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Abstract

The linear, isotropic, elastodynamic displacement field may be 

broken down into two distinctive components by means of a 

Helmholtz resolution. Each component satisfies a characteristic 

equation which becomes a biharmonic equation in the static 

limit. This analysis opens the way towards quickly constructing 

the fields of uniformly moving singularities from those of the 

corresponding static singularities. Many known solutions are 

recovered and some new ones are discovered. Only problems 

of the full-space are considered.
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List of material constants

E Young's modulus

K bulk modulus

X,y Lame constants

V Poisson's ratio

K defined as < =

P mass density

ci longitudinal wave velocity

C2 transverse wave velocity

These constants are inter-related as follows :
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2(X+u)
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2
l-2v

2(l-v)

Three further parameters are as follows

c uniform velocity of singularity

longitudinal wave contraction factor

2

transverse wave contraction factor

2
ci
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Introduction

The linear elastic continuum may include singularities 

or "nuclie of strain" of various types. The most important of 

these are dislocations, point forces, and centres of dilatation 

and rotation. These singularities have no mobility within the 

continuum and therefore produce no physical effects. However, 

the continuum provides a useful model for the crystalline 

medium. It was first shown by G. I. Taylor (1934) that an edge 

dislocation could propagate through a metal crystal under the 

action of applied shear stresses, so causing plastic deformation. 

However, his analysis was largely qualitative. F. C. Frank (1949) 

determined the elastic field of a screw dislocation moving 

uniformly through the linear elastic continuum. This was 

followed by the work of J. D. Eshelby (1949), who solved the 

more complicated problem of an edge dislocation moving uniformly 

through the continuum. The field of a uniformly moving point 

force, both 2-dimensional and 3-dimensional, was given by 

Eason et al (1956) and this was extended from the full-space to 

the half-space by Papadopoulos (1963) and by Eason (1965). The 

solutions of Eshelby and Eason were obtained by extensive 

manipulations involving Fourier transforms; such methods afford 

little insight into the nature of the field, and they cannot 

readily be adapted to the other types of singularity. An entirely 

different approach is possible, depending upon a Helmholtz 

resolution of the elastodynamic field into irrotational and 

equivoluminal components (also termed dilatational and rotational, 
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or longitudinal and transverse, or irrotational and solenoidal).

Each component satisfies a characteristic equation which is 

uniquely related to the correspond!ng elastostatic equation 

by means of a Lorentz-type transformation. Accordingly, 

starting with a Helmholtz resolution of the elastostatic field, 

we may transform it by fairly straightforward procedures into a 

uniformly moving field. All the results of Frank, Eshelby and 

Eason are quickly recovered, as well as some new results of 

interest. The success of this approach raises the possibility 

that it might also work with accelerating singularities, e.g. 

a dislocation accelerated from rest by the action of applied 

stresses. However, such evolution of solutions falls outside 

our present scope.

This thesis divides naturally into three main parts.

Part I examines the dynamic Cauchy-Navier equation in terms of 

a Helmholtz resolution of the displacement field into two 

distinctive component fields (Sommerfeld, 1964). Each component 

satisfies a characteristic fourth-order wave equation which 

becomes a biharmonic equation in the static limit. We show, 

however, that the complete field may be built up from the 

superposition of two components which satisfy second-order wave 

equations. By contrast, the correspond!ng elastostatic field 

can only be built up from components which satisfy bi harmonic 

equations. This raises an interesting apparent paradox which 

does not seem to have been previously recognised (Sternberg, 1960). 

To fix ideas, the theory is first applied to simple singularities, 

which are either purely irrotational or purely equivoluminal.
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In these cases, the elastodynamic field is expressed by means 

of a single wave function, which reduces directly to a harmonic 

function in the static limit.

Part II introduces the Papkovich-Neuber representation 

of an elastostatic field, which covers every possible type 

of static singularity. We show how to break down this 

representation into two distinctive biharmonic components. Each 

component may be readily transformed into a corresponding uniformly 

moving component by means of a Lorentz-type transformation. 

The superposition of these, with appropriate coefficients, 

provides the required elastodynamic solution. This theory is 

applied to determine the fields produced by uniformly moving 

point forces, covering both longitudinal and transverse 

configurations.

Part III is concerned with 2-dimensional singularities, 

in particular dislocations and point forces. A dislocation is 

characterised by its Burgers vector, i.e. the jumps in 

displacement on circuiting the dislocation line. The condition 

that this vector remains invariant through the motion determines 

a unique solution. We demonstrate the mathematical impossibility 

of a dislocation motion not previously considered. Two- 

dimensional point force fields generally include unwanted 

dislocation solutions unless special steps are taken to exclude 

them. This exclusion enables the solution to be uniquely 

determined, so providing fresh insight into its special features.

11



Our analysis refers only to an infinite continuum. 

Accordingly, the possibility of Rayleigh waves does not arise. 

This method could in principle apply to a half-space, assuming 

the static solution were known in the half-space. For 

instance, given the Boussinesq (1885) solution of a half-space, 

we could calculate the field of a point force moving in the 

half-space. However, this analysis would add nothing essentially 

new to the theory.

12



PART I

INTRODUCTORY ANALYSIS



Chapter 1

The Cauchy-Navier Equation

1.1 Introduction

The Cauchy-Navier equation of motion for the linear 

elastic isotropic continuum, free from body forces, may be 

written as

2
2 a u

uV U + (x+u)v(v.U) = p—- ,
at

(1.1.1)

where U(r,t) is the displacement vector ; x,p are Lame 

elastic constants, and p is the mass density.

Operating with v. on both sides of equation (1.1.1), we get

2 a1 2(v.U)

1 a2

c* at2

(x+2p)v (v.U) = p --------—
at

(1.1.2)

where v.U is the local dilatation. Introducing the wave operator

2 
V□ 2

i
2 _ X+2p
1 " P ’ (1.1.3)

we may write (1.1.2) in the form

□ Jv.u) 0,

14



which signifies that v.U satisfies the wave equation with velocity 

cx . Also, operating with vA on both sides of (1.1.1), we get

2
2 9 y

PV u) = p —- 
3t

(1.1.5)

where w(= ^aU) is the local

wave operator

rotation. Again, introducing the

□ 2 E 72- 1 / ;

2 C*  3t2
2 uc, = -2 p

, (1.1.6)

we may write (1.1.5) in the form

(1.1.7)

which signifies that w satisfies the wave equation with velocity

c2 . Equations (1.1.4), (1.1.7) were obtained by Stokes (1851).

Poisson (1829) proved that every solution of (1.1.1) has

a representation

u = ui + u2 , (1.1.8)

where

vAUx = 0, v.U2 = 0 (1.1.9)

provided that

2 2
□ 1ui = o , □ u2 = o. (1.1.10)
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Poisson thus established that the complete solution of equation 

(1.1.1) may be expressed as a superposition of an irrotational 

and equivoluminal motion, associated with respective 

velocities c1 and c2

1.2 Lame solution

Lame (1852) proved that, if we write

U = Vf + vAy , (1.2.1)

then U satisfies (1.1.1) provided that

(1.2.2)

Thus substituting from (1.2.1) into (1.1.1) gives

2 2
(x+2u)D1(v«) +pQ2(va t ) = 0, (1.2.3)

which is identically satisfied (noting that v,vA commute
2 2

with the wave operators □1S^2) if (1.2.2) holds. To prove 

the generality of the solution (1.2.1), we must show that 

(1.2.3) implies (1.2.2). However this requires an additional 

condition

V.H' = 0 (1.2.4)

associated with (1.2.1). If so, the Stokes-Helmholtz resolution

16



(Sommerfeld, 1964)

U = A. , v.A = 0, (1.2.5)

provides a general solution of equation (1.1.1). The change

in symbolism from (1.2.1) to (1.2.5) arises from the fact

that the equations satisfied by $ , & remain to be determined.

1.3 Generality of Lame solution

Substituting (1.2.5) into (1.1.1) we get

(x+2uPi(v^) + pD2(vA&) = 0. (1.3.1)

Taking the v. of this equation, we obtain

2 2
V = 0. (1.3.2)

Hence, according to Boggio's theorem (1903), $ has the

general solution

<3 = Sx + So ; OjSi = 0, v2S0 = 0. (1.3.3)

Clearly, of course, So is a harmonic function involving the time 

t as a parameter, since otherwise

2 1_
2

17



which means that So could be included in Sx . Also, operating 

with vA on (1.3.1) and utilising the vector identity

= v(v.A) - v 2A (1.3.4)

we obtain

2 2
V D2.A = 0 V.& = 0. (1.3.5)

Hence, as in (1.3.2) & has the general solution

= A2 + Ao
2 2

□2A2 =0, V Ao = 0 (1.3.6)

where

V.(A2 + 50) = V-S?L = °- (1.3.7)

Again Ao is a harmonic vector field involving the time t as a 

parameter. Thus the representation (1.2.5) becomes

U = v(S1+S0) + va (A2+A0) ; v .(A2+Aq ) = 0. (1.3.8)

Since So is a harmonic scalar function, then vS0 can be 

written as the curl of some di vergence-free vector function f 

(App. I), i.e.

VSO = VAf ; v.f = 0. (1.3.9)

Hence the expression (1.3.8) becomes

I o



U = vSi + VA(A2+Ao+f) ; V.(A2+A0+f) = 0. (1.3.10)

Substituting from (1.3.10) into (1.1.1) , we get

(x+2p)D*vS 1 +PD2VA(A2+A0+f) = 0, (1.3.11)

i.e. n2VA^2+^o+^ = 0 since DiS. =

i.e. vAd2 (A2+AQ+f) = 0.

