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Abstract
Parity games are infinite-round two-player games played on directed graphs whose nodes
are labeled with priorities. The winner of a play is determined by the smallest priority (even
or odd) that is encountered infinitely often along the play. In the last two decades, several
algorithms for solving parity games have been proposed and implemented in PGSolver,
a platform written in OCaml. PGSolver includes the Zielonka’s recursive algorithm (RE,
for short) which is known to be the best performing one over random games. Notably,
several attempts have been carried out with the aim of improving the performance of RE
in PGSolver, but with small advances in practice. In this work, we deeply revisit the
implementation of RE by dealing with the use of specific data structures and programming
languages such as Scala, Java, C++, and Go. Our empirical evaluation shows that these
choices are successful, gaining up to three orders of magnitude in running time over the
classic version of the algorithm implemented in PGSolver.

Keywords Formal verification · Zielonka Recursive algorithm · PGSolver

Mathematics Subject Classification (2010) 68Q60

1 Introduction

Parity games [22, 52] are abstract infinite-round games that represent a powerful mathemat-
ical framework to address fundamental questions in computer science. They are intimately
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related to other infinite-round games, such as mean and discounted payoff, stochastic, and
multi-agent games [2, 9, 12–15, 38].

In the basic setting, parity games are two-player, turn-based, played on directed graphs
whose nodes are labeled with priorities (also called colors) and players have perfect infor-
mation about the adversary moves. The two players, Player 0 and Player 1, take turns
moving a token along the edges of the graph starting from a designated initial node. Thus,
a play induces an infinite path and Player 0 wins the play if the smallest priority visited
infinitely often is even; otherwise, Player 1 wins the play. The problem of deciding whether
Player 1 has a winning strategy (i.e., can induce a winning play) in a given parity game is
known to be in UPTIME ∩ CoUPTIME [29]; whether a polynomial time solution exists is a
long-standing open question [51].

Several algorithms for solving parity games have been proposed in the last two decades,
aiming to tighten the known complexity bounds for the problem, as well as come out with
solutions that work well in practice. Among the latter, we recall the recursive algorithm
(RE) proposed by Zielonka [52], the Jurdziński’s small-progress measures algorithm [30]
(SPM), the strategy-improvement algorithm by Jurdziński et al. [50], the (sub-exponential)
algorithm by Jurdzińki et al. [32], the big-step algorithm by Schewe [44], the APT algorithm
by Di Stasio et al. [20, 21].

Table 1 summarizes the classic algorithms along with their complexity, where n, e, and
c denote the number of nodes, edges, and priorities, respectively.

Recently, Calude et al. [11] have given a major breakthrough providing a quasi-
polynomial time algorithm for solving parity games that runs in time O(n�log(c)+6�).
Previously, the best known algorithm for parity games was DD which could solve parity
games in O(n

√
n), so this new result represents a significant advance in the understanding

of parity games. This new approach is based on providing a compact witness that can be
used to decide whether Player 0 wins a play. Traditionally, one must store the entire history
of a play, so that when the players construct a cycle, we can easily find the largest prior-
ity on that cycle. The key observation in [11] is that a witness of poly-logarithmic size can
be used instead. This allows to simulate a parity game on an alternating Turing machine
that uses poly-logarithmic space, which leads to a deterministic algorithm that uses quasi-
polynomial time and space. This new result has already inspired follow-up works [10, 18,
23, 31, 37]. However, benchmarks in the literature have demonstrated that both on random
games and real examples the quasi-polynomial is not the best performing one.

In formal system design [16, 17, 35, 43], parity games arise as a natural evaluation
machinery for the automatic synthesis and verification of distributed and reactive systems [1, 36,
46], as they allow to express liveness and safety properties in a very elegant and powerful
way [40]. Specifically, the model-checking question, in case the specification is given as a

Table 1 Parity algorithms along
with their computational
complexities

Algorithm Computational complexity

Recursive (RE) [52] O(e · nc)

Small Progress Measures (SPM) [30] O(c · e · ( n
c
)

c
2 )

Strategy Improvement (SI) [50] O(2e · n · e)

Dominion Decomposition (DD) [32] O(n
√

n)

Big Step (SPM) [44] O(e · n
1
3 c)

APT [20] O(nc)
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μ-calculus formula [34], can be rephrased, in linear-time, as a parity game [22]. So, a parity
game solver can be used as a model checker for a μ-calculus specification (and vice-versa),
as well as for fragments such as CTL, CTL�, and the like.

All algorithms mentioned in Table 1 (and several others) have been implemented in
PGSolver, written in OCaml by Oliver Friedman and Martin Lange [24, 25], a collection
of tools to solve, benchmark and generate parity games, and extensively investigated experi-
mentally. Noteworthy, PGSolver has allowed to declare RE as the best performing to solve
parity games in practice, as well as explore some optimizations such as decomposition into
strongly connect components, removal of self-cycles on nodes, and priority compression [3,
30].

Despite the enormous interest in finding efficient algorithms for solving parity games,
less emphasis has been put on how to improve their running time choosing efficient data
structures or different programming languages for their implementation. Mainly, the scien-
tific community has relied on OCaml as the best performing programming language to be
used in this setting and PGSolver as an optimal platform to solve parity games. How-
ever, starting from graphs with a few thousand of nodes, even using RE, PGSolver would
require minutes to solve the given game, especially on dense graphs. Therefore, a natural
question that arises is whether there exists a way to improve the running time of PGSolver.
Focusing the attention on RE, we identify two research directions to work on, which specifi-
cally involve: the way it is implemented, and the chosen programming language. As a result
we introduce a slightly improved version of the RE along with an optimized implementa-
tion in OCaml (and then in PGSolver) and Scala programming languages. Scala [41, 42]
is a high-level language, proven to be well performing [28], with object and functional ori-
ented features, that recently has come to the fore with useful applications in several fields
of computer science including formal verification [5]. The choice to investigate first on
Scala, among all programming languages, is substantiated as it shares several modern pro-
gramming language aspects. Among the others, Scala carries functional and object-oriented
features, compiles its programs for the JVM, is interoperable with Java and a high-level lan-
guage with a concise and clear syntax, and the results we obtain strongly support our choice
and allow to declare Scala as a first winner over OCaml, in terms of performance.

