

City, University of London Institutional Repository

Citation: Wang, C. (2024). Robust AI based perception and guidance for autonomous

vehicles. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34241/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

ROBUST AI BASED PERCEPTION AND

GUIDANCE FOR AUTONOMOUS VEHICLES

CHUYAO WANG

Supervisor: Prof Nabil Aouf

This dissertation is submitted for the degree of

Doctor of Philosophy

CITY UNIVERSITY OF LONDON

Department of Engineering, School of Science & Technology

November 2024

I, Chuyao Wang confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been
indicated in the thesis.

Sign:

Abstract

In the domain of autonomous vehicles, artificial intelligence (AI) now plays a crucial
role in achieving fully autonomous systems that can navigate complex and dynamic
environments without human intervention. To reach full automation, an autonomous
driving system must possess not only the ability to make intelligent decisions but also
exhibit high levels of robustness and real-time performance. The core of autonomous
driving lies in processing and analysing enormous streams of data generated by a
range of sensors, such as cameras, LiDAR, radar, and GPS. AI algorithms take on
multiple critical tasks, including perceiving the surrounding environment, detecting
and classifying objects, and understanding road conditions. Then the decision-making
components determine the optimal course of actions, from lane changes to responding
to unexpected obstacles. However, despite the progress made, AI-based autonomous
driving systems still face numerous challenges, particularly in ensuring reliability in
highly unpredictable environments, both in scene understanding and decision-making.
Therefore, developing reliable and robust solutions for these components remains a
critical area of research.

This thesis explores the novel deep-learning based methods for the perception and the
decision-making modules in learning-based autonomous driving, aiming to improve
efficiency and robustness of these modules. The proposed solutions tackle the current
challenges and contribute to the overarching goal of achieving full autonomy in
autonomous driving systems.

To analyse the elements in the environment, a learning-based approach is proposed
for monocular semantic segmentation in urban driving scenarios. This method
consists of two components: pyramid fusion spatial attention and fusion channel
attention, which are designed to capture contextual dependencies while maintaining
a lightweight architecture and achieving state-of-the-art performance. To further
locate these elements in the 3D world, a 3D object detection method is proposed that
uses only monocular camera input. To compensate for the lack of depth information
in monocular images, additional adaptive depth supervision signals are introduced,
which also achieve the goal of avoiding excessive computational burdens. Following
this, a depth acquisition method is proposed to understand the 3D geometry of
the entire scene. As part of this research, a synthetic depth completion dataset is
collected by combining LiDAR and stereo camera data, addressing the shortcomings
of existing datasets that lack dense ground truth.

ii

To test the efficiency of the depth module, a guidance system is proposed that
exploits the strengths of both Imitation Learning (IL) and Deep Reinforcement
Learning (DRL). Results demonstrate that incorporating depth images improves the
performance of the guidance network. Subsequently, the robustness of a single-agent
driving system against adversarial attacks is investigated. This study presents a
defence algorithm to mitigate state perturbations, ensuring the concrete robustness
of the driving system in worst-case scenarios. Additionally, an explainable attack
detector is introduced to accurately predict adversarial attacks and visualise the
decision-making process, thereby enhancing the reliability of the proposed robust
algorithm. The robustness of the complete approach is demonstrated through
several synthetic test cases involving various strong perturbations and domain
transfer. Lastly, the robustness is explored in the multi-agent systems. A connected,
cooperative multi-agent system is introduced to enhance the efficiency of cooperative
tasks in ideal environments. However, the challenges of adversarial attacks escalate
significantly in MARL systems compared to single-agent systems, due to the increased
complexity of dynamics and information sharing. To solve this, this method follows
the idea of constrained objective function introduced in the single-agent case, and
further adopt it to the multi-agent context with proposed safety criteria guarantee.

Keywords: Deep Learning, Deep Reinforcement Learning, Computer Vision, Opti-
misation, Adversarial Attacks, Explainability, Decision Making, 3D Object Detection,
Semantic Segmentation, Depth Completion, Attention Module, Imitation Learning.

iii

Table of Contents

Abstract ii

List of Tables ix

List of Figures x

Acknowledgements xiii

Abbreviations xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Autonomous Driving . 3

1.2.1 Overview . 4
1.2.2 AD Scene Understanding . 5
1.2.3 Guidance Decision Making . 9

1.3 Thesis Objectives . 11
1.4 Thesis Structure and Contributions 13
1.5 Published and Under-reviewed Manuscripts 14

2 Background and Tools 16
2.1 Convolutional Neural Networks . 17

2.1.1 Basic Concept . 17
2.1.2 Advancements in CNN Architectures 19
2.1.3 CNN as Feature Extractor . 20

2.2 Deep Reinforcement Learning . 22
2.2.1 On-Policy DRL . 22
2.2.2 Off-Policy DRL . 24

iv

Table of Contents

2.3 Loss Functions . 26
2.3.1 Classification Loss Functions 26
2.3.2 Regression Loss Functions . 27
2.3.3 Segmentation Loss Functions 28
2.3.4 Robust and Advanced Loss Functions 28

2.4 Sensing and Imaging . 29
2.4.1 Sensors in Autonomous Driving 30
2.4.2 Transformation in Sensors . 31
2.4.3 Stereo Disparity . 34
2.4.4 Disparity Post-Filtering . 35

2.5 Simulation Tools . 36
2.5.1 CARLA (Car Learning to Act) 36
2.5.2 TORCS (The Open Racing Car Simulator) 37
2.5.3 Duckietown . 38

2.6 Datasets . 39
2.6.1 KITTI Dataset . 40
2.6.2 Cityscapes . 41
2.6.3 nuScenes . 42
2.6.4 Waymo Open Dataset . 43

3 Fusion-Attention Monocular Semantic Segmentation 46
3.1 Overview . 47
3.2 Related Works . 50

3.2.1 Semantic Segmentation . 50
3.2.2 Attention Model . 51

3.3 Methodology . 52
3.3.1 Preliminary . 53
3.3.2 Network Structure . 53
3.3.3 Pyramid Fusion Spatial Attention 54
3.3.4 Fusion Channel Attention . 57
3.3.5 Attention Module Arrangement 60

3.4 Experiments . 61
3.4.1 Dataset and Evaluation Standard 61

v

Table of Contents

3.4.2 Implementation Details . 62
3.4.3 Results . 63

3.5 Summary . 68

4 Monocular 3D Object Detection 69
4.1 Overview . 70
4.2 Related Works . 73

4.2.1 Monocular 3D Object Detection 73
4.2.2 Feature Pyramid . 75
4.2.3 Contextual Dependency . 75

4.3 Methodology . 76
4.3.1 Framework Overview . 76
4.3.2 Feature Enhancement Pyramid Module 77
4.3.3 Auxiliary Dense Depth Estimation (ADDE) 80
4.3.4 Augmented centre Depth Estimation (ACDE) 81
4.3.5 Multi-Head Detectors . 85
4.3.6 Adopted Training Loss Functions 86

4.4 Experiments . 87
4.4.1 Dataset and Evaluation Standard 87
4.4.2 Implementation Details . 88
4.4.3 Results . 88

4.5 Summary . 99

5 Guidance on Depth Completion 102
5.1 Overview . 103
5.2 Related Works . 106

5.2.1 Deep Reinforcement Learning with Imitation Learning 106
5.2.2 Depth Completion . 108

5.3 Methodology . 110
5.3.1 Soft Actor-Critic . 110
5.3.2 SAC with Imitating Learning 112
5.3.3 Reward Function . 114
5.3.4 Depth Completion . 115

5.4 Experiments . 121

vi

Table of Contents

5.4.1 Implementation Details . 121
5.4.2 Dataset Collection . 122
5.4.3 Results . 124

5.5 Summary . 127

6 Single-Agent Robustness Against Perturbations 128
6.1 Overview . 129
6.2 Related Works . 131

6.2.1 Deep reinforcement learning based autonomous driving 131
6.2.2 Adversarial attack on DRL . 132
6.2.3 Explainability for Deep Learning 133

6.3 Methodology . 134
6.3.1 Framework Overview . 134
6.3.2 Markov Decision Process with Perturbation 135
6.3.3 Problem Formulation . 136
6.3.4 Optimal Adversary Generation 136
6.3.5 Robust Proximal Policy Optimisation 139
6.3.6 Reward Function Design . 145
6.3.7 Attack Detection Network and Explainability 146

6.4 Experiments . 148
6.4.1 Simulator and Scene Settings 148
6.4.2 Implementation Details . 149
6.4.3 Results . 150

6.5 Summary . 162

7 Multi-Agent Robustness Against Perturbation 164
7.1 Overview . 165
7.2 Related Work . 168

7.2.1 MARL for Autonomous Driving 168
7.2.2 Adversarial Attacks on DRL 169
7.2.3 Mitigation Against Adversarial Attacks 170

7.3 Methodology . 171
7.3.1 Framework Overview . 171
7.3.2 Mean-Field Communicated Multi-Agent Structure 172

vii

Table of Contents

7.3.3 Gradient-based Attacker . 174
7.3.4 Risk Assessment Formulation 176
7.3.5 Constrained Robust Cooperative-MARL 177
7.3.6 Network Structure . 185

7.4 Experiments . 186
7.4.1 Implementation Details . 186
7.4.2 Results . 188

7.5 Summary . 195

8 Conclusions and Future Work 197
8.1 Conclusions . 198
8.2 Future Work . 202

8.2.1 Perturbation Denoising . 202
8.2.2 Sim-to-Real . 202
8.2.3 Complete AD Systems . 203

References 205

viii

List of Tables

3.1 Result comparison on the validation set of Cityscapes. 63
3.2 Detailed mIoU on 19 Categories of Cityscapes. 64
3.3 Individual Attention Module Efficiency. 66
3.4 Results on PASCAL VOC 2012 Validation Set. 67

4.1 Results on nuScenes dataset in order of NDS scores. 90
4.2 PAC3DNet mAP Results on each categories. 91
4.3 Inference time testing results. 91
4.4 Ablation studies of proposed components. 95

5.1 Task success rate in various environments and categories. 124
5.2 Performance comparison with state-of-the-art methods. 126

6.1 Hyper-parameters for the experiments. 149
6.2 Evaluation of different algorithms with different epsilon value. 153
6.3 Evaluation in the unseen heavy rain weather condition. 157

7.1 Hyper-parameters for the experiments. 188
7.2 Detailed performance comparison in various attack conditions. 190
7.3 Detailed performance metrics in normal observation condition. 191

ix

List of Figures

1.1 Scene understanding modules in autonomous vehicles. 6
1.2 Deep-learning-based decision making modules for AD. 10

2.1 The example of convolutional operation. 18
2.2 The example of max pooling operation. 18
2.3 The example of ReLU activation. 19
2.4 LiDAR point cloud projection to the image plane. 32
2.5 Disparity in stereo camera system. 34
2.6 The sensor setup of KITTI dataset. 40
2.7 The sample data from KITTI. 40
2.8 The sample data from Cityscapes. 41
2.9 The sensor setup in the nuScenes dataset. 42
2.10 The sample annotations of 3D object detection in nuScenes. 43
2.11 The sensor setup in the Waymo dataset. 44
2.12 The sample LiDAR annotations in Waymo. 44

3.1 Overview of the Fusion Attention Network. 54
3.2 Design of Pyramid Spatial Attention Module. 55
3.3 Design of Channel Attention Module. 58
3.4 Two types of attention module arrangements. 60
3.5 Visual comparison of prediction and ground truth. 65

4.1 Overview of the framework. 76
4.2 Overview of the feature enhancement pyramid module. 77
4.3 Asymmetric Fusion Module. 79
4.4 The Fusion block 1 and 2. 79
4.5 The Lateral Feature Aggregation. 79

x

List of Figures

4.6 Four top vertices and the centre of a bounding box. 82
4.7 The yaw between the perceived object and world coordinates. 84
4.8 Training progress. 89
4.9 Training progress of depth estimators. 89
4.10 Visualization with and without thresh hold filters. 92
4.11 Visualization of detection results in various distance. 92
4.12 Visualization of detection results in various conditions. 93
4.13 Visualization of detection results in urban and rural areas. 94
4.14 Efficiency visualisation of depth-assisted module. 95
4.15 Attention map visualisation of FEPM module. 97
4.16 Attention map visualisation of different level features from FEPM. . . 98

5.1 Depth annotation comparison of KITTI and the collected dataset. . . 105
5.2 The framework overview of the proposed method. 113
5.3 The pro-processing pipeline for the collected synthetic dataset. 117
5.4 The proposed depth completion network. 118
5.5 Image reconstruction example. 119
5.6 The training environment CARLA Town 02. 122
5.7 Visualisation of the ground truth and the predicted depth maps. . . . 126

6.1 The framework overview. 135
6.2 Adversarial perturbation impacts on a trained agent. 137
6.3 An Adversarial Example. 138
6.4 Network structure of the robust DRL model. 143
6.5 Network structure of our adversarial attack detection model. 147
6.6 Environment for experiments in CARLA. 148
6.7 Training curves of the proposed model and its variant. 150
6.8 The attack success rates at different settings. 151
6.9 Detailed comparisons between the proposed method and baseline. . . 155
6.10 Visualisation of the road in different weather. 156
6.11 Performance comparison in average accumulative reward. 157
6.12 Training curve of the explainable attack detection model. 158
6.13 Saliency maps for steer and throttle actions of under-trained (a) and

well-trained (b) policies under normal observations. 159

xi

List of Figures

6.14 Steering saliency maps for the proposed model vs baseline under
normal and adversarial observations. 160

6.15 Steering saliency maps under varying adversarial attack strengths ε . 161

7.1 The framework overview. 171
7.2 Illustration of the rhombus area indicating potential collision between

two agents. 176
7.3 Network structure of the proposed robust cooperative communicated

multi-agent DRL model. 185
7.4 Experiment scenarios with two different intersections. 187
7.5 Comparison of R-CCMARL, its variant, and MAPPO under attacks

with ε = 0.1 and iteration = 20. 192

xii

Acknowledgements

First, my most sincere and heartfelt gratitude goes to my supervisor, Professor

Nabil Aouf, for his invaluable guidance, unwavering support, and insightful feedback

throughout the course of my research. His expertise and encouragement have been

instrumental in shaping both this thesis and my academic growth. It is my honour

to be supervised by him.

I would like to thank my co-supervisor Dr. Abdelhafid Zenati for his continuous

advice and discussions.

I would like to thank the team at the Robotics, Autonomy & Machine Intelligence

Group (RAMI) at City, University of London, my colleagues Zakaria Chekatta,

Ziwei Wang, Duarte Rondao, Jianing Song, Zuyuan Zhu, Leo Pauly, Maxwell

Hogan, Abdulla Tammam, Thomas Hickling, Burak Inan, Amar Khan, Xi Guo, and

Mohmoud Abdulsalam. Thank you for your camaraderie, support, and the insightful

discussions that have enriched my research experience.

Aside from the academic teams, I would like to thank my parents, Sihan and Bin, for

their support and encouragement throughout my decision to pursue this PhD. Their

belief in me has been a constant source of motivation. I am grateful to Xueting for

never ceasing to believe in me and for being there every step of the way.

xiii

Abbreviations

2D Two-dimensions

3D Three-dimensions

AAE Average Attribute Error

AD Autonomous Driving

AI Artificial Intelligence

AOE Average Orientation Error

AP True Positive

ASE Average Scale Error

ATE Average Translation Error

AVE Average Velocity Error

Adam Adaptive Moment Estimation

BN Batch Normalisation

CAD Computer-Aided Design

CNN Convolutional Neural Network

DL Deep Learning

DRL Deep Reinforcement Learning

xiv

Abbreviations

FCN Fully-Connected Network

FOV Field of View

FPN Feature Pyramid Network

FPS Frames Per Second

GPS Global Positioning System

GPU Graphics Processing Unit

IL Imitation Learning

IMU Inertial Measurement Unit

IOU Intersection over Union

MAE Mean Absolute Error

MARL Multi-Agent Reinforcement Learning

NDS NuScenes Detection Score

RGB-D Red-Green-Blue-Depth

RGB Red-Green-Blue

RMSE Root Mean Squared Error

ReLU Rectified Linear Unit

SGBM Semi-Global Block Matching

SGD Stochastic Gradient Descent

WLS Weighted Least Squares

xv

Chapter 1

Introduction

In this introduction chapter, the background context and initial founda-

tions of this thesis are introduced, with an overview of how deep learning

techniques are integrated to address the end-to-end autonomous driving

problems. Particularly, this thesis mainly focuses on improving the scene

understanding capabilities of the vehicles and investigating the robustness

of deep-learning-based planning approaches in adversarial environments.

1

1.1 Motivation

1.1 Motivation

In recent years, deep learning has made significant advancements across various

domains, including computer vision, robotics, language processing, and in particular

autonomous driving (AD) systems. Autonomous driving represents a complex

and ambitious goal in modern technology, aiming to develop vehicles capable of

navigating safely and efficiently without any human intervention. This technology

has the potential to revolutionise transportation by improving road safety, reducing

traffic congestion, and enhancing mobility. The core problem of AD lies in ensuring

that these systems can perceive, interpret, and respond to a wide range of real-world

driving scenarios, from complex urban environments to unpredictable conditions.

Achieving this requires advanced perception and decision-making systems that are

both accurate and robust. However, the complexity of real-world environments

presents significant challenges for traditional rule-based approaches. To navigate in

dynamic, uncertain, and often unpredictable conditions, autonomous vehicles require

advanced decision-making capabilities that can continuously learn and adapt. This

is where learning-based approaches, particularly deep learning, have shown great

promise.

These methods allow systems to learn directly from data, making it possible to gen-

eralise across diverse environments and handle complex tasks such as lane detection,

object detection, and decision-making under uncertainties. By leveraging large-scale

datasets and continuous learning, learning-based approaches offer a promising route

to achieve high-level autonomy in driving systems. However, the-state-of-the-art

methods have yet providing precise perception and control while operating un-

der stringent performance requirements to ensure safety, real-time processing, and

robustness. This field of research still faces numerous challenges.

One of the major challenges lies in RGB-based perception, particularly due to

the varying conditions under which images are captured, such as lighting changes,

reflections, and various weather conditions. Autonomous driving systems must

2

1.2 Autonomous Driving

interpret sensor data accurately in these conditions, often requiring advanced image

processing and perception techniques to maintain performance.

Moreover, the complexity of autonomous driving increases when deployed in complex

urban environments, where dynamic interactions with other vehicles, pedestrians,

and unpredictable obstacles occur. Handling these scenarios requires a robust and

adaptive system capable of real-time decision-making while ensuring safety and

efficiency. Inaccurate or delayed decisions can lead to catastrophic consequences,

making reliability a serious concern. On top of that, the robustness and generalisation

ability of these models in the face of real-world challenges, such as adversarial attacks,

perception errors, domain transfer, and dynamic multi-agent interactions, remain

critical research areas.

Motivated by the potential and challenges in current autonomous driving research,

this thesis aims to enhance the robustness and efficiency of autonomous driving

systems by incorporating deep learning techniques. This work focuses on improving

the perception module as well as the decision-making modules. Methods for semantic

segmentation, 3D object detection, and depth completion are explored to enable

autonomous vehicles to better understand their surroundings. For the guidance,

the proposed approaches cover both single-agent and multi-agent systems, with a

focus on robust deep reinforcement learning (DRL) under adversarial conditions

and the application of explainable models to increase transparency and trust in

decision-making.

1.2 Autonomous Driving

Automation is increasingly at the forefront of transportation research, with the

potential to bring fully autonomous vehicles (AVs) to the roads in the coming years.

This evolution represents a transformative shift in how we approach mobility, safety,

and urban planning. The development of AD encompasses various technological

advancements, including sophisticated sensors and machine learning algorithms that

enable vehicles to navigate complex environments without human intervention. This

section provides a holistic look at the multifaceted aspects of AD, including the

3

1.2 Autonomous Driving

advancements in technology and investments that support its deployment. It also

explores the regulatory frameworks and ethical considerations essential for ensuring

the safe integration of AVs into existing transportation systems. Furthermore, the

section examines AI-based techniques and components that underpin AD, highlighting

their role in enhancing vehicle performance and decision-making capabilities.

1.2.1 Overview

Technology Development and Investment

The technology underpinning AD has advanced rapidly in recent years, driven by

innovations in sensors, machine learning, and connectivity. Governments, particularly

in the UK, have recognised the potential benefits of connected and autonomous

vehicles (CAVs) in enhancing mobility, reducing congestion, and improving road safety.

To facilitate this, significant investments have been made through initiatives like the

UK’s CAV Programme, which has funded various projects aimed at developing and

testing autonomous technologies [1]. In the UK, the government has committed over

£300 million to CAV research and development since 2015, supporting numerous

projects that explore the integration of CAVs into existing transport systems. These

investments focus on creating a robust infrastructure that enables safe and efficient

autonomous operations, including trials for vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) communication. Additionally, partnerships between private

companies and academic institutions are fostering innovation, ensuring that the UK

remains at the forefront of AD technology [2].

Regulation and Ethics

As the technology for AD evolves, so too must the regulatory frameworks governing

its implementation. Policymakers face the challenge of establishing regulations

that ensure safety, accountability, and public trust in autonomous vehicles. Ethical

considerations are paramount, especially concerning liability in the event of accidents

involving autonomous vehicles. Questions arise about who is responsible—the

manufacturer, the software developer, or the vehicle owner? [3] The UK government

4

1.2 Autonomous Driving

has been proactive in addressing these issues through the establishment of guidelines

and standards for testing and deploying CAVs. The Centre for Connected and

Autonomous Vehicles (CCAV) has developed a comprehensive regulatory framework

that emphasises safety and risk assessment while promoting innovation. Furthermore,

public consultations and ethical reviews are critical to addressing societal concerns

about privacy, data security, and the potential impact of autonomous vehicles on

employment in driving-related jobs [4].

Safety Concerns for AI-Driven AD

Artificial intelligence plays a crucial role in the development of AD systems, enabling

vehicles to perceive their environment, make decisions, and navigate safely. Advanced

algorithms analyse vast amounts of data from sensors such as LiDAR, cameras, and

Radar to understand complex driving scenarios in real-time. However, the reliance

on AI raises safety concerns that must be carefully addressed. The potential for AI

systems to malfunction or make erroneous decisions can have serious consequences.

Concerns about bias in AI algorithms, the need for transparent decision-making

processes, and the robustness of these systems in unpredictable conditions are

critical areas of focus [5]. The development of rigorous testing protocols and safety

standards is essential to ensure that AI-driven autonomous vehicles can operate safely

alongside human drivers. Moreover, stakeholders in the AD ecosystem, including

manufacturers, regulators, and researchers, must collaborate to create a framework

for ongoing evaluation and improvement of AI systems. This will not only enhance

safety but also build public confidence in the technology [6].

1.2.2 AD Scene Understanding

Perception is one of the most critical components of AD systems, as it enables

vehicles to observe and understand their surroundings in real time. The perception

module is responsible for gathering and processing sensory data to interpret the

driving environment, which forms the basis for decision-making and planning as

demonstrated in Fig 1.1. Without reliable perception, the vehicle would be unable

to detect obstacles, recognise lanes, or anticipate potential hazards, all of which are

5

1.2 Autonomous Driving

Figure 1.1 Scene understanding modules in autonomous vehicles. The sensors receive
raw data from the environment, which is then processed by various perception
modules to transform it into meaningful information for the vehicle’s next decision-
making stage. [Wang et al.]

essential for safe navigation. The core tasks of perception include depth prediction,

semantic segmentation, and 3D object detection, each of which plays a vital role in

ensuring the autonomous system’s situational awareness.

Classic Perception Techniques

Before deep learning, AD perception was relied on explicitly defined algorithms, often

using geometry-based approaches and feature engineering. For instance, stereo vision

systems used multiple cameras to triangulate and compute depth information. This

method relies on identifying matching points between two or more images, which

allows for depth reconstruction in structured environments. However, stereo vision

struggles in situations with low texture, occlusions, or in environments with poor

lighting, such as at night [7]. Similarly, structure-from-motion (SfM) techniques esti-

mate depth from the movement of the camera and its environment, but they require

6

1.2 Autonomous Driving

precise motion estimation and are vulnerable to noise and changing conditions [8].

Other traditional methods, like edge detection (e.g., Canny, Sobel) and optical flow

algorithms, focused on identifying motion between frames to infer object movements

and road boundaries. These methods typically employed hand-tuned parameters for

feature extraction and segmentation. In lane detection, the Hough Transform was

widely used to identify lines in images, which worked effectively in well-marked lanes

but struggled in cases of faded or non-standard markings [9]. Similarly, feature-based

object detection uses techniques like SIFT and SURF to recognise objects through

keypoint matching. These methods, while computationally efficient, were prone to

failure in the presence of noise, lighting changes, or non-ideal weather conditions like

rain or fog.

Although traditional approaches required less data and were more interpretable, they

were often brittle and failed to generalise across different environments. They were

largely rule-based, meaning they had limited adaptability to unseen or unpredictable

situations. In comparison, deep learning methods learn features automatically

from large datasets, providing more robust solutions for complex environments.

They surpass traditional techniques in perception tasks like object detection, depth

prediction, and semantic segmentation by being less dependent on hand-crafted

features and better equipped to handle diverse scenarios.

Deep-learning-based Monocular-Based Perception

Of particular importance in this thesis is the focus on deep-learning-based monocular

camera-based perception, which offers promising generalisation capability and unique

advantages over more expensive and hardware-intensive sensor setups like LiDAR

and Radar. Monocular-based perception involves using a single camera to extract

depth, scene understanding, and object information from the environment. One

of the most significant advantages of monocular systems is their cost-effectiveness,

as they only require a single camera compared to multi-sensor setups like LiDAR

or stereo camera systems. This significantly reduces both the hardware cost and

the power consumption, making monocular setups more suitable for real-time AD

applications, especially in cost-sensitive deployments.

7

1.2 Autonomous Driving

Monocular cameras also offer rich boundary and shape information, which is crucial for

tasks like lane detection and object segmentation. Moreover, monocular systems are

lightweight, easy to integrate, and simpler to calibrate compared to LiDAR or multi-

camera systems. Despite their inability to directly measure depth, advancements

in deep learning, particularly convolutional neural networks (CNNs), have made it

possible to infer depth from 2D images with high accuracy, bridging the gap between

monocular systems and more hardware-heavy solutions [10, 11].

Recent research has proposed methods that integrate monocular cameras with deep

learning models to perform accurate depth estimation and scene understanding. For

instance, Godard et al. proposed an unsupervised learning framework that predicts

depth from monocular images by enforcing geometric consistency between different

viewpoints, offering a low-cost alternative to stereo systems [11]. Additionally, depth

completion techniques, which combine monocular images with sparse depth maps from

cheaper sensors like Radar, have further improved the depth prediction capabilities of

monocular systems [12]. These developments have significantly enhanced the utility

of monocular cameras in AD, enabling precise and efficient depth inference without

relying on expensive LiDAR systems.

Semantic segmentation, the task of classifying every pixel in an image, is vital

for autonomous vehicles to understand their surroundings. Monocular cameras,

combined with deep learning techniques, are well-suited for this task as they provide

high-resolution visual data that can be processed to identify objects such as cars,

pedestrians, road signs, and lane markings. CNN-based architectures like U-Net and

DeepLab have shown remarkable success in segmentation tasks [13, 14]. Monocular

semantic segmentation models allow vehicles to better perceive their environment

while keeping the system lightweight and efficient.

Monocular 3D object detection aims to detect and localise objects in three-dimensional

space using a single camera. While challenging due to the lack of direct depth

information, modern deep learning techniques have made it possible to achieve

competitive results using monocular inputs. Techniques such as depth-aware feature

extraction and geometric constraints are used to improve the accuracy of monocular

8

1.2 Autonomous Driving

3D detection. These methods allow vehicles to estimate the size, position, and motion

of nearby objects, even when using only a single camera [15].

1.2.3 Guidance Decision Making

After the perception stage, decision-making modules process the gathered information

or raw sensor data to ensure safe and efficient navigation. The objective is to

make real-time decisions regarding vehicle actions, such as steering, braking, and

accelerating, while adapting to dynamic environments.

Classic Decision Making Techniques

Early approaches to decision-making in autonomous vehicles primarily relied on

rule-based systems and behaviour cloning. Rule-based systems involved the use of

predefined rules or logic to handle various driving scenarios. For example, systems like

finite state machines (FSMs) were used to model different driving behaviours (e.g.,

lane following, lane changing, stopping at intersections) by transitioning between

states based on sensor inputs [16]. These systems were interpretable and easy to

implement but lacked flexibility and struggled in unstructured or unpredictable envi-

ronments. As traffic scenarios became more complex, rule-based methods struggled

to generalise beyond their initial design, resulting in brittle performance. Another

approach was model-based planning, which often involved optimisation techniques

such as Model Predictive Control (MPC). MPC solves a constrained optimisation

problem to determine the optimal control actions over a future time horizon, taking

into account the vehicle’s dynamics and environmental constraints [17]. While effec-

tive for low-speed driving or well-structured environments like highways, model-based

planning often struggled in dynamic, urban environments with uncertain behaviours

from other road users. Furthermore, these techniques require accurate models of

vehicle dynamics and are computationally expensive when scaled to complex driving

scenarios.

9

1.2 Autonomous Driving

Figure 1.2 Deep-learning-based decision making modules for AD. End-to-end DL
models take the feed directly from the sensor or from the interpreted information
from the perception modules, and generate actions to interact with the environment.
[Wang et al.]

Deep-Learning-based Decision Making Techniques

Over time, decision-making strategies have progressed from rule-based systems to

learning-based approaches. Some early machine learning approaches, like behaviour

cloning, attempted to learn decision-making policies by mimicking human drivers.

These methods, which involved supervised learning of driving actions from human-

labelled datasets, were limited by the quality and diversity of the training data.

They also suffered from distributional drift, where errors compound over time as

the model diverges from the states it was trained on [18]. With advancements

in deep reinforcement learning, a more promising potential solution is found for

decision making. Reinforcement learning (RL), in particular, offers a framework

where an autonomous vehicle learns to make sequential decisions by interacting with

the environment and receiving feedbacks in the form of rewards. One well-known

method is Deep Q-Networks (DQN), where deep neural networks approximate the

action-value function to learn optimal policies [19]. DQN has been extended to handle

more complex driving tasks through multi-agent frameworks or continuous action

spaces, which are necessary for tasks like lane-changing or negotiating intersections.

A key advantage of RL is its ability to learn from trials and errors, allowing the

system to encounter all kinds of situations as much as possible. Therefore, RL-

10

1.3 Thesis Objectives

based systems often require extensive training and suffer from sample inefficiency.

Techniques like Proximal Policy Optimisation (PPO) and Actor-Critic methods

have been introduced to improve the stability and convergence of RL algorithms,

making them more practical for real-world applications [20]. In contrast to traditional

planning, end-to-end deep learning approaches allow autonomous vehicles to learn

decision-making policies directly from raw sensor data like images, without requiring

handcrafted features or explicit environment models. These are also referred as model-

free methods. For instance, convolutional neural networks (CNNs) are employed to

process visual inputs and output driving actions such as steering angles or speed

adjustments [21]. These approaches bypass the need for modular perception, planning,

and control stages by learning a direct mapping from input to output as shown

in Fig. 1.2. However, even with the advancement of end-to-end methods that

process raw sensor data for decision-making in AD, deep-learning-based perception

modules still significantly enhance performance [22]. Another direction is the use

of deep imitation learning (IL), considered as the improved version of behaviour

cloning, where the model dynamically learns driving policies by observing expert

demonstrations. Methods like Generative Adversarial Imitation Learning (GAIL)

have shown success in generating human-like driving behaviours while handling more

diverse driving scenarios, which bridges the gap between supervised learning and RL

by leveraging expert data while also allowing for learning in interactive environments

[23].

1.3 Thesis Objectives

Given the background context introduced in this chapter, the goal of the thesis is

clear. In comparison to traditional methods in autonomous driving, deep learning

offers a highly promising approach for achieving full automation due to its ability to

handle complex and dynamic environments. This thesis aims to address the current

limitations in perception and decision-making modules by leveraging advanced deep

learning techniques. Specifically, the two key objectives of this work are to:

11

1.3 Thesis Objectives

1. Design deep-learning-based methods for computer vision tasks to enhance the

performance and keep light-weight computation of perception modules in au-

tonomous driving systems. This enables better observation and understanding

of the driving scenarios that autonomous vehicles encounter.

2. Develop robust and reliable guidance decision-making algorithms that can

handle the worst-case conditions. These algorithms should prioritise safety

and ensure optimal efficiency, enabling autonomous driving systems to navi-

gate complex environments and adapt to environment changes or adversarial

situations.

In detail, considering the computational and practical budget, monocular cameras

are primarily used as the sole sensors in this thesis. Compared to LiDAR or Radar,

monocular cameras offer a more cost-effective and lightweight solution, making them

well-suited for real-time applications in autonomous driving. While LiDAR and

Radar provide more direct depth information, monocular cameras offer advantages

such as lower cost, rich boundary and shape information, and easier integration into

existing systems. However, they also present challenges, such as the need to infer

depth from 2D images and the sensitivity to weather conditions, where this thesis

makes efforts to addresses through proposed methods. Additionally, LiDAR and

binocular cameras are explored for depth completion tasks, providing complementary

data to enhance the accuracy and robustness of perception modules in scenarios

where monocular cameras may fall short.

For the objective of decision-making, by incorporating the proposed methodology,

the goal is to create both single-agent and cooperative multi-agent systems that not

only guarantee consistent performance under normal conditions but also demonstrate

resilience in the face of worst-case adversarial scenarios. Assumptions are made

that the adversarial attackers have the full access to the parameters of the driving

systems, which creates the most serious misguidance to them.

12

1.4 Thesis Structure and Contributions

1.4 Thesis Structure and Contributions

This thesis consists of eight chapters and the structure and contributions are presented

as follows:

Chapter 2 provides a background review for current research for autonomous driving

systems, including the knowledge of convolutional neural networks (CNN), deep

reinforcement learning (DRL), loss functions used in deep learning, the sensors used

and the data transformation between them, computer vision, the simulation tools

for experiments, and the open datasets.

Chapter 3 proposes a method for deep-learning-based semantic segmentation

using a monocular camera in urban driving scenarios, which is crucial for scene

understanding in autonomous vehicles. Semantic segmentation provides more precise

subject information than raw RGB images, thereby enhancing the performance

of autonomous driving systems. This method introduces a novel dual-attention

mechanism that efficiently captures contextual dependencies in high-level features,

resulting in more accurate object predictions. Within the dual structure, the proposed

pyramid pooling and fusion technique enhances performance while maintaining

lightweight computation.

Chapter 4 solves the 3d object detection problem using only single camera input.

The introduced feature enhancement pyramid module further enhances the feature

representation, where the rich information within benefits the regression networks for

individual tasks which help construct the final 3D bounding boxes. By introducing

additional adaptive depth supervision signals and auxiliary depth estimator, the

missing 3D information in RGB image is compensated, which also avoids bringing

computational burdens.

Chapter 5 investigates a Deep Reinforcement Learning (DRL)-based guidance

system for ground vehicles, utilising depth images as input. The system operates in

two stages: imitation learning followed by reinforcement learning. The depth module,

derived from a binocular camera, combines supervised and self-supervised learning

13

1.5 Published and Under-reviewed Manuscripts

techniques. Experimental results show that using depth images greatly enhances the

performance of the guidance network.

Chapter 6 proposes a defence algorithm to mitigate state perturbations, ensuring

the robustness of the driving model in worst-case scenarios. The robustness of a

single deep reinforcement learning (DRL) agent is tested against state adversarial

attacks, which act as directional interference to mislead the agent and can represent

adversarial attacks or real-world uncertainties. In addition, an explainable attack

detector is introduced to accurately identify the presence of adversarial attacks and

provide a visual explanation of the decision-making process, further enhancing the

reliability of the proposed algorithm.

Chapter 7 builds on the constrained objective function from Chapter 6, adapting it

to the multi-agent context with proposed safety criteria guarantees. The robustness

of multi-agent deep reinforcement learning (MARL) is investigated, introducing a

connected and cooperative system to improve task efficiency in synthetic urban

environments. However, compared to single-agent systems, MARL faces greater

challenges from adversarial attacks due to the added complexity of dynamics and the

information sharing. The results demonstrate that the proposed method addresses

these challenges.

Chapter 8 concludes all proposed frameworks and algorithms for autonomous

driving systems, and discusses extension for the future work.

1.5 Published and Under-reviewed Manuscripts

Conferences

1. Wang C, Aouf N. Deep Reinforcement Learning based Planning for Urban Self-

driving with Demonstration and Depth Completion[C]//2021 21st International

Conference on Control, Automation and Systems (ICCAS). IEEE, 2021: 962-

967.

14

1.5 Published and Under-reviewed Manuscripts

2. Wang C, Aouf N. Fusion attention network for autonomous cars semantic

segmentation[C]//2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2022:

1525-1530.

Journals

1. Wang C, Aouf N. Depth-Enhanced Deep Learning Approach For Monocular

Camera Based 3D Object Detection[J]. Journal of Intelligent & Robotic Systems,

2024, 110(3): 101.

2. Wang C, Aouf N. Explainable Deep Adversarial Reinforcement Learning Ap-

proach for Robust Autonomous Driving[J]. IEEE Transactions on Intelligent

Vehicles, 2024.

Under-reviewed Journals

Wang C, Aouf N. Robust Multi-Agent Reinforcement learning Against Adversarial

Attacks for Cooperative Self-Driving Vehicles. Submitted to IET Radar, Sonar &

Navigation and under review.

15

Chapter 2

Background and Tools

This chapter provides the background knowledge of convolutional neural

networks and deep reinforcement learning, as well as the necessary tools

in autonomous driving field.

16

2.1 Convolutional Neural Networks

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been a cornerstone in the development

of deep learning, particularly in fields such as computer vision, natural language

processing, and more recently, autonomous driving. Introduced by Yann LeCun in

the late 1980s, CNNs have evolved significantly, becoming one of the most effective

architectures for visual data analysis due to their ability to automatically and

adaptively learn spatial hierarchies of features through backpropagation.

2.1.1 Basic Concept

Convolutional Neural Networks are typically composed of multiple specialised layers

designed for processing images and spatial data effectively. The main types of layers

in a CNN are as follows:

1. Convolutional Layer: This layer applies a set of filters to the input image or

feature map to capture spatial features. As shown in Fig. 2.1, filters slide over

the input data based on the stride, padding, and kernel size, producing feature

maps that highlight specific aspects of the input, like edges or textures. Each

convolution operation helps to detect patterns within different regions of the

image, allowing the network to recognise complex features across layers.

2. Pooling Layer: Pooling layers reduce the spatial dimensions of the feature

maps, which decreases the number of parameters and computation, while

preserving important features. Common types include max pooling, which

takes the maximum value in a window, and average pooling, which calculates

the average. The pooling operation is demonstrated in Fig. 2.2. Pooling helps

make the model more invariant to small changes, like slight shifts or rotations

in the input.

3. Activation Layer: After convolution, non-linear activation functions, such

as ReLU (Rectified Linear Unit), shown in Fig. 2.3, are applied to introduce

non-linearity into the model, allowing it to learn complex patterns. This

17

2.1 Convolutional Neural Networks

Figure 2.1 The example of convolutional operation. A 3× 3 convolutional kernel
with stride 1 and padding 0, slides on a 6× 6 image/feature map, and results in a
4× 4 feature map. [Wang et al.]

Figure 2.2 The example of max pooling operation. A 2× 2 max pooling layer with
stride 2 and padding 0, slides on a 4× 4 image/feature map, and results in a 2× 2
feature map. [Wang et al.]

activation layer enables CNNs to approximate any function, making them

adaptable to various tasks.

4. Fully Connected (Output) Layer: In the final stages, fully connected layers

consolidate the features detected by previous layers to make the final prediction.

This layer typically connects every neuron from the previous layer to each

neuron in the next, and it often concludes with a softmax or sigmoid activation,

providing the probabilities for classification or regression tasks.

18

2.1 Convolutional Neural Networks

Figure 2.3 The example of ReLU activation. The output is only activated when the
values in the input is over 0. [Wang et al.]

In a convolutional neural network, usually multiple combinations of a convolutional

layer, a pooling layer, an activation layer are stacked sequentially, allowing the network

to learn increasingly complex features from the input data. Each convolutional layer

applies several filters (kernel) to the input, generating feature maps that highlight

different aspects of the data. Following the convolutional layers, pooling layers are

interspersed to downsample these feature maps, reducing their spatial dimensions

while preserving the most salient information. This combination can be repeated

multiple times. After a series of convolutional and pooling layers, the output from

these layers is flattened and passed through one or more fully connected layers,

leading to the final output layer that produces predictions. The connections between

these layers facilitate the hierarchical extraction of features, enabling the CNN

to learn from raw pixel values to high-level representations, ultimately enhancing

performance in tasks like image classification and object detection.

2.1.2 Advancements in CNN Architectures

The early CNN, known as LeNet-5 [24], was developed for digit recognition tasks

such as handwritten digit classification for postal codes. It laid the foundation for

the modern architecture of CNNs, which consist of three main types of layers as

mentioned before: convolutional layers, pooling layers, and fully connected layers.

The convolutional layers apply filters to input data to automatically extract feature

maps, whereas traditional methods rely on human knowledge and experience to

19

2.1 Convolutional Neural Networks

determine the features. This enables the possibility of learning the feature extraction

by the deep neural network itself for later researches.

One of the pivotal moments in the success of CNNs was the breakthrough achieved

by AlexNet [25] in 2012. AlexNet, developed by Krizhevsky et al., won the ImageNet

competition with a large margin, demonstrating the power of deep architectures

when combined with GPU acceleration and large datasets. This success spurred

significant research interests in CNNs. Since AlexNet, CNN architectures have

evolved rapidly. VGGNet (2014) [26] introduced the idea of using small (3x3) filters

in deeper networks, emphasising the depth of the network as a key factor in feature

extraction. GoogLeNet (2015) [27] proposed an Inception module, which utilises

multiple convolutional filters of different sizes in parallel to capture multi-scale

features, reducing the computational cost while maintaining performance. ResNet

(2016) [28] tackled the degradation problem in deep networks by introducing residual

learning through skip connections, allowing CNNs to be trained with significantly

more layers.

In recent years, architectures like DenseNet [29] and EfficientNet [30] have further

refined CNN efficiency. DenseNet connects each layer to every other layer in a

feed-forward manner, improving feature propagation and reducing the vanishing

gradient problem. EfficientNet, on the other hand, balances network depth, width,

and resolution using a compound scaling method, enabling a significant reduction in

parameters while improving accuracy.

2.1.3 CNN as Feature Extractor

To this day, as both industry and academia strive to tackle increasingly complex tasks

with large datasets, handcrafted CNNs often fall short of the required performance.

Consequently, using a backbone as a feature extractor has emerged as a common

approach, applicable not only in computer vision tasks but also in deep reinforcement

learning (DRL) networks. The choice of backbone is critical and can be categorised

into three main types based on performance and efficiency.

