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The past years have been characterized by an upsurge in opaque automatic decision support systems, such as Deep Neural Networks

(DNNs). Although DNNs have great generalization and prediction abilities, it is difficult to obtain detailed explanations for their

behaviour. As opaque Machine Learning models are increasingly being employed to make important predictions in critical domains,

there is a danger of creating and using decisions that are not justifiable or legitimate. Therefore, there is a general agreement on the

importance of endowing DNNs with explainability. EXplainable Artificial Intelligence (XAI) techniques can serve to verify and certify
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model outputs and enhance them with desirable notions such as trustworthiness, accountability, transparency and fairness. This guide is

intended to be the go-to handbook for anyone with a computer science background aiming to obtain an intuitive insight from Machine

Learning models accompanied by explanations out-of-the-box. The article aims to rectify the lack of a practical XAI guide by applying

XAI techniques in particular day-to-day models, datasets and use-cases. In each chapter, the reader will find a description of the proposed

method as well as one or several examples of use with Python notebooks. These can be easily modified in order to be applied to specific

applications. We also explain what the prerequisites are for using each technique, what the user will learn about them, and which tasks

they are aimed at.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Networks→ Network reliability.

Additional Key Words and Phrases: Explainable Artificial Intelligence, Machine Learning, Deep Learning, Interpretability, Shapley,

Grad-CAM, Layer-wise Relevance Propagation, DiCE, Counterfactual explanations, TS4NLE, Neural-symbolic learning

ACM Reference Format:
Adrien Bennetot, Ivan Donadello, Ayoub El Qadi, Mauro Dragoni, Thomas Frossard, Benedikt Wagner, Anna Saranti, Silvia Tulli, Maria

Trocan, Raja Chatila, Andreas Holzinger, Artur d’Avila Garcez, and Natalia Díaz-Rodríguez. 2018. A Practical Tutorial on Explainable

AI Techniques. J. ACM 37, 4, Article 111 (August 2018), 43 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

In machine learning, it should be acknowledged that system decisions can be faulty, as there are factors intrinsic to

machine learning systems that can lead to inadequate system behavior. This is due to several reasons, such as bias in

the data or issues with system design (such as network structure, connectivity, optimization process and code quality

management). These factors can impact system performance in terms of accuracy, false negatives, or false positives

compared to the ground truth. This is an inevitable feature of DNNs, rather than simply bugs in the system that can be

corrected. System performance can be largely insufficient to promote trust in the system and it could lead to catastrophic

outcomes in critical applications where human lives may be at stake. An interesting approach is to consider this situation

from a software engineering point of view. Following principles of dependable and robust system design might ensure

safer system operation. Therefore, there is a need for tools to understand a machine learning system’s behavior and

outputs - i.e. the need for explainability. Explainability here refers to making explicit the details and reasons for a model

outcome, to make its functioning clear or easy to understand [8].

Explainable AI (XAI) seeks to elucidate the internal workings of a machine learning model, aiming to offer clear

explanations regarding the methods, procedures and outputs of the model in a manner comprehensible to users [1]. XAI

techniques are increasingly being used by a wider audience and are starting to be applied in multiple fields in industry and

academia. More and more techniques are appearing, and it can often be complex to interpret or convert their explanatory

elements into actionable explanations - i.e. explanations that developers or experts can transform into actions to fix the

model. This paper is a guide to some of the most commonly used XAI methods, producing explanations in common format

applied to models ingesting different types of data (image, tabular, textual and graphs) and models using neural-symbolic

computation. We also consider some user interface aspects which seek to offer better interaction between the system and

non-technical users, as in the case of neural-symbolic computation models producing natural language explanations and

counterfactual explanations.

As black-box Machine Learning models are increasingly employed to make important predictions in critical contexts

[16, 21, 59], the demand for transparency is increasing from various stakeholders in AI [72]. This is particularly true in

the field of healthcare, where operations need to be trusted for ethical and safety reasons [65]. With this motivation, all
Manuscript submitted to ACM
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A Practical Tutorial on Explainable AI Techniques 3

Fig. 1. Map/Flowchart of the XAI methods described in the article. This is of course non-exhaustive regarding the existing
XAI methods. It only refers to the methods discussed in this paper. Moreover, the layer-wise relevance propagation method
is recommended when the data are neither textual, tabular or images, but it can be used on these types of data as well. Also,
SHAP and LTN can be used on images but we include here only the data types for which Python notebooks were provided.

techniques presented are accompanied by an example. Some techniques are also presented with a second application in a

different domain than the first application to show how our tutorials can be easily adapted to different use cases.

The goal of this guide is to serve as a practical and readily usable tool for any developer wishing to obtain some

explanatory elements for the behavior of their deep learning model. These can be used to complement efforts to regulate,

audit and govern AI systems [22]. Contrary to other guides that focus on a specific data type [17], we provide a broader

view of XAI methods by addressing most of the data types and issues faced by users wishing to explain their models.

Dividing the tutorial based on the user’s input data type offers contextual relevance, should help with accessibility

and facilitate practical application. Tailoring examples and methods to specific data modalities allows users to better

understand unique challenges and nuances, hopefully promoting effective utilization in real-world scenarios. By providing

detailed implementation guidance for each data type, this tutorial is also a practical resource, easing the transition from

theory to application and offering a better learning experience.
Manuscript submitted to ACM
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XAI method Datatype Explanation kind Task explained Dataset used
SHAP [54] Tabular Feature Importance Bipolar Disease Prediction Simula Depresjon [36]1

Original SHAP Repository: https://github.com/slundberg/shap

SHAP practical case guide: https://colab.research.google.com/drive/1AxdhD-ZkZya57-ePk6Nqg0Z8P2eMu9XX?usp=sharing

DiCE [62] Tabular Counterfactual Bipolar Disease Prediction Simula Depresjon [36]
Original DiCE Repository: https://github.com/interpretml/DiCE

DiCE practical case guide: https://colab.research.google.com/drive/12jw91RouPBc9slFwB2OWRwYB6Ckviiv3?usp=sharing

Transformers Interpret (TI) [68] Textual Feature Importance Sentiment Analysis MultiNLI corpus [105]2

Original TI Repository: https://github.com/cdpierse/transformers- interpret

TI practical case guide: https://colab.research.google.com/drive/1XGGXUYNC1M_jlmQUV5dZB3HVdQRXeghd

Grad-CAM [85] Image Visual Image Classification TCGA and Target [37]3

Original Grad-CAM Repository: https://keras.io/examples/vision/grad_cam/

Grad-CAM practical case guide: https://colab.research.google.com/drive/1ZXznvG_G1Y-JyHX9a_x6yKrXHhMp6tpm?usp=sharing

Layer-wise Relevance
Propagation (LRP) [61]

Graph Visual Image Classification TCGA and Target[37]

Original LRP for Graphs Repository: https://git.tu-berlin.de/thomas_schnake/demo_gnn_lrp

LRP for Graphs practical case guide: https://colab.research.google.com/drive/166FYIwxblfrEltkYqY_jiJoAm9VLMweJ?usp=sharing

Original GCExplainer Repository: https://github.com/CharlotteMagister/GCExplainer

GCExplainer for Graphs practical case guide: https://colab.research.google.com/drive/16ayMlyDzNubxSkpIBHXDvbEgpB88wBBK?usp=sharing

Logic Tensor
Networks (LTN) [87] Textual Interactive Violence Risk Prediction COMPAS ProPublica[52]4

Original LTN Repository: https://github.com/logictensornetworks/logictensornetworks

LTN practical case guide: https://colab.research.google.com/drive/1Ip9Yb9gVRSRqaBKY9gOpiWn9pq3LovWG?usp=sharing

TS4NLE [29] Textual Natural Language Explanation Rendering UMLS [13]5

Original TS4NLE Repository: https://github.com/ivanDonadello/TS4NLE

TS4NLE practical case guide: https://colab.research.google.com/drive/1iCVSt7TFMruSzeg5DswLOzOR1n7xATbz

Table 1. The different XAI methods explored in the paper with associated links to Google Colab implementations which can
be used to apply the methods to your own use-case. Note that certain methods can also be used for other data types than
the one described in the table, including multimodal data, but only the data types included in this tutorial are mentioned. All
guides are accessible via https://github.com/NataliaDiaz/XAI-tutorial.

In what follows, we describe an XAI method for each of the most common data types: tabular in Section 2, images in

Section 3 and text in Section 4 as well as a general method in Section 5. We accompany these techniques with a description

of the neural-symbolic methods used to make explanations interactive in Section 6 as well as a method to render XAI

explanations through natural language generation in Section 7. Data, models and Python Google Colab interactive

notebooks were made available and are free and open source to be reused with ease, adapted or used to consolidate

learning or teaching. They are presented with a systematic introduction of the fundamental theories and common practices.

Use cases and suitability analyses for each application, task or data type are provided with concrete examples and

interactive code. Table 1 summarizes the different methods presented here with their associated working demonstration

(Google Colab notebooks) to facilitate the reader’s exploration of the material. Figure 1 acts as a flowchart/map for the

readers to help find a method to use according to their types of data.

2 XAI TECHNIQUES FOR TABULAR DATA

Model-agnostic XAI techniques are meant to be applied to any machine learning model and are applied after the model

has been trained [18]. The flexibility of such methods lies in their ability to explain any machine learning model [75]. In
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this text, we will explore two different post-hoc explanation methods for tabular data: SHapley Additive exPlanations

(SHAP)[54] and DIverse Counterfactual Explanations (DICE) [62]. We present these methods because they have important

advantages in addition to being model agnostic:

• SHAP has a solid theoretical foundation in game theory, which ensures the validity of the explanation by following

mathematical axioms. It provides contrastive explanations, comparing the prediction with the average prediction.

This method is suitable for users who need to be certain that the explanation provided for the behavior of their

model is valid and reflects what has happened within the model.

• DiCE produces counterfactual explanations, one of the best explanation types to understand a model due to its

similarity to the human cognitive process [95]. The explanation highlights the minimal changes in the input

required to obtain a contrastive output. It allows for the production of explanations that are easily conveyable not

only to developers but also to a non-technical audience. This method is perfect for users who want an explanation

that is as meaningful and understandable as possible.

We apply these two methods one after the other to provide an understandable and easy-to-modify example of use. We

use each method for two use cases, one in finance and one in the medical field, to emphasize their ease of use.

2.1 SHAP Analysis

In this section, we will discuss one of the most widely used model-agnostic methods, SHapley Additive exPlanations

(SHAP) [54], and its application to tabular data. SHAP enables us to understand the contribution of each feature to the

final prediction by testing the prediction obtained by experimenting with all possible combinations of the presence and

absence of features.

To put it simply, SHAP is like trying to determine how much each person should pay on a restaurant bill by analyzing

how much it would have cost if the person had not come to the restaurant. SHAP is based on game theory, specifically

Shapley values. Shapley values, originating from cooperative game theory, provide a fair and mathematically rigorous

method for allocating the contribution of each participant in a cooperative setting by averaging the marginal contributions

over all possible orders in which individuals could join coalitions [88]. SHAP decomposes the prediction of a model

among all features involved by using an additive feature attribution analysis:

𝑔(𝑥
′
) = 𝜙0 +

𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 , (1)

where 𝑔(𝑥 ′ ) is the explanation model that matches the original model 𝑓 (𝑥) when 𝑥 = ℎ𝑥 (𝑥 ′) and where 𝑥
′ ∈ {0, 1}𝑀 ,

𝑀 is the number of input features and 𝜙𝑖 ∈ R. 𝜙0 represents the baseline model (that is, the model without the feature 𝑖)

while 𝜙𝑖 corresponds to the contribution of feature 𝑖 to the model prediction:

𝜙𝑖 =
∑︁

𝑆⊆𝑁 \𝑖

| 𝑆 |!(𝑀 − |𝑆 | − 1)!
𝑀!

[𝑓𝑋 (𝑆 ∪ 𝑖) − 𝑓𝑋 (𝑆)], (2)

where 𝑁 is the set of all input features. The inner functioning of SHAP considers, for each feature 𝑖, two different

models: 𝑓𝑆∪{𝑖 } (𝑥) and 𝑓𝑆 (𝑥). Then it computes the difference in prediction between both models. Then, the difference in

prediction between both models, averaged over all possible coalitions, is the credit attributed to feature 𝑖.

Due to the computational expense of considering all possible sets of features 𝑆 and averaging the difference in prediction

due to feature 𝑖, SHAP generates a random sample of possible sets of 𝑆 to compute the average. This average is used to
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estimate feature importance. SHAP has several desirable properties, including singularity detection (i.e., if the feature

is locally zero, the SHAP value is also zero), local accuracy (i.e., for a specific input 𝑥 , the explanation model matches

the output of the model 𝑓 for the simplified input 𝑥 ′), and consistency (i.e., if in a second model approximation with a

different subset of features, the contribution of the feature is higher, the SHAP value will also be higher).

2.1.1 SHAP Use case: predicting consumers default. Credit Scoring refers to the problem of deciding whether or

not to accept a consumer’s loan application. Such models assist lenders and are based on different kinds of data (e.g.,

performance of consumer’s previous loans, financial information, personal data). In this particular use case, we build a

model based on Extreme Gradient Boosting (XGBoost) to assess the probability of default of the loan applicant [20].

