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ABSTRACT

Dynamic Response of Geared System

with Backlash

1983

F. BASMAJI

Supervised by:■Dr.H.R.HARRISON

The impact phenomenon associated with the loss of contact 
of a pair of spur gears driven under load has been investigated. 
A specially designed test rig with its measuring instruments has 
been used to measure and record the dynamic response of the loaded 
gear system with a variety of parameter changes.

An advanced Fourier Analyser has also been utilized to 
analyse and plot the frequency spectrum of the strain in the out­
put shaft. In addition a simplified digital simulation model is 
developed to reproduce the experimental results. Numerical tooth 
shifting has been introduced to involve the idea of internal input 
rather than external input to simulate gear tooth meshing.

The geared system when running free or loaded is found to 
oscillate at frequencies equal to gear speed and its integral 
multiples for speeds lower than 1100 rev/min. When running at 
speeds starting from 1100 rev/min and over the geared torsional 
system is found to oscillate at frequencies equal to half the 
gear shaft corresponding running frequency and its integral 
multiples. The subharmonic oscillation is observed with and with­
out load for this test setup, except when running at speeds of 
1700 rev/min and over, and loading of 4 lbf.ft (5.424 N m).
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NOMENCLATURE

Subharmonic Integer ratio frequency, measured below the 

running speed corresponding frequency.

Rev/s Unit of the running speed frequency and its integral 

multiples.

Hz Unit of the system natural frequencies.

Rev/min Running speed.

A Ampere.

PCD Pitch circle diameter.

m Module.

2B Total angular backlash (Radians).

2B1 Total circular backlash (mm).

c Centre distance.

AC Centre distance change.

K1,K2*K3 Stiffness of the input, intermediate, and the final 

shafts respectively.

J1’J2’J3’J4 Inertia of the motor rotor, gears and first flywheel, 

second flywheel, and the brake respectively.

U) nf Fundamental natural frequency of the total system.

O) ,U) 
n2 n3

Second and third natural frequency of the total 

system.

0) 
nm Natural frequency of the separated motor side.

Wnb Natural frequency of the separated brake side.

R1,R2,R3,R4 Strain gauge resistances.

N Number of samples in the Fourier Analyser.

T Total time in the Fourier Analyser.

F max Maximum frequency of the Fourier Analyser.

RMS value Root mean square value.
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I. INTRODUCTION

1.1 General

Toothed gears have found wide application in various 

branches of mechanical engineering. In many machines such as 

metal cutting machine tools, automobiles, marine engines, etc., 

toothed gears form vital elements of main and ancillary mechanisms.

Toothed gears are distinguished from other mechanisms by 

high efficiency, compact layout, reliable service and simple 

operation. On the other hand:

1- Their manufacturing requires special equipment and tools.

2- Errors in teeth machining may cause vibration and noise during 

operation.

The vibration and noise in gears is one of main problems 

which some times limits the use of gears. The aspect of noise was 

commonly recognized by many companies and they found it most 

important to keep the noise level within allowable limits. For 

gears in mesh the energy loss which goes into vibration is diss­

ipated as heat and impact between mating gears, which causes shock 

forces and loads, and the vibration resulting from impact causes 

noise. As an example of noise Fig 1.1 shows the noise level in the 

present test rig. This noise was measured by precision sound level 

meter, type 2204 made by B & K, and using condenser microphone, 

the output was then taken to Fourier Analyser and plotted. The 

distance between the microphone and the noise sourcewas 30cm.

To study a geared torsional system a basic model may consist 

of spur gears, driving motor, and flexible shafts. A system such 

as this can experience dynamic torques and tooth loads many times 

greater than the mean transmitted torque. These dynamic loads can 

be caused by induced external excitations. It is also possible 

for the system to have internal excitations caused mainly by tooth 

profile and pitch errors, stiffness variation of the gear teeth, 

and loss of contact between the gear teeth in backlash.

