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Abstract

Research on developing deep learning techniques for autonomous spacecraft relative navigation challenges is continuously growing in recent
years. Adopting those techniques offers enhanced performance. However, such approaches also introduce heightened apprehensions regarding
the trustability and security of such deep learning methods through their susceptibility to adversarial attacks. In this work, we propose a novel
approach for adversarial attack detection for deep neural network-based relative pose estimation schemes based on the explainability concept.
We develop for an orbital rendezvous scenario an innovative relative pose estimation technique adopting our proposed Convolutional Neural
Network (CNN), which takes an image from the chaser’s onboard camera and outputs accurately the target’s relative position and rotation. We
perturb seamlessly the input images using adversarial attacks that are generated by the Fast Gradient Sign Method (FGSM). The adversarial attack
detector is then built based on a Long Short Term Memory (LSTM) network which takes the explainability measure namely SHapley Value from
the CNN-based pose estimator and flags the detection of adversarial attacks when acting. Simulation results show that the proposed adversarial
attack detector achieves a detection accuracy of 99.21%. Both the deep relative pose estimator and adversarial attack detector are then tested on
real data captured from our laboratory-designed setup. The experimental results from our laboratory-designed setup demonstrate that the proposed
adversarial attack detector achieves an average detection accuracy of 96.29%.
© 2024 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction1

The growth of deep learning-based techniques has drawn2

increasing attention in various domains of application, such3

as image processing, speech recognition, and many other4

challenging Artificial Intelligence (AI) based tasks (Guo5
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neering

et al., 2016). Vision-based autonomous orbital space ren- 6

dezvous (Wie et al., 2014), is an application for which adopt- 7

ing deep learning approaches to spacecraft position and attitude 8

estimation is continuously gaining interest within the research 9

community and the space agencies (Song et al., 2022; Kisantal 10

et al., 2020). 11

The state-of-the-art achievements in deep learning (DL) re- 12

search demonstrate that the Convolutional Neural Networks 13

(CNNs) have successfully gained outstanding performance in 14

computer vision applications, such as object detection and tar- 15

get localisation (Ren et al., 2017; Redmon & Farhadi, 2018; 16
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Cebollada et al., 2022). Determining the pose of a spacecraft’s17

relative state by processing input images is typically achieved18

through the six Degree-of-Freedom (6 DOF) pose estimation19

of the target object frame relative to the camera (onboard the20

spacecraft) frame. These vision-based pose estimation meth-21

ods are traditionally computed by matching relative features on22

images captured by the camera to relative locations in the tar-23

get frame. Different from the traditional approaches, the CNNs24

can be trained to detect features from raw image data and es-25

timate the relative pose by regressing the position and attitude,26

without the need for manual feature engineering which is often27

required in traditional computer vision methods. The advan-28

tages of CNN-based pose estimation approaches are that they29

can potentially lead to better performance in complex orbital30

scenarios and more robustness to variations in lighting, view-31

point, and cluttered background.32

Recent achievements in DL-based pose estimation demon-33

strate outstanding accuracy performance (Phisannupawong34

et al., 2020; Oestreich et al., 2020; Rondao et al., 2022;35

Chekakta et al., 2022). However, the vulnerability of such36

deep learning scheme can be questionable (Chawla et al.,37

2022; Nemcovsky et al., 2022; Tian et al., 2024).Indeed, mi-38

nor changes in the spacecraft onboard camera acquired images39

that is used by the CNN-based pose estimator can cause CNNs40

to make wrong predictions due to their reliance on low-level af-41

fected features, such as edges and textures, and their high sen-42

sitivity to slight variations in the input space. Those changes in43

the input images and thus on features that the CNN-based pose44

estimation relies on can be caused by adversarial attacks (Lin45

et al., 2020). Adversarial attacks aim to make small perturba-46

tions to the input images that are imperceptible to human vi-47

sion and can significantly affect the CNN’s prediction (Grabin-48

ski et al., 2022). For real-world applications where CNNs are49

applied to estimate the relative pose of spacecraft, applying an50

adversarial attack to the input images can potentially make the51

CNNs output the wrong position or attitude of the target. This52

could seriously damage the autonomous rendezvous operation53

system if wrong pose data are involved to generate any further54

actions, such as guidance commands for the spacecraft to ren- 55

dezvous and/or dock to the target satellite. 56

One of the significant challenges associated with deep neu- 57

ral networks is that these models usually lack of transparency, 58

which means people cannot understand how the deep neural 59

networks achieve their decisions. To address this issue, eX- 60

plainable AI (XAI) aims to provide an understandable expla- 61

nation for the AI models’ decision-making process. By apply- 62

ing XAI methods to CNNs, such as Class Activation Mapping 63

(CAM) (Pope et al., 2019), Layer-wise Relevance Propagation 64

(LRP) (Nazari et al., 2022) and SHapley Additive exPlanation 65

(SHAP) values (Lundberg & Lee, 2017), users can understand 66

how CNNs work and why models output their relative pose 67

predictions. This nice characteristic of XAI methods can po- 68

tentially be adopted in detecting adversarial attacks on CNN 69

models. 70

This work aims to present an innovative demonstration of 71

the vulnerability of CNN-based spacecraft rendezvous relative 72

pose estimation scheme to digital adversarial attacks on camera 73

input images and proposes a novel method for detecting those 74

adversarial attacks when they may occur. In this paper, a vision 75

based orbital autonomous rendezvous dynamic scenario is sim- 76

ulated. A CNN-based pose estimator is designed and trained to 77

estimate the relative position and attitude of the target satellite 78

involving a modified Darknet-19 (Redmon & Farhadi, 2017) as 79

a feature extractor. The Fast Gradient Sign Method (FGSM) is 80

employed to introduce small perturbation attacks to the input 81

images. Various configurations of the FGSM attack are devel- 82

oped to demonstrate the impact of digital adversarial attacks 83

on the CNN-based pose estimator. An LSTM-based detector 84

exploiting the explainable Shap values of the CNN based esti- 85

mator is then proposed to detect the adversarial attacks acting 86

on the input images and thus the CNN based estimator outputs. 87

To this end, this paper makes the following contributions: 88

• Firstly, a CNN-based relative pose estimator for close- 89

range rendezvous is introduced, which is subsequently for- 90

mulated as the target DL-based navigation system against 91

adversarial attacks. 92
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• Secondly, the Fast Gradient Sign Method (FGSM) Good-93