20

2.1 Convolutional Neural Networks

Large backbones, such as ResNet-101 and ResNet-50, are designed to prioritise

performance. ResNet-50 has 50 layers and approximately 23 million parameters,

resulting in a model size of around 98 MB, while ResNet-101 boasts 101 layers with

approximately 44 million parameters, leading to a size of about 167 MB [31, 28].

These architectures are renowned for their depth and the incorporation of residual

connections, which facilitate the training of deep networks by allowing gradients to

flow more effectively during backpropagation. ResNet-101 is particularly popular for

image classification tasks, achieving state-of-the-art results on benchmark datasets

like ImageNet [32].

Middle-scaled backbones, exemplified by VoVNet-V2 [33], strike a balance between

performance and lightweight design. Similar to ResNet, VoVNet-V2 can have various

configurations, with the smallest version containing about 5 million parameters and

a model size of around 20 MB, achieving a balance between accuracy and efficiency.

VoVNet-V2 utilises a dynamic scaling approach, allowing the model to adjust based

on input resolution, thus maintaining high accuracy while reducing computational

overhead. Its improved bottleneck structure enables the extraction of multi-scale

features, making it effective for applications such as semantic segmentation, where

understanding context and fine details is crucial. The architecture has shown to

outperform other models in various tasks while requiring fewer parameters, making

it suitable for real-time applications.

Lightweight backbones, such as MobileNet [34], focus on efficient computation,

making them ideal for deployment in mobile and edge devices where resource con-

straints are prevalent. MobileNet employs depthwise separable convolutions, which

divide the convolution operation into two layers, significantly reducing the number of

parameters (around 5 million for MobileNetV1) and leading to a model size of approx-

imately 16 MB, while maintaining competitive performance. This efficiency enables

real-time processing, which is essential for applications such as object detection and

facial recognition on mobile platforms.

The selection of an appropriate backbone plays a pivotal role in optimising feature

extraction across various applications. Large backbones offer superior performance

21

2.2 Deep Reinforcement Learning

for complex tasks, middle backbones like VoVNet-v2 provide a balanced approach

with efficient feature extraction, and lightweight backbones like MobileNet ensure

that computational efficiency is prioritised without severely sacrificing accuracy.

Understanding the trade-offs between accuracy, speed, and resource consumption is

key in optimising performance in autonomous driving applications.

2.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines reinforcement learning (RL) principles

with deep neural networks, allowing agents to learn complex, high-dimensional policies

for sequential decision-making tasks. Central to DRL is the Markov Decision Process

(MDP) [35], which provides the mathematical framework for decision-making. In

an MDP, an agent interacts with an environment in discrete time steps, moving

through states st by choosing actions at that lead to rewards rt and transitions to

new states st+1. Formally, an MDP is defined by the tuple (S,A, P,R, γ), where S

and A are the sets of states and actions, P (st+1|st, at) is the transition probability

function, R(s, a) is the reward function, and γ is the discount factor, which a bigger

one prioritises future rewards, while a smaller one values recent rewards. An episode

in DRL refers to the sequence of steps an agent takes in an environment, starting

from the initial state and ending upon success or failure defined by specific criteria.

The primary objective of DRL is to update the agent network parameters in a way

that maximises cumulative rewards throughout each episode, which means the agent

is making optimal decisions.

Based on how agents learn from interactions with the environment, DRL methods

are usually categorised into on-policy and off-policy learning approaches

2.2.1 On-Policy DRL

In on-policy learning, the current policy of the agent is the same policy that the

agent is improving during training. This means the agent collects data based on the

current policy and updates itself to optimise this specific policy. The advantage of

on-policy methods is the stability, as they directly evaluate and update the current

22

2.2 Deep Reinforcement Learning

policy without needing to account for older experiences. However, the downside is

that they are data-inefficient, as they require fresh trajectories with each update,

making them costly in environments with limited access to the interactions [36] as

the older trajectories are discarded. Key developments in on-policy algorithms are

discussed as follows.

State-Action-Reward-State-Action (SARSA)

SARSA [37] is a straightforward on-policy algorithm where the agent learns the

Q-value function based on the action taken by the current policy. This approach

follows the "SARSA" trajectory: after observing a state (st), the agent chooses an

action (at), receives a reward (rt), and then observes the next state (st+1) and action

(at+1). SARSA updates the Q-value using this experience, ensuring that the agent

refines its action choices based on ongoing exploration. It is known for being relatively

stable in noisy or uncertain environments, as its updates come directly from the

current policy of the agent. However, a significant drawback of SARSA is its slower

convergence and potential for suboptimal performance in more complex tasks. Since

SARSA only evaluates actions directly linked to its current policy, it may miss out

on learning more optimal actions outside of this immediate scope, which can limit

its effectiveness in exploration-heavy scenarios or complex tasks requiring broader

generalisation.

Trust Region Policy Optimization (TRPO)

TRPO [38] is notable for providing stability and performance consistency in complex

environments. It improves training stability by enforcing a trust region constraint

that limits the extent of policy changes with each update. This gradual adjustment

helps avoid drastic, unstable updates, making TRPO ideal for tasks where reliable

performance improvements are crucial. Another advantage of TRPO is its capacity to

achieve monotonic policy improvement, which ensures each iteration results in better

or at least non-worsening performance, an asset in environments requiring consistent

learning. However, the downside is that TRPO can be computationally intensive

due to its second-order optimisation, making it slower than simpler algorithms

23

2.2 Deep Reinforcement Learning

and challenging to implement and tune effectively in large-scale applications. The

theoretical foundation on trust regions has made it a foundation for robust on-policy

training methods, influencing the development of PPO.

Proximal Policy Optimization (PPO)

PPO [20] is an advanced on-policy algorithm that is designed to balance the stability

of TRPO with greater computational efficiency. PPO achieves this by using a simpler,

first-order optimisation approach, adjusting the policy in small steps and clipping the

probability ratio of the new to old policies to keep updates within a proximal range.

This clipping prevents overly large policy updates, which helps maintain stability

and prevents divergence, similar to the trust region of TRPO but without the need

for complex second-order calculations. Additionally, it also allows multiple epochs

of updates with mini-batch samples, enhancing sample efficiency. Therefore, PPO

is widely appreciated for its versatility, as it performs well in various environments,

making it one of the most popular algorithms in continuous and discrete action

spaces. However, the algorithm does have some trade-offs. Though generally more

efficient than TRPO, PPO still requires a significant amount of data, as it discards

old trajectories after each update. Additionally, while the clipping mechanism is

effective, it introduces a hyper-parameter (the clipping threshold) that needs tuning

to balance exploration and stability, which can be sensitive in different tasks. Despite

these challenges, its balance of simplicity, efficiency, and reliable performance has

led it to become a standard algorithm in many reinforcement learning applications,

including robotics and autonomous driving environments.

2.2.2 Off-Policy DRL

In contrast, off-policy DRL algorithms allow agents to learn from past experiences

stored in a replay buffer, which contains actions and rewards that may differ from

the current policy of the agent. Q-Learning [39] and Deep Q-Networks (DQN) [36]

are classic off-policy methods, which use experience replay to sample from previous

experiences and learn optimal action values Q(s, a), independent of the policy followed

at the time of collection. Off-policy algorithms are more data-efficient since they can

24

2.2 Deep Reinforcement Learning

learn from older data and continue to improve without discarding past interactions.

However, instability is introduced as involving high-variance approximations when

training with old data [40]. Key developments in off-policy algorithms are discussed

as follows.

Deep Q-Network (DQN)

DQN enhances Q-Learning by using a neural network to approximate the Q-function,

allowing it to handle complex and high-dimensional state spaces. DQN introduced

two main innovations: experience replay, where experiences are stored in a buffer and

sampled randomly for training, and target networks, which stabilise Q-value updates

by keeping a separate network for Q-target calculations. These enhancements led

to remarkable successes in environments like Atari games, where DQN achieved

near-human performance across multiple games. DQN has since been widely used

for sequential decision-making tasks in gaming and simplified autonomous driving

scenarios. However, DQN still has challenges, such as inefficiency in continuous

action spaces and instability in environments with sparse rewards.

Deep Deterministic Policy Gradient (DDPG)

DDPG [41] is an important advancement in DRL for continuous action spaces, which

traditional Q-learning cannot handle effectively. DDPG extends the Q-learning

approach by combining an actor-critic architecture with deterministic policy gradients,

making it particularly well-suited for tasks such as autonomous driving, where precise

control in continuous action spaces is crucial. In DDPG, two networks operate in

parallel: an actor network that directly outputs actions based on the current policy

and a critic network that estimates Q-values for state-action pairs. The actor

network learns a deterministic policy, generating specific actions for each observed

state rather than probability distributions over actions, simplifying the gradient

calculation process. A defining feature of DDPG is the use of target networks for both

actor and critic networks, which are slowly updated versions of the main networks.

These target networks improve stability by making conservative updates and reducing

fluctuations in Q-value estimates.

25

2.3 Loss Functions

Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 [40] is an enhanced algorithm that addresses the limitations of DDPG by

introducing twin Q-networks to mitigate overestimation bias associated with value

function approximation. By taking the minimum Q-value from these two networks

when updating the policy, TD3 effectively avoids the instability in training. Addi-

tionally, TD3 introduces target policy smoothing to further enhance the reliability of

its action selection process. This technique involves adding noise to the target policy

during updates, making the Q-value estimates less sensitive to minor changes in the

actions. This smoothing effect encourages exploration while ensuring that the policy

remains stable and consistent, which is especially critical in continuous control tasks

where precision is paramount. By combining the strengths of actor-critic methods

with these advanced techniques, TD3 represents a significant step forward in the

field of deep reinforcement learning, offering improved convergence properties and

overall reliability in continuous action spaces.

2.3 Loss Functions

Loss functions play a critical role in deep learning, which provide feedback to the

learning model during training by measuring how well the predictions of the model

align with the expected outputs. In supervised learning, loss functions help minimise

the difference between the predicted and true labels, guiding the backpropagation of

errors through gradient descent or its variants. Common loss functions are typically

grouped into categories such as classification, regression, and advanced tasks like

object detection and generative models.

2.3.1 Classification Loss Functions

For classification tasks, where the goal is to assign an input to one of several categories,

loss functions like Cross-Entropy Loss and Hinge Loss are most commonly used.

Cross-Entropy Loss (Log Loss): This is one of the most widely used loss

functions in classification problems, particularly with softmax outputs. It measures

26

2.3 Loss Functions

the distance between the predicted probability distribution and the true distribution

(one-hot encoded labels). Cross-entropy penalises large deviations from the correct

classification and encourages the model to output high probabilities for correct classes.

Cross-entropy loss is given by:

L = −
∑
i

yi log(ŷi) (2.1)

where yi is the true label and ŷi is the predicted probability. It has been foundational

in training deep neural networks, especially for image classification tasks.

Hinge Loss: Commonly used in support vector machines (SVMs), Hinge Loss aims

to ensure that the margin between classes is maximised. Unlike cross-entropy, hinge

loss is more suitable for binary classification and encourages a robust margin between

classes:

L =
∑
i

max(0, 1− yif(xi)) (2.2)

where yi is the true class label and f(xi) is the predicted score.

2.3.2 Regression Loss Functions

For regression tasks, where the goal is to predict a continuous value, loss functions

such as Mean Squared Error (MSE) and Mean Absolute Error (MAE) are commonly

employed.

Mean Squared Error (MSE): This is the most commonly used loss function for

regression. It measures the average of the squared differences between the predicted

and actual values:

L = 1
n

n∑
i=1

(yi − ŷi)2 (2.3)

MSE heavily penalises larger errors due to squaring, which makes it sensitive to

outliers. However, it remains popular due to its smooth gradients, which make

optimisation easier.

27

2.3 Loss Functions

Mean Absolute Error (MAE): MAE measures the average absolute difference

between the predicted values and the actual values:

L = 1
n

n∑
i=1
|yi − ŷi| (2.4)

MAE is less sensitive to outliers compared to MSE, but its gradient is not smooth

near zero, which can make optimisation less stable.

2.3.3 Segmentation Loss Functions

For tasks like semantic segmentation, where pixel-wise classification is required, loss

functions such as Dice Loss and Jaccard Loss are frequently used, especially for

imbalanced data scenarios.

Dice Loss: Originally used in medical image segmentation, Dice Loss is a measure of

overlap between the predicted segmentation and the ground truth. It is particularly

useful in cases of class imbalance:

L = 1− 2× |X ∩ Y |
|X|+ |Y | (2.5)

where X, Y are the sets of predicted pixels and ground truth pixels, respectively.

Dice Loss helps improve the overlap of segmented regions with ground truth regions,

which is critical for precise segmentation.

Jaccard Loss (Intersection over Union): Similar to Dice Loss, Jaccard Loss

focuses on the overlap between the predicted and actual segmented areas. However,

it tends to penalise mismatches more harshly:

L = 1− |X ∩ Y |
|X ∪ Y |

(2.6)

2.3.4 Robust and Advanced Loss Functions

Recent research has focused on developing loss functions that enhance the robustness

and efficiency of deep learning models. For example:

28

2.4 Sensing and Imaging

Focal Loss: Focal Loss [42] is designed to address the imbalance between easy

and hard examples in tasks like object detection. By down-weighting well-classified

examples, it forces the model to focus on hard, misclassified cases:

L = −α(1− ŷ)γ log(ŷ) (2.7)

Here, γ is a tunable focusing parameter that adjusts the weight on hard-to-classify

examples.

Huber Loss: A hybrid between MSE and MAE, Huber Loss [43] is less sensitive

to outliers than MSE and more stable than MAE. It is particularly effective for

regression tasks involving noisy data:

L =


1
2(y − f(x))2 if |y − f(x)| ≤ δ

δ · (|y − f(x)| − 1
2δ) otherwise

(2.8)

where δ is a threshold parameter that determines the transition point between the

two cases.

Loss functions have continued to evolve alongside the growth of deep learning

applications. Research is increasingly focusing on robust loss functions that handle

noisy labels and adversarial examples, as well as loss functions tailored to specific

tasks, such as contrastive loss for self-supervised learning and triplet loss for metric

learning. Additionally, multi-objective loss is also gaining traction, as it enables

models to optimise for multiple objectives simultaneously, thereby improving overall

performance.

2.4 Sensing and Imaging

In the realm of autonomous driving systems, sensing technology is fundamental in

perceiving the environment accurately and safely. Three prominent technologies are

LiDAR, monocular cameras, and stereo cameras, each with distinct characteristics,

advantages, and limitations.

29

2.4 Sensing and Imaging

2.4.1 Sensors in Autonomous Driving

LiDAR (Light Detection and Ranging) is a sophisticated sensor technology that

utilises laser pulses to precisely measure distances between the sensor and various

objects in the surrounding environment. By emitting laser beams and analysing the

time it takes for the light to return after reflecting off surfaces, LiDAR generates

highly accurate 3D point clouds that represent the spatial layout of the environment.

Typical LiDAR systems have a range of up to 200 metres and can operate effectively

in diverse lighting conditions. For instance, sensors such as the Velodyne HDL-

64E offer a vertical field of view (FOV) of approximately 26.8 degrees and a full

horizontal FOV of 360 degrees, allowing them to capture detailed information about

their surroundings [44]. LiDAR systems generally operate at a frequency of around

900 nm, which contributes to their high level of accuracy (±2 cm) in distance

measurement. Despite these advantages, LiDAR systems can be expensive, often

costing several thousand dollars, and may face significant challenges in adverse

weather conditions, such as heavy rain or fog, which can scatter the laser beams and

compromise measurement accuracy [45].

Monocular Cameras employ a single lens to capture 2D images of the environment,

typically offering a field of view (FOV) ranging from 60 to 120 degrees. This wide

FOV enables them to capture a broad area in a single frame, with resolution varying

based on specific application requirements. Monocular cameras are cost-effective,

lightweight, and relatively easy to integrate into vehicles, making them a practical

choice for many autonomous driving applications. Additionally, they provide rich

visual information, including colour, texture, and scene detail, which are valuable for

tasks such as object classification and semantic segmentation [46]. However, inferring

depth from monocular cameras presents significant challenges. Unlike stereo vision

or LiDAR, which rely on multiple perspectives or active sensing, monocular cameras

must estimate depth using advanced computer vision techniques. These methods

often struggle with issues such as perspective distortion, where objects at varying

distances appear differently scaled, and occlusions, where closer objects block the

view of those farther away. These limitations can reduce the accuracy of depth

30

2.4 Sensing and Imaging

estimation, particularly in complex urban environments. Despite these weaknesses,

monocular vision remains a compelling choice for tasks where lightweight design,

affordability, and rich image data outweigh the constraints of depth perception.

Stereo Cameras consist of two or more cameras positioned at same or different

angles, mimicking human binocular vision. By comparing the images from each

camera, stereo vision systems can calculate depth information through triangulation,

providing a more robust solution for depth perception compared to monocular

cameras. These systems typically have a horizontal FOV similar to that of monocular

cameras but can offer more accurate depth perception within a range of about 10 to

50 meters. This technology enhances object detection capabilities and facilitates the

generation of 3D maps of the environment. However, stereo cameras can be more

complex to calibrate and process, requiring significant computational resources to

handle the data they produce [47].

2.4.2 Transformation in Sensors

In autonomous driving, it is common to use multiple types of sensors. Sensor fusion is

important as it enables autonomous driving systems to utilise different types of data,

strengthening the deep learning models for various tasks. Specifically, the integration

of LiDAR and camera data is crucial for creating comprehensive environmental

representations. This process often involves projecting LiDAR point clouds onto the

camera plane, resulting in RGB-D images. The principle is demonstrated in Fig. 2.4.

Point Cloud Projection

Coordinate Transformation: The first step is to align the coordinate systems

of the LiDAR and the camera. This is achieved through a calibration process that

determines the extrinsic parameters between the two sensors. The transformation

is typically represented using a transformation matrix T that converts LiDAR

coordinates to camera coordinates:

31

2.4 Sensing and Imaging

Figure 2.4 LiDAR point cloud projection to the image plane. [Wang et al.]

T = [R|t] =



R1,1 R1,2 R1,3 tx

R2,1 R2,2 R2,3 ty

R3,1 R3,2 R3,3 tz

0 0 0 1


(2.9)

where R is the rotation matrix that defines the orientation of one frame relative

to another. In the context of LiDAR and camera frames, R describes how to

rotate points from the LiDAR frame to align with the camera orientation. t is

the translation vector that defines the positional offset between the two coordinate

frames. It shifts the origin of the LiDAR frame to match the position relative to the

camera frame. The last row [0 0 0 1] is called homogeneous row that ensures

that the transformation can handle translations when working with 3D homogeneous

coordinates.

Projection: Once the coordinates are aligned, the 3D points from the LiDAR

can be projected onto the 2D camera image using the camera intrinsic parameters.

The projection is done using the pinhole camera model, which can be expressed

32

2.4 Sensing and Imaging

mathematically as:


u

v

1

 = Kin · T ·



X

Y

Z

1


(2.10)

where (u, v) are the pixel coordinates on the image, Kin is the intrinsic matrix of

the camera, T is the LiDAR to Image transformation matrix, and (X, Y, Z) are

the LiDAR point coordinates. Kin defines the transformation from 3D camera

coordinates to 2D image coordinates. This matrix contains parameters that account

for the camera internal characteristics, such as focal length and optical centre, which

are typically fixed once the camera is manufactured. Kin is given by:

Kin =


fx 0 cx

0 fy cy

0 0 1

 (2.11)

fx and fy represent the focal lengths of the camera along the x and y axes, respectively.

They scale the 3D points based on the distance to the camera sensor and are typically

measured in pixels. cx and cy denote the optical centre (principal point) in the image

plane, indicating where the optical axis intersects the sensor. This centre is essential

for correct alignment, especially when the camera is not perfectly centred. [0 0 1]

is the homogeneous row. The RGB-D images are then obtained.

RGB-D information is valuable in applications such as autonomous driving. The

RGB component captures detailed visual data on colour and texture, supporting

tasks like object detection, classification, and semantic segmentation. The depth

component, meanwhile, provides precise spatial information on the distance between

the camera and objects, enhancing 3D scene understanding and spatial accuracy,

which could also benefit the visual tasks.

33

2.4 Sensing and Imaging

Figure 2.5 Disparity in stereo camera system. Due to the different perspective, the
same object appears in different positions in the left and right cameras, the difference
is disparity. [Wang et al.]

2.4.3 Stereo Disparity

Besides LiDAR, stereo cameras also offer alternative way to acquire 3D information.

Stereo disparity refers to the difference in the horizontal position of a point in two

images captured by stereo cameras, as shown in Fig. 2.5. This disparity enables

depth perception by triangulating the location of objects based on the offset between

the two images, simulating human binocular vision.

In stereo vision, the two cameras set apart by a baseline distance B, the disparity d

can be defined as the difference between the x-coordinates of a point projection in

the left and right images:

d = xL − xR (2.12)

34

2.4 Sensing and Imaging

where xL and xR are the horizontal coordinates of the same object in the left and

right image planes. The depth Z of the object can be computed using the following

formula:

Z = f · B
d

(2.13)

where f is the focal length of the camera. In this formula, higher disparity (closer

points) results in a smaller depth value, indicating proximity to the cameras, whereas

lower disparity (farther points) corresponds to greater depth. Advanced techniques,

such as block matching (StereoBM) and semi-global block matching (SGBM) [48],

further improve the calculation of depth information based on disparities, by matching

small image blocks between the left and right images to find corresponding pixels.

2.4.4 Disparity Post-Filtering

Current stereo matching algorithms can calculate disparity maps in real time, enabling

rapid depth estimation for applications like autonomous driving. However, these

algorithms often struggle in challenging scenarios, such as scenes with uniform,

textureless surfaces, areas of occlusion where objects block portions of the scene, or

regions with strong reflections. These issues can lead to inconsistent or inaccurate

disparity maps, which reduce the reliability of the depth information.

To address these issues, post-filtering techniques are applied to refine disparity

maps. The Weighted Least Squares (WLS) filter is commonly used in disparity

post-processing to enhance disparity maps while reducing noise. WLS operates by

minimising the difference between the observed pixel values and the expected pixel

values, where weights are applied to each pixel according to its spatial characteristics.

This helps in preserving important features of the image, such as edges, while

smoothing out noise. The weights in the WLS filter can be derived from various

sources, such as the local gradient magnitude, which emphasizes edge-preserving

characteristics. This means that regions with high gradient values (edges) receive

higher weights, leading to less smoothing in those areas compared to smoother regions.

35

2.5 Simulation Tools

The WLS optimisation problem can be formulated as follows:

E =
∑
i,j

wi,j(Ii,j − gi,j)2 (2.14)

where E is the energy to minimise, Ii,j is the input image pixel value, wi,j is the

weight for each pixel. By minimising E, the output pixel value gi,j will generate a

smoother disparity map, thus improving the final depth transformation.

2.5 Simulation Tools

Simulation tools play a crucial role in the development of autonomous driving systems,

as conducting experiments in real-world environments presents numerous challenges,

including safety concerns, high costs, and the variability of driving conditions. These

simulators provide a controlled and flexible alternative, allowing researchers to

develop and test algorithms and vehicle dynamics under a wide range of scenarios

that would be difficult or impossible to replicate in reality.

2.5.1 CARLA (Car Learning to Act)

CARLA [49] has emerged as one of the most widely used open-source simulators for

autonomous driving research. Developed by Intel Labs and the Computer Vision

Center in Barcelona, it offers a highly realistic simulation environment specifically

tailored for self-driving car applications. CARLA virtual environment replicates

urban driving scenarios with high-fidelity, featuring multiple towns, complex road

networks, intersections, roundabouts, and dynamic objects such as pedestrians,

cyclists, and vehicles. The simulation also supports various weather conditions and

lighting scenarios, which makes it ideal for training autonomous systems to handle

diverse driving conditions.

For deep reinforcement learning (DRL) applications, CARLA provides an environment

where agents can learn from trial and error by interacting with the environment. The

agents receive rewards based on their performance in tasks like staying in the correct

lane, avoiding obstacles, and obeying traffic rules. Through these interactions, they

36

2.5 Simulation Tools

gradually learn optimal driving policies. In the context of imitation learning (IL),

CARLA can generate expert driving data through pre-programmed agents or human

drivers. These data sets are then used to train IL models to replicate the behaviour

of expert drivers.

One of CARLA’s key strengths is the range of sensor data it provides, which is critical

for perception tasks in autonomous driving. CARLA simulates cameras (RGB),

depth sensors, LiDAR, radar, and even semantic segmentation masks, allowing

researchers to develop algorithms for tasks such as semantic segmentation, 3D object

detection, and depth completion. These inputs provide essential information for

the decision-making and control modules of self-driving cars. The availability of

high-quality ground truth labels in the CARLA environment allows for a detailed

evaluation of model performance, making it an excellent tool for testing perception

and control algorithms.

Evaluation metrics used in CARLA simulations typically include safety-related

measures such as collision rates, lane deviation, and the number of infractions (e.g.,

running red lights or violating speed limits). Other performance metrics focus on

task completion, such as the percentage of routes completed successfully or the time

taken to reach a destination. Additionally, researchers can measure generalisation

across different towns or weather conditions, which helps evaluate the robustness of

trained models.

2.5.2 TORCS (The Open Racing Car Simulator)

TORCS [50], originally developed as a racing simulator, has been adapted for

autonomous driving research, particularly in the field of reinforcement learning.

While it was not initially intended for real-world driving simulation, TORCS offers a

valuable platform for training and testing driving policies in simplified environments.

The simulator provides a range of tracks and road types, along with the ability

to modify vehicle dynamics, which makes it suitable for investigating the low-level

control of autonomous vehicles.

37

2.5 Simulation Tools

In TORCS, reinforcement learning algorithms can be trained by rewarding the agent

for completing laps, staying on the road, and avoiding collisions with other vehicles

or track boundaries. This makes it a popular choice for research focused on learning

to control speed, steering, and acceleration based on the vehicle sensor input. Since

TORCS features different tracks with varying levels of difficulty, it also supports

curriculum learning approaches, where agents progressively learn from simpler to

more complex driving tasks.

While TORCS is limited in terms of sensory diversity compared to more advanced

simulators like CARLA, it remains a valuable tool for experimenting with control

strategies and reinforcement learning algorithms. Its simplicity allows for faster

simulation times, making it ideal for prototyping and testing basic control policies

before moving to more computationally intensive simulators. Researchers often use

TORCS for experiments where the focus is on low-level vehicle control rather than

high-level decision-making, such as learning to handle sharp turns, acceleration, and

braking.

In terms of evaluation, TORCS mainly focuses on metrics such as lap time, the

number of completed laps, and collision rates. Additionally, the ability of the agent

to maintain stability during high-speed manoeuvres or sharp turns is often evaluated

to assess the effectiveness of control policies.

2.5.3 Duckietown

Duckietown [51] is an innovative open-source platform designed to advance research

in autonomous driving and robotics, particularly focusing on education and ex-

perimentation. It consists of a miniature city environment equipped with roads,

intersections, traffic signs, and various dynamic elements such as other vehicles and

pedestrians, all represented in a highly simplified and engaging manner. This setting

serves as a testbed for various algorithms related to navigation, perception, and

control, allowing researchers and students to explore autonomous driving concepts

in a more accessible and manageable format.

38

2.6 Datasets

The most significant innovation of Duckietown is its setup for real-world experiments,

which includes Duckiebots, the small robotic vehicles equipped with cameras, and

configurable maps that create an interactive miniature city for the Duckiebots to

navigate. This setup replicates the features in the simulator, facilitating a sim-to-real

application where algorithms can be trained in simulated environments and tested

in real-world scenarios. This transition from simulation to reality is crucial for

validating autonomous driving technologies.

In terms of evaluation, Duckietown provides various metrics for assessing the perfor-

mance of autonomous agents, including navigation accuracy, task completion rates,

and safety measures such as collision avoidance. The simplicity and engaging nature

of the Duckietown environment make it an excellent tool for research purposes,

bridging the gap between theoretical concepts and practical applications in the field

of autonomous systems.

2.6 Datasets

Datasets are the core of deep-learning-based algorithms for both training and evalu-

ation. In supervised learning, models rely on labelled datasets to learn mappings

from input features to the desired output, either to classify or to regress, often

requiring large amounts of diverse data to generalise well across real-world scenarios.

High-quality datasets serve to standardise evaluation, making it possible to fairly

compare model performance on common tasks. For example, autonomous driving

requires diverse datasets capturing varied lighting, weather conditions, and road

environments to ensure the perception robustness across different driving situations.

In addition, using well-structured datasets helps prevent bias, supports performance

benchmarking, and aids in diagnosing model errors. These datasets often include

detailed and careful human annotations, such as segmentation masks and bounding

boxes, to enhance model training in complex tasks like object detection and scene

understanding, ultimately improving the reliability of decision-making in real-world

applications.

39

2.6 Datasets

Figure 2.6 The sensor setup of KITTI [52] dataset. It contains a stereo camera set
facing the front, a LiDAR, and a GPS/IMU.

Figure 2.7 The sample data from KITTI [52] including labels of 3D object detection
(left), semantic segmentation (centre), and depth prediction (right.)

2.6.1 KITTI Dataset

The KITTI dataset [52], introduced in 2012 by the Karlsruhe Institute of Technology

and Toyota Technological Institute at Chicago, remains one of the foundational

datasets for autonomous driving research. KITTI is designed to facilitate tasks such

as 3D object detection, depth estimation, stereo matching, and odometry, offering a

comprehensive set of benchmarks. It includes data collected from urban, suburban,

and highway driving scenarios using stereo cameras, LiDAR, Global Positioning

System (GPS), and Inertial Measurement Unit (IMU) sensors. The detailed sensor

setup is demonstrated in Fig. 2.6. The dataset features over 200,000 images and

point cloud data, with annotations. The sensor data with ground truth examples are

shown in Fig. 2.7. A key strength of KITTI is its multimodal sensor setup, allowing

researchers to experiment with sensor fusion and depth perception techniques in the

40

2.6 Datasets

Figure 2.8 The sample data from Cityscapes [53]. This dataset contains finely
annotated semantic labels (upper) as well as coarse labels as supplementary (lower).

earlier stage of deep learning. Despite its influence, KITTI has some limitations.

It captures data primarily in clear weather and daylight conditions, meaning that

it lacks the variability in lighting and weather that autonomous driving systems

must navigate in real-world settings. Additionally, the dataset is relatively small by

modern standards, with just over 15,000 3D bounding boxes. Nonetheless, KITTI’s

clear annotations and various well-defined tasks have set the foundation for numerous

developments in the field of autonomous vehicle perception, particularly in 3D vision.

It has served as a baseline for developing deep learning models aimed at enhancing

object detection and depth perception using LiDAR and camera fusion.

2.6.2 Cityscapes

Released in 2016, the Cityscapes dataset [53] is a large-scale resource designed

for urban scene understanding, with a particular emphasis on pixel-level semantic

segmentation. The dataset contains 5,000 finely annotated images from 50 different

cities across Europe, capturing a wide variety of urban environments, including

roadways, pedestrians, vehicles, and other relevant objects. Cityscapes is unique in

its high-resolution imagery and dense pixel-level annotations, making it particularly

useful for training and testing segmentation models. The dataset also includes an

additional 20,000 coarsely annotated images, which serve as supplementary training

data for deep learning models for less detailed segmentation. The dense and coarse

annotations are demonstrated in Fig. 2.8. Cityscapes has become one of the most

widely used datasets for semantic segmentation in autonomous driving due to its

comprehensive annotations and focus on urban environments. It supports a variety

41

2.6 Datasets

Figure 2.9 The sensor setup in the nuScenes dataset [54] provides extensive data
from a range of sensors, including six cameras that cover 360° around the vehicle.
These cameras are positioned to face the front, front right, front left, back right,
back, and back left, giving a comprehensive view of the surrounding environment.
Radar sensors are similarly oriented in multiple directions, addressing the occlusion
challenges presented by setups with a single radar. The LiDAR sensor is mounted
on the top of the vehicle, and an IMU is included to provide accurate positioning
and motion data.

of tasks, including semantic and instance segmentation, object detection, and lane

detection. Researchers have used this dataset to develop and refine models that can

handle the complex, cluttered environments typical of city driving, where precise

understanding of road conditions, lane markings, and pedestrian behaviour is crucial.

However, like KITTI, Cityscapes lacks diversity in terms of weather conditions and

sensor modalities—it only provides RGB images, without LiDAR or radar data,

limiting its applicability to sensor fusion research.

2.6.3 nuScenes

nuScenes [54], released by Aptiv in 2019, marked a significant step forward in the

development of multimodal datasets for autonomous driving. Captured in the cities

of Boston and Singapore, nuScenes contains data from a rich sensor suite, including

six cameras, five Radars, LiDAR, GPS, and IMU. The sensor setup is shown in Fig.

2.9. The dataset features 1,000 driving scenes, each about 20 seconds long, making

it one of the most extensive datasets for dynamic scene understanding. nuScenes

includes 1.4 million images, 390,000 LiDAR sweeps, and over 1.4 million annotated

42

2.6 Datasets

Figure 2.10 The sample annotations of 3D object detection in nuScenes [54] from
the six cameras at one frame.

3D bounding boxes across 23 different object classes. It also provides high-level map

data, such as road lanes and intersections, which enhances its utility for tasks like

path planning and autonomous navigation. One of the key innovations of nuScenes

is its multimodal nature, allowing researchers to develop and test models that fuse

data from cameras, LiDAR, and radar for 3D perception tasks. This has enabled

significant progress in areas such as sensor fusion, 3D object detection, and motion

forecasting. Unlike older datasets, nuScenes also includes data collected under diverse

weather conditions, such as rain and overcast skies, which is crucial for developing

models that generalise well to real-world driving scenarios. The 3D bounding box

examples of nuScenes are shown in Fig. 2.10.

2.6.4 Waymo Open Dataset

The Waymo Open Dataset [55], released in 2019 by Waymo, is one of the largest and

most comprehensive datasets for autonomous driving. Collected from Waymo fleet

of self-driving cars, the dataset includes over 1,000 hours of driving data, 12 million

3D labels, and millions of 2D labels, covering a wide range of environments, weather

conditions, and lighting scenarios. The dataset features high-quality data from

multiple LiDARs (including both top-mounted and side-mounted LiDAR sensors),

high-resolution cameras, GPS, and IMU. The detailed sensor setup is shown in Fig.

2.11. Waymo dataset provides dense annotations for vehicles, pedestrians, cyclists,

43

2.6 Datasets

Figure 2.11 The sensor setup in the Waymo dataset [55] distinguishes itself by
including a larger number of LiDAR sensors compared to other open datasets, making
it especially valuable for research focused on LiDAR-based perception methods. This
comprehensive sensor configuration enhances spatial perception accuracy, supporting
detailed 3D scene understanding essential for autonomous driving applications.

Figure 2.12 The sample annotations of 3D object detection in Waymo [55] from the
LiDAR sensor set.

and other road users, making it particularly useful for 3D object detection, tracking,

and semantic segmentation tasks. An example LiDAR based 3D bounding boxes

44

2.6 Datasets

is shown in Fig. 2.12. One of the standout features of the Waymo Open Dataset

is its sheer size and diversity, which far surpasses earlier datasets like KITTI and

Cityscapes. It includes data captured in a variety of conditions—such as day and

night, rain, fog, and different geographical locations—enabling researchers to develop

more generalisable models. Furthermore, Waymo dataset supports a wide range of

tasks, including object detection, lane detection, and sensor fusion, making it one of

the most versatile datasets available for autonomous driving research.

45

Chapter 3

Fusion-Attention Monocular

Semantic Segmentation

This chapter establishes a framework for deep-learning based monocular

semantic segmentation in urban driving scenarios, which is crucial for

autonomous vehicle scene understanding. It provides more precise subject

information than raw RGB images, thereby enhancing the performance

of autonomous driving systems.

Associated Publications This chapter is based on the following published work:

Wang C, Aouf N. Fusion attention network for autonomous cars semantic segmenta-

tion[C]//2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2022: 1525-1530.

46

3.1 Overview

Recently, self-attention methods have demonstrated significant improvements in

learning based image semantic segmentation. Attention mechanism facilitates scene

parsing by capturing abundant relationships between every pixel in an image. How-

ever, it is computationally demanding. Moreover, existing methods typically focus

either on channel attention, which neglects pixel positional factors, or on spatial

attention, which disregards the inter-dependencies between channels. To address

these issues, in this chapter, the Fusion Attention Network is designed to capture rich

contextual dependencies. This model comprises two chains: a pyramid fusion spatial

attention module and a fusion channel attention module. The pyramid sampling is

employed in the spatial attention module to reduce the computational complexity of

generating spatial attention maps. The channel attention module follows a similar

structure to the spatial attention module. Finally, the outputs from the spatial and

channel attention modules are concatenated to form an enhanced attention map,

resulting in improved semantic segmentation performance. Furthermore, the arrange-

ment of attention module is discussed on aggregating the contextual dependencies

extracted from both attention chains. Extensive experiments are conducted on pop-

ular datasets under various settings, alongside an ablation study, to demonstrate the

efficiency of our approach. The proposed method outperforms state-of-the-art meth-

ods on the Cityscapes dataset [53] and also exhibits strong generalisation capabilities

on PASCAL VOC 2012 [56].

3.1 Overview

Semantic segmentation is a fundamental task in computer vision with a wide range

of applications in robotics, medical imaging and more importantly in autonomous

driving. It aims to detect various objects, such as vehicles, roads, traffic signals, and

pedestrians, and segment them with pixel-level precision. Recent studies on semantic

segmentation have relied on convolutional encoder-decoder architectures, which have

shown certain success. The encoder generates high-level, low-resolution features,

where the decoder then up-samples to produce pixel-wise segmentation labels for

each class. Fruitful segmentation approaches [57, 58] employ fully convolutional

47

3.1 Overview

network (FCN) [59] to accomplish this task. However, with the complex scene layout

and enormous categories, and the spatial information lost during pooling operations,

these methods are limited by the poor local contextual representation which leads to

the model performance far from desire.

To address the limitations of simple Fully Convolutional Networks (FCN), several

studies suggest that incorporating long-range and global dependencies can enhance

performance. Multiple approaches [13, 60] have been proposed to fuse multi-scale

contextual information by aggregating feature maps from various dilated convolutions

and pooling operations. However, encoders that rely solely on convolutions struggle

to capture these long-range dependencies. One possible reason is that the receptive

field of a single convolutional layer is insufficient to cover the correlated regions

effectively even with dilation. To capture richer contextual information, some works

[61] attempt to enlarge the kernel size using a decomposed structure or by introducing

an effective encoding layer on top of the network. Nevertheless, these methods often

result in inefficiency due to the increased number of parameters and the subsequent

computational demands.

Various efforts have been made to enhance feature representation after the standard

encoder. To generate dense, pixel-wise contextual information, PSANet [62] learns

to aggregate contextual information for each feature through a predicted attention

map. Non-local Networks [63] leverages a self-attention mechanism [64], allowing a

single feature at any position to perceive features from all other positions. CCNet

[65] introduces a criss-cross attention module that gathers contextual information

from all features along a cross-shaped path. Specifically, it captures cross-shaped

dependencies at once and obtain the full-image contextual information by employing

a recurrent operation. However, the performance of this method is dependent on the

number of recurrences. Although the aforementioned methods have demonstrated

improvements, they do not explore channel-wise attention.

Contextual dependencies refer to the influence that every pixel exerts on every other

pixel in a high-level feature map. A feature map contains H ×W × C elements,

where C represents the number of channels, and H and W denote the height and

48

3.1 Overview

width, respectively. To capture the full scope of global contextual information, it

needs to calculate the correlation of every element in H ×W × C on every other

element, leading to a computational complexity of (H ×W × C)× (H ×W × C).

This level of computation is extremely demanding. To achieve better performance

while maintaining efficiency, the channel and spatial information are harvested

separately, introducing a Fusion Attention Network for the semantic segmentation

task.

In this chapter, the contextual information from both the channel map and the spatial

map is analysed, and combined into an enhanced global attention map. Specifically,

a dilated ResNet [66] is employed and followed by two parallel attention modules:

one for spatial attention and the other for channel attention. To address the high

computational complexity, the spatial module is integrated with the proposed pyramid

samplers, which efficiently reduce the computational load. In each sampler, high-level

features are divided into several layers by channel and processed individually, before

being recombined to establish concrete relationships with lower computational cost.

For the channel module, high-level channel maps are similarly divided into layers,

but along the spatial dimension, allowing the model to predict and combine the co-

dependent effects across all channel maps. Finally, the outputs of these two attention

modules are fused via concatenation, further enhancing the feature representations.

The model is trained and evaluated on Cityscapes and PASCAL VOC 2012 datasets.

In summary, the key contributions in this chapter are as follows:

1. The fusion attention modules that integrate both channel and spatial attention

to capture global contextual dependencies.

2. The improved results by enhancing the attention maps without increasing the

number of parameters, thanks to the pyramid and fusion structure.

3. The state-of-the-art performance on popular benchmarks, including the Cityscapes

and PASCAL VOC datasets.

This chapter is organised as follows: Section 3.2 gives an overview of the current

approaches of learning based semantic segmentation, as well as recent approaches

49

3.2 Related Works

for applying attention mechanism. Section 3.3 describes the design methodology.

Section 3.4 shows several test experiments with varying benchmark datasets and

provides a proof-of-concept of the performance of the proposed method. Finally,

Section 3.5 summaries the chapter.

3.2 Related Works

3.2.1 Semantic Segmentation

Semantic segmentation plays a crucial role in providing detailed environmental

information by assigning a class label to each pixel in an image. This pixel-level

classification significantly enhances the understanding of environmental context,

particularly in tasks like autonomous driving, where precise scene comprehension is

vital. John et al. [67] proposed one of the early approaches using a convolutional

neural network (CNN)-based encoder-decoder architecture for semantic segmentation.

Their network processes input images to perform pixel-wise classification and labeling,

achieving a prediction accuracy of 88% for vehicles and 96% for roads, showcasing

the effectiveness of CNNs in segmentation tasks. Building on this foundation, fully

convolutional networks (FCNs) and FCN-based models advanced image semantic

segmentation by directly operating on the spatial dimensions of input images. Several

models have been developed that incorporate encoder-decoder architectures, such

as Unet [14], SPGNet [68], RefineNet [58], and DFN [69]. These models effectively

combine low-level and high-level features to produce more accurate segmentation

predictions. The encoder captures detailed local information, while the decoder refines

this information by integrating contextual knowledge, improving the overall accuracy

of the predictions. In parallel, other methods focused on enhancing contextual

aggregation to further improve segmentation performance. For instance, Deeplabv2

[13] and Deeplabv3 [70] introduced atrous spatial pyramid pooling, which uses parallel

dilated convolutions to embed multi-scale contextual information. PSPNet [60] also

contributed to this area by proposing pyramid pooling to capture information from

different scales, effectively enhancing the network’s ability to understand objects

50

3.2 Related Works

at various levels of detail. With the success of the attention mechanism in natural

language processing tasks, it was soon applied to image-based tasks, including

semantic segmentation. Attention mechanisms allow models to focus on specific

parts of the image, making them more effective at capturing both spatial and

contextual dependencies. This shift has opened up new opportunities for improving

the accuracy and efficiency of semantic segmentation models, marking a new phase

in the development of this field.