One of the main parameters which causes vibration and some 

excessive dynamic stresses is the backlash. Although it is
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possible in certain circumstances to make and run a pair of gears 

with no clearance (or backlash) between the meshing teeth, but the 

existence of backlash is sometimes very important. For power 

transmitting gearing relatively generous backlash is indicated in 

this application to cater for extreme temperature conditions and 

tooth errors which could be present, but for instrument and 

control gearing relatively very small backlash is preferable.

If the amplitude of torque variation is not great enough to 

introduce periodic reversal of algebraic sign of the total torque 

there is no disadvantage in having even a large amount of backlash 

in the gears. Where, on the other hand, the amplitude of the 

vibratory torque exceeds the mean torque corresponding to the 

transmitted power, intermittent tooth separation occurs because 

reversal of direction of the resultant torque causes the teeth of 

a gear to move across the mating tooth spaces. There are at least 

two noteworthy consequences of this:

A- Transfer of contact from one set of flanks to another produces 

impact and noise as contacts are re-established.

B- During each period of absence of tooth contact, the nominal 

dynamic system has ceased to exist and has been replaced by two 

separate systems.

Because of (A) it is desirable to hold torsional vibration 

down to such amplitudes as to avoid tooth separation.

Because of (B) it may be necessary to know the natural 

frequencies for torsional vibration of both the systems into which 

the main system is periodically divided by tooth separation.

The tooth impact resulting from loss of contact is 

particularly important in a geared system. In fact there are many 

examples of fatigue failure of gear teeth and shafts caused by 

high dynamic loads in such systems.

A specially designed test rig and electronic instrumenta­

tion was utilized to measure and analyse the dynamic response of 

the geared system. In addition a simplified digital simulation 

model was developed to reproduce the experimental results. A wide 

range of results with different operating conditions were analysed 

and plotted as a frequency spectrum to identify the sources of 

vibrations.
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When running at speeds ranging from 250 revVmin to J000 

rev/min, the output shaft was found to oscillate at frequencies 

corresponding to the running speed and its integral multiples.

When running at speeds ranging from 3100 rev/min to 2000 

rev/min, the output shaft was found to oscillate at frequencies 

corresponding to half the running speed and its integral multiples. 

This oscillation at half the running speed (or subharmonic 

frequency)could results in premature failure of the geared system.

J.2 Literature Survey

3.2.1 Related Studies of Gear Dynamics:

Most of the research considering the dynamics of gears since 

1900 has been experimental. A large programme was started in 1925 

by special committee of the ASME, and their results were published 

in 1931. Many empirical expressions for calculating dynamic loads 

and dynamic factors of gear teeth were developed. These expressions, 

which indicated that dynamic loads increased with speed, were not 

very accurate.

Extensive tests were made by Harris (1), using an optical 

system to obtain dynamic photo-elastic stress patterns of the test 

gears. These results gave the indication that tooth stiffness is a 

function of contact ratio and mean load with stiffness variation 

decreasing as mean load increased. He found that for a single 

error the tooth following the error tooth will take the greatest 

force. He also determined that random errors tend to stimulate 

vibration with a period close to the natural frequency of the gear 

pair and at high speeds this leads to peak loads on every second or 

third tooth. In addition he used a special differential analyser 

to model a one-degree of freedom system for several different 

combinations of tooth error and stiffness variation.

Attia (2) used strain gauges to investigate the instantaneous 

static and dynamic tooth load. These gauges were used to record the 

deflections of the gear teeth and to measure the maximum 

instantaneous load on the tooth as it traverses the zone of contact 

at different speeds and under different loads. The magnitude and 
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shape of the tooth loading were found to depend greatly on speed 

and mean load.

Gregory, Harris and Munro (3) conducted an experimental 

study on a test rig originally used by Harris (1). They studied 

the dynamics of heavily-loaded, high speed spur gears with very 

small manufacturing errors. Their results confirm earlier 

conclusions which indicated that tooth stiffness variation in the 

presence of light damping below (0.07) of critical damping, could 

cause large vibrations at the fundamental tooth engaging resonance 

speed, or at harmonics and subharmonics of the fundamental. These 

subharmonics correspond to contact between every second tooth, 

third tooth, and so on.