fellow et al. (2014) is utilised to generate invisible pertur-94

bations in the input images, introducing a range of FGSM95

attack configurations to illustrate the effects of digital ad-96

versarial attacks on the CNN relative pose estimator.97

• Then, an LSTM-based adversarial attacks detection mech-98

anism is proposed, leveraging the explainable (SHAP)99

value (Lundberg & Lee, 2017) from the CNN-based nav-100

igation system to identify adversarial attacks affecting the101

input images.102

• Subsequently, the CNN-based relative pose estimator103

and LSTM-based adversarial attacks detection mechanism104

have been evaluated in both synthetic data and real-world105

data obtained from our laboratory to demonstrate the per-106

formance of proposed frameworks.107

The paper is organised as follows: Section 2 provides an108

overview of current DL-based spacecraft pose estimation ap-109

proaches and discusses existing methods for detecting adver-110

sarial attacks. Section 3 outlines the proposed design of the111

CNN-based pose estimator, how to adopt FGSM attacks to the112

pose estimator, and the design of the LSTM-based adversarial113

attack detector. Section 4 presents the test experiments that are114

conducted on both simulation data and real-world data obtained115

from our laboratory. Finally, Section 5 concludes the paper and116

discusses future work.117

2. Background and Related Works118

2.1. DL-based Spacecraft Relative Pose Estimation119

Sharma et al. (2018) proposed a relative pose classification120

network which is based on AlexNet (Krizhevsky et al., 2012)121

architecture for non-cooperative spacecraft. In their design, the122

convolutional layers in AlexNet are initially trained on Ima-123

geNet dataset (Deng et al., 2009) as feature extractors. The pre-124

trained feature extractors are adopted with two fully-connected125

layers and one classification layer with training on ten sets of126

synthetic images that were created from Tango spacecraft flown127

in the Prisma mission (Persson et al., 2006). Their work shows128

that the CNN-based relative pose classification outperforms the 129

accuracy of an architecture based on classical feature detec- 130

tion algorithms. However, this network is designed to output 131

a coarse pose classification and cannot meet the precision re- 132

quirements for fine position and attitude estimation missions. 133

Yang et al. (2021) have proposed a CNN-based pose estima- 134

tion method to estimate the relative position and orientation of 135

non-cooperative spacecraft. In their approach, the pre-trained 136

ResNet-50 (He et al., 2016) is adopted as the feature extrac- 137

tor, and two fully-connected layers are concatenated after the 138

feature extract to output the relative position and orientation of 139

the target spacecraft, respectively. To adapt the network to esti- 140

mate the relative pose of other similar spacecraft, an additional 141

output layer is concatenated with the output of position and ori- 142

entation to predict the category of the target spacecraft. Dif- 143

ferent from previous work introduced by Sharma et al. (2018), 144

this work can output the relative position and orientation of the 145

target spacecraft, instead of a coarse pose classification. Sim- 146

ilarly, pre-trained ResNet has also been used as the backbone 147

by Proença & Gao (2020). In this work, the estimation of po- 148

sition is achieved by two fully-connected layers with a simple 149

regression, and the relative error is minimised based on the loss 150

weight magnitudes. Then, the continuous attitude estimation is 151

performed via classification with soft assignment coding (Liu 152

et al., 2011). 153

Rather than estimating the relative pose of spacecraft by us- 154

ing a single input frame, consecutive image inputs have been 155

considered by group previous work, named ChiNet (Rondao 156

et al., 2022). The ChiNet featured a Recurrent Convolutional 157

Neural Network (RCNN) architecture, which involves a mod- 158

ified Darknet-19 (Redmon & Farhadi, 2017) as an image fea- 159

ture extractor and followed by LSTM units to deal with the se- 160

quences of input images. The ChiNet takes 4-channels input 161

which not only includes the RGB image but also a thermal im- 162

age of the spacecraft that has been stacked to the fourth channel 163

of input. The ChiNet also proposed a multistage optimisation 164

approach to train the deep neural network to improve the per- 165

formance in spacecraft relative pose estimation. 166
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2.2. Explainability in CNNs167

While recent approaches to DL-based spacecraft relative168

pose estimation demonstrate outstanding performance in terms169

of prediction accuracy, understanding how these models predict170

relative pose is essential for providing robust solutions for fu-171

ture space rendezvous missions. As a new approach solution,172

eXplainable AI (XAI) techniques offer the possibility to anal-173

yse gradients in DL models to indicate the significance of input174

variables in the estimation decision-making process.175

Lundberg & Lee (2017) proposed the SHAP values to in-176

terpret complex machine learning models. The SHAP value177

is based on a concept from game theory called Shapley val-178

ues. These are used to fairly distribute the payoff among the179

players of a cooperative game, where each player can have dif-180

ferent skills and contributions. Similarly, SHAP values assign181

each feature an importance value for a particular prediction and182

provide insights into the contribution of each feature. By ex-183

amining the SHAP values of machine learning models, we will184

able to understand the predictions of complex machine learning185

models.186

Contrastive gradient-based (CG) saliency maps (Simonyan187

et al., 2013) are visual explanation methods for deep neural188

networks. They produce a heat map where the norm of the189

model’s gradients indicates the significance of input variables.190

The heat map highlights the areas in the input image that would191

change the output class if they were changed. By accessing the192

heat map, users can identify the most relevant features for the193

model’s prediction.194

Class Activation Mapping (CAM) (Zhou et al., 2016) gen-195

erates visual explanation maps by finding the spatial locations196

in the input image that contribute the most to a specific pre-197

diction. The CAM is particularly helpful in image classifica-198

tion tasks through CNNs. Similarly, gradient-weighted CAM199

(Grad-CAM) (Selvaraju et al., 2017) extends the work of CAM200

and provides visual explanations for decisions made by a wide201

range of CNN-based methods. Grad-CAM utilises the gradients202

of any target concept, flowing into the final convolutional layer203

to produce a localisation map that highlights the important re-204

gions in the input image for predicting the concept. These XAI 205

methods interpret the CNNs, making people understand how 206

and why CNNs make certain predictions. However, since then, 207

there has been no specific analysis on interpreting the DL-based 208

spacecraft relative pose estimation to improve their explainabil- 209

ity. 210

2.3. Adversarial Attacks 211

Adversarial attacks for CNNs aim to make small perturba- 212

tions on the original input images where original and perturbed 213

images look similar in human vision but can significantly im- 214

pact the CNNs’ predictions. However, very limited research 215

works are investigating how adversarial attacks can impact DL- 216

based pose estimation systems. Chawla et al. (2022) demon- 217

strate the effect of different types of adversarial attacks on the 218

predictions of the DL-based pose estimation system. Their 219

work shows that adversarial attacks can significantly impact 220

monocular pose estimation networks, leading to increased tra- 221

jectory drift and altered geometry. Similarly, Nemcovsky et al. 222

(2022) illustrate that the physical passive path adversarial at- 223

tacks can seriously increase the error margin of a visual odom- 224

etry model which is used in autonomous navigation systems 225

leading onto potential collisions. 226

The impacts of adversarial attacks have garnered significant 227

attention in the DL-based autonomous systems. Ilahi et al. 228

(2021) provide an extensive overview of recent methodologies 229

for adversarial attacks on Deep Reinforcement Learning mod- 230

els applied to autonomous systems, as well as the existing tech- 231

niques for mitigating these attacks. Wang & Aouf (2024) ex- 232

amine the effects of perceptual perturbations on vision-based 233

autonomous driving systems and propose an optimised pol- 234

icy to counter adversarial attacks on observation perturbations. 235

Tian et al. (2024) explore multi-label adversarial example at- 236

tacks targeting multi-label False Data Injection Attacks for lo- 237

cational detectors, highlighting significant security vulnerabili- 238

ties in DL-based smart grid systems. 239

To protect the DL-based system from adversarial attacks, 240

Liu et al. (2020) proposed a detection method based on the ro- 241

bustness of the classification results. Their results show that 242
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the detector performs well against gradient-based adversarial243

