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Dynamic Fine-grained SLA Management for 6G
eMBB-plus Slice using mDNN & Smart Contracts

Sadaf Bukhari, Kashif Sharif, Senior Member, IEEE, Liehuang Zhu, Senior Member, IEEE, Chang Xu,
Fan Li, Member, IEEE, and Sujit Biswas, Member, IEEE

Abstract—The advent of 6G networks promises revolution-
ary advances in dynamism, intelligence, and decentralization.
Realizing the full potential of 6G requires adaptable service
level agreements (SLAs) that can optimize performance based
on dynamic network conditions. In this paper, we suggested a
method based on the Hyperledger Sawtooth blockchain’s smart
contract with the Reptile meta-learning algorithm to solve the
rigidity of static SLA and centralization problems. In order to
sustain the quality of service in the radio access network and
core network domain of 6G networks, this work focuses on
SLA management for efficient resource allocation for the eMBB-
plus slice. Our approach entails breaking down static SLAs into
finer-grained components, transferring those components onto
Hyperledger Sawtooth smart contracts, and using the Reptile
meta-learning algorithm to forecast SLA metrics and resource
requirements. A dynamic tariff model, also proposed within the
smart contract, handles increased user demands. We evaluate the
solution by analyzing Reptile performance, resource allocation,
and SLA violations under dynamic demands. Results demon-
strate the efficiency of this AI-driven, blockchain-based approach
for automated, optimized 6G eMBB-plus resource management
adhering to dynamic fine-grained SLLAs. This work highlights
the synergistic potential of AI and blockchain for trusted and
intelligent 6G service delivery.

Index Terms—SLA Management, Blockchain, Smart Con-
tracts, eMBB-Plus, Network Slicing, 6G.

I. INTRODUCTION

ITH the unprecedented demand for faster, more reli-
W able, and efficient communication services, the revolu-
tionary vision of 6G networks is set to deliver a paradigm shift
in the way we communicate, meeting the ambitious demands
of the 2030s and beyond. The race towards developing 6G
networks has captured the attention of academia, standardiza-
tion bodies, governments, and industrial organizations since
2018 [1]. Although 5G networks deliver substantial capabili-
ties, they have shortcomings in massive machine connectivity,
scalability, real-time latency, throughput, security, availability,
access control, and bandwidth efficiency [2]. Overcoming
these limitations requires harnessing emerging technologies
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Figure 1: Working, communication, & interaction framework
of a 6G service-oriented system, augmented with the proposed
solution framework.

like Blockchain (BC), Edge Computing (EC), Network Slic-
ing (NS), and Artificial Intelligence (AI) to unlock the full
potential of 6G for hyper-connected intelligence.

The main objective of 5G-A & 6G networks is to offer
improved worldwide coverage, highly reliable and secure com-
munication, faster data rate transmission, enhanced privacy,
and extremely low latency. The potential applications for 6G
networks are eXtended/Mixed Reality (XR, MR), autonomous
systems, wireless brain-computer interaction, smart cities, arti-
ficial technologies, holographic and human-centered commu-
nication, indoor positioning, and vertical industry-supported
communications. To fulfill the requirements of these appli-
cations, five services have been identified as the upgraded
versions of 5G network services: enhanced Mobile Broadband-
plus (eMBB-plus), Secure Ultra-Reliable Low Latency Com-
munication (SURLLC), Three-Dimensional Integrated Com-
munication (3D-Intecom), Unconventional Data Communica-
tion (UCDC), and Big Communication (BigCom) [3].

Service Level Agreements (SLAs) define the negotiated
terms of service and agreements between service providers,
consumers, and infrastructure entities. They outline different
performance metrics, quality guarantees, and other techni-
cal/legal aspects. Traditional SLAs are static, lacking adapt-
ability to changing user needs and services, which is inad-
equate for dynamic service provisioning. These challenges
highlight the need for more flexible and secure SLA frame-
works in next-generation services for 6G systems. This paper
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focuses on eMBB-plus slices, the successor to 5G eMBB.
eMBB-plus optimizes networks for interference, handover, big
data transmission, and processing. It enables highly immer-
sive extended reality applications with capabilities like ultra-
high peak data rates, reduced latency, increased capacity, and
throughput [4]. eMBB-plus guarantees seamless user expe-
riences across diverse mobility scenarios, including remote,
commercial airplanes, unmanned aerial vehicles (UAVs), and
ship environments [5]. In this work, we advocate that 6G
networks should leverage blockchain for security and de-
centralization, while AI/ML for design and optimization [6].
Figure 1 illustrates the overall working and communication
framework, including SLAs with blockchain and Machine
Learning (ML) technologies. SLAs form an essential bridge
between heterogeneous users requesting diverse eMBB-plus
services from multiple Service Providers (SPs).

Integrated Technologies: Blockchain enables immutable
distributed record-keeping using cryptographically chained
blocks of replicated transactions. These transactions are val-
idated and added to the ledger by decentralized peer nodes
based on the network type [7]. An essential BC component is
the smart contract (SC), which automates the verification and
execution of transactions on the chain securely and efficiently.
These self-executing scripts have the agreement terms directly
coded into them. Once deployed on the blockchain, SCs can
autonomously validate transactions as per the encoded busi-
ness logic and trigger any resulting actions [8]. The immutable
BC combined with tamper-proof SCs enables reliable and
transparent automation for processes like SLA enforcement.
Blockchain solutions like Hyperledger Sawtooth can provide
customized modular architecture supporting various consensus
protocols and facilitate SLA automation using SCs [9], [10].
5G has seen limited integration of ML, while 6G is planned
to fully utilize Al, particularly meta-learning [11]. It enables
gathering experiential meta-data to solve related problems with
minimal training data [12]. Meta-learning improves deep neu-
ral network performance with small datasets, overcoming deep
learning’s requirement for large data, which can otherwise lead
to inaccurate outputs. Along with BC and Al, network slicing
enables diverse new 6G services and Quality of Service (QoS)
levels [13], [14]. It involves creating isolated virtual networks
over shared infrastructure, with each slice governed by an SLA
spanning radio access, transport, and core domains. Slices have
customized resource and Key Performance Indicator (KPI)
requirements per service type [15].

SLA Limitations: QoS guarantees are ensured through the
SLAs. Traditionally, SLAs are inflexible for real-time environ-
ments. As technology has advanced, SLAs have transformed
from static to dynamic structures. Dynamic SLAs exhibit
adaptability in response to changing demands [16], [17]. How-
ever, managing dynamic SLAs and Service Level Objectives
(SLOs) for effective resource allocation is difficult. Dynamic
resource allocation needs adaptable SLAs with adjustable
conditions and prices [18]. In order to manage sliced 6G
networks effectively, dynamic fine-grained SLAs are to be
prioritized. The term ‘fine-grained’ denotes a meticulous ap-
proach for monitoring and maintaining service levels [6]. How-
ever, centralized SLA management systems often encounter

trust-related challenges. Therefore, BCs and SCs emerge as
a solution to effectively manage SLAs and make it easier
to distribute resources in a cost-effective and decentralized
manner. Coupled with deep and meta-learning for optimiza-
tion, it will further improve the Quality of Experience (QoE)
significantly [19]-[22].

Problem & Solution: Technically, in this paper, we address
the problems related to the management of eMBB-plus slices
SLA in Radio Access Network (RAN) and Core Network (CN)
dynamic environments, i.e., dynamic SLA management, con-
sistent rates of services, trust, and resource allocation. In order
to address these issues, our paper proposes a dynamic fine-
grained SLA for the slices of the eMBB-plus service for the 6G
RAN and CN, as well as its administration through the Reptile
meta-learning algorithm and SCs of Sawtooth blockchain.
To the best of our knowledge, there is no prior work on
maintaining a dynamic fine-grained SLA for a particular
eMBB-plus slice for the RAN and CN domain and how to map
that SLA slice to SCs using the Sawtooth blockchain. Existing
works in [15], [18], [23]-[32] try to address these challenges
from different aspects, but none of them gives a complete
and comprehensive solution. Our methodology involves three
main tasks for each domain: SLO target prediction, optimal
resource prediction, and predicted resource allocation. The
other functions, i.e., monitoring system, dynamic tariff model,
resource allocation & execution sub-system, and payment &
penalty functions, are also implemented as part of the overall
solution. We evaluate our methodology based on the perfor-
mance of the training model, resource allocation function, SLA
violations, and BC network. Our approach shows promising
results for effectively managing SLAs in a dynamic and fine-
grained manner and adapting to changes in network conditions
to meet SLOs.