The same authors in (3) have made an analytical study (4) 

to explain the non-linear behaviour of gears. They assumed a one- 

degree of freedom torsional model consisting of a gear pair 

connected by gear teeth with time-varying stiffness and profile 

errors, and a harmonic stiffness variation was assumed. However, 

damping was completely ignored and as a result the authors admit 

that their theoretical analysis is inadequate. When viscous 

damping was added it was found necessary to resort to an analogue 

computer. Analogue results indicate that loss of contact will occur 

only if damping is less than (0.07) of critical which confirms 

earlier experimental results obtained by Harris (1).

Houser and Seireg (5,6) used a direct drive test to study 

dynamic tooth loads in both spur and helical gears. They 

investigated the influence of large manufacturing pitch errors and 

face width variations. Strain gauges were used to measure dynamic 

tooth loads and dynamic shaft torque. While the effects due to face 

width variations were not significant the tests involving pitch 

errors showed significant dynamic tooth strain effects which were 

speed dependent and independent of load.

These tests, however, were conducted at speeds away from 

system resonance and did not consider backlash effects.

Baronet and Tordion (7) have made some theoretical 

calculations based on two-dimensional theory of elasticity and 

transform functions to obtain the stress distribution in a gear 

tooth acted on by a concentrated load. Computations were carried 
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out for 20° and 25° pressure angles , standard full depth system, for 

a number of teeth ranging from 20-150. They found the results 

are in reasonably good agreement with a suggested formula for tip 

loading but differ appreciably when the loading is applied at 

lower positions along the tooth profile.

Brickner and Olerich (8) have developed a comprehensive 

model for backlash in gear drive systems. The friction in the 

support bearings is also included in the analyses. This friction 

was taken as coulomb friction and not as viscous damping as was 

suggested by the literature. The dynamics of the gear train were 

represented in an open loop to display the effects of changing the 

values of mass, friction, and backlash angle, then they included 

the system in a closed loop simulation to investigate limit cycle 

conditions. They derived the conditions for separation and contact 

and were programmed for digital and analogue computations. They 

found the results of the simulation in the open loop mode are in 

agreement with the behaviour of real gear drive systems.

Chabert, Dang Tran, and Mathis (9) carried out an evaluation 

of the stresses induced by a static load applied to gear teeth for 
spur gears of different ratios with 20° pressure angle and standard 

addendum proportions. The stresses and deflections were computed 

by using the finite element method. They produced a special 

formula by which they -could find the elastic deflection coefficient 

of the tooth with a high degree of accuracy.

Ichimaru and Hirano (10) have conducted theoretical and 

experimental studies to find the dynamic characteristics of heavy- 

loaded spur gears by considering a vibrating system composed of an 

effective mass of gear blanks and stiffness of meshing teeth with 

manufacturing errors under given operating conditions. They 

found that under heavy load conditions the plastic flow produced 

ln the subsurface layers of gear teeth affects the variation of the 

dynamic load considerably owing to a local change of the tooth 

profile. They also found that there is some reasonable evidence 

that the profile change under heavy load plays a role to minimize 

the dynamic load factor under the corresponding operating condition.