Bearing in mind that v. commute with CL it follows from

7-(A2+A0+f) = 0 - See (1.3.10) - that d2V.(A,+A.+f) = 0

i.e. v.d2(A,+A0+f) = 0. Since both the divergence and the

curl of the vector d2(A2+AQ+f) vanish in all space, it 

follows (Landau and Lifshitz, 1959) that

□2(A2+A„+f) = 0.

Accordingly, writing

* = Sx , T = A2+A0+f ,

we see that any solution U of the equation (1.1.1) has the 

representation

U = V4> + VA 4*  ; V.4' =0 (1.3.12)

characterized by

19



2 2
= o, = 0. (1.3.13)

This completes the proof.

1.4 Iacovache solution

It is sometimes useful to write equation (1.1.1) in the 

form

2
, a U

v U - —=- + —v(v.U) = 0
' y 3t2

i .e.

aly+ =0; v = - (1-4J)

where v is Poisson's ratio. Iacovache (1949) found that the 

representation

2 1
U(r,t) =Di X -2<v(v.X) ; < = (1.4.2)

identically satisfies equation (1.4.1) , provided that X 

satisfies the repeated wave equation

2 2
□ □ x = 0

1 2 - (1.4.3)

The representation (1.4.2) can be transformed into

the representation (1.3.12). Using Boggio's theorem, equation

(1.4.3) has a solution

20



X (1.4.4)

such that

Now

*1+ *2

= 0 . °2?2 = 0. (1.4.5)

The velocities

2 
C

2 
~2 
C1

i .e.

2 
s

2
C1

2
7 ~2

2\ c
2

~2CJ

C1 ,C2

u
x+2y

are

1
2 

c
1

2
9 ~2

at2

since

2
9 \
at2

c2v2x
2 ~2

related

l-2v
= HTT7J

l-2v

to Poisson 's

x
2(x+y)

ratio by

(1.4.6)

2k
1

■ 4T1^7T ’

(1.4.7)

2□
1

2

/
1

\

2
7 h

V

5 V J

1 1 1
5 K

so that

2

□xx2 = 2k V2x , (1.4.8)

Utilising (1.4.4), (1.4.5) and (1.4.8), the representation 

(1.4.2) becomes

2
U = DJx^) " 2k 77-^i+^2)

= □ * X2-2k V(v .X1)-2k V(v .X2)

21



= 2k V2X2 - 2k V(V.X2) - 2x7(7.^)

= -2k Va (VaX2) - 2k V(V.X1)

on utilising the vector identity (1.3.4). Thus, we can identify 

the Lame potentials as

$ = -2kV.x i , T = -2k VaX2 

characterised respectively by the properties

2 2
□ = -2<C1 (v.xj = 0

2 2
□ = -2kO2 (vaX2) = 0, 7.T = 0

on noting that the operators V.,7A commute with the operators
2 2

□x , D? . Therefore the representation (1.4.2) takes the 

form

U = v$ + vAy ; v.T =0

2 2
<£ = 0 . , D2 T = 0

as in (1.3.12), (1.3.13). This reduction shows the completeness

of Lame solution on the basis of the generality of

Iacovache's solution.

1.5 Limiting elastic field

We now examine the significance of Lame solution in the

22



limiting medium, i.e. when c^c, approach infinity and so define 

(see below) a rigid-continuum. First we note that v remains 

fixed by the relation (1.4.6) as c15c2 -> « . However, 

keeping p fixed, we see from the definitions of ci5c. in (1.1.3),

(1.1.6) respectively that p -> °° as ci5c2 -> . Also, from

the relation which holds between p and Young's modulus E, i.e.

we see that E -> «> as p + ~ keeping v fixed. Similarly from 

the relation which holds between p and the bulk modulus K, i.e.

p 3 1-2v 
K “ 2 T+TT (1.5.2)

we see that K °° as p -> °° keeping v fixed. Accordingly, the 

medium becomes a rigid-body in the limiting case. This means 

physically that infinite stresses are required to maintain 

the displacements defined by the limiting equation (1.5.6) below.

Clearly, of course

2□
1

2
= V

_ _1_
2 

c;

2 
a

at2

2 
-> V as cx

2 2 i
2 

a 2
D2 E V 9 9 -> V as c2

Z
C2 at

If so, equation (1.3.13) apparently becomes

?2<I> = 0 , v2? = 0 .

(1.5.3)

(1.5.4)

(1.5.5)

23



i.e. $ now appears to be a harmonic function and t  appears to 

be a harmonic vector, in which case U as given by (1.3.12) 

apparently reduces to a harmonic vector. However, equation 

(1.4.1) becomes in this case

2
v u 0, (1.5.6)

where u is the limiting form of U. Now the general solution of

(1.5.6) is a biharmonic vector (Jaswon and Symm, 1977) . So 

an apparent paradox arises, since the limiting form of the 

elastodynamic solution (1.3.12) is not a general solution of 

equation (1.5.6). We may resolve the paradox by noting that 

do not necessarily exist in the limiting case, since 

they include coefficients which become infinite as cT « ,

c2 -> °° . Examples will be given later. To construct

acceptable alternatives to <$> , Y , we note that Boggio's 

theorem no longer applies when the two operators in (1.3.2) 

become identical. Thus the limiting form of (1.3.2) becomes

2 2r-V v S = 0 (1.5.7)

where S is the limiting form of 5 . This is a biharmonic

function which has a general solution (Almansi, 1897)

S = xh+f v2h = 0 , v2f = 0, (1.5.8)

or equivalently

S = yh+f S = zh+f (1.5.9)

24



where h,f are harmonic functions. Similar remarks apply to A 

(the limiting form of A), i.e. it becomes a biharmonic vector 

in the limiting case. If so, U as defined by (1.3.12) 

becomes a biharmonic vector in the limiting case. An analysis 

of this vector will be given in Part II.

25



Chapter 2

Some Specialized Fields

2.1 Centre of dilatation

We first consider an elastodynamic displacement field

of the form U = vF. In this case F must satisfy the wave
2

equation O1F = 0 - as may be proved by direct substitution

into (1.1.1) - except possibly at singularities. An interesting

example is obtained by starting with a static "centre of 

dilatation" (Love, 1927), defined by

u = Vf ; _ 1 2 2 2 2 
f = - , r = x +y +z (2.1.1)

2
-47r6(x,y,z).V f =

Now introducing

U = kvF ; f = r\ , + y2 +z2 , (2.1.2)

2

Yi =
1-^2 ’ = 1 When Y1 = 1 ’

C
1

where c is parameter (uniform velocity), k(y1) is a normalizing 

parameter to be determined (see later) so that the total strength 

(dilatation) of the singularity remains invariant, F has the

26



following properties :

(i) It satisfies ( see below)

2
□ F = - 4 it  6 /x-ct

i \ Yi

(ii) It reduces to f as c 0

(i i i) It reduces to <(x-ct)

■ y>z) (2.1.3)

(Yj * 1)

2 2-1
y + z } 2 as cT -> °o (Y -> 1).

This is simply the field (2.1.1) centred at x = ct, y = 0, z = 0 

i.e. it defines a "centre of dilatation" moving with a uniform 

velocity c along the x-axis in a rigid continuum without change of 

form. This field satisfies the equation

v2{(x-ct) + y2+ z2}’2 = -4ir6(x-ct ,y ,z), (2.1.4)

which is seen to be the limiting form of the equation (2.1.3)

as c1 -> °° on utilising (1.5.3).

(iv) It becomes singular when x = ct, y = 0, z = 0.

Clearly, therefore, vF describes a "centre of dilatation"

moving with a uniform velocity c along the x-axis in the elastic 

conti nuum.

Equation (2.1.3) may be easily proved by direct 

differentiation with respect to the variables x,y,z,t. More 

generally, we may argue as follows. If <t>(x,y,z) is continuous 

and differentiable to the second order everywhere except

27



possibly at a singularity (the origin), and it satisfies

-47r6(x,y ,z) (2.1.5)

everywhere, then ^-x-~ct , y,zj is continuous and differentiable

to the second order and satisfies

(2.1.6)

everywhere. To prove this theorem, we use the Lorentz-type

transformation

X1
x-ct
Ti

2 
C

2
C1

(2.1.7)
2

1

and note that

2
a__

2 
ax

1
2 

C
1

2 
a

2 
at

2
a__

2
9Xi

2
a__

2 
9X!

2
a__

2 
ax

i

1
2

2 
c
2 2

i .e.

2
□

i

2 
a__

2 
ax1

2
a__

2 
ay

2

+ '
az2

(2.1.8)+

Accordingly, equation (2.1.6) transforms into

2 2 2

-4tt 6(x 1 ,y,z) ,

28



i.e. equation (2.1.5) with x replaced by xx, and therefore (2.1.6) 

is true since (2.1.5) is true.

2.2 Centre of rotation

Another distinctive type of elastodynamic field is
2

U = vA F. In this case F must satisfy the wave equation O2F = 0 

- as may be proved by direct substitution into (1.1.1) -

except possibly at singularities. An example is obtained by 

starting with the static field (Love, 1927) defined by

u = vA f ; f = <0,0, 1> ,

V f = <0,0,-4tt <5(x,y,z)> .

(2.2.1)

This field describes a singularity known as a "centre of rotation 

about the z-axis". Proceeding as before we introduce

y = k F (2.2.2)

2 2

k(y2) = 1 when y 2 = 1,

where c is a parameter (uniform velocity), k(y2) is a normalizing 

parameter to be determined (see later) so that the total strength 

(rotation about the z-axis) of the singularity remains invariant. 

The vector F has the properties :

29



(i) It satisfies (see below)

2
□2F = <0,0, -4tt 6^^ ,y,z)> . (2.2.3)

(ii) It reduces to f = <0,0, y> as c -> 0 (y 2 -> 1).