Contributions: This paper makes several notable contribu-
tions that advance the state-of-the-art in dynamic fine-grained
SLA management for 6G networks.

« First, this paper presents a novel approach for breaking
down conventionally inflexible, static SLAs into finer-
grained, more flexible, and adjustable components. This
involves clearly defining the conditions, performance ob-
jectives, and service metrics that make up a digitized
SLA.

« Second, we segment the dynamic fine-grained SLA for
the eMBB-plus slice into two domains, i.e., the RAN
domain and the CN domain. Further, we categorized each
domain with respect to resource demands and perfor-
mance metrics.

o Third, we select peak data rate and latency for RAN
domain SLA, and peak bandwidth and availability for
CN domain SLA. We then developed fine-grained SLA
components to the needs of each domain & resource.

« Fourth, leveraging the Reptile-based meta-learning algo-
rithm, we enable intelligent prediction of domain metrics
and resources, allowing for proactive SLA optimization
in both the RAN and CN domains.

« Fifth, we use SCs as digitized, self-executing, and mon-
itoring SLAs on Hyperledger Sawtooth for the predicted
metrics and the resource allocation process. The SCs also
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contain proposed payment and penalty functions and a
dynamic tariff model.

« Finally, we implement a comprehensive prototype testbed
to thoroughly evaluate various aspects of the proposed
system. The detailed results demonstrate that this ap-
proach significantly enhances service management effi-
ciency and effectiveness.

The rest of the paper is structured as follows: In Section II,
we discuss related works to provide a context for our research.
Section III describes the problem statement and outlines our
proposed dynamic fine-grained SLA management solution.
Section IV provides a detailed explanation of the fine-grained
SLA components. Section V delves into the decomposition of
the SLA for resource allocation. In Section VI, we explain
the mapping process for Smart Contracts (SCs). Section VII
presents a comprehensive evaluation of our proposed solution.
Finally, in Section VIII, we conclude the paper and suggest
directions for future research.

II. RELATED WORKS

Al and blockchain technologies will serve as vital enablers
for realizing the envisioned capabilities of 6G networks. How-
ever, a literature review reveals a significant gap in research in-
tersecting Al, blockchain, and mobile computing for dynamic
fine-grained SLA management and resource allocation. Much
of the current work focuses singularly on either blockchain,
deep neural networks, or 5G network slicing. Hence, exploring
the integration of AI and blockchain is essential to address
the challenges of adaptive SLA management and resource
provisioning for emerging 6G services like eMBB-plus slicing.
Below, we have grouped the literature into related subsections,
while a summary of comparative analysis of the most relevant
existing works and the proposed work is listed in Table I.

A. SLA Management & Resource Allocation using Blockchain

Blockchain and smart contracts create a seamless infrastruc-
ture for reliable record-keeping and automated transactions.
With its decentralized network of nodes in a peer-to-peer
structure, blockchain ensures that data is unchangeable and
universally distributed [33]. On the other hand, SCs streamline
transactions by encoding agreement terms into self-executing
code. Once activated, these contracts independently verify and
initiate actions based on predefined logic [34].

Blockchain technology provides a decentralized and secure
approach to managing SLAs, enhancing trust and reliability in
the management process. The work in [23] discusses similar
issues as targeted in this paper, i.e., centralized SLA manage-
ment. However, their problem was presented in the context of
a dynamic cloud environment without AI/ML and resource al-
location. Contrary to this, our research focuses on the issues by
managing dynamic fine-grained SLA through blockchain for
a network slice, specifically in 6G networks. The work in [24]
has contributed by introducing an SC-based trusted payment
system customized for dynamic SLAs. [26] emphasized the
necessity of SLAs in 6G networks regarding infrastructure and
resource sharing, and proposed a blockchain-rooted framework
that enables network sharing while ensuring accountability

and transparency using SCs. However, the framework is very
abstract with over reliance on orchestrator.

SCs can be used across a spectrum of application frame-
works. The work in [25] offered a blockchain-based solution
for fog computing environments that enables autonomous
SLA management, using a blockchain-driven SLA registry
and an SC-based SLA enforcement mechanism. It uses SCs
to automates compensation processing against SLO viola-
tions [35]. The work in [27] also manages SLA through BCs.
It uses Ethereum SCs to handle the billing, penalties, and
compensation process. However, in both the above solutions
the SLA-SC mapping is hard coded manually, which is then
enforced. In contrast, our solution is more comprehensive as
described earlier.

In 6G networks, SLAs with static pricing models are
becoming insufficient due to their rigid and pre-determined
rates that do not cater to changing user demands, network
conditions, or resource requirements. Dynamic pricing models
are surveyed in [18], such as usage-based, congestion-based,
and auction-based models. This article concludes that the
dynamic pricing models can help improve SP’s profitability
by adjusting service priority based on subscribers’ changing
networking requirements. 6G networks offer a plethora of
services, each with varying QoS requirements, KPIs, and
resource needs. Network slicing has emerged as a crucial
feature in 6G networks to efficiently cater to these diverse
service demands. [15] reviews requirements and challenges
related to network slicing. It concludes that network slicing
enables dynamic resource allocation that adapts to changing
user demands, tenant requirements, and network conditions.
Both of the above articles have provided the technical argu-
ment that the dynamic pricing and network slicing must be
addressed in the proposed solution of our work.

SCs can ensure that resources are distributed and utilized
according to predefined rules and conditions, which can help
prevent fraudulent behavior & over/under-utilization of re-
sources. A blockchain-based mechanism is proposed in [28]
for exchanging RAN resources (infrastructure or spectrum)
for beyond 5G networks. It utilized SCs to facilitate flexible
and dynamic resource-sharing between SP and users. [29] pre-
sented a system for allocating spectrum for 6G communication
networks based on blockchain. It only proposes a plan that
uses BC to create solutions based on SCs that are secure
& transparent and enhance resource distribution. Moreover,
the work in [30] proposed a blockchain-powered fog radio
access network (BF-RAN) design, which utilizes blockchain
technology to improve resource allocation and provide secure
and transparent SC-based solutions. All these works establish
that SCs can be effectively used to manage network resources.

B. Resource allocation using Blockchain & Machine Learning

Integrating blockchain technology and Al in 6G network
slicing can provide a comprehensive resource allocation and
usage solution for SPs and users. Additionally, Al can be
employed to predict traffic patterns, which is immensely
beneficial in dynamic real-time environments [36]. Work in
[14] proposed an Al-driven approach for intelligent network
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Table I: Comparative analysis of related works and the proposed solution.