In more details, our investigation starts by looking at the main steps of RE and how they
are implemented in PGSolver. Overall, we observe that RE requires to decompose the
game into multiple smaller games, which is done by computing, in every recursive call,
the difference between the game and a given set of nodes. This operation turns out to be
quite expensive as it requires to generate a new game at each iteration as well as building
the transpose of the game graph. In order to reduce the running-time complexity caused by
these graph operations, we exploit a new implementation by introducing a requirement for
immutability of the game ensuring that every recursive call uses the game without applying
any modification to its nodes. Therefore, to construct the sub-games in the recursive calls,
we keep track efficiently of each node that is going to be removed from the graph. Therefore,
this improved version guarantees that the original game remains immutable tracking the
removed nodes in every subsequent call and checking, in constant time, whether a node
needs to be excluded or not. Finally, we also improve other parts of the algorithm, such as
finding the maximal priority and obtaining all nodes with a given priority.

In our analysis, we first consider and compare four implementations of RE. The Classic
(C) and Improved (I) Recursive (R) algorithms implemented in Scala (S) and OCaml (O).
By means of benchmarks, we show that IRO gains an order of magnitude against CRO, as
well as CRS against CRO. Remarkably, we show that these improvements are cumulative
by proving that IRS gains two order of magnitude against CRO.
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The proposed improvements turn out to be very successful in practice and the bench-
marks we have run show this evidence. But, to have a complete overview we continue our
investigation by also exploring these improvements in different programming languages
such as Java, C++, and Go, and comparing their performance among them, as well as with
Scala. The tool and more details can be found at https://github.com/vincepri/SPGSolver.

The combination of the improvements described above along with the use of these mod-
ern programming languages allows us to considerably gain in running time. We evaluated
our implementations over both randomly generated games and real world benchmarks such
as model checking problems. Our main finding is that C++ is the best performing one in
both cases. Precisely, the experiments ran over random games show that the C++ imple-
mentation is three orders of magnitude faster than the classic version of the Zielonka’s
algorithm implemented in PGSolver, and with respect the improved version of RE, C++
is faster than Scala and Go by a factor of 4 and 1.5, respectively. They also report that
Java and Scala have a very similar behavior. This trend is followed in the real world
benchmarks, though they indicate more nuanced relationship between the programming
languages. Overall, we have that Go running time, besides to be of the same order, tends
to be closer of the C++ one. We take this as an interesting aspect to take into account.
Indeed, although Go is a young programming language, it provides a high performance,
super efficient concurrency handling like Java and fun to code like Python/Perl. Therefore,
our results suggests the need to continue the investigation in evaluating the implementa-
tion of algorithms for solving parity games with the use of modern programming languages
as Go.

Related works Several efforts in speeding up the solving process was previously attempted.
In [27], a GPU (Graphics Processing Units) is used to solve parity games. A GPU can excel
at problems that can be easily split into a large number of parallels tasks. A modern GPU
consists of several multi-processors which act independently of each other. Hoffmann and
Luttenberger [27] proposes a GPU-enabled implementation for solving parity games such
as SPM, RE and a variant of SI. In particular, for storing the graph and the node information
multiple arrays are used, and before starting the actual solving process the implementation
makes use of multiple preprocessing steps. Another approach to this problem was inves-
tigated in [4] where it is implemented, on a multi-core architecture, a parallel version of
the attractor algorithm, that is the main kernel of RE, implementing the parallel algorithm
using Java and comparing it with its sequential implementation in the same language, and
the widely used one in PGSolver. Verver [49] provides an improved version of RE by
recording the number of remaining “escaping” edges for each vertex during the attractor
computation. This accomplished by simply using an extra integer per node.

This work, based on the preliminary results in [19], has been the first to exploit the use
of efficient coding and new programming languages to improve the use of RE in practice.
Noteworthy, it has inspired the development of new and efficient tools such as Oink by Tom
van Dijk [48]. Oink contains an improved version of RE, SPM, and SI, the quasi-polynomial
algorithms, APT, the priority promotion [7], and the tangle algorithm [47]. It also provides
a multi-core implementation of SPM and RE, inspired by the results in [4].

Outline The sequel of the paper is structured as follows. In Section 1, we give some prelim-
inary concepts about parity games. In Section 2, we describe RE and how it is implemented
in PGSolver. In Section 3, we introduce our improved version of RE, and provide its
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implementation in OCaml. In Section 4, we describe the Scala implementation of RE. In
Section 5, we analyze the benchmarks of RE and the improved version of RE in OCaml and
Scala. In Section 6, we explore the improved version of RE along different programming
languages, and we analyze their performance by means of benchmarks.

2 Preliminaries

In this section, we briefly recall some basic concepts regarding parity games. As notation,
the positive integers are denoted by N, and N0 = N∪{0}. A Parity Game (PG, for short) is a
tuple G � 〈P0, P1,Mv, p〉, where P0 and P1 are two finite disjoint sets of nodes for Player 0
and Player 1, respectively, with P = P0 ∪ P1, Mv ⊆ P × P, is the left-total binary relation
of moves, and p : P → N0 is the priority function. Each player moves a token along nodes
by means of the relation Mv. By Mv(q) � {q ′ ∈ P : (q, q ′) ∈ Mv} we denote the set of
nodes to which the token can be moved, starting from node q.

As a running example, consider the PG depicted in Fig. 1. The set of players’s nodes is
P0 = {q0, q3, q4, q5} and P1 = {q1, q2, q6}; we use circles to denote nodes belonging to
Player 0 and squares for those belonging to Player 1. Mv is described by arrows. Finally,
the priority function p is given by p(q1) = 1, p(q3) = p(q4) = p(q6) = 2, p(q0) = 3, and
p(q2) = p(q5) = 5.

A play (resp., history) over G is an infinite (resp., finite) sequence π = π1 · π2 · . . . ∈
Pth ⊆ Pω (resp., π = π1 · . . . · πn ∈ Hst ⊆ P∗) of nodes that agree with Mv, i.e.,
(πi, πi+1) ∈ Mv, for each natural number i ∈ N (resp., i ∈ [1, n − 1]). In the PG in Fig. 1,
a possible play is π̄ = q1·q5·q2·(q3)

ω, while a possible history is given by π̄ = q1·q5·q2·q3.
For a given play π = π1 · π2 · . . ., by p(π) = p(π1) · p(π2) · . . . ∈ N

ω we denote the
associated priority sequence. As an example, the associated priority sequence to π̄ is given
by p(π̄) = 1 · 5 · 5 · (2)ω.