(iii) It reduces to <0,0, p-> ; (r1)“ = (x-ct)2 + y2 + z?

as c2 -> °°(y 2 -> 1). This is simply the field (2.2.1)

centred about x = ct, y = 0, z = 0 i.e. it defines a "centre 

of rotation about the z-axis" moving with a uniform velocity c 

along the x-axis in a rigid continuum.

(iv) It becomes singular when x = ct, y = 0, z = 0.

Clearly, therefore, vAF describes a "centre of rotation about 

the z-axis"moving with a uniform velocity c along the x-axis.

The proof of (2.2.3) follows by introducing the Lorentz-

type transformation

(2.2.4)

and following the same procedure as in section (2.1) we find

2
a__

2
ax2

2

+ 1_
2 

ay

2 
a

+ —2 
az

2
□

2 5

in line with (2.1.8) ; which implies (2.2.3).
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2.3 Strength of singularity

The dilatation singularity (2.1.1) has a local divergence
1 2 1

v.u = v.v(—) = v (_) s and therefore the total dilatation

strength is given by

L2/i2 1 fV (y)dxdydz = -4tt  6(x,y ,z)dx dy dz = - 4tt  . (2.3.1)

In the uniformly moving case, we have

Also

so that

2 
a

2 
ax

2
a__
ay2

32

3Z2

1 a2

Y1 3X1

2
3__

2 
ay

2
3__

2 
az

2

/ 2 2 2 1J 1 2 2 \
a . a . a a a 1

2 2 2 2 2 2
\ax1 ay az y' \\ axT axj

2 2
Y1

dV = dx dy dz = Y1dx1dydz =Yxd VT

_ 2
1 -Y 2

i 3 
+ 2 y

\ axx

(2.3.2)

(2.3.3)

(2.3.4)

By symmetry we have

2 
V + + + +

r r m
7
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(2.3.5)

and therefore

47r6(xi5y,z) = - 4tt (2.3.6)

i .e.

2y \1

V.UdV = -k(Yj 4-n- - -4tt asv^l. (2.3.7)

It is necessary to normalize the moving field so that its 

total dilatation remains invariant throughout the motion. 

Accordingly we choose

3Yi
k(Yx) = --------T . (2.3.8)

1+2y i

Clearly k(VT) = 1 when y x = 1 , i.e. (2.1.2) becomes

v(l) as c -> 0,

v(yr) ; (r')2 = (x-ct)2 + y’ + z2

as c ■*  00 .
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Similarly, the rotation singularity (2.2.1) has a local 

rotation vector

va y = vAf = v(v.f) - v2f ; f = <0,0,K

2 1
- V <0,0,?>

with a component in the z-directi on

2 -1
9 r

2 
az

(2.3.9)

This provides a total rotation component of strength

47r6(x,y ,z)

(2.3.10)

In the uniformly moving case, we have

2

y 2
2 ax

2

and therefore the total rotation component has a strength
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on utilising (2.3.5), (2.3.6).

Accordingly we choose

k(Y2) = 2
• (2.3.11)

1+y 2

Clearly k(Y^) = 1 when y 2 = 1, i.e. (2.2.2) becomes

U =
2y 2

2
vA <0,0, J-> -> vA<0,0,-> as c -> 0,

1+y 2 k 2

U =
^2

2
<0>°, J- > -> vA<0,0, i> as c -> » .

1+y 2 K2 I L
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Chapter 3

The Screw Dislocation

3.1 Introduction

The displacement field

u = <0,0,9> = (3.1.1)

has a characteristic property, i.e. its z-component increases 

by 2i/*)  on making any circuit around the origin in the x,y

(*) For a jump of amount p we replace 2tt  by

i.e. replacing e by .

plane. Expressed mathematically, 

(3.1.2)

where (3 signifies any circuit enclosing the point

x = 0, y = 0. This is a screw dislocation (Love, 1927 ;

Cottrel1,1964 ; Jaswon and Symm,l977). Strictly speaking, the 

dislocation is a line coinciding with the z-axis. In practice, 

we may think of it as a singularity located at the point x = 0, 

y = 0, which generates the field (3.1.1). To eliminate 

complications arising from the multi-valuedness of e , we make a 
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cut along the positive x-axis (0 < x < «) so that e varies 

only within the range 0 $ e < 2-tt . If so, 0 satisfies the 

equation

v20 = 0 ; y i 0 for x > 0. (3.1.3)

Also, it is continuous and differentiable everywhere except at 

the cut, and it is therefore a harmonic function everywhere 

except at the cut.

3.2 Uniformly moving screw dislocation

If the dislocation moves with a uniform velocity c along 

the x-axis, its displacement field (Frank, 1949) becomes 

(note x2 = )
' 2

(3.2.1)

This has the following properties

(i) D2 02 =0 ; y f 0, x > ct.

(ii) o2 -> 0 as c + 0.

(iii) e2 tan'1^) as c2 + - .

(iv) 02 has a branch point at x = ct, y = 0.
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- 2?r (3.2.2)

Here 0 indicates any circuit enclosing the point x = ct, 

y = 0.

3.3 Construction of a biharmonic vector potential

We now look for a vector A such that

VA A = ek ; v.A = 0. (3.3.1)

Operating with VA upon equation (3.3.1) gives

-’2? =<> > ’0 > ’ (3-3-2) 

which is immediately seen to have the particular solution

Ao = -^<-ye,xe,0> . (3.3.3)

Since V.A0 = | (-y || + x | / 0, it is necessary to

superimpose upon this a harmonic vector vy defined by

2 2 1v.A0 + v ip = 0 , i.e. v » (3.3.4) 
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which equation has a particular solution

1 2 1
= - Tj- x , if so v<p = <- ? x,0,0> . (3.3.5)

Clearly v (v,p) = v <- ? x,0,0> = 0, showing that Vip is a

harmonic vector. Superimposing (3.3.5), (3.3.3) yields the vector

A = ^<-(ye+x), xe,o> ; v.A = 0. (3.3.6)

It will be noted that A is a biharmonic vector which satisfies

the equation

(3.3.7)

as follows from (3.3.2) since e is a harmonic function. This 

also follows directly from (3.3.3) by Almansi's theorem (1897).

We now look for a vector such that

(i) vA& = ©2k

(ii) v.A = 0 1
(3.3.8)

(iii) A-> A(x,y) as c + 0 ,

(iv) A + A(x' ,y) ; x' = x-ct as c2 -> °° \ •

Fi rst we note that

xe = x (xe + y log r) ; < = x2+y (3.3.9)

38



ye = x log r - (x log r - ye)

= * (x log r - ye - x) - (x log r - ye) (3.3.

i .e. D2G* = 0")
2 /

ly / 0, x > ct

i . e. CfG** = 0)

i.e.

y0 + x = x (x log r - ye) - (xlog r - ye).

If so, making use of later theory (Chap. 5), it follows that

£= <" (Y2G*-g*) , (G**-g**) , 0 > , (3.3
]-y 2

where

G*  = x2log R2 -y©2 , g*  = x'log r' -ye'

G**  = x2©2 +ylogR2 , g**=  x'e1 + ylogr1

R2 = x2 + y , (r* ) = (x* ) + y , e' = tan -A-}

10 )

.11)

This vector satisfies all the required conditions (3.3.8).

Also, since v2g*  = 0, v2g**  = 0 everywhere except at the

cut, it follows that

2 2
r_+ + G* = 0
3X2 ay 3Z'

2 2

+ G** = 0
9X2 ay 3Z'
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Accordingly,

V D2 $ = 0 ; y / 0, x > ct (3.3.12)

which equation contrasts with the biharmonic equation (3.3.7) 

satisfied by the biharmonic vector A. This provides a good 

example of the construction of an elastodynamic vector which 

reduces to a given biharmonic vector A in the static limit.
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PART II

THREE-DIMENSIONAL THEORY



Chapter 4

Three-Dimensional Fields

4.1 Papkovich-Neuber representation

The limiting equation (1.5.6) has a general solution

given by (note < = . )

u = h - «v(r.h + f) ; v2h(r) = 0, v2f(r) = 0, (4.1.1)

where h is a harmonic vector function and f is a harmonic scalar 

function. This solution was first presented by Papkovich (1932) 

and then by Neuber (1934), and more recently adapted by Jaswon 

and Symm (1977). By a suitable choice of h, we may cover the 

field of any static elastic field, e.g. a point force. Generally 

speaking, the harmonic function f is not necessary, but in 

certain exceptional cases (e.g. v = ? ) it must be included (Eubanks & 

Sternberg, 1956; Jaswon & Symm, 1977). However, since the 

specialized harmonic field u = vf has already been considered, 

we may omit f without loss of generality.

4.2 Helmholtz resolution

We now attempt to generalize (4.1.1) so that it represents
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the field of uniformly moving singularities. An efficient

approach is to introduce the Helmholtz resolution

u = VS + vA A v.A = 0, (4.2.1)

i.e. to determine S,A so that

h - KV(r.h + f) VS + vaA ; v.A = 0, (4.2.2)

and then undertake transformations

S , A

of the type already discussed. With a suitable choice of 3 ,

& the reconstructed field

U = v$ + vA& = 0 ; v.§Qt = 0

defines a singularity moving with a uniform velocity c in a 

particular direction, and which reduces to the static 

singularity as c + 0.

To determine S,A in (4.2.2) we first operate with V.

on both sides of (4.2.2) , which gives

V2S = v.h - <v2(r.h + f). (4.2.3)

This is a Poisson equation with the particular solution
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s I (l-2<)(r.h) - <f,
(4.2.4)

as may be readily verified (App. II). Also operating with vA 

on both sides of (4.2.2), we obtain the vector Poisson equation

V2A = -VAh , (4.2.5)

which has the particular solution

A = - | (r a h), (4.2.6)

as may be readily verified (App. II). It will be noted that

v.A = - ? v. (r a h) =--2-(h.vAr-r.7Ah)=2-r.vAh^0

in general. However we may re-define A so that v.A = 0

as shown in App. II.