[15] ¥+ Network slicing requirements and challenges v v v v None
(18] £+ c1as§1nes d?rnamlc pricing strategies and examines price modification in response to X x v v Theoretical evaluation on static and dynamic pricing schemes
demand, resource utilization, & current circumstances
Framework for dynamic SLA mgt. in cloud i o e
[23] SC & BC for dist. SLA adaptation X v 4 X Only a proposal with no evaluation
[24] ¥ BC and SC for dynamic payment automation in SLA lifetime X v v X EZ:;XS:C usecase & minor evaluation of QoS SLA {client-SP)
Ethereum based evaluation. Three use cases for measuring
[25]1% BC based structure for SLA fulfillment in fog computing X v v X sub-transactions, SLA registration, execution, & detection gas, and
miner fee
[26] ¥ BC based architecture (BEAT) for transparent & accountable network sharing X v v v gllgnljut?:ﬁ?z:\)ﬁl(‘):‘)de & packet processor for SLA execution time &
[277F Trustarchitecture for SLA mgt. using automated penalties & compensations X 4 v X Evaluated for uRLLC & eMBB slices w.r.t Tatency & throughput
[28]  BC enabled reverse auction mechanism for RAN sharing in beyond 5G networks X v v v E;g{ui‘:g%{cvﬁzﬁnﬁﬁ%:’ user's performance, and behavior of
129 BC Integration in 6G spectrum for secure & transparent band allocation among telecom X v X v Evaluated for static/dynamic resource block allocation, trust
providers probability, & overhead on base station
30 Secure and trustless BC based architecture for resource allocation in fog RANs X 4 X v Architecture only with no evaluation
[E[UES 2 y
[31]# BC & Al powered DRS architecture for dynamic spectrum sharing with DRL v 4 X v E\éaglférese:; user profit ratio, facilitation of acquiring training data,
[32] F &%?éﬁggg l;)erseodl-ilé(t:ieoill;::—f:g‘]’_‘}\%;s;;?;ﬁ;gendmg prevention v v v v Evaluated four use cases for double spending of resources and attacks
-Comprehensive solution for SLA management of eMBB-plus slice for 6G networks.
-Decomposition of static SLA into fine-grained components.
-Dynamic fine-grained SLA for RAN & CN domains w.r.t performance metrics & resources. -Performance evaluation using reptile based meta learning algorithm.
This Work -Dynamic fine-grained SLA component mapping to Hyperledger Sawtooth SC. v v v v -Performance analysis of resource allocation w.r.t SLA violation.

-SC modeling for predicted performance metrics & resource allocation functions,
monitoring of SLOs, dynamic tariff model, & payment/penalty functions.
-Domain metric/resource prediction allocation in eMBB-plus slice.

-Performance analysis of blockchain network.

BC: Blockchain, SC: Smart Contract, DL: Distributed Ledger, SLA: Service Level Agreement, QoS: Quality of Service, SP: Service Provider, DRL: Deep Reinforcement Learning, f: Conference/Magazine article,

$: Journal article, *: Survey/analysis article.

slicing in 6G systems. It uses an Al slicer architecture with
reinforcement learning and knowledge graphs to dynamically
optimize slices based on diverse QoS metrics. Al can also
enhance the decision-making powers of SCs; hence, in [31], a
framework employing blockchain and reinforcement learning
is proposed for dynamic resource sharing in 6G networks and
beyond. Machine learning coupled with big data can provide
robust support for enhancing blockchain technology in areas
such as prediction modeling, network stability, and operational
maintenance, as explored in [37], [38]. In the context of
wireless environments, the synergy of blockchain technology
and machine learning is examined in [32], for thwarting double
spending of resources. This work makes a strong case for use
of ML in resource management with SLA guidance. Finally,
deep learning algorithms hold significant promise in tack-
ling challenges 6G networks, including resource optimization,
adaptability to dynamic environmental conditions, and the
establishment of intelligent network infrastructures [39].

III. PROBLEM STATEMENT AND SOLUTION
ARCHITECTURE

A. Problem Identification & Challenges

An SLA represents a contract between service providers
(SP) and customers, defining the delivery terms of services.
Conventionally, SLAs have been static, with fixed terms estab-
lished at the outset for the duration of the agreement. These
static SLAs outline service metrics, quality guarantees, and
legal and financial details upfront, locking the service into
these predefined specifications regardless of any changes that
may occur during the contract period. This rigidity renders
static SLAs inadequate for the dynamic requirements of next-
generation service environments, where adaptability and re-
sponsiveness are essential [40], [41]. Another major challenge
with traditional SLAs is trust, due to reliance on third-party
auditing and centralized management. SLAs typically reside
on centralized servers controlled by the provider, raising con-
cerns about reliability and security. This centralization exposes

agreements to risks like malicious attacks, single points of
failure, and potential data tampering by the provider, thereby
eroding trust.

These challenges are significantly amplified in mobile com-
munication, where SLAs between clients (mobile devices)
and service providers (network carriers) are highly dynamic.
The sheer volume of users and the diversity of their require-
ments introduce two critical issues: the need for dynamic
SLAs and optimizing resources to meet them. This requires
breaking down traditional, static SLAs into more granular and
adjustable components capable of responding to varying per-

Static SLA Dynamic Fine-grained SLA
<o This Solution Action Eff, DTS Solution

Time Human Involvement Time

Action EFf.
Human Involvement

Consistent Rates, QoE Consistent Rates

Resource Util. ~ Trust Resource Util.

Pehalty

Auditability Monitoring Auditability Monitoring

Cost Traceability Cost
Storage

Traceability _
Storage

Action Eff. BC-based SLA

Time S92 This Soltion

Action Eff. O Albased SLA

g This Solution

Human Involvement Human Involvement Time

Consistent Rates QoE Consistent Rates

Trust Resource Util.

Immutabil Penalty  immutabil

Auditability Monitoring

Traceability Cost Traceability

Storage

Storage

Figure 2: Relative comparison of different SLAs for KPI
impact. Except storage (which is centralized/decentralized),
all KPIs indicate relative low/high impact.
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formance metrics such as latency, bandwidth, and data rates.
Furthermore, this involves real-time prediction and allocation
of resources across the RAN and CN domains, ensuring that
service levels are consistently met end-to-end.

Figure 2 presents an analytical comparison of various SLA
implementation technologies versus our proposed solution,
using KPIs such as human involvement, efficiency, time, QoE,
resource usage, penalties, monitoring, cost, storage, traceabil-
ity, auditability, immutability, and trust. The comparison is
relative, highlighting the impact on KPIs without exact scales,
as quantitative values vary based on factors like organizational
scale, service parameters, technical solutions, and system spec-
ifications. Most KPIs show a low-high impact scale, except
for storage, which is centralized or decentralized. Dynamic
fine-grained SLAs reduce costs, time, and penalties while
improving consistency compared to static SLAs. Blockchain-
based SLAs enhance trust, immutability, auditability, traceabil-
ity, automation, and decentralized storage. Al-powered SLAs
boost QoE, resource utilization, monitoring, and efficiency
while reducing penalties. Static SLAs require significantly
more human intervention and are more expensive and less
efficient than advanced SLAs. This comparison underscores
the advantages of moving from rigid, manual static SLAs
to automated, optimized SLAs using blockchain and Al, as
demonstrated by our proposed solution.

B. Multi-Tier Solution

This paper proposes a dynamic fine-grained SLA approach
implemented via SCs and powered by Al techniques to address
the challenges of static SLAs and centralized SLA manage-
ment. Specifically, we employ fine-grained SLAs optimized
for the eMBB-plus service across RAN and CN domains.
The overall process can be broadly divided into two stages.
Firstly, we meticulously decompose the SLA into granular
components, including service type, network domain, dynamic
performance metrics, and resource allocation. Within this
stage, we achieve two critical tasks: a) Real-time prediction of
performance metric targets based on network conditions, and
b) Optimal resource allocation aligned with these predicted tar-
gets. Leveraging the meta-deep neural network (mDNN) Rep-
tile algorithm enables dynamic forecasting, enhancing adapt-
ability and responsiveness. Secondly, we seamlessly integrate
these fine-grained SLAs with SCs to facilitate autonomous
blockchain-based management. This approach ensures effi-
cient and secure execution of SLA terms transparently.

