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ABSTRACT: A comparative assessment of the thermal properties
and heat transfer coefficients achieved by viscoelastic nanofluids
suitable for immersion cooling is presented, with the candidate
samples exhibiting distinct differences based on the nanoparticle
chemistry and shape. Molecular dynamics simulations of different
nanoparticles such as copper nanosphere, two-dimensional pristine
graphene, and single-walled carbon nanotube (CNT) dispersed in
PAO-2 of concentrations of approximately equal to 2.6% by weight
are performed in the present investigation. While carbon-based
nanoparticles increase the specific heat capacity of the nanofluids,
copper-based nanofluids show a decrease in the corresponding
values. Moreover, the heat conduction in copper-based nanofluids
is dependent on the higher degree of phonon density of states
(DOS) matching between the copper and solvent atoms, whereas the high intrinsic thermal conductivity of graphene and CNT
compensates for the lower degree of DOS matching. The addition of an OCP polymer chain to impart viscoelasticity in the
nanofluids exhibits a heat transfer coefficient enhancement of more than 80% during Couette flow as a result of chain expansion,
indicating their suitability for immersive-cooling applications.

■ INTRODUCTION
The forthcoming regulations in Europe and the US for the
phase-out of hydrofluorocarbon coolants (HFCs) used in a
wide range of cooling systems and the necessity for
replacement with environmentally friendly fluids with low
global warming potential (GWP) render the implementation of
numerical methodologies for the design of novel coolants
timely.1,2 In addition, there are stringent mandates in place for
decarbonization of passenger cars and, eventually, heavy-duty
vehicles, earth-moving machines, and aircraft, which, among
other significant limitations (such as efficient energy storage,
battery weight, safety, limited availability of carbon-free fuels,
and cost), have to overcome the excess heat generated in
electrified powertrains during power-demanding operations
with which conventional cooling solutions employing air or
water cannot cope.3,4 One of the primary areas of interest for
engineered cooling fluids is electric vehicle battery thermal
management systems (EV BTMS). The existing method-
ologies of indirect cooling techniques in the BTMS involve a
combination of air-cooling and liquid-cooling heat-sink devices
and phase-change materials.5 Such systems consist of several
energy-consuming components such as pumps, motors,
compressors, and chillers to maintain the operating temper-
atures favorable for the safety and long life of lithium-ion
battery modules.6 Therefore, an advanced mechanism to
improve the efficiency of cooling by reducing parasitic power
consumption and thermal contact resistances is essential for a

sustainable EV rollout. One such mechanism being proposed is
the immersive-cooling technique that can reduce the footprint
of the BTMS in passenger vehicles7 and increase the heat
transfer coefficients achieved by 5 orders of magnitude
compared to indirect air cooling.8

Given that immersive cooling involves battery modules
directly submerged in liquid coolants, the options with respect
to the involved working media are limited to dielectric fluids
such as different types of silicone and mineral oils. However,
ensuring minimal frictional losses and higher efficiency of
thermal transport are essential characteristics required for
immersive cooling. Therefore, additives are required to assist
oil-based solvents in achieving these targets. The typical
additives that are researched for enhancing the rheological
properties of oils are polymer chains and surfactants.
Experimental studies report the stabilization of vortices and
reduction of thermal boundary layers due to the viscoelastic
nature of the polymer chains.9−11 Concurrently, a recent focus
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on the use of nanoparticles to enhance the thermal properties12

of common cooling liquids motivates the present investigation.
Post the definition of nanofluids by Choi and Eastman,13 the

vast majority of works on thermofluids deal with aqueous
nanofluids consisting of metal, metal oxide, or carbon allotrope
nanoparticles.14−18 The dependence of size, concentration, and
defects of the nanoparticles on the thermal properties of the
aqueous nanofluids is discussed in the literature.19−22 The
exposure toward oil-based nanofluids is focused on enhancing
the thermal and rheological properties of lubricants and engine
oil,23−25 and the latest experimental research studies pursue
their identification. Cai et al.26 reported how the Nusselt
number increases by 40% when pristine graphene is dissolved
in heavy-duty diesel engine oil. The measurements of
Aberoumand and Jafarimoghaddam27 showed that a 1% weight
fraction of copper nanoparticles in engine oil enhances the
thermal conductivity by 49%. However, the mechanism of heat
transfer is specific to the chemical structure of the fluids, as
suggested by the studies of Jin et al.28 and Alosious et al.29

Hong et al.,30 showed experimentally that higher thermal
conductivity of the elements of nanoparticles does not always
improve thermal properties of the nanofluids. The empirical
models to compute effective thermal conductivity of solid−
liquid suspensions such as the Maxwell model,31 Hamilton−
Crosser model,32 Davis model,33 Lu-Lin model,34 Yu and Choi
model,35 and Jang and Choi model36 based on conventional
continuum theories are limited to specific systems. Such
limitations of numerical simulations based on continuum
mechanics are being dealt with using deep learning techniques
such as artificial neural networks (ANNs) to an extent.37,38