3.2.2 Attention Model

Attention modules are widely recognised for their ability to model both long-range

and short-range dependencies, enhancing the most important regions of a feature

map. These modules help neural networks focus on the most relevant parts of the

input, boosting the performance of tasks like semantic segmentation by refining

the features being learned. A notable example is Squeeze-and-Excitation Networks

(SENet) [71], which applies spatial-wise average pooling to capture global information

across the image. SENet employs two fully connected layers to model channel-wise

relationships, allowing the network to re-calibrate the importance of each channel

through an attention mechanism, ultimately enhancing the representational power

of the network by giving more weight to significant channels. Building on these

principles, Li et al. [72] proposed a more complex attention structure called split,

fuse, and select. This structure starts with a split operation, a multi-branch process

where different excitation cores are used to extract diverse features from the input.

Each core focuses on capturing different aspects of the feature map, providing

multiple perspectives for the network to process. The fuse operation then combines

the information from these multiple branches, merging them into a rich contextual

representation. Finally, the select operation combines feature maps of various kernel

sizes based on learned selection weights, allowing the network to dynamically focus

on the most relevant features. This multi-stage process helps the model better

capture complex dependencies in the input data. In parallel, Vaswani et al. [73]

introduced a multi-head attention block, which became influential in many fields,

including image processing. This block enables the network to compute multiple

51

3.3 Methodology

self-attention representations through different heads, allowing it to capture a variety

of dependencies and features simultaneously. By processing the information from

different heads, the model can learn complementary attention maps, further improving

its understanding of the input. Other methods have also sought to exploit attention

mechanisms to improve contextual modelling in semantic segmentation. OCNet

[74] and DANet [75], for instance, utilised the Non-local module, which computes

contextual information by considering all positions in the feature map. This enables

the model to capture dependencies across the entire image, which is particularly useful

for segmenting large objects or objects spread over multiple regions of the image.

However, the Non-local module is computationally expensive and involves a large

number of parameters. To address this, CCNet [65] introduced a criss-cross attention

mechanism, which significantly reduces the computational burden and complexity of

the Non-local module. CCNet achieves this by computing relationships only between

pixels in horizontal and vertical directions, rather than all pairs of pixels, making the

attention process more efficient while still capturing sufficient contextual information.

Similarly, EPSANet [76] focuses on enhancing attention by harvesting attention maps

from features at different scales. By considering multi-scale information, EPSANet

can better handle objects of varying sizes and improve the overall performance of the

model in semantic segmentation tasks. These advancements illustrate the power of

attention mechanisms in refining feature representations, allowing models to better

understand complex spatial and contextual relationships within images. Through

different innovations—such as channel-wise re-calibration, multi-branch operations,

and computationally efficient attention modules—these methods have contributed

significantly to improving the accuracy and efficiency of semantic segmentation

models.

3.3 Methodology

This section presents the general framework of the proposed network. Next, the

fusion attention module is detailed, including both the channel-wise fusion attention

and pyramid spatial-wise fusion attention modules, which are designed to capture

52

3.3 Methodology

full-image contextual information in the channel and spatial dimensions, respectively.

Finally, various methods for aggregating these modules are compared to achieve the

best performance.

3.3.1 Preliminary

Self-attention is a mechanism that allows models to dynamically focus on different

parts of the input when processing each element, enabling them to capture long-

range dependencies. In this mechanism, three key concepts are employed: Query(Q),

Key(K), and V alue(V). These are derived through learned transformations of

the input sequence, and they play distinct roles in determining how attention is

distributed across the sequence.

1. Query(Q): The query vector represents the current token’s request for infor-

mation. When processing a particular token, the query is used to determine

which other tokens in the sequence are most relevant to it.

2. Key(K): The key vector corresponds to each token and is used to match with

the query. It helps evaluate how much attention should be given to different

tokens by measuring the similarity between the query and each key.

3. V alue(V): The value vector holds the actual content or information of the

token. Once the relevance between tokens is determined (using Q and K), the

value vectors are weighted accordingly, and the final output for each token is

produced by combining these weighted values.

The self-attention mechanism computes attention scores by performing a dot product

between the Query and Key vectors of all tokens, and then these scores are used to

weight the V alue vectors. This allows the model to consider relationships across the

entire input sequence when processing each token.

3.3.2 Network Structure

The network architecture is illustrated in Fig. 3.1. As shown, two types of attention

53

3.3 Methodology

Figure 3.1 Overview of the Fusion Attention Network. [Wang et al.]

modules are designed to capture global context over local features generated by

a dilated residual network, thus enhancing feature representations for pixel-level

prediction. A pretrained residual network with a dilated strategy [13] is employed as

the backbone. By removing the last two down-sampling operations and incorporating

dilated convolutions in the subsequent ResNet blocks, the output feature map size is

enlarged back to 1/8 of the input image, allowing us to extract more information

without increasing the number of parameters. After obtaining the feature map, a

convolutional layer is applied for dimension reduction to prepare inputs for both

spatial and channel attention modules. In the self-attention mechanism, the first

step involves generating an attention matrix that models the relationships between

any two pixels within the feature maps. The spatial and channel attention is treated

separately, utilising a fusion technique and pyramid sampler for spatial attention,

while employing channel-wise fusion attention to capture long-range contextual

information in the channel dimension. Subsequently, the matrix multiplication is

performed between the attention matrix and the query vectors. Finally, an element-

wise sum operation is executed on the multiplied result and the original features

to obtain the final representations that reflect long-range contexts. With outputs

from both the spatial and channel modules, they are aggregated to enhance feature

representations for pixel-level prediction.

3.3.3 Pyramid Fusion Spatial Attention

To model dense pixel relationships over local feature representations while ensuring

high performance and lightweight computation, the pyramid fusion spatial attention

54

3.3 Methodology

Figure 3.2 Design of Pyramid Spatial Attention Module. [Wang et al.]

module is introduced in this section. This module effectively captures rich contextual

information, enhancing the pixel-level representational capability.

As illustrated in Fig. 3.2, given a local feature map X ∈ RH×W×C , the mod-

ule first applies two convolutional layers with filter size 1× 1 on X to gener-

ate two new feature vectors Query(Q) and Key(K), where Q,K ∈ RC
′ ×W×H and

C
′ is the reduced channel number for the new feature vectors for less computa-

tion. This refers to the reduction block in the Fig. 3.1. After that Q and K

are reshaped at their spatial dimension to RC
′ ×N for latter calculation, where

N = W ×H. Simultaneously, another convolutional layer, also with a 1× 1 filter

is applied to X to generate V alue(V), where V ∈ RC×W×H , and then reshape to

V ∈ RC×N without channel reduction. At this point, Q and K are typically sub-

jected to matrix multiplication followed by SoftMax to generate a large attention

map, which requires significant computing and memory resources. To mitigate

this, pyramid sampling is introduced on both feature vectors K and V . For in-

stance, if the size of the feature map X is 96× 96, the attention map size will be

N ×N = (W ×H)× (W ×H) = 84.9M . By applying the designed pyramid pooling

layers with kernal_size = 8, 6, 3, 2, the new features sizes become 12× 12, 16× 16,

32× 32 and 48× 48. As the attention map is calculated at each kernel size, the

overall complexity is O = (12× 12)2 + (16× 16)2 + (32× 32)2 + (48× 48)2 = 6.6M ,

55

3.3 Methodology

resulting 92.2% of computational reduction when for attention map calculation. Next,

the fusion structure is presented. First, the Pyramid Pooling on K and V generates

K1, K2, K3, K4 and V1, V2, V3, V4 at various lower scales. These are then concatenated,

resulting in K
′ ∈ RC

′ ×N ′
and V

′ ∈ RC×N ′
. Next, Q, K ′ , and V

′ are divided into

m blocks along the channel dimension, where each block contains C
m

elements for

both Qb,i and K ′
b,i, and C

′

m
elements for V ′

b,i. This division allows each block to learn

distinct information within the attention map by focusing on different channel-specific

features. For each block, matrix multiplication is performed between the transposed

Qb,i and K
′
b,i:

Si = QT
b,i ∈ RN× C

′

m ×K ′

b,i ∈ R
C

′

m
×N ′

, i = 1, . . . ,m (3.1)

Here, Si represents the similarity matrix, which measures the degree of correlation

between each position in Qb,i and K
′
b,i. It is important to note that the size of Si is

RN×N ′ , rather than RN×N , where N ′ is the spatial dimension of K ′ . A SoftMax layer

is then applied to Si to compute the spatial attention map Ai ∈ RN×N ′ . Subsequently,

matrix multiplication is performed between the transposed Ai and V
′
b,i:

V
′

b,i ∈ R
C
m

×N ′ × ATi ∈ RN ′×N = R
C
m

×N (3.2)

Equation 3.2 generates the results for each of the blocks we previously divided. After

obtaining the results from all channel blocks, we concatenate the m blocks of size

R C
m

×N along the channel dimension to form M ∈ RC×N . Then, M is reshaped to

RH×W×C , aligning with the size of the original feature map X . The contextual

information is gathered by performing an element-wise sum between the feature map

X and the summed results from the Pyramid Fusion Spatial Attention module.

Yj = γMj +Xj (3.3)

Where j denotes each position within the original feature map X , and γ is a

learnable scale parameter, which plays a critical role in adjusting the contribution of

the contextual information during the learning process. Initially set to 0, γ gradually

56

3.3 Methodology

increases its value as the model learns, allowing it to assign more weight to the

contextual features over time. This gradual learning process ensures that the model

starts by relying on the original feature map and slowly incorporates more contextual

information as it learns to refine its predictions. By adding the original feature map

X to the aggregated contextual information, the model is able to maintain its original

feature representation while enriching it with the additional context. This allows the

model to capture both local features and broader contextual information, providing a

more holistic view of the image. The selective aggregation of these contexts is guided

by the spatial attention map, which helps the model focus on the most relevant

regions of the image based on the learned spatial relationships. The combination

of the original features and the contextual information leads to the generation of

more robust feature representations. By allowing these similarity features to interact

and complement each other, the model achieves mutual gains. This means that the

contextual features help improve the quality of the original feature map, and vice

versa, creating a synergistic effect. As a result, the representation capacity of the

network is significantly enhanced, enabling it to better capture complex patterns

and relationships within the input data.

3.3.4 Fusion Channel Attention

In the previous section, while the proposed method successfully enhances feature

maps, it overlooks the dependencies between individual channels, where high-level

semantic information could be more effectively explored. By leveraging the inter-

dependencies between channel maps, the model can emphasise interdependent feature

maps, thereby improving the representation of specific semantic features. However,

existing channel attention methods often fail to consider the positional relationships

between channel maps. To address this, the concept of a fusion structure is extended

to the channel dimension. In this approach, the spatial dimension is partitioned into

blocks, enabling the model to apply distinct attention to different positions within

each block, allowing for more focused attention across various spatial locations.

57

3.3 Methodology

Figure 3.3 Design of Channel Attention Module. [Wang et al.]

The channel attention structure is illustrated in Fig. 3.3. In the spatial attention

module, several convolutional layers are employed to reduce the dimensions of the

feature map X for improved efficiency. However, in the channel attention chain,

dimension reduction does not lead to a significant reduction in parameters because

convolutional layers cannot effectively reduce the spatial dimensions. Instead, it

results in the loss of important information within the channel maps, which are the

primary focus of investigation. Therefore, the feature map X is directly inherited

from the original features and used as Q, K, and V , which are then reshaped into

RC×N . The fusion strategy is subsequently applied by first dividing each feature

map into m blocks. In contrast to the spatial attention module, each block here

has a shape of RC× N
m . Every block contains distinct spatial information, leading to

improved attention maps. By employing a similar process of reshaping, transposing,

and performing matrix multiplication, the similarity matrix Si ∈ RC×C is obtained:

Si = Qb,i ∈ RC× N
m ×KT

b,i ∈ R
N
m

×C , i = 1, . . . ,m (3.4)

Where b, i indicates the index of blocks. Si demonstrates the degree of correlation

between each channel in Qb,i and Kb,i. A SoftMax layer is used to obtain the attention

map Ai. Following this, a matrix multiplication is performed between the transpose

58

3.3 Methodology

of V and Ai:

V
′

b,i

T ∈ R
N
m

×C × Ai ∈ RC×C = R
N
m

×C (3.5)

Through spatial-wise concatenation and reshaping, the results from each block are

fused into a feature of size RC×H×W , matching the dimensions of the original feature

map X . Finally, the contextual channel information is gathered by performing an

element-wise sum between the feature map X and the concatenated result:

Yj = γRj +Xj (3.6)

Where j represents each channel map in the feature map X , and γ is a learnable

scale parameter that initially starts from a value of 0. This scale parameter is

essential for the model’s adaptability, allowing it to adjust the contribution of

contextual information as training progresses. As the model learns, γ gradually

increases, facilitating a more significant integration of contextual features into the

final representation. Similar to the spatial attention mechanism, where attention is

focused on specific regions of the input feature map, channel attention enhances the

model’s performance by focusing on the most relevant channels. In spatial attention,

the emphasis is placed on specific spatial locations, allowing the model to weigh the

importance of various parts of the image. This is particularly valuable in semantic

segmentation, as it enables the model to prioritise areas with critical features, such

as object edges and important textures, that contribute to accurate segmentation.

In contrast, channel attention focuses on the inter-dependencies between different

channels within the feature map. By adjusting the importance of each channel,

channel attention allows the model to highlight features that are particularly relevant

to the segmentation task while suppressing those that may add noise or ambiguity.

For instance, in distinguishing between overlapping objects in a scene, channel

attention can help the model better capture the unique characteristics of each object

by enhancing the features that define them, regardless of their spatial location.

59

3.3 Methodology

Figure 3.4 Two types of attention module arrangements. (a) Sequential connection.
(b) Parallel connection. [Wang et al.]

3.3.5 Attention Module Arrangement

Given an input image, the two attention modules are designed to compute com-

plementary forms of attention, with one focusing on the spatial dimension and the

other concentrating on the channel dimension. These two distinct forms of attention

allow the model to capture both where the relevant features are located within

the image (spatial attention) and what specific channels or feature maps are most

important (channel attention). Intuitively, these modules can be arranged in different

configurations, such as in parallel or sequential order as shown in Fig. 3.4. The

parallel configuration processes the spatial and channel information simultaneously,

while the sequential arrangement processes one form of attention after the other.

Through our experiments, we observed that the parallel arrangement consistently

yields better performance compared to the sequential configuration. This suggests

that when the two attention modules are aligned in parallel, the dependencies between

spatial and channel information are preserved more effectively, allowing the model to

make full use of both forms of attention without disrupting their mutual relationship.

On the other hand, the sequential arrangement introduces additional complexity by

60

3.4 Experiments

forcing the model to first process one form of attention, followed by the other. This

may lead to a breakdown in the synergy between spatial and channel dependencies,

making it harder for the model to capture these inter-dependencies in an efficient

manner. We hypothesise that the parallel structure ensures a more balanced fusion

of spatial and channel information, whereas the sequential connection introduces an

unnecessary layer of complexity that does not enhance the overall performance.

Despite the two ways of arrangements, both attention mechanisms are complementary

and can be used in tandem to improve the model’s overall performance in semantic

segmentation. While spatial attention provides a mechanism for the model to

concentrate on significant areas of the input, channel attention allows for a deeper

exploration of the relationships among feature channels. This dual approach enhances

the model’s capacity to understand complex scenes, leading to more precise and

accurate delineation of object boundaries. By leveraging both spatial and channel

attention, the model can achieve a robust feature representation that captures

essential contextual information while maintaining focus on the most critical features

within the input data. This integrated approach ultimately enhances the model’s

performance in semantic segmentation tasks, enabling it to deliver more accurate

and detailed segmentation results.

3.4 Experiments

The proposed method is trained and evaluated on two semantic segmentation datasets,

Cityscapes[7] and PASCAL VOC 2012[9]. The experimental results demonstrate

that our method achieves state-of-the-art performance on Cityscapes.

3.4.1 Dataset and Evaluation Standard

Dataset

Cityscapes The dataset has 5,000 images captured from 50 different cities. Each

image has 2048× 1024 pixels, which have high quality pixel-level labels of 19 semantic

classes. There are 2,975 images in training set, 500 images in validation set and 1,525

61

3.4 Experiments

images in test set. For evaluation, we use mIoU (mean of class-wise inter-section

over union) as the metrics.

PASCAL VOC 2012 This dataset contains 1464 of training images, 1449 images

for validation with different scales. It has 21 classes of objects which including a

background and 20 foreground object classes. With data augmentation, the training

images are expanded to 10582.

Evaluation

Mean Intersection over Union (mIoU) The mean of class-wise Intersection over

Union (mIoU) is widely used as the evaluation metric for semantic segmentation

tasks. This metric provides an intuitive and reliable assessment of the model’s

performance by measuring how well it segments different objects or regions in an

image. The performance is measured across all classes, and the final evaluation score

is the mean mIoU, which is the average IoU computed over all classes:

mIOU = 1
C

C∑
i=1

Pi ∩Gi

Pi ∪Gi

(3.7)

Where C is the total number of classes and Pi and Gi are the predictions and ground

truths of class i.

3.4.2 Implementation Details

This approach is implemented with PyTorch. Stochastic gradient descent (SGD)

[77] is used as the optimizer. For the Cityscapes dataset, the initial learning rate is

set to 0.01, and following [78, 65], the polynomial learning rate policy is adopted,

where the initial learning rate is multiplied by 1−
(
iterationcurrent

iterationmax

)power
, with power

set to 0.9. The momentum and weight decay are set to 0.9 and 0.0001, respectively.

The batch size is set to 8, and train for 242 epochs in total. For the PASCAL VOC

2012 dataset, the learning rate is set to 0.001 and follows the same decay policy as

Cityscapes. The batch size is 16 for VOC, and training is conducted for 200 epochs.

For both datasets, a joint objective is employed in the loss function. Specifically, after

the fusion attention module, three feature maps are generated: one from the spatial

62

3.4 Experiments

Methods Backbone mIOU %
Non-Local [63] ResNet101 75.1

GCN [61] ResNet101 78.1
PSPNet [60] ResNet101 78.5

DeepLabV3 [70] ResNet101 78.5
ASPP [13] ResNet101 78.9

DeepLabV3+ [79] Xception-71 79.6
CCNet [65] ResNet101 81.3
Non-Local ResNet50 73.3

GCN ResNet50 76.2
PSPNet ResNet50 76.4
ASPP ResNet50 77.1
CCNet ResNet50 78.1

Proposed Method ResNet101 81.9
Table 3.1 Result comparison on the validation set of Cityscapes. [Wang et al.]

attention, one from the channel attention, and the fused feature map. Each feature

map is passed through the bottleneck for semantic segmentation prediction. During

training, the objective is to minimise the difference between the ground truth and

the predictions from the spatial-enhanced features, the channel-enhanced features,

and the fused final features. After training, only the fused final prediction is used for

evaluation. Cross-entropy loss function is used for the three supervised signals.

3.4.3 Results

Results on Cityscapes

The proposed method is first evaluated on the Cityscapes validation set. The results

of the evaluation are presented in Table 3.1. For the feature extraction backbone,

ResNet101 is employed, known for its ability to capture rich hierarchical features.

Additionally, state-of-the-art models with the same ResNet101 backbone, as well as

ResNet50, are selected for comparison to ensure a fair evaluation of the method’s

effectiveness.

Table 3.2 provides the detailed mIoU values for each class in the dataset. As observed,

the segmentation accuracy for categories such as road, building, sidewalk, vegetation,

sky, car, and bus exceeds 85%. This high performance is expected, as these objects

63

3.4 Experiments

Category Road Sidewalk Building Wall Fence
mIOU % 98.6 88.6 94.1 74.1 77.9
Category Pole Traffic Light Traffic Sign Vegetation Terrain
mIOU % 70.2 75.6 83.7 93.4 71.9
Category Sky Person Rider Car Truck
mIOU % 95.1 84.9 68.3 95.5 70.0
Category Bus Train Motorcycle Bicycle
mIOU % 86.0 79.3 67.3 81.6
Table 3.2 Detailed mIoU on 19 Categories of Cityscapes. [Wang et al.]

typically exhibit a consistent appearance and occupy large portions of the image.

For instance, roads and buildings have clearly defined edges, making them easier

to detect and segment. Similarly, cars and buses, which are relatively large and

well-defined objects, are consistently well-segmented by the network. For mid-sized

objects like traffic signs, persons, trains, and bicycles, the mIoU values fall within a

respectable range of 75% to 85%. These classes are often more variable in shape and

size compared to larger objects but still maintain a degree of regularity that allows

the network to generalise effectively. For example, pedestrians and bicycles, though

dynamic and sometimes difficult to predict, are often well-localised, contributing

to decent segmentation results. Trains, though sometimes challenging due to their

varying shapes and speeds, are still segmented reasonably well within this range.

However, there are certain classes where the network struggles to achieve high

accuracy. Categories such as wall, fence, pole, train, motorcycle, and terrain show

comparatively lower performance. These classes pose unique challenges due to several

factors:

1. Fence and pole suffer from poor segmentation due to their thin and inconsistent

structures. Since these objects often appear small or are partially occluded in

complex urban scenes, it becomes difficult for the network to distinguish them

accurately.

2. Motorcycle and truck exhibit weaker recognition primarily due to the limited

number of samples for these classes. Since these objects appear far less fre-

quently than cars or buses, the model has fewer opportunities to learn their

unique features, which contributes to lower segmentation accuracy. Further-

64

3.4 Experiments

Figure 3.5 Visual comparison of prediction and ground truth. [Wang et al.]

more, large objects like trucks often appear only partially in the input images

when close to the camera, making it challenging for the model to predict their

full structure. This incomplete visibility compromises accurate segmentation,

as the model lacks the necessary context to identify the whole object.

3. Train and terrain also present difficulties. Trains can be challenging due to

their varying appearances and motion in the scene, while terrain, which may

encompass different types of surfaces (e.g., grass, dirt), often blends with

surrounding objects, making it harder to segment distinctly.

To show the overall performance, the visual comparison between the predicted

semantic segmentation and the ground truths is demonstrated in Fig. 3.5. As can

be seen, though there are some flaws in predicting the labels in vegetation and

overlapping motorcycles, the proposed method perfectly segments the three scenes

with the vital objects for autonomous vehicles such as roads, sidewalks, vehicles and

65

3.4 Experiments

Backbone Attention Module mIOU%
ResNet101 Pyramid Fusion Spatial 76.2
ResNet101 Fusion Channel 81.4
ResNet101 Spatial and Channel Fusion 81.9

Table 3.3 Individual Attention Module Efficiency. [Wang et al.]

pedestrians. Note that as the ground truth in the bottom of the image (the hood of

the ego vehicle), the predicted semantic segmentation contains blur information.

Ablation Studies

To demonstrate the efficiency of the proposed attention modules and their components,

experiments are conducted on the model with various configurations using the

Cityscapes dataset, which more effectively reveals the segmentation capability in

driving scenarios. The performance of each attention module is evaluated on the

Cityscapes validation set using a ResNet101 backbone.

Pyramid pooling layer sizes of 16, 24, 32, 48 are applied to divide the high-level

feature map into four different scales. This multi-scale approach enables the net-

work to capture information at varying resolutions, making it more efficient and

computational-friendly in segmenting objects of different sizes, especially in com-

plex driving scenarios. The results of these experiments are presented in Table

3.3. When using only the spatial attention module, the network achieves a mean

Intersection over Union (mIoU) of 76.2%. This demonstrates the module’s ability

to enhance segmentation by focusing on spatial structures. However, the channel

attention module delivers stronger performance, achieving an mIoU of 81.4%, a 5.2%

improvement, which indicates that capturing inter-channel relationships adds more

value in terms of feature representation. When the spatial and channel attention

modules are combined, the network achieves its best result with an mIoU of 81.9%.

This combined approach yields a 5.7% improvement over the spatial module alone,

showcasing the complementary nature of the two modules. By integrating both spa-

tial and channel-wise attention, the network benefits from enhanced spatial context

and enriched semantic information, leading to more accurate segmentation results.

66

3.4 Experiments

Methods mIOU%
HyperSeg [80] 80.6

DeepLab-CRF [81] 77.6
DeepLabv3 [70] 76.5

Proposed Method 81.6
Table 3.4 Results on PASCAL VOC 2012 Validation Set. [Wang et al.]

The visualised results are provided in Fig. 3.5, illustrating the effectiveness of the

combined attention mechanism.

Results on PASCAL VOC 2012

In this section, further experiments are conducted on the PASCAL VOC 2012 dataset

to demonstrate the generalisation capability of the proposed method. The results,

presented in Table 3.4, show a strong performance compared to other state-of-the-art

methods. The same backbone, ResNet101, is employed and trained on the trainaug

set of VOC 2012. The proposed method achieves a mean Intersection over Union

(mIoU) of 81.6%, surpassing well-known models like HyperSeg, DeepLab-CRF, and

DeepLabv3. Specifically, the mIoU score of 81.6% shows a 1.0% improvement over

HyperSeg (80.6%), which is known for its efficiency in semantic segmentation tasks.

Compared to DeepLab-CRF, which scores 77.6%, the proposed method outperforms

it by a margin of 4.0%. Additionally, DeepLabv3, another prominent segmentation

model, achieves a lower score of 76.5%, with the proposed method demonstrating a

significant 5.1% improvement.

This performance boost highlights the robustness and generalisation capability of the

proposed attention mechanism across different datasets. By effectively capturing both

spatial and channel-wise dependencies, the method consistently enhances feature

representations, allowing for more accurate segmentation across a wider range of

object classes in PASCAL VOC 2012. The competitive results further demonstrate

the method’s capability to generalise beyond the Cityscapes dataset, making it a

strong candidate for various semantic segmentation tasks.

67

3.5 Summary

3.5 Summary

In this chapter, a novel Fusion Attention Network is proposed for semantic segmen-

tation in autonomous driving scenarios, leveraging a self-attention mechanism. The

primary goal of this network is to enhance the understanding of global contextual

dependencies, which is critical for accurately segmenting complex scenes in real-time

driving environments. To achieve this, the network incorporates two key modules: a

pyramid fusion spatial attention module and a fusion channel-wise attention mod-

ule. The pyramid fusion spatial attention module effectively reduces the number

of parameters required for generating attention maps by dividing the feature maps

into multiple scales, allowing the model to capture both fine-grained and large-scale

features more efficiently. Simultaneously, the fusion channel-wise attention module

ensures that relationships between different feature channels are fully exploited,

enriching the network’s ability to discern different semantic elements within the

image. By employing both spatial and channel attention mechanisms, the proposed

network can take full advantage of the information contained in each element of

the image, ensuring that no relevant details are overlooked, whether they pertain

to small objects or large structures. This dual approach to attention processing

enhances the feature extraction capabilities of the network, making it well-suited for

handling the diverse and dynamic nature of driving environments.

Extensive experiments are conducted on two widely recognised benchmark datasets,

Cityscapes and PASCAL VOC 2012, to validate the performance of the Fusion

Attention Network. The results demonstrate that the proposed model consistently

outperforms existing methods, achieving superior segmentation accuracy across a

wide range of object classes. This outstanding performance indicates the potential of

the Fusion Attention Network to be deployed as an efficient and reliable on-board

perception module in future autonomous driving systems. Its ability to segment

scenes accurately and in real-time makes it a promising solution for enhancing

the safety and effectiveness of autonomous vehicles, especially in complex urban

environments where precise object detection and scene understanding are paramount.

68

Chapter 4

Monocular 3D Object Detection

This chapter solves the 3d object detection problem using only single

camera input by introducing additional adaptive depth supervision signals,

which also avoids bringing computational burdens.

Associated Publications This chapter is based on the following published work:

Wang C, Aouf N. Depth-Enhanced Deep Learning Approach For Monocular Camera

Based 3D Object Detection[J]. Journal of Intelligent & Robotic Systems, 2024, 110(3):

101.

69

4.1 Overview

Automatic 3D object detection using monocular cameras presents significant chal-

lenges in the context of autonomous driving. Precise labeling of 3D object scales

requires accurate spatial information, which is difficult to obtain from a single image

due to the inherent lack of depth information in monocular images, compared to

LiDAR data. In this chapter, a novel approach is proposed to address this issue by

enhancing deep neural networks with depth information for monocular 3D object

detection. The proposed method comprises three key components: 1)Feature En-

hancement Pyramid Module: The conventional Feature Pyramid Networks (FPN)

is further explored by introducing a feature enhancement pyramid network. This

module fuses feature maps from the original pyramid and captures contextual corre-

lations across multiple scales. To increase the connectivity between low-level and

high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth

Estimator: An auxiliary dense depth estimator is introduced that generates dense

depth maps to enhance the spatial perception capabilities of the deep network model

without adding computational burden. 3)Augmented centre Depth Regression: To

aid centre depth estimation, additional bounding box vertex depth regression based

on geometry is employed. The experimental results demonstrate the superiority of

the proposed technique over existing competitive methods reported in the literature.

The approach (PAC3DNet) showcases remarkable performance improvements in

monocular 3D object detection, making it a promising solution for autonomous

driving applications.

4.1 Overview

Autonomous driving is an evolving research topic, with object detection being a key

technology alongside planning and guidance systems [82–85]. Existing works in 2D

object detection such as [86, 42, 87–89] have made significant progress in recent years.

However, 3D attributes as location, size, orientation are required for more precise

and safety-guaranteed applications like autonomous driving. Therefore research on

deep learning based 3D object detection has gained popularity. Classically, existing

3D object detection approaches are based on LiDAR sensor data or RGB images.

70

4.1 Overview

State-of-the-art methods [90–92] rely on the accurate depth information provided by

LiDAR point clouds. While achieving descent performance, their implementations

are expensive and computational demanding. In order to propose attractive solutions

which are characterized by low hardware-costing, low-computational and flexible

deployment implementation, monocular 3D object detection methods [15, 93] are

explored with impressive progress in prediction accuracy relying on consistency

between 2D detection and 3D detection priors. However, the performance is still far

from satisfaction due to the natural drawback of image data compared to LiDAR

data although the latter lacks of spatial information. [94] uses an independent depth

estimator to reconstruct 3D point cloud as an enhanced input representation. The

data from 2D detection deep neural network and depth generator are fused and then

sent to the 3D detector, which makes the framework miscellaneous. Nevertheless,

regressing depth from monocular images is a challenging computer vision problem.

Errors in depth estimation heavily affect the detection precision of methods that

depend on accurate depth, therefore it becomes the major reason for the performance

gaps between pseudo-LiDAR and LiDAR-based detectors.

Besides focusing on the detector framework, recent research shows interest in feature

extraction for better performance. Among these works, FPN [95] is an effective

framework that is adopted by many solutions as their feature extractor for object

detection. In Convolutional Neural Networks (CNNs), the network depths correspond

to different levels of semantic features. The small network has high resolution and

learns more detailed features, while the deep network has low resolution and learns

more semantic features. FPN proposes a feature fusion method using different

resolutions. The feature maps of high resolution, and the up-sampled low-resolution

features are element-wise added, so that the features of different levels are enhanced.

Since this method only performs cross-layer connection and element-wise summation

on the basis of the network, the increase of calculation is minor, while with an

excellent performance improvement. Furthermore, PANet [96] finds the long path

from low-level structure to topmost features, increases the difficulty to access accurate

localization information. [97] further explores the inner connection among the feature

pyramids and proposes to gather these information and fuse them into one feature.

71

4.1 Overview

In this chapter, a 3D object detector is proposed utilising enhanced depth information

to locate the object positions. VoVNet−v2 [33] is adopted as the backbone connected

to a feature pyramid structure. The estimation of an object’s 3D location is classically

decoupled to the 2D centre with an offset to the projected 3D center, and its depth

[98]. Rather than estimating single depth for each object, an additional branch is

used to regress vertex depths assisting the centre depth formatting. Considering

the uncertainties of vertices depth estimation and direct regression, the final esti-

mation is formulated as a confidence-weighted average estimation problem. The

proposed combination allows the model to flexibly choose more suitable estimators

for robust and accurate predictions. Although the vertex depth estimator provides

improvement to object locating, it does not change the ill-posed nature of point

depth prediction, which is lacking contextual information from surrounding pixels

in the regression mechanism. To this end, the auxiliary dense depth estimator is

introduced to update the parameters in the feature extractor (the VoVNet backbone

and the feature enhancement pyramid module) which effectively assists point depth

prediction. During inference time, ADDE is not in use and removed to avoid increas-

ing computational burden. To further boost the detection accuracy from the source

feature, an efficient feature enhancement pyramid module is designed to capture the

intact global contextual information from all feature levels.

The proposed model is trained and evaluated on the popular dataset nuScenes

[54]. As this dataset only provides centre depth ground truth and to generate the

additional ground truth data it needs for the validation of the method, the existing

label attributes and the geometry constraints among them are investigated. The

dense ground truth depths are created by LiDAR point cloud projections.

This chapter makes several key contributions, which can be summarized as follows:

1. A novel auxiliary dense depth estimator is introduced to enhance the model’s

perception of depth information. This auxiliary module effectively improves depth

estimation capabilities without adding excessive computational burden, making the

overall model lightweight and efficient.

72

4.2 Related Works

2. To achieve more accurate depth estimation, an augmented centre depth module

is designed. This module dynamically combines the outputs from the fundamental

centre depth predictor and the vertex depth estimator, resulting in more robust and

precise depth predictions.

3. The proposed feature enhancement pyramid module significantly enhances the con-

textual representation of the model. The module effectively fuses feature maps from

the original pyramid, capturing contextual correlations across multiple scales. Addi-

tionally, it facilitates seamless integration into other detectors, leading to improved

performance for various object detection tasks.

Overall, extensive evaluations on the widely-used benchmark dataset, nuScenes,

demonstrate the effectiveness of the proposed algorithm when compared to state-of-

the-art methods.

4.2 Related Works

4.2.1 Monocular 3D Object Detection

In recent years, many researchers develop 3D object detection based on camera feeds

for the convenience of low-cost deployment compared to LiDAR based methods.

Most of the previous approaches adopt additional networks in their architectures or

auxiliary labelling data, such as keypoints, CAD models, instance segmentation or

even the use of stereo cameras feed. Monocular 3D detection is more challenging due

to the natural limitation of acquiring reliable 3D information based on a single image.

To tackle this problem, RTM3D [93] predicts the keypoints of the 3D bounding box

and additional properties while realizing real-time performance. [99] uses geometrical

heuristics based on the assumption that the objects are always on the ground plane.

Prior 3D shapes of vehicles are also leveraged to reconstruct the bounding box for

autonomous driving. One of the pioneers, Deep MANTA [100], reconstructs 3D

object information utilizing 2D keypoints and template similarities from 3D CAD

models. [101] accomplishes 3D reconstruction of vehicles on uneven roads based

on monocular camera. The core of this framework is to estimate the 3D shape

73

4.2 Related Works

and 6DOF pose from the monocular image. 3D-RCNN [102] based on R-CNN

can predict the shape, attitude and size attributes of the vehicles, and render the

scene at the same time. The obtained mask performs "render-and-compare" loss

calculation with the ground truth depth map. MonoGRNet [103] regresses the 3D

centre points, the rough instance depths and the approximate 3D positions. This

work highlights the difference between the 2D bbox centre and the projected 3D

bbox centre to the 2D image. The projected 3D centre point can be considered as an

additional keypoint. Inspired by “2D proposal generation" methods, Mono3D [104]

filters low-confidence bounding box proposals based on predefined priors (e.g. shape,

height, location) to reduce the searching space. [105], on the other hand, uses an

additional network to estimate the confidence map to filter meaningless proposals.

However, these frameworks inevitably face a huge computational burden despite the

reduced proposals they adopt. To this end, single-stage methods propose to directly

predict classes and regress other components of the 3D boxes from each feature

position, in a similar way of semantic segmentation. Groomed-NMS [106] proposes a

detector that generates both 2D anchors and 3D anchors for the given images. The

anchor generation is highly related to its class label. CenterNet [107] in particular,

utilizes key-point estimation to find the centre point and several regression heads

are used to estimate the other attributes of the object, including depth, size, and

orientation. Monopair [108] gets inspiration from CenterNet, and improves the final

detection results via the spatial relationship between pairs of cars. Compared to

CenterNet, the 3D bbox is directly predicted, and the constraint points between

virtual pairs of matching cars are also predicted. In order to complete the spatial

information, [109] proposes to use input from stereo camera and fuse the feature

for proposal generation. The stereo image feeds allow the network to better learns

the depth hints. [110] uses a multi-modal framework to fuse the depth feature from

a single depth estimator and the RGB feature to capture the spatial cues. [111]

utilizes the discrete depth and orientation representation to predict the 3D bounding

boxes. An additional segmentation heatmap sub-network is applied for centre point

regression, reducing the detection offset significantly. [112] further extends the idea

with a fusion strategy by embedding dynamic weights and affinity to combine depth

74

4.2 Related Works

features and RGB features in multiple network layers. Clearly, these methods could

improve the accuracy of the detection, but they are computationally demanding with

extra networks and labelled data.

4.2.2 Feature Pyramid

Exploration of using features from different deep neural network layers for computer

vision tasks has been made through the years. LRR [113] fuses feature maps to get

more details for semantic segmentation. Fully Connected Network (FCN) [59], U-Net

[14] aggregate information from lower layers through simple skip-connections. TDM

[114] constructs a top-down path with lateral connections and takes the highest

resolution fused feature map for object detection. SSD [115], DSSD [116], MS-CNN

[117] choose to infer from several feature levels. FPN [95] combines their advantages

and becomes a widely used feature extractor for many object detectors. Optimizations

have also been made based on the FPN framework. PANet [96] creates a bottom-up

path augmentation based on FPN. It aims to shorten the information path and uses

the precise positioning information stored in the low-level feature to improve the

feature pyramid architecture. ThunderNet [118] up-samples and broadcasts low-level

features and fuses them into one detection head. AugFPN [119] proposes consistency

supervision to narrow the semantic gaps between features at different levels. For

features of various sizes, it introduces adaptive spatial fusion. Same as ThunderNet,

the detection head only contains a final feature fusion.

4.2.3 Contextual Dependency

Various studies have illustrated the impact of the contextual information on deep

learning based computer vision problems including semantic segmentation [72, 73] as

well as object detection [97]. Squeeze-and-Excitation Networks [71] uses spatial-wise

average pooling, and two fully-connect layers to model the channel-wise relationships

by attention mechanism, reinforcing the representational capability of the model. The

self-attention method Non-local module [63] is followed by OCNet [74] and DANet

[75], to calculate the contextual information. EPSANet [76] harvests attention map

75

4.3 Methodology

Figure 4.1 Overview of the framework. The features are first extracted from input by
the backbone and processed by the feature enhancement pyramid module, which can
be seen as a redesigned FPN. This FEPM utilize the asymmetric fusion module to
strengthen the representation of feature pyramids. The multi-head detector shares
parameters from the backbone and FEPM to regress the bounding boxes. [Wang et
al.]

from different sized features pyramid. FAN [120] uses fusion attention which contains

channel-wise and spatial-wise aggregation. A pyramid pooling technique is also

proposed for computation reduction while the performance is guaranteed. CCNet

[65] markedly reduces the parameters and the complexity of the non-local module

through the computation of the partial dependencies. By repeating the attention

module, it achieves a promising performance.

4.3 Methodology

4.3.1 Framework Overview

Fig. 4.1 illustrates the proposed model, which mainly consists of four sections: the

backbone, the Feature Enhancement Pyramid Module (FEPM), the auxiliary dense

depth estimation, and the 3D detection heads. VoVNet−v2 [33] is exploited as the

backbone network, and take the features from the last four layers as the original

feature pyramid. The FEPM module is designed to generate contextual enhanced

76

4.3 Methodology

Figure 4.2 Overview of the feature enhancement pyramid module. [Wang et al.]

features from different scales, while several convolution and combination operations

are applied to reverse the fusion feature back into pyramids. Then, with the feature

pyramid, the auxiliary dense depth estimator (ADDE) will be trained to regress the

dense depth maps, updating all the parameters in backbone and FEPM. Finally,

the depth estimator is removed and replaced with 3D object detectors to train the

multi-task branches including augmented centre depth estimation (ACDE) with

vertex depth estimation inside.

4.3.2 Feature Enhancement Pyramid Module

FPN is widely used in 3D object detection tasks. It uses feature maps of different

resolutions, generated by intermediate layers, to build a feature pyramid. In order

to make up for both high-level and low-level features, FPN integrates the multi-

scale context information, fusing features at different levels by skip-connections and

element-wise summation. Although FPN achieves great improvement, there is still

space to make it more effective. To that end, by implementing the asymmetric fusion

module, the FEPM framework further enhances the network with the identifying

capability of large instances in higher level features and the contextual dependencies

of all levels. First of all, unlike FPN, the feature hierarchy is rebuilt by only applying

lateral connections to feature maps from the last 4 layers of the backbone network,

denoted as Mi ∈ Hi ×Wi × Ci, i = 1, 2, 3, 4 as shown in Fig. 4.2. Each lateral

connection consists of a 1× 1 convolution layer, and reduces the channel number of

all feature levels to C, resulting in Mi ∈ Hi ×Wi × C, i = 1, 2, 3, 4. Note that this

77

4.3 Methodology

operation does not include skip-connections between backbone features and pyramid

features. To make the most of the feature pyramid, M4 is further down-sampled to

get M5. Here, the asymmetric fusion block is introduced. The proposed asymmetric

fusion module as part of the FPN, gathers information from the feature pyramid and

generates an enhanced feature map. Then enhanced feature map is recovered back

to the pyramid through lateral feature aggregation for detection heads. As shown in

Fig. 4.3 and Fig. 4.4, all the feature maps from Mi ∈ Hi ×Wi × C are reshaped into

Vi ∈ Ni × C, where Ni = Hi ×Wi, i = 1, 2, ..., 5. In self-attention mechanism, Key,

Query and Value vectors are used to model the correlation of the features. V4, V5 are

concatenated, resulting in size (N4 +N5)× C and take the concatenated features

as Value and Key vectors. Similarly, V3 is taken as query vector. Then a matrix

multiplication is operated between the Query and transposed Key to obtain:

S = Query ×KeyT (4.1)

with Query = V3, ∈ (N3 × C) and KeyT = (cat(V4, V5))T , ∈ (C × (N4 +N5)) and

S is the similarity matrix, demonstrating the degrees of correlation between each

position in query and key. Note that the size of S ∈ N3 × (N4 +N5). After that, a

SoftMax layer is applied on S to calculate the attention map A ∈ N3 × (N4 +N5).