attacks. Our group work, Hickling et al. (2023) proposed a244

CNN-based adversarial attack detector and an LSTM-based245

adversarial attack detector for Deep Reinforcement Learning246

(DRL) based Uncrewed Aerial Vehicle guidance. The simula-247

tion results show that the LSTM-based adversarial attack detec-248

tor leads to 90% detection accuracy on the DRL model. It also249

suggests that the LSTM-based detector performs much more250

accurately and quicker than the CNN-based adversarial attack251

detector. Indeed, the LSTM-based detector is demonstrated to252

meet the real-time requirement in DRL based guidance.253

To the best of our knowledge, as of yet, there is no literature254

looking at the impact of adversarial attacks in spacecraft relative255

pose estimation and how to detect those adversarial attacks in256

DL-based spacecraft relative pose estimation systems and this257

work first time proposes this. Our objective is to ultimately258

create an adversarial attack detector for the space navigation259

system, which employs SHAP values explainability mechanism260

to detect and flag potential adversarial attacks.261

3. Methodology262

In this section, a CNN-based spacecraft relative pose esti-263

mator is newly designed with the aim of providing a reliable264

estimated position and attitude of the target spacecraft in as265

rendezvous scenario. Then, the FGSM attacks are adopted on266

the spacecraft onboard camera resulting in an adversarial im-267

age to evaluate the impacts on the proposed deep pose estima-268

tor. Next, SHAP values are introduced to generate XAI sig-269

natures for both adversarial and normal input images. Finally,270

an LSTM-based adversarial detector is proposed and trained,271

which learns normal and adversarial SHAP values to detect the272

adversarial attacks on the spacecraft relative pose estimator.273

3.1. CNN-based Spacecraft Relative Pose estimator274

3.1.1. Overall architecture design275

Similar to most DL-based spacecraft relative pose estimation276

algorithms, CNN is applied to extract features in the proposed277

pose estimator. The overall design of the pose estimator follows278

the design methodology in ChiNet (Rondao et al., 2022). The279

Darknet-19 (Redmon & Farhadi, 2017) is originally trained in 280

ImageNet (Deng et al., 2009) dataset which has an input size of 281

244×244×3. In our design, input images of the pose estimator 282

have a larger size than ImageNet images. Therefore, the first 283

convolutional layer in Darknet-19 is configured with a kernel 284

size of 7 × 7. Following the approach of Darknet-53 (Redmon 285

& Farhadi, 2018), the maxpooling layers in the Darknet-19 are 286

replaced by 3× 3 convolution operation with a stride of 2. Sim- 287

ilarly, as the Darknet-53 approaches, the residual connections 288

are also adopted to the proposed pose estimator. Batch Normal- 289

isation (Ioffe & Szegedy, 2015) layers are applied after each 290

convolutional layer. 291

Our deep spacecraft relative pose estimator aims to output 292

the relative position and attitude of the target directly. There- 293

fore, two separate FC layers are applied. The first FC layer in- 294

volves 3 output nodes to output the relative position in (x, y, z) 295

and the second FC layer adopts a 6-dimensional (6-D) vector to 296

represent the relative attitude of the target spacecraft. Finally, 297

two FC layers are concatenated together to output the relative 298

6-DOF pose. In the second FC layer, 6-D vectors are applied to 299

represent the relative attitude of the target spacecraft, instead of 300

using quaternion representation. The reason is that the relative 301

pose estimator is designed as a regression problem where the 302

output has to be continuous. However, the normal attitude rep- 303

resentation of quaternion is discontinuous, due to its antipodal 304

ambiguity, i.e. −q = q. Therefore, the proposed pose estimator 305

applies the 6-D vector formulated by Zhou et al. (2019), which 306

mapped the 3-dimensional rotations into a 6-D continuous rota- 307

tion. The overall design of the spacecraft relative pose estimator 308

is presented in Fig. 1. 309

3.1.2. Synthetic data generation 310

To train and test the spacecraft relative pose estimator, syn- 311

thetic datasets are generated in Blender, which is an open- 312

source 3D modelling software. The spacecraft target model 313

used in the synthetic dataset generation is the Jason-1 satel- 314

lite, which was downloaded from the NASA 3D Resources 315

website (Jason-1 3D Model). Dynamic simulation of the ren- 316

dezvous is developed to generate the synthetic dataset in which 317
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Fig. 1. The overall architecture of the proposed spacecraft relative pose estimator. The blue blocks represent the convolutional layers, which are formatted as
(layer size, kernel size, stride)). Each convolutional layer is followed by a batch normalisation layer and LeakyReLu activation. The yellow block indicates the
Global Average Pooling (GAP) layer that downsamples the exacted features to a fixed 1D vector of 1000 units. The green blocks represent FC layers that will output
the estimated relative position and attitude, respectively.

the camera onboard the chaser spacecraft starts at 60 metres318

away in z − axis from the target and end at 10 metres away319

from the target in z − axis, i.e. (0,0,10). Random rotation of320

the camera and target is considered in the synthetic data gen-321

eration. Many trajectory sequences are generated and each se-322

quence contains 2,500 RGB images. Each image has a size323

of 744 × 480. To prevent overfitting in the deep relative pose324

estimator network, random rotation of the target spacecraft is325

applied to the model, and the camera is initialised at various326

positions in the synthetic data generation. Table 1 illustrates327

the synthetic dataset generated for training and validating the328

deep pose estimator.329

Table 1. Example of synthetic data generated from Blender

Sequence ID Start Position Target Rotation
0 (0,0,60) 0
1 (-15,-25,60) 0
2 (-15,25,60) 0
3 (15,25,60) 0
4 (15,-25,60) 0
5 (-15,-10,60) ± 10 deg
6 (-15,10,60) ± 10 deg
7 (15,10,60) ± 10 deg
8 (15,-10,60) ± 10 deg
9 (-15,-10,60) ± 10 deg

