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Abstract. Recently, aluminium alloys are extensively used in the construction sector because 
of their small self-weight, good corrosion resistance, low maintenance, high recyclability, and 
aesthetic appearance. However, one of the main disadvantages of these alloys is the low Young’s 
modulus, which may cause a stability issue of aluminium structural members. Moreover, 
currently available design standards for predicting buckling resistance of aluminium columns 
are generally conservative. Therefore, additional research is required to evaluate the actual 
structural behaviour of aluminium columns under axial compression. The present study 
experimentally investigated the buckling response of 13 square and rectangular 6082-T6 
aluminium alloy columns subjected to axial compression. The properties of the aluminium alloy 
were achieved from tensile test of coupon samples. The compressive load was employed 
concentrically by using a knife-edge hinge to ensure pin supports on both ends of the specimens. 
The structural response of the columns observed from the tests is presented in terms of ultimate 
strengths, failure modes and load-mid-height lateral displacement relationship. Furthermore, the 
test results of the specimens are compared with the ultimate strengths calculated by Eurocode 9, 
showing that the latter provides conservative and scattered design estimations. 

Keywords. aluminium alloy, square hollow section (SHS), rectangular hollow section (RHS), 

axial compression, tubular columns, experimental study, buckling 

1. Introduction 

Recently, aluminium alloys have become the second most important material next to conventional 
carbon steel. The increasing growth of these alloys in the structural applications is because of their small 
self-weight, good corrosion resistance, low maintenance, high recyclability, and aesthetic appearance 
[1]. However, one of the main drawbacks of aluminium alloys is their low Young’s modulus, which 

could cause a stability issue of aluminium structural members. Moreover, the important aspects of stress-
strain relationship of these alloys such as, the absence of yield plateau and continuous strain-hardening 
behaviour could lead to inaccurate estimation of design strength using current design codes, which are 
based on bi-linear stress-strain behaviour. Therefore, further research is required to evaluate the actual 
behaviour of aluminium structural members. 

Research on axial load carrying capacity and stability response of aluminium alloy columns started 
in the middle of the last century. In 1938, Templin et al. [2] experimentally studied the bearing capacities 
of columns extruded from different aluminium alloys. Marin [3] conducted research on load-
displacement curves of aluminium alloy columns under eccentric loading. From 1957 to 1971, series of 
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tests were conducted on non-welded and welded aluminium alloy structural members subjected to 
compression, bending and torsion [4–8]. In 1972, Tsuruta et al. [9] conducted tests on welded aluminium 
alloy columns. Total 89 hollow and 62 solid columns with rectangular section were tested under 
concentric and eccentric axial compression and a number of formulas were proposed to establish a 
relationship between compressive strength and slenderness of welded columns. Hopperstad et al. [10] 
studied the ultimate strengths of columns extruded from 6082-T4 and 6082-T6 alloys subjected to 
uniform compressive loading. In 2000, Faella et al. [11] tested a total of 80 square and rectangular 
columns made of 6060, 6061 and 6052 aluminium alloys under axial compression and proposed a new 
classification system for aluminium cross-sections. Furthermore, many researchers investigated the 
buckling response of aluminium columns experimentally and numerically for various extruded cross-
sections, such as, square and rectangular hollow sections [12–21], circular hollow sections [20–24], I-
sections [13,25,26], angle sections [16,27], channel sections [28–30], and other irregular sections [31–

34]. It was shown that currently available design standards for calculating the buckling resistance of 
aluminium columns are generally conservative. 

The present study experimentally investigated the buckling response of 13 square and rectangular 
6082-T6 aluminium alloy columns under axial compression. The properties of the aluminium alloy were 
achieved from tensile test of coupon samples. The compressive load was employed concentrically by 
using a knife-edge hinge to ensure pin supports on both ends of the specimens. The structural response 
of the aluminium alloy columns observed from the tests is presented in terms of ultimate strengths, 
failure modes and load-mid-height lateral displacement relationship. Finally, a comparison was drawn 
between the specimen strengths recorded during compression tests and design strengths calculated using 
Eurocode 9 [35]. 