For a given history π = π1 · . . . · πn, by fst(π) � π1 and lst(π) � πn we denote the first
and last node occurring in π , respectively. For the example history, we have that fst(π̄) = q1
and lst(π̄) = q3. By Hst0 (resp., Hst1) we denote the set of histories π such that lst(π) ∈ P0
(resp., lst(π) ∈ P1). Moreover, by Inf(π) and Inf(p(π)) we denote the set of nodes and
priorities that occur infinitely often in π and p(π), respectively. Finally, a play π is winning

Fig. 1 A parity game
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for Player 0 (resp., Player 1) if min(Inf(p(π))) is even (resp., odd). In the running example,
we have that Inf(π̄) = {q3} and Inf(p(π̄)) = {2} and so, π is winning for Player 0.

A Player 0 (resp., Player 1) strategy is a function str0 : Hst0 → P (resp., str1 : Hst1 → P)
such that, for all π ∈ Hst0 (resp., π ∈ Hst1), it holds that (lst(π), str0(π)) ∈ Mv (resp.,
lst(π), str1(π)) ∈ Mv).

Given a node q, Player 0 and a Player 1 strategies str0 and str1, the play of these two
strategies, denoted by play(q, str0, str1), is the only play π in the game that starts in q and
agrees with both Player 0 and Player 1 strategies, i.e., for all i ∈ N, if πi ∈ P0, then
πi+1 = str0(πi), and πi+1 = str1(πi), otherwise.

A strategy str0 (resp., str1) is memoryless if, for all π̂ , π̃ ∈ Hst0 (resp., π̂ , π̃ ∈ Hst1),
with lst(π̂) = lst(π̃), it holds that str0(π̂) = str0(π̃) (resp., str0(π̂) = str1(π̂)). Note that a
memoryless strategy can be defined on the set of nodes, instead of the set of histories. Thus
we have that they are of the form str0 : P0 → P and str1 : P1 → P.

We say that Player 0 (resp., Player 1) wins the game G from node q if there exists a
Player 0 (resp., Player 1) strategy str0 (resp., str1) such that, for all Player 1 (resp., Player
0) strategies str1 (resp., str0) it holds that play(q, str0, str1) is winning for Player 0 (resp.,
Player 1).

A node q is winning for Player 0 (resp., Player 1) if Player 0 (resp., Player 1) wins the
game from q. By Win0(G) (resp., Win1(G)) we denote the set of winning nodes in G for
Player 0 (resp., Player 1). Parity games enjoy determinacy, meaning that, for every node q,
either q ∈ Win0(G) or q ∈ Win1(G) [22]. Moreover, it can be proved that, if Player 0 (resp.,
Player 1) has a winning strategy from node q, then it has a memoryless winning strategy
from the same node [52].

Attractor We now define the notion of attractor, core of the Zielonka’s algorithm. Intu-
itively, given a set of nodes F ⊆ P, the i-attractor of F for a Player i ∈ {0, 1}, indicated by
Attri(G, F ), represents those nodes that i can force the play toward. That is, Player i can
force any play to behave in a certain way, even though this does not mean that Player i wins
the game. Formally, for all k ∈ N0:

– Attr0
i (G, F ) = F .

– Attrk+1
i (G, F ) = Attrk

i (G, F ) ∪ {v ∈ Pi |∃w ∈ Attrk
i (G, F ) : (v,w) ∈ Mv} ∪ {v ∈

P1−i |∀w : (v,w) ∈ Mv ⇒ w ∈ Attrk
i (G, F )}.

Then, we have that Attri(G, F ) = ⋃
k∈No

Attrk
i (G, F ).

Subgames Let A be an arbitrary attractor set. The subgame G \ A is the game restricted to
the nodes P \ A, i.e., G \ A = (P0 \ A, P1 \ A, Mv \ (A × P ∪ P × A), p|P\A), where p|P\A
is the restriction of p to A. It is worth observing that the totality of G \ A is ensured from A

being an attractor.

3 Zielonka’s recursive algorithm

In this section, we describe the recursive algorithm by Zielonka using the basic concepts
introduced in the previous sections and some observations regarding its implementation in
PGSolver.
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Algorithm 1 Zielonka’s recursive algorithm (RE).

1: procedure SOLVE(G)
2: if (P == ∅) then return (∅, ∅)
3: else
4: d = maximal priority in G
5: U = { v ∈ V | p(v) = d }
6: i = d mod 2,
7: j = 1 − i

8: A = Attri(U)

9: (W ′
0, W ′

1) = SOLVE (G \ A)
10: if W ′

j == ∅ then
11: Wi = W ′

i ∪ A

12: Wj = ∅
13: else
14: B = Attrj (W

′
j )

15: (W ′
0, W ′

1) = SOLVE (G \ B)
16: Wp = W ′

i
17: Wj = W ′

j ∪ B

18: return (W0, W1)

The recursive algorithm (RE, for short), reported in Algorithm 1, is one of the first
exponential-time algorithm for solving parity games. It is based on the work of McNaughton
[39] and it was explicitly presented as a solver for parity games by Zielonka [52]. The algo-
rithm makes use of a divide and conquer technique and its core subroutine is the attractor
described in Section 2.

At each step, the algorithm removes all nodes with the highest priority d, denoted by
U , together with all nodes Player i = d mod 2 can attract to them, denoted by A, and
recursively computes the winning sets (W ′

0, W
′
1) for Player 0 and Player 1, respectively, on

the remaining subgame G \ A.
At this point, there are two cases to be considered. First, if Player i wins G \ A, then he

also wins the whole game G. Indeed, whenever Player 1 − i decides to visit A, Player i’s
winning strategy would be to reach U . Then, every play that visits A infinitely often has d

as the highest priority occurring infinitely often, or otherwise it stays eventually in G \ A,
and hence is won by i.

Second, if Player i does not win the whole subgame G \ A, i.e., W ′
1−i is non empty, then

Player 1− i wins on a subset W ′
1−i in G \A. And, since Player i cannot force Player 1− i to

leave W ′
1−i , we have that Player 1−i also wins on W ′

1−i in the game G. Hence, the algorithm
computes the attractor B for Player 1− i of W ′

1−i and recursively solves the subgame G \B.