However, such data-intensive techniques still require physical
insights at the atomistic scale to optimize heat transfer fluid
mixtures. Thus, a detailed atomistic exploration is necessary to
prescribe the optimal additives necessary to enhance the heat
transfer capabilities of different nanofluids. In this research, the
emphasis is on dilute viscoelastic nanofluids that are formed by
the addition of polymers and nanoparticles in a base solvent. A
thorough study to understand the impact of the combination
of polymer and nanoparticle additives in an oil solvent and the
underlying mechanism of heat transfer of such fluids is still
lacking in the open literature.
Molecular dynamics (MD) simulation is utilized here to

compute the thermophysical properties of the nanofluids and
provide insights into the mechanism of heat transfer. As the
nanofluids are dependent on the chemistry of the nanoparticles
and their behavior in the liquid mixture, the study here
considers three different types of nanoparticles, namely, copper
(Cu) nanosphere representing metallic nanoparticles, two-
dimensional (2D) pristine graphene, and single-walled carbon
nanotube (CNT). These different classes of nanoparticles are
shown to be industrially relevant for lubrication as well as heat
transfer applications.39,40 The base oil solvent is chosen as
polyalphaolefin (PAO-2) with a kinematic viscosity of
approximately 2 cSt at 373 K, and to impart viscoelastic
nature to the nanofluids, an olefin copolymer (OCP) is
dispersed in the different fluids. The elasticity imparted with
the addition of polymer chains has recently been demonstrated
to decrease the thermal boundary layer and improve the
Nusselt numbers in laminar flows.41 Additionally, the polymer
chains can stabilize the secondary-flow motion, in turn leading
to boundary layer disruption.11 PAO-2 emerges as an essential
solvent for several lubricants due to its high fluidity at lower
temperatures and high chemical stability necessary for heat

transfer applications.42 On the other hand, the linear
architecture and narrow molecular weight distribution make
OCP a useful additive for industrial applications.43,44

Nanofluids of concentrations of approximately 2.6% by
weight are simulated in the temperature range of 313 and 373
K. The choice of concentration is made after probing the
literature on industrially relevant nanofluids, which recom-
mends the use of nanofluids below 3 wt % to ensure smooth
circulation and prevention of corrosion.45 The force field
model selection of the different molecules is done after a
preliminary investigation of the different structural and
transport properties. The reported force field parameters
using hybrid potentials would be of interest to the research
approaches on nanofluid modeling. Post a thermodynamic
stability analysis, heat transfer properties such as specific heat
capacity and thermal conductivity are reported for the different
nanofluids, following which the mechanism of heat transfer is
analyzed. The casings of batteries in the packs used in EVs are
made of steel, aluminum, or plastic.46 The heat transfer fluids
are essentially in contact with these casings during immersion
cooling. Therefore, the heat transfer coefficient of the
nanofluids flowing through a nanochannel formed by solid
iron (Fe) layers and the role of viscoelasticity in the
enhancement of the thermal dissipation of nanofluids are
discussed. The structural mechanism of heat transfer in oil-
based nanofluids discussed aims to assist in the adoption of
such nanofluids for immersive-cooling applications. To the
authors’ knowledge, the present work constitutes the first
investigation in the open literature leveraging MD simulations
to estimate the thermal properties of complex-rheology fluids
in a Couette flow where nanoparticles are also dispersed,
providing an updated understanding of the optimal design of
such systems.

■ MODELING AND SIMULATION
Simulation Methodology. Equilibrium MD simulations

are initially performed on bulk fluids to verify the modeling
approach and compute the pertinent thermophysical proper-
ties. The pure PAO-2 solvent (S1) simulation box is created
using 340 molecules of 9,10-dimethyloctadecane.47 The OCP
polymer chain studied here is made up of 50 mol % ethylene
(C2) monomers and 50 mol % propylene (C3) monomers
with a molecular mass of 3016 g mol−1 (Fluid P1), in
agreement with the approach followed in the previous study of
the authors.48 The schematics of PAO-2 and OCP are
provided in Figure S1 in the Supporting Information. The
chain consists of 43 molecules, each of C2 and C3 monomers,
with the two ends of the chain terminated using hydrogen
atoms. A copper nanosphere of a diameter of 1 nm is dispersed
in the solvent as well as the polymer solution to create Cu
nanofluids (Fluids CU1 and CU2). Graphene nanofluids (GR1
and GR2) contain four 2D graphene molecules of long
diagonal length 1.2 nm. Similarly, CNT nanofluids (CN1 and
CN2) are generated by adding a CNT of the length of 1.5 nm,
diameter of 0.985 nm, and chiral index of (4,10). The selection
of this specific number of molecules corresponds to nano-
particle concentrations of ≈2.6 wt %, typical of oil-based
nanofluids of industrial requirements.49 For copper nanofluids,
two higher concentrations with 2 and 4 nanoparticles
representing 5.5 and 11 wt %, respectively, are also simulated
to study the stability aspects. The polymer fluids represent a
weakly viscoelastic liquid, given the chain size and weight of
the polymer used. At room temperature, the intrinsic thermal
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conductivity of copper nanoparticles is reported to be of the
order of 400 W m−1 K−1, while that of 2D graphene and CNT
range up to 5000 and 6600 W m−1 K−1, respectively.50,51 Table
1 shows the concentration of the additives in the different
simulated nanofluids.