The system architecture and the end-to-end workflow are
shown in Figure 3. The initial parts of the solution (as
described above) are encapsulated in the SLA-SC Orchestra-
tor, whose primary roles include user/system interaction and
integration. The orchestrator also implements various SLA
components, policies, and business logic. Fully automating an
SLA-based system is complex; therefore, this work focuses
on automating key aspects: fine-grained decomposition, dy-
namic tariff model implementation, Reptile training, resource
allocation and execution, and Blockchain interaction APIs.
However, the architecture of the complete system is designed
and shown in Figure 3. The Automated Information Extractor

/ ) SLA-SC Orchestrator N

RAN Domain
Automated
utomatec DF-SLA Module

A ;---->  Information ----—-
I % Extractor ;

SLA
Documents

Dynamic Fine-Grained
SLA

Target Prediction

Decomposer

Optimal Resource Allocation
Prediction

CN Domain
DF-SLA Module

Business
Processing

Target Prediction
Client Logics

Optimal Resource Allocation
Prediction

Reptile (For RAN Domain) \‘

KPI Resource ~

( l Reptile (For CN Domain) |

KPI Resource

1
l— 1|

Monitoring
Module

Allocation and
> Execution

Sub-system «———

,,,,,,,,,,,,, » Dynamic Tariff
Model

Predicted Target Function
Resource Allocation Function
Payment & Penalty Function

Figure 3: End-to-end system design and working architecture
for fine-grained SLA management.

is a sub-system that uses NLP and SC templates for various
commercial BC solutions to convert traditional paper-based
SLAs into ready-to-use SCs?. Finally, in the implementation of
our solution (for prototyping and evaluation), the orchestrator
directly controls the Blockchain system through special APIs.
The orchestrator/BC manager is usually available in commer-
cial BC solutions, which can be augmented with the proposed
solution.

The dynamic fine-grained SLA is divided into domain-
specific SLAs, i.e., RAN and CN, at the beginning of the work-
flow. The dynamic fine-grained SLA generates predictions
using the Reptile-based meta-learning algorithm in the CN and
RAN domains. The section on mapping to SC is shown at the
bottom of the figure. It contains the predicted target function
that starts the resource allocation function. The other three
functions in this block are monitoring of SLOs, dynamic tariff
model, and payment & penalty functions. The monitoring sub-
system provides regular SLO updates every n minutes, where n
is a critical factor in prototype implementation. Reptile ingests
these real-time network states to predict optimized SLA targets
and required resources. The SCs leverage the Reptile forecasts
to automate resource allocation, adhering to the fine-grained
SLA specifications encoded in the logic. This combination of
fine-grained SLA decomposition, machine learning prediction
models, and blockchain-based SCs overcomes the limitations
of static SLAs and centralized management.

The following sections detail the complete SLA-to-SC
framework implementation.

Solution through Dynamic Fine-grained SLA: To enable
responsive, stable performance under diverse real-time net-
work conditions, we implement dynamic fine-grained SLAs.
We employ a highly granular approach to dynamic SLA
for real-time adjustment of specific service metrics based on
current demands. This will allow precision tuning of resources
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to maintain high service quality aligned to needs. However, our
proposed solution uses static SLAs as an essential baseline or
starting point for dynamic fine-grained SLAs. Building upon
this base, our proposed dynamic fine-grained SLA introduces
enhanced flexibility and adaptability and prepares for real-time
conditions like workload, traffic patterns, or other performance
factors. Overall, combining a standardized static SLA and an
adaptive, granular dynamic SLA in our solution provides sta-
bility and responsiveness critical for next-generation services.
Sections IV and V cover the details on the granularity, process
of decomposition, and resource allocation, respectively.

Solution through Smart Contracts: To address challenges
in SLA management related to trust, privacy, immutability,
monitoring, self-execution, and complete automation, this
work utilizes SCs based on blockchain technology. SCs reduce
costs and conflicts between SP and customers. Each network
slice has an individual SLA tailored to its service type,
where resource metrics such as ultra-high data rate, ultra-low
latency, ultra-high reliability, and others must be optimized.
We implement a permissioned blockchain network to execute
the SCs that encode the SLAs. User information like name,
location, service type, and timestamp is stored off-chain, along
with SP data. The SC facilitates resource allocation from
providers to users. Section VI provides further details on how
SCs are mapped, configured, and executed.

IV. IDENTIFICATION OF SLA COMPONENTS

This section provides an in-depth analysis of SLAs and their
individual components. The aim is to deliver a comprehensive
breakdown mechanism of SLA to operate in dynamic envi-
ronments and their influence on resource allocation and man-
agement. Specifically, we emphasize the utilization of fine-
grained SLA analysis to enable optimized performance and
resource management. By dissecting the key constituents of
an SLA, this section establishes a framework for engineering
fine-grained SLAs tailored to emerging SC-based manage-
ment systems. The granular perspective of each component
facilitates adaptable SLAs that can respond in real-time to
changing network and user conditions for next-generation
services. Below, we first give details of the components that we
have identified after analyzing more than a hundred SLAs for
network services and establishing their correlations and inter-
dependencies. Following this, we give details of the SLO and
the specific parameters needed for the 6G eMBB-plus slice.

A. SLA Component Classification & Correlation

Service agreements can be complicated documents usually
drafted for legal purposes. Hence, SLAs for 6G services,
especially slices, must first be dissected to a fine granular
level for enforcement through SCs. Here, we identify 19
components that are usually (and should be) present in eMBB-
plus service SLAs. These components have been identified
by studying more than 100 SLAs? for telecom, Internet,
and computing services and then cross-referencing them from
literature in computing and engineering management domains.
It is important to note that these individual components are
highly interconnected and, hence, require a complete analysis

S @ s &

& o\eé:zo\\ N Vc\ W e((’\@ &
e & ‘ )

(’ 0(’ (4 4 < ‘ \

SRy

&
S BN
< S e NN c, (S RS
oS i eoo%%@ <~°e>\‘*‘l‘\
O\\‘\

Q‘ 9
(‘ NRNPRW (\Qf g\(”
Q SRS
o*\\"\\"’\\e\ye\"BQ '&QO%“Q NN
Monitoring

Validity period

SLA Price

SLA Applicability
Definitions
Reporting Procedure
Repair Mean Time

Chronic Outage
Restriction & Ex.
sLo L

Credit Request Elig.
Planned Service Interp
Termination

- Low

High

Claims Process
Disaster Recovery
Maintenance

Support Coverage
Incident & Problem Mgt.
Dynamic Tariff Policy

Medium

Figure 4: Fine-grained components of SLA and their correla-
tion and interdependencies.

before they can be mapped to SCs. Figure 4, in this regard,
presents a correlation matrix between these components. For
simplicity and in the interest of space, we only show low (or
no) correlation, medium, and high relationship/impact among
the components, and give a detailed description of each one
of these in Appendix AZ.

B. Service Level Objectives & 6G eMBB-plus Parameters

SLOs are the targeted service levels provided to end users,
along with upper and lower bounds. The SLA specifies the
acceptable range of variation for the SLO metric, which helps
ensure that the service meets the user’s requirements. SLOs
(dependent on the service type) are categorized as operational
or performance objectives. Moreover, they include metrics and
target parameters. Metrics are defined according to identifiers
(i.e., latency, throughput, and reliability), and target values are
maximum, minimum, and average values used to evaluate the
metrics.

Operational & Performance Objectives: For the case of
eMBB-plus application scenario, the performance metrics are
peak & experienced data rate, area traffic capacity, user &
control plane latency, peak spectral efficiency, 5" percentile
user spectral efficiency, and energy efficiency. Moreover,
availability is an added operational objective, while service
degradation is taken as a performance objective [3]. These
objectives are based on the parameters (KPIs) listed above
for the eMBB-plus slice in 6G networks and their values
mentioned in Table II. In the interest of space, we have given
details of each of these in Appendix BZ.

V. DECOMPOSITION OF DYNAMIC FINE GRAINED SLA
W.R.T RESOURCE ALLOCATION IN RAN & CN

Decomposing the SLA by specific service and network do-
mains offers enhanced performance and resource management
benefits. It enables optimal resource allocation by providing
greater visibility into domain-specific resources and KPIs
for individual services. This helps prevent under or over-
provisioning of resources. Decomposition also exposes the
objectives most critical to users, facilitating granular SLA
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Table II: Recommended KPI values of eMBB-plus service in
future 6G system.