Then, a matrix multiplication is performed between the matrix A and the value

vector generated above to obtain:

M
′ = A× V alue (4.2)

where Value equals to Key and M ′ has the size of N3 × C, same as M3. Finally, the

output Y1 of fusion block 1 containing rich contextual information is obtained by an

element-wise sum operation between feature map M3 and the calculated M
′ :

Y1(H,W) = γM
′

H,W +M3(H,W) (4.3)

Where H,W specify each position in Y1,M
′
,M3. M3 is the original feature map

before reshaping and γ is a learning scale parameter. It is initialized as 0 and

78

4.3 Methodology

Figure 4.3 Asymmetric Fusion Module. [Wang et al.]

Figure 4.4 The Fusion block 1 and 2. [Wang et al.]

Figure 4.5 The Lateral Feature Aggregation, i = 1, 2, 3, 4. [Wang et al.]

79

4.3 Methodology

gradually learns to increase with more weight [121]. By adding the original feature

to contextual information, the representation capacity of the network is enhanced.

Using Equation (4.1) and Equation (4.2), the same operations implemented on

V1 and V2 to obtain the enhanced feature Y2 with the difference that Query = V1,

Key = V2 and V alue = V2. Y2 is the output of fusion block 2 using (3). Y1 and Y2

are then used to calculate fusion block 3 output E1 ∈ H1 ×W1 × C, which is the final

enhanced feature map. Note that he order of value, key and query assignments to

intermediate layers are fixed to get the E1 the same size as M1. In the last step of the

FEPM module, lateral feature aggregation, as shown in Fig. 4.5, is performed. The

aggregation first takes the enhanced feature map E1 and a coarser map M2 through

lateral connection and generates the new feature map E2. Specifically, E1 first goes

through a 3× 3 convolutional layers with stride 2 to reduce the spatial size. Then

each element of the original feature map M2 and the down-sampled enhanced map

are added through lateral connection. The fused feature map E2 is then manipulated

by another 3× 3 convolutional layer to generate E3 for the following sub-blocks.

This is an iterative process and terminates after obtaining the enhanced feature map

E5. All convolutional layers are followed by a ReLU [122]. Through lateral feature

aggregations, the enhanced feature maps are obtained as a new enhanced feature

map pyramid E1, E2, E3, E4, E5 that is ready to use by the detection heads.

Compared to only using skip-connections to combine the information from different

scales in traditional Feature Pyramid Network, the method gathers the information

by applying the asymmetric attention mechanism. The correlation of two high-level

feature maps and another correlation for three low-level feature maps are calculated,

and then a global feature map is obtained with enhanced the contextual information

by execute the same operation on the two outcomes from before.

4.3.3 Auxiliary Dense Depth Estimation (ADDE)

One of the draw-back of monocular 3D object detection is the inaccurate depth

estimation. As the dataset to be worked on, NuSenes, does not consider monocular

depth prediction task, the LiDAR point cloud is projected to six camera view-

80

4.3 Methodology

angles to generate depth ground truth. In the proposed Auxiliary Dense Depth

Estimating (ADDE) module, per-pixel depth predictions are implemented on all

levels of feature maps obtained in Feature Enhancement Pyramid Module. Fig.

4.1 details the architecture of the proposed ADDE. Each feature level is connected

to a convolutional layer, followed by two transposed convolutional layers. Extra

ReLU and batch normalization layers are used for fast converging. Then, the ADDE

network is updated by minimizing the inverse smooth L1 norm loss function below:

ℓ(d, p) =
w∗h∑
n=1

ln (4.4)

with

ln =


0.5(dn − pn)2/beta if |dn − pn| < beta

|dn − pn| − 0.5 ∗ beta otherwise
(4.5)

where d is the ground truth depth and p represents the inverse predicted depth

values in each position of (width, height). Instead of directly predicting the depth,

the log of depth is regressed, which is p = edpredict . As it can be seen in Fig. 4.1,

the ADDE and the augmented centre depth estimator (Center Depth and Vertex

Depth) share the same backbone and feature pyramid network. During training,

the depth predicting capability of the auxiliary dense depth estimator allows the

model to better regress the augmented centre depth, while also benefits other targets

learning in the framework solution proposed with effective transfer in a multi-task

learning scheme. Note that the augmented centre depth prediction does not directly

rely on the output of the ADDE. During inference time this prediction is realized as

a regression branch on its own, as shown in Fig. 4.1. Doing this will significantly

reduce computation.

4.3.4 Augmented centre Depth Estimation (ACDE)

Single centre depth estimation for object detection is unstable and inaccurate. It

is even harder for the centre depth regression branch to converge in a multi-task

81

4.3 Methodology

Figure 4.6 Four top vertices (green dots) and the centre (yellow dot) of a bounding
box. [Wang et al.]

regression structure, as the modality of depth prediction is far distinct from other

branch tasks such as classification and dimension estimation. Based on this, a better

position reasoning approach is explored for the depth regression branch and further

take advantage of the Auxiliary Dense Depth Estimator (ADDE). The proposed

ACDE module in the section includes two regression branches, centre depth and

vertex depth. Extra depth is regressed from vertices and utilise the geometry of the

3D detection bounding box to finalize the augmented centre depth prediction. Based

on geometry constraints showed in Fig. 4.6, the centre depth equals to the average

value of vertex depths:

dv = (dv1 + dv2 + dv3 + dv4)/4 (4.6)

Assuming that the ground is flat, the four column frames of a bounding box are

always perpendicular to the ground plane, which means the four vertices on the

top have the same depth as their corresponding vertices on the bottom. In order

to lighten the computation of this vertex depth regression branch, only the top

four corner vertex depths are regressed. This branch also benefits from the network

82

4.3 Methodology

parameters trained by the ADDE. To make sure the parameters in this branch

and ADDE are updated in the same way, keeping the consistency between different

depth estimators, the same loss function as ℓ(d, p) is applied with an additionally

introduced confidence factor δ, resulting in Ldepth as follows:

Ldepth =
∑4
i=1 ℓ(d, p)i

δ
+ log(δ) (4.7)

with

ℓ(d, p) =
w∗h∑
n=1

0.5(dn − pn)2/beta (4.8)

if |dn − pn| < beta. otherwise:

ℓ(d, p) =
w∗h∑
n=1
|dn − pn| − 0.5 ∗ beta (4.9)

where ℓ(d, p)i indicates the loss of four vertex depth. When calculating the centre

depth, there is only ln with δ in Equation (4.7). And pn = edpredictn , which is the error

between the ground truth and the log of predicted depth. δ models the uncertainty of

centre and vertex depth regression tasks. To minimise this loss, the network needs to

have high uncertainty value which demonstrates its confidence of the prediction. The

term log(δ) can avoid trivial solutions and encourage the model to be optimistic about

accurate predictions. Same for the vertex depth estimation, confidence prediction

is added to the centre depth branch as following: the average vertex depth value

dv and the centre depth value are combined according to their confidence ratio as

shown in Equation (4.10). The confidence combination can assign more weights to

the outputs of the more confident estimator; therefore being robust to potentially

inaccurate predictions.

d = δc ∗ dc + δv ∗ dv
δc + δv

(4.10)

Similar to the dense depth learning, vertex depth ground truth is also unavailable

from the dataset. This information is acquired based on the centre depth and other

83

4.3 Methodology

Figure 4.7 The angle (yaw) between the perceived object and world coordinates,
which is deified by the ego camera. [Wang et al.]

existing annotations. In Fig. 4.7, yaw is the angle between the world coordinate and

the ego coordinate. θ and α are the angles of the diagonal and world coordinate. The

centre of the bounding box (noted as bb in the following) is at the origin, and the

position of vertex a can be located on the four quadrants. The location situations of

vertex a are further simplified into two types: 1. the first and third quadrants; 2.

the second and fourth quadrants. The diagonal and β can be calculated by:

diag =
√

(lengthbb)2 + (widthbb)2 (4.11)

β = arctan(widthbb/lengthbb) (4.12)

Then the depth of the four bounding box vertices is calculated as following:

84

4.3 Methodology

If β < yaw < π ∗ 0.5 or − π − β < yaw < − 0.5 ∗ π



dv1 = dcenter + cos(β − yaw) ∗ diag

dv2 = dcenter − cos(β − yaw) ∗ diag

dv3 = dcenter + cos(β + yaw) ∗ diag

dv4 = dcenter − cos(β + yaw) ∗ diag

(4.13)

otherwise,



dv1 = dcenter + sin(β − yaw) ∗ diag

dv2 = dcenter − sin(β − yaw) ∗ diag

dv3 = dcenter + cos(β + yaw) ∗ diag

dv4 = dcenter − cos(β + yaw) ∗ diag

(4.14)

where dcenter denotes the bounding box centre depth ground truth.

4.3.5 Multi-Head Detectors

After the feature enhancement pyramid module, as shown in Fig. 4.1, five detection

heads (blue heads) are respectively connected to the five pyramid feature maps

(E1, E2, E3, E4, E5), which were aggregated from the FEPM. Each head consists of

two sets of four convolutional layers, with kernel size 3 ∗ 3, stride 1 and padding 1.

The first set of four convolutional layers in one head is for classification tasks (blue

squares) and the other set is for the rest (green and grey squares) as regression tasks.

Finally, the features processed and output by the detection heads (F1, F2, F3, F4, F5)

will be passed to a convolutional layer with different output dimensions for multiple

purposes. The detection heads and the task layers together are called multi-head

detectors. The output of each tasks is in the form of a heatmap, and the width

and height are the same as the corresponding input level feature maps. The offset

regression branch predicts the offset between the 2D centre and the projected 3D

centre on the image plane. With the regressed centre depth and offsets, the 3D

centre point [X, Y, Z] can be retrieved based on the camera intrinsics. The dimension

85

4.3 Methodology

regression branch predicts the size of the object. The rotation regression branch

predicts the yaw angle, and the outputs from the direction regression branch help

to solve the controversial angle situations (when this object in opposite directions).

The speed regression branch and the attribute regression branch predict velocity

and additional attributes of the detected objects in order to obtain the overall score

required for the nuScenes dataset. Following [87], the centerness regression branch

is adopted as a filter to retrieve and display only the high-quality 3D detection

bounding box predictions.

While training the auxiliary dense depth estimator neither regression branch nor

classification branch is attached to the detection heads, as the intermediate step

of the whole training. Instead, as shown in Fig. 4.1, two transposed convolutional

layers are introduced to predict dense depth information. It has been found more

efficient to have extra ReLU and batch normalization layers between convolutional

layers and transposed convolutional layers for the dense depth training.

4.3.6 Adopted Training Loss Functions

To train the full 3D detection model proposed in Fig. 4.1, three different loss functions

are used. First, cross-entropy loss is used for direction, attribute and centerness

predictions:

Lce = Ldirec + Lattri + Lcentr (4.15)

For the rest of the regression branches, smooth L1 norm loss is applied as specified

in Equation (4.4) and Equation (4.5) but without inverse the prediction values. The

loss of the offset, dimension, rotation and speed branches, together are denoted

as Lsml1. Note that the augmented centre depth branch uses a modified L1 norm

loss with confidence assignment as shown in Equation (4.7), Equation (4.8), and

Equation (4.9). The loss of centre depth and vertex depth branches is denoted as

Ldepth = ℓ(d, p) + Ldepth, where the two terms are defined in Equation (4.4) and

Equation (4.7) respectively. A simple focal loss is used for the classification branches,

86

4.4 Experiments

denoted as Lfocal. To sum up, the total loss is defined as:

Ltotal = Lce + Lsml1 + Lfocal + Ldepth (4.16)

4.4 Experiments

4.4.1 Dataset and Evaluation Standard

Dataset

nuScenes3D The nuScenes 3D detection benchmark dataset [54] is adopted in the

experiments and it consists of 1000 multi-modal videos with 6 cameras on the top

of a car, covering the full 360-degree field of view from the ego car. the dataset

is split into 700 videos for training, 150 for validation, and 150 for testing. The

3D detection models are evaluated by regressing 3D bounding boxes of 10 object

classes, from multiple types of vehicles to pedestrians, over an amount of frames

from videos. NuScenes is becoming one of the definitive benchmarks for 3D object

detection because of its variety and quantity of scenarios and labels.

Evaluation

nuScenes Detection Score The detection performance is evaluated by the official

metrics adopted in nuScenes and are distance-based mAP (Average Precision metric)

and comprehensively defined NDS (NuScenes Detection Score), which is a more

intuitive overall score to assess the 3D detection model performance on nuScenes

dataset. The mAP defines the match between the ground truth and the predicted

bounding boxes that have the smallest 2d center-distance under a certain threshold,

where NDS is computed by the weighted sum of the mean average precision(mAP),

average translation error(mATE), average scale error(mASE), average orientation

error(mAOE), average velocity error(mAVE) and average attribute error(mAAE).

To calculate NDS, the true positive error needs to be transformed to true positive

87

4.4 Experiments

scores(TP), and normalize the weighted score sum as:

NDS = 1
10[5 ∗mAP +

∑
max(1− TPerror, 0)] (4.17)

The model is tested on the validation dataset, and report NDS and mAP, along with

all the five true-positive metrics that are critical to 3D detection.

4.4.2 Implementation Details

VoVNet−v2 [33] is adopted as the backbone network, with input size of 1600× 900.

Each feature level map from the FEPM connects to a detection head, attached

to four H ×W × 256 convolutional layers, a BatchNorm layer [123], and a ReLU

layer, plus another H ×W × num convolutional layer for different classification and

regression tasks, where num is the output size. The whole model is trained using

stochastic gradient descent (SGD) [124] optimizer with an initial learning rate of

2e−3 and weight decay as 1e−4, warm-up iterations at 500 and warm-up ratio of 0.33.

The multi-task learning weight is set to 1. The model is trained for 12 epochs with

a batch size of 16 on a single Nvidia A100 GPU, and finetune the loss weights of

depth-related regression branches for another 12 epochs. The random horizontal flip

is adopted as the only data augmentation used here.

4.4.3 Results

In the result section, the quantitative and qualitative results are presented. A detailed

ablation study is given as it is shown to prove the efficiency of the different modules

introduced in the work.

Quantitative and Qualitative Analysis

The training progress is shown in Fig. 4.8 and Fig. 4.9. As expected it is harder for

depth regression to converge than other tasks which proves again that the problem

tackled in this research is tough since a multi-task training is conducted. The plunge

in loss responds to the drop of learning rate during training. Then the performance

of the proposed method on nuSecnes validation set is showed. Comparisons are

88

4.4 Experiments

Figure 4.8 Training progress. As a multi-task learning approach, the losses of multiple
tasks are displayed. Note that one step means training on a batch size. [Wang et al.]

Figure 4.9 Training progress of centre depth estimator and vertex depth estimator.
[Wang et al.]

89

4.4 Experiments

Methods Modality mAP mATE mAVE mAAE mASE mAOE NDS
CenterNet[98] camera 0.306 0.716 1.426 0.658 0.264 0.609 0.328
MonoDIS[15] camera 0.304 0.738 1.553 0.134 0.263 0.546 0.384
FCOS3D[125] camera 0.343 0.725 1.292 0.153 0.263 0.422 0.415

PGD[126] camera 0.369 0.683 1.268 0.185 0.260 0.439 0.428
AIML-ADL camera 0.352 0.696 1.592 0.122 0.696 0.392 0.429

DD3Dv2[127] camera 0.431 0.570 - - 0.250 0.380 0.480
PointPillars[90] LiDAR 0.305 0.520 0.316 0.368 0.290 0.500 0.450
CVFNet[128] LiDAR 0.548 0.291 0.349 0.139 0.248 0.389 0.633
PAC3DNet camera 0.434 0.581 1.246 0.053 0.238 0.614 0.461

Table 4.1 Results on nuScenes dataset in order of NDS scores. The proposed method
Deep Assisted 3D Object Detection (PAC3DNet) outperforms existing camera based
methods. The comparisons with LiDAR methods are also demonstrated, which has
nature advantages in position related tasks. Although they have higher overall NDS
scores, PAC3DNet still has competitive performance in mAAE, mASE and mAP.
[Wang et al.]

displayed of the results with other state-of-the-art monocular 3D detectors, as shown

in Table 4.1. It can be observed that the approach achieves better performance

than other camera-based methods in terms of the mAP which is the most important

locating metric in the benchmark. Furthermore, it is worth noting that the approach

outperforms other non-extra-depth-assisted methods by large margins. For instance,

compared to FCOS3D, CenterNet, MonoDIS, PAC3DNet exceeded their mAP by

9.1%, 12.8% and 13.0%, respectively. Thanks to the depth reasoning modules ADDE

and ACDE, it is worth note that the method achieves much better mAVE than the

three methods mentioned above. Despite the absence of continuous multi-frame data

as input, the depth information strongly helps the prediction of the speed. Compared

to LiDAR based methods, PAC3DNet surpasses PointPillars at mAP by 12.9%.

However, as expected, LiDAR based methods naturally got better NDS than most

camera based approaches and better in mAVE category, due to the accurate point

cloud information. To recover the missing distance information in monocular images,

some depth-assisted methods like ours achieve better results than regular methods.

Compared to PGD, AIML-ADL, DD3Dv2, PAC3DNet still has 6.5%, 8.2% and 0.3%

of improvement in mAP, and 22%, 35% in mAVE compared to PGD and AMIL-ADL.

The detailed scores on mAP in each classes can be found in Table 4.2. the model

works good for traffic cones, barrier and most importantly, cars. For categories of

big objects such as trucks and buses, the precision still needs improvement. The

90

4.4 Experiments

car truck bus trailer construction vehicle
0.607 0.364 0.481 0.239 0.156

pedestrian motorcycle bicycle barrier traffic_cone
0.510 0.397 0.381 0.604 0.602

Table 4.2 PAC3DNet mAP Results on each categories. [Wang et al.]

Methods NDS Inference Time (s/100task)
FCOS3D[125] 0.415 4.23

PGD[126] 0.428 5.19
PAC3DNet 0.461 4.55

Table 4.3 Inference time testing results, calculated by second per 100 frames of
detection. [Wang et al.]

performance drop for this case and on this challenging dataset is due to the frequent

occlusion by smaller objects and those objects being out of images. Further work is

required and expected in the future.

The inference time of other two code-available monocular-based methods are tested

and showed in Table 4.3, FCOS3D and PGD (a depth-assisted method) on the same

hardware—a single RTX 4090 graphics card to compare the computational efficiency

of the method. As shown in the Table 4.3, the method achieved the highest nuScenes

detection score (NDS). Regarding computational efficiency, the inference time is 14%

faster than PGD, supporting the claim that the depth module avoids additional

computational burden. Additionally, the asymmetric attention mechanism in the

Feature Enhanced Pyramid Module (FEPM) is more efficient than the traditional

attention mechanism. When compared to FCOS3D, although the method is 0.32

seconds slower, PAC3DNet surpasses their NDS by 4.6%.

A more comprehensive analysis of the visualized results is attained using the nuScenes

dataset. The showcases are categorised into comparisons based on differences in range

and environmental conditions. To ensure the presentation of only the most precise

bounding boxes, a threshold is implemented for box display, thereby disregarding

lower-scoring boxes solely for display purposes. Fig. 4.10 illustrates an example of

the filtering process applied to generated bounding boxes. As shown in the distance

category of Fig. 4.11, the 3D detection deep network model demonstrates remarkable

precision in detecting most objects across all ranges. For instance, in the parking lot

91

4.4 Experiments

Figure 4.10 Visualization with (left) and without (right) thresh hold filters. [Wang
et al.]

Figure 4.11 Visualization of detection results, categorised by distances of the objects.
[Wang et al.]

scenario illustrated in Fig. 4.11 (d), the algorithm accurately generates bounding

boxes even amidst heavy occlusions between cars. Similarly, the image featuring large

trucks and two cars in Fig. 4.11 (c) highlights the robustness of the 3D detection

approach. However, objects situated at considerable distances, as showcased in

examples like Fig. 4.11 (d) and Fig. 4.11 (e), pose challenges for precise tracking by

the model. Additionally, incomplete objects, visible less than half, due to proximity

92

4.4 Experiments

Figure 4.12 Visualization of detection results, categorised by different environment
conditions. [Wang et al.]

to the camera also present difficulty for accurate detection. To increase the detecting

difficulties, the comparisons under various environmental conditions is considered to

better show the robustness of the model. As shown in Fig. 4.12, the performance

tests are conducted in scenes characterized by sunny (Fig. 4.12 (a)), cloudy (Fig.

4.12 (b)), and rainy (Fig. 4.12 (c)) weather conditions. Remarkably, the model

exhibits flawless handling across all moderate weather condition changes, showcasing

its adaptability and reliability. Then the model’s performance is compared under

heavy rain conditions with raindrops on the camera, which significantly impact

the visual quality. In Fig. 4.12 (e) and Fig. 4.12 (f), despite heavy occlusions

affecting the red cars, the model adeptly detects them and generates bounding boxes

surpassing the threshold. However, under extreme conditions illustrated in Fig. 4.12

(d), where the red car is nearly invisible due to raindrop blockage, the detection falls

below the threshold. In night conditions, the model exhibits robustness against poor

illumination and reflections. In Fig. 4.12 (g) and Fig. 4.12 (i), despite challenging

conditions such as low light and blurriness, the model accurately bounds the front

objects, although the bounding box for the overlapped truck is filtered out. In Fig.

4.12 (h), the method successfully bounds the car even in the presence of reflections

from the traffic light, simulating a camera failure scenario.

93

4.4 Experiments

Figure 4.13 Visualization of detection results in urban and rural areas. [Wang et al.]

Moreover, it is discovered that the dataset assumes the road to be flat by default. In

Fig. 4.12 (i), the slanted bus results from the gradient of the road. While the generated

bounding box effectively locates the object, it’s worth noting that the default ground

is perpendicular to the x-axis of the camera coordinate (world coordinate), causing

the bounding boxes to align parallel to the ground. Addressing this challenge in

future research involves exploring methods to detect the roll angle information of

these objects and adjust their bounding boxes accordingly. Fig. 4.13 illustrates

the comparison of environment layouts in different areas. In urban environments,

characterized by high complexity and a higher density of objects, the task of detection

becomes more challenging due to the increased clutter. However, even in such

demanding scenarios, the model maintains robust performance. Conversely, in rural

environments with more vegetation, where the scene complexity differs, the model

continues to demonstrate consistent and reliable performance.

In conclusion, the method exhibits robust performance across a wide spectrum of

detection ranges, ranging from close proximity to distant objects. Furthermore,

it proves its adaptability and reliability across diverse environmental conditions,

including variations in lighting, weather, and scene complexity.

Ablation Studies

An in-depth comparison is conducted among the three proposed components, with

Table 4.4 showcasing their performance across various evaluation metrics. Initially,

the results of the Feature Enhancement Pyramid Module (FEPM) is presented.

It is evident that the FEPM module yields a significant improvement, contributing

94

4.4 Experiments

Parts mAP mATE mAVE mAAE NDS
Baseline 0.343 0.725 1.292 0.153 0.415
FEPM 0.374 0.714 1.275 0.104 0.427
ADDE 0.412 0.653 1.249 0.072 0.446
ACDE 0.434 0.581 1.246 0.053 0.461

Table 4.4 Ablation studies of proposed components on nuScenes dataset. [Wang et
al.]

Figure 4.14 Visualization of detection results regarding the efficiency of the depth-
assisted module. [Wang et al.]

to a 1.2% enhancement in the overall NDS compared to the baseline (FCOS3D). A

noticeable boost shows in the mAAE (attribute errors). Thanks to the asymmetric

fusion block, the fused feature benefits of the strong contextual information from

different feature levels. With the Auxiliary Dense Depth Estimator (ADDE), the per-

formance is further raised to 0.412 in mAP. The ADDE module offers the recognition

of spatial information, and this capability remains in the shared parameters leading

to a better NDS at 0.446. The Augmented centre Depth Estimation (ACDE) also

improves the results. The regression of it is actually done the same way as centre

depth, however, the confidence voting mechanism provides more robustness when

one of the regression branches is not sure about its prediction. Including ACDE in

the 3D object detection module achieves state-of-the-art performance at 0.434 mAP

and 0.461 NDS.

95

4.4 Experiments

Visualizations is included comparing the results from the depth-assisted model

(combining ACDE and ADDE) with those from the depth-less model. the decision to

combine ACDE and ADDE into one model stems from their significant contribution

to performance gains and their role as depth-assisted components. Therefore, the

two models tested are the one with FEPM and the full method. As detailed in last

section, during inference, a bounding box score threshold is employed to mitigate the

occurrence of multiple boxes on a single object. The absence of boxes on an object

indicates that the generated bounding boxes fall below this threshold. Conversely, a

higher number of bounding boxes signifies more precise predictions. When comparing

the full method to solely using FEPM, it becomes apparent the proposed method

generates more bounding boxes within the same scenes in Fig. 4.14. However, the

missing boxes primarily occur in regions distant from the camera and in overlapping

areas, which are known challenging aspects of the 3D object detection task. This

observation underscores the effectiveness of the proposed depth-assisted modules in

addressing these challenges and enhancing the overall performance of the detection

system.

Assessment on FEPM

This section includes a comprehensive impact analysis of the Feature Enhancement

Pyramid Module (FEPM). While original feature maps and enhanced feature maps

from intermediate layers can be directly visualized, the distinctions are not apparent

due to the complexity of high-level features in deep neural networks. To gain

a better understanding of the proposed method’s impact, Grad-CAM is used to

generate heatmaps for the original feature pyramid and the proposed enhanced

feature pyramid, respectively, which are both then projected onto the input images.

Four sets of comparisons using different input images are presented in Fig. 4.15,

with colours representing the importance of pixels in predicting 3D bounding boxes.

Warmer colours indicate higher importance, signifying areas where the network

focuses its attention. Upon examination of the four examples, it becomes evident

that with the original feature maps, the highlights are randomly dispersed, suggesting

that the network makes less efficient predictions based on imperfect information. In

96

4.4 Experiments

Figure 4.15 Visualization of attention maps on the impact of FEPM module. The
Grad-CAM [129] is presented on the input images to show the important regions
when making a prediction. Warmer colours mean most influential areas and cooler
colours mean less influence. [Wang et al.]

contrast, the enhanced feature maps enable the detection network to concentrate

more accurately on the main objects (cars and pedestrians), resulting in better

regression of bounding boxes. Particularly in well-illuminated conditions (examples

1 and 2), the feature map enhancement allows the network to precisely focus on

97

4.4 Experiments

Figure 4.16 Attention visualization of enhanced lower level feature maps and higher
level feature maps from FEPM. [Wang et al.]

objects while disregarding irrelevant information. Even under undesirable conditions

such as poor illumination and light reflection (examples 3 and 4), the attention map

still covers most of the relevant areas. When combined with the results presented

in Table 4.4, the feature enhancement demonstrates its efficacy in facilitating the

precise prediction of 3D bounding boxes, centre points, attribute classification, and,

notably, boosting the accuracy of object speed estimation. This enhancement leads

to better object localization in the detection process.

Furthermore, to assess the efficiencies of different levels within the enhanced feature

pyramid, three examples of Grad-CAM images from level 1 (representing low-level

features) and level 5 (representing high-level features) are presented in Fig. 4.16. In

the context of CNN applications, it is widely understood that lower level features

encompass more primitive information, such as basic shapes, edges, colours, or

textures, while higher level features capture more abstract and complex information.

In the specific object detection task, it is observed that the rules reflect to detecting

of objects in various sizes and distances. At level 1, smaller and more distant objects

are better detected, but there is a partial loss of focus on larger objects, such as

98

4.5 Summary

the bus located in the middle of the street and the pedestrians closer to the camera.

Conversely, at level 5, the network prioritizes nearer objects in its predictions while

paying relatively less attention to distant ones. By leveraging the benefits of different

feature levels, the multi-head detector achieves versatile object detection performance

across all objects, regardless of their sizes and distances. This indicates the efficacy

of the proposed feature enhancement pyramid module in improving object detection

capabilities.

4.5 Summary

In summary, this chapter introduces a novel approach for monocular 3D object

detection that leverages depth-enhanced deep learning techniques, incorporating

spatial information to improve detection accuracy. By incorporating an auxiliary task

for dense depth estimation, the network’s feature extractor gains a strong awareness

of depth, without significantly increasing computational complexity or burden. This

auxiliary training allows the model to better interpret the spatial relationships within

an image, enhancing its overall understanding of object positioning in 3D space. To

take full advantage of the improved depth perception, a simple yet effective vertex

depth regression technique is devised. This technique uses a fusion approach that

combines both centre depth and vertex depth estimations through a confidence

voting mechanism, which greatly enhances the robustness and precision of the overall

depth estimation. This process ensures that the model not only predicts object

location but also does so with greater accuracy, even in challenging scenarios where

depth cues may be ambiguous or incomplete. Moreover, to further strengthen the

feature representation from the input data, the Feature Enhancement Pyramid

Module (FEPM) is introduced. This module captures contextual dependencies across

different feature levels, effectively integrating information from multiple scales. By

doing so, it preserves high-resolution details and rich semantic features throughout

the network, ensuring that finer, critical details are retained in the final predictions.

This combination of depth awareness, robust depth estimation, and enhanced feature

99

4.5 Summary

representation makes the proposed method highly effective for 3D object detection

in monocular images.

Looking ahead, several challenges and opportunities for future research are acknowl-

edged, which could further refine and enhance the proposed approach. One such

challenge lies in accurately computing the roll and pitch angles of objects. Current

methods primarily focus on estimating object positions and their orientation on

flat surfaces; however, real-world driving scenarios often involve more complex road

conditions, such as inclines, ramps, and uneven terrains. Accurately determining

the roll (tilt) and pitch (slope) angles of objects in these conditions would greatly

improve 3D object detection, especially for applications in autonomous driving where

understanding the precise orientation of vehicles, pedestrians, or other obstacles is

crucial for safety and decision-making. Tackling this problem requires more advanced

algorithms that can integrate these angular estimates into the existing framework

without overloading the computational complexity. Another key direction for future

research is optimising weight assignment for the various sub-tasks involved in the

overall model. As the approach integrates multiple tasks—such as dense depth

estimation, vertex depth regression, and object classification—finding the optimal

balance between these tasks is essential for maximising performance. Assigning

appropriate weights to each task can be intricate, as overemphasising one task may

detract from another. However, achieving this balance holds the potential for signifi-

cant performance gains. Developing a more adaptive and dynamic weight-assignment

strategy could help streamline this process, allowing the network to automatically

adjust its focus based on the task at hand and the complexity of the environment.

Moreover, while the proposed depth-enhanced monocular 3D object detection ap-

proach, along with the incorporation of spatial information and the Feature Enhance-

ment Pyramid Module (FEPM), has demonstrated promising results, there is still

room for innovation. Refinements in feature extraction, integration of multi-scale

contextual information, and improvements in training efficiency could yield even

more robust models. These advancements would not only apply to autonomous

driving but also extend to other domains such as robotics, augmented reality, and

100

4.5 Summary

smart surveillance systems. Ultimately, the hope is that this work will inspire further

advancements in 3D object detection research, pushing the boundaries of what is

possible in monocular vision systems.

101

Chapter 5

Guidance on Depth Completion

This chapter explores Deep Reinforcement Learning (DRL)-based guidance

for ground vehicles, using depth images as input. The guidance system

consists of two phases: an imitation learning phase and a reinforcement

learning phase. The depth module, based on a binocular camera, integrates

both supervised and self-supervised learning approaches. Experiments

demonstrate that incorporating depth images significantly improves the

performance of the guidance network.

Associated Publications This chapter is based on the following published work:

Wang C, Aouf N. Deep Reinforcement Learning based Planning for Urban Self-driving

with Demonstration and Depth Completion[C]//2021 21st International Conference

on Control, Automation and Systems (ICCAS). IEEE, 2021: 962-967.

102

5.1 Overview

In the previous two chapters, semantic segmentation and 3D object detection tech-

niques were discussed as key perception modules, aimed at improving scene under-

standing for autonomous driving vehicles (ADVs). Depth images are also critical

for ADVs to comprehend the 3D layout of their environment, which is essential for

autonomous planning. Current techniques for decision-making in driving policies

tend to be modular and hand-designed, making them both expensive and inefficient.

With advancements in machine learning, learning-based approaches have become

a dominant research direction. However, performance in urban driving scenarios

remains limited due to the brittle convergence of deep reinforcement learning (DRL)

algorithms and degraded observation data. To address these limitations, this chapter

proposes a learning-based method that combines DRL with imitation learning (IL),

alongside a novel depth completion model designed to enhance perception. The

framework is built upon the Soft Actor-Critic (SAC) algorithm [130] and introduces

a novel updating strategy to tackle the difficulties that current DRL-IL methods

face when transitioning from the IL phase to the DRL phase. Instead of relying on

RGB input, a reconstruction-constrained deep fusion depth completion network is

proposed to predict a comprehensive and accurate depth map of the environment,

using pre-processed synthetic datasets. In experiments, the autonomous driving

agent using the proposed algorithm successfully transitions from Imitation Learning

(IL) to Deep Reinforcement Learning (DRL) during training, outperforming state-

of-the-art methods in challenging urban environments. Furthermore, the driving

model maintains competitive performance when using predicted depth images as

input, compared to ground-truth data.

5.1 Overview

Self-driving is an expansive research field that combines control systems, computer

vision, and artificial intelligence [131]. In recent years, emerging autonomous driv-

ing technologies have progressed from academic research to practical applications

[132, 133]. Some companies have already tested autonomous vehicles in public envi-

ronments. However, creating a highly intelligent planning and decision-making model

103

5.1 Overview

for self-driving in complex urban scenarios remains a significant challenge. Previous

approaches to autonomous driving have largely relied on inefficient hand-designed,

model-based methods, which can easily fail in dynamic, real-world situations [134].

With the major successes of deep reinforcement learning (DRL) in various applica-

tions, such as AlphaGo and retro game playing, researchers have turned to machine

learning to address these challenges. An ideal end-to-end, model-free system is

expected to solve both perception and motion planning tasks. However, current raw

sensor data, like that from RGB cameras and LiDAR, does not provide the level

of accuracy required for high-quality perception. Additionally, the action and state

space in driving environments is vast, making it difficult for a policy network to

find an optimal driving policy. This has led many researchers to focus on solving

sub-tasks within the broader navigation problem, or to develop systems that are

limited to completing specific tasks, such as lane keeping [21], where a complete

solution still remains challenge.

A depth image is a crucial input for autonomous driving, as depth information is

essential for 3D vision tasks, helping to interpret the 3D geometry of a scene. While

existing sensors such as LiDAR, radar, and others to acquire depth information, the

generated depth maps are too sparse to satisfy the driving systems in complex outdoor

environments. This shortcoming hinders the accuracy needed for tasks in autonomous

driving. As a result, depth completion remains an important and valuable area in

today’s robotics-related industries. Recently, many approaches have used monocular

cameras to predict depth maps, leveraging the rich texture information. Eigen et al.

[10, 135] approached depth estimation as a regression problem using Convolutional

Neural Networks (CNNs), applying a local fine-scale network to refine the output

of a global coarse-scale network for depth estimation. Wang et al. [136] explored

the relationship between depth and semantic information, finding that objects with

similar semantic labels tend to have similar depth values. However, these methods

are limited by changes in lighting conditions. Other techniques [137] use sparse

depth maps alongside guided RGB images. Depth completion, especially when based

on deep learning, requires a large amount of offline training data, which remains a

challenge due to the sparse measurements and pixel-level annotations available from

104

5.1 Overview

Figure 5.1 A set of depth annotations comparison of KITTI dataset (left) and the
dataset collected in this chapter (right). Comparing to KITTI, the collected data
contains dense depth information of the whole scene. Colours are used to describe
the object distance to the camera. Blue indicates close objects and red indicates far
objects. [Wang et al.]

modern LiDAR sensors. For example, the widely-used KITTI dataset [52] provides

only 5.9% density point clouds captured by the Velodyne-HDL64, as shown in Fig.

5.1.

In this work, an end-to-end, model-free, learning-based framework is proposed to

learn an optimal driving policy in urban environments. The approach is built on a

maximum entropy reinforcement learning algorithm, leveraging imitation learning to

stable the eventual reinforcement learning. Furthermore, a reconstruction-constrained,

deep-fusion depth completion model is introduced, utilising pre-processed synthetic

dataset for reliable 3D-aware perception. Since existing open datasets lack dense

depth ground truth, a novel dataset is collected using the Carla simulator [49], which

offers dense and highly accurate ground truth data, as shown in Fig. 5.1. This new

dataset addresses the limitations of existing datasets, and features urban scenarios

close to the complexity of real-world environments, making it suitable for further

research in this field. The depth completion model is built upon ResNet-34 [28] as

the baseline, utilising stereo images and sparse depth data as inputs. A deep fusion

technique is employed to integrate different modalities for precise depth prediction.

The contributions of this chapter are summarised as follows:

1. A guidance model combining Imitation Learning (IL) and Deep Reinforcement

Learning (DRL) for autonomous driving. This approach accelerates the training

process and delivers superior results, outperforming state-of-the-art methods.

105

5.2 Related Works

2. A novel update strategy that enables a smooth transition from the IL phase to

the DRL phase. This strategy not only trains the policy network during the IL

phase but also updates the value function and Q-function. Experiments demon-

strate that this method facilitates seamless transitioning from demonstration

to reinforcement learning.

3. A novel dataset containing dense depth information has been collected. The

raw data comprises stereo images and LiDAR signals, and an assembly method

is employed to fuse all the raw data into dense depth maps.

4. A depth completion model is developed, accurately estimating depth maps

using the pre-processed dataset. The model integrates effectively with the

driving agent, enhancing overall performance.

5.2 Related Works

5.2.1 Deep Reinforcement Learning with Imitation Learning

Currently, two main learning-based approaches are widely used in autonomous driving:

imitation learning and reinforcement learning. Imitation learning enables a driving

system to learn an optimal policy by mimicking human expert driving behaviour

through supervised training. The underlying idea is straightforward—by analysing

expert demonstrations, the system can approximate human decision-making processes,

allowing it to handle driving tasks. However, imitation learning comes with several

limitations. The most significant is the need for vast amounts of high-quality expert

data, which is both time-consuming and costly to collect. Even with a large dataset,

imitation learning may still fail to generalise to all possible real-world scenarios

that an autonomous vehicle may encounter. Unseen hazards, such as unexpected

obstacles or rare events not included in the training data, could be catastrophic for

a vehicle relying solely on imitation learning. Furthermore, in complex planning

tasks, errors made early in the decision-making process can propagate and compound,

a phenomenon known as compounding errors [138]. These errors can reduce the

106

5.2 Related Works

effectiveness of the model, especially when it is required to handle long sequences of

actions, such as navigating through busy urban environments.

On the other hand, deep reinforcement learning (DRL) has demonstrated promising

results in various fields, such as robotics and gaming, where agents can learn through

trial and error by interacting with their environment. In DRL, the agent continu-

ously improves its policy based on feedback from the environment, learning which

actions lead to better outcomes. However, applying DRL to autonomous driving has

proven challenging due to the complexity of real-world driving environments and the

requirement for safety-critical decision-making. DRL models often require extensive

exploration, which is not always feasible or safe in autonomous driving. Additionally,

DRL convergence properties tend to be brittle, leading to slow or unstable learn-

ing, especially in scenarios where the agent faces degraded or noisy observations.

These issues make DRL alone insufficient for handling the intricacies of autonomous

driving. To address these limitations, there has been growing interest in hybrid

approaches that combine reinforcement learning with imitation learning to capitalise

on the strengths of both methods. For example, Hester et al. [139] proposed Deep

Q-learning from Demonstration (DQfD), a technique that accelerates the learning

process by using a small set of expert demonstrations. This method enhances the

efficiency of the standard Deep Q-Network (DQN) approach by pre-training the

model on demonstration data, which allows it to learn useful driving strategies before

interacting with the environment. Similarly, Vecerik et al. [140] explored a hybrid

approach that combines expert demonstrations with online transitions sampled in a

replay buffer. This method, using the Deep Deterministic Policy Gradient (DDPG)

algorithm, enables the agent to learn from both human demonstrations and its own

experiences, thereby improving learning stability and performance. Liang et al. [141]

further refined this approach by proposing controllable imitative reinforcement learn-

ing, which integrates a command gating function to reduce meaningless exploration,

allowing the agent to focus on relevant tasks while still benefiting from reinforcement

learning exploration capabilities.

107

5.2 Related Works

In summary, combining reinforcement learning with imitation learning offers a

more efficient and robust approach to training autonomous driving systems. By

leveraging human expertise while still allowing the model to explore and learn from

its own experiences, these hybrid approaches can overcome the limitations of each

method individually. This work builds on this idea, adopting a maximum entropy

reinforcement learning framework to further improve the stability and performance

of autonomous driving models, ensuring they can handle the complex urban driving

scenarios.

5.2.2 Depth Completion

Sparse LiDAR data, while valuable for depth estimation, lacks the density required

for detailed scene understanding, necessitating the development of methods that can

fill in the gaps, or “complete” the depth information. Uhrig et al. [142] introduced a

sparsity variant CNN to tackle this issue, utilising a binary mask operation and input

normalisation. This approach ensures the network maintains consistent performance

despite varying levels of depth sparsity, making it a foundational technique in depth

completion. Many subsequent methods improved depth completion by using RGB

images as additional guidance, leveraging the rich, dense visual information they

provide. Schneider et al. [143], for example, use guided RGB images alongside

pixel-wise structured edge detection and semantic scene annotation to sharpen object

boundaries in the depth maps. While this method enhances the depth completion

process, it highlights a key challenge: RGB images and sparse depth data are

inherently different. RGB images are dense and structured, providing continuous

pixel information, while point cloud data from LiDAR sensors is sparse and unordered.

These differences make feature fusion difficult to achieve effectively at the input or

feature level.

Typically, there are three main fusion strategies employed in the depth completion

field: early fusion, deep fusion, and late fusion. Early fusion combines the data

before it is input into the network, but this can be problematic because it does not

fully address the distinct characteristics of each data modality. Deep fusion, on the

108

5.2 Related Works

other hand, processes each data stream independently, extracting features separately

with specialised feature extractors before merging them at a multi-scale semantic

level. This allows the model to handle the unique properties of each modality more

effectively. Both early and deep fusion are considered feature-level fusion techniques,

focusing on integrating features from multiple inputs within the network. Mohan

et al. [144] introduced a deep fusion method in which feature maps are extracted

from multiple inputs during the encoding phase and concatenated at various stages

of the network. This multi-stage fusion allows the model to incrementally integrate

information from the different modalities, making it more flexible in processing both

RGB and sparse depth data. Late fusion, in contrast, is a decision-level approach

where predictions from each modality are generated independently and then combined

at the final decision stage. This method often yields better results compared to

early fusion, as it allows each modality to contribute without being forced into

alignment at earlier stages of processing. Studies like [145] have shown that late

fusion frequently outperforms early fusion, particularly in tasks that require precise

depth estimation. In this chapter, a hybrid fusion approach that combines elements of

both early and deep fusion techniques is implemented. During the pre-processing of

the collected dataset, early fusion is employed by performing pixel-level combinations,

effectively creating dense input data that merges RGB and sparse depth information

at an initial stage. This allows exploiting the rich visual information in the RGB

images while still making use of the depth data from LiDAR. Deep fusion is then

applied during the feature extraction process, where each data stream is processed

independently to capture the unique properties of both RGB and sparse depth inputs.