Periodic boundary conditions (PBC) are applied in all 3
directions. A Nose−́Hoover thermostat is implemented to
maintain the temperatures at equilibration and production runs
of the equilibrium MD between 313 and 373 K. The
corresponding Parrinello−Rahman barostat, as implemented
by LAMMPS (NPT), is used to set the pressure at 1 atm
during the equilibration phase. The distance cutoff for van der
Waals interactions is set to 13 Å. A faster Ewald summation
methodology called particle−particle−particle mesh (PPPM)
is used to compute the long-range electrostatic interactions.
The velocity Verlet algorithm is used to integrate the equations
of motion with a time step of 1 fs.
1−4 intramolecular non-bonded pairwise interactions are

given a weight of 0.5 for solvent-based fluid simulations,
whereas it is switched off in case of the simulations of polymer-
based fluid simulations. Energy minimization and equilibration
under NPT is carried out for 20 ns, after which a production
run of 40 ns under NVT ensemble is performed. The system,
after the 40 ns run, is utilized for rNEMD simulations to
compute the thermal conductivity. In rNEMD simulations, a
linear temperature gradient along the z-direction is imple-
mented, as described by Müller-Plathe.52 The subsequent heat
flux is utilized to measure the thermal conductivity values. The
reported results of the different properties are averages of three
independent simulations, with the corresponding standard
deviations shown in the appropriate figures.
For simulating the heat transfer during Couette flow

between a channel of Fe plates, a simulation box is used that
has PBC in x- and y-directions (see Figure 1). The boundary in
the z-direction is fixed (non-periodic), and the heat transfer
liquids are placed between the layers of Fe atoms. The PPPM
method is modified here by using the slab option in LAMMPS
with a volume factor of 3.0 to obtain accurate electrostatics in
the absence of periodicity in the z-direction.53 The outermost
6 layers of Fe on both ends of the z-direction have the
interactions switched off, and a wall repulsion force is used to
represent an adiabatic system. The boundary conditions enable
the fluid atoms to be confined between the internal faces of the
solid Fe atoms. The systems are energy minimized to avoid any
unphysical configurations. The systems are equilibrated at 313
K using NVT for 4 ns before the innermost two layers of Fe
are maintained at 373 K (top layer) and 313 K (bottom layer),
respectively, using a Langevin thermostat.54 The top layer at

373 K is moved in the y-direction at vy,max = 0.1 Å ps−1, and the
bottom Fe layer at 313 K is kept stationary by switching off the
velocities in both y- and z-directions. The simulation setup
generates a Couette flow nanochannel with a heat flux from the
top Fe layer to the bottom Fe layer via the liquids.
Model Selection. A vast array of models and correspond-

ing parameters are available in the literature for the
nanoparticles being considered in this research.28,55−66 There-
fore, a fundamental investigation of the suitability of these
models and parameters needs to be performed for the
simulated heterogeneous nanofluids. The selection process is
accomplished by analyzing the stability of the nanoparticles
visually in the nanofluids, structural radial distribution
function, as well as trends of density and viscosity as a
function of temperature.
Multibody embedded atom model (EAM) potential of the

following functional form

= +V E R( )
1
2

( )
i

i i
i j i

ij ijEAM h,
(1)

is used to model the interactions between Cu atoms of the
nanoparticles, as they are reported to exhibit atomic cohesion
and accurate phonon spectra essential to compute structural
and thermal properties for our study. Here, Ei(ρh,i) is the
energy to embed atom i into the background host electron
density, ρh,i and Φij(Rij) are the core−core pair repulsion
between atoms i and j separated by the distance Rij. Foiles et
al.57 have provided a tabulated set of EAM potential
parameters for Cu atoms, which are used in the present study.
To describe the graphene and CNT intramolecular nano-

particle interactions, a bond-order potential formulated by
Tersoff of the following basic analytical form

=
>

V f r V r b V r( )( ( ) ( ))
i j

ij ij ij ijTersoff c R A
(2)

is predominantly utilized.67 Here, VR(rij) and VA(rij) represent
the competing repulsive and attractive bond potentials, with
fc(rij) acting as the cutoff term, ensuring that only nearest-
neighbor interactions are accounted for. The bond order
between atoms i and j in eq 2 is given by bij. Among the
different first-principles-based parametrizations available in the

Table 1. Concentration (by Weight %) of Additives in the
Different Nanofluids

additive concentration

fluid name polymer nanoparticle

PAO-2 S1
PAO-2 + 1 OCP P1 3.04
PAO-2 + 1 Cu CU1 2.77
PAO-2 + 1 Cu + 1 OCP CU2 2.97 2.69
PAO-2 + 4 graphene GR1 2.63
PAO-2 + 4 graphene +1 OCP GR2 2.97 2.55
PAO-2 + 1 CNT CN1 2.54
PAO-2 + 1 CNT + 1 OCP CN2 2.97 2.46 Figure 1. Simulation box of nanofluid CN1 after the energy

minimization step. Atoms in red at the top and bottom represent Fe.
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literature for Tersoff potentials of carbon, the optimized
parameters prescribed by Erhart and Albe60 possess good
transferability while handling hybrid potentials as the ones in
this study.
At the same time, it is essential to select the optimal LJ