10 (-15,10,60) ± 10 deg
11 (15,10,60) ± 10 deg
12 (15,-10,60) ± 10 deg

3.1.3. Loss Function 330

Training the spacecraft relative pose estimator can be for- 331

mulated as a regression problem, where the total loss function 332

combines the loss in position and loss in attitude. These are 333

computed by Eq. (1) and Eq. (2), respectively, which were orig- 334

inally proposed by Kendall et al. (2018). Followed by Rondao 335

et al. (2022), a trainable weight is attributed to each loss, which 336

corresponds to the task-specific variance of the Gaussian distri- 337

bution. The total loss is then formulated in Eq. (3). 338

Lp =

B∑
i=0

(||pi
pred − pi

gt ||) (1)

Lr =

B∑
i=0

(||ri
pred − ri

gt ||) (2)

Ltotal = exp(−2σp)Lp + exp(−2σr)Lr + 2(σp + σr) (3)

where the ppred and rpred indicate the predicted position and 339

attitude, and pgt and rgt indicate the ground truths position and 340

attitude, respectively. B is the batch size and || · || donates the L2 341

norm. σp and σr represent the learnable weights for position 342

and attitude, respectively. 343

3.2. Adversarial Attacks 344

In this work, the adversarial examples are generated by 345

FGSM attacks (Goodfellow et al., 2014). The FGSM attacks 346

aim to add small perturbations to the input images which will 347
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(a) (b) (c)

Fig. 2. An example of applying FGSM attacks to the input image. (a) the original input image. (b) perturbation patch with ϵ = 0.05. (c) resultant adversarial image.

maximise the network’s loss. The efficacy of adversarial at-348

tacks, including the FGSM attacks used in this work, can be349

influenced by the backbone neural network employed in per-350

ception systems. Different neural network architectures may351

exhibit varying levels of robustness and vulnerability to spe-352

cific types of adversarial attacks. Therefore, the effectiveness353

of these adversarial patches is inherently related to the specific354

CNN architectures employed. The equation in Eq. (4) describes355

how to generate an adversarial example for a given input image356

x by FGSM attack.357

x′ = x + ϵ × sign(∇xL(θ, x, y)) (4)

where ϵ is a value of the perturbation effect which describes358

how strong the attack is. L is the loss of the input x with ground359

truth of y . The (∇x calculates the loss gradient, L for input im-360

age x with relative ground truth y, and θ indicates the trained361

network’s parameters. Depending on the quality of input im-362

ages and the attack strength, the result of the FGSM attack can363

be modified by changing the ϵ value.364

In real implementation, the ϵ needs to be small enough to365

ensure the perturbations on the input image are seamless and366

cannot be visible by human vision but still significantly change367

the deep model’s predictions. The ϵ value should be in the range368

of (0,1), where a value of 0 means the adversarial image will369

be the same as the input image without any perturbation and370

a value of 1 means the adversarial image will be perturbed as371

significant distorted image to human vision. Fig. 2 illustrates372

an example of applying FGSM attacks to input images of the373

spacecraft relative deep pose estimator.374

3.3. Explanability and Adversarial Attacks Detector 375

3.3.1. Explanability via DeepSHAP 376

The black-box nature of deep neural networks makes users 377

can only observe the prediction of these models, but do not 378

know the reasons for getting correct or wrong predictions. XAI 379

techniques are developed to interpret the DL models. When the 380

model’s prediction is changed, the XAI will generate relative 381

explanations to explain why the model is getting the prediction. 382

In this work, we proposed a novel approach that adopts XAI 383

techniques by applying the change in SHAP values of the input 384

images as a measure to determine whether an adversarial attack 385

happens on input images. 386

Originally, SHAP is proposed based on the idea of Shap- 387

ley values, which are designed to assign a credit to every in- 388

put feature for a given prediction. Generating SHAP values 389

for DNNs can be computationally expensive, as the DNNs nor- 390

mally contain a huge amount of features. Thanks to the work of 391

DeepLIFT (Shrikumar et al., 2017), Shapley values for DNNs 392

can be estimated by linearising the non-linear components of a 393

neural network, a method referred to as DeepSHAP (Lundberg 394

& Lee, 2017). This is achieved by utilising a reference input 395

distribution, which can be linearly approximated, to estimate 396

the expected value for the entire model. 397

However, directly generating SHAP values for the spacecraft 398

relative pose estimator still requires a large amount of computa- 399

tional resources. The pose estimator is based on CNNs with im- 400

age inputs that contain thousands of pixels. Using DeepSHAP 401

for image input requires generating Shapley values for each sin- 402

gle pixel for every output neuron. Therefore, in this work, we 403
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consider computing the SHAP values for the subsampling layer404

in the pose estimator, instead of computing them for the input405

image. As demonstrated previously, the spacecraft relative pose406

estimator contains a GAP layer that downsamples feature maps407

from the prior convolutional layer to 1000 samples. For exam-408

ple, computing SHAP values for a 744×480 RGB image needs409

to compute 1,071,360 pixels, instead, the GAP layer in the pose410

estimator only employs 1000 neurons. As a result, SHAP val-411

ues are generated for the outputs of the GAP layer that only412

need to compute 1000 features. This saving in the computation413

makes the generation of SHAP values for the deep pose estima-414

tor could potentially meet the implementation time constraints.415

3.3.2. Adversarial attack detector416

To detect any incoming adversarial attacks on the spacecraft417

deep relative pose estimator trhough the onboard camera, an418

LSTM-based adversarial attacks detector is proposed. The de-419

tector aims to monitor the SHAP values generated from the out-420

put of the GAP layer and detect any slight anomaly changes that421

could result based an adversarial attack. The LSTM is a type422

of Recurrent Neural Networks (RNNs) that is widely used in423

learning from time-series data, such as speech recognition (Yu424

et al., 2019). The LSTM architecture was originally proposed to425

address the long-term dependency issue in conventional RNNs.426

It can enable the propagation and representation of information427

over a sequence without causing useful information from dis-428

tant past time steps to be ignored.429

In our approach, the SHAP values are generated based on430

the prediction of each output neuron in the proposed deep pose431

estimator. Different from applying adversarial attacks on a clas-432

sification CNN that only change the output label, when an at-433

tack occurs on the deep pose estimator, it could affect all output434

neurons to estimate for wrong position and attitude. Therefore,435

it can be assumed that there might exist a certain level of depen-436

dencies among those output neurons. From this point of view,437

building an LSTM-based adversarial attack detector can poten-438

tially achieve high detection accuracy.439

Fig. 3 introduces the architecture of the proposed adversar-440

ial attack detector. The detector takes the SHAP values that are441
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Fig. 3. Proposed adversarial attack detector. The yellow block indicates the
LSTM layer which has an input shape of (9,1000) and an output space of 100.
ReLu is applied as the activation function for the LSTM layer. The blue blocks
are FC layers in the format of (units, activation). The green block indicates the
output layer of the adversarial detector, which is also formed from the FC layer
and outputs a Boolean to detect adversarial attacks.