3.1 The implementation of RE in PGSolver

PGSolver turns out to have a very limited application in several real scenarios. In more details,
even using RE (that has been shown to be the best performing in practice), PGSolver
would require minutes to decide games with few thousands of nodes, especially on dense
graphs. In this work we deeply study all main aspects that cause such a bad performance.

Specifically, our investigation begins with the way in which RE has been implemented
in PGSolver by means of the OCaml programming language. We start observing that
the graph data structure in this framework is represented as a fixed length Array of tuples.
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Every tuple has all information that a node needs, such as the player, the assigned priority
and the adjacency list. Before every recursive call is performed, the program computes the
difference between the graph and the attractor, as well as it builds the transposed graph. In
addition the attractor function makes use of a TreeSet data structure that is not available in
the OCaml’s standard library, but it is imported from TCSlib, a multi-purpose library for
OCaml written by Oliver Friedmann and Martin Lange. Such library implements this data
structure using AVL-Trees that guarantees logarithmic search, insert, and removal. Also, the
same function computes the number of successors for the opponent player in every iteration
when looping through every node in the attractor.

4 An improved implementation of RE

All the observations given above lead to introduce an improved version of RE (IRE, for
short), we report in Algorithm 2. In Algorithm 3 we report an improved version of the
attractor function that the new algorithm makes use of.

Algorithm 2 Improved RE (IRE).

1: procedure WIN(G)
2: T = G.transpose()
3: return winI(G, T , {})
4: procedure WINI(G, T , Removed)
5: if |V | == |Removed| then return (∅, ∅)
6: d = maximal priority in G
7: U = { v ∈ V | p(v) = d }
8: i = d mod 2
9: j = 1 − i

10: A = ATTR (G, T , Removed,U, i)
11: (W ′

0,W
′
1) = WINI(G, T , Removed ∪ A)

12: if W ′
j == ∅ then

13: Wi = W ′
i ∪ A

14: Wj = ∅
15: else:
16: B = ATTR(G, T , Removed,W ′

j , j )
17: (W ′

0, W
′
1) = WINI(G, T , Removed ∪ B)

18: Wi = W ′
i

19: Wj = W ′
j ∪ B

20: return (W0, W1)

Let G be a graph. Removing a node from G and building the transposed graph takes
time Θ(|V | + |E|). Thus, dealing with dense graph this operation takes Θ(|V |2). In order
to reduce the running time complexity caused by these graph operations, we introduce an
immutability requirement to the graph G ensuring that every recursive call uses G with-
out applying any modification to the state space of the graph. Therefore, to construct the
subgames, in the recursive calls, we keep track of each node that is going to be removed
from the graph, adding all of them to a set called Removed.

The improved algorithm is capable of checking whether a given node is excluded or not
in constant time as well as it completely removes the need for a new graph in every recursive
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call. At first glance this may seem a small improvement with respect to RE. However, it turns
out to be very successful in practice as proved in the following benchmark section. Further
evidences that boost the importance of such improvement can be related to the fact that the
difference operation has somehow the same compliance of complementing automata [45].
Using our approach is like avoiding such complementation by adding constant information
to the states, i.e. a flag (removed, ¬removed). Last but not least, about the actual imple-
mentation, it is also worth mentioning that general-purpose memory allocators are very
expensive as the pre-operation cost floats around one hundred processor cycles [26]. Many
efforts have been made over the years to improve memory allocation implementing custom
allocators from scratch, a process known to be difficult and error prone [8].

Algorithm 3 Improved attractor.

1: procedure ATTR(G, T , Removed,A, i)
2: tmpMap = []
3: for each x ∈ V do
4: if x ∈ A then
5: tmpMap[x] = 0
6: else
7: tmpMap[x] = −1

8: index = 0
9: while index < |A| do

10: for v0 ∈ adj (T ,A[index]) do
11: if v0 /∈ Removed then
12: if tmpMap[v0] == −1 then
13: if player(v0) == i then
14: A = A ∪ v0
15: tmpMap[v0] = 0
16: else
17: adj counter = −1
18: for x ∈ adj (G, v0) do
19: if x /∈ Removed then
20: adj counter + = 1

21: tmpMap[v0] = adj counter
22: if adj counter == 0 then
23: A = A ∪ {v0}
24: else if (player(v0) == i and tmpMap[v0] > 0) then
25: tmpMap[v0] − = 1
26: if tmpMap[v0] == 0 then
27: A = A ∪ {v0}
28: return A

4.1 Implementation in OCaml for PGSolver

Our implementation of IRE in OCaml, listed in Algorithm 4, does not directly modify the
graph data structure (that is represented in PGSolver as an array of tuples), but rather it
uses a set to keep track of removed nodes.
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IRE takes three parameters: a parity game, the transpose of the game graph, and a set
of excluded nodes. Our improved attractor uses a HashMap, called tmpMap to keep track
of the number of successors for the opponent player’s nodes. In addition, we use a Queue,
from OCaml’s standard library, to loop over the nodes in the attractor. Aiming at perfor-
mance optimizations, the attractor function implemented in PGSolver also returns the set
of excluded nodes.

Algorithm 4 Implementation of IRE in OCaml

1: l e t r e c win game t g r a p h exc =
2: l e t w = Array . make 2 I n t e S e t . empty in
3: i f ( not ( ( Array . l e n g t h game ) =
4: ( I n t e S e t . c a r d i n a l exc ) ) ) then (
5: l e t (d, u ) = ( m a x p r i o a n d s e t game exc ) in
6: l e t p=d mod 2 in
7: l e t j=1−p in
8: l e t w1=Array . make 2 I n t e S e t . empty in
9: l e t (attr, exc1)= a t t r f u n game exc t g r a p h u p in

10: l e t ( sol0, sol1)= win game t g r a p h exc1 in
11: w1.(0)<−s o l 0 ;
12: w1.(1)<−s o l 1 ;
13: i f ( I n t e S e t . i s e m p t y w1 . ( j ) ) then (
14: w . ( p)<−( I n t e S e t . union w1 . ( p ) a t t r ) ;
15: w . ( j )<− I n t e S e t . empty ;
16: e l s e (
17: l e t (attrB, exc2 ) =
18: a t t r f u n game exc t g r a p h w1.(j) j in
19: l e t ( so l0 B , s o l 1 B ) = win game
20: t g r a p h exc2 in
21: w1.(0)<−s o l 0 B ;
22: w1.(1)<−s o l 1 B ;
23: w.(p)<−w1.(p) ;
24: w.(j)<−( I n t e S e t . union w1.(j) attrB ) ;
25: )
26: ) ;
27: (w.(0), w.(1) )
28: ; ;