parameters that work well with the selected solid-state
potentials in the simulated chemical mixtures. Therefore, the
LJ parameters for van der Waals interactions between the
nanoparticles and the solvent/polymer are selected after a
preliminary investigation of parameters available in the
literature.28,55,58,63,64,66 The parameters of PAO-2 and OCP
are obtained from the L-OPLS-AA force field.68,69 The LJ
parameters and the partial charges of the different atoms are
tabulated and shown in Tables S1 and S2, respectively, in the
Supporting Information.
The different nanofluid mixtures are listed in Figure 2. The

selected final parameters show Cu nanoparticles remain intact
and atoms do not disintegrate (see Figure 2a,d). Further
discussion of the thermodynamic stability of the nanofluids is
conducted in the Results and Discussion section. The 2D
graphene molecules showcase aggregation at the concen-
trations simulated (see Figure 2b,e), which is in line with its
experimental findings.70,71 The CNT nanoparticle retains a
cylindrical shape with limited shape changes (see Figure 2c,f).
The density of the copper, graphene, and CNT nanofluids
showcase higher values compared to the solvent at all the
temperatures, exhibiting a linear decrease as a function of
temperature (refer to Figure 3). Among the nanofluids
simulated, CU2 shows the highest density at different
temperatures (e.g., 0.805 g cm−3 at 313 K), reflecting the
mass and concentration of the copper and OCP additives in
the nanofluids.
The pairwise radial distribution function (RDF), go,p(r), is

computed using the equation

=g r
n r

r r
( )

( )
4o,p

n,p
2

(3)

where n(r) is the number of p atoms, with a number density
ρn,p in the simulation box, present in a spherical shell of

thickness δr from the central atom o. Figure 4 shows the RDF
values of the carbon atoms of the solvent and nanoparticles.
gCdsolvent,Cu(r) shows an initial peak at 3.35 Å, and gHdsolvent,Cu(r)
shows the peak at 2.35 Å. This is comparable with the study by
Zhang et al.,72 where the distance between Cu and C shows
the initial peak at 3.35 Å. Similarly, gCdsolvent,Cdgraphene

(r) and
gCdsolvent,CdCNT

(r) indicate two short peaks between 3 and 4 Å,
and between 4 and 4.5 Å. Kuziel et al.73 show similar RDF
peaks at these distances between the hydrophobic 2D
graphene surface and the carbon atom of oil. Thus, it provides
us evidence of the models’ ability to demonstrate appropriate
dissolution of the nanoparticles in the nanofluids.
The Green−Kubo method based on the fluctuation−

dissipation theorem of systems in equilibrium is used to find

Figure 2. Simulation box of nanofluids (a) CU1, (b) GR1, (c) CN1, (d) CU2, (e) GR2, and (f) CN2 at the end of the NPT equilibration run at
313 K. The orange-colored atoms represent Cu in panels (a, d). The purple-colored atoms represent 2D graphene in panels (b, e) and CNT in
panels (c, f). The pink atoms represent the OCP polymer chain in panels (d−f). The translucent atoms represent the PAO-2 solvent in all the
simulation boxes.

Figure 3. Density of the simulated fluids as a function of the
temperature. The error bars correspond to standard deviations from
three independent runs.
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the zero-shear dynamic viscosity (η0).74 It is computed by the
integration of a decaying stress autocorrelation function, such
that

= V
k T

t t( ) (0) dxy xy0
B 0 (4)

Here, V is the volume of the simulation box, kB is the
Boltzmann constant, and σxy(t) is one of the off-diagonal
components of the stress tensor at time t. The statistics of η0
computation are improved by taking an average of the
autocorrelation function of the three off-diagonal components
of the stress tensor. Figure 5 depicts the η0 values of the

different fluids simulated at various temperatures between 313
and 373 K. Nanoparticles increase the viscosity of the resultant
nanofluids, with further addition of the OCP polymer raising
the η0 values at all the temperatures. Under shear forces, the
simulated fluids showcase shear thinning beyond a shear rate of
109 s−1, as demonstrated in Figure S2 in the Supporting
Information. A Carreau model of the form

=
+

( )
(1 ( ) )m

0

s
2 (5)

is fitted to the data, with τs representing the time constant
referring to the shear rate where the shear thinning begins and
m representing the strain-rate sensitivity coefficient. While
comparing the fitting parameter τs of the model at 313 K in
Table S3, we observe that the addition of the OCP polymer
chain (as in the case of P1, CU2, GR2, and CN2) drives the
resultant fluid mixtures to shear thin at lower shear rates
(inverse of τs). While the η0 values computed using eq 5 of
fluids with suspended nanoparticles and polymers show higher
values than the solvent dynamic viscosity, they vary (20−40%)
from the η0 computed using eq 4. This is observed in the
literature and attributed to both the choice of force field and
the selection of shear rate sampling at lower shear rates.47,75

The results presented here demonstrate that the models are
suitable for investigations in the research. Thus, the systems

Figure 4. Radial distribution functions: (a) gCdsolvent,Cu(r) in CU1, (b)
gCdsolvent,Cdgraphene

(r) in GR1, and (c) gCdsolvent,CdCNT
(r) in CN1 at 313 K.

Figure 5. Zero-shear dynamic viscosity of the simulated fluids as a
function of temperature. The error bars correspond to standard
deviations from three independent runs.
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are further simulated to compute the thermal properties of the
different fluids.