2. Experimental programme 

2.1. Specimens’ geometry 

In this study, total 13 hollow aluminium columns were tested subjected to axial compression. All 
specimens were extruded and fabricated by 6082-T6 heat-treated aluminium alloy. The experimental 
programme comprised of four test series, including two series of hollow square section (SHS) and two 
series of hollow rectangular section (RHS). In the first two series, total 8 SHS specimens of two nominal 
section types ( D B ), i.e., 50.8 × 50.8 and 76.2 × 76.2 were used with different nominal thicknesses (
t ) varied from 1.59 to 6.35 mm. In the last two series, a total of 5 RHS specimens of two nominal section 
types ( D t ), i.e., 76.2 × 3.25 and 101.6 × 3.25 were examined, where the widths ( B ) were varied from 
25.4 to 50.8 mm. The nominal lengths ( L ) of all columns were 1000 mm. Before testing, the specimen 
dimensions were measured using a measuring tape and a digital Vernier calliper. The columns were 
designated based on the cross-sectional shape and nominal dimensions. For example, the label 
R101.6×25.4×3.25 denotes that the shape of section of the specimen is RHS and its nominal outer depth 
( D ), nominal outer width ( B ) and nominal thickness ( t ) are 101.6 mm, 25.4 mm and 3.25 mm, 
respectively. Table 1 summarises the geometric dimensions of all columns. 

2.2. Material properties 

The specimens’ material properties were achieved from tensile test of dog-bone coupon samples. The 
tensile coupons were cut longitudinally from the four flat faces of the specimens. The width and gauge 
length a coupon were 12 mm and 100 mm, respectively, as suggested in EN ISO 6892-1 [36]. The tensile 
tests conducted by a 50 kN displacement-control testing machine (figure 1(a)). The strain rate of 0.2 
mm/min was applied until the coupons reach to fracture. During the test, a calibrated extensometer was 
installed to determine the deformation of the coupons. 
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Table 1. Specimens’ geometric dimensions. 

Specimen Depth, D  

(mm) Width, B (mm) Thickness, t  
(mm) 

Length, L  
(mm) D B  B t  

S50.8×50.8×1.59 50.7 51.0 1.61 1000 0.99 31.78 
S50.8×50.8×2.64 51.1 50.9 2.63 1000 1.00 19.34 
S50.8×50.8×3.25 50.6 50.6 3.13 999 1.00 16.15 
S50.8×50.8×4.76 50.6 50.6 4.67 1000 1.00 10.84 
S76.2×76.2×1.63 76.3 76.3 1.54 1000 1.00 49.58 
S76.2×76.2×3.25 76.4 76.4 3.23 1000 1.00 23.64 
S76.2×76.2×4.76 76.2 76.1 4.76 1000 1.00 16.01 
S76.2×76.2×6.35 76.3 76.3 6.28 1000 1.00 12.16 
R76.2×25.4×3.25 76.4 25.4 3.34 1000 3.00 7.62 
R76.2×38.1×3.25 76.2 38.2 3.27 1000 1.99 11.67 
R76.2×50.8×3.25 76.1 50.7 3.18 1000 1.50 15.94 
R101.6×25.4×3.25 101.8 25.4 3.22 1000 4.01 7.89 
R101.6×50.8×3.25 101.8 51.4 3.42 1000 1.98 15.03 

The stress-strain relationships recorded from the coupon tests were utilised to obtain the specimens’ 

properties and calibrate the Ramberg-Osgood model (equation (1)) [37]: 

0 2
0 002

n

.

.
 

   
 

 


 
 (1) 

where   is the stress,   is the strain,   denotes the Young’s modulus of aluminium alloy, 0 2.  is the 
0.2% proof stress and n  is the strain hardening exponent, which can be determined by equation (2): 
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 


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(2) 

where 0 1.  is the 0.1% proof stress. Figure 1(b) presents the measured stress-strain curve and the curve 
predicted by the Ramberg-Osgood model of specimen S50.8×50.8×1.6. It is observed that the aluminium 
alloy exhibits rounded stress-strain relationship, which is accurately captured by the Ramberg-Osgood 
model. The material properties of all specimens, including,  , 0 1. , 0 2. , u  (ultimate tensile stress),
n  and f  (plastic strain at fracture) are listed in table 2. 

2.3. Initial geometric imperfections 

Buckling can be defined as the behaviour of a structural member, which loses its stability and suddenly 
bends in orthogonal direction of the loading direction. When a structural member is subjected to axial 
compression, the anticipated failure mode is flexural member buckling (global buckling), while local 
buckling occurring at the plate elements of a member can also be observed before/at failure. The stability 
of thin-walled compression members is affected significantly by the presence of initial geometric 
imperfections. Thus, the magnitude of initial imperfections of all columns were measured before the 
test. A linear height gauge was applied to determine the imperfection values along the centrelines of all 
four faces of a specimen (figure 2). 
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(a) (b) 

Figure 1. (a) Experimental set-up of tensile coupon test, (b) comparison between 
measured and Ramberg-Osgood curve of specimen S50.8×50.8×1.59. 

