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Abstract—For highly critical systems, thorough and costly 

processes exist to verify that they are safe enough before they 
are allowed to operate. Yet any such a priori assessment is 
affected by uncertainty: it may be wrong. Examples like the 
Boeing 737 MAX and Fukushima underscore how badly they 
may, occasionally, be wrong. We argue that risk assessment 
should take into account, more explicitly than is now usual, this 
uncertainty. Basic quantitative reasoning shows how this would 
change how we describe the risk of operating a new system. This 
may set new priorities in safety assessment research. We identify 
some research directions that may help this community better 
to forecast and control risk. 

Keywords—Risk assessment, risk quantification, safety case, 
epistemic uncertainty. 

I. INTRODUCTION 
For many systems, society requires high confidence that 

they will function safely enough. For some of them, reliability 
and safety requirements (e.g. in civil aviation, nuclear power, 
railways, self-driving vehicles, and others) are so stringent 
that sufficient assurance of their satisfaction cannot be 
achieved purely by statistics of observed proper functioning 
before deployment [1]. Such systems are often complex 
combinations of hardware and software and people, and a 
dominant concern is that of subtle design faults. For instance, 
in civil aviation, documents AC 25.1309-1 and DO-178C [2] 
stipulate that for complex designs, assurance of the required 
dependability can be claimed on the basis of thoroughness of 
design and validation practices, rather than statistics. A 
complex regime of quality and verification practices is 
prescribed and enforced. Yet experience, with aircraft as well 
as other types of critical systems, shows that every now and 
then such a claim, despite all the effort to ensure it is correct, 
is proved in operation to have been wrong, by accidents, in the 
worst case, or by near misses, or by new analyses [3][7][8].  

Interestingly, this issue of uncertainty about safety claims 
is seldom addressed in risk communication and is left mostly 
as a topic for the political aspects of debate, e.g., by anti-
nuclear protest groups. Yet proper assessment of risk is 
fundamental for reasonable, ethical and economical decisions 
in engineering.  Regulatory agencies and practitioners are of 
course aware of the uncertainty. Sensible precautions are 
prescribed, like monitoring of systems in operation, but we 
find hardly any technical work on understanding how exactly 
the uncertainty should be taken into account in risk assessment 
and related decisions. 

II. RISK LEVEL FOR A NEW SYSTEM 
How should one quantify the risk incurred in, say, one 

flight of a newly certified aircraft type? A way of reasoning 
would be: the claim may be correct, i.e., the probability of 
catastrophic failure per flight (we will call this a pfd, 
probability of failure per demand) is at most the claimed upper 
bound, say qL (“L” for “low”). On the other hand, the claim 
might be false (due for instance to some wrong assumption in 
the reasoning, some omission in hazard analysis, random 

errors in developing a safety argument). If so, it is difficult to 
tell how badly wrong it might be – how high the pfd could 
actually be. An assessor might want to say “1 is the only 
upper bound I can trust”; or consider that too implausible, 
and in practice be sure that the pfd can be no worse than qH 
(H for high, with of course 0 < qL < qH < 1).  

Those stating and/or accepting the qL claim will have 
some reasonably high confidence that it is true. They could 
think that it has a probability at least, say, pL, of being true. 
In this case they can conclude that the probability of accident 
at the next demand is bounded above by 

pL  qL  + (1 −  pL )  qH   (1) 

This is the simplest case. In some cases there are reasons 
for more complex claims, e.g. a sequence of fallback claims, 
qL1, qL2, … qLn , with qL < qL1 < … < qLn < qH < 1, with 
associated probability of each one being true if the previous 
one turned out to be false. Indeed, that such more complex and 
“fault-tolerant” arguments are desirable is one of our 
conclusions. But it is useful here to explore the simplest scenario 
in (1). 

The implications of (1) are stark: during early operation of 
a new critical system, a reasonable upper bound on the 
probability of accident per demand appears to be dominated 
by the second summand: the probability of the claim being 
wrong, times the worst-case pfd if it is wrong. For example, 
when qL = 10−9, pL =99%, qH = 10−3, (1) evaluates to 

0.99 × 10−9 + 0.01 × 10−3 ≈ 10−5    (2) 

Of course, the real value of the pfd is a specific number 
between 0 and 1, but is unknown. Assessors can say that, to 
the best of their knowledge, the probability of accident at the 
next demand is no more than shown in (1). This is the 
“expected value” of the pfd. More precisely, as qH is an upper 
bound, it is the worst-case value of this expected pfd, within 
the constraints set by the parameters stated.  