■ RESULTS AND DISCUSSION
Stability Analysis. The thermodynamic stability of the

nanofluids is inspected to understand the binding of the
nanoparticles with the surrounding media in the solutions. The
interaction energies and kinetic energy statistics are utilized to
understand the long-term and short-term stability of the
nanofluids, as discussed in the literature.20,21 Additionally, the
solvation strength of the nanoparticles is analyzed using the
potential of mean force (PMF) computed as

= RT g rPMF ln( ( )) (6)

where R is the universal gas constant. The PMF value of
solvation is computed from the depth of the first trough of the
PMF data as a function of radial distance (r).
Figure 6a shows the different energies as a function of

simulation time for various concentrations (2.77−11 wt %) of
the copper-based nanofluids at 313 K. The non-bonded energy
as well as kinetic energy converge to equilibrium values for all
the concentrations, indicating a stable thermal equilibrium in
the long run. Additional evaluation of the running average of
kinetic energies of the Cu-based nanofluids, as demonstrated in
Figure 6b, and comparison with the mean of different
configurations show that the nanoparticle structures form a
stable structure within 200 ps at all the concentrations. While
probing the structures using visual molecular dynamics
(VMD), we observe the nanoparticles, once aggregated within
a few picoseconds, form a stable structure at all of the
concentrations simulated. However, as the number of nano-
particles increases with the concentration, the size of the
aggregate also increases (see Figure S3). This leads to a
decrease in the surface coverage of the solvent molecules

around the aggregated structures. This is reflected when
comparing the PMF of the nanoparticle−solvent interactions,
as shown in Figure 7. PMF magnitudes monotonically decrease
from 0.328 kcal mol−1 at the concentration of CU1 to 0.112
kcal mol−1 at 11 wt %. While this is the case for solvation
stability, the comparison of thermal conductivities does not
exhibit a significant rise in the values (<0.1 W m−1 K−1) as the

Figure 6. (a) Kinetic energy (solid lines) and non-bonded energy (dashed lines) of copper nanofluids at different concentrations as a function of
time. (b) Running averages of kinetic energy of the stable configuration (dotted lines) and the mean of kinetic energy of all simulated
configurations (dashed lines) as a function of time −2.77 wt % (top), 5.5 wt % (middle), and 11 wt % (bottom).

Figure 7. Potential of mean force (PMF) of nanoparticle−Hsolvent as a
function of the radial distance at different concentrations. The arrows
show the respective PMF of the solvation shells at 2.77 wt % (−0.328
kcal mol−1), 5.5 wt % (−0.290 kcal mol−1), and 11.0 wt % (−0.112
kcal mol−1).
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concentration increases (Figure S3). In the literature, an
increase in concentration leads to a significant rise in thermal
conductivity values while the increase in the size of the
nanoparticles leads to a relevant decrease.19 Thus, a
competitive effect, also observed in the case of aqueous
solutions in the literature,22 where a volume fraction rise of
3.25% leads to a thermal conductivity increase of less than 0.2
W m−1 K−1 at 313 K, is seen here. In this work, the volume
fraction difference between the lowest (2.77 wt %) and highest
concentration (11 wt %) simulation is only 1.75%.
The comparison of the PMF values for the nanofluids of

compositions shown in Table 1 is performed. Figure 8
indicates how the addition of the OCP polymer chain impacts
the solvation stability of the different nanofluids. While CU1
shows a PMF magnitude of 0.328 kcal mol−1, CU2 shows a
slightly higher PMF magnitude of 0.360 kcal mol−1. The trend
is similar in the cases of GR1 (0.062 kcal mol−1) and GR2
(0.179 kcal mol−1). However, the addition of OCP does not
seem to change the PMF value of CN2 significantly compared
to that of CN1. The addition of the OCP chain thus seems to

raise the interaction strength of the copper and graphene
nanoparticles by the solvent molecules.
Thermal Properties. The specific heat capacity (Cp) of a

liquid is computed in an MD simulation using the simplified
equation

=C
E E

M RTp
total
2

total
2

s
2 (7)

where Etotal is the total energy of the simulation box, Ms is the
total mass of the simulation box, and R is the universal gas
constant.76,77

Figure 9a shows the values of Cp as a function of the
temperature for the different liquids. Cp of PAO-2 increases
from 6194 J kg−1K−1 at 313 K to 6400 J kg−1K−1 at 373 K. The
values are higher than the experimental Cp values by a
minimum of 2.6 times, and the deviations are addressed as a
limitation of OPLS-AA force fields due to the high energy of
classical harmonic bond oscillator vibrations.78 For the same
temperature range, the experimental Cp values range from 2260
J kg−1K−1 at 311 K to 2455 J kg−1K−1 at 368 K.79 However, the
main objective of the study is to examine the influence of