Since in the financial industry, and especially in the credit scoring field, there is a need to understand the decision making

process, we apply SHAP to understand the reasons behind the model decision-making. XGBoost will predict a probability

that subsequently will be mapped into two classes. If the probability of the assessed loan is greater or equal to 0.5, the

model will predict that the loan will be amortized. Otherwise, the customer will not be able to return the loan. This is

an excellent case to provide a counterfactual explanation scenario: "If criterion 𝑥 was different, then the loan would be

granted".

Extreme Gradient Boosting (XGBoost) [20], an ensemble technique that combines tree models with Gradient Boosting,

has rapidly gained interest in the credit scoring. The XGBoost works by sequentially adding weak learners (i.e., decision

trees) to an ensemble, each one correcting its predecessor.

In the financial industry, and specially in the credit scoring field, there is a need to understand the decision making

process. Such needs derived in strict regulations such as the European General Data Protection (GDPR) and Ethics

guidelines for trustworthy AI [5, 23, 26]. Different XAI techniques can tackle the explainability issue of black box models

when treating tabular data. More generally, most methods known as model-agnostic XAI techniques are applicable in this

case. In this guide, we introduce SHAP, a technique that reflects the importance level contribution of each feature in the

model to a given outcome.

We start by building the model. The data we dispose contains financial information about companies, which are divided

into two classes. The majority class (about 99%) represents companies that do not incur into a default the year after. Since

the dataset is highly imbalanced, we generate synthetic data using SMOTE [19]. Then we construct the XGBoost model

which will output the probability that a company will be in default one year after. We compare the results of our model

with the credit rating of Tinubu Square (see [73]). Finally we apply the SHAP framework to understand the main reasons

why a the model considers that a company is likely to suffer financial difficulties.

We build a loan default predictor, i.e., a model that predicts a probability that is mapped into two classes. If the

probability of the assessed loan is greater or equal to 0.5, the model will predict that the loan will be amortized. Otherwise

the customer will not be able to return the loan.

SHAP facilitates the understanding of the model by displaying what features have been the most relevant for the model

and their impact in the final prediction. On one hand, the SHAP analysis show us what variables influenced model’s

output the most. On the other hand, SHAP analysis does not explain how the magnitude of the different features affects

the output of the model. This is mainly due the following reasons: highly imbalanced, considerable volume of missing

data and the scarce features used.

Contribution of each explanatory feature to the final prediction based on Shapley analysis of contribution decomposition

for the default prediction. X axis represents the feature contribution value (negative values in x axis increase the probability

of default and vice-versa). Features are sorted according to the their relevance (i.e., SHAP average absolute value) In the

Manuscript submitted to ACM



A Practical Tutorial on Explainable AI Techniques 7

Fig. 2. X-axis represents the SHAP value (i.e., contribution) for each feature of the loan default prediction model, while
y-axis indicates the features, ranked by importance from top to bottom. Each point represents a data point (i.e., a single
individual). Feature values are encoded using a color gradient. Negative values in x-axis correspond to an increase in the
probability of default.

studied case Fig. 3 shows at the top the most relevant features for the model when predicting the loan’s default: the mean

difference between the day the first payment due was paid and the day it had to be paid, the age of the borrower and his

localization (latitude and longitude). The analysis results are intuitive and show that large average delays in the payment

of the first payment due increase the probability of default. The SHAP analysis also shows that younger borrowers are

more likely to not repay the loan 1.

2.1.2 SHAP Use case: predicting bipolar disease. Bipolar disorder, formerly called manic depression, is a

mental health condition that causes extreme mood swings that include emotional highs (mania or hypomania) and lows

(depression) which often come accompanied by different features (i.e., physical and psychological features). For this

particular use case, we build a model based on Extreme Gradient Boosting (XGBoost). Then, we apply SHAP in order to

help psychiatrists understand the causes behind a potential patient tendency towards a mania or depression episode.

As explained on the previous use case, the SHAP technique facilitates the understanding of the model by displaying

what features had the most impact, i.e., contributed the most to the model prediction. It also reveals how the magnitude of

the different features affects –positively or negatively– to the probability of suffering a bipolar disease in the future.

In the studied case Fig. 3 shows at the top the most relevant features for the model when predicting a bipolar disease:

the variation in the activity measurement, the Montgomery Asberg Depression Rating Scale (MADRS) at the moment the

Actigraph was stopped (madrs2), the mean of the activity measurement and the MADRS at the moment the actigraph was

1SHAP guide online: https://colab.research.google.com/drive/1HuhpUAl4s9ZIs3yWHsAExApLxGAv3NuH?usp=sharing refined from https://github.com/
slundberg/shap
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Fig. 3. X-axis represents the SHAP value (i.e., contribution) for each feature of the bipolar disease prediction model, while
y-axis indicates the features, ranked by importance from top to bottom. Each point represents a data point (i.e., a single
patient). Feature values are encoded using a color gradient. Negative values in x-axis correspond to an increase in the
probability of being diagnosed with a bipolar disease.

initiated (madrs1). The analysis results are intuitive and show that high values in the variation of the activity measurements

(activity_std) decrease the probability of being diagnosed with a bipolar disease2.

2.1.3 SHAP values suitability analysis: pros and cons. Among additive feature attribution methods, SHAP is the

only possible consistent, locally accurate method that obeys the missingness property (i.e., a missing feature gets an

attribution of zero). However it is computationally expensive since as the number of features increases, the number of

possible combinations combinatorially explodes, leading to an expensive computation time. For tree-based models, there

is a version of SHAP [53] that allows to compute the exact SHAP values faster, in polynomial time, by keeping track of

the number of subsets S that flow into each node of the tree. Another problem is that the Shapley values can change with

the order of features selected, and thus, for an exact computation of Shapley values, all possible combinations of subsets

must be considered.

Generally, XAI techniques such as SHAP only focus on explaining the model’s inner functioning. However, they do

not compare the level of alignment of the ML model explanation with human expert interpretations (i.e., psychiatrists).

Hence, there is a need for ML-models in this domain to meet experts criteria in order to allow trust. This is a crucial

requirement for ML model adoption in critical decision making.

2.2 DiCE: Diverse Counterfactual Explanations

Some XAI techniques for tabular data focus on explaining the model by measuring the features that impacted the most

the prediction. On the other hand, there are methods that explain the model by providing information of feature-perturbed

versions of the analyzed instance, e.g. [77, 104]. These methods fall into the counterfactual (CF) explanations methods. In

this section we focus on Diverse Counterfactual Explanations (DiCE) [62]. Intuitively, we seek to know what would be

the minimal change in the model’s input that would make its output different, and we turn this search into an optimization

problem.

2SHAP guide online: https://colab.research.google.com/drive/1AxdhD-ZkZya57-ePk6Nqg0Z8P2eMu9XX?usp=sharing adapted from https://github.com/
slundberg/shap
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DiCE considers the problem of generating counterfactual explanations from a set of counterfactual, i.e. alternative

events to a given model output.

This is set as an optimization problem. Ideally the set of CF examples should balance the variety of the suggested CF

instances (diversity) with the capability of the stakeholder to meet the suggested changes (proximity) proposed by the CF

framework. Furthermore, the CF explanations need to be aligned with human experts’ criteria.

We present term by term the elements of the function to minimize [62]. The first term to be encoded mathematically is

the concept of diversity. Diversity is captured building on determinantal point processes (DPP), a method for solving the

subset selection problem with diversity constraints. A DPP is a mathematical model for random point patterns that exhibit

repulsion between points. The probability distribution of the points is determined by the determinant of a kernel matrix,

reflecting the pairwise interactions and ensuring diversity in selected subsets, making DPPs useful in applications like

diverse subset selection and recommendation systems [93].

𝑑𝑝𝑝_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝑑𝑒𝑡 (𝐾), (3)

where 𝑑𝑒𝑡 is the computation of the determinant of matrix 𝐾 with 𝐾𝑖, 𝑗 = 1
1+𝑑𝑖𝑠𝑡 (𝑐𝑖 ,𝑐 𝑗 ) and 𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑐 𝑗 ) is a distance metric.

𝑐𝑖 represents each generated counterfactual explanation.

Proximity is quantified as the negative distance between the CF example’s features and the original input’s. For each

generated CF (𝑐𝑖 ) we compute the distance between the CF and the input 𝑥 .

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 := − 1
𝑘

𝑘∑︁
𝑖=1

𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑥). (4)

𝐶 is the generated set of 𝑘 CFs generated for example 𝑥 that minimizes the following function (as in [62]):

𝐶 (𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑐1,𝑐2,...,𝑐𝑘
1
𝑘

𝑘∑︁
𝑖=1

𝑦𝑙𝑜𝑠𝑠 (𝑓 (𝑐𝑖 ), 𝑦) (5)

+𝜆1
𝑘

𝑘∑︁
𝑖=1

𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑥) − 𝜆2𝑑𝑝𝑝_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑐1, 𝑐2, ..., 𝑐𝑘 ),

where 𝑦𝑙𝑜𝑠𝑠 () measures the distance between the output of the model for the CF generated 𝑓 (𝑐𝑖 ) and the output we

desire, i.e. the generated CF example. 𝐶 is the set of 𝑘 CFs that are close to example 𝑥 , with a high diversity within the

CF generated and for which the outcome of the model is as close as possible to the desired class. Both 𝜆1 and 𝜆2 are

hyperparameters that balance the three parts of the loss function.

2.2.1 DiCE use case: predicting consumers default. We will focus on the use case presented in subsection 2.1.1.

As mentioned before, the credit scoring is used to assess the probability that a borrower will not repay his credit. These

models are used to identify the cases where the loan must be denied. In this particular use case, the interest is in advising

the customer (i.e., the stakeholder) what to do in order to get the credit. We are interested in generating counterfactual

examples for the clients with denied loans3.

In Fig. 4, we generate 3 counterfactual explanations for a given loan applicant. Initially the considered applicant has

been denied the loan by the Random Forest [15] model. The CF examples show which features the applicant should

3DiCE guide available at https://colab.research.google.com/drive/1nUTTTfcCuxsnZmaJpfvLsxRB4FFaORVK?usp=sharing. We implemented DiCE using
the framework developed by Mothilal et al. https://github.com/interpretml/DiCE
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change in order to get the loan approved. For example, if the applicant had a job and the amount of the loan was smaller,

the loan would have been approved (bottom right point in the Fig.4).

Fig. 4. Counterfactual examples generated using DiCE [62]. Green points are cases where the loan applicant would be
approved. We selected a set of variables that are the easiest for the customer to vary (i.e., employment status, the behaviour
on the payment of previous loans and the loan amount demanded). We generate 3 different CF examples for the consumer,
but the amount of CFs to be generated can be decided by the user of DiCE or the applicant –if unsatisfied with previous CFs.
However, the number of CF that can be generated is limited by the restrictions imposed to create new CF examples.

2.2.2 DiCE use case: Predicting Bipolar Disease. In this particular use case, as presented in 2.1.2, there is a

particular interest in providing psychiatrists with the criteria that would change the model output (i.e., a change in the

diagnosis of bipolar disease)

In Table 2, we generate 2 counterfactual explanations for a given patient. The trained model (i.e., Random Forest)

predicts a given patient has no bipolar disease. CF examples show which features should change in order to be diagnosed

with bipolar disease. The example in Table 2 shows that if the patient was older, the diagnosis (CF instance 2 in Table 2)

would have been positive (i.e., Bipolar Disease).

Patient Data Age MADRS 1 MADRS 2
Unipolar Depressive

Probability
Bipolar II

Probability
Original Data 45-49 24 25 0.72 0.28
CF instance 1 50-54 24 21.2 0.36 0.64
CF instance 2 65-69 24 20.5 0.48 0.52

Table 2. Comparison between the features that DiCE modifies in order to change the model outcome from 0 (No Bipolar
Disease) to 1 (Bipolar Disease) for a single patient (i.e. case). All other features remained fixed.
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2.2.3 DiCE analysis: pros and cons. Advantages of using DiCE include the agnosticism of the method, as a capability

of generating high number of unique counterfactual explanations for any given ML model. It equally allows to produce

explanations that are easily conveyable not only to developers but also to non technical audiences. On the other hand,

currently, the disadvantage of DiCE is that works only for differentiable models, since it uses gradient descent for the

optimization process. Gradient descent is an iterative optimization algorithm used in machine learning to adjust the

parameters of a model by computing and moving in the direction of the steepest decrease in a cost function [14].

3 XAI TECHNIQUES FOR IMAGE MODELS

Convolutional Neural Networks (CNNs) and Vision Transformers constitute the state-of-art models in all fundamental

computer vision tasks (image classification, object detection, instance segmentation). CNNs are built as a sequence

of convolutional and pooling layers that automatically learn and entails extremely complex internal relations between

features. At the end of the sequence, one or multiple fully connected layers are used to match the output features map into

scores.

While some XAI techniques try to delve inside the network and interpret how the intermediate layers see the external

world [92], this guide presents a technique that seeks to understand the decision process of a CNN by mapping back

the model output to the input space to see which parts of the image were discriminative for the prediction. This choice

is motivated by the simplicity offered by visual understanding of explanatory elements that can be relevant for a wide

audience. Thus, there is no prerequisite to understand and use this kind of explanation which can be useful to anyone who

wants to know which pixels are relevant for an image classification. Moreover gradient-based methods are usually faster

to compute than model-agnostic methods which makes it very suitable for people with limited computing power or real

time requirements.