5 Scala implementation

In this section, we give an implementation of IRE in the Scala programming language, start-
ing with a brief introduction to it. Scala [41, 42] is the programming language designed by
Martin Odersky, the codesigner of Java Generics and main author of javac compiler. Scala
defines itself as a scalable language, statically typed, a fusion of an object-oriented language
and a functional one. It runs on the Java Virtual Machine (JVM) and supports every existing
Java library. Scala is a purely object-oriented language in which, like Java and Smalltalk,
every value is an object and every operation is a method call. In addition, Scala is a
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functional language where every function is a first class object, and it is equipped with
efficient immutable and mutable data structures with a strong selling point given by Java
interoperability. However, it is not a purely functional language as objects may change their
states and functions may have side effects. The functional aspects are perfectly integrated
with the object-oriented features. The combination of both styles makes possible to express
new kinds of patterns and abstractions. All these features make Scala programming lan-
guage as a clever choice to solve these tasks, in a strict comparison with other programming
languages available such as C, C++ or Java.

In [28], researchers by Google show that Scala, even being an high level language, per-
forms just 2.5x slower than C++ machine optimized code. In particular, Scala was shown
to be faster than Java. As the paper notes: “While the benchmark itself is simple and com-
pact, it employs many language features, in particular high level data structures, a few
algorithms, iterations over collection types, some object oriented features and interesting
memory allocation patterns”.

Algorithm 5 Improved algorithm in Scala.

1: d e f win (G: GraphWi thSe t s ) : ( A r r a y B u f f e r [ I n t ] ,
2: A r r a y B u f f e r [ I n t ] ) = { v a l W =
3: Array ( A r r a y B u f f e r . empty [ I n t ] ,
4: A r r a y B u f f e r . empty [ I n t ] )
5: v a l d = G. m a x p r i o r i t y ( )
6: i f ( d > −1) {
7: v a l U = G. p r i o r i t y M a p . g e t ( d )
8: . f i l t e r ( p => !G. e x c l u d e ( p ) )
9: v a l p = d % 2

10: v a l j = 1 − p
11: v a l W1 =
12: Array ( A r r a y B u f f e r . empty [ I n t ] ,
13: A r r a y B u f f e r . empty [ I n t ] )
14: v a l A = A t t r (G, U, p )
15: v a l r e s = win (G −− A )
16: W1( 0 ) = r e s . 1
17: W1( 1 ) = r e s . 2
18: i f (W( j ) . s i z e == 0) {
19: W( p ) = W1( p ) ++= A
20: W( j ) = A r r a y B u f f e r . empty [ I n t ]
21: } e l s e {
22: v a l B = A t t r (G, W1( j ) , j )
23: v a l r e s 2 = win (G −− B )
24: W1( 0 ) = r e s 2 . 1
25: W1( 1 ) = r e s 2 . 2
26: W( p ) = W1( p )
27: W( j ) = W1( j ) ++= B
28: }
29: }
30: (W( 0 ) , W( 1 ) )
31: }
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5.1 Implementation in Scala of IRE

In this section we introduce our implementation of the IRE in Scala, reported in Algorithm
5 and 6.

Aiming at performance optimizations we use a priority HashMap where every key is a
priority, and value is a set of nodes having key as priority, i.e., priority(v) = key for
every v beloging to value. Moreover, we use the data structures HashMaps and ArrayLists
contained in the open source library Trove.

Algorithm 6 Improved attractor in Scala.

1: d e f A t t r (G: GraphWithSets , A: A r r a y B u f f e r [ I n t ] , i : I n t )
2: : A r r a y B u f f e r [ I n t ] = {
3: v a l tmpMap = Array . f i l l [ I n t ] (G. nodes . s i z e )( −1)
4: v a r index = 0
5: A. f o r e a c h ( tmpMap ( ) = 0)
6: w h i l e ( index < A. s i z e ) {
7: G. nodes (A( index ) ) . <∼ . f o r e a c h ( v0 => {
8: i f ( !G. e x c l u d e ( v0 ) ) {
9: v a l f l a g = G. nodes ( v0 ) . p l a y e r == i

10: i f ( tmpMap ( v0 ) == −1) {
11: i f ( f l a g ) {
12: A += v0
13: tmpMap ( v0 ) = 0
14: } e l s e {
15: v a l tmp = G. nodes ( v0 ) . ∼>

16: . c o u n t ( x => !G. e x c l u d e ( x ) ) − 1
17: tmpMap ( v0 ) = tmp
18: i f ( tmp == 0) A += v0
19: }
20: } e l s e i f ( ! f l a g && tmpMap ( v0 ) > 0 ) {
21: tmpMap ( v0 ) −= 1
22: i f ( tmpMap ( v0 ) == 0) A += v0
23: }
24: }
25: } )
26: index += 1
27: }
28: A
29: }

We rely on Scala’s internal features and standard library making heavy use of the
dynamic ArrayBuffer data structure. In order to store the arena we use an array of Node
objects. The Node class contains: a list of adjacent nodes, a list of incident nodes, its pri-
ority and the player. ArrayBuffer also implements a factory method called “− − (set :
ArrayBuff er[Int])” that takes an ArrayBuffer of integers as input, flags all the nodes in
the array as excluded, and returns the reference to the new graph. In addition, there is also
a method called max priority() that will return the maximal priority in the graph and the
set of nodes with that priority.
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Fig. 2 Random games chart in logarithmic scale

Our attractor implementation in Scala makes use of an array of integers named tmpMap

that is pre-allocated using the number of nodes in the graph with a negative integer as default
value; we use tmpMap when looping through every node in the set A given as parameter
to keep track of the number of successors for the opponent player. We add a node v ∈ V

to the attractor set when its counter (stored in tmpMap[v]) reaches 0 (adj (v) ⊆ A and v ∈
Vopponent ) or if v ∈ Vplayer ; using an array of integers, or an HashMap guarantees a constant
time check if a node was already visited and ensures that the count for the opponent’s node
adjacency list takes place one time only.