 
Table 2. Specimens’ material properties. 

Specimen    (GPa) 0 1.  (MPa) 0 2.  (MPa) u  (MPa) n  f  (%) 

S50.8×50.8×1.59 65.0 284.4 289.1 315 42.29 10.5 
S50.8×50.8×2.64 72.2 333.9 337.1 352 72.67 9.8 
S50.8×50.8×3.25 71.7 297.5 302.2 330 44.22 8.9 
S50.8×50.8×4.76 67.5 302.8 305.9 325 68.05 15.5 
S76.2×76.2×1.63 67.9 288.4 292.9 316 44.77 8.4 
S76.2×76.2×3.25 66.2 295.2 299.1 321 52.8 10.5 
S76.2×76.2×4.76 64.7 303.7 306.1 316 88.06 9.7 
S76.2×76.2×6.35 69.3 290.4 295.3 326 41.43 15.3 
R76.2×25.4×3.25 68.9 271.8 277.9 316 31.23 14.3 
R76.2×38.1×3.25 68.5 270.4 276.8 315 29.63 9.3 
R76.2×50.8×3.25 67.5 285.9 289.5 312 55.39 9.1 
R101.6×25.4×3.25 63.9 234.7 242.50 290 21.20 13.2 
R101.6×50.8×3.25 60.0 176.9 183.8 225 18.12 14.9 

 

  

(a) (b) 

Figure 2. (a) Imperfection measurement set-up, (b) location of imperfection measurements. 
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The local imperfection ( l ) is defined as the maximum deformation of a column face from a flat 
datum. For this purpose, data were taken at regular intervals along the longitudinal direction of all faces 
and the maximum value measured among the four faces was taken as the local imperfection amplitude 
of a specimen. The initial bow ( g ) was calculated from the deformation readings recorded at mid-
length and both ends of a column. The measured results of local and global geometric imperfections are 
listed in table 3. 

2.4. Axial compression test 

A hydraulic testing machine with 600 kN capacity was used to conduct axial compression tests. Prior to 
the tests, top and bottom end of a specimen were milled flat for ensuring uniform distribution of applied 
load. Moreover, carbon fibre reinforced polymer was used to strengthen both ends of the specimens to 
prevent localised failure at ends. Specimens were placed accurately into the testing machine using a 
geometric cantering method to avoid the possibility of eccentric loading. A bearing system, consisting 
of a steel plate with V-shaped grooves and a knife-edge wedge was adopted at both top and bottom 
supports to simulate pin-ended support conditions and allow rotation of a specimen about the weak axis. 
Moreover, in both ends of each specimen, plates bolted to channel sections allowed the adjustment of 
the specimen’s relative position and prevented springing out of specimens during testing, without 

providing any additional restraint. A displacement control load was employed at a constant rate of 0.2 
mm/min excluding the presence of dynamic effects [39]. During the tests, four linear variable differential 
transformers (LVDTs) were used; two were positioned at the mid-height of the specimen to record 
lateral displacement; and two were located at the bottom channel section to monitor rotation. For 
measuring strain values, four strain gauges were installed symmetrically in the four outer faces at the 
mid-length of a specimen. A data logger was utilised to acquire the data from the strain gauges, LVDTs 
and load cell. The experimental setup and position of strain gauges and LVDTs are presented in figure 
3. 

  
(a) (b) 

Figure 3. Experimental setup and instrumentation: (a) photograph, (b) illustrative drawing. 

3. Experimental investigation 

3.1. Specimen geometry 

In the first stages of testing, the actual initial loading eccentricity ( 0e ) of a specimen is calculated using 
the strain gauges values and the LVDTs readings (equation (3)) [38]. 



15th Global Congress on Manufacturing and Management (GCMM 2021)
Journal of Physics: Conference Series 2198 (2022) 012046

IOP Publishing
doi:10.1088/1742-6596/2198/1/012046

6
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0

max min

g

EI
e

DN


  

 
   (3) 

In the above equation, I  is the moment of inertia, N is the applied load, max , min  are the maximum 
and minimum strain values corresponding to N respectively,  is the lateral displacement at the mid-
height and D  is the depth of the specimen. 

