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Abstract—We present a novel mixed time and frequency do-
main approach to the formal verification of oscillators properties
which are specified in the frequency domain. We use robust
periodogram specification to specify the oscillator behaviour in
the close vicinity of the limit cycle. Using SAT modulo ODE
(SMO) for Bounded Model Checking (BMC) of the non-linear
hybrid automata, we show that the oscillator hybrid timed traces
satisfy frequency domain specifications.

I. INTRODUCTION

Significant time is spent, in the industry, verifying analog
and mixed signal (AMS) circuits using SPICE simulations.
Formal methods have been successfully used to verify digital
circuits and could provide better solutions for more reliable,
less time consuming AMS circuits design too.

This paper describes the formal verification of the frequency
domain properties of a non-linear oscillator when it operates in
the close proximity of its limit cycle. We propose a mixed time
and frequency domain approach for this purpose, and show
that the hybrid timed traces of an oscillator, robustly belongs to
the frequency domain power spectral envelop specified as con-
straints on periodogram at harmonic frequencies. We model an
oscillator circuit by the non-linear hybrid automaton and use
the recent SMO technique for BMC of hybrid automata [1],[2],
to compute the periodic invariant set (Limit Cycle). This limit
cycle is verified against the robust frequency domain properties
specification represented as constraints on its periodogram [3]
at frequencies of interest.

A survey of the recent formal Analog and Mixed Signal
(AMS) verification approaches can be found in [4]. Frequency
domain approaches have been limited to the small signal AC
analysis of a more approximate linearized model around an
equilibrium point [5],[6].

II. PRELIMINARIES

A. Non-linear Dynamical Systems as Hybrid Automata

Definition 1 (Non-linear Hybrid Automata).
A Non-linear Hybrid Automata [7] is a tuple,
H=(Loc, Var, Flow, Inv, Trans) where,
• Loc is a finite set of locations.
• Var is a set of continuous variables,

Var= {x1, x2.....xn} ⊂ Rn.

• Flow is the set of vector fields, i.e. Flow(`) is an
autonomous subsystem for each ` ∈ Loc and is of the
form,

ẋ = f`(x, u) (1)

f` : Dn
` × Um 7→ Dn

` is a non-linear but at least
locally Lipschitz function of continuous vector x ∈ Dn

` ,
and a non deterministic vector u ∈ Um of inputs and
parameters.

• Inv is a constraint on the domain Dn
` of each location

` ∈ Loc,

Inv(`) = I`(x(t), u) ≥ 0 (2)

• Trans is a set of discrete transitions; Each transition
τ ∈ Trans, is a tuple τ = (`, guardτ , rτ , `

′); where
(`,`′) ∈ Loc are the pre and post modes respectively,
and guardτ is a switching conditions given by system of
equations,

guardτ = Gτ (x(t), u) = 0 (3)

here (guardτ ⊂ Dn
` ) ∈ G, G being the set of guards.

When a guard condition is met, a discrete transition takes
place. rτ ∈ R is a reset, where for each τ ∈ Trans, it is
a relation between elements of guardτ and elements of
Dn
`′ , i.e., rτ ⊂ guardτ ×Dn

`′ . Here R is the set of resets.

We use D =
⋃
`D

n
` .

B. Non-linear Hybrid Automata Verification Using SAT mod-
ulo ODE

Andreas et al. in [1], presented SMO technique for the
non-linear hybrid automata verification. Essentially, it is a
technique based on the BMC of the non-linear hybrid au-
tomata, encoded as a large number of constraints; involving
boolean, linear and non-linear algebraic, and non-linear ODE
constraints. Establishing reachability of a target region (inter-
val), predicative encoding of the hybrid transition system is
used, i.e.,
Φ = DECL[0] ∧ .. ∧DECL[N ] ∧ Init[0] ∧ Trans[0, 1] ∧
.. ∧ Trans[(N − 1), N ] ∧ Target[N ].

This is a N-step unfolding of the transition system; where
DECL[N ] are the simple bounds on variables in the N-th



step, Init[0] is the predicate for initial conditions at the 0-
th step, Trans(N,N − 1) is the transition relation between
variables during N-th and (N-1)th step, and Target[N ] is the
instantiation of the target predicate at the N-th step.