By fusing the feature maps at multiple stages within the framework, the strengths of

both data modalities are effectively integrated, leading to improved depth prediction

accuracy. Comparing to state-of-the-art methods, the proposed model demonstrates

competitive performance.

109

5.3 Methodology

5.3 Methodology

In this section, a guidance network based on Soft Actor-Critic (SAC) with Demon-

strations is proposed for urban driving scenarios, leveraging both imitation learning

and deep reinforcement learning. The framework is considered as a continuous

decision-making problem which follows the Markov Decision Process (MDP) [35].

The basic MDP consists of a tuple (S,A,P ,R). Specifically, the driving agent

interacts with the environment by receiving a successive state si ∈ S and taking a

corresponding action ai ∈ A based on the current policy. This leads to the next state

si+1 ∈ S with the transition probability pi = P(si+1|si, ai) and a reward ri ∈ R. The

goal of deep reinforcement learning is to find an optimal policy that maximises the

expected long-term return, represented by the Q-function.

5.3.1 Soft Actor-Critic

The proposed method builds upon an off-policy model-free DRL algorithm, Off-policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor (SAC).

Model-free DRL algorithms face two main challenges: high sampling complexity and

fragile convergence, which heavily depends on hyper-parameter tuning, limiting the

broader application of DRL to real-world scenarios. SAC addresses these issues by

introducing three key elements: an actor-critic structure with separate policy and

value networks, a soft off-policy update based on experience, and the introduction of

the maximum entropy to ensure stability and encourage exploration. The standard

maximum expected reward is given by:

J(π) = E(st,at)∼ρπ

T∑
t=0

[r(st, at)] (5.1)

For SAC, the objective is to maximise both the expected reward and the entropy of

the policy for better exploration, defined as:

J(π) = E(st,at)∼ρπ

T∑
t=0

[r(st, at) + αH(π(·|st))] (5.2)

110

5.3 Methodology

Where the temperature parameter α is a coefficient that controls the weight of

the entropy term in the objective function in the SAC algorithm. The role of this

parameter is to balance the trade-off between exploration and exploitation. st and at
represent the state and action at time t respectively. To achieve the best performance

possible, the entropy should vary in different training stages. For example, when the

optimal action is clear, the entropy should be smaller; whereas during the exploration

stage, the entropy should be larger. SAC proposes an automated entropy adjustment

for the temperature parameter through training by solving:

α∗
t = argmin

at∼π∗
t

[
−αtlogπ∗

t (at|st;αt)− αtH
]

(5.3)

Where H is the minimum expected entropy.

SAC follows a actor-critic architecture, considers a policy network π(a|s) as the actor

network, two soft Q-networks Q1
ϕ(s, a) and Q2

ϕ(s, a), a value network Vψ(s) and a

target value network Vψ̄. The value function is used to stabilise the training process,

which is updated by:

JV (ψ) = Est∼D

[1
2
(
Vψ(st)− Eat∼π

[
min

(
Q1
ϕ(st, at), Q2

ϕ(st, at)
)
− logπ(at|st)

])2
]

(5.4)

Where D is the replay buffer which contains a certain amount of experiences. This

objective function ensures the estimated long-term rewards in specific state under

the policy is close to estimated long-term rewards in specific state and taking the

most likely action of the action distribution under the policy, with an entropy term.

For latter, the minimum estimation of the two Q-networks is chosen. The agent is

encouraged to explore actions that are less likely, thus promoting diversity in the

actions chosen.

For the soft Q-function, it can be updated by:

JQ,i(ϕ) = E(st,at)∼D

[1
2
(
Qϕ,i(st, at)− Q̂(st, at)

)2
]

(5.5)

111

5.3 Methodology

for i = 1, 2 with the target Q-value, which consists of the immediate reward and γ

discounted future rewards:

Q̂(st, at) = r(st, at) + γEst+1∼pVψ̄(st+1) (5.6)

Vψ̄ is the target value network. It is updated slower than the value network Vψ using

the Polyak Averaging [146?] providing a stable target that reduces the variance in

the Q-value estimates:

ψ̄ ←− (1− τ)ψ̄ + τψ (5.7)

Finally, the policy network can be updated by approximating the policy gradient by:

J(π) = E(st,at)∼D
[
min

(
Q1
ϕ(st, at), Q2

ϕ(st, at)
)
− αlog(π(at|st))

]
(5.8)

5.3.2 SAC with Imitating Learning

The proposed method combines imitation learning and deep reinforcement learning

to accelerate the training process and achieve better performance. The framework

overview is shown in Fig. 5.2. The SAC-IL training process consists of two parts:

the imitation pre-training and the deep reinforcement learning. In DRL methods,

the subsequent policy network, value network and Q-network are updated in one

gradient step, however, IL methods only focus on updating the policy network, where

the driving model makes decisions based on the observations. This poses a dilemma

in transferring the IL model to DRL that the policy generates good action while

the value network and the Q-network generate highly inaccurate predictions, which

undermines the policy network in the latter updating.

Therefore, to ensure smooth transferring, it is necessary to update all the subsequent

networks in SAC. Instead of storing state-action pairs, transitions (st, at, rt, st+1, d)

is collected in CARLA and stored in the replay buffer as the expert data. The loss

112

5.3 Methodology

Figure 5.2 The framework overview of the proposed method. The model first finishes
the imitation learning on the left side then transfer to deep reinforcement learning
on the right side. [Wang et al.]

function for optimising the policy network is defined as:

LIL(π) =
T∑
t=0

(
π(·|st)− aexpert,t)2 − αlog(π(at|st))

)
(5.9)

where aexpert,t is the expert action from the demonstration replay buffer at time t.

To train the value function and Q-function simultaneously with the policy network,

we add the weighted LIL to the gradients of Equations (5.4) and Equation (5.5)

respectively. After the imitation learning phase, the pre-trained model is then

transferred to pure reinforcement learning. With the help of the pre-trained network,

the second stage of training performs significantly better at the beginning compared

to random exploration, thereby accelerating the entire training process. In contrast,

deep reinforcement learning (DRL) training explores a wider range of scenarios

and driving strategies, enhancing the agent driving capabilities in ways that the

imitation learning (IL) model cannot achieve. This dual approach not only improves

the efficiency of training but also allows the agent to adapt to more complex and

113

5.3 Methodology

dynamic driving environments, ultimately leading to superior performance in real-

world applications.

5.3.3 Reward Function

The driving task in this chapter is for the agent vehicle starts from the starting point

and navigate autonomously to reach the target point while avoid collisions in urban

driving scenarios. To ensure the agent accomplishes the objective while maintaining

safety and efficiency, the hand-designed reward function is defined as the combinition

of multiple terms:

r = rspeed + rcollision + rsteer + rsuccess + rdistance + C (5.10)

rspeed encourages the agent to travel at a desired speed and penalises overspeeding in

terms of safety. Specifically, the speed reward is defined as:

rspeed =

 scurrent scurrent < sdesired

sdesired − scurrent otherwise
(5.11)

rsteering limits the frequency of steering actions, improves the passenger comfort, and

also prevents the vehicle from driving in circles by keeping the same steer in the

early stages:

rsteer = −a2
steer (5.12)

Due to the complex road topology, the agent does not always find the target. Relying

solely on the network could lead to poor performance in a new environment. In other

word, the agent needs a direction. A relative distance reward is defined to assist in

decision-making during crossroad situations.

rdistance = 0.001× (dt−1 − dt) (5.13)

where d is the distance between current position and target position.

114

5.3 Methodology

rcollision punishes any detected collision with a penalty of -50, while C represents a

constant time penalty for efficiency.

5.3.4 Depth Completion

Depth images offer rich spatial and geometric information, however, they are not

directly available in real world. In this chapter, a depth completion network is

proposed to provide dense depth observations for the driving agent, using a RGB

image and a pre-processed incomplete depth map as input.

Dataset Collection and Pre-processing

The KITTI Dataset is a well-known benchmark in the autonomous driving domain,

particularly popular for depth completion tasks in training and evaluation. However,

the ground truth depth labels it provides are sparse due to the limitations of the

real LiDAR, which limiting the performance of networks. By employing the Carla

simulation software, accurate ground truth depth maps can be generated and collected

for depth completion training. Using the simulator, real traffic scenarios is replicated,

incorporating traffic rules, moving cars, non-motor vehicles, and pedestrians. The

sensors are configured to closely resemble the KITTI Dataset, ensuring that the

proposed algorithm trained on the synthetic dataset can be transferred to real-world

applications. The dataset comprises three types of sensors: a stereo camera, LiDAR

for raw input signals and a depth camera for ground truth annotations.

The pre-processing pipeline consists of four steps for one of the input data.

Disparity Acquisition First, the stereo RGB images are converted into disparity

maps. To achieve this, Semi-Global Block Matching (SGBM) [48] is employed to

compute and aggregate the matching cost between the stereo image pairs. The

cost refers to how well two pixels, one from each image, correspond to the same

3D point, and it is computed based on pixel similarity. SGBM evaluates this cost

and aggregates it over multiple directions, improving the disparity estimation in

areas with weak textures or complex structures. Since the initial disparity map often

contains noise and imperfections, particularly in regions with less textures or at

115

5.3 Methodology

object boundaries, a weighted least squares (WLS) filter is applied to fill in the holes

and smooth the edges by propagating reliable disparity values from neighbouring

pixels, guided by pixel intensity similarities thus improving the overall quality of

the disparity map. This refinement ensures subsequent processing stages for better

depth annotations.

Depth Acquisition Next, the enhanced disparity maps are further converted into

real depth maps based on the following equation:

depth = f × baseline
disparity

(5.14)

where f is the focal length and baseline is the distance between the two cameras in

the stereo camera setup. The disparity value is inversely proportional to the depth.

To ensure the accurate depth of the far background, such as the sky, a depth value

of 255 is assigned to any disparity values less than or equal to 3.

LiDAR Projection After that, LiDAR point clouds are projected to the 2D depth

image plane using the camera intrinsic Kin and the LiDAR-to-Camera transformation

matrix T :


u

v

1

 = Kin · T ·



x

y

z

1


(5.15)

Where u, v are the 2D pixel coordinate of projected LiDAR points on the image

plane and x, y, z are the LiDAR points 3D coordinates.

Combination Finally, a combination strategy is presented for the converted depth

maps and LiDAR projections at the pixel level. The detailed steps are shown as

followed:

1. Direct Combination: On the final depth image plane, if LiDAR points are

projected, the LiDAR values are preferred as the depth values. Otherwise, the

converted depth maps are used.

116

5.3 Methodology

Figure 5.3 The pro-processing pipeline for the collected synthetic dataset. Raw
stereo camera images and LiDAR point cloud are processed and combined into a
final incomplete depth image. [Wang et al.]

2. Depth Refinement: It is understood that the depth values in the converted

depth maps can be inaccurate, however, the relative depth relationship among

pixels can be trusted. Firstly, if a projected LiDAR point coincides with a

depth map pixel, the depth value of the corresponding depth map pixel will

be replaced by the projected LiDAR point value. Secondly, since the relative

depth is trustworthy, every pixel in the converted depth map that shares the

same value as the coincided point will be replaced with that LiDAR value. This

approach enhances the reliability of the depth map pixels in areas where there

are no LiDAR points projected. The dataset preparation process is illustrated

in Fig. 5.3.

Through the four steps of pre-processing, an enhanced incomplete depth map is

created, taking most advantages of the raw data available in the dataset. This

improved incomplete depth map will later serve as input for the depth completion

network, resulting in accurate dense depth maps for the DRL-IL driving agent.

117

5.3 Methodology

Figure 5.4 The proposed depth completion network. The numbers on the layers
indicate the output channel. The network takes an incomplete depth map and a
monocular RGB image, and late fusion is applied to fuse the different modalities.
Skip-connections are used to enhance the feature representations. [Wang et al.]

Depth Completion Network Architecture

The proposed model consists of an encoder-decoder structure shown in Fig. 5.4. The

encoder consists of a parallel series of layers with increasing filters for down-sampling

the input images. Each input layer starts with an initial convolutional layer, followed

by four blocks of ResNet-34. The RGB layer outputs a tensor of 48 channels as the

RGB has three channels in contrast to one channel in incomplete depth. One branch

is dedicated to the pre-processed incomplete depth maps, and the other processes

RGB images. Then a deep fusion structure [147] is employed to concatenate the

features after the ResNet-34 blocks for the later decoder.

The decoder has a reverse architecture to the encoder, up-sampling the image back

to its original size with one channel for dense depth predictions. Outputs from

each encoding layer are passed to their corresponding decoding layers through skip-

connections, concatenating with the output from the previous decoding layer into

one tensor as input for the next transposed convolutional layer. The skip-connections

[148] effectively mitigate gradient vanishing and exploding problems in deep networks.

All convolutional layers have a kernel size of 3, a stride of 2, and padding of 1 to

ensure 1/2 down-sampling and 2× up-sampling. The model accepts inputs of any

118

5.3 Methodology

Figure 5.5 Image reconstruction using stereo images involves utilizing a pair of stereo
images to generate a new image based on depth information. Each pixel in one
image (a) can be mapped to a corresponding pixel in the other image, allowing for
the reconstruction of an alternate view (b). [Wang et al.]

size and generates the predicted depth maps with the same resolution of inputs.

Image Reconstruction Restraints

Most existing work relies on training with the supervision of dense depth ground

truth. However, with stereo images available, incorporate self-supervised signals

in the traditional supervised learning has the potential of improving the network

performance. This leverages the inherent relationships between stereo images to

generate additional training signals, thus reducing the dependence on dense ground

truth. To do this, it is essential to understand the 3D geometry of the environment,

which is obtained from the depth maps from the model predictions. For every pixel

located at (x, y1) in the left image, there is a corresponding pixel (x, y2) in the right

119

5.3 Methodology

image:

L(x, y1) = R(x, y2) (5.16)

Given a left image L and its associated depth map D predicted by the network, the

left image L can be reconstructed or warped into the right image R following the

equation:

y2 = y1 −
f × baseline

1000×D(x, y1)
(5.17)

Where f denotes the camera focal length and baseline is the distance between the

two cameras in the stereo camera setup. D(x, y) indicates the depth value of the

pixel. Then the warped image is obtained Lwarped(x, y2) as demonstrated in Fig. 5.5.

Even with ground truth depth, the warped image may contain vacancies, as some

pixels from one image may not correspond to any pixels in the other image due to

differences in view angles. The accuracy of depth predictions directly influences the

quality of the reconstructed image; the better the model predicts the depth, the

more accurately it can reconstruct the image. By comparing the warped left image

with the actual right image, additional self-supervision signals can be integrated to

enhance the depth predictions indirectly.

Loss Function

The loss function consists of three terms. First term penalises the difference between

the model predictions and the dense depth annotations, for achieving a sufficiently

accurate pixel-wise mapping.

Ldepth = 1
N

N∑
i=1

(Dannotaion,i −Dpred,i)2 (5.18)

Second, to encourage smoother predictions, the mean error of the second-order

derivatives of the predicted depth along both the x and y axes is penalised. This

smoothness loss, Lsmooth, aims to minimise abrupt changes in depth values by

120

5.4 Experiments

quantifying the curvature of the depth map. It is formulated as follows:

Lsmooth = 1
N

N∑
i=1

∣∣∣∣∣d2∇Dpred,i

d2x
+ d2∇Dpred,i

d2y

∣∣∣∣∣ (5.19)

By penalising high-frequency variations, the model is encouraged to produce depth

maps with smoother transitions, enhancing overall prediction quality. Third, the

image reconstruction constraints are utilised to minimise the difference between

the actual right image and the warped left image therefore improving the network

performance indirectly:

Lrecon = 1
N

N∑
i=1

(Ri − Lwarped,i) (5.20)

As mentioned before, due to the different viewpoints, there will be holes in the

warped image. Therefore, the loss is calculated only where the pixel values are

greater than 0 in the warped images. To summarise, the entire loss function for the

model is:

L = Ldepth + a× Lsmooth + b× Lrecon (5.21)

Where a and b are the hand-designed hyper-parameters for the second and third

terms.

5.4 Experiments

5.4.1 Implementation Details

In implementation, the Town 02 map in the CARLA simulator is used as the training

environment, as shown in Fig. 5.6. To set up the environment as realistically as

possible, 50 vehicles and 30 pedestrians are randomly spawned and controlled by the

autopilot controller. Stereo cameras and a LiDAR are attached to the agent vehicle

for both data collections and training.

121

5.4 Experiments

Figure 5.6 A shot of the training environment CARLA Town 02. Comparing to
other maps in CARLA, Town 02 has narrow driving roads and frequent intersections,
which is difficult for the agent to navigate around. [Wang et al.]

5.4.2 Dataset Collection

Expert Driving Data

The expert data is collected by driving around in the environment using the CARLA

PID controller, which works as a fully observed algorithm. It uses all the information

collected by the Motion Planner Stage to generate throttle, brake, and steering

commands. The process consists of three stages:

1. Localization – This obtains the position and velocity of all vehicles and creates

future waypoints based on the previous trajectory.

2. Hazard Detection – Collision and traffic light detection occurs in this stage.

3. Motion Planner – This estimates actions based on information from the previous

stages.

During experiments, the expert agent occasionally crashes due to "car accidents"

caused by surrounding vehicles which also proves the limit of PID controller but the

collision data could also be helpful for the later reinforcement learning as introducing

the hazard scenarios. The ego agent is spawned randomly in the environment and

50 episodes of demonstration data are collected with a success rate of 85%.

122

5.4 Experiments

In the reinforcement learning phase, the environmental settings remain the same

with those used during the demonstrations. The pre-training SAC with Imitation

Learning model (SIL) uses a depth image of size 256× 128 generated by the proposed

depth completion model Reconstruction Constrained Deep Fusion Network (RDFNet)

as visual input. This depth image is concatenated with additional matrix inputs

including the current speed and the relative distance between the target and current

position as the final input for the policy network, the value network and the Q-

network in SIL. The target point is fixed, and in each episode, the ego car is spawned

randomly in the map. The policy network of SIL outputs an action consisting of

throttle, brake, and steering. Additionally, an early-stop mechanism is implemented

to terminate an episode when the agent moves into unreasonable space, such as

grass and areas deep in the buildings, effectively preventing meaningless exploration

during training.

Depth Completion Data

For the depth completion task, a total of 8328 frames of data are collected, including

stereo images, LiDAR pointcloud, and the ground truth depth, with a resolution of

256× 128 by driving around in Town 02 and Town 03. Among them, 2854 frames

are used as the validation set, resulting 5474 frames for training. The detailed sensor

configurations are listed below:

1. LiDAR – (a) Laser Range: A maximum range of 120 metres; (b) Vertical

Field of View: from -24° to +2°; (c) Horizontal Field of View: 360°; (d) Scan

Frequency: 10 Hz.

2. Stereo Camera - (a) Baseline: 0.54 metres; (b) Resolution: 256× 128; (c) Field

of View: 90°

In the experiment of depth completion task, the model RDFNet is trained with

collected dataset on a 12 GB Nvidia RTX 3060 graphic card for over 30 epochs.

Parameters a and b in Equation (5.20) are treated as hyper-parameters. Additionally,

two variants of RDFNet are tested to show the efficiency of the proposed method.

123

5.4 Experiments

Scenario Input (Depth) Drive Straight Turn Making Navigation Full Navigation
Town 02

(Trianing Environment)
Ground Truth 1.0 0.96 0.74 0.68

Predicted 1.0 0.94 0.70 0.68

Town 03 Ground Truth 1.0 1.0 0.94 0.88
Predicted 1.0 0.96 0.90 0.86

Town 04 Ground Truth 1.0 0.94 0.92 0.88
Predicted 1.0 0.96 0.84 0.80

Town 05 Ground Truth 1.0 1.0 0.76 0.68
Predicted 1.0 0.96 0.72 0.66

CIRL Town 02 [141] 1.0 1.0 0.53 0.41
Table 5.1 Task success rate in various environments and categories. Both using
ground truth depth and predicted depth as inputs are considered. [Wang et al.]

First one is using early fusion instead of deep fusion, the other variant is trained

without reconstruction loss. Root mean squared error (RMSE) is employed as the

standard metric for evaluation benchmark.

5.4.3 Results

Results of Driving Agent

The driving model SIL is tested in three different unseen maps (Town 03, Town

04, Town 05) and the training environment (Town 02) to evaluate its performance

generalisation capability. To provide a meaningful comparison with other works,

three additional tasks are included: straight driving, making turns, and navigation

without surrounding cars (Navigation), in addition to the original task of navigating

with surrounding cars (Full Navigation) to a target point for evaluation. A total of

50 test runs are performed in each scenario. The success percentages for these four

tasks are shown in Table 5.1, with higher percentages indicating better performance.

The results are compared with the state-of-the-art method, Controllable Imitative

Reinforcement Learning for Vision-based Self-Driving (CIRL), as the tasks are similar

and conducted in the same environment.

As illustrated in Table 5.1, the driving model SIL demonstrates good performance

levels across different urban environments. When provided with ground truth depth

input, SIL effectively managed sub-tasks such as straight driving and making turns,

achieving results that are comparable to those of CIRL. In the more challenging

navigation task that require a series of decision making, SIL continues to yield

124

5.4 Experiments

competitive results. The model scores over 70% in these scenarios, with some

instances reaching as high as 94%. Such performance highlights the effectiveness of

the learning algorithm in dynamic environments that demand continuous decision

making. In the full navigation task, the most challenging and realistic task including

surrounding vehicles and pedestrians, SIL still performs admirably. Results range

between 66% and 88%, reflecting the model capability to handle complex interactions

in a busy urban setting. In contrast, the performance of CIRL shows a sharp decline

when transitioning from making turns to executing navigation tasks, with scores

dropping from 71% to 53% and further down to 41%. This significant drop illustrates

the challenges faced by CIRL in maintaining effective driving strategies under more

complex conditions.

However, a closer look of the results reveals noticeable performance difference between

Town 03 and Town 04 compared to Town 02 and Town 05. This discrepancy can be

attributed to the broader roads found in Town 03 and Town 04, which provide a more

forgiving environment for minor errors and leaving room allowing the ego vehicle to

correct any deviations from the intended driving trajectories, thus enhancing overall

success rates. At the same time, these results also prove the robust generalisation

capability of the SIL model, indicating its ability to adapt to unseen scenarios while

maintaining effective driving strategies.

While the performance of the model using the predicted depth is slightly lower than

using the ground truth inputs, it still outshines the results produced by CIRL in

each tested category. This comparison enable the possibilities of building on-board

perception module with the DRL driving model for the future researches.

Results of Depth Completion

Evaluations are also conducted for the depth completion model RDFNet indepen-

dently. First before training, the incomplete depth maps pre-processed from the

collected data are tested, with the RMSE already impressive at 38.34. To compare

with state-of-the-art techniques, several methods are selected and evaluated on the

collected synthetic datasets. The depth range is capped at 70 metres, any objects

125

5.4 Experiments

Method CAP RMSE MAE
Sparse-to-dense (gt) [149] 70 17.45 5.02
Revisiting Sparsity [150] 70 19.76 5.98

Sparsity Invariant CNNs [142] 70 34.37 9.91
Early Fusion 70 5.67 2.27

Without Warping 70 8.99 2.82
RDFNet 70 2.66 0.77

Table 5.2 Performance comparison with state-of-the-art methods on RMSE and MAE.
The depth range is capped at 70 metres, which are the practical range of real-world
applications. [Wang et al.]

Figure 5.7 Visualisation of the ground truth and the predicted depth maps. [Wang
et al.]

further that 70 metres are set at depth value 70 for a more realistic application, which

is common in this field. As shown in Table 5.2, comparing to other methods, RDFNet

demonstrates better performance with an RMSE of 2.66 and a Mean Absolute Error

(MAE) of 0.77.

In the ablation study, the Early Fusion variant achieves an RMSE of 5.67, indicating

that the deep fusion technique contributes to a reduction of approximately 3.01

in RMSE. The other variant, Without Warping, only reaches an RMSE of 8.99,

126

5.5 Summary

highlighting the effectiveness of the reconstruction constraint loss proposed in this

chapter, which brings a 6.33 improvement in RMSE.

In addition to the quantitative results, Fig. 5.7 presents five example scenes that

offer visual comparisons between the ground truth depth maps and the predicted

depth maps generated by RDFNet and two other variants. The depth maps are

colourised to enhance visual differentiation, making it easier to assess the accuracy

of the predictions.

5.5 Summary

In summary, the proposed method for guidance agent, SAC with Imitation Learning,

demonstrates a significant improvement in performance over previous approach in

the realm of urban autonomous driving. By integrating deep reinforcement learning

with imitation learning, this method effectively leverages the strengths of both

algorithms. The innovative updating strategy employed allows the policy network to

make more efficient transfer from using expert data during the imitation learning

phase, accelerating and enhancing the overall learning process. This leads to a

more robust and adaptive agent capable of navigating complex driving scenarios.

Furthermore, the proposed depth completion model effectively addresses critical

perception challenges encountered in autonomous driving. By transforming available

raw data into more dense depth maps, the depth model receives better inputs.

127

Chapter 6

Single-Agent Robustness Against

Perturbations

In this chapter, the robustness of a single deep reinforcement learning

(DRL) agent is investigated against state adversarial attacks. The adver-

sarial attacks work as a directional interference to mislead and determine

the performance of the trained DRL agent, which can be considered as

cyber-attacks or real-world uncertainties. This study proposes a defence

algorithm to mitigate the state perturbations, ensuring the concrete ro-

bustness of the driving model in worst-case situations. Furthermore,

an explainable attack detector is introduced to accurately predict the

presence of adversarial attacks and provide an explainable visualisation

of the decision-making process, further enhancing the reliability of the

proposed robust algorithm.

Associated Publications This chapter is based on the following published work:

Wang C, Aouf N. Explainable Deep Adversarial Reinforcement Learning Approach

for Robust Autonomous Driving[J]. IEEE Transactions on Intelligent Vehicles, 2024.

128

6.1 Overview

Deep Reinforcement Learning (DRL) has made promising progress in autonomous

driving planning and guidance within dynamic urban scenarios. As the potentials

for real-world applications increase, so does the demand for a safe and robust

driving system. For example, an end-to-end deep reinforcement learning agent makes

guidance decisions based on the observation states extracted from perception sensor

inputs, which can be interfered by unpredictable adversarial attacks. The latter

causes adversarial observation states, which easily leads autonomous driving agent

to incorrect decisions and ultimately to unintended accidents. In this chapter, both

attack and defence approaches are proposed for robust learning-based self-driving

agent. The optimal observation perturbation is realised using an efficient augmented

gradient-based method. An attack detection deep network with saliency map based

explainability is then proposed to flag up to the users the existing danger of the attacks

on the sensor perception. Furthermore, to ensure safe driving under these perceptional

perturbations, a deep adversarial reinforcement learning based approach is proposed

for robust autonomous driving in roundabout passing scenes. PPO (Policy Proximal

Optimisation) [20] is adopted as the baseline guidance algorithm and a theoretical

supported constraint, multi-object objective function optimisation is developed to

efficiently mitigate the effect on the deep guidance autonomous driving policy from

strong adversarial attacks. Extensive experiments and evaluation are conducted

on the proposed robust model under various adversarial attack configurations in

traffic scenarios. The method shows significant improvements coping with optimal

adversary in dynamic environments.

6.1 Overview

In recent years, autonomous driving has attracted major research interests because

of its capacity to bring the prospect of greater convenience, mobility efficiency and

safety to the automotive industry. Researchers have made significant progress in

different applications in autonomous driving field, such as scene understanding

(perception), localisation, mapping and path planning. In particular, state-of-the-art

129

6.1 Overview

deep reinforcement learning based algorithms are able to handle the challenging

decision making (guidance) tasks in dynamic environments [134, 151–153].

Despite of existing successes, these simulation based methods work well under ideal

experimental conditions, in which the sensors are all time properly functioning. The

observations delivered by these sensors may inherently contain uncertainties due to

various factors such as unavoidable sensor errors or natural equipment inaccuracies,

and adversarial attacks. Among them, adversarial attacks are the strongest directional

interference. A policy of a DRL agent that is not robust to such perturbations can

encounter catastrophic failures in more realistic environments. In light of these

risks, autonomous vehicles are required to ensure that their decision making system

can handle the adversarial perturbations from perceptual sensing module. Having

stated the importance of such problem, only few researches investigated deeply

the aforementioned challenge. Some works [154–156] adopt adversarial training

from supervised learning scheme to improve the robustness of such deep based

guidance schemes. Specifically, the agent is occasionally attacked and the adversarial

trajectories are generated during the data collection. Then some existing DRL

algorithms are trained with the replay buffer containing adversarial transitions

generated before. However, for most environments, naive adversarial training leads

to unstable training and deteriorates DRL agent performance [157, 158] or does not

significantly improve their robustness under strong attacks.

To address this problem, this chapter introduces an explainable deep adversarial

reinforcement learning approach for autonomous vehicles to improve the performance

and robustness of driving policies against the observation adversarial attacks. The

key contributions can be summarized as follows:

1. A Markov Decision Process (MDP) with perturbations is established to model

the decision making behaviors of an autonomous vehicle under policy constraints

and observation perturbations for roundabout scenarios.

2. A white-box optimal attack method based on FGSM is proposed to approximate

the worst observation perturbations due to sensor attacks. In the testings,

130

6.2 Related Works

this attack technique can efficiently lead the non-robust deep reinforcement

learning agent to failures.

3. A robust proximal policy optimisation algorithm is proposed to obtain a robust

policy for roundabout making under bounded strong observation perturbations.

4. Furthermore, an explainable adversarial attack detection network is presented

to provide an insightful visualisation on how the DRL agent is making the

decision based on the sensor inputs and how is the adversarial attack influencing

on that, as well as additional information to alarm the users of the system

whether the guidance agent is under attack or not.

Extensive experiments are carried out in the realistic unreal-engine powered simulator

CARLA [49] with dynamic surrounding traffic and various attack strengths to evaluate

the performance of the proposed methods. The proposed optimal adversaries show

strong effects on the baseline DRL agent. This results further prove the improvement

of performance and robustness of the adversarial defence method. Synthetic data is

collected to train and evaluate the detection network, which shows highly reliable

detection accuracy.

6.2 Related Works

6.2.1 Deep reinforcement learning based autonomous driving

Following the major breakthroughs of deep reinforcement learning (DRL) in recent

years [159, 36], researchers have started to use DRL to address the decision-making

problems in autonomous driving [160, 151, 161]. DRL based methods can greatly

decrease the heavy reliance on the large amount of data because they do not

specifically need large labeled driving data for training comparing to supervised

learning scheme adopted methods such as behavior cloning and imitation learning.

Alternatively, they learn and enhance their scene understanding and decision-making

capability via interactions with the environment. Besides, human pre-collected

data could be biased to cover the hazard and failure situations where DRL based

131

6.2 Related Works

methods can be used in the collision or close-collision scenarios, where self-driving

vehicles learn to deal with dangerous scenarios in the simulation. Dong Li et al

[162] solves the lateral control for autonomous driving by introducing an individual

perception module for the track features prediction and the DRL control module

for the control action prediction. They claim that their framework outperforms

the conventional linear quadratic regulator (LQR) controller and model predictive

control (MPC) controller on different tracks. [163] introduces a velocity control

model for autonomous driving to focus on delivering safe, efficient, and comfortable

experience. By analysing human driving data and combining driving features related

to safety, efficiency, and comfort, this method develops a reward function encouraging

the driving agent to maintain stable while avoiding obstacles. To further exploit

the human prior knowledge, [164] combines deep reinforcement learning and human

expert demonstrates based imitation learning with uncertainty estimation. Then the

DRL agent learns by regularising the KL divergence between the DRL agent’s policy

and the imitative expert policy.

Unlike supervised learning methods, DRL approaches can mitigate the high cost of

data collection in hazardous scenarios by training models within virtual simulation

environments, allowing for cost-effective failure occurring learning. However, as

they running in a perfect conditioning simulation environment, many DRL based

decision-making methods do not take observation uncertainty due to sensor failure

or attacks into consideration, leading to unstable and less robust driving strategies

that could make the vehicle unsafe under more realistic environment settings.

6.2.2 Adversarial attack on DRL

Though deep learning models recently achieve significant improvement, research

shows that these well-trained models are still very vulnerable to adversarial attacks.

Adversarial attacks on camera sensor often lead to visually similar images to the

normal images from a human perspective, yet they can deceive deep learning models

into generating inaccurate predictions. Generally there are two types of adversarial

132

6.2 Related Works

attack methods, white-box attacks and black-box attacks, depending on if the attacker

has full access to the models’ parameters or not.

In [165], a Bayes optimisation based approach was proposed to generate the painting

of black lines on the road to counterfeit lane lines and make the vehicle deviate from

the original orientation. Experiments were conducted in CARLA simulator, and

results showed that end-to-end driving models were attacked and deviated to the

orientation chosen by attackers. He et al. [166] combined Bayesian optimisation

and Jensen-Shannon (JS) divergence to measure average variation distance of the

policies attacked by the observation perturbations for optimal black-box attacks.

Behzadan and Munir [167] studied black-box attacks on DQNs with discrete actions

via transferability of adversarial examples. Pattanaik et al. [168] further enhanced

adversarial attacks to DRL with multi-step gradient descent and better engineered

loss function. They required a critic or Q function to perform attacks. Typically, the

critic network learned during agent training. For white-box approaches, Huang et

al. [169] evaluated the robustness of deep reinforcement learning policies through

an FGSM based attack on Atari games with discrete actions. Kos and Song [170]

proposed to use the value function to guide adversarial perturbation search. Lin

et al. [171] considered a more complicated case where the adversary is allowed to

attack only a subset of time steps, and used a generative model to generate attack

plans luring the agent to a designated target state. In this chapter, a FGSM based

method is introduced to generate optimal adversary examples by maximising the

pre-defined collision risk. Results show that with a small strength parameter ε and

minimal visual difference, our method can efficiently misguide the well-trained agent.

6.2.3 Explainability for Deep Learning

Despite the success in deep learning, its explainability is limited due to its pre-

dominantly black-box nature. Researchers have been investigating ways to provide

explanations for the decisions made by deep neural networks. A major trend of

works focus on attributing importance or relevance to different input features. These

methods aim to identify the parts of the input that contribute most to the model’s

133

6.3 Methodology

output. Examples include SHapley Additive exPlanations (SHAP) [172], Local

Interpretable Model-agnostic Explanations (LIME) [173], and Gradient-based Class

Activation Mapping (Grad-CAM) [129]. Among them, gradient-based methods excel

in providing better visual explainability, which are easier for human to understand.

T. Nathan et al. [174] use a layer-ordered visualisation of information to visualise

individual scale/layer contributions, and combine them into a single saliency map.

By exploiting saliency map order equivalence, their method exceed traditional Grad-

CAM and Grad-CAM++ without increasing the computational costs. Ekrem et

al. [175] propose an attention-based saliency map prediction model to interpret

the relationship between saliency and driving decisions. Similar to gradient based

saliency methods, attention based methods also provide comprehensive visualisation.

During training, the network focuses on specific parts of the inputs by nature, and the

attention mechanism will gradually increase the weights of important parts through

training. Kim and Bansal [176] propose an attentional bottleneck architecture and

combine with visual attention to predict trajectories for autonomous driving cars

and improve model explainability. To understand the intrinsic mechanism of the

trajectory predictions, [177] utilise a transformer model with multiple prediction

heads to retrieve the influencing factors of the predictions. Lei et al. [178] further

explain DRL using both visual and texture explanation. In our work, the proposed

saliency map based attack detection model not only provides detects adversarial

attacks but also explainability to interpret the decisions made by our robust driving

agent.

6.3 Methodology

6.3.1 Framework Overview

In this section, an explainable deep adversarial reinforcement learning approach

for autonomous driving is proposed to enhance the robustness of RL agent against

the observation perturbations. Our framework consists of three main components,

including:

134

6.3 Methodology

Figure 6.1 The framework overview. [Wang et al.]

1. An optimal adversarial attack generation to model the strongest observation

perturbations on the perception of the driving agent.

2. An adversarial deep reinforcement learning scheme against the introduced

optimal attacks to guarantee a robust guidance performance.

3. An efficient adversary detection model based explainability to show whether

the guidance DRL network is under adversarial attacks.

Furthermore, with the explainability mechanism, the detection network provides

more insightful information on the behavior of the driving agent under observation

perturbations. The system overview is shown in Fig. 6.1.

6.3.2 Markov Decision Process with Perturbation

A deep reinforcement learning task can be considered as a continuous decision-making

problem, which follows the Markov Decision Process (MDP) [35]. Basic MDP is

defined as (S,A,P ,R, γ). The agent interacts with the environment of successive

state s ∈ S with actions a ∈ A, getting the step reward r ∈ R and the transition

probability p ∈ P to the next state s′ ∈ S. γ indicates the discount factor. The goal

of deep reinforcement learning is to find an optimal policy that has the maximum

accumulative discounted returns. In this section, to ensure the robust policy against

135

6.3 Methodology

perturbation, the Markov Decision Process with observation adversary (OA-MDP)

is defined.

In contrast to MDP, OA-MDP consists of a tuple of (S,A,P ,R, γ,SA,AA), where

sA ∈ SA is the set of states from S under optimal adversarial attack, and aA ∈ AA

is the action the agent responded to sA. The attacked state sA is a shifted state,

which models the worst case perturbation due to attacks on the sensor leading to aA
sub-optimal than a. A well-trained guidance policy network may be able to cope

with a weak and quick perturbation, turning back to the actual actions and the

desired trajectory after the state observations get back to normal. However under

strong and continuous adversarial attacks, this guidance policy network can easily

fail.

6.3.3 Problem Formulation

To get a DRL agent robust to adversarial attacks, the goal is to find the optimal policy

π∗ that maximises the accumulative long-term rewards under series of worst-case

perturbed states SA. This can be formulated as:

Jπ∗ = max
π
min

SA
Jπ(π,SA) (6.1)

It means that the overal problem is decoupled as two sub-problems. First is to solve

the inner minimum, finding the state SA under the worst-case adversarial attacks.

The details of optimal adversary generation is introduced in the later section. Second

is the outer maximisation of the long-term rewards under these adversaries, and here

the robust proximal policy optimisation is presented.

6.3.4 Optimal Adversary Generation

In this section, the inner minimisation part of the problem is solved modelling the

optimal adversarial attacks on observations based on a white-box technique. This

chapter requires an adversarial attack generation method which prioritizes ease

of implementation and computational efficiency. The Fast Gradient Sign Method

136

6.3 Methodology

Figure 6.2 An example of how our adversarial perturbation works on a trained agent.
[Wang et al.]

(FGSM), introduced by Goodfellow et al [179], fulfils these criteria. Additionally,

FGSM offers flexibility, allowing for the application of techniques like Basic Iterative

Method (BIM) [180] to introduce iterations in the calculations and enhance the

adversarial attack instead of increasing the perturbation parameter ε.

FGSM works by using the gradients of the neural network to create an adversarial

example. For deep reinforcement learning, the method uses the gradient ▽sL(π, s, a)

of the loss with respect to the input observation to create a new observation that

maximises this loss. The π refers to the policy network parameters, while the a is

the output action. The new masked observation is obtained by:

sadv = s+ ε ∗ sign(▽sL(π, s, a)) (6.2)

This new observation sadv is called the adversarial state. The ε parameter controls

the strength of the attack, and it varies from 0 to 1. The closer the value to 1, the

more visually distinguishable the sadv is. On the contrary, if the ε is small, it will be

harder to detect the difference with normal state for human eyes. As discussed in the

beginning of the section, to solve the inner min
SA

Jπ(π,SA), the generated perturbations

should lead the policy to minimum rewards. In our Robust PPO training, minimum

rewards refer to minimum advantage value, which is unobtainable during decision-

making phase. In such situation, an alternative loss function is established instead

137

6.3 Methodology

Figure 6.3 An Adversarial Example. The perturbation mask is enhanced for better
visualisation. The alterations in the attacked observation are hard to recognise with
the human eyes in reality. [Wang et al.]

of minimising the advantage value. Within the realm of autonomous driving, certain

throttle and steering actions in certain scenarios may pose potential danger. Based on

this idea, the gradient-based perturbations are introduced into the control system with

the aim of maximising the throttle and reversing the steering, thereby deliberately

maximising the risk of collisions. As shown in Fig. 6.2, in the turn making situation,

optimally, the agent should slow down and make a right turn. After introducing our

augmented FGSM, the agent will be encouraged to accelerate and make a sharp left

turn to make the collision.

The problem of using FGSM is the effective sensitivity to ε. In practice, a larger ε

is needed to make the perturbation effective on the deep guidance model decision.

However during training, this will make perturbations predictable and tolerated by

the model [155]. The BIM is employed to intentionally escalate the attack effeteness

associated with autonomous driving. The BIM iterates the process of a single

FGSM, which means a previous generated adversarial state will be the input of the

next adversary generation. By iterating FGSM, the influence of the attacks can be

increased without affecting the sensory image as much as by increasing the ε by a

comparable amount. Finally, with the risk encouragement and BIM, the optimal

adversary is obtained as:

sadv = sn + ε ∗ sign(▽sn(Ln))

sn = sn−1 + ε ∗ sign(▽sn−1(Ln−1)) (6.3)

138

6.3 Methodology

where

Ln = (−steer, 1)− (π | sn) (6.4)

sadv indicates the optimal adversary, and n is the iteration number. These attacsk

will lead the model to the worst actions in most of the cases. The test details of

success rate of the attack will be carried out in results section. The process of one

iteration of generating our adversarial sensory image sample is shown in Fig. 6.3.

6.3.5 Robust Proximal Policy Optimisation

To solve the outer maximisation with generated optimal adversaries, and learn the

robust optimal driving policy, a robust proximal policy optimisation algorithm is

introduced in this section. PPO is adopted as the baseline DRL. It is a model-free,

on-policy, stochastic method. It shares the similar idea of TRPO (Trust Region

Policy optimisation) algorithm [38], which restricts the policy update every step

based on the probability ratios or the divergences between the new policy and the

old policy. The most popular PPO variant employs a clipped surrogate objective to

prevent the new policy differing too much from the old policy:

Lclip(π) = Êt

[
min

((
π(a|s)
π′(a|s) , clip

(
π(a|s)
π′(a|s) , 1− ε, 1 + ε

))
Ât

)]
(6.5)

Where Êt denotes the expectation over t. π is the new policy parameters of the deep

guidance agent, and π
′ is the old policy, resulting π(a|s)

π′ (a|s) the ratios of the probability

of the new and old policy choosing action a under state s. ε stands for the constant

clip term that limits the policy update by constraining the ratio within a specified

range, preventing excessively large updates. Ât is the estimated advantage value,

obtained by calculating the difference between the observed reward for taking the

action a at the state s and the expected value predicted by the critic network at the

state s:

Ât = Qt(s, a)− Vt(s) (6.6)

139

6.3 Methodology

As a stochastic method, the policy network in PPO outputs a probability distribution

instead of an actual action. During training, actions are randomly sampled from

this distribution to increase exploration. In the experiment, a multivariate Beta

distribution is employed as the policy output to ensure a bounded action space.