Figure 8. Potential of mean force (PMF) of nanoparticle−Hsolvent interactions as a function of radial distance for (a) CU1 and CU2, (b) GR1 and
GR2, and (c) CN1 and CN2.
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polymers and nanoparticles on the thermal properties of the
suspensions rather than on the absolute property values.
Moreover, the prediction of thermal conductivity trends, as
reported later with the different additives, is in line with the
various experimental results and theoretical models.
As observed, the addition of the OCP polymer chain

decreases the Cp values at all temperatures. A similar
observation is made when Cu nanospheres are added to
both the solvent and the OCP polymer solution. However,
GR1 and CN1 nanofluids indicate higher Cp values than the
base solvent. This is reflected in the independent experimental
studies of Cai et al.26 and Singh et al.80 of 2D carbon-based
nanoparticles dispersed in oils. On the other hand, the addition
of OCP in 2D graphene and CNT polymer solutions leads to a
competing effect of the Cp-enhancing nanoparticles and Cp-
diminishing polymer chain. This leads to the Cp values of GR2
and CN2 nanofluids being lower than those of the solvent at all
of the temperatures simulated. The specific heat capacity of
solids such as the nanoparticles in the simulated systems is
considered as the sum of the electronic and phonon
contributions. For all practical purposes, i.e., temperatures
above 10 K, the Cp of the nanoparticle is predominantly due to
the phonon contribution.81 The contrasting impact due to
copper- and carbon-based nanoparticles on the Cp values of the
simulated nanofluids may emerge from the differences in their
respective phonon dispersion curves. Having understood the
capabilities of the different nanofluids in thermal storage, it is
important to estimate their thermal transport properties.
For a fluid oriented toward heat transfer applications,

thermal conductivity (k) is a vital property to be computed.
This metric provides a measure of the ability of a fluid to
conduct heat, given a temperature gradient across it. It is also
necessary for the computation of the Nusselt number of novel
liquids characterizing the ratio of heat transfer via flow

convection and conduction.84 The conduction of heat is due to
the microscopic behavior of the material, constituting MD as a
useful tool to compute it.85,86 The Müller-Plathe52 method-
ology is used to compute thermal conductivity, and k of the
heat transfer fluids is simulated. The formulation is based on
the following relationship as given by Fourier’s law

=q k T (8)

where q is the heat flux across the fluid and ∇T is the
corresponding temperature gradient. The Müller-Plathe
methodology implements the ∇T by routinely exchanging
the translational velocities of the atoms in the simulation box,
conserving momentum. Over a long time period, the
continuous exchange of momentum leads to the development
of a linear ∇T across the simulation box. The computed k
values of the different fluids and the corresponding available
experimental data are compared in Table S4 in the Supporting
Information.
To compare how the different additive-mixed fluids perform

against the base solvent, the ratio k
k
fluid

S
is computed. Figure 9b

depicts the k
k
fluid

S
values of the different heat transfer fluids as a

function of temperature. OCP and the different nanoparticles
lead to an increase in the thermal conductivity of the resultant
fluids. The average thermal conductivity of fluid P1 shows an
increase of 12% compared to solvent S1 at 313 K, whereas
CU1 shows an increase of 4%. GR1 and CN1 exhibit increases
of 10 and 6%, respectively, at 313 K. The addition of the OCP
polymer chain increases the overall thermal conductivity of the
nanofluids even though the appreciation is different for the
different nanofluids. While CU2 shows a further enhancement
of k by 3% compared to that of CU1, the ratios for GR2 and
CN2 increase by an additional 1.6% compared to GR1 and

Figure 9. (a) Specific heat capacity (Cp) of the simulated fluids as a function of temperature. (b)
k

k
fluid

S
of the simulated fluids with additives as a

function of temperature. Simulated results are shown by markers with standard deviations. The dashed lines in panel (b) represent the values
estimated by the different theoretical models for the nanofluids of respective volume fractions, such as by Maxwell31 (orange), Hamilton−Crosser32
(brown), and Fakoor Pakdaman et al.82 (magenta). The solid lines in panel (b) represent the experimental results of 1 wt % oil-based copper
nanofluid27 (orange), 3 wt % oil-based graphene nanofluid26 (green), and 1 wt % PAO-2-based MWCNT nanofluid83 (brown).
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Figure 10. Phonon vibrational density of states (DOS) of the different nanofluids at 313 K.
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CN1, respectively. Most importantly, the addition of OCP in
CNT-based nanofluids increases k

k
fluid

S
as temperature increases

from 313 to 373 K.
Figure 9b compares the results of the different simulated

nanofluids to theoretical models and the available oil-based
nanofluid experimental results. As observed, the traditional
solid suspension models by Maxwell31 and Hamilton−
Crosser32 using the same volume fractions (0.0019−0.0025)
as that of the simulated fluids predict lower k

k
fluid

S
ratios. While

the Maxwell model is suitable for spherical particles, the
Hamilton−Crosser model is used to find the k

k
fluid

S
values of

nanofluids of cylindrical nanoparticles. On the other hand, the
empirical model described by Pakdaman et al.,82 which is
specific for multiwalled CNT (MWCNT), shows higher k

k
fluid

S

values than those of simulated nanofluids. The experimental
values of a 3 wt % oil-based graphene nanofluid and 1 wt % oil-
based copper nanofluid are higher than those of the simulated
nanofluids, while 1 wt % PAO-2-based MWCNT nanofluid
shows values closer to the simulations.26,27,83 The discrep-
ancies between the experimental ratio and the simulated ratio
can be attributed to the large size distribution of nanoparticles
(diameter ≥ 40 nm), the actual chemistry of the oil (ρ ≥ 0.85
g cm−3 and η ≥ 130 mPa s), and the stabilizing additives (e.g.,
lipophilic polymers) used to synthesize the experimental
nanofluids.
The differences in the way solid nanoparticles conduct heat

in oil could shed light on why the heat transfer properties are
different for the different solid−liquid mixtures of nanofluids.
In order to quantify the mechanism of heat transfer of the
additives in the nanofluids, the phonon density of states
(DOS) is computed. The vibrational DOS of a particular atom
is computed using the Fourier transform of the velocity
autocorrelation function as follows87