The most important choice of h is

1 2 2 2 2
h = <0,0, y > ; r = x + y + z ,

in which case

V.A = - | v.(r a h) = - v. ,0> = 0.

Therefore, choosing f = 0 in (4.2.2) , we obtain the identity
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<0,0, 1> -Kv(|) = | (l-2K)v(£j- |vA<X,- p0>. (4.2.7)

Symmetrical equivalents of (4.2.7) are

<0 i,0> -kv (^ h ^(1-2k )v (^ - |va<-7.0,£>, (4.2.8)

4>0,0> | (1-2k )v (^ - |vA<0,|,- X>. (4.2.9)
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Chapter 5

Limiting Biharmonic Behaviour

5.1 Scalar limiting analysis

Given a biharmonic function

S = -j- (l-2<)zh ; v2h(x,y,z) = 0, (5.1.1)

we show how to construct a function 3 with the properties

(i) is a function of the variables

/ 7 — C t \ 2 C
x,y,z1 =1—— ; = 1----- -  , which satisfies

' yi ' c1

=0 (5.1.2)

everywhere except possibly at x = 0, y = 0, z = ct.

(ii) 3 -> S(x,y,z) as c -> 0. (5.1.3)

(iii) 5 S(x,y,z-ct) as -J- -> 0. (5.1.4)

Condition (iii) is equivalent to condition (ii) when t = 0.
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We start with an arbitrary harmonic function g0(x,y,z) 

having continuous second-order partial derivatives except 

possibly at singularities. If so, there exists a corresponding 

harmonic function g(x,y,z-ct) which satisfies v g = 0, and 

also a wave function G(x,y,zJ which satisfies

222 2
) G = 0, i.e. = 0. Clearly G g0(x,y,z)

'ax ay azT 1

as c + 0 and G -> g(x,y,z-ct) as — -> 0, i.e. harmonic limits
ci

which have already been met (see Section 2.1). However, 

we may also obtain a bi harmonic limit by observing that G 

has the Taylor expansion 

r - 1 c
G = g + 2 “T

ci

z* ag
az z1 = z-ct

■ ag
3Z

+ Od-yJ)2 (5.1.5)

in the neighbourhood 0. If so, then

z' 99
az Od-\)

z' 99
az as — ■*  0 .

ci
(5.1.6)

This result also remains valid (App. Ill) as c -> 0 wi th
99q  
az-

• 9greplacing z' 44- . Now if we define g0 so that8 Z

9g0
= h,

= 94

? G~9
i 2

->

+

z

then

3 = (1-2k ) -^4 (5.1.7)
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Clearly 3 satisfies condition (ii), (iii) above. Also, it 

satisfies = 0, since G satisfies O^G = 0 and g
2

satisfies v g = 0.

Since c is a constant, there is no loss of

generality in putting t = 0 in (5.1.5), so that

G(x,y, )
' i

9o 4 +o(i-^)2 (5.1.8)

in the neighbourhood of -J- = 0,
ci 

g0(x,y,z) = g(x,y9z-ct) when t

bearing in mind that

= 0. This expression also

holds in the

1
ci

in
2

Y1

neighbourhood of c

2
% ).

C1

(by interchanging c and

In this case

G(x,y,^-) - g (x,y,z)
2 -----------li------------------------ -> Z 9Z (5.1.9)

either as c -> 0

= 0

1

5.2 Vector limiting analysis

Given a bi harmonic vector

A = |<-yh,xh,0> ; v2h = 0, (5.2.1)

we show how to construct a vector A with the properties
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(i) A is

2

a vector function of the variables

2
Y2 = 1 - c

2 , which satisfies
C2

vb2 A =0
2 ~ (5.2.2)

everywhere except possibly at x = 0, y = 0, z = ct.

(ii) A -> A(x,y,z) as c + 0.

(ili) (4.*  A(x,y,z') as-L » 0.
“2

(5.2.3)

(5.2.4)

Condition (iii) is equivalent to condition (ii) when t = 0.

First, using the Almansi representation of biharmonic

functions, we write

yh = zf*  + h*  ; v2 f*  = 0, v2h*  = 0,

2
(5.2.5)= zn- + h*  ; V gj =o,

and

xh = zf**  + h**  ; v2f**  = 0, v2h**  = 0,

gg**  
z az + h** ; v2g**  = 0, (5.2.6)

where q*  q**  are harmonic functions sufficiently defined by
*-'0 0
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gy- = f*,  — = f**.  Introducing the functions G*(x,y,z,),

g*(x,y,z')  corresponding with g*(x,y,z),  etc., and H*(x,y,zJ  

corresponding with h*(x,y,z),  etc., it follows that

A = G**-g**  
, 2

, 0>+ | <-H*,H*,O>
^2

1 <-zf*,zf**,0>  + | <-h*,h**,O>

(5.2.7)

More generally, we write

A = <- , G**-g**  ,0>+ b(y 2)<-H*,H* ‘,O>, (5.2.8)

where B(y 2) is a parameter defined so that

B(y 2) =2 when y 2 = 1. (5.2.9)

This allows greater flexibility in the expression for A to

suit specific problems.

T_ . 1 2 2 2 2..
If h = - ; r = x +y +z , then

S = | (1-2K)£ ,
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(5.2.10)

(5.2.11)

i.e. f*  - _ yz
2 ’

g* = - XL
y o 2

r? C

and
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Accordingly, we obtain

\ <(y"2

1"Y2

yr' xR xr\
’ - p

yR, XR2
+ B(y 2) <-

2 5
— ,0> ; (5.2.13)

c c

n2 222 . .2 22,. '2 .
R2 = x +y +Z2 , (r‘) = x +y + (z') , z' = z-ct.

Expression (5.2.13) may be more compactly written as

where

b(Y2) = 1 - (1-Y2)b .

This shows that

(5.2.14)

b(Y2) = 1 when Y2 = 1 (5.2.15)

for any choice of B . Also



i .e.

db
= when Y2 = 1 , by virtue of (5.2.9)

which gives

b(y2) = 1 + (Y,-l) +O(y 2-1)2 = Y2+O(1-y 2)2. (5.2.16)

5.3 Superposition of and vaA

The superposition

v<3 + vA A ; v .&_ = 0, (5.3.1)

with 3 defined by (5.1.2), (5.2.2) respectively,

provides an elastodynamic displacement field. However, this 

would not be a physically acceptable field unless it reduces 

to a physically acceptable static field in the limit. By virtue of 

the theory of Chap. 1, we may always write (5.3.1) in the

form

V<I> + v y ; v.f = 0 (5.3.2)

where 4>, T are wave functions. These become singular in the 

static limit as already noted (section 1.5), but the complete 

field (5.3.2) remains finite. We shall now apply this analysis 

to specific problems.
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Chapter 6

Three-Dimensional Displacement Fields

6.1 Longitudinal case

(*)

(*) For a point force of magnitude P we simply replace 4tt u  

by 4FF i,e’ F by ’

A static point-force of magnitude 4tt u in an infinite 

elastic continuum, acting in the z-direction at the origin of 

co-ordinates, generates the displacement field (Kelvin solution 

in terms of the Papkovich-Neuber representation)

U = <0,0, y> ’ KV(?) ; K 1 (6.1.1)4(1-v) •

In components :

xz
U1 K 3 ’ U2

r r

1-K Z2
------- + K —- 

r
(6.1.2)

As shown in Chap. 4, we may write

u = vS + vA A ; v.A = 0

where

s = I (1—2k ) | ’ ? = 2<_ r , - ,0> . r
(6.1.3)
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Following our previous analysis (Chap. 1) , we write

U = v$ + vA A ; v.A = 0, (6.1.4)

for the field produced by a point force of magnitude 4-np moving 

with a uniform velocity c along the z-axis (the line of action 

of the force), where 3 , <&. have been determined (Chap. 5) 

subject to the transformations :

zi
z-ct
*1

2 2 2 2 
Rx = X +y +ZX

2 
C

2
C1

(6.1.5)

Z2
z-ct

Y2

_2 2 2
R2 = x +y

2
+ Z2

2
Y2

2 
c

2
C2

(6.1.6)

2
5

5

5

5

1 5

1

Accordingly,

s 4 1-2k
/
log

\

R1+Zi

Mi
log r1+z1

with v.A = 0 for any choice of 

(r1)2 = x2+y2+(z')2 , z' = z-ct

(6.1.8) into (6.1.4), we get

r1 -z1 (6.1.7)

* =7^
1-y 2

/ x R2
5 ,0> (6.1.8)

b(Y2)’,Y2 / 1 5

Substituting (6.1.7),

y = V log
1-y1 \

R1+Zi 1 y 2 + -U VA<fb — -

1-y 2 \ C

x R2
,0>. (6.1.9)

5
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Now, from (1.4.7) i.e. 1

2
C
4 = > 

ci
we have

But

l-2<

2
S

2
C1

(6.1.10)

so that

Since

2

2

2

~~2
C1

5 (6.1.11)

1-2k

i-v;

j

l-*2

J
1-^2

(6.1.12)

1 V log
5 ,o>, (6.1.13)

the expression (6.1.9) becomes

U 1

2(1-Yj )
v log

Rl + Z! 

Rrzi
+ 1

2
1-^2

vA<b
yR2

e
xR

, -b ,0>;

(6.1.14)

v .< b
yR2

2
6

5

x R2

2
6

,o> = o.