A trained policy demonstrates robustness against adversarial attacks when the

behaviours at non-attacked and attacked states show minimal divergences. This

closeness in behaviour indicates that the policy remains effective and resilient in the

presence of adversarial perturbations. Based on the theorem in [181], given a policy

π and its value function Vπ(s), under the optimal perturbation sA, for all s ∈ S and

the corresponding sA ∈ SA, it holds that:

max
s∈S,sA∈SA

{Vπ(s)− Vπ(sA)} ≤ α max
s∈S,sA∈SA

DTV (π(s), π(sA)) (6.7)

Where the left indicates the long-term expected reward difference, which reflects the

performance gaps between normal states and adversarial attacked states. DTV (π(s), π(sA))

is the Total Variation Distance between π(s) and π(sA). The latter is the largest

possible difference between the probabilities that the two probability distributions

can assign to the same action. According to Pinsker’s inequality [182], DTV can be

linked to another distance Kullback–Leibler (KL) divergence [183]:

DTV (π(s), π(sA)) ≤
√

1
2DKL(π(s), π(sA)) (6.8)

In practice, computing KL divergence is more efficient compared to the summing

operation in DTV and easier to realise in continuous space. The differentiable aspect

of KL divergence also benefit the gradient based optimisation in the DRL algorithms.

Therefore, Equation (6.7) is further amended with the KL divergence distance to:

max
s∈S,sA∈SA

V (s, sA) ≤ max
s∈S,sA∈SA

√
1
2DKL(π(s), π(sA)) (6.9)

That is, if the KL divergences of the action probabilities are minimised under non-

attacked states and attacked states, the total variation distance DTV will also be

140

6.3 Methodology

minimised, therefore the performance gaps could be minimised too. The objective

function of the proposed robust proximal policy optimisation algorithm is then

developed. Combining the divergence term and the accumulative expected reward,

the optimisation problem is formulated as followed:

max
π
{Jπ +KLr}

subject to µ− L2(f(st, π), st) ≥ 0 (6.10)

Where

Jπ = Êt

[
T∑
t=0

γtr(st, at)
]

(6.11)

and KLr is the reverse term of the KL divergence of the action probability under

attacked and non-attacked states. Note that this pseudo term is only used here to

match the maximisation problem and will be transferred back to standard format

later. f is the optimal adversary generation function with policy π at current s. The

constraint condition for the maximisation optimisation indicates that the L2 norm

of the state difference under normal and perturbed states is bounded by µ. t and

γ denote the time step and discount factor respectively. Based on the Lagrange

multiplier technique, the generalised Lagrange function of the original optimisation

is obtained:

L(π, α) =
T∑
t=0

(
γt(st, at) +KLr +α(µ− L2(f(st, π), st))) (6.12)

Where α ≥ 0 is the Lagrange multiplier, a new variable introduced to replace the

constraint equation. Now consider a new function θP with respect to α:

θP (α) = min
α≥0
L(π, α) (6.13)

If policy π satisfies the constraint condition in Equation (6.10), it has:

θP (α) =
T∑
t=0

(
γtr(st, at) +KLr

)
(6.14)

141

6.3 Methodology

otherwise θP (α) = −∞. The proof is shown as follows:

Under a fixed policy π, minimising the Lagrange function corresponds to minimis-

ing the Lagrange-multiplier-weighted constraint α(µ− L2(f(st, π), st)). Given that

α ≥ 0, if (µ− L2(f(st, π), st)) < 0, which violates the constraint, the following holds:

min
α≥0

T∑
t=0

α(µ− L2(f(st, π), st))→ −∞,

⇒ min
α≥0

,L(π, α)→ −∞,

⇒ θP (α) = −∞. (6.15)

Conversely, if (µ− L2(f(st, π), st)) ≥ 0, which satisfies the constraint:

min
α≥0

T∑
t=0

α(µ− L2(f(st, π), st))→ 0,

⇒ min
α≥0

,L(π, α) =
T∑
t=0

(
γtr(st, at) +KLr

)
,

⇒ θP (α) =
T∑
t=0

(
γtr(st, at) +KLr

)
. (6.16)

Thus, it is proved that when the constraint is not satisfied, the minimisation leads

to −∞, while satisfying the constraint yields the primal optimisation problem.

The proof above denotes that maximising the newly defined function with respect

to policy max
π
θP (α) is equivalent to the primal problem in Equation (6.10), as they

both have the same solutions. Based on Equation (6.10) and Equation (6.14), the

primal optimisation problem is reformulated as:

max
π
θP (x) = max

π
min
α≥0
L(π, α) (6.17)

This optimisation is detailed by the two following steps:

(1) min
α≥0

T∑
t=0

(
γt(st, at) +KLr + α(µ− L2(f(s, π), s))

)

(2) max
π

T∑
t=0

(
γt(st, at) +KLr + α(µ− L2(f(s, π), s))

)
(6.18)

142

6.3 Methodology

Figure 6.4 Network structure of the robust DRL model. It consists of a feature
extract encoder, and the actor-critic network. The actor-critic network is fed with
the concatenation of the numeric features and the extracted features. [Wang et al.]

First, the policy π is frozen and the Lagrange multiplier α is updated based on step

(1). Then similarly, the updated Lagrange multiplier α is frozen to update the policy

π according to step (2). Specifically, step (1) can be represented as:

min
α≥0

T∑
t=0

(α(µ− L2(f(st, π), st))) (6.19)

And step (2) can be represented as minimising the negative terms:

max
π

T∑
t=0

(
γt(st, at) +KLr + α(µ− L2(f(st, π), st))

)

= min
π

T∑
t=0

(
−γt(st, at) +DKL,t − α(µ− L2(f(st, π), st))

)

= min
π

T∑
t=0

(
Ât +DKL,t + αL2(f(st, π), st)

)
(6.20)

Here as µ is independent from π, the term αµ is removed. The KL divergence DKL

is transferred back from KLr. Finally, the maxmin problem becomes a minmin

problem. In practice, Lclip(π) from equation 5 is used to replace Ât in Equation

(6.20) for better performance. Gradient descent is applied to find both the optimal

Lagrange multiplier α and the optimal policy π repeatedly through Equation (6.19)

and Equation (6.20) in each batch update. The objective function is a jointly

optimisation problem, where the parameters of the three terms Lclip(π), DKL,t and

L2(f(s, π), s) balance the performance under normal observation and the adversarial

143

6.3 Methodology

Algorithm 1 Robust Proximal Policy Optimisation
1: Initialise the actor network parameter θ0, the state-value critic network parameter
ϕ0, the replay buffer D;

2: Initialise the Lagrange multiplier α;
3: for k = 0, 1, 2, ... do
4: for t = 0, 1, 2, ... do
5: Sample action at ∼ π(θk)(at|st) based on the policy π(θk) and state st.
6: Generate optimal adversary sAt through equation 10.
7: Obtain transitions st+1, rt by executing at.
8: Store the transitions in Dk ← {st, at, rt, st+1, sAt}.
9: end for

10: Calculate the reward-to-go R̂t.
11: Calculate estimated advantage Ât through equation 6.
12: Obtain action distributions d, dA under all s and sA from Dk
13: Calculate KL divergence DKL based on d, dA.
14: Calculate L2 norm of the difference of attacked and normal states.
15: Update the Lagrange multiplier α by minimising the step 1 objective function:

αk+1 = argmin
α≥0

α(µ− L2(f(s, π), s))
16: Update the policy θ by minimising the step 1 objective function:

θk+1 = argmin
θ

Lclip(θ) +DKL + αL2(f(s, θ), s)
17: Update the state-value critic network parameter ϕ0 by regression on mean-

squared error:
ϕk+1 = argmin

ϕ

1
T

∑T
t=0(Vϕ(st)− R̂t)

18: end for

defence capability. In the experiments, it is discovered the policy will learn to satisfy

the constraint in Equation (6.10) and resulting the term αL2(f(s, π), s) in step (2)

to decrease during the gradient descent process, and α in step (1) will gradually

approach zero. Consequently, step (2) will find the minimum after α becomes zero.

For the parameter of DKL, experiments are conducted with several potential values

and the best performing one is chosen.

The proposed robust DRL actor-critic network structure is illustrated in Fig. 6.4.

The model takes the monocular RGB image as input, and concatenates the high-

level features extracted by the encoder with five additional numeric features. The

concatenated features are then fed into actor and critic networks. With our optimal

adversary generation and robust proximal policy optimisation, the problem formulated

in Equation (6.1) is solved. The robust method is detailed in Algorithm 1.

144

6.3 Methodology

6.3.6 Reward Function Design

The reward function design is one of the most crucial parts for DRL problems. To

make sure the agent accomplishes the roundabout making task while ensure the

safety, efficiency, the hand-designed reward function is defined as followed, which are

mainly two signals:

rtotal = rdone + rcompound (6.21)

For the rdone, five distinct terminal conditions are defined, and three of which share the

same reward value. These three conditions are characterized as ’Early Stop Signals’

to prevent situations considered as meaningless explorations, thereby enhancing

training efficiency:

1. Distance Threshold: If the distance between the center of the ego vehicle and

the road center is beyond a certain criterion, it reveals that the car deviates

too far from the desired trajectory.

2. Under-speed Threshold: If the velocity of ego vehicle is below 1 km/h for over

certain time steps. This usually means that the agent chooses being still to

avoid receiving the negative rewards, which is commonly seen in DRL training.

3. Over-speed Threshold: If the speed is over the pre-defined maximum speed.

For safety concerns, the maximum speed is limited at 25 km/h.

All three of these Early Stop Signals are assigned with a reward value of -100, aiming

to discourage actions associated with these conditions. Another terminal signal,

collision, consists of three different types: Collision with pedestrians; Collision with

other vehicles; and Collision with other objects. They are assigned respectively with

-1000, -200, -100, to express the severity associated with each collision type. Finally,

if the ego vehicle approaches the target position, the agent will receive a success

reward of 100.

145

6.3 Methodology

To calculate rcompound, two variables are introduced:

centering = 1− distance_from_center
max_distance_from_center (6.22)

angling = 1− | angle

max_angle | (6.23)

The distance_from_center refers to distance between the center of the ego vehicle

and the road center, and the angle denotes the angle between the car and the

vector of two neighboring way-points. Both of the variables are in range of [0, 1].

rcompound = V ∗ centering ∗ angling, and V changes depending on the vehicle speed.

When the speed is between 12 km/h and 22 km/h, V = 1. If the speed is below 12,

V = velocity
12 and if the speed exceeds 22 km/h, V = 1− velocity−22

3 . This setting aims

to encourage the DRL agent to maintain a safe speed within the range of 12 km/h to

22 km/h. In summary, the designed reward function balances the encouragement for

goal reaching, obstacle avoidance and safety. It is worth noting that the adversarial

attack defence algorithm is independent from the reward function design. Both the

baseline and the proposed approach are trained using the same reward function,

meaning that the efficiency of the robust method is hardly affected by the design of

the reward function.

6.3.7 Attack Detection Network and Explainability

In this section, an efficient explainability based adversarial attack detection network

is introduced for attack awareness and better understanding the fundamental of the

decision making process under adversarial attacks. Saliency maps are adopted to

provide insights into the DRL model’s decision-making process by highlighting the

most influential regions in the input space. Saliency maps help understand which

parts of the input contribute most to the agent’s actions. With careful analysis,

it is noted that the saliency maps generated from the same policy show certain

discrepancies under normal states and adversarial attacked states. This spurred the

decision to propose a deep network-based detector (CNN-based detector) exploiting

146

6.3 Methodology

Figure 6.5 Network structure of our adversarial attack detection model. [Wang et al.]

explainability based saliency maps by monitoring the saliency maps generated by

the gradients of the robust proximal policy optimisation agent. The detector will

learn and find patterns in the saliency map images to detect adversarial attacks.

By calculating the gradients of the outputs with respect to the feature maps from

the last convolutional layer of the robust DRL model, the saliency maps are obtained.

These maps are represented as heatmaps, and they will be up-sampled to overlay

on the sensor RGB image inputs to form the final visualisation. A novel adversarial

attack detection data is collected in Carla using the trained agent to drive around.

The details of the attack detection dataset will be explained in the experiment

section.

An optimised convolutional neural network architecture is designed to balance the

detection accuracy and the computation burdens. It consists of three convolutional

layers with channel numbers of 16, 32, and 64, respectively. All convolutional layers

have kernel size of 3, stride of 1, and padding of 1. Three linear layers are then

connected to the last convolutional layer with output neurons of 128, 64, and 2 for the

final prediction of adversarial or normal. Batch normalisation layers are employed

after the second convolutional layer and the second linear layer to stabilise the

training process. ReLU activation functions are used, and the network is initialised

using Kaiming uniform initialisation. The details of the network is shown in Fig. 6.5.

Cross-entropy loss function is used to fit the network outputs and the supervised

signals.

147

6.4 Experiments

Figure 6.6 Environment for experiments in CARLA. The training scenario comprises
the roundabout and its connecting extension road. The green cross means starting
point and red cross is destination. The yellow line is demonstrating trajectory. [Wang
et al.]

6.4 Experiments

6.4.1 Simulator and Scene Settings

The training and evaluation of the proposed framework are implemented in CARLA

simulator. CARLA is an open-source platform for development, training, and

validation of autonomous driving systems. It has a rich library of vehicle models and

realistic urban road modelling, hence being near ideal to urban driving simulation.

The experiment takes place in Town 3, as shown in Fig. 6.6. The ego agent is

randomly spawned around the starting point, and the task is to navigate through

3/4 of a roundabout while avoiding static and dynamic obstacles, such as road lamps,

surrounding vehicles and pedestrians, where the latter move autonomously using

PID controllers. The task is challenging due to multiple exists in the trajectory to

avoid entering, and the unpredictable movement of pedestrians and vehicles which

are randomly spawned in the map.

148

6.4 Experiments

Hyper-parameter Value
discount factor γ 0.99

RL network learning rate 0.0001
Lagrange multiplier learning rate 0.01

initial Lagrange multiplier α 0.01
memory size 5000
clipping ratio 0.2

constraint threshold µ 0.001
Table 6.1 Hyper-parameters for the experiments. [Wang et al.]

6.4.2 Implementation Details

The DRL agent takes 160*80 RGB images as inputs from a monocular camera and

5 numeric features: throttle, velocity, steer, the distance between the vehicle and

the road centres, and the angle between the vehicle forward vector and the tangent

to the road as shown in the network structure in Fig. 6.4. Specifically, the encoder

extracts the high-level features from the RGB image, and they are concatenated

with the five numeric features. The policy network and value network share the

parameters in feature extractor, where the high-level information is shared to benefit

both tasks during the training. For the constraint threshold µ, a suitable value

is selected manually from candidate values through experiments. This threshold

serves to restrict the gradient changes of the policy network outputs in response to

adversarial attacks. It is sensitive to the scenario as it significantly affects the stability

and performance of the training process. The main hyper-parameters used are shown

in Table 6.1. To increase the uncertainties in the process of generating optimal

adversarial attacks, a normal-distributed random strength controlling parameter ε

is used, with mean = 0.01 and std = 0.012, and the value of ε is limited in range

[0.01, 0.05]. Additionally, two methods are implemented to handle the bounding

of adversarial attacks during training time. First, following [181], the attacks

are manually constrained by employing a clipping technique on the adversarial

states. This technique restricted the magnitude of changes resulting from the

generated optimal adversaries. While this approach enhances training stability, it

may potentially limit the overall performance of the driving policy. Secondly, the

149

6.4 Experiments

Figure 6.7 Training curves of the proposed model and its variant (constraint optimi-
sation only), and the baseline model. [Wang et al.]

manual bounding process is disabled, enabling the algorithm to autonomously learn

and naturally satisfy the constraint of the observation changes due to adversarial

attacks within µ, as described in Equation (6.10). During the testing phase, manual

bounding is not applied to either model, as it is unfeasible to confine the adversarial

attacks or observation uncertainty within a specific range in real world. In the robust

agent evaluation section, the performance comparison of the proposed method is

conducted using these two implementations. The model runs at 250 fps in CARLA

on a single RTX 4090 graphic card.

6.4.3 Results

In this section, experiments are carried out for the efficiency assessment of the optimal

adversarial attacks, the robust guidance policy evaluation and the adversarial attack

detection accuracy as well as explainability. To realise these tests, first the baseline

(PPO), the proposed robust model with different attack bounding policies, and its

variants are all trained. The training is conducted in the roundabout scenario with

randomly spawned surrounding traffic. All algorithms are trained under the same

applicable hyper-parameter settings and environment conditions. Fig. 6.7 shows the

150

6.4 Experiments

Figure 6.8 The attack success rates at different settings of 100 (a) and 200 (b)
continuous frames of perturbation. [Wang et al.]

training curves of the proposed method (no manual bounding), proposed variant

(constraint optimisation only) and the baseline. The proposed model demonstrates

faster convergence compared to the other two. As the driving trajectories are

generated by the actions based on the normal observations in training, the episodic

rewards represent the performance under normal observations, but not necessarily

reflect the robustness of the models. Detailed robustness tests will be conducted in

the later section.

Adversarial Attack Evaluation

Before testing the robust deep reinforcement learning agent, the impact of the

proposed optimal generated adversaries is evaluated at various experiment settings.

The attack strength parameter ε is set from 0.01, to 0.025, 0.05, 0.075 and 0.1.

At each ε, different numbers of iterations are applied at 1, 5, 10, and 20. As the

model runs at a very high 250 fps, it needs more frames to be attacked to make a

deviation in the DRL decision making process. Therefore two sets of attack frames

are conducted at 100 and 200 continuous frames. It is observed that in the testing

time, certain levels of adversarial attacks cause the agent to be seriously off the

desired path, for example to the lawn and the sidewalk, but eventually the agent

avoids collision or avoids out-of-lane threshold. To increase the difficulty of testing

and distinguish the attack abilities, a successful attack is defined as leading the

151

6.4 Experiments

self-driving agent directly or finally into collision or exceeding out-of-lane threshold.

The adversarial attack evaluation in this section is tested on the non-robust trained

normal PPO, with 10 episodes in each configurations. The results are shown in Fig.

6.8. The success rate is positively related to the number of iterations and the value of

ε. It also can be seen that, higher iterations or higher strength parameters normally

lead to higher success rates. The results in Fig. 6.8 (a) with 100 attack frames

are first analysed. When the iteration is 1, which means that the attack method

is just the FGSM, the impact on the trained deep guidance agent is unstable and

relatively minor despite how strong the ε is. This also implies that the impact gained

from increasing ε is not as substantial as increasing the iteration numbers when

the iteration is small. The success rates are below 20%, and even invalid at 0.01,

0.05 and 0.1 of ε. The adversarial attacks have similar impact when the numbers

of iterations are set at 5 and 10 (although relatively higher). Their success rates

vary from 30% to 90% depending on the strength parameter settings. Lastly, the

generated attacks hold the highest and stable impact performance when the number

of iteration is 20. At the smallest ε, it still holds 40% of success attacks. Furthermore,

with the increase of ε, it reaches 100% attack success rate. This result also indicates

that a well-trained non-robust PPO has no chance in surviving under such strong

adversarial perturbations.

The influence of the attacks is further elevated by increasing the continuous attack

frames to 200. Fig. 6.8 (b) shows the evaluation results with the same configurations

as 100 frame attacks. As expected, even with increased number of frames, the

attack with 1 iteration as function of ε remains the lowest success rate and unstable.

Iteration 5 does not show significant improvement comparing to 100 continuous

frames attack, and reaches a limit of 70% success rate after ε is over 0.05. Iteration

20 and 10 share most part of the performance curve except at ε of 0.025. Same as

before, both of them can hit a 100% of success rate. In a word, the proposed optimal

adversary generation shows great performance on disturbing the decision making of

the self-driving DRL agent, and with the proper settings the attack success rate can

easily remain in 90-100% level. Note that due to the high fps the model running at,

the 100 and 200 consecutive frame attacks only take 0.4 and 0.8 seconds of simulation

152

6.4 Experiments

Epsilon Method Average Reward Collision Rate Success Rate

0.05

Baseline 1133.15±109.31 0.070±0.012 0.080±0.049
Constraint 2187.47±254.83 0.099±0.018 0.670±0.078

Ours Manual 2441.15±204.86 0.040±0.014 0.770±0.096
Ours 2656.04±341.03 0.038±0.013 0.809±0.113

0.1

Baseline 803.08±142.49 0.230±0.012 0.000
Constraint 1684.47±256.93 0.078±0.015 0.450±0.103

Ours Manual 1928.81±142.49 0.044±0.020 0.530±0.096
Ours 2255.70±281.91 0.042±0.004 0.679±0.086

Table 6.2 Evaluation of different algorithms with different epsilon value. The con-
straint refers to the model with only the constraint optimisation. Ours and Ours
manual share the same algorithm but Ours is implemented without manual clipping
for the adversarial attacks. [Wang et al.]

time, respectively.

Robust Agent Evaluation

In the previous section, the optimal adversary generation shows a great impact on

the decision-making process of the baseline deep guidance agent. The performance

gaps between 200 and 100 consecutive frame attacks become negligible at higher

strength parameters ε and iteration numbers. To evaluate the performance of the

proposed robust guidance algorithm under observation perturbations, two difficult

attack configurations are chosen, ε = 0.1 and ε = 0.05 which have over 80% success

rate in the previous evaluation. Both ε values are set with iterations of 20 and 100

consecutive frames adversarial attacks. For each category all models are evaluated

for 100 episodes. Note that a stochastic ε value is used in the training, while the

maximum value is only 0.05. In other words, most of the adversarial attacks in the

evaluation are much stronger than the ones in the training process.

Four methods are evaluated, the baseline PPO, the proposed method with only

constraint optimisation, the proposed method with manual attack bounding, and

the proposed method without bounding. The categories are defined as followed:

1. Average Reward: The average accumulative reward per episode.

2. Average Success Rate: Current success times to reach the goal position over

current episodes

153

6.4 Experiments

3. Average Collision Rate: Current collision encounters over current episodes.

Note that despite the concerns about the bias in evaluation due to incorporating extra,

non-attacked numeric data as inputs to enhance stability and performance, the results

still show substantial impacts on the baseline model, resulting in high failure rates.

The proposed method effectively handles strong adversarial attacks under the same

conditions, indicating that the additional inputs do not compromise the evaluation

outcomes. In Table 6.2, Ours (the proposed method without bounding) leads all the

categories. Fig. 6.9 illustrates the performance of these models under the two settings

in a more comprehensive way. The thin line is the mean value of each category and

the standard deviation is visualised around the mean value. Overall as it can be seen,

Ours outperforms the baseline model with large margin in terms of accumulative

rewards, task success rate, and collision encounters. Specifically, with ε = 0.05 in Fig.

6.9 (a), the baseline deep guidance model is at 1133.15 per episode. In contrast, the

proposed method achieves around 2656.04 accumulative reward an episode, which

represents 134.4% gain from the baseline. Comparing to the Constraint (with only

constraint optimisation), Ours achieves 21.4% improvement. And as expected, the

manual attack bounding (Ours Manual) loses 8.8% of performance, but still averages

2441.15 in terms of reward. In the category of task success rate in Fig. 6.9 (b),

Ours averages 80.9%, leading the baseline (at 8.0%) by 72.9%. With this attack

strength, the baseline model can barely finish the task, due to the sub-optimal or

worst decision making impacted by the adversarial attacks. The robust guidance

model and its variants on the other hand keep resistant to the strong perturbations.

All models demonstrate low tendency towards collisions in Fig. 6.9 (c), but Ours

holds the advantage at the lowest 3.8% of collision rate. From this result it can

inferred that surpassing the out-of-lane threshold contributes to the majority of

failure cases in the attack evaluation section. The reason that the collision rate of

baseline does not match the attack success rate in the previous section is that the

out-of-lane situations are excluded here.

When the attack strength escalates to ε = 0.1, as expected, the baseline model shows

worse robustness to the perturbations. In the reward category in Fig. 6.9 (d), the

154

6.4 Experiments

Figure 6.9 Detailed comparisons between the proposed method and baseline. The
agent is attacked with 100 consecutive frames with the same iteration = 20 and
surrounding traffic. In (a)(b)(c) ε = 0.05 and in (d)(e)(f) ε = 0.1 . The curve line is
the mean value while transparent area indicates standard deviation. [Wang et al.]

baseline decreases to 803.08, whereas Constraint reaches 1684.47, marking a 109.7%

improvement already. Ours Manual achieves 1928.81, 140.2% better than the baseline.

In comparison to manual bounding, Ours achieves an average cumulative reward

of 2255.7, marking a 180.8% increase over the baseline. This demonstrates a 33%

155

6.4 Experiments

Figure 6.10 Visualisation of the road in the training cloudy noon (left) and the
unseen heavy rain (right) weather condition. [Wang et al.]

improvement over the Constraint method and a 17% enhancement solely attributed

to the autonomously bounding learned by the proposed algorithm. In terms of task

success rate, the baseline model exhibits a complete failure, being unable to complete

a single episode. Although the performance of Constraint, Ours Manual and Ours

decline compared to the setting with ε = 0.05, they still successfully reach the goal

point without collisions at 45%, 53% and 67.9% of the time respectively. Under

the stronger attacks, the notable performance difference emerges in the collision

category. Ours experiences a collision rate of 4.2%, close to the previous setting.

The baseline encounters collisions 5.47 times higher than our model. Moreover, Ours

demonstrates superior performance across all categories without the need for manual

perturbation bounding. This highlights the algorithm’s capacity to learn and restrict

observation shifts caused by gradient-based adversarial attacks during training,

thereby enhancing robustness against stronger, unbounded perturbations. The

divergence based optimisation term further reduces the action probability generated

under normal and attacked observations.

These tests demonstrate the capability of the proposed robust proximal policy opti-

misation guidance model to remain resilient against strong adversarial perturbations

while maintaining proficient performance in the driving tasks. Moreover, to assess

the generalisation capability of the proposed method in handling domain shifting,

another challenging scenario that requires system robustness, both the proposed

model and the baseline model are evaluated under the heavy rain weather condition,

156

6.4 Experiments

Methods Average Reward Collision Rate Success Rate
Baseline Normal 780.14±111.25 0.034±0.014 0.01±0.02

Ours Normal 2031.25±283.47 0.012±0.007 0.56±0.08
Baseline Attacked 764.71±103.88 0.123±0.025 0

Ours Attacked 1776.56±202.49 0.017±0.007 0.42±0.07
Table 6.3 Evaluation in the unseen heavy rain weather condition. The proposed
method and baseline model are tested under normal observation and attacked
observation with epsilon=0.05. [Wang et al.]

Figure 6.11 Performance comparison in average accumulative reward category of the
proposed method and the baseline in heavy rain weather condition. [Wang et al.]

an unseen scenario for both models. Specifically, the precipitation parameter (rain)

is set as 50/100, precipitation-deposits (puddle) is set as 50/100, and the wetness

(water on the camera) is set as 20/100 in CARLA. The visual difference can be

seen in Fig. 6.10. Two settings are applied as normal observations and attacked

observations with ε = 0.05. The results are shown in Table 6.3. In the heavy rain

weather condition, without any adversarial attacks encountered, the baseline model

fails to adapt its driving policy to the new scenario. It averages a reward of 780.14 per

episode and only completes the task once. In contrast, when faced with the unseen

heavy rain condition, the proposed model exhibits great generalisation, achieving an

average reward of 2031.25 per episode with a 56% success rate. When the adversarial

perturbations are introduced, the performance of the baseline continues to fall to a

collision rate of 0.123 and zero task success. The proposed model stays resilient to

the perturbed unseen scenario, scoring 1776.56 episodic rewards and 42% of success

157

6.4 Experiments

Figure 6.12 Training curve of the explainable attack detection model. (a) shows the
loss and (b) demonstrates the accuracy of the training and validation during the
training phase. [Wang et al.]

rate. In Fig. 6.11, the curves of the baseline in normal and attacked scenarios appear

similar. This similarity suggests that the baseline model is already highly unsta-

ble due to weather changes. Consequently, adversarial attacks do not significantly

escalate this situation.

In summary, the proposed algorithm not only handles optimal adversarial attacks

within the training weather but also demonstrates robust generalisation in unforeseen

scenarios, even in the presence of observation perturbations.

Attack Detection Evaluation and Explainability

In total 2200 frames of synthetic data are collected from CARLA by navigating the

trained proposed model. Out of the collected frames, 1100 represent normal, non-

adversarial sensor observations, while the remaining 1100 are adversarial examples

generated by stochastic controlled adversaries with ε ∈ [0.5, 1]. This range aligns

with the parameters used in the evaluation of the robust agent. The saliency maps are

then generated by computing the gradients of the outputs from the final convolutional

layer within the feature extractor of the self-driving agent, with respect to the agent

action outputs. The data is divided into 1700 samples for training and 500 samples

for evaluation purposes. Fig. 6.12 illustrates the training progress of the adversarial

detection network. After 20 epochs of training, the detector reaches an accuracy of

99.58% on the training set and 99.38% on the validation set.

158

6.4 Experiments

Figure 6.13 Visualisation of the explainable saliency maps for steer and throttle
actions of an under-trained policy (a) and a well-trained policy (b) at the normal
observation respectively. [Wang et al.]

Furthermore, to explore the explainability behind the behaviours of the self-driving

model, the saliency maps used in the training of the adversarial detector are visualised.

Overall in Fig. 6.13, it is clear that the steer and throttle actions depend on distinct

information derived from the sensory input observation. In the normal driving

condition, the background buildings, functioning as an obstacle, notably influences

the throttle actions of the well-trained policy in Fig. 6.13 (b). The saliency map of

a under-trained agent produces highlight in different pixels of the heatmap in Fig.

6.13 (a). As focusing on the wrong objects, the agent generates non-optimal actions,

leading to collisions during training. For the steer action, the open space and terrain

have significant influence on this specific action generation in Fig. 6.13 (b). On the

other hand, steering in Fig. 6.13 (a) is based on the sky, which is unreasonable.

During the robust model evaluation, it is noticed that the driving policy is more

vulnerable to adversarial perturbations in certain positions along the trajectories.

The generated saliency maps confirm these findings in Fig. 6.14. Two spots are

pinpointed in the driving scenario that exhibit different potential vulnerabilities

under identical perturbation strengths on both proposed model and the baseline

model. When the agent is at the potentially vulnerable position 1 and the camera

159

6.4 Experiments

Figure 6.14 Steering saliency map comparisons between the proposed model and
the baseline at two positions along the trajectories. Saliency maps under normal
observations and same-strength adversarial attacked observations are displayed.
[Wang et al.]

observations are shown in (a) and (c), the adversaries significantly alter the action

generation logic shown in (b) and (d). Consequently, both agents output actions

deviating in large margin from the optimal and thus potentially leading to collisions.

On the other hand, when the robust agent is at position 2, the steering saliency

maps (e) and (f) show very similar heatmaps, indicating that the actions generated

by the proposed model are close enough whether the adversarial attacks are present

160

6.4 Experiments

Figure 6.15 Steering saliency map comparisons with the same observation and various
adversarial attack strength ε. [Wang et al.]

or not. Note that this is also the objective of the divergence-based optimisation

term. In contrast, the decision-making process in the baseline model is significantly

affected by the same perturbation strength at the same position, as shown in (g)

and (h). This suggests that the position 2, considered invulnerable to the robust

model remains potentially vulnerable to the baseline model due to the absence of

the proposed robust optimisation training.

Fig. 6.15 demonstrates the changes to the decision-making process when the robust

agent encounters adversarial attacks with different strengths. As expected, attack

with ε = 0.01 produces very similar saliency map to the normal observation, implying

that the agent stays resilient to this attack. For stronger attack with ε = 0.1, more

changes in the saliency map can be seen. However, there is still similarity in the

highlights, for example the left highlight keeps the same position. With the increase

of ε to 0.1, the highlight part on the left starts to shift, signifying larger changes

in the action’s magnitude. Besides the changes in the heatmap, it is observed that

isolated spots tend to appear predominantly on darker objects, such as the building

and the hood of the ego vehicle in Fig. 6.15. These spots play the key role in

distinguishing whether the observation is under adversarial attacks for the attack

161

6.5 Summary

detection network. The focus of driving agent on the input observation appears to

be distracted, causing a spreading of the highlight of the heatmap onto other objects

in the scene and finally luring the agent to the sub-optimal action generations.

6.5 Summary

Although in Chapter 5, a DRL driving agent is presented with reliable performance

and proven generalisation capability, its robustness is limited to ideal and controlled

environments, lacking a formalised approach to handle adversarial challenges. To

address this limitation, in this chapter, a novel approach is introduced for deep

reinforcement learning based robust autonomous driving against observation per-

turbations, along with an explainable adversarial detection model. Autonomous

driving systems based on DRL are constantly challenged by safety-critical issues,

which are not only from inevitable sensor failures and hardware limitations but also

from the dynamic nature of real-world environments. These challenges are similar to

adversarial attacks, which can degrade or compromise the ability of DRL agents to

make precise and safe decisions in high-risk scenarios.

To approximate the worst-case perturbations that an autonomous driving agent may

encounter, the proposed approach employs a white-box method. This method, which

assumes full access to the internal parameters of the DRL agent, is developed to gen-

erate optimal adversaries. These adversaries act as training samples to strengthen the

agent’s robustness during reinforcement learning. The method is built upon FGSM, a

widely used adversarial attack generation technique, and is enhanced with the novel

collision risk maximum formulation, which ensures that the generated adversaries

lead the DRL agents to collisions. Unlike traditional FGSM implementations that

simply increase the attack strength by enlarging the ε parameter, the method uses

iterative FGSM to apply repeated, making attacks harder to detect, thereby reducing

the visibility of adversarial examples and simulating more realistic disturbances.

Once the perturbed observations are generated, a Markov decision process (MDP)

with perturbation is introduced to model decision-making in a complex urban environ-

ment, specifically focusing on roundabout navigation under constrained and uncertain

162

6.5 Summary

observational conditions. The agent must navigate this environment while managing

the perturbations, aiming to learn an optimal policy that can adapt to real-world

uncertainties. Then a Robust Proximal Policy Optimisation algorithm is presented

to maximise the designed objective function with the constrained adversarial attacks

to realise concrete robustness. Furthermore, a divergence-based optimisation term is

introduced to mimic the performance gap between non-adversarial and adversarial

states. Furthermore, the adversarial detection network is proposed. This network

leverages explainable saliency maps, which provide visual insights into which parts

of the input observations are influencing the decision-making process of the DRL

agents. By highlighting these regions, the detection network offers transparency into

the agent behaviour, making it easier to understand how adversarial attacks affect

decision-making and enabling the reliability of the robust agents in safety-critical

situations.

Extensive experiments have been conducted to thoroughly validate each component of

this approach. Results reveal the notably high attack success rates achieved when the

proposed attack method is applied to a well-trained baseline model. Additionally, the

proposed robust agent exhibits resilience and robustness under strong perturbations

across varied evaluation conditions. The detection model also demonstrates high

accuracy in identifying attacks, providing insightful visualisations that help clarify the

decision-making process under adversarial conditions. With single-agent robustness

ensured, the next chapter, robustness in a more complex multi-agent system will be

investigated.

163

Chapter 7

Multi-Agent Robustness Against

Perturbation

In this chapter, the robustness of multi-agent deep reinforcement learning

is investigated. A connected, cooperative multi-agent system is introduced

to enhance the efficiency of cooperative tasks in ideal environments.

However, the challenges of adversarial attacks escalate significantly in

MARL systems compared to single-agent systems, due to the increased

complexity of dynamics and information sharing. To solve this, this

chapter follows the idea of constrained objective function introduced in

chapter 6, and further adopt it to the multi-agent context with proposed

safety criteria guarantee.

Associated Publications This chapter is based on the following submitted work:

Wang C, Aouf N. Robust Multi-Agent Reinforcement learning Against Adversarial

Attacks for Cooperative Self-Driving Vehicles. Submitted to IET Radar, Sonar &

Navigation.

164

7.1 Overview

Multi-Agent Deep Reinforcement Learning (MARL) for self-driving vehicles aims

to address the complex challenges of coordinating multiple autonomous agents in

shared road environments. MARL creates a more stable system and enhances vehicle

performance in typical traffic scenarios compared to single-agent DRL systems.

However, despite its sophisticated cooperative training, MARL remains vulnerable

to unforeseen adversarial attacks. Perturbed observation states can lead one or more

vehicles to make critical errors in decision-making, triggering chain reactions that

often result in severe collisions and accidents. To ensure the safety and reliability of

multi-agent autonomous driving systems, this chapter proposes a cooperative multi-

agent proximal policy optimisation algorithm for self-driving vehicles, equipped with

robust capabilities to handle strong and unpredictable adversarial attacks. Unlike

most existing works, the proposed MARL framework employs a universal policy for

each agent, realising a more practical, non-task-oriented policy network for real-world

applications. In this way, it enables integrating shared observations with Mean-Field

theory to model interactions within the MARL system. To further enhance robustness,

a risk formulation and a risk estimation network are developed to minimise long-term

risks while maximising the long-term rewards. This risk estimator is then used to

construct a constrained optimisation objective function with a regulariser to maximise

long-term rewards in worst-case scenarios. Experiments conducted in the CARLA

simulator in intersection scenarios demonstrate that the proposed method remains

robust against adversarial state perturbations while maintaining high performance,

both with and without attacks.

7.1 Overview

In recent years, deep reinforcement learning has demonstrated promising decision-

making capabilities for autonomous driving vehicles in various environments [134,

151, 152]. As it brings prospect of greater convenience, mobility efficiency, and safety

to the automotive industry, an increasing number of self-driving vehicles will be

deployed on roads in the near future. Research has shown that in complex cooperative

tasks, Multi-Agent Reinforcement Learning (MARL) offers improved coordination in

165

7.1 Overview

collaboration, more efficient learning and overall performance compared to single-

agent reinforcement learning [184, 185]. This is particularly relevant for applications

such as autonomous driving, where the tasks require multiple agents to work together

cooperatively and maintain awareness of the overall system rather than acting

independently [186]. Although MARL has been extensively studied, challenges still

persist in designing multi-agent systems. Existing works [187, 188] primarily train the

decision-making process based on local observations. Even though these agents are

trained within a multi-agent framework, they often lack a comprehensive awareness of

individual contributions and the overall situation. Sunehag et al. [185] attempt to use

global rewards to inform local agents about overall performance. Additionally, QMIX

[189] employs a mixing network to enhance the accuracy of global Q-value estimation

by incorporating global state awareness. However, this approach still neglects the

individual contributions of each agent to the overall performance. The interactions

each agent learns can be subtle, which means that centralised-training-decentralised-

execution approaches may resemble multiple single agents working together, rather

than fully achieving the potential of true multi-agent systems. Furthermore, in

many multi-agent systems, each agent is designed to complete a specific task using

its own policy network, meaning that an agent trained for one task cannot easily

transfer to another. While this task-specific approach is necessary for some robotic

applications, it does not suit autonomous driving. In this context, vehicles should

operate uniformly on the road without requiring specialised training for each specific

task.

Besides the fact that MARL methods have areas that could benefit from further

development, they also face challenges as vulnerability to adversarial attacks [190].

These attackers are designed to affect the decision-making process of the MARL

system. Given the high safety requirements of autonomous vehicles, it is important

to develop a robust DRL agent or MARL system to prevent catastrophic failures

due to perturbations in realistic environments. This robustness is crucial not only

for defending against adversarial attacks but also for handling unavoidable sensor

errors and natural equipment inaccuracies, which can impact the agents in a similar

manner.

166

7.1 Overview

Recognizing the importance of model robustness, researches have investigated the

single-agent DRL. Some works [154, 155] adopt adversarial training from supervised

learning scheme to improve the robustness of such deep based guidance schemes.

Specifically, the agent is occasionally attacked and the adversarial trajectories are

generated during the data collection. However, simply training the agent with

adversarial samples only brings limited improvement. Compared to these robust

single-agent algorithms, enabling robustness for multi-agent scenarios faces more

challenges, as not only the driving agents are influence by the adversarial attacks,

but their behaviour after the attacks could affect other agents in the same tasks.

Moreover, despite the improvements that communication brings to cooperative multi-

agent autonomous driving under normal conditions, the shared observations can be

perturbed, further compromising the agents that rely on this information. To address

these problems, this chapter introduces a novel algorithm for robust cooperative

multi-agent reinforcement learning based self-driving to solve the intersection passing

scenarios against the observation adversarial attacks. The key contributions can be

summarised as follows:

1. A cooperative MARL framework with communication is established. The

communication and the universal policy network allow us to take account the

interactions among agents based on Mean-Field theory in the training, thereby

enhancing the MARL performance. Additionally, the universal policy indicates

that each agent is not limited to a specific task. It ensures that one policy can

manage all tasks after training.

2. A risk assessment formulation is defined to model both the system and individual

risk levels at current state. Similar to Long-term rewards and the value network,

the risks is minimised with a risk network at the same time. Moreover, the gap

between system risks and individual risks is formulated as a credit assigning

method, allowing the policy to be updated by accounting for each agent’s

contribution to the MARL system.

167

7.2 Related Work

3. A robust proximal policy optimisation is proposed to obtain a robust policy

for roundabout making under bounded optimal observation perturbations. A

regulariser is used to solve the attacked information sharing.

Experiments are carried out to evaluate the performance of the proposed algorithm for

intersection-passing tasks in the realistic unreal-engine powered simulator CARLA

[49]. The results show the improvement of performance and robustness of the

proposed adversarial defence method for MARL system.

7.2 Related Work

7.2.1 MARL for Autonomous Driving

Multi-agent deep reinforcement learning (MARL) aims to maximise team rewards,

and several effective approaches have been developed. MADDPG [184] extends DDPG

to multi-agent settings, where each agent has its own actor and critic networks, using

global information to learn coordinated policies. MAAC (Multi-Agent Actor-Critic)

[191] improves coordination by using attention mechanisms to prioritise relevant

information from other agents, making it more efficient in complex environments.

G2ANet [192] further enhances communication by incorporating graph attention

networks to capture agent interactions dynamically. On the value-based side, QMIX

uses a mixing network to combine individual Q-values into a global Q-value, ensuring

a more accurate global Q-value estimation. QPD [193] decomposes the global

Q-function into individual components for better scalability, while QPLEX [194]

uses duplex duelling networks to model the interplay between agents. Mean-filed

actor-critic method (MFAC) [195] applies the mean-field theory to MARL and thus

successfully improves the scalability of MARL with a large number of agents.