= · +
·

v t v t t
v t v t

e tDOS
( ) ( )

( ) ( )
di t0 0

0 0

2

(9)

Figure 10 shows the DOS of the different atoms in solvent
S1 and the nanofluids CU1, GR1, and CN1. As observed in
Figure 10, the frequencies of carbon are prominent in the
lower frequencies between 0 and 40 THz, whereas those of
hydrogen are present in the high-frequency region of 80−100
THz. In the case of CU1, the copper nanoparticles show DOS
frequencies between 0 and 20 THz. In the cases of GR1 and
CN1, the multiple peak frequencies generally coincide with the
DOS of carbon atoms of the oil solvent. Here, it is to be
mentioned that while copper demonstrates a single major peak,
the carbon-based nanoparticles showcase multiple peaks at
distinct frequencies. This could lead to the occupation of more
phonon states in the case of 2D graphene and CNT, which in
turn raises the specific heat capacity of the GR1 and CN1
nanofluids, as seen in Figure 9a.88 However, a more accurate
understanding of the phonon dispersion curves requires
quantum mechanical studies that are out of the scope of the
current investigation.
Meanwhile, the matching degree of DOS89,90 is obtained

using

=
f f f f

f f f f f f

DOS ( )DOS ( )DOS ( )d

DOS ( )d DOS ( )d DOS ( )d
DOS

0 nano C H

0 nano 0 C 0 H

(10)

where DOSnano( f) represents the density of state of nano-
particle, DOSC( f) represents the DOS of carbon atoms, and
DOSH( f) represents the DOS of hydrogen atoms of the
solvent and the polymer molecules. Figure 11 depicts the δDOS

values of the different nanofluids. It is evident that CU1 and
CU2 exhibit the highest δDOS values at all the simulated
temperatures, indicating that phonon transfer is easily
facilitated between the nanoparticles and solvent atoms in
reference to their heat transfer mechanism. Thus, the
contribution of the DOS peak of nanoparticles at very low
frequency to the overall thermal conductivity is greater. On the
other hand, the δDOS values of GR1, CN1, GR2, and CN2 are
lower than those of copper nanofluids, ranging between 0.97 at
313 K and 0.90 at 373 K. However, from Figure 9b, it is
evident that higher values of thermal conductivity are observed
for nanofluids consisting of 2D graphene and CNT. In other
words, the high intrinsic k values of carbon allotropes
compared to copper nanoparticles (ca. 4−5 times higher, as
shown in Table S5 in Supporting Information) are able to
compensate for higher interfacial Kapitza resistance.29 Kapitza
resistance is defined as the thermal resistance to the flow of
heat at the interface between the solid nanoparticles and the
surrounding media. Here, a significant difference in the
mechanism of heat transfer between the metallic and carbon-
based nanofluids is identified. It is to be pointed out that 2D
graphene and CNT thermal properties are critically dependent
on the size of the particles and surface modifications (such as
dislocations, edge roughness, and vacancies) that may vary the
DOS pattern.88

Heat Transfer Coefficient. In order to further understand
the heat transfer enhancement potential of nanofluids while
under convection conditions, the achieved heat transfer
coefficient, h in each case, is computed by simulating Couette

Figure 11. Matching degree of DOS, δDOS, of the simulated
nanofluids as a function of temperature.
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flow between two Fe atomic layers. As described in the
Simulation methodology section, the moving top Fe layer is
heated to 373 K, and the stationary bottom Fe layer is
maintained at 313 K. This leads to a temperature gradient,
which, over a long time, becomes linear, as shown in Figure S4
in the Supporting Information. The shear rate applied in this
exercise belongs to the shear thinning regime, as depicted in
Figure S2. The corresponding velocity profile in the y-direction
(vy) is also shown in Figure S4. The heat flux vector in the
liquid for such a system is computed as

=
·

+ · +
<

J v F v v r
A l

e1 1
2

( ( ))
i

i i
i j

ij i j ij

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (11)

where ei is per-atom total energy and the term (Fij·(vi + vj))rij is
the energy computed from the per-atom stress tensor.91 A is
the cross-sectional area of the simulation box normal to the
heat flux direction with a length of fluid enclosure, l. Thus, the
heat transfer coefficient in our case is computed as

= =h
q
T

J

t T
z

(12)

with the time step of simulation�Δt and the temperature
difference between the top and bottom layer of fluid being
ΔT.54 Furthermore, the apparent Nusselt number (Nu) is
computed as