3.2. Axial load-mid-height lateral displacement behaviour 

During testing, the axial load-mid-height lateral displacement relationships were recorded (figure 4) and 
studied to understand the overall structural behaviour of all tested columns. The axial compressive load 
and mid-height lateral displacements were obtained from the load cell and the LVDTs respectively. All 
the curves show almost similar trend and can be categorised into three different regions, i.e., the elastic 
region, the elastic-plastic region, and the descending region. In the elastic region, the lateral 
displacement increases linearly and gradually with the increase of load. At the elastic-plastic region, the 
increase of axial load slows down to reach the peak load while the development of lateral displacement 
accelerates. In this region, non-linear behaviour is evident. At the last region, the lateral displacement 
increases rapidly together with a gradual fall of the load. As anticipated, the performance improves for 
B  constant and increasing thickness ( t ) (figures 4(a) and 4(b)), and for t  constant and decreasing cross-
sectional aspect ratio ( D B ) (figures 4(c) and 4(d)). 
 

  
(a) S50.8 (b) S76.2 

  
(c) R76.2 (d) R101.6 

Figure 4. Load-mid-height lateral displacement relationships of specimens. 
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3.3. Failure mode and ultimate capacity 

As the knife-edge allowed rotation about the minor axis, all specimens failed due to flexural buckling 
about the weak axis. No tear or cracks were identified in any specimen. In addition to global buckling, 
the specimens S50.8×50.8×1.59, S76.2×76.2×1.63 and S76.2×76.2×3.25, which have higher width-to-
thickness ( /B t ) ratios also experienced local buckling near the mid-height (i.e., interactive global and 
local buckling). Figure 5 illustrates typical failure modes. The ultimate capacity ( u ,EXPN ) of a specimen 
is defined as the maximum applied load during the test. It is observed that in the case of square specimens 
the u ,EXPN  increased with the decrease of /B t  ratios ( B  constant, t  variable), whereas for rectangular 
sections, u ,EXPN  increased with the increase of /B t  ( t  constant, B  variable). Table 3 presents the local 
and global geometric imperfections, actual initial loading eccentricities, ultimate capacities, failure 
modes and corresponding /B t  ratios of all specimens. 

 

 

 

                          (a) (b) 

Figure 5. Failure modes of (a) specimen S76.2×76.2×3.25 (Interaction of local 
and flexural buckling), (b) specimen S50.8×50.8×2.64 (Flexural buckling) 

 
Table 3. Initial geometric imperfections, initial loading eccentricities, ultimate capacities and 

corresponding failure modes of specimens. 

Specimen l  
(mm) 

g  
(mm) 

0e  
(mm) /B t  u,EXPN  

(kN) 
Failure mode 

S50.8×50.8×1.59 0.11 0.03 0.45 31.78 60.22 Global with Local buckling  
S50.8×50.8×2.64 0.43 0.06 1.93 19.34 100.68 Global buckling 
S50.8×50.8×3.25 0.17 0.04 1.25 16.15 113.83 Global buckling 
S50.8×50.8×4.76 0.19 0.01 1.83 10.84 161.48 Global buckling 
S76.2×76.2×1.63 0.25 0.33 1.61 49.58 63.88 Global with Local buckling 
S76.2×76.2×3.25 0.31 0.19 1.03 23.64 263.28 Global with Local buckling 
S76.2×76.2×4.76 0.08 0.05 0.70 16.01 367.36 Global buckling 
S76.2×76.2×6.35 0.18 0.04 0.62 12.16 489.85 Global buckling 
R76.2×25.4×3.25 0.54 0.15 0.38 7.62 53.46 Global buckling 
R76.2×38.1×3.25 0.06 0.02 1.12 11.67 97.62 Global buckling 
R76.2×50.8×3.25 0.68 0.42 2.55 15.94 138.72 Global buckling 
R101.6×25.4×3.25 0.46 0.10 1.47 7.89 66.09 Global buckling 
R101.6×50.8×3.25 0.17 0.05 0.76 15.03 143.72 Global buckling 



15th Global Congress on Manufacturing and Management (GCMM 2021)
Journal of Physics: Conference Series 2198 (2022) 012046

IOP Publishing
doi:10.1088/1742-6596/2198/1/012046

8

 
 
 
 
 
 

4. Comparison of experimental results with European design rules 

The Eurocodes suite consists of 10 European Standards for structural design and Eurocode 9 (EN 1999-
1-1) [35] provides design formulae for aluminium alloy structures. The results obtained herein are also 
used for the assessment of the aforementioned codified rules. According to Eurocode 9 [35] aluminium 
structural members subjected to axial compression could collapse by flexural or local buckling. The 
effective thickness method [35] is adopted to take into account the local buckling influence on the 
ultimate strength of specimens. The design strengths ( u,EC9N ) of the specimens are estimated by the 
design equation given in Eurocode 9: 

u,EC9 c,Rd b,RdN = min(N ,N )  (4) 

where c,RdN  is the design resistance to compression and b,RdN  is the design resistance to buckling. c,RdN  
is calculated by equation (5): 