6 Experimental evaluations: new implementations in OCaml and Scala

In this section we study, analyze and evaluate the running time of the following implemen-
tations: Classic Recursive in OCaml (CRO), Classic Recursive in Scala (CRS), Improved
Recursive in OCaml (IRO) and Improved Recursive in Scala (IRS). We have run our exper-
iments on multiple instances of random parity games. Note that IRS and CRS do not apply
any optimization steps to the arena before solving, while the OCaml implementations run
those optimizations. However, to show the effectiveness of Scala implementations we keep
them enable. All tests have been run on an Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz,
with 16GB of Ram (with no Swap available) running Ubuntu 14.04.1 Precisely, we have
used 100 random arenas generated using PGSolver of each of the following types, given
N = i × 1000 with i integer and 1 ≤ i ≤ 10 and a timeout set at 600 s.

In the following, we report six tables in which we show the running time of all exper-
iments under fixed parameters. Throughout this section we define abort[T ] when the
program has been aborted due to excessive time and abort[M] when the program has
been killed by the Operating System due to memory consumption. In Fig. 2 we also
report the trends of the four implementations using a logarithmic scale with respect
to seconds. This figure is based on the averages of all results reported in the tables
below.

1Note that this configuration is used for all tests ran in this work.
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N nodes, N colors, adj (1, N) N nodes, N colors, adj (N
2 , N)

N IRS CRO CRS IRO N IRS CRO CRS IRO

1 0.204 1.99 0.505 0.752 1 0.179 1.21 0.454 0.583
2 0.456 13.208 1.918 3.664 2 0.389 8.075 1.173 2.366
3 1.031 41.493 2.656 6.147 3 0.868 25.097 2.656 6.147
4 1.879 96.847 6.728 15.966 4 1.279 57.186 4.23 10.452
5 2.977 183.589 12.616 27.272 5 2.273 108.983 9.206 20.377
6 3.993 306.104 19.032 41.051 6 2.772 183.884 12.562 27.489
7 4.989 486.368 27.05 50.367 7 3.748 291.077 17.942 37.521
8 6.103 abort[T ] 36.597 70.972 8 3.942 418.377 22.105 47.502
9 7.287 abort[T ] 55.171 97.216 9 4.989 593.721 23.93 61.593
10 8.468 abort[T ] 68.303 113.36 10 6.413 abort[T ] 42.408 80.508

N nodes, 2 colors, adj (N
2 , N) N nodes, 2 colors, adj (1, N)

N IRS CRO CRS IRO N IRS CRO CRS IRO

1 0.189 1.98 0.481 0.702 1 0.159 1.226 0.385 0.468
2 0.469 12.941 1.55 3.17 2 0.341 7.965 1.004 2.162
3 1.046 41.584 3.995 7.428 3 0.797 25.114 2.305 6.014
4 1.712 96.545 5.378 13.823 4 1.123 56.422 3.699 9.421
5 2.414 181.225 11.273 22.575 5 1.704 108.584 6.12 14.971
6 3.458 307.233 16.472 35.269 6 2.243 182.935 10.099 22.621
7 4.612 484.159 26.448 49.311 7 3.324 286.503 13.898 32.335
8 6.003 abort[T ] 28.968 65.674 8 3.95 430.265 19.743 44.281
9 7.03 abort[T ] 43.666 85.909 9 4.597 abort[T ] 28.742 56.81
10 8.938 abort[T ] 57.18 110.814 10 5.651 abort[T ] 33.639 71.434

N nodes,
√

N colors, adj (N
2 , N) N nodes,

√
N colors, adj (1, N)

N IRS CRO CRS IRO N IRS CRO CRS IRO

1 0.204 1.978 0.468 0.71 1 0.162 1.218 0.384 0.475
2 0.456 13.114 1.575 3.203 2 0.344 7.947 1.034 2.195
3 1.031 41.493 3.868 7.492 3 0.788 25.029 2.406 5.944
4 1.621 96.55 5.744 13.97 4 1.105 57.307 3.835 9.608
5 2.439 183.589 10.72 22.98 5 1.678 108.623 6.34 15.165
6 3.372 307.426 15.978 34.78 6 2.281 182.154 9.871 22.859
7 4.662 485.826 26.432 48.875 7 3.193 285.28 14.338 32.536
8 6.499 abort[T ] 34.741 66.423 8 4.185 422.74 20.362 44.515
9 7.147 abort[T ] 48.915 86.645 9 5.009 599.071 24.347 57.022
10 8.988 abort[T ] 56.656 111.492 10 5.76 abort[T ] 35.024 72.291

6.1 Trends analysis for random games

The speedup obtained by our implementation of IRE is in most cases quite noticeable.
Figure 3 shows the running time trend for RE and IRE in both OCaml and Scala based on
the results of the previous benchmarks. The seconds, showed on the Y -Axis, are limited to
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Fig. 3 Trends Chart (seconds/number of nodes)

[0, 100], while on the X-Axis we report the number of nodes. As a result we show that even
with all preprocessing steps enabled in PGSolver, IRS is capable of gaining two orders of
magnitude in running time.

6.2 Trends analysis for special games

Here, we compare the performance of CRO and IRS over non-random games generated by
PGSolver such as clique games, ladder games, model checker ladder games, and Jur-
dzinski games. These experiments have been run disabling all optimizations in PGSolver
since IRS does not apply such optimizations.

Clique[n] games are fully connected games without self-loops, where n is the number of
nodes. The set of nodes is partitioned into V0 and V1 having the same size. For all v ∈ Vp ,
priority(v) % 2 = p. For our experiments we set n = 2k where 8 ≤ k ≤ 14. Table 2
reports the running time for our experiments and these results are drawn in Fig. 4.

In Ladder[n] game, every node in V0 has priority 2 and every node in V1 has priority 1.
In addition, each node v ∈ V has two successors: one in V0 and one in V1, which form a
node pair. Every pair is connected to the next pair forming a ladder of pairs. Finally, the last
pair is connected to the top. The parameter n specifies the number of node pairs. For our
tests, we set n = 2k where 8 ≤ k ≤ 19, and report our experiments in Table 3 whose trend
is drawn in Fig. 5, where the seconds are limited to [0,2]. As the figure shows, there is a
better performance for CRO than IRS using low-scaled (up to 213) values as input parameter.
This behavior is not surprising as there is a warming-up time required by the Java Virtual
Machine.