It will be noted that
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showing that U is given by

U = V4> + VA Y (6.1.15)

with

<i>
1

2(1-y ")

Ri+Zi
109

1_Y2 ?
,-b

xR,

2
6

,0>, (6.1 15)

in accordance with (1.3.12), (1.3.13). Clearly $ , T

5

-> co

as Y2 -> 1, so providing a good example of the non-existence 

of $ , ? in the limiting case as mentioned in Section 1.5. This 

breakdown of $ , T occurs in every subsequent problem.

In components (note

as appropriate) :

1 8
Yi 3Zi

or 1 9
Y2 9Z2
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These expressions reduce to the corresponding static expressions 

(6.1.2) as c ■> 0, bearing in mind that b = y 2 + O(1-y J~ .

To calculate b more precisely, we write

b = y 2 + e(l-Y2)2 (6.1.18)

where e is a constant to be determined. If so,

1 /XZ2

1-Y;\R262

xzT \ e(l-Y2) xz2

r JY + Y2(1+Y^ T/
(6.1.19)

Now

e(l-Y2) xz2
------------------------ - -> 0 as c -> 0 (y 2 1). 
y 2(1+y 2) R2C

Al so

e(l-Y2) xz2 ex
, 2 > 2 
1+Y2 R2£

as c -*•  c2 (y 2 -+ 0)

si nee showing that

e(1-y 2> XZ2 =

Y2(l+Y2) R2c 2 >y 2/
as c -> c.

Therefore, the second term in (6.1.19) makes no contribution to 

the static limit c = 0 , and it becomes unstable as c -> c, . 

This instability would preclude the appearance of a transonic 
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regime c2 < c < cx , which always exists on physical grounds. 

We therefore eliminate the instability by choosing e = 0, so 

allowing us to connect the subsonic solution (c < c) with the 

transonic solution (c2 < c < cx). This gives b = y 2.

Inserting this value of b into (6.1.17), we obtain

in agreement with results already obtained by Eason et al (1956).

6.2 Transverse case

As before, we start with a static point force of 

magnitude 4ttu  acting in the z-direction at the origin of co-

ordinates. But it now moves with a uniform velocity c along 

the x-axis , i.e. transverse to its line of action, and we 

therefore use the transformations

x-ct (6.2.1)
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2
x-ct____  D2
Y2 ’ K2

2 2 2 2 
x2+y +z ; y 2

2 
C

2
C2

(6.2.2)= 1

in place of (6.1.5), (6.1.6). The static potential (6.1.3)

still holds, and we have

(6.2.3)

where

- yl
J r

zl
r

Adapti ng

2 2 2 
n = y +Z

yr
>n2.

yr
n2

zr
2 n

(6.2.4)

(6.2.5)

the previous analysis, we write

(6.2.6)

/ zRi 

a 2 
1-Y, \ n
l-2<

2
zr1

2 
n

(6.2.7)

1+ x — r

-
2

n
5

5

U

5 =

=

5

vi + vA A 5 v.& = 0,

5

1~y 2 \ n

/ 1 R2+X2 ] r'+x'
210gF^T " 2logFT^7T

\ 2 2
5

(r1)2 = (x1)2 2 2 +y +z , x' = x-ct,

60



and a(Y ), b(Y2) are parameters to be determined. By contrast 

with (6.1.8), the requirement v.A = 0 implies b = Y2 as 

may be verified, but nothing can be said about a(Y1) at this 

stage. Therefore, inserting (6.2.7), (6.2.8) into (6.2.6), we 

get

(6.2.9)

n
2

n
2

1^2
2

, 0>

Bearing in mind (6.1.12), and observing that

, 0>,
n

(6.2.10)

the expression (6.2.9) becomes

U

(6.2.11)

v .<y 2
yR2

’ 7 109 2^77 ’ 0> = °-
n

2

In components (note = y-or 7 ~ as appropriate) :
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1

z
2 

n

+ • 12)

Ui 1

1-2

U2
2 X2

U3 1

1"Y2

2

+ (Y2R2-aRj 
n

z2 ly2**

n“

We may prove that a = Y, by the same 1 ine of argument as

used to prove b Y2 from (6.1.18). Of course C1 > C2

and therefore c C1 implies c > c2 This is the transonic

regime c2 < c < C1 » which connects up with the subsonic

regime c < C2 at c C2 (\ = 0). Inserting a Yx into

(6.2.12) we get

Ui
1

1-Y2

z
2 

n

f xA2

' R2
//

U2 1

1-Y2

yz

n

2
Y1X1

Ri
2.13)

U,

2
1-Y2 
vpq-

n n \R;
5

in agreement with Eason et al (1956). These expressions reduce

to the static expressions (6.1.2) as c + 0.
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PART III

TWO-DIMENSIONAL THEORY



Chapter 7

Two-Dimensional Dislocations

7.1 Displacement formulae

Problems of two-dimensional isotropic elasticity, in

the absence of body forces, are most efficiently solviad by

introducing the Airy stress function X (Airy, 1863). This

is a bi harmonic function i,,e. v“x = v2(v2x) = 0, wi th

the properties :

_ a2x
Pn 2 > P22

ax
=

ay2
, p = -’ h 12 axay , (7.1.1)

where p115 p,nJ px, (= p ) are the 2-dimensional stress 

components. It is convenient to work with the Almansi 

representation (Almansi, 1897)

x 5

2
V <f> = 0, = 0, (7.1.2)

or equivalently

x = y<{>+<P ;
2V2(J) = 0, v2ip = 0, (7.1.3)

where = <j>(x,y), ip = <p(x,y). In terms of X , the

displacement components in plane strain may be expressed
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(7.1.4)

(Coker and Filon, 1975) by

2uux = (l-v)H - —- ,

2uu 2 = (l-v)Tf - || , (7.1.5)

where p ,v denote the shear modulus and Poisson's ratio 

respectively and H,TT are conjugate harmonic functions 

sufficiently defined by

3H = aH = 2
ax ay (7.1.6)

Accordingly, utilising the representation (7.1.2), we find

V2X = 2 , i.e. H = 2*  , H = 2? , (7.1.7)

so that

2pu = 2(1 -v)<<f>,<j>> - VX ; X = Xij>+ip (7.1.8)

Alternatively, utilising the representation (7.1.3), we find

v2X = 2 i.e. H = -2? , H = 2<t> , (7.1.9)
ay

so that

2pu = 2(1 -v)<-?,<}» - VX ; X = y<ji+ip . (7.1.10)
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These formulae may be proved directly from the Papkovich-Neuber 

representation (4,1.1), See App. IV, and they may be adapted 

to plane stress on replacing v by . It may be remarked

that formula (7.1.8) covers the case of a rigid-body rotation 

<d1y, -dix> and a rigid-body translation <d„,d > by 

writi ng

4 = 77; (dxy+d2) i.e. ({> =

“ 7=7 (dxxy+d2x) ,

where d1,d2,dJ are arbitrary constants. Alternative 

descriptions involving <j> , J are given by Bhattacharyya and 

Symm (1980). Similar remarks apply to formula (7.1.10).

Following the theory of Part II, we write

u = vS + vA A ; v. A = 0. (7.1.11)

2
If so, v.u = v S which gives from (7.1.8) :

,-s. «;-> ( Scf) + 3<t> \ 
ax ay /

1 2’’I— (xd)+lp)

1-v /?
u \ ax,

\ _ 1 3(j>
I p ax

1 2
’ 2? v

i.e.
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3 _ 1
ax 2?

2
v ip or 1 -2\> a<j> 

u ay
(7.1.12)

noting that . This is a Poisson equation for Sd x dy

with the particular solutions

s =
2p

x£ - ip or l-2v — 1
y<P - — <P .

2)j 2u
(7.1.13)

Also,

va U = v(v.A) - v 2A, which gives

-v 2A - 2(l-v) ,fa?- V H - ax ay) - ’

i.e.

v 2A = - 2(l-v) gk 2 (1 -v) a <p | or —------- —7 k , (7.1.14)
u ax ~ u ay ~ ’

noting that — = - — . This is a vector Poisson equationay a x

with the particular solutions

A = - x<+>k or A = -1—y <p k
u ~ ~ u ~

Accordingly, choosing

S = xcp - J- <p, A = - — x $ k , 
2p 2)j ’ - u

(7.1.15)

(7.1.16)

we obtain

67



y = 2? (l-2v)x(j>-ipj - 1 vA {(1-\>)xp}k

i .e.

2pu = v{(l-2\))x<f>-^}- vA{2( 1 -\))x<j>}k (7.1.17)

It may be verified that (7.1.17) is identically equivalent 

to (7.1.8), and that no other choice of S,A has this property.

Similarly, choosing

c _ l"2v > 1 ,s ■ y* ' 77*  (7.1.18)

we obtain

2uu = v{ (1-2v)y4>-ip} -{2 (1 -v)y$}k , (7.1.19)

corresponding with formula (7.1.10).

7.2 Edge dislocation (null case)

Corresponding with x = x<t>+ip where

lo9 r » = T7e’* =
(7.2.1)

0

2 2 2 
r = x +y 0 ’ tan’^

5
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formula (7.1.8) provides the displacement field

2uu = 2(l-v)<y- log r , e>- v(xlogr),
~ I —v I —V 1-V J

i.e. u = <log r ,6> - 2k V(x log r) ; k 1 (7.2.2)

In components :

2

u. = logr- 2k (xlogr) = (l-2x)log r-2< — , (7.2.3)
1 □ X 2r

u2 = 6 - 2k (x log r) = o - 2< . (7.2.4)
y r

This shows that u2 jumps by an amount 2i/*)  for any anti-

clockwise circuit around the origin, while the component u: 

remain unaltered. More precisely, introducing the symbol [ ] - 

see (3.1.2) - to indicate the jump in a quantity on circuiting the 

origin :

(*) For a jump of amount p we replace 2n by

i.e. choosing y— log r , etc.