III. VALUE OF OPERATIONAL EXPERIENCE 
If the system is allowed to start operation, observing 

accident-free operation will gradually disprove the worst case 
assumption underlying (1): the worst-case estimate of risk, 
stated there, can be updated. Monitoring of operation 
generally aims to detect any unsafe system behaviours – not 
just accidents but also “near-misses” or “incidents” [7] so that 
improvements can be made [8][9]. But in these two pages we 
aim just to illustrate how observing zero undesired events may 
help assurance, and the limits to how much it helps.  

An appropriate method was published in 2011 for 
quantifying this improvement [5]. According to Bayes’ rule, 
accident-free operation increases the probability that the safety 
claim qL was actually correct. This updated probability is what 
one should use in deciding whether to use or operate this 



system further. A subtle issue arises: as we observe more and 
more safe operation, assuming qH as the worst-case pfd is no 
longer conservative (because it quickly becomes 
unbelievable): to calculate the upper bound on risk, the pfd 
assumed for the case that the claimed bound qL is wrong needs 
to shift accordingly. All this has been solved [5], and we can 
ignore the mathematical detail: what matters is that the worst-
case assessment of risk gets more favourable as operation 
accumulates without accidents (or incidents or near misses, if, 
as usual, the monitoring regime aims to detect all of them).  

Fig. 1 illustrates this effect. The x axis represents the 
number of demands completed in operation with no 
accidents: the amount of favourable evidence from 
operation. The y axis gives the worst-case probability of 
accident at the next demand. However this updated upper 
bound will only approach qL asymptotically, as the amount of 
operation observed tends to infinity. And this trend may feel 
quite  slow: e.g., with initial strong confidence of 80% in a 
claim of pfd ≤ 10−5, to believe a bound of 10−4 on expected 
pfd, taking into account that 20% doubt, requires waiting for 
1000 accident-free demands. It must be noted that 
demonstrating an even lower qL, with the same pL, would not 
reduce worst-case risk in early operation. 

 
Fig. 1. Upper bound probability of accident per mission versus number of 
observed accident-free missions, for qL = 10-5  with confidence pL = 80%. 

IV. DISCUSSION 
Epistemic uncertainty about safety claims is an “elephant 

in the room” in current practice. If it is taken into account, the 
assessment of worst-case risk may be orders of magnitude 
worse than is claimed in a conventional safety argument  
(however carefully produced). We have proposed a possible 
formalisation of reasoning about the fact that carefully 
demonstrated safety claims may be wrong, that they seem 
usually not to be very dangerously wrong, and that cautious 
operation allows one to believe in progressively improving 
upper bounds on risk. A “reasonable” bound on the probability 
of accident per demand in early operation is practically 
unaffected by the very low pfd formally claimed, and accepted 
by regulatory authorities, but depends heavily on the 
probability of errors in those claims.  

Current regulatory and industrial practice for safety critical 
systems in practice assumes that initial safety claims may be 
wrong, and includes wise precautions for that case, e.g., 
monitoring of operation to revise the analyses and calculations 
behind those claims, and cautious deployment of new systems 
in small numbers, to "bootstrap" the confidence that can be 

had in their safety [9]. However, not acknowledging the 
existence of epistemic uncertainty [12] in formal quantitative 
claims deprives decision makers of an important tool for 
insight and for basic error checking on critical decisions. 
Formal mathematical description of the reasoning in these 
decisions may help to clarify what risks are being taken, and 
what decisions in data collection and in design practice might 
help to control them. Last but not least,  the public debate 
about controversial, potentially beneficial but risky 
technologies [3][4], might benefit from a transition, however 
difficult, to more explicit reasoning about the epistemic 
uncertainty involved in claims of extreme safety. 

We and our colleagues have been publishing examples of 
the style of formal reasoning proposed here (which we call 
“conservative Bayesian inference”: e.g., [9][11]); new and 
more applied research is needed, though. A company or 
regulator will want to study, e.g., how often safety claims have 
been wrong, and how badly, to get an idea of the parameters 
in (1) and similar formulas. System design with layers of 
defence can mitigate the risk from excessive claims made for 
the first layer; likewise, we expect that data collection (on the 
history of an industrial sector, on the trustworthiness of 
various forms of assurance techniques and of arguments based 
on them) can both inform the use of (1) and support more 
complex reasoning based on a chain of claims, qL1, qL2, … qLn  

as outlined earlier.  
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