computed from the GAP layer of the deep pose estimator. As 442

there are nine output neurons in the proposed deep pose estima- 443

tor, the shape of the SHAP values is (9, 1000). To input SHAP 444

values to the detector, the SHAP values are formatted as a se- 445

quence data with a length of 9. The detector outputs a Boolean, 446

True/False, to indicate the result of detecting adversarial at- 447

tacks. 448

4. Experimental Results 449

To validate our adversarial detection approach, two experi- 450

ments are performed. The first experiment is built on the sim- 451

ulation environment with synthetic data as mentioned in Sec- 452

tion 3. The second experiment is built on our lab environment 453

to testing our approach with real data. For both sets of exper- 454

iments, the spacecraft deep relative pose estimator and the ad- 455

versarial attack detector are tested for their relevant accuracy, 456

and then the two systems are integrated to test the overall suc- 457

cessful detection rate of adversarial attacks. 458

4.1. Results on Synthetic Data 459

4.1.1. Accuracy of the Spacecraft Deep Relative Pose Estima- 460

tor 461

To train the deep relative pose estimator, image data are col- 462

lected from the Blender 3D model. There are 13 sequences of 463

images generated from Blender with the relevant trajectories 464

that are mentioned in Table 1. By following the trajectories in 465
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Table 1, 2,500 images are generated for each trajectory, result-466

ing in a dataset with 32,500 images for training and testing in467

total. Fig. 4 shows two examples of synthetic data generation468

in Blender.469

(a) (b)

Fig. 4. Examples of synthetic data generated from Blender. (a) image captured
at a camera position of (0, 0, 60m). (b) image captured at a camera position of
(0, 0, 10m). Random rotation is applied to the target spacecraft.

The synthetic dataset is split by a train-test ratio of 0.8, i.e.470

80% of images in the dataset are used for training the deep rel-471

ative pose estimator, and 20% of images are used to test the472

model’s accuracy. Each image is associated with a ground truth473

label in the format of (x, y, z,w, xi, y j, zk). The first three ele-474

ments in the ground truth label represent the relative position of475

the chaser onboard camera to the target and the rest 4 elements476

represent the target attitude in quaternion representations in the477

chaser camera frame. The deep relative pose estimator outputs478

the attitude in a 6-D vector. Therefore, to calculate the loss479

in attitude, the quaternion representations are converted to the480

6-D vector representation by following the approach in (Zhou481

et al., 2019). A dropout rate of 0.2 is applied to the GAP layer in482

the training process. Multiple data augmentation techniques are483

considered in training the deep relative pose estimator, includ-484

ing Gaussian blur, Gaussian noise, image compression, random485

brightness and so on. These techniques help to prevent the486

model from overfitting the training dataset. The deep relative487

pose estimator is trained by stochastic gradient descent with an488

Adam optimiser. The triangular2 (Smith, 2017) policy is ap-489

plied for cycling learning rate with base learning of 2.5e-5.490

After training the deep relative pose estimator for 50 epochs491

with the training batch size of 32, The model’s average predic-492

tion accuracy for both training and test datasets is reported in493

Fig. 5. In this experiment, the position error is measured by494

Eq. (5) and the attitude error is measured by Eq. (6). 495

perr := ||ppred − pgt || (5)
496

rerr := 2 arccos(q−1
pred ⊗ qgt) (6)

where ppred and pgt represent the prediction of position and the 497

ground truth of position magnitude. The qpred and qgt indicate 498

the prediction of attitude and the ground truth of attitude in 499

quaternion representation. The ⊗ denotes the quaternion multi- 500

plication and || · || denotes the L2 norm. 501

Fig. 5. The prediction accuracy of the proposed pose estimator on training and
test dataset after 50 epochs. The blue bar presents the average error on training
data and the orange bar represents the average error on test data

The proposed spacecraft relative pose estimator achieves an 502

accuracy of around 0.49m in position error and 0.68 deg in at- 503

titude error on the test dataset. Table 2 reports a comparison 504

between the proposed deep relative pose estimator and state- 505

of-the-art performance of other DL-based space relative pose 506

estimation approaches based on their datasets. The comparison 507

here aims to show that the proposed spacecraft deep relative 508

pose estimator can achieve relatively good performance on the 509

synthetic data and can be applied as a baseline model to imple- 510

ment the adversarial attack algorithm on and test the adversarial 511

attack detector. The comparison is not meant to be a quantita- 512

tive benchmark evaluation of our approach relative to existing 513

performing approaches. 514

4.1.2. FGSM Adversarial Attacks 515

As discussed in Section 3, the perturbation made by FGSM 516

attacks can be adjusted by changing the ϵ value. To investi- 517
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Table 2. Comparison with other approaches in DL-based space relative pose estimation
Model Dataset Position Error (m) Attitude Error (deg)

Proença & Gao (2020) SPEED (Kelvins - ESA’s Advanced Concepts Competition Website) 0.56 8.0
Rondao et al. (2022) Synthetic 1.73 6.62

Yang et al. (2021) Synthetic [0.052, 0.039, 0.077] [0.213, 0.233, 0.097]
Ours Synthetic 0.49 0.68

gate the impact of adversarial attacks on DL-based space rela-518

tive pose estimation, different ϵ values are selected to generate519

adversarial onboard camera image input to the proposed deep520

relative pose estimator. Typically, the ϵ applied in this experi-521

ment are 1, 0.5, 0.3, 0.1, 0.05 and 0.01. The larger value of ϵ is,522

the more perturbations are made to images. The FSGM attack523

is applied to all synthetic test data, where all images in the test524

data. Then, the perturbed images are fed to the deep relative525

pose estimator for testing the impact of the FGSM attack. The526

average prediction relative pose errors of applying different ϵ527

values are reported in Fig. 6.

Fig. 6. Comparison of the prediction error of pose estimator under FGSM attack
on test data with various ϵ values. The blue bar indicates the average position
error and the red bar indicates the average attitude error on test data. The error
magnitude for the position is metres and the error magnitude in rotation is mea-
sured by degrees.

528

We can see that as the ϵ value increases, the deep model’s529

prediction error becomes larger. The attitude error is quite sta-530

ble on ϵ = 0.1, 0.05 and 0.01, but has a dramatic increase if the531

ϵ > 0.3.532

To assess well how the adversarial attack can impact the533

DL-based navigation system in a space rendezvous scenario,534

a simple guidance scheme is implemented with the proposed535

deep relative pose estimator. The guidance scheme takes the536

estimated relative pose from the proposed deep relative pose 537

estimator and then provides relative control actions to move 538

the camera (spacecraft) to the target position. In the guidance 539

scheme, the camera has an initial position of (0, 0, 60) and a 540

target position of (0, 0, 10) with ±1m tolerance. The guidance 541

scheme updates the camera position with a maximum velocity 542

of 1m/s, as described in Eq. (7) and Eq. (8) 543

pnew =

pest − 1 if di f f ≥ 1
pest − di f f otherwise

(7)

544

di f f = pest − ptar (8)

where pnew, pest, ptar present the updated position, estimated 545

position and target position of the camera, respectively. The 546

test system is implemented as shown in Fig. 7.