Reptile Based DNN

Task 1

400MHz - sub-6 GHz band
3.25GHz - mmWave band
100GHz - THz band

1 Maximum Bandwidth {

2 Peak data rate >1 Tb/s

3 Experienced data rate ~1 Gb/s

4 Area traffic capacity 1 Gb/.\s/m2
5 Latency § 10-100 ps
6 Jitter ~1 ps

7 Peak spectral efficiency 60 b/s/Hz
8 Experienced spectral efficiency * 11-16 b/s/Hz
9 Energy Efficiency 1 Tb/joule

+ Band dependent approximations; # Carrier bandwidth is not defined; § Control plane latency may be
higher; * 2x of 5G.

optimization for efficient resource utilization, including net-
work bandwidth, processing, and SLA life cycle management.
Decomposed SLAs allow for the adaptation of performance
metrics and resources per domain as network conditions
change. To decompose the SLA for eMBB-plus service re-
source allocation in RAN and CN domains of a 6G network,
we break it down based on domain-specific performance
metrics and resource allocation policies. Below, we describe
the Reptile mDNN Training model for the proposed system
and individually dissect the SLA for RAN and CN.

A. Reptile based mDNN Training

We first explain the mDNN training process and the algo-
rithm for training, so that understanding SLA decomposition
and performance metrics becomes easier. Figure 5 provides
an overview of the proposed deep neural network architecture
based on the Reptile meta-learning algorithm to train special-
ized models for predicting RAN and CN performance metrics
and resource requirements. Unlike traditional machine learning
methods that require large datasets for effective training,
Reptile algorithm [42] enables rapid adaptation to new tasks
even with limited samples. This is achieved through a unique
mechanism that allows models to quickly grasp new concepts
by iteratively updating their gradients across a distribution of
related tasks.

Objective: The mDNN model is employed for predicting
SLA metrics and allocating resources for slices with dynamic
needs and intermittent demands, i.e. when the user requests a
change in SLOs or the network conditions violate the SLOs
for any SLA. Specifically, when an eMBB-plus slice customer
initially on-boards, historical data to train tailored models
is exceptionally scarce. Reptile empowers our system’s SLA
forecaster and resource manager to quickly adapt during the
first few hours of the new slice’s lifetime, learning optimized
policies even with little operational data. Compared to alterna-
tives (such as model-agnostic meta-learning and meta-gradient
descent), Reptile provides simplicity of implementation and
few-shot solid learning performance. As shown in Figure 5, the
left side enumerates the specific tasks and associated training
data corresponding to each domain’s metrics and resource
types. This encompasses key performance metrics like peak
data rate P4, latency L, bandwidth B, and availability A,
as well as their corresponding resources. The input layer
size depends on the number of features in the domain-
specific datasets. The right side depicts the Reptile-based

Task 3

ey

Task 4

a
%
«

Figure 5: Reptile based mDNN for Radio Access Network and
Core Network.

deep neural network architecture with a shared base model.
The base model distills transferable knowledge across tasks
during meta-training to learn a robust initialization. The output
layer size is set to the number of target classifiers. Relu and
Tanh activation functions are utilized in hidden and output
layers, respectively. The networks are trained on meta-training
data with random initialization of weights and biases via
forward/backward propagation.

Algorithm 1 mDNN Training Algorithm

Require: Tasks: T,, = {71, 72, ..
Require:

- Tn,}
«, B: Step size hyperparameters
Require: m: Number of inner gradient steps
Require: 6: Initial meta-parameters
Ensure: Updated meta-parameters 6

1: while not converged do

2: Sample tasks 71, 72, ..., Ty

3: for all T,, do

4: 0, «— 0

5: for k=1,...., m do

6: Sample support set S, from T,
7 Update 6, = 6, — @VoLt, (fo,:Sn)
8: end for

9: Sample query set Oy, from 7,

10: Evaluate Lpg, = L1, (fo,:On)
11: 60— 60+pB(6,—-0)

12: end for

13: end while
14: return 6

The complete training algorithm is shown in Algorithm 1.
The initial lines outline the requisite inputs, encompassing
relevant elements such as related tasks T, step size hyper-
parameters @ and S, and the number of inner gradient steps
m. The initial parameter 8 serves as the meta-parameter for the
model, representing the adaptable parameters refined through
meta-learning. The algorithm initiates a loop that persists
until a predefined stopping criterion is satisfied. Within this
loop, the support set S, and query set Q, are systematically
sampled from the task. The S, plays a crucial role in the
inner gradient update, contributing to the adaptation of the
task-specific parameters. Simultaneously, the Q, calculates the
query loss based on the updated task parameters 6,,. The Lt,
and Ly, represent the task-specific loss and meta task loss (i.e.,
loss on Q,), respectively. In the final stages of the algorithm,
the meta-parameter 6 undergoes an update via a meta-update
rule. The algorithm’s output is the updated meta-parameters,
which encapsulate the model’s enhanced adaptability acquired
through the iterative process of meta-learning.
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B. SLA Decomposition for RAN

In the following sections, we investigate the performance
metrics and resource requirements related to the RAN domain
for delivering the eMBB-plus service.

1) Performance metrics: After extensive analysis, we deter-
mine that the key performance metrics relevant to the eMBB-
plus service in the RAN domain for 6G networks will include
P" = {D,L,8,7,P4,E4,C}. These are data throughput,
latency, signal strength, user throughput, peak data rate, user-
experienced data rate, and connection density, respectively.
Each of these is a metric. However, in order to enforce one
metric, fine-tuning of many target variables is required. By
focusing the training on these essential RAN service metrics,
the resulting models can effectively forecast performance and,
in turn, enable SC-based SLA governance and responsive
resource allocation for the eMBB-plus service. In order to
simplify the explanation and for prototype implementation,
we select two vital performance metrics, i.e., P4 and L, and
explain the targets and resource parameters for them. Note that
the following process will be done for all the key performance
metrics identified above.

2) Targets: The P, and L target values are set dynami-
cally based on real-time network conditions. We employ the
Reptile meta-deep neural network model described earlier to
predict these target values. The input dataset features for
forecasting P4 include Py = {P;,Nrb,Ns,Nb,Na,Nl,Nm}.
From the above set, the P{'I is the historic values of Py,
Ny is the number of physical resource blocks, Ny is the
number of symbols per Ny, Ny is number of bits per N,
N, is number of antennas, Nj is number of layers, and Np
is modulation order. Similarly, the dataset for predicting L
includes £ = {L£;,d,, di, d;,dy}. Here, L;l are the historic
latency values, while the rest are propagation, transmission,
processing, and queuing delay, respectively. By training on
these relevant RAN features, the meta-learning model can
effectively predict optimized $; and L targets tailored to
the current network state. This enables smart contract-encoded
SLAs to dynamically adapt resources on performance metrics
to maintain QoS.

3) Resource requirements: The key resources for the RAN
domain include: bandwidth, processing power (CPU cycles,
memory, storage), radio resources (frequency bands, transmis-
sion power, antennas, modulation/coding), and edge comput-
ing resources. To optimally allocate these resources per the
dynamic targets, we apply the mDNN model. The dataset
features for predicting $, related resources such as Np and
N based on these input features P’,, Ny, N, Ny, NS},’ and
NB;1. Here, N, Np, NSE,’ and NBE, are the storage, bandwidth
and their respective historic values respectively. Similarly, for
L-based resource allocation, the dataset incorporates L;q, dp,
d;, d., NBL’ and d,, for training, and then the mDNN can
effectively forecast resource Ng. This enables smart contract-
driven autonomous resource provisioning to deliver the eMBB-
plus service per SLA.

C. SLA Decomposition for CN

The following section examines the performance metrics
and resource requirements of the CN domain for the eMBB-

plus service.

1) Performance metrics: The primary performance metrics
for evaluating the CN are P¢ = {£, B, T, P;, A}, where B is
bandwidth, J is jitter, $; is packet loss, and A is availability.
Again, each of these elements is a metric in itself; however, in
order to enforce one metric, fine-tuning many target variables
is required. For this work, we select two vital metrics, i.e.,
A and B to focus the training of the prediction models.
The rationale behind selecting two performance metrics is
to streamline the execution of our suggested solution, though
alternative metrics may also be utilized. By concentrating on
these essential CN service metrics, the resulting models can
effectively forecast performance and facilitate smart contract-
based SLA and resource governance for CN components
delivering the eMBB-plus service.