3.1 Grad-CAM use case: image classification

Gradient-weighted Class Activation Mapping (Grad-CAM) [85] uses the gradients (of any target concept) flowing into

the final convolutional layer to produce a coarse localization map, highlighting the important regions in the image for

predicting the concept. Intuitively, the Grad-CAM technique makes it possible to know which part of the image contributed

the most to the model’s prediction. The goal of Grad-CAM is to visualize where in an image a convolutional layer looks

for a particular prediction. It examines which regions are active in the feature maps of the final convolutional layers to

understand how the CNN makes judgments.

Grad-CAM offers visual justifications for CNN judgments. In contrast to other techniques, the gradient is back-

propagated to the last convolutional layer rather than all the way back to the original picture in order to create a coarse

localization map that highlights key areas of the original image. Grad-CAM assigns each neuron a relevance value for

the prediction. Explained intuitively, the output of a Grad-CAM is an image of the same size as the input image of our

neural network, in which each pixel is coloured according to its importance in the final prediction. Different CNNs can be

explained with Grad-CAM, it works for any network having using gradient descent.

In order to obtain the class-discriminative localization map 𝐿𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 for any class 𝑐, i.e. a visual representation

that highlights the key regions in an input, such as an image, relevant for predicting a specific class in tasks like object

detection or image classification, Grad-CAM computes the gradient 𝑦𝑐 of the score for class 𝑐 with respect to the feature

map activation 𝐴𝑘 for feature map 𝑘 of a convolutional layer. These gradients are global-average-pooled by summing

feature map activations 𝐴𝑘
𝑖,𝑗

over the width 𝑖 and height 𝑗 of the activation map containing 𝑍 pixels to obtain the neuron

importance 𝛼𝑐
𝑘

, defined as:
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𝛼𝑐
𝑘
=

1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖,𝑗

. (6)

The output of Grad-CAM, heatmap 𝐿𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 , is obtained by performing a weighted combination of activation

maps, the output of intermediate layers in a neural network, with a Rectifier Linear Unit (ReLU) activation function. We

usually normalize the heatmap and color it to make it more visually interpretable4.

𝐿𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (

∑︁
𝑘

𝛼𝑐
𝑘
𝐴𝑘 ). (7)

Algorithm 1 Grad-CAM Algorithm: Computing a class activation map as output explanation for a given classified image

Require: Input Image 𝐼 , Classifier 𝐶
1: Step 1: Isolate the last convolutional layer of model 𝐶
2: 𝐿𝑎𝑠𝑡𝐿𝑎𝑦𝑒𝑟 ← 𝐶.𝐿𝑎𝑠𝑡𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑎𝑦𝑒𝑟

3: Step 2: Create a model mapping the input image to the activations of the last layer
4: 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ← 𝐿𝑎𝑠𝑡𝐶𝑜𝑛𝑣𝑀𝑜𝑑𝑒𝑙 (𝐼 , 𝐿𝑎𝑠𝑡𝐿𝑎𝑦𝑒𝑟 )
5: Step 3: Create a model mapping the activations of the last layer to the class predictions
6: 𝑃𝑟𝑒𝑑𝑀𝑎𝑝 ← 𝑃𝑟𝑒𝑑𝑀𝑜𝑑𝑒𝑙 (𝐿𝑎𝑠𝑡𝐿𝑎𝑦𝑒𝑟 .𝑂𝑢𝑡𝑝𝑢𝑡,𝐶.𝑂𝑢𝑡𝑝𝑢𝑡)
7: Step 4: Compute activations of the last layer
8: 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 (𝐼 )
9: Step 5: Compute class predictions

10: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑃𝑟𝑒𝑑𝑀𝑎𝑝 (𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠)
11: Step 6: Compute the gradient of the top prediction
12: 𝑇𝑜𝑝𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ← 𝑀𝑎𝑥 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
13: 𝐺𝑟𝑎𝑑𝑇𝑜𝑝𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ← 𝑇𝑜𝑝𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

14: Step 7: Multiply each channel in the activation map by the mean of the across the dimensions.
15: 𝑃𝑜𝑜𝑙𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ← 𝑃𝑜𝑜𝑙 (𝐺𝑟𝑎𝑑𝑇𝑜𝑝𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
16: for 𝑖 ∈ 𝑅𝑎𝑛𝑔𝑒 (𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠) do
17: 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 [𝑖] ← 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 [𝑖] ∗ 𝑃𝑜𝑜𝑙𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 [𝑖]
18: end for
19: Step 8: Return the heatmap for class 𝐶 activation as the mean of the activation map:
20: return 𝐶𝑙𝑎𝑠𝑠𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ← 𝑀𝑒𝑎𝑛(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠)

The goal of visualizing class activation maps in a CNN is to ensure that the model is taking a decision for the right

reason and that it does not contain any inner bias due to learned spurious correlations or purposely misleading selected

data. Taking as example Fig.5, a binary classifier was trained to classify pictures of Lymphoid tissue and Esophagus

membrane. We want the model to be able to predict that the RGB input image represents an Esophagus membrane because

it contains features typical of an Esophagus. An expert in the medical field would be able to verify that the hottest regions

are the ones that should be used to make the prediction.

3.2 Grad-CAM suitability analysis: pros and cons

The Grad-CAM technique has the advantage of being easy to understand, as the explanation is visual, and easy to imple-

ment for any gradient-based model, as it does not require to modify the model architecture. However, the interpretation
4Grad-CAM guide available at: https://colab.research.google.com/drive/1ZXznvG_G1Y-JyHX9a_x6yKrXHhMp6tpm adapted to a medical use case from
https://pyimagesearch.com/2020/03/09/ and https://colab.research.google.com/drive/1bA2Fg8TFbI5YyZyX3zyrPcT3TuxCLHEC?usp=sharing adapted to
an additional domain from https://keras.io/examples/vision/grad_cam/
5available at the GDC Data Portal https://portal.gdc.cancer.gov/
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Fig. 5. Grad-CAM example on a medical image representing an esophagus membrane and classified as such by a binary
classification model using VGG16 trained on TCGA (Cancer Genome Atlas)5. Superimposed visualization of Grad-CAM’s
heatmap and the input image, showing the model mostly used the bottom and the top of the image in order to make its
prediction.

of the heatmap is subjective and therefore induces a human bias since the explanation does not come directly from the

model but from an interpretation that the user makes, based on what it is able to recognize on the heatmap [30]. Also

the Grad-CAM is class-discriminative but lacks the ability to show fine-grained importance as the heatmap is coarse

and not in high-resolution. This means that it can determine globally which region contributed the most to detecting a

certain class, but not precisely which pixels. Guided Grad-CAM [84] proposes a high-resolution class-discriminative

visualization by combining Grad-CAM with existing fine-grained visualizations. Nevertheless, the validity of explanations

obtained by saliency-based techniques can be misleading [3] as it was shown the relationship between good saliency and

generalization performance is tenuous that improved generalization is not always accompanied by improved heatmaps

[97].

4 XAI TECHNIQUES FOR LANGUAGE MODELS

Most of the information available worldwide is in text form, from legal documents to medical reports. A variety of deep

learning models have been applied to improve and automate complex language tasks. Examples of such tasks include, but

are not limited to, tokenization, text classification, speech recognition, machine translation, and document summarizing.

Among the existing Natural Language Processing (NLP) models, we analyzed transformers models for two pivotal

reasons: they rely on the attention mechanism (i.e., initially designed for neural machine translation), and they are

exceptionally effective for common natural language understanding (NLU) and natural language generation (NLG) tasks

[96]. Thus, this section of the tutorial focuses on a method for explaining the outputs of transformer models, specifically
Manuscript submitted to ACM
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for NLP tasks. As the use of this method in this context is specific to transformers, we begin this section with a reminder

of this architecture.

The Transformer architecture functions by assessing the significance of different parts of the input data. Initially, it

deconstructs the sentence into individual words or parts of words (tokens). To grasp the context of each word—how each

word is related to every other word in the sentence—the model examines all the words in a sentence simultaneously.

Subsequently, the model employs the so-called attention mechanism to emphasize the parts of the sentence that are more

relevant to understanding the current word. In text generation, the transformer leverages the context it has acquired to

predict the next word in a sequence. This is done by calculating probabilities for numerous potential next words and

selecting the one with the highest probability. Following this, it incorporates this new word into the sequence and repeats

the process until a complete sentence or paragraph is generated.

When a sentence is decomposed into tokens, which can be words or parts of words, each token is converted into

a numerical representation. These numerical representations are then used to produce three distinct types of vectors

for every token: query vectors, key vectors, and value vectors. The query vector represents the token that the model is

currently analyzing. Every token in the sentence is associated with a key vector. These key vectors are instrumental in

determining the compatibility or relationship between the token under analysis (represented by the query vector) and all

other tokens in the sentence. The model computes a score by comparing the query vector with each key vector, which

indicates how much focus (or weight) should be placed on each token in the sentence in relation to the token being

analyzed, i.e., attention score. Tokens with higher scores are considered more relevant to the context of the current token.

After calculating the attention scores, the model utilizes the value vectors of each token. These value vectors contain the

substantive information about each token. Based on the attention scores, the model calculates a weighted sum of these

value vectors, thereby highlighting the information from tokens that are more pertinent.

In practice, the encoder represents the input as a set of key-value pairs, (K,V), with dimensions 𝑑𝑘 and 𝑑𝑣 respectively.

The decoder packages the previous output into a query Q of dimension𝑚 and obtains the next output by mapping this

query against the set of keys and values [103]. The matrix of outputs, also known as the score matrix, determines the

importance of a specific word with respect to other words.

The score matrix is the result of a scaled dot-product, where the weight assigned to each output is determined by the

dot-product of the query with all keys (Eq. 8).

Attention(Q,K,V) = softmax
(
QK⊤
√
𝑑𝑘

)
V . (8)

The attention mechanism repeats ℎ times with different, learned linear projections of the queries, keys and values to 𝑑𝑘 ,

𝑑𝑘 and 𝑑𝑣 dimensions, respectively. The independent attention outputs of each learned projection are then concatenated

and linearly transformed into the expected dimension [103].

MultiHead(Q,K,V) = Concat (head1, . . . , head h)W𝑂 ,

where headi = Attention
(
QW𝑄

𝑖
,KW𝐾

𝑖 ,VW
𝑉
𝑖

)
.

(9)

In multi-head attention (Eq. 9), ℎ represents the number of parallel attention layers (heads), and theWs are learnable

parameter matrices, specifically,W𝑖𝑄 ∈ R𝑑model×𝑑𝑘 ,W𝑖𝐾 ∈ R𝑑model×𝑑𝑘 ,W𝑖𝑉 ∈ R𝑑model×𝑑𝑣 , andW𝑂 ∈ Rℎ𝑑𝑣×𝑑model .
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4.1 An Example of Transformer Architecture: Bidirectional Encoder Representations from
Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) [24] is a machine learning technique based on

transformers for pre-training in natural language processing (NLP), developed by Google. The distinctiveness of this

technique lies in its application of bidirectional training to understand the context of a word based on all of its surroundings

(both left and right of the word) rather than just the words that precede it, as in traditional unidirectional language models

(e.g., OpenAI GPT [74], ELMo [67]).This way of processing words allows BERT to learn to unambiguously contextualize

words. By repeating this process multiple times (i.e., multi-head), BERT can learn different contexts between different

pairs of words. Fig. 6 describes the BERT Architecture. To define the prediction goal, BERT utilizes two techniques:

Masked Language Modeling (MLM), inspired by the Cloze Procedure [91], and Next Sequence Prediction (NSP) [47].

The former involves substituting approximately 15% of the tokens with a mask token and querying the model to predict

the values of the masked tokens based on the surrounding words. The latter involves training the model by providing pairs

of sentences as input to learn to predict whether the second sentence in the pair is the subsequent sentence in the original

document.

Due to the increased attention received by Transformer models, there are numerous interfaces available for exploring

their inner workings and interpreting their decisions, including those made by BERT.

Captum6 is a comprehensive toolkit developed on top of PyTorch, designed to enhance model interpretability. At its

core, it offers a range of attribution algorithms, which are techniques used to assign importance scores to different input

features or components of a model. These scores help explain why a model made a particular prediction, thus improving

our understanding of its decision-making process.

Attribution algorithms provided by Captum can be categorized into three main groups:

• Primary Attribution Algorithms: These algorithms focus on attributing the model’s output predictions directly to its

input features. By quantifying the importance of each input feature, they reveal which features are most influential

in driving the model’s decisions.

• Layer Attribution Algorithms: Layer attribution algorithms delve deeper into the model’s architecture by attributing

output predictions to individual neurons within a hidden layer. This allows for a more nuanced understanding of

how different parts of the model contribute to specific predictions.

• Neuron Attribution Algorithms: Neuron attribution algorithms offer a granular analysis by attributing the influence

of a single internal neuron to the model’s input. This level of detail helps uncover the specific activations and

transformations occurring within the model, providing deeper insights into its decision-making process [48].

4.2 Explaining Transformer Models with Transformer-Interpret.

Transformer-Interpret is an efficient tool that relies on Captum and HuggingFace7 pre-trained models. It offers user-

friendly methods to explain most common natural language processing tasks performed by Transformer models, including

sequence classification, zero-shot classification, and question answering:

• Sequence Classification: assigns a category to a whole text sequence based on overall content, like labeling texts

with their sentiment.