= hL
k

Nu
mean (13)

where L is the characteristic length of the solid surface exposed
to the fluid and kmean is the mean of the thermal conductivity of
the fluid at 313 and 373 K, as provided in Table S4. Based on
the simulation box dimensions, as depicted in Figure 1, the
value of L is equal to 32.5 Å.
The heat transfer coefficients of the different fluids simulated

are shown in Figure 12a. The solvent S1 has an h value of 19.3

× 10−6 W m−2 K−1. The addition of Cu nanoparticles increases
the h value to 27.6 × 10−6 W m−2 K−1, whereas GR1 shows a
higher value of 35.5 × 10−6 W m−2 K−1. However, the highest
h value among the nanoparticles is observed when CNT is
added to the oil, showing a consequent increase of 96%.
Subsequently, the addition of an OCP polymer chain in the
nanofluids shows a substantial increase in the heat transfer
coefficients of the different nanofluids compared with the base
solvent S1. While CU2 shows an increase of 80% of the h value
compared to that of S1, GR2 shows an increase of 107%, and
CN2 shows an increase of 122%. Thus, the addition of the
OCP polymer chain improves the ability of the solutions to
transfer heat, which, in turn, points to a thinner thermal
boundary layer. The comparison of the Nusselt numbers, as
shown in the inset of Figure 12a, demonstrates a similar trend
as h values for the flows simulated here. To investigate the
relation between the structure of the polymer and the
enhancement of the h and Nu values in the dissolved
nanofluids, computation of the end-to-end distance (Re) of
the OCP polymer chain is performed. Figure 12b shows the
squared end-to-end distance and Re2 values under no flow
condition in y-direction and under Couette flow at vy,max = 0.1
Å ps−1. Re2 increases under the flow condition compared to the
nonflow condition. This is a plausible reason contributing to
the heat transfer coefficient enhancement in the polymer-
additized nanofluids due to increasing polymer−solvent and
polymer−nanoparticle interfacial heat transfer. An increase of
14.2% of the squared end-to-end distance of the polymer chain
in CU2 showcases an additional 40% net enhancement in the h
value compared to that of CU1. At the same time, an increase
of 11.8 and 12.3% in the Re2 values demonstrate additional h
value enhancements of 23.5 and 27.2% in GR2 and CN2,
respectively. These variations indicate that the total enhance-
ment of the heat transfer coefficients due to polymer addition
is still limited by Kapitza resistance. It is to be noted here that
the addition of viscoelastic polymer chains reduces turbulence
intensity,92 hindering heat transfer in turbulent flows. The

Figure 12. (a) Heat transfer coefficient (h) of the simulated fluids as a function of temperature. The error bars correspond to standard deviations
from three independent runs. The inset shows the Nusselt number computed by using eq 11. The percentage value above each data point shows
the enhancement of mean h values with respect to the corresponding value of S1. (b) Squared end-to-end distance Re2 for the different polymer-
added fluids under the conditions of vy,max = 0 and 0.1 Å ps −1.
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arguments outlined in this section are relevant to laminar
flows, as simulated in this investigation.
Limitations. The presented research is concerned with

nanofluids containing specific nanoparticles with sizes on the
order of 1 nm. In real applications (or experiments), the
nanoparticle size distributions range anywhere from 10 to 0.1
μm. The distinction is reflected in the order of magnitude
differences in intrinsic thermal conductivities of the nano-
particles that are simulated (see Table S5) and which are
available in the experimental literature.50,51 The multibody
force fields utilized for the solid particles are observed to
underpredict the thermal conductivity and show dependence
on the nanoparticle size.93 The nanofluids may agglomerate or
disintegrate during dynamic flow processes, which are not
considered in the reported investigation. Such dynamic
changes may affect the quantitative results of the reported
heat transfer coefficient trends. Moreover, suspension-stabiliz-
ing agents or surfactants are an important component of
practical nanofluids not considered here.94 As reported by
Sharma et al.,95 the addition of these dispersants can lead to
further modifications in the rheological behavior of the
nanofluids, in essence affecting the heat transfer coefficients.
However, the selection of an optimal surfactant chemistry can
mitigate such effects.

■ CONCLUSIONS
Strong evidence for the suitability of oil-based dilute
viscoelastic nanofluids for dielectric immersive-cooling appli-
cations is demonstrated by the present investigation. Among
the nanoparticles dispersed, CNT and 2D Graphene showed
higher values of thermal conductivity compared to metallic
copper nanospheres within the temperature range of 313−373
K. Such a difference in impact is observed as a result of the
different mechanisms of heat transfer between the nano-
particles and solvent PAO-2. While copper shows a higher
DOS at lower frequencies, assisting in thermal conductivity
enhancement, carbon-based nanoparticles are able to over-
come the lower DOS matching degree with their high intrinsic
thermal conductivity. Subsequently, the dilute nanofluids are
shown to have higher heat transfer coefficients than PAO-2.
Moreover, the addition of an OCP polymer chain is
demonstrated to increase the heat transfer coefficients by
more than 80% compared with the base solvent PAO-2 for the
flows simulated here. The enhancement in the heat transfer
coefficient is dependent on the extent of polymer chain
expansion in combination with the interfacial Kapitza
resistance of the nanoparticles and the surrounding media.
For the practical use of such nanofluids for immersion-cooling
applications, the selection of an appropriate suspension-
stabilizing agent that does not negatively interfere with the
heat transfer mechanisms requires further research.
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