2) Target: To dynamically adapt A and B targets in the CN
per changing conditions, we utilize the same mDNN model;
however, it is not the same instance. As the CN domain is
separate and its orchestrator is also independently working,
this is a separate instance specific to the CN domain. The
input dataset features for predicting A are A = {A, B, N,}
where A, are historic availability values. For forecasting 8,
the dataset contains, 8 = {8}, Bch, Nmc, Niv} where 8By, are
historic peak bandwidth values, B, is channel bandwidth and
Npc is modulation and coding schemes. By training on these
relevant domain features, the mDNN can effectively predict
optimized A and B targets tailored to the current CN state.

3) Resource requirements: The input dataset features for
predicting A-based resource such as B include: A, B,,
and N,. For B resource allocation B, the dataset contains
B;l, Bch;l, and Np.. Here, the Bch;l are the historic channel
bandwidth values. By training on these relevant domain fea-
tures, the meta-learning model can effectively predict resource
requirements tailored to the dynamic A and B targets. This
allows smart contract-based autonomous resource provisioning
to deliver the eMBB-plus service meeting CN SLAs.

VI. SMART CONTRACTS & SYSTEM MODULES DESIGN

In this section, we discuss the complete design of the
SLA to SC mapping process for the proposed slice and
explain the functionality of different modules as shown in
Figure 3. We describe all the modules from the working and
SC perspectives.

We employed Hyperledger Sawtooth to map fine-grained
SLA components into executable smart contract logic on the
blockchain. The smart contract encoded all signed SLAs,
validity periods, SLOs, pricing, compensation values, and cus-
tomer/provider/monitoring system addresses. In our Sawtooth
system model, each participating node comprises of four key
components - client, REST API, validator, and transaction
processor. The client groups transactions into batches, digi-
tally signs these batches, and then submits them to validator
through a REST API. The validator verifies the batch integrity
and routes it to the appropriate transaction processor. After
validating the batch, the transaction processor commits it on-
chain. The implementation of the same is visible in Figure 8§,
which shows the containerized nodes and the control elements
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(part of client, REST API, and data capturing hooks). Further
implementation details are given in Section VII. The reasoning
for the selection of Sawtooth is already discussed in Section I.

A. Mapping of SLA to Smart Contract

In our presented model, the input received from the SLA-SC
orchestrator is decomposed into dynamic fine-grained SLAs
for eMBB-plus service for RAN and CN networks. These
decomposed SLAs are mapped separately to two different
smart contracts for RAN and CN domains, respectively. How-
ever, the framework for mapping the SLA to a smart contract
is the same for both decomposed SLAs. The Reptile-based
learning algorithm is employed outside the smart contract, and
its output (prediction) is taken by the specific smart contract
for the execution of tasks, i.e., execution of target for optimal
resource allocation.

Figure 6 illustrates the framework for mapping dynamic
fine-grained SLA components (identified in Section IV.A) onto
Sawtooth-based smart contracts'. The left side represents the
SLA elements to encode, while the right depicts a Sawtooth
node. The SLA validity period is programmed as a timer
with start and end times. The service type name extracts
the transaction family for the validator to route transaction
batches. The public and private keys, which are generated
from customer and provider information, enable transaction
signing. These fields populate the transaction header. SLA
organizations, definitions, and descriptions are mapped to
comments. SLOs map to performance monitoring functions,
while the pricing models map to dynamic tariff logic. Chronic
outage and eligibility of credit map to payment and penalty
functions. Planned interruptions and restrictions are unmapped
exceptions.

Once the SC is created and executed, it is responsible for
ensuring that SLOs are met, and if any violation occurs,
corrective measures are taken. Transactions created in the
client connect to the validator and transaction processor via the
REST API. The transaction processor implements the business
logic smart contract, defining the actions on transactions per
the SLA. This includes monitoring metrics, predicting targets,
and allocating resources, payments, and penalties. A dynamic
tariff policy is also encoded.

B. Monitoring System

The monitoring system is the primary subsystem that keeps
a check on the SLO targets and allocation of resources
according to the SLA terms. It is important to note that the
parameter 7 is crucial and needs to be fine-tuned. As discussed
earlier, n is the time difference after which any SC checks for
SLO violations across all KPIs and resources. Smaller values
will lead to quicker prediction and corrective measures, lesser
downtime and penalties, and a better quality of experience
for the user. However, this will require the monitoring system

"Framework does not limit the solution to Sawtooth. In Figure 3, an
Automated Information Extractor module is shown, which is a separate
solution (separate publication). It can generate three different types of SC
for different BCs in multiple languages. However, mapping is the critical
design challenge.

SLA Basic Components Sawtooth Node

SLA Description Client (Creation of Transactions)

Validity Period —_— Set Time (Start & End Time)

Service Type (eMBB-Plus) ——— 5 Name of Transaction Family (Getting Address)
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i (Smart Contract)
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Figure 6: Mapping of SLA’s components to smart contract.
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Credit Request & Eligibility

Chronic Outage

Exceptions

to utilize more resources on the orchestrator end. A larger n
value will utilize fewer such resources, but the downtime and
service degradation will be much more severe, resulting in
more penalties to the SP. In the evaluation section, we show
both these aspects and discuss the consequences.

The payments and penalties are dependent on the monitor-
ing function evaluations. Once the violation is detected, the
prediction resource allocation modules are triggered, which
are explained subsequently.

C. Dynamic Tariff Model

Our proposed solution-based smart contract architecture
also supports dynamic pricing when users request services
beyond the currently defined SLA. When such an extra service
request is received, the smart contract calculates the additional
cost for the resources based on the pricing model encoded
into the contract logic. It queries the user’s account balance
on the blockchain to verify sufficient funds for this ad-hoc
purchase. If an adequate balance exists, the smart contract
facilitates the allocation of the extra requested resources to
the user. However, if the user’s account lacks enough funds,
the smart contract immediately notifies them of insufficient
balance to fulfill the request. The request is suspended until
the user can deposit adequate funds to cover the additional
cost. This integrated dynamic pricing capability enables users
to purchase extra on-demand services while the smart con-
tract mediates transparently. Furthermore, once the request is
approved, the prediction and allocation module will start to
ensure this smooth transition.

D. Predicted Target & Optimal Resource Allocation

The core focus of this mapping is the resource allocation
policy, which is depicted in the flowchart shown in Figure 7.
This mapping ensures that when a service starts, it considers
the available resources and conditions specified in the SLA.
When the predicted parameter value x, reaches the smart
contract, it is checked to determine if it falls within the SLO
range, demonstrating good QoE for the user. If the x, falls
outside the SLO range, it is sent to training modules for
resource prediction R,,. Once the smart contract receives the
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Figure 7: Control flow and policy for resource allocation in
the orchestrator.

R, requirements, it checks its repository to see if those re-
sources are available. The smart contract allows the resources
to the user if the resources are present. If the resources are
unavailable, the smart contract requests them from the resource
provider. If the resource provider supplies the resources, they
are allotted to the user, and the SP pays the resource provider.
Otherwise, a penalty is levied on the SP by the user for failing
to deliver upon resources to maintain the service quality.

E. Payments & Penalty Function

The SLA components, i.e., pricing, credit request, eligibility
criteria, and chronic outage, are programmed in payments and
penalty functions. It gets the input from the monitoring system
and dynamic tariff model through the resource allocation sub-
system. This function calculates conditions, fees, and penal-
ties against the SLA violations for performance metrics and
resource allocation. The other components’ planned service
interruption, restrictions, and exclusions are programmed into
exceptions. These parts are not in the scope of this work, as
they are highly dependent on service providers, local laws,
and market conditions. However, this does not mean that
they cannot be implemented. The proposed framework already
considers them as part of mapping.