6Captum: https://github.com/pytorch/captum
7HugginFace: https://huggingface.co/
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Fig. 6. High-level overview of the BERT Transformer model: The input comprises a sequence of tokens embedded into
vectors, while the output consists of a sequence of vectors linked to the input tokens via index. The encoder employs a
multi-head attention mechanism to compute queries, keys, and values from the encoder states. Additionally, the encoder
feed-forward network incorporates information from other tokens to enhance model integration. On the other hand, the
decoder utilizes a masked multi-head attention mechanism to compute queries, keys, and values from the decoder states.
Furthermore, the decoder’s multi-head attention mechanism examines the source of the target tokens, drawing queries from
the decoder states and keys and values from the encoder states. Finally, the decoder feed-forward network incorporates
additional token information, further enhancing model integration (original image from [96]).

• Zero-Shot Classification: classifies texts into categories unseen during training, using the model’s ability to

generalize based on context and semantics.

• Question Answering: generates or identifies answers to questions from a given text, focusing on the model’s

comprehension and information retrieval capabilities.

Thanks to attribution methods, Transformer-Interpret elucidates the workings behind these tasks. The default attribution

method utilized by Transformer-Interpret is Integrated Gradients (IG) [90], which visualizes the importance of input

features in the model’s predictions. To achieve this, IG computes the integral of gradients with respect to inputs along the

path from a given baseline to the input.

The integrated gradient along the 𝑖𝑡ℎ dimension for an input 𝑥 and baseline 𝑥 ′ is defined as follows:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 (𝑥) :=
(
𝑥𝑖 − 𝑥 ′𝑖

)
×

∫ 1

𝛼=0

𝜕𝐹 (𝑥 ′ + 𝛼 × (𝑥 − 𝑥 ′))
𝜕𝑥𝑖

𝑑𝛼, (10)

Where 𝜕𝐹 (𝑥 )
𝜕𝑥𝑖

is the gradient 𝐹 (𝑥) along 𝑖𝑡ℎ dimension. 𝛼 is the scaling coefficient.

IG’s aims to satisfy two desirable axioms for an attribution mechanism:

• Sensitivity. If a modification in a feature’s value leads to a change in the classification output, then that feature

should have a non-zero attribution as it means this feature must have played a role in the classification.
Manuscript submitted to ACM



A Practical Tutorial on Explainable AI Techniques 17

• Implementation Invariance. The attribution method result should not depend on the parameters of the neural

network, i.e. two neural networks giving the same output for a certain input should have the same attribution even

if their weights are different.

Early attempts at interpretability in neural networks relied on gradient-based feature importance scores, which, while

implementation-invariant, often fell short of meeting the sensitivity criterion. A feature’s modification does not always

result in a non-zero gradient, potentially obscuring its actual influence on the model’s output. Integrated Gradients

addresses this limitation by establishing a baseline—a hypothetical input designed to represent an ’uninformative’ state

from which any deviation is meaningful—and calculating the cumulative gradient effect from this baseline to the actual

input. This cumulative effect elucidates how variations in a feature’s value from the baseline contribute to changes in the

output, thereby integrating sensitivity into gradient-based attribution.

This is fundamental to the methods used to explain Transformer tasks by Transformer-Interpret. For the purpose of this

tutorial, we will concentrate on sentiment analysis and zero-shot classification, applying them to COVID-19 content on

Twitter. Sentiment analysis is a type of sequence classification where the goal is to determine the sentiment expressed in a

piece of text, such as positive, negative, or neutral. When applied to COVID-19 content on Twitter, sentiment analysis can

help understand public opinion and emotions regarding the pandemic. Zero-Shot classification is particularly useful for

analyzing Twitter data because it allows the classification of tweets into newly emerging categories without retraining the

model. For example, as the pandemic evolves, new variants, symptoms, or treatments may become topics of discussion.

Zero-shot classification can identify these new categories based on the context provided by the tweet, even if the model

has never seen them before.

The sections that follow describe the functionality of two tools offered by Transformer-Interpret, which are useful

for our analysis: the Sequence Classification Explainer, used for sentiment analysis, and the Zero-Shot Classification

Explainer, used for identifying emerging categories or sentiments.

4.2.1 Sequence Classification Explainer. Consider a model designed for sentiment analysis, categorizing sentiments

into three distinct labels: "positive" (0), "neutral" (1), and "negative" (2). Sequence Classification Explainer helps us

specify the target sentiment by its index, such as index 2 for "negative" sentiment, to compute attributions.

The explainer provides insights into the model’s decision-making process by analyzing different embedding types. By

default, it examines word embeddings ("0"), focusing on the semantic meaning of words. Alternatively, it allows for the

exploration of position embeddings ("1"), assessing the impact of word placement within the sequence on the model’s

classification.

4.2.2 Zero-Shot Classification Explainer. Zero-Shot Classification involves assigning labels to text examples without

having seen examples of those labels during training. This task is particularly challenging as it requires the model to

understand and generalize from its training data to unseen categories.

The Zero-Shot Classification Explainer provides a way to understand how a model makes these predictions. It does so

by returning a table with attributions for every label, showing the contribution of different parts of the input text to the

assignment of each label.
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For example, when analyzing tweets related to COVID-19 to categorize them into themes such as “public health

advice", “misinformation", or “vaccine updates" without having been explicitly trained on these labels, the explainer aids

in identifying which words or phrases are most influential in determining each category.

Fig 7 shows the application of the Zero-Shot Classification Explainer to categorize tweets related to COVID-19 into

predefined labels. The True Label is the actual category label for the text. Predicted Label is the category label predicted

by the model with a probability score in parentheses and it represents the confidence of the model in its prediction. The

Attribution Label is the label for which the attribution score is calculated. The Attribution Score is the numerical value

showing the influence of the input text on the predicted label. Negative scores indicate that the text negatively influenced

the prediction for that label, while positive scores suggest a positive influence. The Word Importance shows the text being

analyzed with certain parts highlighted. The color coding (red for negative, green for positive, and white for neutral) is

based on the attribution score and indicates the words or phrases that most significantly impacted the model’s prediction

for each label. The "CLS" token mentioned in the Word Importance column is a special token used in Transformer models

like BERT, which stands for "classification" and is used as an aggregate representation of the input for classification tasks.

From the data shown in the table, we can infer that the model seems to be performing well, as the predicted labels

match the true labels. The model is most confident about its prediction for the “health" and "vaccine" labels, as suggested

by the higher absolute attribution scores (note that they are negative, which could be due to the model’s design where

perhaps a negative score indicates a stronger influence for a positive match). The phrase "it is important that everyone

turns up for their shots" is a significant contributor to the classifications related to "health" and "vaccine" which makes

intuitive sense. The word "shots" in the context of "guns" has a positive attribution score, indicating a different kind of

influence on the classification compared to the health and vaccine contexts.

Fig. 7. Zero-Shot Classifier on COVID-19 Content from Twitter. Data from [63].

5 XAI TECHNIQUES TO EXPLAIN IMAGE, TEXT AND GRAPH CLASSIFICATION MODELS:
LAYER-WISE RELEVANCE PROPAGATION (LRP)

Layer-wise Relevance Propagation (LRP) is a method that produces a heatmap for every input data sample [61]. The

heatmap’s data structure and size are the same as the input’s and its highlighted parts denote the areas of the input that

played the highest role in the classification. LRP is an XAI method that applies to several neural network architectures
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and thereby to several types of data that they can process. Each subsection next deals with a type of data, showing that

LRP is flexible enough to handle different data modalities.

LRP’s methodology is based on the Taylor expansion of a function 𝑓 (𝑥) at point 𝑎, as expressed by equation 11:

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓
′ (𝑎)
1!
(𝑥 − 𝑎) + 𝑓

′′ (𝑎)
2!
(𝑥 − 𝑎)2 + · · · , (11)

Provided that a neural network is computing a non-linear function 𝑓 (x) of its input x, the function can be expanded

near a root point x̃. The higher-order terms can be considered negligible and represented by a constant 𝜖.

𝑓 (x) = 𝑓 (x̃) +
(
𝜕𝑓

𝜕x

����
x=x̃

)𝑇
(x − x̃) + 𝜖 = 0 +

∑︁
𝑝

𝜕𝑓

𝑥𝑝

����
x=x̃
(𝑥𝑝 − 𝑥𝑝 )︸               ︷︷               ︸

𝑅𝑝 (x)

+𝜖. (12)

Since 𝑓 (x̃) = 0, and assuming without loss of generality that x̃ is an image composed by pixels 𝑝, one can re-write Eq.

12 as follows:

𝑓 (x) = 0 +
∑︁
𝑝

𝜕𝑓

𝑥𝑝

����
x=x̃
(𝑥𝑝 − 𝑥𝑝 )︸               ︷︷               ︸

𝑅𝑝 (x)

+𝜖. (13)

The goal of LRP is to redistribute the neural network output onto the input variables; i.e., the relevance 𝑅 𝑗 to lower-level

relevances {𝑅𝑖 }. Starting from the output layer, one can restate Eq. 12:

∑
𝑗 𝑅 𝑗 =

(
𝜕 (∑𝑗 𝑅 𝑗 )
𝜕{𝑥𝑖 }

����
𝜕{�̃�𝑖 }

)𝑇
({𝑥𝑖 } − {𝑥𝑖 }) + 𝜖 =∑

𝑖

∑
𝑗
𝜕𝑅 𝑗

𝜕𝑥𝑖

����
𝜕{�̃�𝑖 }

(𝑥𝑖 − 𝑥𝑖 ) + 𝜖.
(14)

∑︁
𝑗

𝑅 𝑗 =

(
𝜕(∑𝑗 𝑅 𝑗 )
𝜕{𝑥𝑖 }

����
𝜕{�̃�𝑖 }

)𝑇
({𝑥𝑖 } − {𝑥𝑖 }) + 𝜖 (15)

=
∑︁
𝑖

∑︁
𝑗

𝜕𝑅 𝑗

𝜕𝑥𝑖

����
𝜕{�̃�𝑖 }

(𝑥𝑖 − 𝑥𝑖 ) + 𝜖. (16)

One of the challenges of LRP is to find a neighbouring point x̃ of x, for which 𝑓 (x̃) = 0 (root point). A good root point

removes the elements of a datapoint x that cause 𝑓 (x) to be positive. For example, in the case of object detection and a

classifier that discriminates between images containing an object and images that do not, an optimization method should

look for a similar image that contains an object not recognizable from the classifier - hence the output 𝑓 (x̃) = 0. Examples

of such images are some that contain blur or have parts that are relevant for the recognition of the object replaced with

grey/black (non-informative) pixels.

The main difference between Grad-CAM and LRP is that although both of them compute gradients, the first one

computes the gradient concerning the feature maps activations of CNNs, whereas the second one does it also for other

types of architectures, not necessarily CNNs, and it is done in a per-neuron basis. Although it also is a heatmapping method,

Grad-CAM does not compute relevance per se but rather tries to locate the part of the input image that is responsible for
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the predicted label. Grad-CAM is only applied to CNN architectures (and Graph Convolutional Neural Networks [71]),

whereas LRP is more universal and has been customized/adapted for new major neural network architectures.

Fig. 8. Layer-wise Relevance Propagation (LRP) applied onto various neural network architectures, each of them processing
different types of data.

5.1 LRP applied onto Fully Connected (FC) Neural Network that solves a regression problem

In this task8, the interest is in computing the relevance at particular elements of a small, fully connected neural network.

The network consists of only one input layer (its neurons are indexed by (𝑖), one hidden ( 𝑗) and one output layer (𝑘).

𝑥𝑖 represents the values of the input neurons, 𝑥 𝑗 the outputs of the hidden layer neurons and 𝑥𝑘 the outputs of the

output layer neurons. The nonlinear function of the hidden layer is the ReLU, which is expressed by the equation

𝑥 𝑗 =𝑚𝑎𝑥 (0,
∑
𝑖 𝑥𝑖𝑤𝑖 𝑗 + 𝑏 𝑗 ).𝑤𝑖 𝑗 are the weights between the 𝑖-th and 𝑗-th layer and 𝑏 𝑗 the bias (omitted in this task). The

nonlinear function performed by the output layer is the sum pooling function, expressed by 𝑥𝑘 =
∑
𝑗 𝑥 𝑗 .

The fully connected neural network used in the first task is depicted in figure 9. Relevance of each neuron at each layer

(indexed by 𝑖, 𝑗 and 𝑘 correspondingly) is computed by the following set of equations:

𝑅𝑘 = 𝑥𝑘 =
∑︁
𝑗

𝑥 𝑗 , (17)

, 𝑅 𝑗 = 𝑥 𝑗 =𝑚𝑎𝑥 (0,
∑︁
𝑖

𝑥𝑖𝑤𝑖 𝑗 + 𝑏 𝑗 ), (18)

𝑅𝑖 =
∑︁
𝑗

𝑤2
𝑖 𝑗∑

𝑖′ 𝑤
2
𝑖′ 𝑗

𝑅 𝑗 , (19)

where 𝑖′ denotes all neurons of the input layer, including the 𝑖-th neuron. In this equation 𝑖 corresponds to one particular

neuron in the input and 𝑖′ is an index over all of them.