Blender Image Generation

Generate synthetic 
image

FGSM Attacks

Attack 
image

Add perturbations 
to image by FGSM 

attack

Pose Estimator

Update camera 
pose

Estimate relative 
pose

No

Yes

Fig. 7. Test system for proposed pose estimator on Blender in simulated space
rendezvous scenario.

547

In this experiment, the test system is continuously attacked 548

by FGSM on image data with various acquired camera frames. 549

The success attack is defined as the camera (spacecraft) missing 550

the target position while the f ailure attack means that the cam- 551

era (spacecraft) can still reach the target position under continu- 552

ous FGSM attack. Experimental results are reported in Table 3 553

- 7. 554
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Table 3. FGSM attacks on the simulated space rendezvous scenario with ϵ=0.5
ϵ = 0.5

Continuously
Attacked Frame 5 10 15 20

Attack start point

(m)

60 failure failure failure Success
50 failure failure failure Success
40 failure failure Success Success
30 failure failure Success Success
20 failure Success Success Success
10 Success Success Success Success

Table 4. FGSM attacks on the simulated space rendezvous scenario with ϵ=0.3
ϵ = 0.3

Continuously
Attacked Frame 5 10 15 20

Attack start point

(m)

60 failure failure failure Success
50 failure failure Success Success
40 failure failure Success Success
30 failure failure Success Success
20 failure Success Success Success
10 failure Success Success Success

Table 5. FGSM attacks on the simulated space rendezvous scenario with ϵ=0.1
ϵ = 0.1

Continuously
Attacked Frame 5 10 15 20

Attack start point

(m)

60 failure failure failure failure
50 failure failure failure failure
40 failure failure failure Success
30 failure failure failure failure
20 failure failure failure failure
10 failure failure failure Success

Table 6. FGSM attacks on the simulated space rendezvous scenario with ϵ=0.05
ϵ = 0.05

Continuously
Attacked Frame 5 10 15 20

Attack start point

(m)

60 failure failure failure failure
50 failure failure failure Success
40 failure failure failure Success
30 failure failure Success Success
20 failure Success Success Success
10 failure Success Success Success

Table 7. FGSM attacks on the simulated space rendezvous scenario with ϵ=0.01
ϵ = 0.01

Continuously
Attacked Frame 5 10 15 20

Attack start point

(m)

60 failure failure failure failure
50 failure failure failure failure
40 failure failure failure failure
30 failure failure failure failure
20 failure failure failure failure
10 failure failure failure failure

From Table 3 - 7, we can clearly see that the adversarial at- 555

tack can result in a significant impact on the guidance scheme 556

if DNN-based relative navigator is attacked, typically when the 557

distance between the camera and the target is less than 30m. 558

In most cases, continuously attacking the deep model for more 559

than 15 frames after the camera approaches less than 30m to the 560

target, the camera (spacecraft) will fail to reach the target posi- 561

tion. In a real space rendezvous mission where a chaser relies 562

on a DL-based relative pose estimation system, an adversarial 563

attack has the potential to cause the chaser to fail in approach- 564

ing the target position, resulting in mission failure. Therefore, 565

detecting adversarial attacks on DL-based pose estimators be- 566

comes critical. 567

4.1.3. LSTM-based Adversarial Attack Detector 568

The proposed adversarial attack detector is designed based 569

on the LSTM architecture. It aims to detect the change in SHAP 570

values when an adversarial attack occurs on the input image. As 571

mentioned in Section 3, the SHAP values are computed at the 572

output of the GAP layer in the proposed deep relative pose es- 573

timator. The GAP layer contains 1000 neurons, therefore, 1000 574

values are calculated for each output neuron, resulting 9×1000 575

output SHAP values. 576

In our approach, the SHAP values of the GAP layer are cal- 577

culated by DeepSHAP (Lundberg & Lee, 2017) algorithm. The 578

DeepSHAP algorithm computes SHAP values for inputs by in- 579

tegrating over background samples. It then estimates approx- 580

imate SHAP values in a manner that sums up the difference 581

between the expected deep model’s output on the background 582

samples and the current model’s output. In this work, 1000 583

images are randomly selected from the training dataset to com- 584

pute the downsampled features at the GAP layer. These sam- 585

ples serve as the background samples for the DeepSHAP ex- 586

plainer. To train the adversarial attack detector, we generated 587

15,000 sets of SHAP values for normal samples and an addi- 588

tional 15,000 sets of SHAP values for adversarial samples. The 589

normal samples consist of the entire test dataset, which is used 590

for testing the deep pose estimator, along with a random selec- 591

tion of images from the training dataset. This random selection 592
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was made to reach a total of 15,000 samples, thereby bridging593

the gap between this number and the number of images in the594

test dataset by the deep relative pose estimator. The adversar-595

ial instances are crafted by launching attacks on the DRLs at596

arbitrary time steps with random ϵ values: 0.5, 0.3, 0.1, 0.05,597

and 0.01. Subsequently, 3,000 perturbed images are randomly598

selected from each ϵ value for calculating the corresponding599

SHAP values.600

The SHAP values for both normal and adversarial samples601

are split into a training and testing set using a 0.8 train-test ra-602

tio, resulting in 24,000 samples for training and 6,000 samples603

for testing. The adversarial attack detector is trained using the604

Stochastic Gradient Descent (SGD) method with the Adadetal605

optimiser for 1,000 epochs. After training the adversarial at-606

tack detector, it achieved a training accuracy of 99.98% and a607

test accuracy of 99.90% on the test dataset. In this case, the608

detection accuracy is calculated by Eq. (9)609

accuracy =
success f ul Detection
Total No. o f Frames

× 100% (9)

where the success f ul Detection is defined by that the input610

frames with the adversarial attack are detector as True and611

frames without adversarial attack are detector as False. The612

experimental results show that the proposed detector can suc-613

cessfully detect adversarial attacks on the DL-based relative614

pose estimator with high accuracy. The adversarial attack de-615

tector is integrated with the deep relative pose estimator and the616

DeepSHAP explainer to enhance accuracy in space rendezvous617

scenarios. The overall system is presented in Fig. 8.618

The adversarial attack detector is then tested with three tra-619

jectories. In each trajectory, the camera (spacecraft) starts 60620

meters away from the target, positioned at various points in the621

x and y directions within the range of [±25,±15]. The camera622

is oriented directly toward the target, with an attitude repre-623

sented as quaternion (1, 0, 0, 0). The end position is (0, 0, 10).624

The camera (spacecraft) moves linearly at a rate of 0.25 meters625

per frame along the z-axis. It follows a projectile trajectory in626

the x and y directions, resulting in a total of 2,500 frames for627

each trajectory. The FGSM attack is applied to test trajectories628

Table 8. The average accuracy of the adversarial attack detector in test trajecto-
ries with various ϵ values.