[log r ] = 0, [ (x log r)] = 0

[e] = 2tt , [-1- (x log r)J = 0

(7.2.5)

(7.2.6)
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so that

Lu1] = 0, [u2] = 2n (7.2.7)

This property defines an edge dislocation of Burgers' 

vector (Cottrell, 1964 ; Nabarro, 1967) [u2]j. It is

convenient to think of the edge dislocation as a line 

coinciding with the z-axis, i.e. at right angles to the Burgers' 

vector. If this dislocation moves with a uniform velocity c 

along the x-axis, in the positive direction, then a jump of

amount [u,] appears behind it, separating the quadrant y > 0

from y < 0 as indicated in fig.l. Such a motion would not be

physically possible, since it separates the continuum into

two non-interacting parts. We may also prove this below by a

mathematical analysis following the method of Chap. 5.

Utilising (7.2.1), formulae (7.1.16) give

s = xlogr = (l-2<)xlogr
1 -v

, (7.2.8)

A = _ IzX ._±_ x e k = -x 0 k
u i-v

If so, the Helmholtz expression (7.1.17) becomes

u = (1-2k )v (x log r) - vA(xe)k . (7.2.9)

It can be verified that (7.2.9) is identically equivalent to 

(7.2.2).Now
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Edge dislocation (coinciding with z-axis-perpendicular 

to the plane of paper at the origin) of Burgers1 vector 

[u2]j separating the quadrant y>0 from y<0.

As the dislocation moves forward along the positive 

x-axis it separates the material into two distinct 

halves, being therefore physically impossible.



x log r = X (x log r-ye-x),

X6 = x 1^- (xe+y log r-y).

(7.2.10)

(7.2.11)

Accordingly, by straightforward adaptations of (5.1.7), (5.2.8),

it follows that

3 { (xjog R, -y©1-x1)-(xl log r' -ye'-x' )}, (7.2.12)

A

]-Y2
{(x2o2+y log R2-y)-(x'e'+y log r'-y)}k, (7.2.13)

where

x-ct
X1~

2 2
= xx+y S1 tan•W’ (7.2.14)

x-ctx* ~ 2 2 
= x2+y tan 5 (7.2.15)

5

5

5

5

x' = x-ct 5

Now, following the general theory of Part II,

, 91 = tan

U = ; V.A = 0,

for the uniformly moving field. Substituting for d , A 

from (7.2.12), (7.2.13), we find
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U = v { (xjog R1 -yoi-x1)-(x' log r' -ye'-x')}

- —va < (x2°2 +y 1°9 Rn-y)-(x'e'+y log r'-y)}k. (7.2.16)
1-y 2

Bearing in mind that

2(1 -2k ) _ 2
2 2

1-Y 1-Y
1 2

and that

see (6.1.12),

V(x11og r1 -ye 1-x') = vA(x'e'+y log r'-y)k, (7.2.17)

1 3 1
In components (note — = — y— or — —- as appropriate): 

o X ii oX. Io dX?

the expression (7.2.16) becomes

U=—^y v(x log RL -y©1-x1) - -^-y vA(x209+y log R -y)k. (7.2.18) 

l-\ 1-y 2

(y- log Rx "log R2 \ , (7.2.19)

(7.2.20)

As c -> 0, the expressions (7.2.19), (7.2.20) reduce 

to the corresponding static expressions (7.2.3), (7.2.4)
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respectively. Also

[IJJ = 7^ pT C1°9RJ - OogR2]j = 0, (7.2.21)

[iy =- 2 [tex
] - vr ■

2 0- &

o c 1-^2 9 4tt (7 ? ??}2
1^2 Y2 71 y 2(1+y 2) 9 \ ' . C . CL J

by virtue of (3..2.2) . In the static case V2 = 1, and

therefore [U2] = 2tt i .e. [U2] = [u2] = 2tt as expected.

However [U.] / 2tt for aniy other allowed choice of y 2 .

This means that we cannot construct a uniformly moving 

dislocation field which has the same strength as the static 

dislocation, and we therefore conclude that such a motion is 

impossible.

7.3 Edge dislocation (slip case)

An alternative possibility to the preceding case is 

that the dislocation moves uniformly along the v-axis, i.e. 

the direction of its Burgers' vector. If so, then a jump 

of amount [u2] appears behind it, displacing the quadrant x < 0 

relative to x > 0 as indicated in fig. 2. Such a motion is 

physically possible since the two quadrants remain in contact. 

Usually the yOz plane is termed the slip plane, since the
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Fig. 2

Edge dislocation (coinciding with z-axis-perpendicular 

to the plane of the paper at the origin) of Burgers' 

vector [u ]j separating the quadrant x>0 from x < 0. 

As the dislocation moves forward along the positive 

y-direction the quadrants remain in contact so that 

this would be a physically possible motion.



displacement jumps across this plane as the dislocation 

propagates along it.

To determine the moving field, we start with (7.2.3),

(7.2.4) as before, and of course (7.2.8) still holds. However, 

we must now introduce the transformations :

y-ct n2 22; RT = x +yx , 0 = tan1 \ (7.3.1)

y2
y-ct

Y2
n2 22; R2 ’ X +y2 , 02= tan'1 &)■ (7.3.2)

in place of (7.2.14), (7.2.15). Correspondingly (7.2.10),

(7.2.11) are replaced by

-xlogr = -y0 - (xlogr - ye)

(7.3.3)

-x6 = y log r -(xe+y log r)

(xe+y log r-y)-(xe+y log r) (7.3.4)

If so, then

3 = - {a(x log )-(x log r'-y'e')}, (7.3.5)
1-y 2
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A= y {b(xon+y2log R2 -y )-(xe1 +y' 1 oq r' -y')}k , (7.3.6)
1-Y2

where

y’ = y-ct, (r')2= x2+(y')2 , e' = tan-1^-) .

The introduction of a(Y1), b(y2) is necessary - by contrast 

with (7.2.12), (7.2.13) - because of the residual harmonic 

functions (x log r-ys), (x0+ylogr) which appear in (7.3.3), 

(7.3.4) respectively. By reference to Chap. 5 these may be 

accounted for by writing a(x log R,-y101 ) in place of 

(xlogR1-y101 ) etc. Accordingly for the moving field :

U = v<S + va<A ; V.A = 0. (7.3.7)

Inserting (7.3.5), (7.3.6) into (7.3.7) , we get

U = - v{a(x log R1-y101)-(x log r'-y'e1)}

+vA{b(x02+y2log R, -y2)-(xe'+y'log r' -y1 )}k. (7.3.8)

Bearing in mind that

2(1-2k ) _ 2
2 2 ’

1-YX 1-Y2

and that
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v(x log r'-y'e') = vA(xe'+y'log r') k , (7.3.9)

the expression (7.3.8) becomes

U = - v{a(x log Ri-y^J}
]-72

+ -£^vA{b(xo2+y2log R2 ) - (y,-y')}k . 
!-y 2

(7.3.10)

r) 1In components (note — = ------- —
ay y t ayT or 1 a

y 2 ay.
as appropriate) :

Ui
2

1 y21 Y2

|a(l+logR1 )- y- (l+log R2 ) +(y- -l)j

2

i-v:
2

l-v'

1-bl
,(7.3.11)

U2 =

1-y 2
(7.3.12)

As regards the strength of dislocation, we note that

[UJ A- UnogRJ - A (JogRJ) = 0,
1-Y 2I 2

(7.3.13)

and that

[U2] -- (A [ej-bte,])
1-y 2 'i

(7.3.14)2
2
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by virtue of (3.2.2). There is no difficulty in choosing the 

parameters a(Y1), b(y2) to satisfy the condition [U,] = 2n , 

which ensures that the strength of the uniformly moving 

dislocation equals that of the static dislocation for every 

choice of c< c2 . This condition gives

1 1 2

a(Yl) 1 2
i.e. —------ - b(v2) = -1 (1-y 2),

r 1

a(Yl) n 2
i.e. —-----  = b(Y2) + J,- (1-yJ. (7.3.15)

Since equation (7.3.15) must hold for every allowed choice of

Y1SY2 , each side must have the same constant value d, i.e.

a(\) , 2
——- = d , b(Y2) + j (1-y 2) = d (7.3.16)

from which

a = Y1d,b = d- -^- + ^-Y2. (7.3.17)

Bearing in mind that a(Yx) = 1 when Yx = 1 and b(Y2) = 1

when y 2= 1, it follows that d = 1, showing that

(7.3.18)
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It may be noted that | (1+y 2) = Y2 + | (1-y 2)2 in accordance 

with the general form b = y 2 + O(1-y 2)2 . Inserting

the result (7.3.18) into (7.3.11), (7.3.12) and noting that 

1- ? (1+Yj

2 _ 1' : 2 '. = 2(1-2k ) _ 1

1 - Y2 \ +y1 y 2

by virtue of (6.1.12), we get

2

1-Y2

| (1+y 22)

Y2
.19)

U2 (7.3.20)

For a given value of c < c2 the final term in (7.3.19)

Ux

2
]"y 22

z

.Y Jog R.

is a constant which can be omitted without loss of generality.

It may be verified that (7.3.19), (7.3.20) reduce to the 

corresponding static expressions (7.2.3), (7.2.4) respectively 

as c -> 0. Our solution agrees with that of Eshelby (1949) 

on interchanging the role of x and y as indicated in fig. 3.
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Fig. 3

This is equivalent to Fig. 2. rotated clockwise 

through 90°, so that u, transforms to u, and 

ux transforms to -u2 , which gives Eshelby's 

results directly.