The relevance of the neuron in the output layer is completely specified by the sum of its inputs since this is its

functionality. The relevance of each neuron in layer 𝑗 is derived by using the equations 13 and 16: 𝑅 𝑗 = 𝑅𝑘 (x̃) + 𝜕𝑅𝑘𝜕𝑥 𝑗

��
{�̃� 𝑗 } ·

(𝑥 𝑗 − 𝑥 𝑗 ) = 𝑥 𝑗 = 𝑚𝑎𝑥 (0,∑𝑖 𝑥𝑖𝑤𝑖 𝑗 + 𝑏 𝑗 ). Since the ReLU nonlinearity is used, it is ensured that {∀𝑗 : 𝑥 𝑗 ≥ 0} and

8Notebook on LRP for a Fully Connected (FC) Neural Network using synthetic data: https://colab.research.google.com/drive/
1Md2Rz3Ff1r05zq98cYndiEqrhg-DGYPv?usp=sharing
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Fig. 9. Fully connected neural network used in the first task. It is composed of 3 neurons in the input layer, 5 neurons in the
hidden layer and 1 neurons in the output layer. The activation function that was used is the Rectified Linear Unit (ReLU)

𝜕𝑅𝑘
𝜕𝑥 𝑗

=
𝜕
∑

𝑗 𝑥 𝑗
𝜕𝑥 𝑗

= 1. Therefore, the root point x̃, for which 𝑅𝑘 (x̃) = 0 is x̃ = 0. The computation of the relevances 𝑅𝑖 of

each neuron in layer 𝑖 has a derivation that is out of scope for this paper. Nevertheless, it is important to note that the

relevance is proportional to the squared weight of the connection - keeping in mind that weights can take both negative

and positive values.

The relevance of the neurons of each layer (in general) is computed by using the relevances of neurons of the next one.

The overall goal of the task is to understand how the interplay between values of the input and the network weights

define the computed relevance values. To better explain this, Figure 10 depicts the functionality of a neuron in a fully

connected neural network. For convenience and without loss of generality we can think that this is the the neuron in the

output layer 𝑘 of the task (see also 9). Each input 𝑥 𝑗1 to 𝑥 𝑗5 will be multiplied by a corresponding weight (𝑤1 to𝑤5), and

then the sum of all those multiplications 𝑥 𝑗1𝑤1 + · · · + 𝑥 𝑗5𝑤5 comprises the input of the nonlinear activation function. In

this case, the Rectified Linear Unit (ReLU) was used.

For a fixed input, the exercises deal with two cases: the first one sets weights that are not randomly chosen. Thereby,

positive weights multiplied by positive input values will generate a high positive value which in turn will consist of the

input to the activation function. Those parts will be, in retrospect, the ones that will have higher relevance in general. On

the contrary, weights near zero will “suppress” all highly positive or highly negative input values. The second case is

quite the opposite of that; random weights do not show any preference for input values. By those means, one can compare

the situation of a trained vs. not-trained neural network that has randomly initialized weights.

The overall goal of the task is to understand how the interplay between values of the input and network weights defines

the computed relevance values. When the weights are randomly distributed, only the highest input values will manage to

create a high activation (with few exceptions). When the weights are not randomly distributed, then some relatively high

values might be suppressed (by multiplication with a small weight) and not create a high activation. On the other hand,

some relatively small values, when multiplied with a high weight value, might induce a high activation. By those means,

one can compare the situation of a trained vs. not trained neural network.

It is important to emphasize the difference between the backpropagation procedure that happens several times during the

training of a neural network, and the backpropagation of relevance happens only once after the training is accomplished.

Furthermore, two properties of LRP are used for verification of the computations with unit tests [81], namely positivity

and conservation (Eq. 20) of relevance of the neurons at each layer:
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Fig. 10. The functionality of a neuron of a fully connected neural network with five inputs, five weights, the sum of their
corresponding multiplication and the application of a nonlinear activation function.

∀𝑥, 𝑝 : 𝑅𝑝 (𝑥) ≥ 0,
∑︁
𝑖

𝑅𝑖 =
∑︁
𝑗

𝑅 𝑗 , (20)

where 𝑥 is the input, 𝑝 represents any neuron of the network, and layer 𝑖 precedes layer 𝑗 .

5.2 Explaining a GNN performing node classification on graphs with GNN-LRP

Graph Neural Networks (GNNs) perform three main types of tasks on graph datasets: node classification, link prediction

and graph classification. They can be thought of as an extension of Convolutional Neural Networks (CNNs) that process

non-grid structured data, therefore the filters cannot operate by the same means.

One of the simplest architectures is called GCN (Graph Convolutional Network) [82]. The rules for aggregation and

combination (Eq. 21) of the information lying in the features of the neighbouring nodes and edges are:

𝒁𝑡 = 𝚲𝑯𝑡−1, 𝑯𝑡 = 𝜌 (𝒁𝑡𝑾𝑡 ), (21)

where 𝑡 denotes the layer, and 𝚲 is the Laplacian matrix of the input graph, which can be a scene, protein interaction,

social media, a knowledge graph, etc. 𝚲𝐻𝑡−1 is the representation of the previous layer, 𝑾𝑡 are the weights and 𝜌 is the

non-linear activation function. The GNN-LRP method [82] applies constraints (piecewise linear and positive homogeneity)

to this nonlinearity (here ReLU is used). Eq. 21 is re-written and the GNN-LRP rule for computing the relevance 𝑅 𝑗𝐾𝐿...
of neuron 𝑗 after one has processed nodes 𝐾 and 𝐿 by all neurons 𝑘 that gathered information from node 𝐾 becomes:

𝑅 𝑗𝐾𝐿... =
∑︁
𝑘∈𝐾

𝜆𝐽 𝐾ℎ 𝑗𝑤
∧
𝑗𝑘∑

𝐽

∑
𝑗∈ 𝐽 𝜆𝐽 𝐾ℎ 𝑗𝑤

∧
𝑗𝑘

𝑅𝑘𝐿..., (22)

where 𝐾, 𝐿 are elements (nodes or edges) of a walk on the input graph. A walk on the graph involves nodes that are

processed by corresponding neurons at layers labelled processed by neurons with 𝑘, 𝑙 indexes (capital letter subindexes

represent nodes, while at the same time, they also denote all neurons with that corresponding non-capital index that

process those nodes). Weight𝑤∧
𝑗𝑘

is a weighted sum (denoted by the ∧) of the elements of matrix 𝑾𝑡 that links neuron 𝑗

to neuron 𝑘 parameterized by a user-provided parameter 𝑔𝑎𝑚𝑚𝑎, which for different values, facilitates explanations with

varying visual presentation. Typically, a range of 𝑔𝑎𝑚𝑚𝑎 values is used where each of them corresponds to a different

level of detail representation; the data scientist can try them individually for each example graph. For some values of
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gamma - and in relation to the sign of the computed relevances - the importance (positive or negative) 9 will be attributed

to a few elements thereby being more “concentrated”. For others, more neighbors of a really important element are

considered relevant too, making the presentation of relevances more “coarse”. 𝜆𝐽 𝐾 is the element of the Laplacian matrix

𝚲 corresponding to the connection between nodes 𝐽 and 𝐾 , ℎ 𝑗 is the activation of neuron 𝑗 , 𝑅𝑘𝐿... is the relevance of

neuron 𝑘 after one has processed node 𝐿. The ". . . " indicates that the walk contains, in general, further nodes.

The task of graph classification contains three parts. At first, Barabasi-Albert graphs are created by the user. These

are random scale-free networks that have a preferential attachment mechanism with user-defined growth factors. Nodes

and edges can represent anything that can be approximated by a scale-free graph (a graph that has a degree distribution

according to the power law). Examples of such graphs are citations’ and social networks. This growth factor will be

the label for the prediction. The GNN that will be used for this prediction is defined in the second part, along with the

corresponding functions for training and computing relevances. The third part deals with training the network, using a test

set to compute its performance and then applying GNN-LRP to compute and display a plot showing the walk’s relevances.

The most important goal of this task is to understand what the computational path of a GNN is, and its recursive nature,

to comprehend how this leads naturally to the relevance of walks in the graph. Our notebook10 is a slightly changed

version of the researchers’ original’s11. The task is studying whether the layer walk relevances are plausible, and how

they change if the length of the walk on the graph is changed, in juxtaposition with an adaptation of the GNN layer sizes

(changing its amount, and size in terms of neurons) to obtain a model output and output explanation that is consistent

with the ground truth and the expectations of a domain expert.

For example, let us assume we have a scene graph of a medical image with cells and links. Cells are represented by

nodes and have various features such as size, colour, or shape. It might be that a classification lies on the relevance of the

size of a particular node of the graph. Paths that contain this node are expected to have high relevance because of this

node; nevertheless, this importance will be distributed to the rest of the elements of this path, although they might be not

at all decisive/relevant on their own. To distill that the characteristics of this particular node were responsible, the user is

required to compare several walks containing it and its neighboring elements. GNN-LRP might not be the most adequate

XAI method for this use case.

One important challenge of all XAI methods is the explainability of misclassified samples. LRP does not at the

moment provide a substantial and quantifiable benefit in comparison with other heatmapping methods; nevertheless, the

perturbation analysis deals with misclassified samples in a more robust way than other methods because the performance

is influenced (i.e., drops) monotonically after the removal of the relevant elements (nodes or edges) in sorted order.

5.3 Explaining a GNN performing node classification on graphs with GCExplainer

The GCExplainer is an explanation method that can be applied to both node and graph classification-solving GNN

architectures [57]. It has a different way of operating on each layer of the GNN than GNN-RLP since it follows the

assumption that the activation of each layer contains information about concepts relevant to the task solution which are

captured by the GNN. This draws a parallel with the way the learned filters of a Convolutional Neural Network (CNN)

9The relevance is positive on all elements of an input example that contribute to the prediction in a manner that increases the confidence of the neural
network. For example, in a two-class classifier that discriminates between images of animals and cars, an input image containing parts of both classes will be
eventually classified as one of the two, but the confidence of the classifier is not expected to be very strong. Assuming that the decision is the car, the areas
containing animals should have negative relevance because they lessen the prediction strength of the classifier. All areas that “speak against” the predicted
class are expected to have negative relevance. If they were removed from the image, they would increase the confidence of the prediction - which is the main
principle of counterfactual explanations.
10Notebook on LRP for a GNN trained on graph data https://colab.research.google.com/drive/166FYIwxblfrEltkYqY_jiJoAm9VLMweJ?usp=sharing
11GNN-LRP: https://git.tu-berlin.de/thomas_schnake/demo_gnn_lrp
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are formed through training with the ones on the lower layers trained to recognize basic visual structures whereas the

ones on the higher layers are sensitive to combinations of the basic visual structures [50], [4]. Therefore, an inspection of

those outputs after training that led to a sufficiently good performance can reveal those concepts and most importantly

distinguish them from each other.

Whereas GNN-LRP and GNNExplainer [108] - the first explanation method for GNNs - analyze single instances, the

GCExplainer provides global and unsupervised explanations; a possibility that the aforementioned explanation methods

can only achieve by aggregating the results of several local explanations. To compute global explanations from single

instance explanations the GCExplainer first applies a dimensionality reduction method - one of Principal Component

Analysis (PCA) [66], t-distributed Stochastic Neighbor Embedding (t-SNE) [94], Density-based spatial clustering of

applications with noise (DBSCAN) [34] or Uniform Manifold Approximation and Projection (UMAP) [58] - on 2
dimensions for the output of each layer of the GNN. This 2-D space can be inspected by the user and an estimation of the

number 𝑘 of potential clusters, each of which will represent a concept, can be made. What is more, the use of the mean

Silhouette Coefficient [78] can also provide quantitative information about a good value for 𝑘 .

Fig. 11. Results of clustering of the activations of the fourth layer of a Graph Convolutional Neural Network (GCN) [46]
with the use of t-distributed Stochastic Neighbor Embedding (t-SNE) clustering method. It is assumed that the number of
clusters is 𝑘 = 5 and each of the points in the scatter plot represents one node in the graph that is classified by the GCN.

After the clustering is finished, all nodes in each cluster as well as their neighbourhoods can be visualized. The

expectation is that all nodes in a cluster will have similar node feature values and the structure of the graph “around” them
Manuscript submitted to ACM



A Practical Tutorial on Explainable AI Techniques 25

will also not deviate substantially. The number of neighbourhood hops that are adequate for the user to decide on the

coherence of the concept, is also an adaptive parameter represented by the variable 𝑛 and it can be that multiple concepts

are grouped in the same cluster. The higher the 𝑛, the more complex the concept appears to the user. Overall, this is a

method that practically implements the Human-in-the-Loop principle [76] where the user adapts two values: the number

of the clusters 𝑘 according to his/her domain knowledge and a clustering metric and the size of the neighbourhood through

𝑛. The more 𝑘 increases, the more detailed the concept is and the more fine differences between the concepts appear.

The suitability of this explanation method can also be measured by XAI Quality metrics, as described in several recent

research works [31], [83]. A discovered concept’s purity can be measured by the Graph Edit Distance (GED) [2], which

equals the number of operations necessary to transform one graph into another. This is an indicative metric for the graph

structure diversity around nodes that are clustered in the same concept and the higher the 𝑛 the less likely it is for this

metric to have a value near zero; nevertheless, the features of the nodes’ values should also be taken into account for

their similarity. The concept completeness score [106] is computed through an individual Machine Learning (ML) model

(not the original GNN) that performs classification on all inputs that were clustered as belonging to a particular concept.

