will take this approach into account to improve GFSynTh.

Acknowledgements This work is partially supported by the ERC Advanced Grant WhiteMech (No.
834228), the EU ICT-48 2020 project TAILOR (No. 952215), NSF grants IIS-1527668, CCF-1704883, IIS-
1830549, and an award from the Maryland Procurement Office. We thank the anonymous reviewer for valu-
able feedback on this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Finkbeiner B (2016) Synthesis of reactive systems. Depend Softw Syst Eng 45:72–98
 2. Ehlers R, Lafortune S, Tripakis S, Vardi MY (2017) Supervisory control and reactive synthesis: a

comparative introduction. Discrete Event Dyn Syst 27(2):209–260
 3. Pnueli A, Rosner R (1989) On the synthesis of a reactive module. In: POPL, pp 179–190
 4. Kupferman O (2012) Recent challenges and ideas in temporal synthesis. In: SOFSEM 2012, pp 88–98
 5. Bloem R, Jobstmann B, Piterman N, Pnueli A, Sa’ar Y (2012) Synthesis of Reactive(1) designs. J

Comput Syst Sci 78:911–938
 6. Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-logic-based reactive mission and motion

planning. IEEE Trans Robot 25(6):1370–1381
 7. De Giacomo G, Vardi MY (2013) Linear temporal logic and linear dynamic logic on finite traces. In:

IJCAI, pp 854–860
 8. De Giacomo G, Vardi MY (2015) Synthesis for LTL and LDL on finite traces. In: IJCAI

http://creativecommons.org/licenses/by/4.0/

163Formal Methods in System Design (2022) 61:139–163

1 3

 9. Camacho A, Triantafillou E, Muise C, Baier JA, McIlraith S (2017) Non-deterministic planning with
temporally extended goals: LTL over finite and infinite traces. In: AAAI, pp 3716–3724

 10. De Giacomo G, Rubin S (2018) Automata-theoretic foundations of fond planning for LTL f /LDL f
goals. In: IJCAI, pp 4729–4735

 11. Aminof B, Giacomo GD, Murano A, Rubin S (2018) Planning and synthesis under assumptions.
CoRR

 12. Camacho A, Bienvenu M, McIlraith SA (2018) Finite LTL synthesis with environment assumptions
and quality measures. In: KR, pp 454–463

 13. He K, Wells AM, Kavraki LE, Vardi MY (2019) Efficient symbolic reactive synthesis for finite-hori-
zon tasks. In: ICRA, pp 8993–8999

 14. Zhu S, Giacomo GD, Pu G, Vardi MY (2020) LTL f synthesis with fairness and stability assumptions.
In: AAAI, pp 3088–3095

 15. Aminof B, De Giacomo G, Murano A, Rubin S (2019) Planning under LTL environment specifica-
tions. In: ICAPS, pp 31–39

 16. De Giacomo G, Di Stasio A, Vardi MY, Zhu S (2020) Two-stage technique for LTL f synthesis under
LTL assumptions. In: KR, pp 304–314

 17. Ghallab M, Nau DS, Traverso P (2004) Automated planning - theory and practice
 18. De Giacomo G, Di Stasio A, Tabajara LM, Vardi MY, Zhu S (2021) Finite-trace and generalized-

reactivity specifications in temporal synthesis. In: IJCAI, pp 1852–1858
 19. Pnueli A (1977) The temporal logic of programs. In: FOCS, pp 46–57
 20. Aminof B, De Giacomo G, Murano A, Rubin S (2019) Planning under LTL environment specifica-

tions. In: ICAPS, pp 31–39
 21. Zhu S, Tabajara LM, Li J, Pu G, Vardi MY (2017) Symbolic LTL f synthesis. In: IJCAI, pp 1362–1369
 22. Lichtenstein O, Pnueli A, Zuck LD (1985) The glory of the past. In: Logic of programs, pp 196–218
 23. De Giacomo G, Di Stasio A, Fuggitti F, Rubin S (2020) Pure-past linear temporal and dynamic logic

on finite traces. In: IJCAI 2020, pp 4959–4965
 24. Somenzi F (2016) CUDD: CU decision diagram package 3.0.0. University of Colorado at Boulder
 25. Ehlers R, Raman V (2016) Slugs: extensible GR(1) synthesis, CAV. Lect Notes Comput Sci

9780:333–339
 26. DeCastro JA, Ehlers R, Rungger M, Balkan A, Tabuada P, Kress-Gazit H (2014) Dynamics-based

reactive synthesis and automated revisions for high-level robot control. CoRR arXiv: 1410. 6375
 27. Meyer PJ, Sickert S, Luttenberger M (2018) Strix: explicit reactive synthesis strikes back! In: CAV, pp

578–586
 28. Jacobs S, Perez GA (2020) 7th reactive synthesis competition: SYNTCOMP 2020. http:// www. syntc

omp. org/ syntc omp- 2020- resul ts/
 29. Sardiña S, Giacomo GD (2008) Realizing multiple autonomous agents through scheduling of shared

devices. In: ICAPS 2008, pp 304–312
 30. Aminof B, Giacomo GD, Murano A, Rubin S (2018) Synthesis under assumptions. In: KR, pp

615–616
 31. Zhu S, De Giacomo G, Pu G, Vardi M (2020) LTL f synthesis with fairness and stability assumptions.

In: AAAI, pp 3088–3095
 32. Camacho A, Bienvenu M, McIlraith SA (2019) Towards a unified view of AI planning and reactive

synthesis. In: ICAPS, pp 58–67
 33. De Giacomo G, Felli P, Patrizi F, Sardiña S (2010) Two-player game structures for generalized plan-

ning and agent composition. In: AAAI, pp 297–302
 34. Bansal S, Li Y, Tabajara LM, Vardi MY (2020) Hybrid compositional reasoning for reactive synthesis

from finite-horizon specifications. In: AAAI, pp 9766–9774
 35. De Giacomo G, Favorito M (2021) Compositional approach to translate LTL f /LDL f into deterministic

finite automata. In: ICAPS 2021, pp 122–130

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1410.6375
http://www.syntcomp.org/syntcomp-2020-results/
http://www.syntcomp.org/syntcomp-2020-results/

	Finite-trace and generalized-reactivity specifications in temporal synthesis
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 LTL and LTL
	2.1.1 Generalized reactivity(1) formulas

	2.2 Deterministic automata
	2.3 GR(1) games
	2.4 LTL synthesis under environment specifications

	3 LTL synthesis under GR(1) environment specifications
	3.1 Reduction to GR(1) game
	3.1.1 Building the GR(1) game
	3.1.2 Correctness
	3.1.3 Complexity

	4 Introducing safety conditions
	4.1 Expressing safety as LTL formulas

	5 Adding safety into LTL synthesis under GR(1) environment specifications
	5.1 Reduction to LTL synthesis
	5.1.1 Adding environment safety conditions
	5.1.2 Adding environment and agent safety conditions

	5.2 Reduction to GR(1) game
	5.3 Correctness
	5.3.1 Complexity

	6 Experimental analysis
	6.1 Implementation
	6.2 Benchmarks
	6.2.1 Finding Nemo
	6.2.2 Workstation resupply

	6.3 Empirical evaluation
	6.3.1 Reduction to LTL synthesis with proposed benchmarks
	6.3.2 Results

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