Chapter 8

Two-Dimensional Point Forces

8.1 Multi-valued biharmonic functions

The biharmonic functions of chapter 7 were all single-

valued. However, an important role is also played by multi-

valued biharmonic functions, since they have the following 

properties (Jaswon and Symm, 1977) :

[ax'
[ax.

= resultant force in y-direction produced

by the tractions acting upon any circuit

enclosing the origin 0 ; (8.1.1)

= resultant force in x-direction produced

by the tractions acting upon any circuit

enclosing the origin 0 ; (8.1.2)

resultant moment produced by the

tractions acting upon any circuit

around the origin 0. (8.1.3)

Choosing x = -y6 , we note that

(8.1.4)
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so providing a resultant force of magnitude -2t/*)  pointing 

in the x-direction. For the limiting case of a vanishingly 

small circuit, we may think of a point force of magnitude 

-2n pointing in the y-direction at 0.

(*) For a force of magnitude F we replace 2tt  by ,

i.e. choosing X = ye etc.

From formula (7.1.10), it follows that

2uu = -2(1-v)<logr ,6> - v(-ye) (8.1.5)

2u [u 2] = -2(l-v)[e] + (ye)

= {-2(l-v)+l}2u = -2(l-2v)ir , (8.1.6)

showing the presence of an edge dislocation of Burgers' vector

1 -2----- —— irj . To remove this dislocation, we replace

x = -ye by

x = -ye + Nxlog r

= -(l-N)ye +N(x log r-ye), (8.1.7)

where ex 
ay

(xlog r) = — 2tt as before

and N is a constant to be determined subject to [u,] = 0.

Formula (7.1.10) now gives
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2pu = -2(l-v)(1-N)<logr ,e> -v(-ye+Nx log r). (8.1.8)

In components :

2pu = -2(l-v)(l-N)logr - — (-ye+Nx log r), 
d X

2pu2 = -2(1 -v) (l-N)e - (-ye+N x log r ).

Accordingly

2y[u2] = 2{-2(l-v)(l-N)+l }tt

= 0 if N = l-2v

Therefore, (8.1.9), (8.1.10) become

-77K <-ye+Nx log r)

1-N x2 1

u2 = 'i? (-VO^xlogr)

1-N xy
~"2p r2 ’

on bearing in mind that

2(l-v)(l-N) = 1 for N =

(8.1.9)

(8.1.10)

(8.1.11)

(8.1.12)

(8.1.13)

(8.1.14)
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Similarly, we construct the dislocation-free biharmonic 

function

X = x9 + My log r ; M = = N, (8.1.15)

for which

3X* = “2tt  , axJ
= o [x -**- ax'

ax ?y.
5 ax sy

(8.1.16)

8.2 Uniformly moving point force (longitudinal case)

Corresponding with (8.1.7),

<*)  = -(l-N)e , J = (l-N)logr ,ip = N(x log r-ye), (8.2.1)

formula (7.1.18) gives

S = - (l-N)ye - J- (x log r-ye)
2p '

= - J- ye - J- (x log r-ye) = - x log r, (8.2.2)
LU LU LU

since

(l-2v)(l-N) = N for N = • (8.2.3)

Al so,

A = - (1-N)(y log ijk = - -^(y log r)k , (8.2.4) 
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by virtue of (8.1.14). It will be noted that V.A = 0.

Accordingly, we may write

2pu = -Nv(x log r) - vA(ylogr)k . (8.2.5)

It may be verified that (8.2.5) is equivalent to (8.1.8).

Now,

+ xlogr = x — (x log r-ye-x), (8.2.6)
0 X

- ylogr = x0 - (xe+ylogr)

= x (xe+y log r) - (xe+y log r). (8.2.7)
o X

Therefore, it follows that

(8.2.8)

1 2

l-Y,
{b(x202+y log R2 )-(x'0'+y log r' )}k, (8.2.9)

where

x' = x-ct

x-ct 
Xi = Y

1 1

2 2 2 
; Rx = xx+y

-i
, 0X = tan © ’

x-ct
X2= y 2

2 2 2 
; R2 = x2+y

-1
, 02 = tan ©•
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For the moving field, we write

U ; V. $ = 0. (8.2.10)

Substituting (8.2.8), (8.2.9) into (8.2.10) gives

U

1 + —u
1 y v {b(x202+y log R,)-(x'e'+y loa r' )}k. 

1^2
(8.2.11)

Noting that M l“2v _ 1 9 1N " 2(l-v) _2k ; K " 4(1-v) 5

so that

N l-2< 1
2

1-Y2
see (6.1.12). (8.2.12)

Since

(8.2.13)

the expression (8.2.11) becomes

U -—ly v{(x1log Rx-yoj- (x1-x')} 
y 1-y 2

+ - —!_2- vA{b(x„02+y log R2 )}k .
P !-Y2

(8.2.14)
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1 3
In components (note -f— = — -—

3 X T i 3 X i
or 1 3

Y2 9x2 as appropriate) :

These expressions reduce to the corresponding static expressions

(8.1.12), (8.1.13) respectively as c + 0, provided that 

b = y 2 +O(1-y 2)2 . To determine b more precisely, we note 

that

[U2] =------Ur- [02] - [02]

p(1-y 2) 1 Yz

that

= 0 only if b = y 2 . (8.2.17)

Inserting b = y 2 into (8.2.15), (8.2.16) and noting

1-b = 1-y 2

u (1-y 2) u (1-y 2)

_1____

p(1+Y2 )
■n— when "v 2 ~
2u

as in the static solution, we get
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Ui _1_____

u (1-Y2)
. y- log Rx - Y2log R2

u2
1

u (1-y 2)
{ 0X - 02 ) (8.2.19)

For a given value of c the final term in (8.2.18) is a constant

which can be omitted without loss of generality.

This problem has been previously attacked by Eason et al 

(1956) using Fourier transforms, but Eason gave only the

stress component p12 and the stress combinations plx+p22 >

Pl 1”P22 From the expressions (8.2.18), (8.2.19), we obtain

9UX 

en 3X
1

p(l-Y2) R2 
i

aU2
e22 “ ■9y

1

u (1-y 2)

a elx +e22

2

1 xi

2„2
Y1R1

N 
vYi

----- ------------------- see 8.2.12 / . \ 2 2 2 (x-ct) +Yxy

9Ui 
------  +
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1

Accordingly,

2 [ V

1-y * i(x-ct)2+Yy

y(l+Y2)Y2y X

(x-ct)2+Y2yj

p11+p22 = 2p(e11+e22) + 2xa = 2(x +p)a .

Since N l-2v _ p
2(1-v) X+2p - see (1.4.6) ,

X+2p
u

X+p
p

1 + 5

we obtain

Pll+P22 = 2p (8.2.20)

= 2p

2(1-N) (x-ct)
/ x \2 2 2 ’
(x-ct) +YTy

Pii-P22 2p(e11-e22)
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2

4 f-2-(1)Yi1 (x“ct) y2(x-ct) '

1-T2 [(x-ct)2+y2y2 (x-ct)2+y2y2 ,

All these results are in agreement with Eason et al (1956).

8.3 Uniformly moving point force (transverse case)

We start with the biharmonic function x = -ye+Nx log r

as before, but the point force now moves with a uniform velocity 

c along the y-axis (transverse to its line of action).

If so, the relevant transformations are

The static formulae (8.2.2), (8.2.4) still hold, and we now 

note that

- x log r = -ye -(x log r-ye)

(8.3.1)
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+ y log r = y (xe+y log r-y). (8.3.2)

Accordingly for the moving field

<3 = (a(x log R1-y1O1)-(x log r'-y'e')} (8.3.3)

A = - -i-((x©2+y2log R2 -y2)-(xe'-v'log r' -y')}k ; (8.3.4) 
p 1-y 2

y' = y-ct , (r')2 = x2+(y')2, e' = tan-1^ .

Accordingly, we obtain

U = —-—— v { a(x log R -y © )-(x log r'-y'e')} 
pd-yp

--------- — vA { XQ2+y2logR2 -y2 )-(xe'+y' log r' -y')} k. 
u (1_y 2)

(8.3.5)

Bearing in mind (8.2.12) and that

v(x log r'-y'e1) = vA(xe'+y'logr' )k , (8.3.6)

the expression (8.3.5) becomes

U =--------- — v(a(x log R1-y1©1))
p(1-y 2)

--------- - vA {(xe2+y2log R, )-(y9-y))k. (8.3.7) 
p(1-y 2)
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In components (note — = — 2— or — -—
ay y x ay1 y t ay2 as appropriate) :

1
U1 = ---------- —

Pl-Y)

^a(l+logR1 ) - J- (1+log R2 ) ♦ -l)j

------!—j—< a log Rt - log R2>-------h*  , (8.3.8) 
u(l-Y2) [ 2 J u (1-y 2)

1

p(i-y 2)
(8.3.9)

These expressions reduce to the corresponding static 

expressions (8.1.12), (8.1.13) as c -> 0, provided that
2

a = Y1 +O(1-Y1) . To determine a more precisely, we note

that

1

p(1-Y2)

- see (3.2.2)

U- [0,0 - [0,]

= 0 only if a = y t .

Inserting a = y t into (8.3.8), (8.3.9) and noting that

1-a

u (1-y 2)

= N N

p(l“Y2)(1+Yj ) u(l+Y1) 2P

when Yx = 1, on bearing in mind (8.2.12), we get
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Ui = ior1O9Ri AloA - A)’'8-3-'”

u2 = - ------{0-0.} . (8.3.11)
u (1-Y2) 1

1
2 I ay + ax

For a given value of c the final term in (8.3.10) is a 

constant which can be omitted without loss of generality. 