The higher the predictive performance of this classifier, the higher the completeness score; a Decision Tree (DT) having

sufficiently high performance can be indicative of completeness and at the same time provide decision-making rules as a

meta-explanation for reasoning about the coherence and separability of the clustered concepts.

In a further research step, the inventors of the GCExplainer incorporated it in an encompassing framework [45]

that measured the overlap between human-expressed concepts and the ones discovered by the method through Mutual

Information (MI) [56]. Through three concrete steps 1) alignment of human and explainer concepts, 2) refinement

of the concepts and parameters of the GCExplainer according to the degree of alignment in the first step represented

by a Confusion Matrix (CM) and 3) improvement of the concepts’ purity and completeness. This process leads to an

explanation where all discovered concepts are as pure and complete as possible comprising a so-called interpretation

representation of the dataset [45].

The exercise notebook 12 is a slightly changed version of the researchers’ original’s 13. Users can adapt the values for

the parameters 𝑘 (number of clusters) and 𝑛 (number of hops around the explained node) with some additional information

about the adequacy of the explanation (explained variance ratio for PCA and silhouette score of the clustering).

5.4 LRP suitability analysis: pros and cons

The existence of both positive and negative relevance values [7][79] is one of the impactful property of LRP. Considering

the explanation of one input sample, let us say an image, a heatmap produced by LRP contains both positive and negative

values, whereas a heatmap from another explainability method, for example, Sensitivity Analysis (SA) [10] only contains

negative values. In practical terms, for SA there is no differentiation of which parts of the input enhance the certainty and

confidence of a prediction, which ones are an indication of another class (if we are dealing with a classification problem),

and which parts are rather neutral (ideally in images in the background). This comprises the forefront for counterfactual

explanations [11] and the creation of Probabilistic Graphical Models [98] as explanations since the sequential removal of

positively important components of the input sample have been shown to lead to a monotonic decrease of performance in

the case of a correct prediction - and the opposite phenomenon for a misclassified one.

12Notebook on GCExplainer for a GNN performing node classification on graph data https://colab.research.google.com/drive/
16ayMlyDzNubxSkpIBHXDvbEgpB88wBBK?usp=sharing
13GCExplainer: https://github.com/CharlotteMagister/GCExplainer
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Fig. 12. Depiction of five nodes (in green) as well as their 1-hop neighbourhoods (coloured pink) that are nearest to the
centroid of each cluster. Each row contains the nodes of one concept and in each row, the leftmost element is the nearest to
the cluster’s centroid, the second is the second nearest, and so on. By visual observation and without measuring the Graph
Edit Distance (GED) between the graphs in each row, one can see the similarity between all subgraphs of one concept. The
labels (ground truth, not the predicted ones) of the nodes are also depicted above the subgraph.

This gives the opportunity to domain experts that helped with the preparation of the dataset to change its characteristics

in a semi-automated way since they do not have the time to go through that many heatmaps to understand and improve
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the behavior of the model. Therefore Semi-automated Spectral Relevance Analysis was invented [51]. This method was

inspired by the detection of a so-called “Clever-Hans” effect in a high-performing neural network that was classifying

images of the PASCAL VOC2007 data set. The neural network learned that this tag was so indicative for accurate

prediction of the class “horse” that even experiments with images with cars and this tag were classified as “horse”. To be

able to semi-automatically separate between explanations that classify an image as “horse” because it actually contains

a horse and those that contain some artifact, one can cluster the LRP heatmaps. If the resulting clusters are relatively

far from each other, then one can assume that the neural network has found different ways to classify those images and

maybe some of them are Clever-Hans.

On the other hand, LRP is of great value to software developers and data scientists as well, because they can improve

the neural network’s architecture by pruning [107], data, feature, loss and gradient augmentation [102], according to the

results of this method. This has been shown to have great benefits in efficiency and explainability as well, and the fact that

this is a method applied to different architectures for various types of data, opens the path for actionable insights and

Actionable XAI (AxAI), [80].

On the negative side, LRP is still a method for local explanations, even if the Semi-automated Spectral Relevance

Analysis mentioned before has alleviated this fact to a large extent. Inevitably, as one can also see in the GNN-LRP

notebook, a node or an edge that belongs to several walks will have a different relevance value w.r.t. the walk that the user

is currently observing. Particularly if there are both negative and positive relevance values for one and the same element

of the graph, the user has to think actively about the fraction of the neighborhood the walk represents and reason how the

components of the graph contributed to potentially diverging values. This is an already studied problem between different

XAI methods [49] but not an expected phenomenon in the same XAI method. It is important to remember that the GNN’s

training process uses all neighboring elements’ information when updating the embeddings, therefore the existence of

a well-defined and even synthetically generated ground-truth is not an integral solution for this method. However, the

GCExplainer’s results reflect the influence of the neighborhood in a more cohesive manner, since there is no need to distill

the dynamics of relevance in neighboring elements. Nonetheless, both GNN-LRP and GCExplainer lack one important

property that is present in the first explainer of GNNs, the GNNExplainer [108] which can identify the important features

of nodes and edges (and not just the nodes and edges themselves). A user study that would compare those two as well

as explainability methods for GNNs that create causal models (for the purposes of quantifying causability) like the

PGMExplainer [98] consists valuable future work.

Furthermore, although perturbation analysis and counterfactual explanations are useful for explainability, after the

removal or addition of elements in the input sample, the redistribution of relevances w.r.t. the prediction outcome is not

always consistent and there is no extensive user studies. For some architectures in image processing like ResNet [39] that

contain residual connections, it has been reported in the GitHub forum that the resulting heatmaps are not as good as for

other CNN architectures without residual connections. This is due to the LRP’s backpropagation properties; nevertheless,

researchers on LRP can extend their method to new architectures and therefore the scientific community can expect

improvements in those deficiencies.

6 NEURAL-SYMBOLIC AI FOR INTERACTIVE EXPLAINABILITY IN NEURAL NETWORKS

Neural-Symbolic Learning and Reasoning seeks to integrate principles from neural network learning with logical

reasoning. Symbolic systems operate on symbols with reasoning performed over such abstract, discrete entities, following

logical rules. In principle, this process in itself should allow for better explainability than distributed representations at the
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level of data. Neural networks operate at the sub-symbolic (or connectionist) level. Individual neurons do not necessarily

represent an abstract entity or a readily recognisable concept.

The integration between both symbolic and sub-symbolic levels as promoted by neural-symbolic systems seeks to

bridge data-driven information processing - frequently encountered in perception and pattern recognition - with reasoning

and explanation at a higher level of abstraction. Realising this integration should facilitate a range of benefits, such as

achieving representations that are abstract, re-usable and general-purpose. Having these representations readily available

could concretely tackle some of the pressing issues with current deep learning practices.

6.1 XAI in Neural-Symbolic AI

Explainability in neural-symbolic systems has been traditionally approached by learning a set of symbolic rules, known

as Knowledge Extraction from trained neural networks, and evaluating how well the rules may approximate the behaviour

of the neural network by measuring the percentage of matching predictions on a test set, which is referred to as the fidelity

of the extracted symbolic explanation to the neural network.

Most contemporary explainability methods are not powerful enough to guarantee the soundness and completeness of

the explanation w.r.t. the underlying model, which is typically a very large neural network. Metrics such as fidelity lack a

reliable way of expressing uncertainty associated with the lack of completeness results.

The measured fidelity is seen as a proxy for how close an explanation might be to the representation of the underlying

model. By the same token, it is not a metric of the capacity to find semantically meaningful representations. For this, a

more interactive approach is needed as outlined in the caption of Figure 13.

6.2 Framework for interactive explainability

In a tightly-integrated neural-symbolic system, XAI occurs as part of the neural-symbolic cycle. In this framework, we

can query and revise information and consolidate existing background knowledge. The system can utilize background

knowledge to provide meaningful semantics for the explanations, facilitating human-machine interaction and hopefully

achieving the desired higher-level properties.

By applying the neural-symbolic cycle multiple times, partial symbolic descriptions of the knowledge encoded in the

deep network can be checked and, through a human-in-the-loop approach [42], incorporated into the cycle as a constraint

on the learning process. This enables an interactive integration of a desired behaviour, notably fairness constraints, by

validating and incorporating knowledge at each cycle, instead of (global or local) XAI serving only to produce a one-off

description of a static system.

Therefore, the neural-symbolic cycle can be seen as a common ground for communication and system interaction.

Symbolic knowledge representation extracted from the learning system at an adequate level of abstraction for communica-

tion with users should allow knowledge consolidation and targeted revision. The key challenge therefore is the efficient

extraction of this abstract knowledge from very large networks.

We shall illustrate how the Logic Tensor Network (LTN) framework is used for explainable classification, subsequently

addressing some undesired model properties according to the pipeline in Figure 13. In the example shown in the figure,

we use the Shapley method, but any other XAI method could have been chosen. A logical neural network querying

mechanism is then integrated into the process to produce insight into the model during the knowledge revision process.
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Fig. 13. Illustration of the LTN pipeline for continual interactive learning: revision is carried out by querying a deep network
interactively and learning continually, thus applying the neural-symbolic cycle multiple times. Explanations extracted from the
network using, e.g. SHAP can highlight bias or undesired properties in feature importance. Equally, querying the network
in LTN-style shows the satisfiability of specific model properties, such as fairness constraints, which can subsequently be
added to the knowledge base K for further training. Doing this, we can answer questions such as: How does the model
behave for a specific group of individuals compared to others?, translating into FOL queries and checking their degree of
satisfiability (sat()) (c.f. Section 6.4). Subsequently, such desired queries can be added to the optimisation function. This
process concludes once it has been shown to reduce bias at a subsequent SHAP explanation.

6.3 Logic Tensor Networks (LTN) for explainable model revision

The framework used in this approach and accompanying notebook14 is LTN [9, 86, 87]. However, instead of treating the

learning of the parameters from data and knowledge as a single process, we emphasise the dynamic and flexible XAI

nature of the process of training from data, querying the trained model for knowledge, and adding knowledge in the form

of constraints for further training, as part of a cycle whose stopping criteria are governed by a fairness metric. Furthermore,

we focus on the core of the LTN approach: constraint-based learning from data and first order logic knowledge (FOL).

We make the explanation approach iterative by saving the learned parametrisation at each cycle in our implementation.

For simplicity, we also replace the original LTN implementation which uses Neural Tensor Networks with a feed-forward

Neural Network. This also demonstrates the agnostic nature of the approach: LTN-based XAI is independent of the

network model.

Whereas many inherently neural-symbolic methods come with stringent architectural constraints on the model itself,

our LTN adaptation is model-agnostic since LTN as a framework solely requires the ability to query any deep network (or

any ML model) for its behaviour, that is, observing the value of an output given a pre-defined input. The predictive model

itself can be chosen independently, with the LTN acting as an interface to provide an explanation of the model to the user

in the form of targeted FOL queries.
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Logic Tensor Networks [9, 87] implement a many-valued FOL language L, which consists of a set of constants

C, variables X, function symbols F and predicate symbols P. Logical formulas in L allow to specify background

knowledge related to the task at hand. The syntax in LTN is that of FOL, with formulas consisting of predicate symbols

and connectives for negations (¬), conjunction, disjunction and implication (∧,∨,→) and quantifiers (∀, ∃).

Learning in the LTN framework for explanation: LTN functions and predicates are learnable. Thus, the grounding

of symbols depends on a set of parameters 𝜃 . With a choice of a multilayer perceptron as model, each logical predicate is

represented by a feed-forward mapping, where 𝜎 denotes the sigmoid activation function which ensures that predicate 𝑃

is mapped from R𝑚𝑥𝑛 to a truth-value in [0, 1].
Since the grounding of a formula G𝜃 (𝜙) denotes the degree of truth of 𝜙 , one direct training signal is the degree of truth

of the formulas in the knowledge base K . The aggregate truth-value of all the formulas in K is computed by averaging all

terms using the geometric mean but alternative approaches are possible [9]. The objective function 𝜃 = Sat𝐴 (G𝜃 (K)) is

therefore the satisfiability of all formulas in K which is maximized by training the model parameters. In its simplest form

of binary classification without constraints, K will consist of one term for positive examples in the dataset and one term

for negative examples. In summary, the core extension applied to a regular neural network optimisation enabled by LTN

is that of querying with many-valued first order logic and learning with knowledge base constraints.

Continuous querying for model understanding: LTN inference using first order logic clauses is not only a post-hoc

explanation in the traditional sense. It allows that inference forms an integral part of an iterative process allowing for

incremental explanation through the distillation of knowledge guided by data. We achieve this by computing the value of

a grounding G𝜃 (𝜙𝑞), given a trained network (set of parameters 𝜃 ), for a user-defined query 𝜙𝑞 .

Specifically, we save and reinstate the learned parameters stored in the LTN implementation. This is done by storing

the parameters 𝜃 resulting from each learning cycle. A query is any logical formula expressed in first order logic.

Queries are evaluated by calculating the grounding G of any formula whose predicates are already grounded in the

multilayer perceptron or even by defining a predicate in terms of existing predicates. For example, the logical formula

∀𝑥 : (𝐴(𝑥) → 𝐵(𝑥)) can be evaluated by applying the values of 𝑥 , obtained from the dataset, to the trained Neural

Network, obtaining the values of output neurons 𝐴 and 𝐵 in (0,1) (corresponding to the truth-values of predicates 𝐴 and 𝐵,

respectively), and calculating the implication with the use of the Reichenbach-norm and aggregating for all 𝑥 using the

p-mean, as exemplified below.