Following the major breakthroughs of MARL in recent years, recent advancements

in multi-agent deep reinforcement learning (MARL) have expanded the scope of

autonomous driving systems by addressing complex interactions among multiple

vehicles and agents. Unlike single-agent DRL, which focuses on optimising the per-

formance of an individual vehicle, MARL considers the collaborative and competitive

168

7.2 Related Work

dynamics in a shared driving environment [19, 196]. This approach is particularly

useful for scenarios involving multiple autonomous vehicles that must navigate and

negotiate their movements in real-time. MARL techniques can significantly enhance

the coordination and cooperation among vehicles, improving overall traffic flow,

safety, and efficiency. These methods allow vehicles to learn not only from their

own experiences but also from the interactions with other agents, leading to more

robust decision-making and adaptive behaviours. For instance, [162] introduces a

cooperative control framework where autonomous vehicles use MARL to synchronise

their movements and optimise lane merging and intersection crossing, resulting in

smoother traffic management and reduced congestion. Furthermore, MARL can

address the challenge of non-stationary environments where the behaviour of other

agents is dynamic and uncertain. By leveraging multi-agent techniques, vehicles can

develop strategies to anticipate and respond to the actions of neighbouring vehicles

more effectively [163]. [164] presents a method that integrates MARL with commu-

nication protocols, allowing vehicles to share information about their intentions and

local environment, thereby improving coordination and reducing the likelihood of

accidents.

However, MARL systems face notable challenges, particularly regarding their vul-

nerability to adversarial attacks. The collaborative nature of MARL can make it

more susceptible to disruptions caused by malicious agents or unexpected behaviours

from other vehicles. Unlike single-agent systems, where robustness can be achieved

through isolated adjustments, maintaining robustness in a multi-agent setting is

more complex due to the interdependence among agents.

7.2.2 Adversarial Attacks on DRL

Though deep learning models recently achieve significant improvement, research

shows that these well-trained models are still very vulnerable to adversarial attacks.

Adversarial attacks on camera sensor often lead to visually similar images to the

normal images from a human perspective, yet they can deceive deep learning models

into generating inaccurate predictions. Generally there are two types of adversarial

169

7.2 Related Work

attack methods, white-box attacks and black-box attacks, depending on if the attacker

has full access to the models’ parameters or not.

In [165], a Bayes optimisation based approach was proposed to generate the painting

of black lines on the road to counterfeit lane lines and make the vehicle deviate from

the original orientation. Experiments were conducted in CARLA simulator, and

results showed that end-to-end driving models were attacked and deviated to the

orientation chosen by attackers. He et al. [166] combined Bayesian optimisation

and Jensen-Shannon (JS) divergence to measure average variation distance of the

policies attacked by the observation perturbations for optimal black-box attacks.

Behzadan and Munir [167] studied black-box attacks on DQNs with discrete actions

via transferability of adversarial examples. Pattanaik et al. [168] further enhanced

adversarial attacks to DRL with multi-step gradient descent and better engineered

loss function. They required a critic or Q function to perform attacks. Typically, the

critic network learned during agent training. For white-box approaches, Huang et

al. [169] evaluated the robustness of deep reinforcement learning policies through

an FGSM based attack on Atari games with discrete actions. Kos and Song [170]

proposed to use the value function to guide adversarial perturbation search. Lin et

al. [171] considered a more complicated case where the adversary is allowed to attack

only a subset of time steps, and used a generative model to generate attack plans

luring the agent to a designated target state. In this chapter, a FGSM based method

is introduced to generate optimal adversary examples by maximizing the pre-defined

collision risk. Results show that with a small strength parameter ε and minimal

visual difference, the proposed method can efficiently misguide the well-trained agent.

7.2.3 Mitigation Against Adversarial Attacks

Defence methods against adversarial attacks have been explored recently. Zhang et

al. [197] proposed a novel Markov decision process (SA-MDP) that considers state-

adversarial perturbations, and provides a theoretical foundation for robust single-

agent reinforcement learning. They developed the principle of policy regularisation

that can possibly be applied to many DRL algorithms. Based on SA-MDP, Zhang

170

7.3 Methodology

Figure 7.1 The framework overview. [Wang et al.]

et al. [198] proposed an alternate training framework with learned adversaries and

developed a robust Markov game to address environmental uncertainty by introducing

uncertainty into the reward function.. Oikarinen et al. [199] proposed the robust

ADversarIAl loss (RADIALRL) method, which can improve the robustness of DRL

under the ℓp norm boundary against attacks with lower computational complexity.

Kumar et al. [200] proposed certified robustness by adding smoothing noise to the

state. However, these methods are designed for single-agent RL systems and overlook

the specific challenges of MARL, making them difficult to apply effectively. MARL

systems are often more vulnerable to adversarial attacks, even when only a single

agent is targeted [201]. To counter state-based attacks, Zhou et al. [181] proposed

robust policies by minimising the cross-entropy loss between the actions of agents

in non-perturbed and perturbed states. Compared to previous methods, our work

focuses on mitigating perturbations in both local agent states and global shared

states, addressing a more challenging problem than prior approaches.

7.3 Methodology

7.3.1 Framework Overview

The system overview is shown in Fig. 7.1. The cooperative MARL system includes N

agents with an information sharing module and an adversarial attacker. During infer-

171

7.3 Methodology

ence, the environment generates a tuple of local camera observations (s1
t , s

2
t , · · · , sNt).

The adversarial attacks are then applied on the clean states, resulting in a new

perturbed tuple (s1
A,t, s

2
A,t, · · · , sNA,t). Through the information sharing scheme for the

connected multi-agent system, the observations will be processed as the perturbed

local observation and the mean of all neighbor observations for each individual agent.

All agents share a non-task-oriented, universal policy network with the exact same

parameters. Based on the local observation and the shared observation (which could

be perturbed or not), each agent outputs the actions and execute the actions in

the environment. As previously discussed, developing a robust multi-agent system

poses significant challenges, particularly due to the uncertainty regarding the number

of agents that may be compromised by adversarial attacks. Additionally, while

information sharing here enhances decision-making in non-perturbed contexts by

incorporating diverse perspectives from neighboring agents, it can have a backwards

impact when the shared observations themselves are exposed to attacks, leading to

more erroneous decision-making.

In this section, the existing problems are addressed and a robust cooperative deep

adversarial reinforcement learning approach is proposed for autonomous driving

agents against strong observation perturbations.

7.3.2 Mean-Field Communicated Multi-Agent Structure

A multi-agent deep reinforcement learning task can be considered as a continuous

decision-making problem, which follows the Stochastic Games (SG) [202]. SG is

defined as a tuple (S,A1, · · · ,AN ,R1, · · · ,RN , P, γ). N is the number of the agents,

Aj is the action space of agent j, Rj is the step reward of agent j. The agents interact

with the environment of successive joint state S : s1 × · · · × sn with a joint action,

getting the step rewards (r1 ∈ R1, . . . , rN ∈ RN) and the transition probability p ∈ P

to the next joint state under the current joint state and the joint action. γ indicates

the discount factor. Considering the state perturbations, the worst case perturbed

joint state and the perturbed action responded to it (SA,AjA) are introduced to the

original SG tuple. The goal of the robust multi-agent deep reinforcement learning is

172

7.3 Methodology

to find a series of optimal policies that return the maximum accumulative discounted

team returns under the worst adversarial attacked states:

Qi
π∗ = max

π
min

SA

[
E
(

T∑
t

γtrit
(
sit/s

i
A,t, a

i
t/a

i
A,t

))]
(7.1)

The attacked state sA is a shifted state, which models the worst case perturbation due

to attacks on the sensor leading to aA sub-optimal than a∗. A well-trained guidance

policy network may be able to cope with a weak and quick perturbation, turning

back to the actual actions and the desired trajectory after the state observations get

back to normal. However under strong and continuous adversarial attacks in the

context of multi-agent, the guidance policy networks can easily fail.

One problem for multi-agent reinforcement learning is the difficulty to model the

interactions among the agents. Mean-field actor-critic reinforcement learning (MFAC)

uses the mean-field theory to transform the interaction of multiple agents into the

interaction between two agents, which makes large-scale multi-agent reinforcement

learning become possible. In MFAC, the long-term expected Q value for agent j

at state s with the joint action a, Qi(s, a) is decomposed to the sum of Qs when

interacting with each agents:

Qi(s, a) = 1
N − 1

∑
k⊆N−1

Qi
(
s, ai, ak

)
(7.2)

where the ak counts as the local interaction between agent j with the neighbor agent

k. In this case, a universal policy network is used for every agent in the MARL, to

enable a universal driving agent that works in every task in the intersection scenario.

Therefore, the decomposition becomes:

Qi(s, a) = 1
N − 1

∑
k⊆N−1

Qi
(
si, ai, sk

)
(7.3)

As a universal policy is used, the actions generated by different agents only depend

on the observation. The action of neighbor can be replaced by the state of the

173

7.3 Methodology

neighbor. It is proved by MFRL:

Qi(s, a) ≈ Qi
(
si, ai, s̄k

)
(7.4)

where sk is the mean state or fusion state of all neighbor agents. The local agent j

makes decision based on the local observation and the information shared by other

agents, which is processed through two FC layers and an attention module.

7.3.3 Gradient-based Attacker

In this section, the inner minimisation part of Equation (7.1) is solved by modelling

the optimal adversarial attacks on observations based on a white-box technique.

An adversarial attack generation method is required that prioritises ease of imple-

mentation and computational efficiency. The Fast Gradient Sign Method (FGSM),

introduced by Goodfellow et al [179], fulfills these criteria. Additionally, FGSM offers

flexibility, allowing for the application of techniques like Basic Iterative Method

(BIM) [180] to introduce iterations and enhance the adversarial attack instead of

increasing the perturbation parameter ε.

FGSM works by using the gradients of the neural network to create an adversarial

example. For deep reinforcement learning, the method uses the gradient ▽sL(π, s, a)

of the loss with respect to the input observation to create a new observation that

maximises this loss. The π refers to the policy network parameters, while the a is

the output action. The new masked observation is obtained by:

sA = s+ ε× sign (▽sL(π, s, a)) (7.5)

This new observation sA is called the adversarial state. The ε parameter controls

the strength of the attack, and it varies from 0 to 1. The closer the value to 1,

the stronger effect on the targeted policy network, but this also makes sA more

visually distinguishable. On the contrary, if the ε is small, its impact is weaker,

and it becomes harder for human eyes to detect differences from the normal state.

As discussed in the beginning of the section, to solve the inner minimisation, the

174

7.3 Methodology

generated perturbations should lead the policy to worst case situations. In the

proposed cooperative MARL system, an unintended-action-leading loss function is

introduced instead of directly minimising the long-term rewards. Within the realm

of autonomous driving, certain throttle and steering actions in certain scenarios

may pose potential danger. Based on this idea, the gradient-based perturbations

are introduced into the control system by maximising the throttle and reversing the

steering, thereby deliberately maximising the risk of collisions. After introducing

the augmented FGSM, the agent will be encouraged to accelerate and make wrong

steering to make the collision.

The problem of using FGSM is the effective sensitivity to ε. In practice, a larger ε

is needed to make the perturbation effective on the deep guidance model decision.

However during training, this will make perturbations predictable and tolerated by

the model [155]. The BIM is employed to intentionally escalate the attack effeteness

associated with autonomous driving. The BIM iterates the process of a single

FGSM, which means a previous generated adversarial state will be the input of the

next adversary generation. By iterating FGSM, the influence of the attacks can be

increased without affecting the sensory image as much as by increasing the ε by a

comparable amount. Finally, with the risk encouragement and BIM, the optimal

adversary is obtained as:

siA = sin + ε× sign
(
▽si

n

(
Lin
))

sin = sin−1 + ε× sign
(
▽si

n−1

(
Lin−1

))
. . . (7.6)

where

Lin =
(
−steeri, 1

)
−
(
π | sin

)
(7.7)

siA indicates the optimal adversary, and n is the iteration number. Note that the

attacker applies perturbations only on the targeted agent’s observation, which is

more realistic for the attacker to aim on the camera of that agent. The shared

175

7.3 Methodology

Figure 7.2 The illustration of the area (rhombus) that could lead to collision between
two agents. [Wang et al.]

information could be perturbed through the cameras of neighbour agents, interfering

with the decision-making on the receiving end. These attacks will lead the model to

the worst actions in most of the cases.

7.3.4 Risk Assessment Formulation

To enhance the robustness of the MARL algorithm, a safety criteria is also introduced.

The risks in the multi-agent framework are quantified as the collision probability

of any two agents in the whole system. Autonomous driving reinforcement agents

need to not only maximise the rewards and finish the tasks, but also be aware and

reduce the risks during the navigation, which is particularly crucial for multi-agent

self.driving. To simplify the risk analysis and disregarding the varying dimensions and

shapes of individual vehicles, each vehicle is represented as a circle with a diameter

equal to its diagonal. As shown in Fig. 7.2, considering two agents running towards

each other with current speed v1, v2 and rotation to the world coordinate θ1, θ2, at

176

7.3 Methodology

world locations (x1, y1), (x2, y2). Assume the two agents maintain the current speed

and rotation, they will meet at the intersection of their trajectories. If sliding the two

circles representing the two vehicles along their respective trajectories (the dotted

lines), the first point of collision is identified when agent 1 is at P1 and agent 2 is at

P2, and so is the last point of contact when agent 1 is at P3 and agent 2 is at P4.

This implies that between the moments when agent 2 passes P4 and leaves P2, while

agent 1 remains between P1 and P3, there is a highly chance of collision between

the two agents. Given the orientations, diagonals, and locations of the two agents,

the coordinates of the four points P1, P2, P3 and P4 can be determined. Based on

the agents’ current speeds, the times associated with these positions are as follows:

t0 represents current time, t1 is the time when agent 1 reaches P1, t3 is the time

when agent 1 leaves P3, t4 is the time when agent 2 reaches P4, t2 is the time when

agent 2 leaves P2. The risk probability is then defined as:

Prisk = (t3 − t1) ∩ (t2 − t4)
(t3 − t1) ∪ (t2 − t4)

(7.8)

Prisk ⊆ [0, 1] indicates the ratio of the overlap in the time intervals when both agents

are within the collision zone to the total time interval between the moment the first

agent entering the zone and the last agent leaving the zone. To calculate the overall

risk in a MARL system, where Prisk describes the risk between two agents:

Ptot = 1−
N−1∏
i=1

(1− Prisk,i) (7.9)

where N is the number of agents and Ptot ⊆ [0, 1].

After the careful design of the risk evaluation, it is then embedded to the robust

MARL.

7.3.5 Constrained Robust Cooperative-MARL

In this section, a robust multi-agent proximal policy optimisation is introduced

with risk assessment integrated to solve the outer maximisation in Equation (7.1).

Proximal Policy optimisation (PPO) is extended to multi-agent context, where each

177

7.3 Methodology

agent learns a policy while coordinating with other agents, leveraging a centralised

training with decentralised execution structure:

Liclip(π) = Êt

[
N∑
i=1

min

((
π (ai|si)
π′ (ai|si) , clip

(
π (ai|si)
π′ (ai|si) , 1− ε, 1 + ε

))
Âit

)]
(7.10)

Where π is the new policy parameter of the deep guidance agents, and π
′ stands

for the old policy. N is the number of Agent. In this case, π is the universal policy

parameters. Êt denotes the expectation over t., while ε stands for the constant clip

term that limits the policy update by constraining the ratio within a specified range,

preventing excessively large updates. Ât is the estimated advantage value, obtained

by the difference between the observed reward for taking an action a at a state s

and the expected value predicted by the critic network at a state s:

Âit = Qi
t

(
si, ai, s−k

)
− V i

t

(
si, s−k

)
(7.11)

Long-Term Risk Minimisation

The objective of equation 10 aims to maximise long-term expected returns. Similar

to the long-term accumulative expected returns, based on the risk assessment, a risk

objective can also be designed to minimise the long-term expected risks for the agent

safety in the MARL. At every step, the risks of the MARL system is evaluated, and

at the end of the episode, the overall risk is computed as the discounted cumulative

risks. In order to fit in the maximisation form as the returns, (1− risk) ∈ [0, 1] is

used as the safety term, and the safety-to-go at t is defined as:

Sit =
T−t∑
j=0

(γλ)j
((

1− Ptot
(
sit, s

−k
t

))
+ γSθ

(
sit+1, s

−k
t+1

))
(7.12)

Where λ is the Generalised Advantage Estimation (GAE) [203] parameter used to

control the bias-variance trade-off. Maximising the Starget is equivalent to minimising

the risks. Similar to the critic network, the risk network Sθ will be iteratively

updated to achieve accurate long-term expected safety prediction by Mean Square

178

7.3 Methodology

Error (MSE):

Lirisk = 1
T

T∑
t=0

(
Siθ
(
sit, s

−k
t

)
− Si

(
sit, s

−k
t

))2
(7.13)

For policy optimisation, in addition to the advantage value obtained from equation

11, a risk advantage function plus single agent contribution is considered:

Âifi,t = Âit +
(
Si − Siθ

)
+ Credicti (7.14)

Where Credicti is the weighted risk advantage value, which reflects the importance

of agent i within the MARL system or the contribution of agent i to the system’s

overall performance. Credit assigning is crucial in cooperative MARL training, as it

ensures individual actions are rewarded or penalised appropriately for the overall

performance. Instead of only assigning the team reward uniformly to every agent,

a risk-value-based method is introduced to enable non-linearity in credit assigning.

The credit is defined as the difference between the total risk of the MARL system

when agent i is included and excluded. :

Credicti =
N−1∏

j=1,j ̸=i
(1− Prisk,j)−

N−1∏
j=1

(1− Prisk,j) (7.15)

By replacing Âit with Âifinal,t in Equation (7.10), the long-term expected risk is

minimised efficiently in the C-MARL context.

Adversarial Regulariser

The proposed stochastic universal policy network outputs probability distributions

of the predicted actions. A multivariate Beta distribution is employed as the policy

output to ensure a bounded action space. The actions are randomly sampled from this

distribution to increase exploration in training phase, and the mean value is chosen

for inference phase. A Robust cooperative MARL system should behave similarly or

close enough under perturbed observations and normal observations, which means

the predicted action distributions with minimal divergence. The theorem in [82] is

extended to the cooperative MARL scheme with universal policy: Given a policy π

179

7.3 Methodology

and its value function Vπ(si, s−k) and considering the worst perturbation situation

where all agents are attacked with optimal perturbation siA, for all si, s−k ∈ S and

the corresponding siA, s−k
A ∈ SA, it holds:

max
(
Vπ
(
si, s−k

)
− Vπ

(
siA, s

−k
A

))
≤ αmax

(
DTV

(
π
(
si, s−k

)
, π
(
siA, s

−k
A

)))
(7.16)

where DTV (π(si, s−k), π(siA, s−k
A)) is the total variation distance between the predicted

action distributions when all the agents are attacked and attack-free. This is

the largest possible difference between the probabilities that the two probability

distributions can assign to the same action. According to Pinsker’s inequality [182],

DTV can be linked to another distance Kullback–Leibler (KL) divergence [183]:

DTV

(
π
(
si, s−k

)
, π
(
siA, s

−k
A

))
≤
√

1
2DKL

(
π (si, s−k) , π

(
siA, s

−k
A

))
(7.17)

which is more computationally efficient compared to the integral operation in DTV as

discussed in the previous chapter. Therefore, Equation (7.16) with the KL divergence

to:

max
(
Vπ
(
si, s−k

)
− Vπ

(
siA, s

−k
A

))
≤ max

√
1
2DKL

(
π (si, s−k) , π

(
siA, s

−k
A

))
(7.18)

Which means the minimisation on KL divergence of the action probabilities under

non-perturbed and attacked states guarantees the minimisation on the total variation

distance DTV , therefore the performance gap could be minimised too. The regulariser

will be added to the final objective function to update the policy network:

Lireg,t =
√

1
2DKL

(
π
(
sit, s

−k
t

)
, π
(
siA,t, s

−k
A,t

))
(7.19)

Constrained Objective Function

Consider a well-trained cooperative MARL system. For every state S in all possible

trajectories, there exists a subset actions Airobust ∈ A under bounded worst-case state

perturbations that leads to S isafe ∈ S avoiding high-risk states for agent i. Therefore,

180

7.3 Methodology

it is possible to guarantee a robust policy by constraining the policy to output safe

trajectories and the worst case perturbations. Intuitively, there are two constraints

in the objective function to design: one for a bounded adversarial perturbation and

one for safe states.

Control Barrier Function (CBF) is widely deployed in autonomous driving applica-

tions for ensuring safety by providing mathematical guarantees that the vehicle will

avoid unsafe situations, such as collisions, while respecting constraints like speed

limits and obstacle avoidance. CBF enables real-time adaptability and seamless

integration with existing control systems, ensuring safe and reliable navigation in

dynamic environments. The CBF of the cooperative MARL is defined as the risk

value network h(si, s−k) = Sθ(si, s−k). The calculation of the proposed CBF is based

on the non-perturbed states only, as the actual states of the agents are needed for

the actual risk estimation. The safety set of states is then defined as:

C =
{
si ∈ S : h

(
si, s−k

)
≥ ε

}
(7.20)

ϵ is the safety criteria, and the system dynamics is defined as:

ṡi = f(si) (7.21)

As a model-free method, the agent learns a policy directly through the environment

interactions without knowing or modelling the environment’s dynamics. This presents

a significant challenge when it comes to predicting how an action will transition

the system from one state to the next. Based on [204], the continuous states of a

well-trained model are Lipschitz-continuous. Therefore, the system dynamics could

be approximated as the state difference over the time step:

ṡi = sit+1 − sit
t

(7.22)

181

7.3 Methodology

To ensure the states stay in the safety set, the following equations needs to be

satisfied:

d

dt
h
(
si, s−k

)
≥ −ω

(
h
(
si, s−k

)
− ϵ

)
⇒ ∇sih ·

sit+1 − sit
t

+ ω
(
h
(
si, s−k

)
− ϵ

)
≥ 0 (7.23)

A linear ω > 0 is used to make sure h(si, s−k) can be updated to satisfy the criteria.

For the bounded worst-case perturbations, let g be the attacker, the L2 norm of

(g(si, π)− si) is bounded by µ.

Then the objective function of our proposed robust cooperative MARL is developed.

Combining maximising the long-term expected rewards, minimising the regulariser,

subjecting to the constraints, the following optimisation problem is presented:

min
π

{
1
T

1
N

T∑
t=0

N∑
i=0

(
Lifi(π) + Lireg,t

)}

subject to µ− L2
(
f
(
sit, π

)
, sit
)
≥ 0

∇sih ·
sit+1 − sit

t
+ ω

(
h
(
sit, s

−k
t

)
− ϵ

)
≥ 0 (7.24)

Where t and γ denote the time step and discount factor respectively. And Lifi(π) is

the enhanced PPO objective for multi-agent systems:

Lifi(π) = min

((
π (ai|si)
π′ (ai|si) , clip

(
π (ai|si)
π′ (ai|si) , 1− ε, 1 + ε

))
Âifi,t

)
(7.25)

Based on the Lagrange multiplier technique, the generalised Lagrange function is

obtained:

L(π, α, β) = 1
T

1
N

T∑
t=0

N∑
i=0

(
Lifi(π)− Lireg,t − αC1 − βC2

)
(7.26)

where α ≥ 0, β ≥ 0 are the Lagrange multipliers, and C1, C2 are the first and the

second constraints respectively. Now a new function θP (α, β) with respect to α, β is

182

7.3 Methodology

defined as:

θP (α, β) = max
α≥0,β≥0

L(π, α, β) (7.27)

If π satisfies the constrained condition in Equation (7.24), then:

θP (α, β) = 1
T

1
N

T∑
t=0

N∑
i=0

(Lifi(π) + Lireg,t) (7.28)

otherwise θP (α, β) = +∞. This indicates that minimising the newly defined function

min
π
θP (α, β) is equivalent to solving the primal problem in Equation (7.24). If the

constraints are not satisfied, the penalty becomes extremely large, which forces the

policy π to comply with the constraints. The primal optimisation problem can be

further transferred as:

min
π
θP (π) = min

π
max

α≥0,β≥0
L(π, α, β) (7.29)

Furthermore, based on equation Lagrange duality, the dual problem of Equation

(7.29) will always have smaller value than the primal problem, which leads to smaller

loss and better performance. With the generalised Lagrange function L, ∀π, α, β:

min
π
L(π, α, β) ≤ L(π, α, β) ≤ max

α≥0,β≥0
L(π, α, β)

⇒ min
π
L(π, α, β) ≤ max

α≥0,β≥0
L(π, α, β)

⇒ max
α≥0,β≥0

min
π
L(π, α, β) ≤ min

π
max

α≥0,β≥0
L(π, α, β) (7.30)

Therefore, it is easier to solve the dual problem than the primal problem. This

optimisation is detailed by the two following steps:

1. min
π
L(π, α, β)

2. max
α≥0,β≥0

L(π, α, β)

(7.31)

First, the Lagrange multipliers α, β are fixed and the universal policy π is updated

183

7.3 Methodology

Algorithm 2 R-CCMARL
1: Initialise the universal policy network parameter θ0, the state-value critic network

parameter ϕ0, the state-risk network parameter ψ0, the replay buffer D;
2: Initialise the Lagrange multiplier α;
3: for j = 0, 1, 2, ... do
4: for t = 0, 1, 2, ... do
5: For each agent, share its non-perturbed observation and receive non-

perturbed observations from all the neighbors.
6: Sample action ait ∼ π(θj)(ait|sit, s−k

t) based on the policy π(θj) and state
(sit, s−k

t)
7: Generate optimal adversary siA,t through equation 6.
8: Obtain transitions {sit+1, r

i
t, P

i
tot,t} by executing ait.

9: Store the transitions {sit, ait, rit, P i
tot,t, s

i
t+1, s

i
A,t} in Dj.

10: end for
11: Calculate the reward-to-go R̂i

t.
12: Calculate the safety-to-go Ŝit .
13: Calculate estimated advantage Âifi,t through equation 14.
14: Calculate the regulariser Lireg,t.
15: Update the universal policy θ by equation 33.
16: Update the Lagrange multiplier α and β by equation 34.
17: Update the state-value critic network parameter ϕ.
18: Update the state-risk network parameter ψ by equation 13.
19: end for

based on step 1, which is represented as minimising the L(π, α, β):

min
π

{
1
T

1
N

T∑
t=0

N∑
i=0

(
Lifi(π) + Lireg,t − αC1 − βC2

)}
(7.32)

Then conversely, the updated policy π are fixed for the Lagrange multiplier α and β

to be updated based on step 2:

max
α≥0,β≥0

{
1
T

1
N

T∑
t=0

N∑
i=0

(
(
−α(µ− L2

(
f
(
sit, π

)
, sit
))

−β
(
∇sih ·

sit+1 − sit
t

+ ω
(
h
(
sit, s

−k
t

)
− ϵ

))
)
}

(7.33)

Finally, the original constrained minimisation problem becomes a maxmin problem

without constraints. Gradient descent is used to find the optimal robust universal

policy π and the optimal Lagrange multipliers α, β repeatedly through Equation

(7.32) and Equation (7.33) in each batch update. The objective function is a jointly

184

7.3 Methodology

Figure 7.3 Network structure of the proposed robust cooperative communicated
multi-agent DRL model. A universal driving model is applied, consisted of a feature
extract encoder, an actor, critic, risk network and two fully-connected layers and two
attention modules. The grey area indicates all the components in one agent. The
three sub-task networks are fed with the enhanced features, which involves the local
information the shared information from the neighbour agents. [Wang et al.]

optimisation problem, where the policy network balances the performance under

normal observation and the adversarial defence capability. In the experiments, the

policy will learn to satisfy the constraints in Equation (7.24) and resulting two

constraint functions to decrease during the gradient descent process, and α, β in step

2 will gradually approach zero. Consequently, step 1 will find the minimum after α

and β becomes stable. The method R-CCMARL is detailed in Algorithm 1.

7.3.6 Network Structure

The proposed robust cooperative communicated multi-agent reinforcement learning

network structure is illustrated in Fig. 7.3. At each time step, agent i takes a

monocular RGB image as input, which is passed through an encoder to extract

essential visual features. These features are then concatenated with five additional

numeric features that represent other important state information, including throttle,

velocity, steer, distance to the road centre, angle between the vehicle vector and

the waypoint vector. This concatenation of data results in a high-level feature map

i. Simultaneously, each neighbouring agent extracts high-level features using the

same encoder with identical parameters. The high-level features of all neighbours

are concatenated and passed through two fully-connected layers, producing features

185

7.4 Experiments

−k of the same shape as feature map i. Next, the local features of agent i and the

shared features of its neighbours are fused by two attention modules to create a more

comprehensive representation of the environment.

Specifically, considering the ease of implementation, both attention modules uses the

standard non-local block as previously mentioned in chapter 3. For attention module

1, it takes the mean observation −k as input, and generates the learnable parameter

weight attention map γ · A−k. This module omits the element-wise summation

between −k and A−k. Next, local high-level features i is concatenated with γ · A−k

and passed to attention module 2, where the summation operation is retained.

Finally, after processing through the two attention modules, the final enhanced

feature map is generated, which is then passed to the three separate sub-networks.

These sub-networks are responsible for predicting three key outputs for agent i: the

long-term expected returns, the long-term expected safety values, and the optimal

actions. These outputs guide the agent in making safe and effective decisions within

the multi-agent environment, ensuring robustness against state perturbations.

7.4 Experiments

The training and testing of the proposed framework are implemented in CARLA

simulator. CARLA is an open-source platform for development, training, and

validation of autonomous driving systems. It has a rich library of vehicle models and

realistic urban road modelling, hence being near ideal to urban driving simulation.

The experiment scene is set up in Town 02 within the CARLA map library.

7.4.1 Implementation Details

In the experiment, three vehicles are included in the multi-agent system to complete

the intersection-passing task. As shown in Fig. 7.4, the three vehicles are spawned in

different directions at a T-shaped intersection, starting randomly in the designated

spawning areas (green areas) to increase uncertainty. Agent 1 aims to go straight,

while both Agent 2 and Agent 3 make left turns, creating a highly collision-possible

186

7.4 Experiments

Figure 7.4 Experiment scenarios with two different intersections. Green area are the
starts, and the vehicles are meant to follow the blue trajectories. [Wang et al.]

situation. The experiments are conducted at two different intersections to introduce

randomness. State-of-the-art multi-agent method is compared with the proposed

algorithm and a variant method, referred as the risk-only model, in which the

constraint for robust cooperative MARL is not implemented.

Each agent takes a 160*80 RGB image from a monocular camera and 5 numeric

features as fusion inputs: throttle, velocity, steer, the distance between the vehicle

and the road centres, and the angle between the vehicle forward vector and the

tangent to the road as shown in the network structure in Fig. 7.3. For all the agents,

the policy networks, value networks and the proposed additional risk networks share

187

7.4 Experiments

Hyper-parameter Value
discount factor γ 0.99

RL network learning rate 1e−4 ∼ 1e−6

Lagrange multiplier learning rate 1e−2 ∼ 1e−4

initial Lagrange multiplier α 0.01
initial Lagrange multiplier β 0.01

memory size 5000
clipping ratio 0.2

constraint threshold µ 0.001
Table 7.1 Hyper-parameters for the experiments. [Wang et al.]

the parameters in the feature extractor, where the high-level information is shared to

benefit all tasks during the training. For the constraint threshold µ, a suitable value

is selected manually from candidate values through experimentation. This threshold

serves to restrict the gradient changes of the policy network’s output in response

to adversarial attacks, and is sensitive to the scenario while significantly affecting

the stability and performance of the training process. The main hyper-parameters

used are shown in Table 7.1. To achieve the non-task-oriented policy network in

multi-agent self-driving, all the agents share the same model structure and hyper-

parameters. For adversarial attack generations, ε = 0.1 and iterations of 20 are used.

In the robust MARL evaluation section, the performance of the proposed method is

compared with the variant risk-only-model and existing method MAPPO [205]. The

R-CCMARL system is set to run at 10 fps in CARLA on a single RTX 4090 graphic

card. The methods employed for comparisons follow the same settings.

7.4.2 Results

In this section, experiments are carried out for the robust cooperative MARL (R-

CCMARL) guidance policy evaluation. To realise these tests, first the MAPPO, the

proposed robust algorithm R-CCMARL, and its variant risk-only model are trained.

To make fair comparison, all algorithms are trained under the same applicable

hyper-parameter settings and environment conditions.

188

7.4 Experiments

Robustness MARL Evaluation

To evaluate the performance of the proposed R-CCMARL under observation per-

turbations, a strong attack configuration which is difficult to mitigate is chosen,

ε = 0.1, iteration = 20 and multiple attack strategies are applied. As mentioned

before, one of the challenges in robust MARL system against adversarial attacks

is the number of agents attacked is unknown. Therefore, four attack strategies are

conducted: attack on each single agent and attack on all agents, and no attack to

make sure the system works well in normal situation as well. For each category all

models are evaluated for 50 episodes.

The MAPPO, the only-risk model where the constraint for robust cooperative MARL

is not implemented, and the full proposed algorithm are evaluated in five evaluation

metrics. The metrics are defined as following:

1. Average Team Reward: the average accumulative reward of the MARL system

per episode.

2. Average Individual Reward: the average accumulative reward of each agent per

episode.

3. Average Individual Success Rate: current success times to reach the goal

position over current episodes.

4. Average Team Risk: the average accumulative safety of the MARL system per

episode.

5. Average Individual Risk: the average accumulative safety of each agent per

episode.

Note that despite the concerns about bias in evaluation due to incorporating extra,

non-attacked numeric data as inputs to enhance stability and performance, the

results show substantial impacts on the MAPPO model which also incorporates the

these extra data, resulting in low success rate. The proposed method effectively

handles strong adversarial attacks under the same conditions, indicating that the

additional inputs do not compromise evaluation outcomes. In Table 7.2, the full

189

7.4
Experim

ents

Attack on Agent 1 Attack on Agent 2 Attack on Agent 3 Attack on All
Method Metrics Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

MAPPO
Success Rate 0.80 0.50 0.60 0.80 0.00 0.40 0.60 0.10 0.10 0.40 0.00 0.00

Return 26.30 42.63 37.73 25.68 34.78 37.46 28.38 47.70 37.01 26.06 29.41 34.59
Risk -10.26 -7.16 -1.12 -6.37 -4.10 -1.16 -8.26 -4.57 -5.75 -9.89 -4.94 -2.31

Risk-Only
Success Rate 0.88 0.70 0.82 0.84 0.24 0.78 0.82 0.60 0.74 0.78 0.08 0.70

Return 34.65 51.26 49.75 34.37 37.11 51.10 36.09 59.05 43.83 32.77 34.21 40.62
Risk -6.10 -4.14 -0.34 -3.53 -2.61 -0.37 -6.64 -3.94 -4.54 -8.37 -3.94 -1.79

R-CCMARL
Success Rate 0.98 0.92 0.94 0.98 0.82 0.90 0.96 0.88 0.88 0.90 0.78 0.84

Return 36.37 63.84 52.13 34.98 56.81 50.05 40.53 69.74 56.07 37.59 45.21 52.77
Risk -5.61 -3.85 -0.41 -3.51 -1.70 -0.42 -5.77 -3.38 -4.39 -6.97 -4.05 -1.45

Table 7.2 Detailed performance comparison in various attack conditions. The evaluation metrics include average success rate, average
long-term returns, the average long-term risks. The attacks are first implemented on every single agent, and attacks are applied on all
the agents. The performance of risk-only variant of R-CCMARL is also presented for ablation study. [Wang et al.]

190

7.4 Experiments

Method Metrics Agent 1 Agent 2 Agent 3

MAPPO
Success Rate 1.00 0.66 0.78

Return 27.71 57.89 47.34
Risk -3.75 -5.66 -1.79

Risk-Only
Success Rate 1.00 0.92 0.98

Return 38.48 61.29 57.30
Risk -1.98 -4.33 -1.12

R-CCMARL
Success Rate 1.00 0.94 1.00

Return 36.34 95.02 70.53
Risk -1.91 -1.85 -0.43

Table 7.3 Detailed performance metrics in normal observation condition. [Wang et
al.]

method R-CCMARL leads all the categories in success rate, long-term return, and

long-term risk under every attack strategy. In terms of success rate, MAPPO delivers

ok performance when agent 1 is attacked. Specifically, under this setting, agent 1

reaches 80% of success, while agent 2 and agent 3 remain 50% and 60%. However,

in other situations, where agent 2 is attacked, agent 3 is attacked and all agents

are attacked, MAPPO shows weak robustness. Agent 2 is not able to finish the

intersection passing task, leaving only 10% of success rate at most. Agent 3 is a

bit better than agent 2 but gets 40% at most. Lacking adversarial training and

risk awareness, MAPPO shows no defence to strong adversarial perturbations. The

risk-only method, though is not involved in adversarial training, shows certain

improvement over MAPPO, the performance is far from satisfaction, especially the

attack is implemented on agent 2. In contrast, the full method, benefiting from

the multi-agent interaction modelling (mean-field information sharing), long-term

risk minimisation, and the constrained adversarial optimisation with CBF, remain

resilient to the strong perturbations, delivering robust performance even in the Attack

on All condition. For robust MARL algorithms, it is also important to maintain

performance in normal conditions while capable of mitigating the strong attacks.

Table 7.3 shows the performance comparisons in the non-attacked environments. For

success rate, the full method R-CCMARL achieves perfect scores for Agents 1 and 3,

and nearly perfect for Agent 2, while MAPPO performs worst, particularly for Agent

2. In terms of return, R-CCMARL leads with higher returns, especially for Agents 2

and 3, indicating better performance compared to the other methods. Additionally,

191

7.4 Experiments

Figure 7.5 Detailed comparisons between the proposed method R-CCMARL, the
variant and the MAPPO. The multi-agent systems are attacked with different agents
and the same strength ε = 0.1, iteration = 20. The curve line is the average team
reward while transparent area indicates standard deviation. [Wang et al.]

R-CCMARL consistently demonstrates lower risk values, particularly for Agents 2

and 3, suggesting that it not only yields high returns but does so more safely than

MAPPO and Risk-Only, making it the most robust method overall.

Fig. 7.5 illustrates the performance of these methods under the five attack strategies

in a more comprehensive way. The thin line curve is the mean value of each

192

7.4 Experiments

category and the standard deviation is visualised around the mean value to show

stability. Overall as it can be seen, in terms of average accumulative rewards, the

risk-only outperform MAPPO in each attack situations, indicating the effeteness of

the risk assessment function and the additional long-term risk minimisation. The full

algorithm further boost performance over MAPPO and risk-only model. Specifically,

in normal condition showed in Fig. 7.5 (a), MAPPO is at 136.15 per episode. In

contrast, the full algorithm R-CCMARL achieves around 203.04 accumulative reward

an episode, which represents 49.13% gain from the MAPPO. Comparing to the

risk-only model, R-CCMARL achieve 28.5% improvement. Fig. 7.5 (a) states that

the proposed robust cooperative MARL improves the guidance performance even

without considering adversarial conditions. Fig. 7.5 (b) (c) (d) show the performance

when different individual agent is under attacks. It is evident that in a MARL

system, attacking different agents has varying effects, revealing the different levels

of importance each agent holds in the system. In Fig. 7.5 (b), when agent 1 is

attacked, the average team reward of the three methods drop by 25.2%, 13.2%, and

23.1%, resulting in rewards of 152.2, 137.1, 104.9. When agent 2 is attacked, the

performance further reduced. In Fig. 7.5 (c) MAPPO achieve 99.2 in the long-term

reward, and the risk-only model achieves 122.4. The full algorithm leads the board

at 142.3 marking 43.4% and 16.3% improvement over MAPPO and risk-only model.

In Fig. 7.5 (d), agent 3 is attacked. The full method obtain 168.6 of accumulative

reward while the risk-only model and MAPPO are at 140.1 and 116.4, showing 20.3%

and 44.8% of improvement respectively. Among the individual agent perturbations,

attacks on agent 2 have the most significant impact on the entire system, making

agent 2 the most vulnerable. The level of attacks is further increased by applying

perturbations on every agent. In Fig. 7.5 (e), the full algorithm maintains the reward

of 136.9. The risk-only model and MAPPO, both lacking constrained adversarial

training, are not able to handle the situations, reaching only 106.2 and 91.7. These

results demonstrate the effectiveness of the proposed constrained objective function

in enhancing the robustness of the MARL system.

193

7.4 Experiments

Risk Minimisation Analysis

The long-term risk minimisation with risk assessment and CBF constrained minimi-

sation together with robust MARL shows significant robustness to perturbations

in comparison with the non-robust MAPPO. Focusing solely on the risk metric,

R-CCMARL and its variant risk-only model consistently demonstrates superior

performance in mitigating risk compared to MAPPO across all attack scenarios. As

demonstrated in Table 7.2, in the "Attack on Agent 1" scenario, MAPPO shows the

highest risk at -10.26, while the risk-only model reduces it to -6.10, and the proposed

method achieves the lowest risk at -5.61. Similarly, in the more challenging "Attack

on All" scenario, the risk level of MAPPO remains high with values like -9.89 for

Agent 1, while the risk-only model shows improvement, reducing it to -8.37. However,

the full approach significantly outperforms both by further reducing the risk to -6.97.

Combining the results shown in Table 7.2 and Table 7.3, across all situations, whether

under heavy attacks or in normal conditions, R-CCMARL consistently shows lower

risk values, indicating its greater resilience to adversarial conditions and ability to

minimise performance degradation more effectively than the other models. This

highlights the strength of the proposed constrained objective function in enhancing

the robustness of the multi-agent reinforcement learning system under adversarial at-

tacks. When considering the combined performance across all three metrics—success

rate, return, and risk, it is evident that the proposed method R-CCMARL offers

the most robust results. The lower risk values, paired with higher success rates and

long-term returns, demonstrate the effectiveness of the risk assessment approach that

the formulated risks are related directly to the overall driving performance. Notably,

the risk is positively correlated with both the success rate and long-term return: as

the risk decreases, the success rate and returns improve. This relationship highlights

how well R-CCMARL handles adversarial conditions, with reduced risks translating

into better overall performance.

194

7.5 Summary

7.5 Summary

In this chapter, a novel approach is introduced for deep-reinforcement-learning-based

robust cooperative multi-agent autonomous driving against observation perturbations.

These DRL-based autonomous driving models face safety challenges from sensor

failures and domain transitions, resembling adversarial attacks that can compromise

decision-making in critical situations, as discussed in previous chapter. And the

challenge further elevates when switching from single-agent systems to multi-agent

systems. Thanks to the innovations in this chapter, the problems for robust MARL

are solved.

To more efficiently attack the MARL agent, similar attacking method is used.

Iterative steps are employed on FGSM to help reduce the visibility of the adversarial

examples and maintain stealthier attacks. Once the perturbed observation is obtained,

Stochastic Games with perturbation are utilised to model the multi-agent intersection

passing scenario for autonomous driving, where agents must cooperate to navigate

complex intersections. A mean-field theory-supported information-sharing structure

is developed to enhance global state and interaction awareness, allowing agents

to better coordinate their actions under perturbations. Though the mean-field

formulated communication helps the cooperative tasks, it also bring difficulties by

sharing the perturbed high-level information.