As before, we calculate the stress component p12 and the 

stress combinations P11+P22 » Pr’P^- From the

expressions (8.3.10), (8.3.11), we obtain

ax

3U2 

ay"

__ 1__ L 2. . ±2.1 
p(I-y ') I Rj Rj

1 (]_ X _ 1 _x_l

u (1-y 22) h ft*  'M

1 1_Y1 j XY1 

? lY'x2 + (y-ct)2
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1

Accordingly

2u (1-y 2)

1 f 7 (1tT2> y-ct _ Yl(y-Ct> 1
u (1-y 2) t y 2 Y2x~+(y-ct)~ Y2X>(y-Ct) J

2 (l+Y^Y’dy-ct) Y1(y-ct)

2~ 1 ~~2 2 ~2 2 7
1-y 2 (y 2x +(y-ct) y x x +(y-ct)

Pn+P22 = 2y 1^- A from (8.2.20)

- 2(1-N)
Y2x2+(y-ct)2

Pn-p22 = 2«j<e1re22)

y Yj (1 + Y‘)x

2 2 7 “J 
Y^ +(y-ct;

All these results are in agreement with Eason et al (1956).
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APPENDICES



Appendix I

Equivalence of certain harmonic fields

We prove that the qradient of a harmonic function may be 

expressed as a curl of solenoidal harmonic vector, i.e.

Vh = vAf ; v2h = 0, v2f = 0, V f = 0.

Given a vector vh where h is a harmonic function, we show 

how to write

v.f = 0 (1)

where f is a vector to be determined. Putting

f v.F = 0, (2)

then (1) becomes

i.e.

vh = va vaF v (v .F)-v 2F = -v 2f

^ah ah ah^ 
ax ’ ay ’ az

This is a vector Poisson equation for F1,F2, F 

which has a solution :

+ nT ; v2nx = 0, etc.
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(3)i .e. F

where n is a harmonic vector function to be determined so

that V.F = 0. We have

0 = V.F = - 2 V. (rh) + v .t )

i .e.

9ni
hv.r + r.vh = 2 —— , (4)

on choosing g = <n150,0> . We illustrate with the

following examples .

Example 1 : h = 1 , in this case (4) becomes

i.e. nT = 2X +

3
Here we may choose = 0 since ^x is a harmonic function.

So that

n = <|x ,0,0 > .

13 11Therefore from (3), F = < - ^x + 2X ’ " ' ?z >
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-<x j ~ ~ 7

V.F = 1 - | | = 0

f = V = °-

Example 2 h = x, in which case (4) becomes

i .e. nT = x + ip(y,z) .

Therefore

0 = = 2 + v2<p(y,z),

from which it follows that

v2<p(y,z) = -2.

A possible solution is

2
* = -y

so that

99



n = <x2-y2,O,O> .

2
v log(x+r)

Therefore from (3), F
12 2 1 1

<- 2 x -y »- 7xy > " 2XZ>

It is easy to verify that v.F = 0, and so f can be

constructed from (2) .

Example 3 :
2

= x +y
2 2
“+z‘ in which case (4) can

be written as

h = 1
r 5

2 
r

3h ah
ar

9ni

ax

i.e. 1_
r

9ni
2 —- 

ax

i.e. ni
dx
r

log(x+r)

3
r

+ r 2

2
r

+ »P(y ,z).

Hence

0
2

v n: + v2ip(y,z).

Since v2log(x+r) i s a harmonic function, it follows that

?2<p =0. A possible solution is ip = 0, hence

<log(x+r),0,0>
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Therefore

F <~ Yr + log(x+r) y
’ 2r ’

z
2r

>
3

It may be verified that v.F = 0, and so f fol lows from (2).

Example 4 Here we examine the 2-dimensional case in

which (4) can be written as

2h + ah r —3r

3n
2 —- ax 3

2 2 2 
r = x +y (5)

An example is h log r , so that from (5), we get

i.e.

ax
_ 1
= 2 + log r j

f

log r dx +

(x log r - ye-x) 1 + -^x + 'i'(y).

In this case

0
2

v n.
2

v“(x log r-ye-x) +
] 2 24- v X + V ip

v2(x log r-ye-x) +
2

V ip
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Since (x log r-ye-x) is a harmonic function, it follows that

2
0 = V ip . A possible solution is ip = 0, hence

n = <x log r-ye - ,0> .

Therefore F = c-^-x log r -ye - Jj-x , - -^-y log r >

It may be verified that v.F = 0 and so f can be constructed 

from (2).

102



Appendix II

Helmholtz resolution of Papkovich-Neuber 

representation

The Papkovich-Neuber representation can be transformed

into Helmholtz resolution via (4.2.2) i.e.

h-<v(r.h+f) = vS + vA A ; V.A = 0. (1)

Therefore, to determine S,A , first we operate with v. on (1) 

which gives

v2S = v.h - KV2(r.h+f). (2)

Since h is a harmonic vector, we note that

v2(r.h) = 2v.h

i.e. v.h = y v2(r.h). (3)

Substituting (3) into (2), we get

v2S = y v2(r.h) -kv “(r.h+f), 

which is immediately seen to have the particular solution
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(4)

S = -^ (r.h) - ic(r.h+f)

= | (l-2<)(r.h) - <f.

Also, operating with vA on (1), we obtain

(5)

on bearing in mind v.A = 0. Writing A = <An ,A.,A3> ,

h = <h1,h2,h3> , relation (5) implies

v 2<Ai 5A2,A3>

i .e.

ah
= - <—-

ay

ah2

~ aT“ ’

ah3 ah3 

az "ax-

ah2

’ ax

9h! 
’ sy >

2 . ah2 ah 2 - 3ha ah1 ah3 ah2
V A =v - — , v v A = ___  — ___

az ay ’ 2 ax az ’ 3 3y ax

which gives

A1 1
= 2 (zh2-yh3) ■ 7 ; = 0

a 2 1
= I (xh3-zh3) - ? ^2 ; v 2i|>2 = 0

A3 1
= 2 (yh3-xh2) » v\ = 0

i .e.

A = - (r a h) 1 , . v2ip = 0 • (6)
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A constraint on is 0 = V.A = - v.(rAh) ~ -I v.<p

i ,e.

M = -V.(rAh) = r.vA h - h.vA r = r.vA h . (7)

Also, on substituting for S from (4) and A from (6) into (1), 

we obtain

h-<v(r.h+f) = ? (1 -2k )v(r.h)-cvf - Jy-vA(rAh +^) . (8)

Accordingly,

h = -^ v ( r. h) - vA (r a h) - T 5

i.e.

vA <P = v(r.h) - vA(r a h) - 2h. (9)

Conditions (7) and (9) defines the harmonic vector ip subject 

to regular behaviour at °°

The most important choice of h is h(r) ;

r2 = x2 + y2 + z2 , in which case relation (7) and (9) 

gives respectively

V.ip = 0 
dh d

vA ip = h + r — = — (rh)
dr dr
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This shows that vA jp = 0 if h = <~ , £ , £ > with a,b,c

arbitrary constants. In this case =0, vA ± = 0 

i.e. we may choose = 0.
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Appendix III

Taylor expansion of certain wave functions

Given a harmonic function g0(x,y,z) , we introduce 

a harmonic function g(x,y,z') ; z' = z-ct, i.e. g0(x,y,z) 

with z replaced by z', and also a wave function G(x,y,z.) ;

7-rt 2 r2
zx = —— , Yi = 1------ - ’ i-e- 9o(x>y>z) with z replaced

1 Ci

by z . The wave function G has the Taylor expansion

in the neighbourhood of e

dZi
de 3Y1 de

= 0 when e = 0.

Vi /
when e = 0,

0, etc.,
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so that

dG 3G
dzl

de

1 
r
~*

N de

d2G _ 3G
d2z

i

de2 8Z! de2

i .e.

= 0 when e - 0,

2 ^dz 1 2
a G i

2
9zl

when e = 0,

—| = 0 when e = 0, etc. 

de

If so, (1) becomes

1
7G 9 +

2 2 9g ~ , 2 2.2
e C Z' -2- +O(C C )

3Z'

= g +-1 (l-Y^)z' +O(1-Y1)2

az'

This implies that

(2)

z' 11- 
az'

as e -> 0 (y x -> 1). (3)
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Al so,

2 * z as c 0 (v, - 1), (4)
1-Y*  SZ

since z' = z-ct = z, g = g0 , when c = 0.

Clearly (4) becomes identical with (3) when t = 0.
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Appendix IV

Two-dimensional Papkovich-Neuber representation

The Papkovich-Neuber representation (4.1.1) also applies 

to 2-dimensional field with a suitable choice for the harmonic 

vector h and the scalar harmonic function f. Choosing f = 0 

the representation appears as

<u19u2,u3> = <h1,h2,h3>-KV(xh1+yh2+zh3) (1)

where h15h2,h3 are harmonic functions. We now choose

= V* , h2 ' V* > h3 =0 (2)

where , 7 are conjugate harmonic functions of x,y, so 

obtaining

<u1,u2,0> = «M,0> - v(x<t>+y«). (3)

Now the function yV - x<> is always harmonic, since

’2(y*-x*) = 2 || - 2 H = 0. (4)

no



(5)

on bearing in mind that — 3£ 
ay Hence

y<> - x<£ = 2ip v2ip(x,y) = 0,

i.e. y<> = x0+2ip

Accordingly

X(J> +y<+> = 2x<$> +2ip ,

from which (3) becomes

<U1 >U2> = b <tt)5<i)> ~ 277 v(x<t>+’p).

On multiplying by 2p and writing X = x<*>+ip  , we obtain formula

(7.1.8). Similarly choosing hT = - T > h. = -—- <■> ,

h3 = 0 , we obtain formula (7.1.10).
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