C. Limit Cycles in Hybrid Systems

Here we introduce concepts of the limit sets, periodic orbits,
and the limit cycles in hybrid automata. We define a map
ΦH : R × D 7→ D, which describes piecewise smooth flow
over the hybrid domain D.

Definition 2 (Hybrid Limit Sets).
A point z ∈ D is called an ω-limit point of y ∈ D if there is
a sequence tn → ∞ for which, limn→∞ΦH(tn, y) = z. The
set of all such points of z, is the hybrid ω-limit set LHω (y).

Definition 3 (Hybrid periodic Orbits).
An orbit η is a closed periodic orbit if, for some x ∈ η, it is
not an equilibrium (i.e. ΦH(t, x) 6= x), and ΦH(T, x) = x,
for some smallest T 6= 0. T is called the fundamental period
of η. If η belongs to multiple domains D`, then it is called a
hybrid periodic orbit.

Definition 4 (Hybrid Limit cycle).
A closed hybrid orbit η, is called a hybrid limit cycle if, η ⊂
LHω (y) for some y /∈ η.

III. FREQUENCY DOMAIN PROPERTIES SPECIFICATION OF
HYBRID LIMIT CYCLE

This section introduces robust frequency domain properties
specification of the hybrid limit cycle using periodogram based
power spectral envelop.

A. Robust Specification of a Periodic Function in Frequency
Domain

A scalar function g is periodic with period T if g(t) =
g(t + nT ),∀t ∈ R and ∀n ∈ Z. We denote by P , the
set of all functions, which apart from being T periodic, also
have the property of square sumability over a period T , i.e.,
P ⊂ L2[0, T ]. All such periodic functions g(t) ∈ P can be
represented by the sum of an infinite number of T -periodic
sinusoids as,

g(t) =

∞∑
k=0

(ak cosωkt+ bk sinωkt) (4)

where ωk = 2πk/T , ak, bk ∈ R. Instead of an infinite series
representation of the periodic functions, we use notion of the
almost periodic functions [8], which are represented by at
most a countable number of sinusoids. We denote such set
of almost periodic functions by AP , and therefore g(t) ∈ P
is represented by its approximation Sk(t) ∈ AP ,

SK(t) =
∑

ωk∈ΩK

(ak cosωkt+ bk sinωkt) (5)

where ΩK is the set of K frequencies. The finite series
representation SK(t) is the best approximation of g(t), and it
has a least mean square error property. Let εK = max‖g(t)−
SK(t)‖ represent the maximum approximation error, then g(t)

can be conservatively represented by SK(t) − εK ≤ g(t) ≤
SK(t) + εK . The set F of all pairs {(a0, b0), ...(ak, bk)},
of the Fourier coefficients is called the frequency domain
representation of a periodic function g(t). Instead of specifying
a periodic function g(t) in the frequency domain in terms
of the set F , we use the periodogram specification which is
defined below.

Definition 5 (Periodogram).
The energy content of a signal at each frequency ωk is called
a periodogram, and is given by, pk = (a2

k+b2k). We denote by
P = {p0, .....pK}, the set of all periodograms at frequencies
ωk ∈ ΩK .

To cater for parameter variations, temperature and uncer-
tainty in initial conditions, we introduce the idea of robust
periodogram specification.

Definition 6 (Robustness of Periodogram).
We specify P such that pairs of the Fourier series coef-
ficients (ak, bk) for all ωk ∈ ΩK , result in the function
SK(t) (Eq. 5), which is the approximate representation of
the periodic function g(t) and satisfy the inequality constraint
SK(t) − εK ≤ g(t) ≤ SK(t) + εK . We say that p′k ∈ P has
εk degree of robustness, if it can tolerate an εk amount of
perturbation such that, ∃pk ∈ P : {pk − εk ≤ p

′

k ≤ pk + εk}.