1c,Rd eff yN A f    (5) 

where effA  is the effective cross-sectional area for class 4 (i.e., sections prone to local buckling) or gross 

cross-sectional area for class 1, 2 and 3, yf  is the proof stress and 1  is the safety coefficient. The effA  

can be obtained by factor down the plate thickness using a coefficient c , which is estimated by equation 
(6): 

   
2

32 220 22c   for     
   

 (6) 

where   is the ratio of width-to-thickness ( /b t ) and 250/ yf . b,RdN  can be determined by the 
equation (7): 

1b,Rd eff yN A f     (7) 

where   is the reduction coefficient to consider the influence of flexural buckling phenomenon on the 
capacity of the specimens. This factor is evaluated by equation (8): 

 
0 522

1 1 0
.

. 

 


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(8) 

where the parameter   and the relative slenderness   are calculated by equations (9) and (10), 
respectively: 

 
2

0 5 1 0 1. .    
  

     (9) 

eff y

cr

A f

N
  (10) 

where   is the imperfection factor and crN  is the critical elastic load which is derived by the equation 
(11): 

2

2
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( EI )
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 (11) 
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where eff( EI )  is the effective flexural rigidity and effL  is the effective length of specimens. 
Upon calculating the design strengths from equations (4)-(11), the main results are presented in table 

4, where the buckling capacities of the aluminium alloy columns recorded during the axial compression 
tests ( u ,EXPN ) are compared with design predictions according to Eurocode 9 ( u,EC9N ). The mean value 
and the corresponding coefficient of variation (COV) of test strength to design strength ratio are 1.36 
and 0.17, respectively. In line with previous studies [18, 22, 24], it is found that the buckling capacities 
determined by Eurocode 9 are quite conservative. 

Table 4. Comparisons of the experimental results to the design strengths of Eurocode 9. 

Specimen       Class u,EC9N  (kN) u,EXPN  (kN) 9u,EXP u,ECN N  

S50.8×50.8×1.59 1.11 31.81 4 38.35 60.22 1.57 
S50.8×50.8×2.64 1.17 20.22 3 84.64 100.68 1.19 
S50.8×50.8×3.25 1.13 15.57 2 93.03 113.83 1.22 
S50.8×50.8×4.76 1.21 9.79 1 123.89 161.48 1.30 
S76.2×76.2×1.63 0.72 51.49 4 54.69 63.88 1.17 
S76.2×76.2×3.25 0.76 23.67 4 198.10 263.28 1.33 
S76.2×76.2×4.76 0.80 15.52 2 295.79 367.36 1.24 
S76.2×76.2×6.35 0.77 11.05 2 376.18 489.85 1.30 
R76.2×25.4×3.25 2.10 22.01 4 32.60 53.46 1.64 
R76.2×38.1×3.26 1.39 22.38 4 74.37 97.62 1.31 
R76.2×50.8×3.25 1.08 23.58 4 116.88 138.72 1.19 
R101.6×25.4×3.25 1.96 29.18 4 33.60 66.09 1.97 
R101.6×50.8×3.25 0.88 23.81 4 117.78 143.72 1.22 

Average 1.36 
COV 0.17 

5. Conclusions 

The present study experimentally investigated the buckling response of 13 square and rectangular 6082-
T6 aluminium alloy columns under axial compression. The specimens’ initial geometric imperfections 
were measured before the tests. The aluminium alloy properties were determined by tensile test of dog-

bone coupon samples. The structural response of all specimens obtained from the compression tests was 
reported in terms of ultimate loads, load-mid-height lateral displacement and failure modes. It is 
observed that all tested columns were failed by overall flexural buckling, whereas three of them with 
large width-to-thickness ratios ( /B t ) were experienced failure due to local-global interactive buckling. 
A comparison was drawn between the specimen strengths recorded during compression tests and design 
strengths predicted using Eurocode 9. The comparison showed that the design formulae provided by 
Eurocode 9 are conservative, i.e., mean of 9u ,EXP u ,ECN N  equal to 1.36 and COV equal to 0.17. Further 
investigation for the provision of more accurate formulae is recommended. 
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