VII. PROTOTYPE IMPLEMENTATION & EVALUATION

This section describes the prototype implementation and
evaluates the proposed Reptile-based meta-learning solution
for predicting the network parameters and resources. The
evaluation focuses on assessing the performance of the trained
forecasting models on the defined SLA metrics of Py, L, A,
and B for the RAN and CN domains, respectively. Addition-
ally, the SLA violations and system performance are measured
for the BC network.

A. Setup & Implementation

Testbed for Training & Blockchain: The testbed is built
using multiple systems in a LAN environment connected via
1 Gbps Ethernet links, and TL-SG1024D managed switch, as
shown in Figure 8. The training modules are powered by a
2.4GHz 10-core Xeon server with a RTX3080 12GB GPU and
40GB DDR4 RAM labeled S1. In addition, the Blockchain
system is built using a 3-node Hyperledger Sawtooth network
(N1-N3), where each node has an i5-13500 2.5Ghz processor
with an RTX3060 12GB GPU and 16GB DDR4 RAM. More-
over, all systems utilize NVMe SSDs; hence, IO operations
have a minimum possible delay. In this setup, the S1 Xeon
server hosts the orchestrator module for the proposed system,
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Figure 8: Testbed configuration and topology for prototype im-
plementation. The dashed lines show the logical connectivity
of separate BC networks.

the three systems act as pure Hyperledger Sawtooth 1.2 nodes,
and all of them run Ubuntu 22.04.0 with kernel version 5.15.
Furthermore, they model the RAN and CN separately; hence,
each physical system hosts containers for Sawtooth nodes.
To capture the raw data parameters and evaluate the system,
we have separate application hooks built into the system for
reporting as a control framework.

Dataset & Training: To facilitate training of Reptile models,
synthetic datasets” are used for each parameter and associated
resource for the RAN and CN domains. The training data
forms the basis for evaluating Reptile’s prediction capabilities
on SLA metrics and resources. Separate multilayer neural
network models are created for each domain’s parameters
and resource combinations. Each domain-specific performance
metric and its resources-related tasks, each of which contains
70 K data points, are used to train the models. The models
are then tested using new tasks (30K) not included in the
training dataset. The optimal convergence of the models is
ensured by careful hyperparameter tuning during training. The
performance analysis examines whether the accuracy attained
by the tuned Reptile models is sufficient to deliver reliable
and trustworthy predictions that can drive automated smart-
contract-based SLA management.

Control Framework: We have developed a custom appli-
cation to act as the client (multiple instances) and feed the
orchestrator with SLAs and dynamic changes in requirements.
The orchestrator also acts as an eMBB-plus slice manager;
however, its implementation is limited for the purpose of
the system. In a real 6G environment, this task will be
performed by the Network Operator slice manager, with sig-
nificantly larger functionality. Sawtooth nodes use PoET CFT
for consensus of the SC generated by the orchestrator and a
validator that checks SC for resource allocation. The validator
is modified to mimic an actual client experiencing the impact
of resource allocation and then forms a feedback loop with
the control application at the orchestrator/slice manager. An

2Appendix, related papers, and dataset details are available at:
https://github.com/KashifSharif/SLA_DataSet.git
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Figure 9: Loss curves in RAN domain: (a) Peak data rate
parameter, (b) Peak data rate resources, (c) Latency parameter,
(d) Latency resources.

SC is initiated upon confirmation of the contract fee from
the transaction payload submitted by the user. This triggers
the automated system for mapping SLA components and
conditions into executable smart contract logic on Sawtooth.
Key SLA aspects, such as resource allocation policies, pricing
models, and penalties, are encoded into smart contract func-
tions. Integrated prediction models enable dynamic resource
assignment aligned with the SLA. This implementation em-
ploys x, to optimize resource allocation and ensure service
quality, particularly when user demand increases.

B. Training Model Test Results

Evaluation of the proposed Reptile-based meta-learning
algorithm requires analysis of the training and validation
loss curves during the learning process. It provides critical
insights into the model’s effectiveness for predicting defined
SLA parameters and resources. Note that the resources are
the different resource parameters described in Section V.
The convergence towards minimal loss values proves that the
trained model can achieve high accuracy in predicting desired
SLA targets such as P4, L, 8 and A as well as predict
associated resource requirements.

Results & Analysis: Figure 9 depicts the performance
metrics and their respective resources in the RAN domain
for P4 & L. Figure 9a presents the training and validation
loss trajectories for predicting $; metric for 1000 epochs.
The steady downward progression observed in the training
and validation losses provides empirical evidence of our sys-
tem, especially the trained model’s capability to continuously
enhance its prediction accuracy on this key RAN metric as
more data is processed during meta-training. Figure 9b shows
the training and validation losses when tuning the model
for predicting the RAN resources required to support the
target P4 per slice. Despite some oscillations (log scale), the
declining trend in resource prediction losses validates that the
training model can effectively learn specialized models for
associated resource allocation. The illustration in Figure 9c
shows the training and validation loss trends for forecasting
the £ metric in the RAN. In contrast, Figure 9d is for
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Figure 10: Loss curves in CN domain: (a) Peak bandwidth
parameter, (b) Peak bandwidth resources, (c) Availability
parameter, (d) Availability resources.

the resource allocation based on target £ constraints. As
the epochs increase, a consistent downward progression is
evident in both the training and validation loss curves. This
signifies the model’s capability to continuously enhance its £
prediction accuracy (and corresponding resource requirements)
with more experience.

Figure 10 shows the performance of CN-related metrics
and resources. Figure 10a illustrates the training and valida-
tion loss curves for predicting 8. While there is an initial
distance between the curves, the gap closes as the epochs
increase, showing the improved generalization of the learned
representations of the proposed model. Similarly, Figure 10b
depicts the training and validation loss trends when tuning the
models to predict 8 resource parameters for desired SLOs.
The consistent descent verifies that it can learn across domain-
specific B resources required to deliver committed service
levels. Figure 10c shows the training and validation loss
trends to predict A. A downward slope is again observed;
however, there is a difference in the actual values of training
and validation. Compared to the previous results, this gap
is significantly higher. Close observations have shown that
the availability parameter is more complex than other direct
values, such as bandwidth, data rate, or latency. Hence, minor
artifacts in the dataset may have contributed to this gap.
However, this requires further investigation and will be part of
future work in this project. Figure 10d illustrates the training
and validation losses when specializing our model to forecast
resource allocation based on the predicted A, and a similar
trend is observed as earlier, but without any artifacts.

In summary, in Figures 9 & 10, the losses steadily decline as
the training progresses, validating the proposed model’s capa-
bility to continuously learn. Critically analyzing these graphs
proves that the proposed system can be reliably deployed to
enable automated blockchain-based SLA governance through
accurate service metrics and resource forecasts.

Unseen SLA Validation: In addition to training and val-
idation, the adaptability of the learned models is critically
evaluated by testing performance on new examples not en-
countered during training. For each model trained on a specific
SLA parameter and resource, the test loss is measured for the
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Figure 11: SLO Violations of: (a) i RAN SLA, (b) i CN SLA, (c) j™ RAN SLA, (d) j™ CN SLA, (e) k™ RAN SLA with

¥ =0.5, and (f) k™ RAN SLA with = =0.1.

20 unseen examples. As highlighted in Table III, the mod-
els trained with the proposed algorithm exhibit significantly
reduced test losses compared to the baseline models without
meta-learning. This demonstrates the ability of the proposed
system to produce generalized models that can maintain robust
prediction accuracy. When deployed for real-time SC-based
SLA management, this adaptability is key where inputs may
differ from training.

C. SLO Violation and Reptile Execution Results

To evaluate the overall system functionality and test the
trained models on real SLAs, we used 100 real-world SLAs?
in the proposed system. Figure 11 shows the results for three
randomly selected SLAs (i, j, & k™). The system models
the execution of the SLA for 31 days (mimicking one month
of service), and all the SLAs are executing in parallel, i.e.
the SCs for all are active and their uniqueness guaranteed.