B. Encoding Membership of the Limit Cycle in the Robust
Power Spectral Envelop

Let η is a vector of scalar valued functions of time,
η(t) := {η1(t), ..., ηn(t)} : R 7→ D. In other words,
η(t) = ΦHt (x);∀x ∈ η, i.e., η(t) represent the information
about the hybrid limit cycle η at each time t. We define a
power spectral envelop H(ωk) : ΩK 7→ R+, which maps each
discrete frequency ωk ∈ ΩK to a periodogram pk. The set
APεk of all almost periodic functions belongs to the power
spectral envelop H(ωk) with εk degree of robustness, if the
Fourier series coefficients satisfy the following constraints [9],

• ∀k ∈ N, (ωk > ωK) =⇒ pk = 0,
• ∀k ∈ N, H(ωk) − εk ≤ pk ≤ H(ωk) + εk, such that

0 ≤ ωk ≤ ωK .

We require that for each Sn,K(t) ∈ cl(APεk), the scalar
periodic orbit ηn(t) satisfies the constraint Sn,K(t)− εn,K ≤
ηn(t) ≤ Sn,K(t) + εn,K . Here cl(APεk) denotes closure of
APεk . We encode this by introducing the following set of
constraints for the vector η(t),

ψ1 =

N∧
n=1

 K∧
k=0

(Hn(ωk)− εn,k ≤ pn,k ≤ Hn(ωk) + εn,k)

,

ψ2 =

N∧
n=1

∀t ∈ [tmin, tmax]Sn,K(t) =

K∑
k=0

(an,k cosωkt+ bn,k sinωkt)


,



ψ3 =

N∧
n=1

∀t ∈ [tmin, tmax]Sn,K(t)− εn,K ≤ ηn(t) ≤ Sn,K(t) + εn,K


.

Here the first constraint ψ1 puts upper and lower bounds
on the periodograms at K frequencies in the presence of
εn,k perturbation for N scalar periodic functions. The second
constraint ψ2 ensures that for all time t all the N periodic
variables are approximated by K sinusoids. The last constraint
ψ3 conservatively over-approximate the periodic function ηn
taking in to consideration the error generated by the almost
approximate periodic function Sn,K . The universal quantifi-
cations in the last two constraints are implicit, i.e. the BMC
algorithm using SAT modulo ODE verify, whether there is any
time instant t, at which any of these constraints are violated.

C. Membership as BMC Target Predicate

We determine the membership of the hybrid timed traces
in the robust power spectral envelop by incorporating
the additional set of constraints ψ1, ψ2, , ψ3, in the BMC
algorithm discussed in section II.B. The initial conditions to
the BMC is given in the form of a box Binitial (Considering
two dimensional system). Apart from the BMC ODE
constraints, we add the set of constraints ψ1, ψ2, , ψ3, for
each scalar variable xn to the BMC algorithm. In the ‘Target’
of the BMC algorithm, we introduce the following predicate,
i.e.,

¬(time > 0 ∧ time <= tmax ∧ xn ∈ Binitial) ∨
¬(‖ηn(t)− xn(t)‖ ≤ σ)
This target predicate is actually a disjunction of two predicates.
The predicate ¬(time > 0∧ time <= tmax ∧ xn ∈ Binitial),
ensures that starting in the box Binitial, the trajectories
would return back to the same box before the maximum
time limit is elapsed. A satisfiable valuation of this predicate
is a counterexample of the periodicity property. The second
predicate ¬(‖ηn(t) − xn(t)‖ ≤ σ), ensures that for all the
time, the distance of the hybrid timed traces from the possible
time domain periodic trajectories obtained from the frequency
domain specification, must be less than a user defined error.
A satisfiable valuation of this predicate indicates the violation
of the frequency domain specification implicitly.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

We have used Tunnel diode Oscillator (TDO) and Voltage
Controlled Oscillator (VCO) benchmarks for the evaluation of
our proposed methodology Figs. 1, that have been taken from
[10],[11]. Equations Eq. 6, and Eq. 7, represent the non-linear
ODE model of the TDO, where Id(Vd) is the non-linear model
of the tunnel diode. Mathematical model of VCO is given
in Eqs. 8, 9, 10, where IDS(VGS , VDS) is the Schichman-
Hodges PMOS model [11]. For TDO we have used parameters,
C = 1nF ± 2%, L = 1mH ± 2%, R = 0.2Ohm and Vin ∈