ϵ Trajectory Detection Accuracy

0.5
1 100%
2 100%
3 100%

0.3
1 100%
2 100%
3 99.98%

0.1
1 99.96%
2 99.98%
3 99.96%

0.05
1 100%
2 99.98%
3 99.98%

0.01
1 97.06%
2 96.94%
3 99.02%

Average 99.21%

with an attack probability of 0.2. Once FGSM is initiated, at- 629

tacks continue for the subsequent 5 frames. The results of the 630

proposed adversarial attack detector are presented in Table 8. 631

From the test results, the proposed adversarial attack detector 632

successfully detects all incoming FGSM attacks when the ϵ = 633

0.5. As the ϵ value goes small, i.e. fewer perturbations are made 634

to input images, the detection accuracy has slightly dropped. 635

For these three test trajectories, the proposed adversarial attack 636

detector achieves a detection accuracy of 99.21% on average. 637

4.2. Experimental Results on Real Data 638

In previous experiments, both the proposed deep relative 639

pose estimator and the adversarial attack detector exhibited 640

high accuracy on synthetic data. To further evaluate the per- 641

formance of both systems, we tested them with real-world im- 642

ages obtained from the Autonomous Systems and Machine In- 643

telligence Laboratory (ASMI Lab) at City, University of Lon- 644

don. These data include sensor noise, camera calibration noise, 645

ground truth measurement noise, and different lighting condi- 646

tions that are not present in the training synthetic images. 647

4.2.1. Accuracy of the Spacecraft Dee Relative Pose Estimator 648

At the ASMI Lab, a scaled mock-up model of the Jason- 649

1 spacecraft is constructed. This mock-up model is 1/9 the 650

size of the actual Jason-1 spacecraft. The vision sensor ap- 651
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Fig. 8. The experimental system includes the integration of an adversarial attack detector with the relative pose estimator and SHAP values generator.

plied for real data acquisition is the ZED 2 camera, which out-652

puts images with a resolution of 1920×1080. The deep relative653

pose estimator is retrained on new synthetic data, referred to654

as the Synthetic-Lab Dataset, with an input RGB image size of655

480 × 270 to match the aspect ratio of the camera used in the656

ASMI Lab. As before, the Synthetic-Lab Dataset is generated657

using Blender, where the target was replaced with a 3-D model658

of the ASMI Lab mock-up Jason-1. To simulate the space ren-659

dezvous scenario over a distance range from 60m to 10m, the660

3-D model is scaled up by a factor of 9 in Blender data genera-661

tion. An example of the re-training images is shown in Fig. 9662

Fig. 9. Am example of images generated from Blender for training the pose
estimator.

Similar to the previous synthetic data experiment, multiple663

trajectories are generated to collect images from the Blender,664

resulting in a total of 32,500 images on Synthetic-Lab Dataset 665

for training and testing. The hyperparameter settings for train- 666

ing are the same as the settings applied in previous synthetic 667

data experiment, including the learning rate, optimiser, batch 668

size, and data augmentation methods. The pose estimator was 669

trained for 100 epochs with a train/test split of 0.8. 670

There are three sets of images captured from the ASMI 671

Lab, referred to as the ASMI Dataset, with each set contain- 672

ing a total of 750 images. To acquire images for the ASMI 673

Dataset, the camera movement is controlled by the Rethink 674

Robotics Sawyer (Sawyer| Rethink Robotics) moving along the 675

z-axis, and the ground truths relative poses of the images in 676

ASMI Dataset are recorded by the OptiTrack Motion Capture 677

Systems (OptiTrack). The OptiTrack Motion Capture System 678

records the position and attitude of the ASMI Lab mock-up 679

Jason-1 and the ZED camera at a frame rate of 120 frames 680

per second and assigns a timestamp to each frame. Images are 681

acquired by the ZED camera at a resolution of 1920 × 1080 682

and a frame rate of 30 frames per second, with relevant times- 683

tamps. The ground truth pose for each frame acquired by the 684

ZED camera are assigned by matching the corresponding times- 685

tamps from the OptiTrack Motion Capture System. Then, the 686
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relative ground truth position is calculated by the difference be-687

tween the actual positions of the ZED camera and the ASMI688

Lab mock-up Jason-1, as shown in Eq. (10),689

Poslab = Poscamera − Postarget (10)

where Poslab donates relative ground truth position in ASMI690

Dataset. The Poscamera and Postarget donate the actual position691

of the ZED camera and ASMI Lab mock-up Jason-1 recorded692

by OptiTrack Motion Capture System, respectively.693

Due to different camera intrinsic matrices applied between694

the Synthetic-Lab Dataset and ASMI Dataset, to represent the695

relative position in the trained model, the position ground truths696

of the ASMI Dataset are collaborated with the camera view by697

the following processing:698

KBlender =

640 0 240
0 360 135
0 0 1

 (11)

699

Kzed =

1400.41 0 956.29
0 1400.41 557.258
0 0 1

 (12)

700

Targetreal = 9 × Targetlab (13)
701

Posreal = 1400.41×
240

956.29
×

Targetlab

Targetreal
×

1
640
× Poslab (14)

where KBlender and Kzed represent the camera intrinsic matrices702

for the camera used in Synthetic-Lab Dataset collection and the703

ZED camera that is used to acquire images in the ASMI Lab,704

respectively. Targetreal and Targetlab indicate the target sizes705

in the Blender 3-D model and the actual size in the ASMI Lab.706

Posreal and Poslab denote the relative position of the target in707

the pose estimator and the ground truth position in the ASMI708

Lab, respectively. Table 9 illustrates the range of relative posi-709

tions in the ASMI Dataset and representative relative positions710

in trained pose estimator. Furthermore, all images in the ASMI711

Dataset are segmented with a black background and resized to712

480 × 270 to fit the input image size of the trained pose estima-713

tor. An example of images captured in ASMI Lab is shown in714

Fig. 10.715

Once the deep relative pose estimation model is trained, it716

is initially tested on the test set of Synthetic-Lab Dataset, fol-717

lowed then by testing its prediction accuracy on real world data718

Table 9. Camera moving range on ASMI Dataset and its representative range
on trained pose estimator. The camera is moving along the z − axis. The repre-
sentative range is calculated by Eq. (14).

trajectory ID ASMI Lab Range (z-axis) Representative Range(m)
ASMI-1 3.122 - 2.569 51.180 - 42.11
ASMI-2 2.296 - 1.748 37.64 - 28.66
ASMI-3 1.564 - 1.015 25.64 - 16.64

(a) (b)