A query can explain AI systems by connecting different model outputs, aggregating inputs for summarising the

behaviour of a system in specific domains or relating specific inputs with specific features against each other and the

output. In [99], it is demonstrated that this framework can be extended to include intermediate representations, thus

providing an understanding of how concepts are logically associated with particular output classes.

Logical formulas used for such explanations follow semantics for logical connectives that are defined according to fuzzy

logic semantics: conjunctions are approximated by t-norms (e.g.𝑚𝑖𝑛(𝑎, 𝑏)), disjunctions by t-conorms (e.g.𝑚𝑎𝑥 (𝑎, 𝑏)),
negation by fuzzy negation (e.g. 1−𝑎) and implication by fuzzy implications (e.g.𝑚𝑎𝑥 (1−𝑎, 𝑏)). The universal quantifier

is defined as the generalised mean, also referred to as p-mean.

Algorithm 2 illustrates the steps we take to continuously refineK𝑛𝑒𝑤 with a human-in-the-loop. The queries are derived

from questions that a user might have about the model’s response: How does the model behave for a specific group? How

does the model behave for particular edge cases? These questions can be translated into FOL-queries. Simultaneously, an

XAI method further informs the user about possible undesired model behaviour which may not be as apparent as the

above common questions. In Figure 13, XAI method SHAP reports a disparity in how the variable immigrant status is
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used by the model for black and white inpatients when predicting the risk of violence in a psychiatric hospitalization

setting [89].

The XAI technique SHAP is used together with LTN queries to highlight such findings and subsequently address

them by adding knowledge to K𝑛𝑒𝑤 and retraining, as will be illustrated in the next section and the accompanying

notebook.This cycle can be repeated until the revision process delivers satisfactory results to the user, with respect to

model performance and behaviour.

6.4 Case Study on violence reiteration prediction in a psychiatric hospitalization setting with a Deep
Neural Network within the LTN framework for explainable revision

We demonstrate the method mentioned above using a well-known fairness-related COMPAS dataset, from ProPublica14.

For additional examples using alternative datasets, as well as comparisons with alternative methods, we refer the reader to

[101]. We use a case study of violence risk prediction of inpatients in a psychiatric hospitalization, i.e., to predict whether

inpatients tend to reiterate violent behaviour or not during their stay [89]15. Typical features of this case study encode

sociodemographic information such as sex, race, immigration status, etc. ML algorithms tend to generate false positives

in presence of a protected group versus an unprotected group (black vs white, immigrants vs non immigrants). In this

case, a bias on such features may compromise fairness. The presented framework (based on XAI (SHAP)+LTN) shows

how such MLOps pipeline can detect it and tackle it.

A trained network is queried to return the truth value associated to the predicate used for the classification task

G(𝐷 (T )) for the entire training set T . This will allow us to answer how the model treats similar individuals across

protected and unprotected groups. Using quantile-based discretisation, we obtain answers to the question: How prediction

for equally sized groups for each protected and unprotected variables differ across different risk categories for violence?

14The demonstration of the method, the XAI + LTN pipeline (on which XAI techniques such as SHAP can be embedded for interactive explanations) and
the data are accessible at https://github.com/benediktwagner/nesyxai/blob/master/experiments/fairness/1_LTN_fairness_tutorial.ipynb. The original LTN
repository adapted for this method is: https://github.com/logictensornetworks/logictensornetworks
15https://informatics.bmj.com/content/bmjhci/29/1/e100459/DC1/embed/inline-supplementary-material-1.pdf?download=true
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We determine whether the model achieves parity between black and white prisoners in the same risk category on aggregate.

Querying such axioms reveals a low level of satisfiability (𝑠𝑎𝑡𝜙𝑖 ≈ 0.5), suggesting that the model is learning undesirable

disparities in groups with medium risk of violence. Thus, the model predicts bad behavior more often for the protected

group than for the unprotected group of the same risk category. In groups where the risk of violence is very low or very

high, there are no significant differences in violence prediction of the model for the protected and unprotected group,

which is in line with the desired notion of group fairness [32].

We confirm the disparity between groups by calculating their Shapley values. Since the SHAP method uses the same

units as the original model output, we can decompose the model output using SHAP and compute each feature’s parity

difference among protected and unprotected groups using their respective Shapley value.

We can subsequently revise K using the queries 𝜙𝑖 of the different groups as soft constraints and are able to revise the

network to decrease the undesired disparities while retaining high accuracy as measured in [101] and the notebook14. In

this demonstration, only model outputs combined with protected attributes are used to inform the queries, as the focus is

primarily querying the output concerning unfair treatment. A further query could answer how predictions differ across

groups of a specific age in combination with protected attributes.

Any combination of features or even intermediate representations, such as feature activations in a CNN, as well as a

combination of models are available and can be queried using the LTN framework through fuzzy logic. Furthermore,

the latest iteration of the LTN framework allows for dynamic masking, which means that the explanation iterations and

revision could be further automated within the LTN framework using custom masks. Such custom masks, for example,

remove the necessity of manual discretisation into parity groups by performing automatic grouping based on dynamically

changing output logits.

In our example, however, the user can vary the number of user-defined queries and discretisations groups into different

granularities. It is worth emphasizing the flexibility of such approach w.r.t. further queries and its potential use with

alternative fairness constraint constructions. With the increasing complexity of models as well as fairness definitions, rich

languages such as fuzzy FOL can be beneficial to adapt to regulatory and societal changes to notions of fairness. One

example would be a simple adaptation of the value 𝑝 in the aggregation using the p-mean. Using larger values for 𝑝, the

fairness notion converges from group fairness towards individual fairness, as the generalised mean, converging from a

simple average towards the𝑚𝑖𝑛 value, gradually (with higher relative importance for lower values).

Integrating XAI methods with neural-symbolic approaches allows us to learn about the undesired behaviour of a model

and intervene to address discrepancies. Effecting such intervention is ultimately the goal of the field of AI alignment, to

which the techniques of interactive explainability have a major contribution to make, as advocated in [100]. We have

demonstrated an interactive model-agnostic method and an algorithm for fairness in healthcare and have shown how one

can remove demographic disparities from trained neural networks by using a continual learning LTN-based framework.

7 RENDERING XAI EXPLANATIONS THROUGH A TEMPLATE SYSTEM FOR NATURAL LANGUAGE
EXPLANATIONS (TS4NLE)

Methods presented during the previous sections provide good explanations. However, the way in which an explanation

is presented is sometimes as important as the content of the explanation, because an explanation is only as good as its

audience’s understanding of it. Therefore, we present a method to render XAI Explanations through Natural Language

Generation. This method is aimed at anyone who wants to display their explanation in the best possible way so that it is

perfectly understandable by their user, whether they are a developer or an end user with no knowledge of deep learning.
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All methods discussed above provide outputs in a structured format that can be represented in a graph-like way. Such a

format enables the design of different strategies for transforming the provided outputs into a representation that can be

easily understand and consumed by the target user.

Explanations generated starting from structured formats such as the one mentioned above help users in better under-

standing the output of an AI system. A better understanding of this output allows users to increase the overall acceptability

in the system. An explanation should not only be correct (i.e. mirroring the conceptual meaning of the output to explain),

but also useful. An explanation is useful or actionable if and only if it is meaningful for the users targeted by the

explanation and provides the rationale behind the output of the AI system [30]. For example, if an explanation has to be

provided on a specific device, such a device represents a constraint to be taken into account for deciding which is the

most effective way for generating the explanation. Such explanation can be in natural language/vocal messages, visual

diagrams or even haptic feedback.

In this Section, we focus on the generation of Natural Language Explanations (NLE). Producing these carries a

challenge, given the requirement of adopting proper language with respect to the targeted audience [8] and their context.

Briefly, let us consider a sample scenario occurring within the healthcare domain where patients suffering from diabetes

are monitored by a virtual coaching system in charge of providing recommendations about healthy behaviors (i.e., diet

and physical activities) based on what patients ate and which activities they did. The virtual coaching system interacts

with both clinicians and patients, and when an undesired behavior is detected, it has to generate two different explanations:

one for the clinician containing medical information linked with the detected undesired behavior –including also possible

severe adverse consequences; and one for the patient omitting some medical details and, possibly, including persuasive

text inviting to correct the patient’s behavior in the future. The end-to-end explanation generation process, from model

output to an object usable by the target users, requires a building block in the middle supporting the rendering activity.

Such rendering requires explanations having a formal representation with a logical language equipped with predicates for

entities and relations. This formal representation can be directly represented as an explanation graph with entities/nodes

and relations/arcs. It and allows: i) its own enhancement with other concepts from domain ontologies or Semantic Web

resources; and, ii) an easy rendering in many human-comprehensible formats. Such an explanation graph can be easily

obtained from the XAI techniques explained above. For example, the explanatory features and the output class provided

by SHAP can be regarded as the nodes of the explanation graph, whereas arcs are computed on the basis of the SHAP

features values. SHAP’s output is one of the possible inputs that the TS4NLE strategy can process. Indeed, TS4NLE is

agnostic with respect to the type of model adopted by the ML system, since it can work with any approach providing an

output that can be represented with a graph-like format. The explanation graph can also work as bridge for accessing

different types of knowledge usable, for example, to enrich the content of natural language explanations by respecting

privacy and ethical aspects connected with the knowledge to use.

Explanations require a starting formal (graph-like) representation to be easily rendered and personalized through

natural language text [29]. The generation of such natural language explanations can rely on pipelines which takes the

structured explanation content as input and, through several steps, performs its linguistic realizationThe work in [29]

injects in such a pipeline a template system that implements the text structuring phase of the pipeline. Figure 14 shows

the explanation generation process starting from a SHAP analysis of a model output.

As mentioned above, generating natural language explanations starts from the creation of the explanation graph, since

it provides a complete structured representation of the knowledge that has to be transferred to the target user. As first

step, the features of the SHAP output are transformed into concepts of the explanation graph and they are, possibly,

aligned with entities contained within the knowledge base related to the problem’s domain. Such entities represent the
Manuscript submitted to ACM



34 Bennetot et al.

first elements composing the explanation graph that can be used as collector for further knowledge exploited for creating

the complete message. Beside the alignment of SHAP output features with the domain knowledge, such a knowledge

base is exploited for extracting the relationships among the identified concepts. The extraction of such relationships is

fundamental for completing the explanation graph as well as for supporting its transformation into its equivalent natural

language representation. Once the alignment between the SHAP output and the domain knowledge has been completed,

the preliminary explanation graph can be extended in two ways. First, public available knowledge can be linked to the

preliminary explanation graph for completing the domain knowledge. Let us consider as example the explanation graph

shown in Figure 15. Some medical information associated with the identified food category may not be contained in the

domain knowledge integrated into the local system. Hence, by starting from the concept representing the food category,

we may access, through the Linked Open Data cloud, the UMLS16 knowledge base for extracting information about the

nutritional disease risks connected with such a food category. Beside public knowledge, the explanation graph can be

enriched with user information provided if and only if they are compliant with respect to possible privacy constraints. User

information can be provided by knowledge bases as well as probabilistic models. Also in this case TS4NLE is agnostic

with respect to the external source to exploit. In the use case we present below, TS4NLE relies on an external user-oriented

knowledge base containing facts that TS4NLE can reason on for deciding which kind of linguistic strategy to adopt. Let

us consider the healthcare domain use case. Here, information contained in the users’ personal health record can be used

for enriching the explanation graph with concepts by linking, for example, the negative effects of the over-consumption of

a specific food category by users with potential nutritional diseases.

Fig. 14. The images show the process of transforming a SHAP output into an explanation graph that is then transformed into
its equivalent natural language explanation. Features contained within the SHAP output are transformed into concepts linked
with a knowledge base related to the problem’s domain. Such a knowledge base is exploited also for extracting relationships
between the detected concepts. This preliminary explanation graph can be enriched with further knowledge extracted from
publicly available resources (e.g. the Linked Open Data cloud) as well as with private data (e.g. personal health records).
Finally, the explanation graph, through the NLE rendering component is transformed into a natural language explanation.

16Unified Medical Language System (UMLS) https://www.nlm.nih.gov/research/umls/index.html
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Finally, the created explanation graph can be rendered in a natural language form through a template system for natural

language explanations (TS4NLE) [29] that leverages a Natural Language Generation (NLG) pipeline. Templates are

formal grammars whose terminal symbols are a mixture of terms/data taken from the nodes/arcs of the explanation graph

and from a domain knowledge base. Terms in the explanation graph encode the rationale behind the AI system decision,

whereas the domain knowledge base encodes further terms that help the user’s comprehension by: i) enhancing the final

rendered explanation with further information about the output; and, ii) using terms or arguments that are tailored to that

particular user and increase the comprehension of the explanation. Generally, this user model is previously given, in form

of an ontology or knowledge graph.

TS4NLE is structured as a decision tree where the first level contains high-level and generic templates that are

progressively specialized and enriched according to the user’s feature specified in the user model. Once templates are

filled with non-terminal terms, the lexicalization17 and linguistic realization of the pipeline are performed with standard

natural language processing engines such as RosaeNLG18.

7.1 TS4NLE use case: persuasive message generation for healthy lifestyle adherence

In this subsection, we provide the description of a complete use case related to the generation of persuasive natural

language explanation within a concrete case within the healthcare domain.