An efficient risk assessment framework is introduced, focusing on long-term risk

minimisation and integrated as a control barrier function. This framework not only

helps tolerate bounded perturbations but also provides safety rewards as feedback

to the multi-agent reinforcement learning (MARL) system, guiding agents toward

safer policy learning. To further enhance the robustness of the system, a divergence-

based regulariser term is incorporated to quantify and minimise the performance

gap between non-adversarial and adversarial states, promoting smoother transitions

and more resilient decision-making. A constrained objective function, inspired from

chapter 6, is proposed with the new introduced CBF and adaption to the MARL

195

7.5 Summary

system. These proposed components solve the mitigation problems of MARL systems

under adversarial attacks, and the problems brought by the communications.

Experimental results validate the effectiveness of the proposed method, showcasing

its superiority in minimising risk and handling perturbations during multi-agent

intersection passing tasks. The inclusion of a risk minimisation module and con-

strained optimisation proves advantageous in resolving the inherent challenges of

multi-agent autonomous driving, particularly in safety-critical environments. This

robust framework not only improves the overall performance of the agents in ad-

versarial scenarios but also contributes to enhancing the safety and reliability of

autonomous driving systems in real-world applications.

196

Chapter 8

Conclusions and Future Work

197

8.1 Conclusions

8.1 Conclusions

In Chapter 1, the objectives of this thesis were established based on the potential

and challenges within autonomous driving systems. The objectives are divided into

two primary categories. The first objective is to use deep-learning techniques to

enhance scene understanding performance in autonomous driving systems, with

lightweight solutions also considered for the system efficiency and mobility needs.

The second objective focuses on designing deep-learning-based algorithms for decision-

making guidance in both single-agent and multi-agent frameworks for self-driving

vehicles. These algorithms must be robust and secure against observation shifts,

such as adversarial attacks, while maintaining reliability in normal conditions. In

this chapter, each contribution will be summarised, with a discussion on the novel

elements and future work.

This thesis begins with a background review of deep learning techniques, including

Convolutional Neural Networks (CNNs) and Deep Reinforcement Learning (DRL).

It introduces the basic concept of CNNs, then explores advancements in CNN archi-

tectures and their impact on perception within autonomous driving systems. DRL

is presented as a foundation for decision-making in autonomous driving, divided

into on-policy and off-policy categories, offering a range of options for implement-

ing self-driving algorithms. Key datasets and simulation tools are also discussed,

highlighting their role in training and evaluating the proposed algorithms.

The methodology presented in Chapter 3 explores a deep-learning-based semantic

segmentation technique specifically designed for urban driving scenarios, using

a monocular camera as the primary vision sensor. This approach is critical for

autonomous vehicle perception, as it provides pixel-level scene information that

enhances understanding of the composition of the driving environment. Unlike raw

RGB images, semantic segmentation assigns each pixel a category, enabling the

autonomous driving system to interpret complex urban landscapes with diverse

objects, ultimately aiding in accurate scene comprehension. The novel dual-attention

mechanism introduced here decomposes high-level features into spatial and channel

198

8.1 Conclusions

information, effectively capturing contextual dependencies from both dimensions,

which enhances segmentation accuracy. To account for the unique structures and

nature of spatial and channel features, the model incorporates a pyramid pooling

method for spatial attention and channel splitting for channel attention. This

method ensures performance improvements without compromising computational

efficiency. The integration of dual-attention with a fusion technique balances rich

feature extraction with a lightweight architecture, providing an effective solution for

real-time autonomous driving tasks.

In addressing 3D object detection in Chapter 4, the method leverages single-camera

input and introduces a feature-enhancing pyramid module to boost feature represen-

tation. As verified in chapter 3 that a better representation in extracted high-level

features benefit the accuracy in model outputs, this enhancement enables the model

to retain detailed scene information across layers, benefiting the object regression

networks responsible for constructing 3D bounding boxes around detected objects.

To overcome the inherent limitations of RGB images in depth perception, an adaptive

depth supervision signal and auxiliary depth estimator are included. This addition

effectively enriches the model with missing 3D data, capturing accurate spatial

information while keeping computational demands low. The technique provides a

practical solution for 3D detection in cost-sensitive AD applications, where LiDAR

or other depth sensors may be unavailable.

Additionally, while both methods in Chapters 3 and 4 benefit from enhanced feature

representation, they retain a black-box quality due to the lack of mathematical

interpretability, which is an inherent limitation in many deep learning models. To

understand how these representations contribute to final predictions, an alternative

explainable method Grad-CAM is utilised. Visual comparisons between enhanced and

original features demonstrate that the improved features help the model focus more

precisely on intended objects, filtering out background noise and thereby improving

detection performance. Grad-CAM visualisations further verify that high-level

features, which are more abstract, emphasise larger, nearby objects, while low-level

features contribute detail to smaller or distant objects. This layered focus allows

199

8.1 Conclusions

for a combination of high-level and low-level features that enhances the capability

of the model to detect objects throughout the entire scene. The explainable visual

comparison not only clarifies feature contributions but also illustrates how feature

hierarchy supports comprehensive scene understanding.

Chapter 5 shifts focus to a DRL-based guidance system for ground vehicles, while

still investigates perception module by prediction depth images as guidance input

to improve navigation and obstacle avoidance capabilities. This system operates

in a two-stage process, combining imitation learning to establish baseline driving

behaviours with reinforcement learning to optimise decision-making through trial and

error. In theory, pretraining with imitation learning allows the DRL model to bypass

early exploration, resulting in faster convergence. However, existing approaches

often face challenges in transitioning IL-pretrained models into the RL phase. The

proposed method identifies these issues and introduces a pretraining technique for

both the Q-network and value network, which facilitates a smoother transfer between

IL and RL, thereby enhancing training efficiency and robustness. To train depth

perception module, a synthetic depth completion dataset is collected via simulation,

addressing the shortcoming of incomplete depth ground truth of open datasets. The

depth information derived from a binocular camera setup, combines supervised and

stereo camera reconstruction based self-supervised techniques to generate a more

comprehensive view of the environment, enhancing the system responsiveness to

spatial details. Empirical results demonstrate that depth data substantially boosts

the overall performance of the guidance network, making it well-suited for real-world

navigation where precise environmental interaction is essential.

In Chapter 6, the robustness of single-agent AD systems is investigated through a

mathematical defence algorithm that mitigates the impact of state perturbations,

safeguarding performance in high-risk scenarios. These state perturbations are

generated by an optimal adversarial attacker, induce directional interferences aimed

at misleading the agent. Adversarial attacks mimic real-world uncertainties, such

as sensor noise or environmental distortions, thus becoming ideal for testing the

resilience of the agent decision-making capabilities. The defence algorithm highlights

200

8.1 Conclusions

a constrained optimisation objective solved by Lagrange multiplier technique and

gradient descent. A regulariser is also introduced to stabilise agent behaviour across

both normal and adversarial conditions, thereby enhancing the robustness of the

agent. Additionally, an explainable attack detection mechanism is incorporated to

identify and interpret these adversarial attacks, offering insights into the responses of

the AD system and improving model reliability. This explainable detection not only

strengthens system reliability but also illuminates the decision-making processes,

helping users pinpoint areas for further improvement. Experimental results highlight

the robustness of the proposed methodology against severe adversarial attacks

and challenging, unseen weather conditions, demonstrating the effectiveness and

adaptability of the approach.

Building on the foundation established in Chapter 6, Chapter 7 adapts the constrained

objective function to a MARL context, creating a connected, cooperative framework

suited for urban driving environments with multiple interacting vehicles. In the

multi-agent setting, the complexity of dynamics and interactions introduces unique

challenges that are aggravated under adversarial attacks. The proposed system models

the interactions among agents by introducing the idea of using a universal policy for all

agents, and utilising mean-field theory for effective information sharing. The universal

policy facilitates non-task-oriented training, making it well-suited for applications like

autonomous driving, where hierarchical levels for self-driving cars are unnecessary.

This approach simplifies the training process, allowing the system to learn from a

broader range of scenarios without the constraints of specific tasks. As a result, the

model can adapt more effectively to varying driving conditions and environments,

promoting enhanced versatility and performance in real-world situations. To establish

robustness in MARL, a risk formulation is introduced. Inspired by the value network,

a specialised risk network is introduced for the minimisation of long-term expected

risks. The risk network is further utilised as the CBF, forming a constrained

optimisation objective within the MARL framework and establishing safety criteria

guarantees to manage adversarial attacks on the MARL system. Experimental

results demonstrate that the connected MARL system effectively addresses robust

MARL challenges, maintaining stability and efficiency in intersection negotiation

201

8.2 Future Work

scenarios, highlighting the potential of cooperative frameworks for achieving reliable

performance in complex urban traffic scenarios.

8.2 Future Work

This thesis proposed several deep-learning based models for AD perception modules,

as well as robust single-agent and multi-agent decision making guidance algorithms.

However, few potential future avenues for investigation can be explored in the future

work.

8.2.1 Perturbation Denoising

Chapter 6 and 7 investigate the defence algorithm in the presence of adversarial

attack by tolerant these attacks. Another research direction for mitigating the

attacks focus on preprocessing input data to remove adversarial perturbations to

effectively improve model performance in the face of misleading. Recent developments

include autoencoder-based methods like Defense-GAN [206] and APE-GAN [207] that

learn to reconstruct clean images. However, significant challenges remain, including

computational overhead, limited transferability across different types of attacks,

and the fundamental trade-off between robustness and accuracy. Future research

directions include developing adaptive denoising methods that can automatically

adjust to different attack types, creating more efficient architectures for resource-

constrained environments, and establishing stronger theoretical foundations for

understanding the relationship between model architecture and robustness.

8.2.2 Sim-to-Real

A limitation of Chapter 6 and 7 is the experiments are only conducted in the simulator

environment. Sim-to-real transfer is essential for ensuring that models trained in

simulations perform well when exposed to real-world variables such as lighting

changes, weather conditions, and dynamic obstacles. Techniques that enhance this

transfer often involve augmenting simulated data with real-world samples or using

domain randomisation, where the parameters of the simulator are varied extensively

202

8.2 Future Work

to cover a wide range of scenarios [208]. Another approach to sim-to-real transfer

is the use of life-long learning that integrate both simulated and real data during

training. These systems allow for continuous learning and adaptation, enabling the

model to refine its performance based on real-world feedback [209]. This iterative

approach is particularly valuable in autonomous driving, where the ability to adapt

to new environments can significantly impact safety and efficiency. Moreover, recent

advancements in multi-modal sensing, where various types of sensors (e.g., cameras,

LiDAR, radar) are combined, also contribute to effective domain adaptation. By

processing complementary information from different sensors, models can achieve a

more comprehensive understanding of their environment, enhancing their robustness

against domain shifts [210].

8.2.3 Complete AD Systems

The work in Chapters 5, 6, and 7 primarily focuses on the decision-making modules of

AD systems, examining how DRL can enhance guidance and robustness in decision-

making processes. However, to achieve the goal of full automation in real-world

scenarios, it is essential to consider other critical components of an AD system, such

as localisation, mapping, and integration of various perception modules. Localisation

involves determining the precise position of the vehicle within a given environment,

which is crucial for safe and efficient operation. This task typically employs a

variety of sensors, including GPS, LiDAR, and cameras, to create a comprehensive

understanding of the vehicle surroundings [132]. Accurate localisation enables the

vehicle to understand its relationship to the road network and other dynamic entities,

thereby ensuring safe navigation and obstacle avoidance. Mapping, on the other hand,

involves constructing detailed representations of the environment. High-definition

maps provide essential information, such as lane boundaries, traffic signals, and

other critical features that inform the vehicle decision-making. Advanced mapping

techniques often leverage machine learning and computer vision to enhance map

accuracy and update in real-time, thus accommodating changes in the environment

due to construction, traffic flow, or other factors [211]. Integrating these components

with the decision-making modules explored in the previous chapters creates a holistic

203

8.2 Future Work

AD system capable of achieving full autonomy. The synergy between decision-

making, localisation, mapping, and perception is vital for handling the complexities

of real-world driving situations.

204

References

[1] M. Channon, “Automated and electric vehicles act 2018: An evaluation in
light of proactive law and regulatory disconnect,” European Journal of Law
and Technology, vol. 10, no. 2, 2019.

[2] H. Liu, M. Yang, C. Guan, Y. S. Chen, M. Keith, M. You, and M. Menendez,
“Urban infrastructure design principles for connected and autonomous vehicles:
a case study of oxford, uk,” Computational Urban Science, vol. 3, no. 1, p. 34,
2023.

[3] J. Borenstein, J. Herkert, and K. Miller, “Autonomous vehicles and the ethical
tension between occupant and non-occupant safety,” The Journal of Sociotech-
nical Critique, vol. 1, no. 1, p. 6, 2020.

[4] E. Papadimitriou, H. Farah, G. van de Kaa, F. S. De Sio, M. Hagenzieker,
and P. van Gelder, “Towards common ethical and safe ‘behaviour’standards
for automated vehicles,” Accident Analysis & Prevention, vol. 174, p. 106724,
2022.

[5] N. J. Goodall, “Machine ethics and automated vehicles,” Road vehicle automa-
tion, pp. 93–102, 2014.

[6] A. Rezaei and B. Caulfield, “Safety of autonomous vehicles: what are the
insights from experienced industry professionals?” Transportation research part
F: traffic psychology and behaviour, vol. 81, pp. 472–489, 2021.

[7] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[8] F. Dellaert, S. M. Seitz, C. E. Thorpe, and S. Thrun, “Structure from motion
without correspondence,” in Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 2. IEEE,
2000, pp. 557–564.

205

References

[9] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines
and curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15,
1972.

[10] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 2650–2658.

[11] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 270–279.

[12] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth
samples and a single image,” in 2018 IEEE international conference on robotics
and automation (ICRA). IEEE, 2018, pp. 4796–4803.

[13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical image computing and computer-
assisted intervention–MICCAI 2015: 18th international conference, Munich,
Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015, pp.
234–241.

[15] A. Simonelli, S. R. Bulo, L. Porzi, M. López-Antequera, and P. Kontschieder,
“Disentangling monocular 3d object detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1991–1999.

[16] B. H. Macedo, G. F. Araujo, G. S. Silva, M. C. Crestani, Y. B. Galli, and G. N.
Ramos, “Evolving finite-state machines controllers for the simulated car racing
championship,” in 2015 14th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames). IEEE, 2015, pp. 160–172.

[17] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” IEEE Transactions
on control systems technology, vol. 15, no. 3, pp. 566–580, 2007.

[18] J. Zhao, W. Zhao, B. Deng, Z. Wang, F. Zhang, W. Zheng, W. Cao, J. Nan,
Y. Lian, and A. F. Burke, “Autonomous driving system: A comprehensive
survey,” Expert Systems with Applications, p. 122836, 2023.

206

References

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp.
529–533, 2015.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[21] M. Bojarski, “End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[22] P. S. Chib and P. Singh, “Recent advancements in end-to-end autonomous
driving using deep learning: A survey,” IEEE Transactions on Intelligent
Vehicles, 2023.

[23] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in
neural information processing systems, vol. 29, 2016.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing
systems, vol. 25, 2012.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[29] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 4700–4708.

207

References

[30] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. PMLR,
2019, pp. 6105–6114.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 2009, pp. 248–255.

[33] Y. Lee and J. Park, “Centermask: Real-time anchor-free instance segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 13 906–13 915.

[34] A. G. Howard, “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[35] M. L. Puterman, “Markov decision processes,” Handbooks in operations research
and management science, vol. 2, pp. 331–434, 1990.

[36] V. Mnih, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[37] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist
systems. University of Cambridge, Department of Engineering Cambridge,
UK, 1994, vol. 37.

[38] J. Schulman, “Trust region policy optimization,” arXiv preprint
arXiv:1502.05477, 2015.

[39] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.
279–292, 1992.

[40] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in International conference on machine learning.
PMLR, 2018, pp. 1587–1596.

[41] T. Lillicrap, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[42] T. Lin, “Focal loss for dense object detection,” arXiv preprint arXiv:1708.02002,
2017.

208

References

[43] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in
statistics: Methodology and distribution. Springer, 1992, pp. 492–518.

[44] R. Roriz, J. Cabral, and T. Gomes, “Automotive lidar technology: A survey,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp.
6282–6297, 2021.

[45] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The principles,
challenges, and trends for automotive lidar and perception systems,” IEEE
Signal Processing Magazine, vol. 37, no. 4, pp. 50–61, 2020.

[46] Y. Ming, X. Meng, C. Fan, and H. Yu, “Deep learning for monocular depth
estimation: A review,” Neurocomputing, vol. 438, pp. 14–33, 2021.

[47] T. B. Moeslund and E. Granum, “A survey of computer vision-based human
motion capture,” Computer vision and image understanding, vol. 81, no. 3, pp.
231–268, 2001.

[48] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual in-
formation,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 30, no. 2, pp. 328–341, 2007.

[49] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An
open urban driving simulator,” in Conference on robot learning. PMLR, 2017,
pp. 1–16.

[50] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available at
http://torcs. sourceforge. net, vol. 4, no. 6, p. 2, 2000.

[51] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen,
C. Choi, J. Dusek, Y. Fang et al., “Duckietown: an open, inexpensive and
flexible platform for autonomy education and research,” in 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
1497–1504.

[52] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1231–1237, 2013.

[53] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 3213–3223.

209

References

[54] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for
autonomous driving,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 11 621–11 631.

[55] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception for autonomous
driving: Waymo open dataset,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 2446–2454.

[56] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,”
International journal of computer vision, vol. 111, pp. 98–136, 2015.

[57] L.-C. Chen, “Semantic image segmentation with deep convolutional nets and
fully connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

[58] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 1925–
1934.

[59] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[60] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 2881–2890.

[61] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters–improve
semantic segmentation by global convolutional network,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp.
4353–4361.

[62] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, “Psanet:
Point-wise spatial attention network for scene parsing,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 267–283.

[63] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7794–7803.

210

References

[64] J. Cheng, “Long short-term memory-networks for machine reading,” arXiv
preprint arXiv:1601.06733, 2016.

[65] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “Ccnet: Criss-
cross attention for semantic segmentation,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2019, pp. 603–612.

[66] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 472–480.

[67] V. John, K. Yoneda, Z. Liu, and S. Mita, “Saliency map generation by the
convolutional neural network for real-time traffic light detection using template
matching,” IEEE transactions on computational imaging, vol. 1, no. 3, pp.
159–173, 2015.

[68] B. Cheng, L.-C. Chen, Y. Wei, Y. Zhu, Z. Huang, J. Xiong, T. S. Huang, W.-M.
Hwu, and H. Shi, “Spgnet: Semantic prediction guidance for scene parsing,”
in Proceedings of the IEEE/CVF international conference on computer vision,
2019, pp. 5218–5228.

[69] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning a discrimi-
native feature network for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 1857–1866.

[70] L.-C. Chen, “Rethinking atrous convolution for semantic image segmentation,”
arXiv preprint arXiv:1706.05587, 2017.

[71] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018, pp.
7132–7141.

[72] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 510–519.

[73] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[74] Y. Yuan, L. Huang, J. Guo, C. Zhang, X. Chen, and J. Wang, “Ocnet: Object
context network for scene parsing,” arXiv preprint arXiv:1809.00916, 2018.

211

References

[75] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 3146–3154.

[76] H. Zhang, K. Zu, J. Lu, Y. Zou, and D. Meng, “Epsanet: An efficient pyramid
squeeze attention block on convolutional neural network,” in Proceedings of
the asian conference on computer vision, 2022, pp. 1161–1177.

[77] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
in Proceedings of COMPSTAT’2010: 19th International Conference on Com-
putational StatisticsParis France, August 22-27, 2010 Keynote, Invited and
Contributed Papers. Springer, 2010, pp. 177–186.

[78] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal,
“Context encoding for semantic segmentation,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2018, pp. 7151–7160.

[79] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmentation,”
in Proceedings of the European conference on computer vision (ECCV), 2018,
pp. 801–818.

[80] W. Chen, Z. Fu, D. Yang, and J. Deng, “Single-image depth perception in the
wild,” Advances in neural information processing systems, vol. 29, 2016.

[81] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth
estimation from a single image,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 5162–5170.

[82] C. Wang and N. Aouf, “Explainable deep adversarial reinforcement learning
approach for robust autonomous driving,” IEEE Transactions on Intelligent
Vehicles, 2024.

[83] M. Shah and N. Aouf, “3d cooperative pythagorean hodograph path planning
and obstacle avoidance for multiple uavs,” in 2010 IEEE 9th International
Conference on Cyberntic Intelligent Systems. IEEE, 2010, pp. 1–6.

[84] L. He, N. Aouf, J. F. Whidborne, and B. Song, “Integrated moment-based
lgmd and deep reinforcement learning for uav obstacle avoidance,” in 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 7491–7497.

212

References

[85] H. Kanchwala, I. Bezerra Viana, and N. Aouf, “Cooperative path-planning and
tracking controller evaluation using vehicle models of varying complexities,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 235, no. 16, pp. 2877–2896, 2021.

[86] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.

[87] Z. Tian, X. Chu, X. Wang, X. Wei, and C. Shen, “Fully convolutional one-stage
3d object detection on lidar range images,” Advances in Neural Information
Processing Systems, vol. 35, pp. 34 899–34 911, 2022.

[88] Z. Wieszok, N. Aouf, O. Kechagias-Stamatis, and L. Chermak, “Stixel based
scene understanding for autonomous vehicles,” in 2017 IEEE 14th International
Conference on Networking, Sensing and Control (ICNSC). IEEE, 2017, pp.
43–48.

[89] J.-W. Ma, M. Liang, S.-L. Chen, F. Chen, S. Tian, J. Qin, and X.-C. Yin,
“Depth-guided progressive network for object detection,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19 523–19 533, 2022.

[90] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars:
Fast encoders for object detection from point clouds,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.
12 697–12 705.

[91] Y. Tian, W. Song, L. Chen, S. Fong, Y. Sung, and J. Kwak, “A 3d object
recognition method from lidar point cloud based on usae-bls,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 15 267–15 277,
2022.

[92] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping and
sampling for point cloud 3d object detection,” arXiv preprint arXiv:1908.09492,
2019.

[93] P. Li, H. Zhao, P. Liu, and F. Cao, “Rtm3d: Real-time monocular 3d detection
from object keypoints for autonomous driving,” in European Conference on
Computer Vision. Springer, 2020, pp. 644–660.

[94] X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan, “Accurate monocular
3d object detection via color-embedded 3d reconstruction for autonomous
driving,” in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 6851–6860.

213

References

[95] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 2117–2125.

[96] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 8759–8768.

[97] T. Zhang, X. Zhang, J. Shi, S. Wei, J. Wang, and J. Li, “Balanced feature
pyramid network for ship detection in synthetic aperture radar images,” in
2020 IEEE Radar Conference (RadarConf20). IEEE, 2020, pp. 1–5.

[98] G. Wang, J. Wu, B. Tian, S. Teng, L. Chen, and D. Cao, “Centernet3d: An
anchor free object detector for point cloud,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 8, pp. 12 953–12 965, 2021.

[99] Y. Liu, Y. Yixuan, and M. Liu, “Ground-aware monocular 3d object detection
for autonomous driving,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 919–926, 2021.

[100] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau, “Deep
manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle analysis
from monocular image,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 2040–2049.

[101] J. A. Ansari, S. Sharma, A. Majumdar, J. K. Murthy, and K. M. Krishna,
“The earth ain’t flat: Monocular reconstruction of vehicles on steep and graded
roads from a moving camera,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 8404–8410.

[102] A. Kundu, Y. Li, and J. M. Rehg, “3d-rcnn: Instance-level 3d object recon-
struction via render-and-compare,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 3559–3568.

[103] Z. Qin, J. Wang, and Y. Lu, “Monogrnet: A geometric reasoning network for
monocular 3d object localization,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 8851–8858.

[104] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular
3d object detection for autonomous driving,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2147–2156.

214

References

[105] Z. Qin, J. Wang, and Y. Lu, “Triangulation learning network: from monocular
to stereo 3d object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 7615–7623.

[106] A. Kumar, G. Brazil, and X. Liu, “Groomed-nms: Grouped mathematically
differentiable nms for monocular 3d object detection,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021, pp.
8973–8983.

[107] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint
triplets for object detection,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 6569–6578.

[108] Y. Chen, L. Tai, K. Sun, and M. Li, “Monopair: Monocular 3d object detection
using pairwise spatial relationships,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 12 093–12 102.

[109] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection for au-
tonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 7644–7652.

[110] B. Xu and Z. Chen, “Multi-level fusion based 3d object detection from monoc-
ular images,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 2345–2353.

[111] M. A. Haq, S.-J. Ruan, M.-E. Shao, Q. M. U. Haq, P.-J. Liang, and D.-Q.
Gao, “One stage monocular 3d object detection utilizing discrete depth and
orientation representation,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 11, pp. 21 630–21 640, 2022.

[112] L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng, and L. Zhang, “Depth-
conditioned dynamic message propagation for monocular 3d object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 454–463.

[113] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction and refinement
for semantic segmentation,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part III 14. Springer, 2016, pp. 519–534.

[114] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta, “Beyond skip
connections: Top-down modulation for object detection,” arXiv preprint
arXiv:1612.06851, 2016.

215

References

[115] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part I 14. Springer, 2016, pp. 21–37.

[116] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional
single shot detector,” arXiv preprint arXiv:1701.06659, 2017.

[117] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale deep
convolutional neural network for fast object detection,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14. Springer, 2016, pp. 354–370.

[118] Z. Qin, Z. Li, Z. Zhang, Y. Bao, G. Yu, Y. Peng, and J. Sun, “Thundernet:
Towards real-time generic object detection on mobile devices,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2019, pp. 6718–
6727.

[119] C. Guo, B. Fan, Q. Zhang, S. Xiang, and C. Pan, “Augfpn: Improving multi-
scale feature learning for object detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 12 595–12 604.

[120] C. Wang and N. Aouf, “Fusion attention network for autonomous cars semantic
segmentation,” in 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2022, pp. 1525–1530.

[121] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative
adversarial networks,” in International conference on machine learning. PMLR,
2019, pp. 7354–7363.

[122] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,”
Biological cybernetics, vol. 20, no. 3, pp. 121–136, 1975.

[123] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normaliza-
tion help optimization?” Advances in neural information processing systems,
vol. 31, 2018.

[124] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks: Tricks of
the Trade: Second Edition. Springer, 2012, pp. 421–436.

[125] T. Wang, X. Zhu, J. Pang, and D. Lin, “Fcos3d: Fully convolutional one-stage
monocular 3d object detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 913–922.

216

References

[126] T. Wang, Z. Xinge, J. Pang, and D. Lin, “Probabilistic and geometric depth:
Detecting objects in perspective,” in Conference on Robot Learning. PMLR,
2022, pp. 1475–1485.

[127] D. Park, J. Li, D. Chen, V. Guizilini, and A. Gaidon, “Depth is all you need for
monocular 3d detection,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 7024–7031.

[128] J. Gu, Z. Xiang, P. Zhao, T. Bai, L. Wang, X. Zhao, and Z. Zhang, “Cvfnet:
Real-time 3d object detection by learning cross view features,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 568–574.

[129] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra, “Grad-cam: Visual explanations from deep networks via gradient-based
localization,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 618–626.

[130] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
International conference on machine learning. PMLR, 2018, pp. 1861–1870.

[131] S. Aradi, “Survey of deep reinforcement learning for motion planning of au-
tonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 2, pp. 740–759, 2020.

[132] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous driving:
Systems and algorithms,” in 2011 IEEE intelligent vehicles symposium (IV).
IEEE, 2011, pp. 163–168.

[133] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis,
“Deep learning-based vehicle behavior prediction for autonomous driving appli-
cations: A review,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 1, pp. 33–47, 2020.

[134] J. Chen, B. Yuan, and M. Tomizuka, “Model-free deep reinforcement learning
for urban autonomous driving,” in 2019 IEEE intelligent transportation systems
conference (ITSC). IEEE, 2019, pp. 2765–2771.

[135] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single
image using a multi-scale deep network,” Advances in neural information
processing systems, vol. 27, 2014.

217

References

[136] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Towards
unified depth and semantic prediction from a single image,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015, pp.
2800–2809.

[137] A. Eldesokey, M. Felsberg, and F. S. Khan, “Confidence propagation through
cnns for guided sparse depth regression,” IEEE transactions on pattern analysis
and machine intelligence, vol. 42, no. 10, pp. 2423–2436, 2019.

[138] L. He, N. Aouf, J. F. Whidborne, and B. Song, “Deep reinforcement learning
based local planner for uav obstacle avoidance using demonstration data,”
arXiv preprint arXiv:2008.02521, 2020.

[139] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan,
J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning from demonstrations,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1,
2018.

[140] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations for
deep reinforcement learning on robotics problems with sparse rewards,” arXiv
preprint arXiv:1707.08817, 2017.

[141] X. Liang, T. Wang, L. Yang, and E. Xing, “Cirl: Controllable imitative
reinforcement learning for vision-based self-driving,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 584–599.

[142] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger,
“Sparsity invariant cnns,” in 2017 international conference on 3D Vision (3DV).
IEEE, 2017, pp. 11–20.

[143] N. Schneider, L. Schneider, P. Pinggera, U. Franke, M. Pollefeys, and C. Stiller,
“Semantically guided depth upsampling,” in Pattern Recognition: 38th Ger-
man Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016,
Proceedings 38. Springer, 2016, pp. 37–48.

[144] A. Valada, R. Mohan, and W. Burgard, “Self-supervised model adaptation
for multimodal semantic segmentation,” International Journal of Computer
Vision, vol. 128, no. 5, pp. 1239–1285, 2020.

[145] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and F. Nashashibi, “Sparse
and dense data with cnns: Depth completion and semantic segmentation,” in
2018 International Conference on 3D Vision (3DV). IEEE, 2018, pp. 52–60.

218

References

[146] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation
by averaging,” SIAM journal on control and optimization, vol. 30, no. 4, pp.
838–855, 1992.

[147] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo
matching,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 5695–5703.

[148] A. E. Orhan and X. Pitkow, “Skip connections eliminate singularities,” arXiv
preprint arXiv:1701.09175, 2017.

[149] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-to-dense:
Self-supervised depth completion from lidar and monocular camera,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 3288–3295.

[150] L. Yan, K. Liu, and E. Belyaev, “Revisiting sparsity invariant convolution:
A network for image guided depth completion,” IEEE Access, vol. 8, pp.
126 323–126 332, 2020.

[151] C. Wang and N. Aouf, “Deep reinforcement learning based planning for urban
self-driving with demonstration and depth completion,” in 2021 21st Inter-
national Conference on Control, Automation and Systems (ICCAS). IEEE,
2021, pp. 962–967.

[152] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban au-
tonomous driving with latent deep reinforcement learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5068–5078, 2021.

[153] C. Park, G. S. Kim, S. Park, S. Jung, and J. Kim, “Multi-agent reinforcement
learning for cooperative air transportation services in city-wide autonomous
urban air mobility,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 8,
pp. 4016–4030, 2023.

[154] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” arXiv preprint arXiv:1611.01236, 2016.

[155] A. Madry, “Towards deep learning models resistant to adversarial attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[156] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, “Theoreti-
cally principled trade-off between robustness and accuracy,” in International
conference on machine learning. PMLR, 2019, pp. 7472–7482.

219

References

[157] V. Behzadan and A. Munir, “Whatever does not kill deep reinforcement
learning, makes it stronger,” arXiv preprint arXiv:1712.09344, 2017.

[158] M. Fischer, M. Mirman, S. Stalder, and M. Vechev, “Online robustness training
for deep reinforcement learning,” arXiv preprint arXiv:1911.00887, 2019.

[159] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Processing Magazine,
vol. 34, no. 6, pp. 26–38, 2017.

[160] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” arXiv preprint arXiv:1704.02532,
2017.

[161] P. Ye, H. Qi, F. Zhu, and Y. Lv, “Counterfactual evolutionary reasoning for
virtual driver reinforcement learning in safe driving,” IEEE Transactions on
Intelligent Vehicles, 2023.

[162] D. Li, D. Zhao, Q. Zhang, and Y. Chen, “Reinforcement learning and deep
learning based lateral control for autonomous driving [application notes],” IEEE
Computational Intelligence Magazine, vol. 14, no. 2, pp. 83–98, 2019.

[163] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke, “Safe, efficient, and
comfortable velocity control based on reinforcement learning for autonomous
driving,” Transportation Research Part C: Emerging Technologies, vol. 117, p.
102662, 2020.

[164] Z. Huang, J. Wu, and C. Lv, “Efficient deep reinforcement learning with
imitative expert priors for autonomous driving,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 34, no. 10, pp. 7391–7403, 2022.

[165] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang,
“Attacking vision-based perception in end-to-end autonomous driving models,”
Journal of Systems Architecture, vol. 110, p. 101766, 2020.

[166] X. He, H. Yang, Z. Hu, and C. Lv, “Robust lane change decision making
for autonomous vehicles: An observation adversarial reinforcement learning
approach,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 184–193,
2022.

[167] V. Behzadan and A. Munir, “Vulnerability of deep reinforcement learning to
policy induction attacks,” in Machine Learning and Data Mining in Pattern
Recognition: 13th International Conference, MLDM 2017, New York, NY,
USA, July 15-20, 2017, Proceedings 13. Springer, 2017, pp. 262–275.

220

References

[168] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary, “Ro-
bust deep reinforcement learning with adversarial attacks,” arXiv preprint
arXiv:1712.03632, 2017.

[169] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial
attacks on neural network policies,” arXiv preprint arXiv:1702.02284, 2017.

[170] J. Kos and D. Song, “Delving into adversarial attacks on deep policies,” arXiv
preprint arXiv:1705.06452, 2017.

[171] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun, “Tactics
of adversarial attack on deep reinforcement learning agents,” arXiv preprint
arXiv:1703.06748, 2017.

[172] S. Lundberg, “A unified approach to interpreting model predictions,” arXiv
preprint arXiv:1705.07874, 2017.

[173] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and
physical simulation for autonomous vehicles,” in Field and Service Robotics:
Results of the 11th International Conference. Springer, 2018, pp. 621–635.

[174] T. N. Mundhenk, B. Y. Chen, and G. Friedland, “Efficient saliency maps for
explainable ai,” arXiv preprint arXiv:1911.11293, 2019.

[175] E. Aksoy, A. Yazıcı, and M. Kasap, “See, attend and brake: An attention-
based saliency map prediction model for end-to-end driving,” arXiv preprint
arXiv:2002.11020, 2020.

[176] J. Kim and M. Bansal, “Attentional bottleneck: Towards an interpretable deep
driving network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 322–323.

[177] K. Zhang and L. Li, “Explainable multimodal trajectory prediction using
attention models,” Transportation Research Part C: Emerging Technologies,
vol. 143, p. 103829, 2022.

[178] L. He, N. Aouf, and B. Song, “Explainable deep reinforcement learning for
uav autonomous path planning,” Aerospace science and technology, vol. 118, p.
107052, 2021.

[179] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

221

References

[180] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” in Artificial intelligence safety and security. Chapman and
Hall/CRC, 2018, pp. 99–112.

[181] Z. Zhou, G. Liu, and M. Zhou, “A robust mean-field actor-critic reinforcement
learning against adversarial perturbations on agent states,” IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[182] I. Csiszár and J. Körner, Information theory: coding theorems for discrete
memoryless systems. Cambridge University Press, 2011.

[183] I. Csiszár, “I-divergence geometry of probability distributions and minimization
problems,” The annals of probability, pp. 146–158, 1975.

[184] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environments,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[185] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition net-
works for cooperative multi-agent learning,” arXiv preprint arXiv:1706.05296,
2017.

[186] C. Wu, A. R. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: A
modular learning framework for mixed autonomy traffic,” IEEE Transactions
on Robotics, vol. 38, no. 2, pp. 1270–1286, 2021.

[187] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized
multi-task multi-agent reinforcement learning under partial observability,” in
International Conference on Machine Learning. PMLR, 2017, pp. 2681–2690.

[188] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and Z. Wang,
“Exploration in deep reinforcement learning: From single-agent to multiagent
domain,” IEEE Transactions on Neural Networks and Learning Systems, 2023.

[189] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Monotonic value function factorisation for deep multi-agent
reinforcement learning,” Journal of Machine Learning Research, vol. 21, no.
178, pp. 1–51, 2020.

[190] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani,
and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp.
4909–4926, 2021.

222

References

[191] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International conference on machine learning. PMLR, 2019, pp.
2961–2970.

[192] Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, “Multi-agent game
abstraction via graph attention neural network,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 05, 2020, pp. 7211–7218.

[193] Y. Yang, J. Hao, G. Chen, H. Tang, Y. Chen, Y. Hu, C. Fan, and Z. Wei,
“Q-value path decomposition for deep multiagent reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2020, pp. 10 706–
10 715.

[194] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “Qplex: Duplex dueling
multi-agent q-learning,” arXiv preprint arXiv:2008.01062, 2020.

[195] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field
multi-agent reinforcement learning,” in International conference on machine
learning. PMLR, 2018, pp. 5571–5580.

[196] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of go with deep neural networks and tree search,” nature, vol.
529, no. 7587, pp. 484–489, 2016.

[197] H. Zhang, H. Chen, C. Xiao, B. Li, M. Liu, D. Boning, and C.-J. Hsieh,
“Robust deep reinforcement learning against adversarial perturbations on state
observations,” Advances in Neural Information Processing Systems, vol. 33, pp.
21 024–21 037, 2020.

[198] H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh, “Robust reinforcement learn-
ing on state observations with learned optimal adversary,” arXiv preprint
arXiv:2101.08452, 2021.

[199] T. Oikarinen, W. Zhang, A. Megretski, L. Daniel, and T.-W. Weng, “Robust
deep reinforcement learning through adversarial loss,” Advances in Neural
Information Processing Systems, vol. 34, pp. 26 156–26 167, 2021.

[200] A. Kumar, A. Levine, and S. Feizi, “Policy smoothing for provably robust
reinforcement learning,” arXiv preprint arXiv:2106.11420, 2021.

[201] J. Lin, K. Dzeparoska, S. Q. Zhang, A. Leon-Garcia, and N. Papernot, “On the
robustness of cooperative multi-agent reinforcement learning,” in 2020 IEEE
Security and Privacy Workshops (SPW). IEEE, 2020, pp. 62–68.

223

References

[202] L. S. Shapley, “Stochastic games,” Proceedings of the national academy of
sciences, vol. 39, no. 10, pp. 1095–1100, 1953.

[203] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” arXiv preprint
arXiv:1506.02438, 2015.

[204] A. Bukharin, Y. Li, Y. Yu, Q. Zhang, Z. Chen, S. Zuo, C. Zhang, S. Zhang,
and T. Zhao, “Robust multi-agent reinforcement learning via adversarial regu-
larization: Theoretical foundation and stable algorithms,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[205] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative multi-agent games,” Advances in
Neural Information Processing Systems, vol. 35, pp. 24 611–24 624, 2022.

[206] P. Samangouei, “Defense-gan: protecting classifiers against adversarial attacks
using generative models,” arXiv preprint arXiv:1805.06605, 2018.

[207] S. Shen, G. Jin, K. Gao, and Y. Zhang, “Ape-gan: Adversarial perturbation
elimination with gan,” arXiv preprint arXiv:1707.05474, 2017.

[208] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE symposium series
on computational intelligence (SSCI). IEEE, 2020, pp. 737–744.

[209] X. Yu, J. P. Queralta, and T. Westerlund, “Towards lifelong federated learning
in autonomous mobile robots with continuous sim-to-real transfer,” Procedia
Computer Science, vol. 210, pp. 86–93, 2022.

[210] K. Huang, B. Shi, X. Li, X. Li, S. Huang, and Y. Li, “Multi-modal sensor
fusion for auto driving perception: A survey,” arXiv preprint arXiv:2202.02703,
2022.

[211] B. Wijaya, K. Jiang, M. Yang, T. Wen, Y. Wang, X. Tang, Z. Fu, T. Zhou,
and D. Yang, “High definition map mapping and update: A general overview
and future directions,” arXiv preprint arXiv:2409.09726, 2024.

224

	Table of Contents
	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Abbreviations
	Introduction
	Motivation
	Autonomous Driving
	Overview
	AD Scene Understanding
	Guidance Decision Making

	Thesis Objectives
	Thesis Structure and Contributions
	Published and Under-reviewed Manuscripts

	Background and Tools
	Convolutional Neural Networks
	Basic Concept
	Advancements in CNN Architectures
	CNN as Feature Extractor

	Deep Reinforcement Learning
	On-Policy DRL
	Off-Policy DRL

	Loss Functions
	Classification Loss Functions
	Regression Loss Functions
	Segmentation Loss Functions
	Robust and Advanced Loss Functions

	Sensing and Imaging
	Sensors in Autonomous Driving
	Transformation in Sensors
	Stereo Disparity
	Disparity Post-Filtering

	Simulation Tools
	CARLA (Car Learning to Act)
	TORCS (The Open Racing Car Simulator)
	Duckietown

	Datasets
	KITTI Dataset
	Cityscapes
	nuScenes
	Waymo Open Dataset

	Fusion-Attention Monocular Semantic Segmentation
	Overview
	Related Works
	Semantic Segmentation
	Attention Model

	Methodology
	Preliminary
	Network Structure
	Pyramid Fusion Spatial Attention
	Fusion Channel Attention
	Attention Module Arrangement

	Experiments
	Dataset and Evaluation Standard
	Implementation Details
	Results

	Summary

	Monocular 3D Object Detection
	Overview
	Related Works
	Monocular 3D Object Detection
	Feature Pyramid
	Contextual Dependency

	Methodology
	Framework Overview
	Feature Enhancement Pyramid Module
	Auxiliary Dense Depth Estimation (ADDE)
	Augmented centre Depth Estimation (ACDE)
	Multi-Head Detectors
	Adopted Training Loss Functions

	Experiments
	Dataset and Evaluation Standard
	Implementation Details
	Results

	Summary

	Guidance on Depth Completion
	Overview
	Related Works
	Deep Reinforcement Learning with Imitation Learning
	Depth Completion

	Methodology
	Soft Actor-Critic
	SAC with Imitating Learning
	Reward Function
	Depth Completion

	Experiments
	Implementation Details
	Dataset Collection
	Results

	Summary

	Single-Agent Robustness Against Perturbations
	Overview
	Related Works
	Deep reinforcement learning based autonomous driving
	Adversarial attack on DRL
	Explainability for Deep Learning

	Methodology
	Framework Overview
	Markov Decision Process with Perturbation
	Problem Formulation
	Optimal Adversary Generation
	Robust Proximal Policy Optimisation
	Reward Function Design
	Attack Detection Network and Explainability

	Experiments
	Simulator and Scene Settings
	Implementation Details
	Results

	Summary

	Multi-Agent Robustness Against Perturbation
	Overview
	Related Work
	MARL for Autonomous Driving
	Adversarial Attacks on DRL
	Mitigation Against Adversarial Attacks

	Methodology
	Framework Overview
	Mean-Field Communicated Multi-Agent Structure
	Gradient-based Attacker
	Risk Assessment Formulation
	Constrained Robust Cooperative-MARL
	Network Structure

	Experiments
	Implementation Details
	Results

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Perturbation Denoising
	Sim-to-Real
	Complete AD Systems

	References