Table 2 Clique games

n 28 29 210 211 212 213 214

IRS 0.05 0.07 0.12 0.46 1.18 4.87 17.39

CRO 0.09 0.61 4.37 29.58 229.78 abort[T ] abort[M]
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Fig. 4 Clique trends

Model Checker Ladder[n] consists of overlapping blocks of four nodes, where the
parameter n specifies the number of desidered blocks. Every node is owned by player 1,
i.e., V1 = V and V0 = ∅, and the nodes are connected such that every cycle passes through
a single point of colour 0. For our experiments we set n = 2k where 10 ≤ k ≤ 15, and
report our experiments in Table 4 below and draw the trends in Fig. 6, where the seconds
are limited to [0, 2].

Jurdzinski[n, m] games are designed to generate the worst-case behavior for SPM [30].
The parameter n is the number of layers, where each layer has m repeating blocks that are
inter-connected as described in [30]. As this game takes two parameters, in our test we ran
two experiments: one where n is fixed to 10 and m = 10 × 2k , for k = 1, . . . , 5 and one
where m is fixed to 10 and n = 10 × 2k , for k = 1, . . . , 5. The results of our experiments
are reported in Table 5. The trends are drawn in Fig. 7.

7 New implementations and experimental results

Our investigation has explored two possible directions to improve the performance of RE:
i) using new data structures and more efficient coding, ii) exploiting its implementation
along a different programming language as Scala. The experiments have highlighted how
the combination of these two directions turns out to be very efficient in practice, showing
an improvement of up to one order of magnitude both in improving the RE implementation
in OCaml and choosing a different programming language. Thus, we reach an improvement
of up to two orders of magnitude applying both.

Table 3 Runtime executions over ladder games

n 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.02 0.03 0.05 0.08 0.11 0.13 0.15 0.19 0.25 0.38 0.48 0.93

CRO 0.00 0.01 0.01 0.03 0.06 0.13 0.3 0.65 1.39 2.93 6.21 11.71
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Fig. 5 Ladder trends

Table 4 Model checker ladder games

n 210 211 212 213 214 215 216 217 218 219

IRS 0.04 0.07 0.12 0.14 0.16 0.19 0.21 0.26 0.39 0.65

CRO 0.01 0.02 0.05 0.10 0.22 0.47 0.99 2.12 4.16 8.31

Fig. 6 Model checker ladder trends

Table 5 Model checker ladder
games m 10 × 21 10 × 22 10 × 23 10 × 24 10 × 25

IRS 0.21 0.48 1.54 4.55 15.31

CRO 0.23 0.79 3.14 15.77 65.85

n 10 × 21 10 × 22 10 × 23 10 × 24 10 × 25

IRS 0.28 0.77 3.02 30.02 232.24

CRO 0.42 2.94 22.69 184.12 abort[T ]
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Fig. 7 Jurdiznski trends

In this section, we continue our investigation on the programming language side pre-
senting multiple implementations in Java, C++ and Go of IRE. We introduce the languages
used, making an overall explanation of their key aspects to achieve our primary goal. The
full implementation can be found online via https://github.com/vincepri/SPGSolver.

The Java Programming Language was developed by James Gosling at Sun Microsystem
and introduces for the first time in 1995. The latest release of Java is a huge step forward
for the language that enriches the syntax and the standard library. It is a clear demonstration
of a language evolution without compromising robustness, stability and still ensuring back-
ward compatibility. Our Java solver implementation relies mainly on the standard library,
Google Guava [6] library and Trove for high performing data structures. The Trove library
offers regular and primitive collections for Java with high speed and memory efficient.
Internally Trove does not use any java.lang.Number subclasses, in this way there is no box-
ing/unboxing overhead. The TIntArrayList data structure is built on top of an array using
the corresponding data type (int[] in this case). Each Trove Array List has several helper
method inherited from the java.util.Collections.

Modern C++ can be seen in three parts: low level language inherited from C, advanced
language features and the standard library (stdlib) that provides useful data structures and
algorithms.

Our implementation in C++ makes intense use of the language’s standard library and
the Boost C++ libraries for string based algorithms when parsing files and timer functions.
The tool was compiled with clang, a compiler front end for C, C++ and Objective-C that
uses LLVM as its backend. The compiled executable is around 62KB on disk and it must be
noted that was compiled with full optimizations enabled (-Ofast flag).

The C++ version, showed a huge memory footprint saving compared to garbage collected
programming languages. A Python module, that makes use the C++ implementation, has
also been implemented using Boost.Python.

The Go Programming Language is an efficient, statically-typed compile language devel-
oped at Google in 2007. It has built-in support for concurrency and communication, a
latency-free garbage collection and high speed compilation process. The standard library
provides all core packages programmers need to build real world programs, such as two
fundamental built-in collection types: slices (variable-length arrays) and maps, built to be
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efficient and to serve multiple purposes. The language does not hide pointers and there is
no virtual machine getting in the way of performance, for this reason it is completely pos-
sible to design complex custom types with ease. Our implementation of parity games in Go
strictly follows the Go rules and conventions for code syntax and only requires the standard
library, keeping external dependencies at minimum.

8 Benchmarks and trends

In this section we study, analyze and evaluate the running time of our implementations.
We have run our experiments on multiple instances of random parity games.
Precisely, we have used 100 random games generated by PGSolver with a number of

nodes defined as N = i × 1000 with 1 ≤ i ≤ 60, and two priorities.
It is worth to note that these implementations do not apply any preprocessing steps to

the arena before solving. The graph data structure is represented, in a consistent manner
across the languages, as a fixed-length Array of objects, where every node contains perfect
information such as the player, priority and adjacency list.

The trends are shown in Fig. 8, which gives a clear idea of what is possible to achieve in
under a second, while Fig. 9, shows the clear gap between OCaml and the other languages.

The chosen languages have deep differences between each other, Go and C++, for exam-
ple, make use of a static compiler to produce a full native binary, while Java and Scala use
the JVM’s compiler. In addition, the JVM languages and Go are garbage-collected while
C++11 uses RAII as a programming idiom where holding a resource is tied to an object
lifetime and the language itself guarantees that an object is freed once control flow leaves
the scope.