Fig. 10. Examples of images captured in ASMI Dataset. (a) Original image
captured in ASMI Lab (b) Segmented image with bakc background.

captured from the ASMI Lab, i.e. ASMI Dataset. The predic- 719

tion accuracy of the deep relative pose estimator is reported in 720

Fig. 11. Similar to the previous synthetic testing, position error 721

and attitude error are calculated by Eq. (5) and Eq. (6), respec- 722

tively. Compared with the prediction accuracy on the Synthetic- 723

Lab Dataset, the position error of the ASMI Dataset is slightly 724

higher. This could be attributed to variations in the illumina- 725

tion conditions compared to the Synthetic-Lab Dataset, as well 726

as factors such as ground truth measurement noise and camera 727

calibration noise. On the other hand, the predicted attitude er- 728

ror in the ASMI Dataset is much smaller than the synthetic data. 729

One possible reason could be that the target remains stable at a 730

fixed position with rotation effects during the images capture. 731

4.2.2. FGSM Attacks on ASMI Dataset 732

To evaluate how the pose estimator can be impacted by ad- 733

versarial attacks on real data, the FGMS attack is then applied 734

to the ASMI Dataset. In this case, the FGSM is configured as 735

the same ϵ as previously applied in synthetic, including 1, 0.5, 736

0.3, 0.1, 0.05 and 0.01. In this experiment, all images are per- 737

turbed by the FGSM attack. The model’s average prediction 738

error under FGSM attacks with various ϵ values on the ASMI 739

Dataset are illustrated in Fig. 12. 740

As shown in Fig. 12, FGSM has a significant impact on po- 741

sition estimation but only slight impacts on attitude estimation. 742

In comparison to the previous experiment with synthetic data, 743
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Fig. 11. The prediction accuracy of the proposed pose estimator on Synthetic-
Lab Dataset and ASMI Dataset after 100 epochs.The blue bar presents the av-
erage error on training data and the orange bar represents the average error on
test data on Synthetic-Lab Dataset. The green bar indicates the average error
on the ASMI Dataset.

Fig. 12. Comparison of the prediction error under FGSM attack on ASMI
Dataset with various ϵ values. The blue bar indicates the average position error
in meter and the orange bar represents the average attitude error in degrees.

the FGSM attack has a more pronounced effect when ϵ is less744

than 0.05 on the predicted position in the ASMI Dataset. How-745

ever, the attitude error remains quite stable, typically less than746

1 degree, for all tested ϵ values.747

4.2.3. LSTM-based Adversarial Attack Detector748

To evaluate the adversarial attack detector on the ASMI749

Dataset, SHAP values are obtained by processing the pose es-750

timator on the Synthetic-Lab Dataset. Similar to the previous751

synthetic data experiment, the SHAP values are obtained from752

the output of the GAP layer in the deep relative pose estima-753

tor by DeepSHAP algorithm. 1,000 images from the training 754

data on Synthetic-Lab Dataset are randomly selected to gen- 755

erate background data. A total of 30,000 SHAP value sam- 756

ples, consisting of 15,000 normal samples and 15,000 adver- 757

sarial samples, are used to train the adversarial attack detec- 758

tor. The 15,000 normal samples consist of all images from the 759

test data on the Synthetic-Lab Dataset and randomly selected 760

images from the training data to account for the difference be- 761

tween 15,000 and the total number of images in the test data. 762

Adversarial samples are generated by applying FGSM attacks 763

to the normal sample images with randomly selected ϵ values 764

from [0.5, 0.3, 0.1, 0.05, 0.01]. 765

The SHAP values are shuffled and split by a train-test ratio 766

of 0.8, i.e. 24,000 samples for training and 6,000 samples for 767

testing. The adversarial attack detector is trained by SGD with 768

an Adadelta optimiser for 2000 epochs. Early termination is im- 769

plemented to reduce the training time. To do that, the training 770

data are further split into 80% for training and 20% for valida- 771

tion. If the validation loss does not decrease over 20 epochs, the 772

training process will be terminated. After the early termination 773

condition, the proposed adversarial attack detector achieves a 774

detection accuracy of 99.18% on training data and 98.8% on 775

test data. 776

Subsequently, the pose estimator, FGSM attacks, and ad- 777

versarial attack detector are integrated to evaluate the overall 778

performance on the ASMI Dataset. The integrated system is 779

identical to the one shown in Fig. 8, with the exception that 780

the ’Blender Image Generation’ part is replaced by the ASMI 781

Dataset. In the ASMI Dataset, a random attack probability of 782

0.2 is applied to FGSM attacks. When an attack occurs, input 783

images are continuously perturbed by FGSM for the next 10 784

frames. The detection accuracy is calculated by Eq. (9). Ta- 785

ble 10 presents the detection accuracy on the ASMI Dataset for 786

various ϵ values. 787

As shown in Table 10, the proposed adversarial attack detec- 788

tor achieves an average correct detection rate of 96.29% on the 789

ASMI Dataset. The accuracy slightly drops when the ϵ value 790

becomes smaller, which is caused by fewer perturbations ap- 791
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Table 10. The average accuracy of the adversarial attack detector in ASMI
Dataset with various ϵ values.

ϵ Detection Accuracy
0.5 100 %
0.3 100 %
0.1 100 %

0.05 98.44%
0.01 90.44 %

Average 96.29 %

plied to the input images as ϵ decreases.792

5. Conclusion793

This paper firstly examines the impact of adversarial attacks794

on DL-based spacecraft relative pose estimation in space ren-795

dezvous scenarios. To do this, a CNN-based relative pose es-796

timation algorithm is proposed. FGSM adversarial attacks are797

implemented, which have a significant impact on the model’s798

predictions. Subsequently, an LSTM-based adversarial attack799

detector is proposed to identify adversarial attacks on input im-800

ages. XAI techniques are adopted to analyse the model’s pre-801

dictions and generate SHAP values-based explanations for the802

model’s predictions. Multiple experiments are carried out to803

evaluate the performance of the CNN-based spacecraft relative804

pose estimator, how the adversarial attacks can impact on DL-805

based pose estimator in space rendezvous missions, and the per-806

formance of the proposed adversarial attack detector. The pro-807

posed methods have been tested on both synthetic and real im-808

age datasets. The results show that the adversarial attack detec-809

tor performs robustly in detecting adversarial attacks, achiev-810

ing an average of 99.21% detection rate on synthetic data and811

96.29% on real data collected from the ASMI Lab.812

Although the impact of digital adversarial attacks on DL-813

based spacecraft relative pose estimation has been analysed in814

this work, how to physically implement the adversarial attacks815

still needs to be explored. Moreover, the proposed method816

demonstrates high accuracy in detecting adversarial attacks for817

the DL-based spacecraft relative pose estimation, how to cor-818

rect the estimated pose after detecting adversarial attacks be-819

comes critical to provide a robust DL-based system for future820

space missions.821
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