Given as input a user lifestyle (obtained with a diet diary or a physical activity tracker), AI systems are able to classify

the user behavior in classes ranging from very good to very bad. The explanation graph contains the reason for such a

prediction and suggestions for reinforcing or changing the particular lifestyle. According to the user model (e.g., whether

the user has to be encouraged or not, the users’ barriers or capacities), the template system is explored in order to reach

a leaf containing the right terms to fill the initial non-terminal symbols of the template. A user study regarding the

Mediterranean diet states that such tailored explanations are more effective at changing users’ lifestyle with respect to a

standard notification of a bad lifestyle. A further guide of this use case is available online19.

The explanation graph contains entities connected by relations encoding the rationale of the AI system decision. Fig.

15 contains the explanation graph for a 65 years old user that consumes too much cold cuts. Such a graph is rendered with

TS4NLE as: “This week you consumed too much (5 portions of a maximum 2) cold cuts. Cold cuts contain animal fats

and salt that can cause cardiovascular diseases. People over 60 years old are particularly at risk. Next time try with some

fresh fish”.

The generation of the natural language explanation shown above is performed by TS4NLE by following the steps below.

After the generation of the explanation graph, the message composition component of TS4NLE starts the generation

of three textual messages for the feedback, the argument and the suggestion, respectively. This is inspired by the work

in [64] and expanded taking into consideration additional strategies presented in [38]. These consist of several persuasion

strategies that can be combined together to form a complex message. Each strategy is rendered through natural language

text with a template. A template is formalized as a grammar whose terminal symbols are filled according to the data

in the violation package and new information queried in the reference ontology. Once templates are filled, a sentence

realizer (i.e. a producer of sentences from syntax or logical forms)generates natural language sentences that respect the

grammatical rules of a desired language

17Lexicalization is the process of choosing the right words (nouns, verbs, adjectives and adverbs) that are required to express the information in the generated
text, it is extremely important in NLG systems that produce texts in multiple languages. Thus, the template system chooses the right words for an explanation,
making it tailored.
18https://rosaenlg.org/rosaenlg/3.0.0/index.html
19https://horus-ai.fbk.eu/semex4all/
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Fig. 15. Explanation graph for users exceeding in cold cuts consumption in the diet & healthy lifestyle adherence application.

Below we describe the implemented strategies to automate the message generation, focusing also on linguistic choices.

Explanation Feedback: is the part of the message that informs the user about the not compliant behaviour, hereafter

called “violation”, with the goal that has been set up. Feedback is generated considering data included in the explanation

graph starting from the violation object: the food entity of the violation will represent the object of the feedback, whereas

the level of violation (e.g., deviation between food quantity expected and that actually taken by the user) is used to

represent the severity of the incorrect behavior. The intention of the violation represents the fact that the user has consumed

too much or not enough amount of a food entity. Feedback contains also information about the kind of meal (breakfast,

lunch, dinner or snack) to inform the user about the time span in which the violation was committed. From a linguistic

point of view, choices in the feedback type are related to the verb and its tense: e.g., beverages imply use of the verb to

drink while for solid food we use to eat. To increase the variety of the message, verbs to consume and to intake are also

used. Past simple tense is used when violation is related to a specific moment (e.g. You drank a lot of fruit juice for lunch),

while present continuous is used when the violation is related to a period of time of more days and the period is not yet

ended (e.g., You are drinking a lot of fruit juice this week).

Explanation Argument: it is the part of the message informing users about possible consequences of a behavior.

For example, in the case of diet recommendations, the Argument consists of two parts: (i) information about nutrients

contained in the food intake that caused the violation and (ii) information about consequences that nutrients have on

human body and health. Consequences imply the positive or negative aspects of nutrients. In this case, TS4NLE uses

the intention element contained in the selected violation package to identify the type of argument to generate. Let us

consider the violation of our running example where the monitoring rule limits the daily fruit juice drinking to less than

200 ml (a water glass) since it contains too much sugar. In the presence of an excess in juice consumption (translating to a

discouraging intention) the argument is constituted by a statement with the negative consequences of this behavior on

user health. On the contrary, the violation of a rule requiring the consumption of at least 200 gr of vegetables per day

brings the system to generate an argument explaining the many advantages of getting nutrients contained in that food

(an encouraging intention). In both cases, this information is stored within the explanation graph. Moreover, TS4NLE

analyzes the message history to decide which property of the explanation graph to use in the Argument, to generate a

message content that depends on e.g., content sent in the past few days, ensuring a certain degree of variability. With

respect to linguistic choices, the type of nutrients and their consequences influence the verb usage in the text. Finally,
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to emphasize different aspects of the detected violation, templates encode the use of appropriate parts of speech. For

example, for stressing the negative aspects of the violated food constraint, the verb contain (nutrients) and can cause (for

consequences) were used. On the other hand, positive aspects are highlighted by the verb phrase is rich in and verb help

are used for nutrients and consequences, respectively.

Explanation Suggestion: This part represents an alternative behavior that TS4NLE delivers to the user in order to

motivate him/her to change his/her lifestyle. Exploiting the information available within the explanation graph, and

possibly collected from both public and private knowledge, TS4NLE generates a post suggestion to inform the user about

the healthy behavior that he/she can adopt as alternative. To do that, the data contained in the explanation graph are not

sufficient. TS4NLE performs additional meta-reasoning to identify the appropriate content that depends on (i) qualitative

properties of the entities involved in the event; (ii) user profile; (iii) other specific violations; (iv) history of messages sent.

Continuing with the running example, first TS4NLE queries the domain knowledge base through the reasoner to provide

a list of alternative foods that are valid alternatives to the violated behavior (e.g., similar-taste relation, list of nutrients,

consequences on user health). These alternatives are queried according to some constraints: (i) compliance with the user

profile and (ii) compliance with other set up goals. Regarding the first constraint, the reasoner will not return alternative

foods that are not appropriate for the specific profile. Let us consider a vegetarian profile: the system does not suggest

vegetarian users to consume fish as an alternative to meat, even if fish is an alternative to meat by considering only the

nutrients. The second constraint is needed to avoid alternatives that could generate a contradiction with other healthy

behavior rules. For example, the system will not propose cheese as alternative to meat if the user has the persuasion

goal of cheese reduction.Finally, a control on message history is executed to avoid the suggestion of alternatives recently

proposed. Regarding the linguistic aspect, the system uses appropriate verbs, such as try or alternate, to emphasize the

alternative behavior. Both tools20 and the colaboratory (Colab notebook) session are online21 for freely creating new use

cases using the TS4NLE approach.

7.2 TS4NLE suitability analysis: pros and cons

The use of explanation graphs is an intuitive and effective way for transforming meaningless model outputs into a

comprehensive artifact that can be leveraged by targeted users. Explanation graphs convey formal semantics that: i) can be

enriched with other knowledge sources publicly available on the web (e.g. Linked Open Data cloud) or privacy-protected

(e.g. user profiles); ii) allow rendering in different formats (e.g. natural language text or audio); and, iii) allow full control

over the rendered explanations (i.e. the content of the explanations). Natural language rendering with a template-system

allows full control on the explanations at the price of high effort in domain and user modeling by domain experts. This

aspect can be considered the major bottleneck of the TS4NLE approach. Such bottleneck can be mitigated by using

machine learning with human-in-the-loop towards interactive interpretable machine learning [43] to increase variability

in the generated natural language explanations.

8 LIMITATIONS

In the landscape of Explainable AI (XAI), one central limitation stems from the sheer diversity and abundance of

explainability methods available. Our article provides insights into several widely-used XAI techniques; however, it

is crucial to acknowledge that the field is evolving rapidly, with new methods constantly emerging. The sheer number

20https://github.com/ivanDonadello/TS4NLE
21https://colab.research.google.com/drive/1iCVSt7TFMruSzeg5DswLOzOR1n7xATbz
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and diversity of these methods make it challenging to be exhaustive in our coverage. New techniques may offer unique

advantages or address specific limitations, and thus, the landscape of XAI is ever-expanding.

Furthermore, the fast-paced evolution of the XAI domain introduces a dynamic aspect to the limitations. Some methods

discussed in our guide may already be succeeded by more advanced approaches, or they might have given rise to tools and

implementations that are simpler and more efficient. The field’s progress may render certain explanations or techniques

obsolete, emphasizing the need for ongoing exploration and adaptation. As a result, the shelf life of specific XAI methods

may be limited, and developers should stay abreast of the latest advancements to ensure the relevancy and efficacy of their

chosen explainability tools.

In essence, the limitations inherent in our guide stem not only from the impossibility of being exhaustive in the face

of the myriad XAI methods but also from the dynamic nature of the field, where advancements can quickly outpace

existing methodologies. Navigating this evolving landscape requires a commitment to staying informed about emerging

techniques and understanding that the most effective XAI strategies may shift over time.

Another noteworthy limitation of the tutorials presented in our guide lies in the nature of the datasets used for

demonstration purposes. While the provided tutorials offer a foundational understanding of Explainable AI (XAI)

techniques, it is essential to recognize that they are primarily illustrated on simple datasets. Real-world applications often

involve more complex and dynamic datasets, introducing additional challenges and intricacies not fully captured in these

tutorial scenarios.

In particular, some real-world contexts demand the incorporation of real-time data, where the need for instantaneous

decision-making is paramount. The tutorials, focused on elucidating XAI methods, may not fully encapsulate the

complexities introduced by the dynamic and evolving nature of data streams in real-time applications. In scenarios such

as these, where the temporal dimension is critical, the applicability and effectiveness of certain XAI techniques may

require further exploration and adaptation.

Thus, while the tutorials serve as a valuable starting point, developers and practitioners should be cognizant of

the potential disparities between the controlled environments of tutorial datasets and the nuanced challenges posed

by real-world applications. Addressing the intricacies of complex, real-time data scenarios will necessitate additional

considerations and potentially the exploration of more advanced XAI methods tailored to such dynamic contexts. This

acknowledgement underscores the importance of further research and experimentation when applying XAI techniques in

practical, real-world settings with more intricate data dynamics.

9 CONCLUSION

In conclusion, our exploration of Explainable AI (XAI) techniques has equipped developers, domain experts, and decision-

makers with valuable tools to unravel the intricacies of neural-symbolic and machine learning models using tabular data,

images, language and graphs. By delving into the implementation details, we aimed to demystify the black-box nature of

these models, fostering a didactic environment for users seeking clarity.

The explanations provided cater to a diverse audience, emphasizing accessibility and open sharing via the availability of

the explanations and accompanying resources on our GitHub repository22, inviting continuous learning and collaboration.

Looking ahead, future endeavours should focus on expanding the repertoire of XAI methods, especially in handling

challenges posed by incomplete and multi-modal data[41]. As the field evolves quickly [60], addressing these complexities

22https://github.com/NataliaDiaz/XAI-tutorial
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becomes paramount for ensuring the applicability of XAI techniques across various domains. By staying at the forefront

of innovation, we can collectively contribute to the responsible and effective governance of AI systems [6].

In essence, this guide serves as a resource, empowering users to navigate the nuanced landscape of XAI. As we

strive for greater understanding and transparency in artificial intelligence, this work lays the groundwork for ongoing

discussions, developments, and improvements in the realm of explainability.

Beyond the specific case studies outlined in our guide, Explainable AI (XAI) finds relevance in a diverse array of

real-world applications, offering transparency and interpretability in decision-making processes. One notable sector is

healthcare and medical AI [40], where the need for accurate and interpretable models is paramount. XAI can aid in

understanding and justifying predictions made by complex medical models, ensuring healthcare professionals can trust

and comprehend the reasoning behind critical diagnoses or treatment recommendations. For instance, XAI could be

applied to interpret semantic features or object parts [12, 27] contributing to a medical image classification, providing

insights for better-informed and less biased clinical decisions [25]. Other application of XAI is using linguistic summaries

to aid translating the model explanation to domain experts in psychiatry [44]. Another domain where XAI can have a

relevant impact is in climate change and earth sciences [55].

In the financial domain, XAI proves invaluable in risk assessment and fraud detection. Interpretable models can

shed light on the factors influencing credit scoring [33], enabling financial institutions to explain lending decisions to

customers and regulatory bodies. Moreover, in the context of fraud detection, XAI can elucidate the rationale behind

flagged transactions, enhancing the transparency of automated fraud prevention systems.

In the field of autonomous vehicles, where safety is paramount, XAI can play a crucial role. Providing explanations

for decisions made by self-driving cars ensures not only regulatory compliance [35] but also fosters public trust. For

instance, an XAI system could explain why a vehicle made a specific maneuver or identification during an unforeseen

event, contributing to safer and more accountable autonomous transportation systems.

In the realm of customer service and chatbots, XAI facilitates a more transparent and understandable interaction. Users

can receive clear explanations for recommendations or decisions made by virtual assistants, enhancing the user experience

and trust in automated systems. This is particularly relevant in industries such as e-commerce or online services where

personalized recommendations play a significant role. One example can be insurance advisors [69], or any recommender

system, inclusive and accessible applications [28, 70].

These examples highlight the wide-ranging applications of XAI beyond the presented case studies, emphasizing its

importance in domains where transparency, accountability, and user trust are critical components of decision-making

processes. As technology continues to advance, the need for interpretable AI will likely expand into even more diverse

and complex real-world scenarios.
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