We finally include a plot in Fig. 10 to further compare the different implementations.
Tests are performed using 20 random arenas generated through PGSolver, setting the
number of nodes as N = i × 1000 with 1 ≤ i ≤ 60, number of priorities p ∈ {

2,
√

n, n
}
,

and minimum and maximum number of edges (min, max) ∈ {
(1, n) ,

(
n
2 , n

)}
. Note that

Fig. 8 Trend comparison (seconds/number of nodes)
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Fig. 9 Linear time comparison

the plot is shrunk after 16k nodes in order to show the behavior of the implementations up
to 60K nodes.

Our benchmarks empirically show that C++ is the best performing one, in every test
we have run, reducing the Scala running time by a factor of 4 and Go by a factor of ˜1.5.
Scala and Java tend to have a very similar behavior over 40000 nodes, in fact in some
plots the results are missing because the JVM would go over 32GB of available memory,
while Go was always capable of completing the solving process even if taking more time. A
further investigation on why performance was degrading so quickly for Go after the 40000
nodes threshold led to the garbage collector implementation, Go’s collector is a mark-and-
sweep with periodic pauses when it runs; on the other hand Java provides few different
implementation for its collector allowing multiple performance optimizations.

Fig. 10 Comparison among the implementations
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Table 6 SWP (Sliding Window Protocol)

n Property IRO IRC IRG IRJ IRS WS DS

14,065 ND 0.073 0.00024 0.00064 0.0023 0.028 2 2

17,810 IORD1 0.16 0.00031 0.00074 0.0073 0.042 2 2

34,673 IORW 14.72 0.0016 0.0026 0.011 0.062 2 2

2,589,056 ND 0.99 0.0055 0.88 0.015 0.13 4 2

3,487,731 IORD1 2.24 0.0068 0.01 0.049 0.36 4 2

6,823,296 IORW 916.88 0.025 0.031 0.079 0.42 4 2

8.1 Benchmarks on practical model checking problems

The experiments on random games have showed an overview on the performance of our
implementations, but to better understand their behavior in the practice applications of parity
games we need to continue our investigation. Therefore, we evaluate the performance of our
implementation of IRE in OCaml (IRO), C++ (IRC), Go (IRG), Java (IRJ), and Scala (IRS)
on some practical model checking problems as in [33].

Specifically, we use models coming from: the Sliding Window Protocol (SWP) with
window size (WS) of 2 and 4 (WS represents the boundary of the total number of packets
to be acknowledged by the receiver) and the Onebit Protocol (OP). The properties we check
on these models concerns: absence of deadlock (ND), a message of a certain type (d1) is
received infinitely often (IORD1), and if there are infinitely many read steps then there are
infinitely many write steps (IORW).

Note that, in all benchmarks, data size (DS) denotes the number of messages, and every
game has 3 priorities.

As we can see, by comparing Tables 6 and 7, the experiments indicate a more nuanced
relationship between the different implementations of IRE. Indeed, even though the exper-
iments follow the trend showed previously for the random case, that is, C++ is the best
performing one, they also show a different behavior for the other implementations. Over-
all, we can observe that IRJ gains one order of magnitude over IRS in all protocols and
properties. Thus, the gap between C++ and Scala reaches up to two orders of magnitude,
differently from what we have seen for the random case. While, IRC and IRG reduce
the IRJ running time of one order of magnitude. Here, another interesting aspect is high-
lighted by the comparison between the IRC and IRG running time where a closer distance
is showed, though IRC outperforms IRG in all cases. Finally, the experiments clearly show
the significant gap that IRO gets against the other implementations.

Table 7 OP (Onebit Protocol)

n Property IRO IRC IRG IRJ IRS DS

81,920 ND 0.82 0.0033 0.0054 0.0095 0.069 2

88,833 IORD1 1.55 0.0038 0.0058 0.031 0.096 2

170,752 IORW abort[T] 0.013 0.017 0.045 0.21 2

289,297 ND 3.22 0.014 0.020 0.028 0.19 4

308,737 IORD1 6.08 0.015 0.021 0.085 0.36 4

607,753 IORW abort[T] 0.052 0.063 0.144 0.61 4
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9 Conclusions

PGSolver is a well-known framework that collects multiple algorithms to decide parity
games. For several years this platform has been the only one available to solve and bench-
mark in practice. However, given PGSolver’s limitations addressing huge graphs, several
attempts of improvement have been carried out. Some of them have been implemented as
preprocessing steps in the tool itself, such as priority compression or SCC decomposition
and the like [25], while others chose parallelism techniques applied to the algorithms, as
done in [4, 27].

In this work we start from scratch by revisiting the implementation of RE in PGSolver.
We first provide an improved version by using new data structures and more efficient cod-
ing. The improved version guarantees that the original game remains immutable tracking
the removed nodes in every subsequent call and checking, in constant time, whether a node
needs to be excluded or not. Our preliminary results show that our implementation allows
to gain up to one order of magnitude over the implementation in PGSolver.

Then, we exploit its implementation along different programming languages such as
Scala, Java, C++, and Go and compare among them. The experimental results give a clear
and perfect idea of which implementation is outperforming the solving process. C++ is
the best performing one, in every run, and it is capable of gaining up to three orders of
magnitude in running time over its classical implementation in PGSolver. Specifically,
on random games, C++ reduces Scala running time by a factor of 4 and Go by a factor of
∼1.5. Go’s performance behavior tends to degrade after 40000 nodes, outperformed by Java
in some cases. Instead, the benchmarks executed over practical model checking problems
show that Go’s performance, besides being of the same order, tends to be closer of the C++
one. This highlights an interesting aspect about the use of Go. Indeed, although Go is a
young programming language, it provides a high performance, super efficient concurrency
handling like Java and fun to code like Python/Perl. Then, even though C++ has the better
performance, a deep investigation in the benefits of using Go might be lead to appealing results.

The importance of this work, that is an extension of the results in [19], relies on the
fact that has been the first to exploit the use of efficient coding and modern programming
languages to improve the performance of RE, as it is used for comparisons in the literature.
Indeed, our results have already inspired to development new efficient tools for solving
parity games. Among others, Oink, developed by Tom van Dijk [48], makes use of our
improvement like the immutability of the game in implementing RE, it is written in C++,
and provides multi-core implementation of RE and SPM as done in [4]. Finally, this work
points out interesting questions that we take into account for future works such as continue
the evaluation of Go’s performance in real scenarios, as well as the implementation of a
multi-core version of the algorithms in Go and Java.
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