Table III: Loss with unseen data for a random test SLA.

Peak data rate Py 0.0877 0.0767

1

2 Peak data rate P resources 0.3269 0.2966

3 Latency £ 3.9920x10°00 1.5837x1007
4 Latency L resources 0.0118 0.0109

5 Peak bandwidth B 0.0192 0.00608

6 Peak bandwidth B resources 0.1411 0.08465

7 Availability A 2.4286 0.0404

8 Availability A resources 0.1773 0.16787

The evaluations focused on the monitoring interval n, SLO
violation severity (y-axis), and the network dynamicity X. n is
varied between 10 min, 360 min (6 hours), & 1440 min (24
hours). Note that this is where a corrective measure is taken for
any violation, while the violation may have occurred any time
after the last monitoring point. Violation severity is measured
as a percentage of a deviation from the acceptable value
until the service becomes unavailable (100% violation). The
network dynamics X, which forces the violations & severity,
is varied between 0.1 and 0.9, where 0.1 means that 10%
of the resource parameters of the network are continuously
changing. This mimics client joining and leaving, network
connections, and data usage. In the implementation, we ensure
that the parameters selected for change are the ones that
impact Py & L for RAN, and B & A for CN experiments.
The granularity of the discrete-time scheduler is 1 sec in the
control framework, and the RAN and CN domains are modeled
separately for the same SLAs.

Results & Analysis: Figure 11 depicts the SLO violation
when it occurs (real-time) for the three SLAs. The shaded
area represents the threshold of SLOs for the RAN and
CN domains. Figures 11a & 11b show the i™ SLA for the
RAN and CN domains, respectively. The dashed lines in
Figure 1la show the SLO violations without any training
model for different values of X. As expected, once a violation
occurs, the violation continues unless corrective measures are
taken. In traditional systems, human intervention is required
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(after reporting by the client) to address this issue. Although
Figure 11b is for the same SLA, we see fewer violations than
Figure 11a. This difference in the CN and RAN domains is due
to the significantly dynamic nature of RAN and the more stable
nature of the CN. It is important to note that the implemen-
tation test bed is part of a larger project capable of modeling
5G-Advanced slices; hence, the parameter adjustment for RAN
and CN is quite realistic. We also note that the value of n is
critical in removing the violations. Lesser n values resolve this
more quickly than larger values; however, this is at the cost
of running a continuous monitoring system.

Figures 11c & 11d show zoomed-in 10-day SLO violations
for j® SLA in RAN and CN domains, respectively. The
objective is to highlight an anomaly in the violation resolution
process. Also visible in Figure 11b and indicated by shaded
ovals, we found that at some points, the training system did not
predict the resources correctly, or resources were unavailable
to satisfy the SLA conditions. Hence, the violation is pro-
longed until the subsequent monitoring interval and resolved.
Such occurrences are rare, but this does show that higher val-
ues of n will experience longer QoS degradation (and the SP
will be penalized more). Furthermore, we also observed from
different SLAs that they occur when the violation is usually
above 70%. This indicates a scarcity of resources for allocation
and highlights the increased complexity of QoS degradation.
When violations become more extreme, simply adjusting the
resource allocation may not be sufficient. The key takeaway
is that while the proposed system is adept at responding to
transient violations, even with intelligent automation, major
SLO breaches will still necessitate more arduous mitigation
processes spanning hours or days, depending on scale and
complexity.

Figures 11e & 11f show the k™ SLA for the RAN only by
separating the graphs for £ 0.1 and 0.5. This SLA had one
of the highest areas under the curves (boxes) among all the
100 SLAs. Careful examination proves the effectiveness of our
training model, response to dynamicity, monitoring system,
and prediction and resource allocation modules. 99.9 of the
violations are resolved across the 31-day evaluation in the
RAN for both X values. Figure 11 shows the violation and
its severity for each of the four observed parameters. It does
not show the actual violated conditions and the values after
remedial action. In Table IV, we list the exact values of the
regular SLO operation (shaded region in Figure 11), violation
value, values after prediction, predicted resource location, and
penalty amount. As it is impossible to show all the data, we
randomly selected the violation instance from the k™ SLA
shown in Figure 1le & 11f for the RAN. It can be observed
from the table that for each parameter, the predicted values
for resource allocation from the trained model are within the
acceptable range. This demonstrates the critical capability of
the system, such as leveraging tight monitoring feedback and
swift automated mitigation procedures to maintain SLOs, thus
averting prolonged periods of degraded user experience.

D. Blockchain Network Results

The prototype is implemented using Hyperledger Sawtooth;
observing its impact on nodal performance is essential. Fig-

Table TV: SLO violation and prediction values for k" SLA.

Peak datarate  0.0138-0.0596 . o .
P Gbps 0.0045 Gbps  0.0376 Gbps Edge caching Nil
Latency (£)  035-046ms  0.5708 ms 0.394 ms Centralized Nil
caching
Peak bandwidth  0.056-0.089 Channel .
(B) GHz 0.044 GHz 0.06 GHz Bandwidih Nil
Availability (A) 97-99 % 96 % 494 GHz Peak Bandwidth Nil

ure 12 shows the statistics of the BC nodes for 31 days of
SLA execution. The time is measured from the point when
the predicted values are returned and the batch is confirmed,
i.e., BC orchestrator receives values; a transaction is created to
record the changes, then committed to the batch for consensus
(PoET CFT), and finally recorded in the blockchain (batch
confirmed). The resource allocation module of the proposed
system triggers after the batch is confirmed. We plot this BC
latency/consensus time against time for both the RAN and
CN domains and compare them against different values of 2.
In blockchain terms, higher values of X indicate higher TPS
(transactions per second). It can be observed from Figure 12a
that the latency is quite acceptable for n = 10. Although
higher TPS will require more time, reducing the number of
validation nodes may be possible with a secure and controlled
SP. Hence, the dashed line shows a significant time reduction
for £ = 0.9. The figure scale shows smooth lines; however,
the magnification shows the fluctuations per batch on a single
chain. Furthermore, from Figures 12a and 11a we can deduce
that without the SC, the SLOs will remain violated until human
intervention is done. Figure 12b shows the ledger size for
the RAN domain for varying values of X. The transaction
details are the changes in the parameter values, which occupy
a few bytes of data; hence, the overall ledger size with n = 10
increases steadily. Even with 1000 SLAs, the projected storage
requirements are insignificant. In summary, the BC-based
system provides the benefits of smart contracts and secure
storage of records with acceptable delays and storage needs.

VIII. CONCLUSION & FUTURE DIRECTIONS

This research aims to advance the foundational under-
standing of mapping fine-grained SLAs to smart contracts
to realize intelligent, trustworthy 6G network slicing. This
paper proposes an Al and blockchain-based approach to SLA
management for efficient resource allocation in 6G RAN
and CN domain for eMBB-plus slices. The main focus has
been breaking down static SLAs and translating broken-down
components into Hyperledger Sawtooth smart contracts. The

() (b)

Figure 12: Blockchain: (a) Consensus time, (b) Ledger size.
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evaluation demonstrates that the proposed approach is practi-
cal, dynamic, intelligent, and decentralized. Reduced training
and validation losses show that the meta-learning algorithm
successfully adapts to new tasks. Furthermore, dynamic re-
source allocation improves the QoE and reduces the penalties
to service providers.

Based on this work, we have identified several future
directions. Reducing the monitoring parameter will increase
the monitoring costs. As we do not isolate the monitoring
function, CPU and memory usage must be analyzed in future
research. Predictions and corrective measures for all SLAs
are done at the same time. If the number of SLAs increases
significantly, there may be a delay in completing the prediction
and correction processes. Analyzing this and improving the
process can be an exciting direction. Furthermore, grouping
similar SLOs and predicting resources as a group may further
reduce the execution times. The current analysis did not
show any recurring patterns in violations. Patterns in network
dynamics may also create patterns of violations. Identifying
such recurring patterns using a specialized training model may
also be an interesting research direction.
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