Figure 1: Oscillators Circuit Diagrams,Left:TDO,Right:VCO

Vd Below 0.055

Vd Between 0.055-0.35

Vd Above 0.35

V d ≥ 0.055V d ≤ 0.055

V d ≤ 0.35 V d ≥ 0.35 Lin1/Cut2

Lin1/Sat2 Sat1/Sat2 Sat1/Lin2

Cut1/Lin2

Figure 2: Hybrid Automaton,Left:TDO,Right:VCO

[0.35, 0.36]. Similarly, for VCO we have set, C = 3.43nF ±
2%, L = 2.85mH ± 2%, Vctr = 0 and VDD ∈ [1.8, 1.85]. We
have used the SMO solver iSAT-ODE [1], to exercise BMC
formulations of the non-linear hybrid automata, and Matlab
[12] to compute periodogram specifications. We have used a
2.6 GHZ Intel(R) Core(TM) i5 machine with 4 GB of memory
for all the experiments.

V̇d =
1

C
(−Id(Vd) + IL) (6)

İL =
1

L
(−Vd + IL.R+ Vin) (7)

V̇D1 =
−1

C
(IDS1(VD2 − VDD, VD1 − VDD) + IL1) (8)

V̇D2 =
−1

C
(IDS2(VD1 − VDD, VD2 − VDD) + Ib − IL1)

(9)

İL1 =
1

2L
(VD1 − VD2 −R(2IL1 − Ib)) (10)

B. Results
Based on the non-linear diode and PMOS models in

[10],[11], we got the non-linear hybrid automatons of TDO
and VCO Fig. 2. Simulation traces are shown in Fig. 3a,
Fig. 3b, whereas periodogram specifications for these traces
are in Fig. 4a,. 4b, for TDO and VCO respectively. Here we
have only shown specification for the fundamental frequency
of the variables (Vd for TDO, and V D1 for VCO). The
upper and lower bounds on these periodograms have been
found based on the designer judgement, i.e., we chose random
values in the parameter spaces and correspondingly varied
the “ power spectral envelop" and arrived at these bounds.
Taking Vd ∈ [0.55, 0.58], IL = 0.0 as the initial conditions
for the state variables, we model checked the TDO hybrid
automaton for eight unwindings of the BMC formula Tab. IIa.
Similarly for VCO, we considered initial conditions V D1 ∈
[−1.5,−1.4]volts, V D2 ∈ [−0.9,−0.8]volts, IL = 0.06mA
and obtained the BMC results for eight unwindings of the
formula Tab. IIb.



(a) TDO Limit Cycle Simulation (b) VCO Limit Cycle Simulation

Figure 3: Simulation Traces of Hybrid Automata

(a) TDO Robust Periodogram Specification (b) VCO Robust Periodogram Specification

Figure 4: Frequency Domain Properties Specifications

Depth Decision Time(Seconds)
0 Unsatisfiable 0
1 Unsatisfiable 81.07
2 Unsatisfiable 83.22
3 Unsatisfiable 304.37
4 Unsatisfiable 352.44
5 Unsatisfiable 1299.64
6 Unsatisfiable 1448.71
7 Unsatisfiable 26779.75
8 Unsatisfiable 27096.21

(a) TDO Verification Results

Depth Decision Time(Seconds)
0 Unsatisfiable 0
1 Unsatisfiable 6.13
2 Unsatisfiable 206.45
3 Unsatisfiable 538.39
4 Unsatisfiable 947.10
5 Unsatisfiable 2237.89
6 Unsatisfiable 3457.43
7 Unsatisfiable 11672.11
8 Unsatisfiable 15892.13

(b) VCO Verification Results

Table I: Experimental Results.

V. CONCLUSION

In this paper we have presented a novel mixed time and
frequency domain approach to verify frequency domain prop-
erties of oscillators when they operate in the close vicinity of
the limit cycle.
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