Azar and Crossley (11) have studied the impact phenomenon 

resulting from the loss of contact of a pair of spur gears driven 
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under light load. They used data-reduction techniques to 

automatically plot the frequency spectra of the torsional 

oscillations of the output shaft. When loaded, the output shaft 

is found to oscillate at frequencies equal to gear tooth speed 

and its integral multiples. They found that loss of contact of 

gear teeth causes a large increase in the second harmonic 

component of the shaft oscillation particularly when gear tooth 

speed (teeth/sec) equals one-half the natural frequency of the 

output shaft (Hz). The magnitude of the shaft oscillations 

increases with backlash up to a backlash value of ”0.91”mm for 

their test setup . They also found that when the shaft is run 

loaded the fundamental harmonic component of the shaft oscillation 

is greater than the second harmonic component while when it is 

run unloaded the second harmonic component dominates. The amount 

of backlash was found to have a strong influence on the torsional 

oscillation of the unloaded shaft and little effect on the 

torsional oscillation of the loaded shaft. They also suggested 

that in no instance was the output shaft found to oscillate at a 

frequency less than the shaft speed measured in teeth/sec; i.e. No 

subharmonic oscillations were observed.

Seireg, Shah, and Khazekhan (12) have conducted an 

experimental investigation of dynamic gear tooth load and shaft 

torques in gear system conditions. They used an electro-dynamic 

shaker to apply controlled torsional excitations on the high speed 

shaft of a single reduction helical gear unit.

They found that the impulsive loads rise sharply with 

increasing amplitudes of vibration, and there appears to be a 

linear relationship between the vibratory amplitude and the peak 

load until all the backlash is consumed, as a result back tooth 

impact will occur which will attenuate. the peak impulsive loads.

Tobe and Sato (13) have made an approximate analysis using 

statistical linearization and the mean and the variance of dynamic 

loads were calculated numerically. They first assumed that the 

transmission error curve of a pair of gears measured by a single 
flank meshing tester can be separated into harmonic components and 

random ones. They found that the mean of the dynamic loads 



remains at similar level as in deterministic process where the 

random components of error are not considered for any gear speed, 

but the variance of them increases rapidly with an increase in 

speed over resonance frequency. They also suggested for a gear 

system which is excited by random error as a non-linear non- 

stationary random process that the problem of dynamic load is 

analysed approximately based on the Fokker-Planck equation using 

statistical linearization method.

Tobe, Sato, and Takatsu (34) have worked on a relation, 

experimentally, between transmission errors and dynamic loads of 

spur gears.

Two pairs of gears were used, one pair accurate and the 

other rough; their dependence on gear speed and tooth load was 

investigated. Also they produced an analogue computer simulation 

and compared it with a previous work (13) of the statistical 

theory on the estimation of dynamic loads.

For the accurate pair of gears they found, at 65*7 kg/cm 
tooth loading that there was a good agreement with the analogue 

simulation and the dynamic load shows recurrent time variation 

per revolution over a wide range of gear speeds. While for the 

rough pair of gears they found that the recurrent time variation 

of dynamic load per revolution begins to miss due to a random 

component contained in the transmission error with an increasing 

gear speed, and the time variation becomes very random which is 

caused by a notable loss of mesh.

Johnson (15) developed a method of finding modes, together 

with their corresponding frequencies, of shafts coupled by 

straight spur gears is described and illustrated by a numerical 

example. This method is based on the use of receptances at the 

meshing point of each of a pair of geared shafts which is found 

separately and the frequencies are then calculated from the 

receptance equation. He suggested that this treatment is 

restricted to straight spur gears.

Wang and Morse (16) used transfer matrix techniques to 

give static and dynamic torsional response of a general gear 

system. The effects which they included in the formulation are 
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the geartooth stiffnesses, gear web stiffness,non-uniform cross 

section of shafts, external torques, special types of joints, 

general boundary conditions and multi geared branched systems. 

They used an electro-hydraulic exciter and an automatic mechanical 

impedance transfer function analyser. They suggested that this 

analytical and experimental technique could form a base for 

evaluation of torsional response of a gear train system. They 

also suggested that this method may be used as an aid in 

optimizing the design of gear train systems, especially where 

torsional vibration problems are considered. Finally they 

suggested that the present techniques can be used for long shaft 

systems too.

A computer based technique was developed by Wallace and 

Seireg (17) for evaluation and graphic display of stress, 

deformation, and fracture patterns in gear teeth when subjected 

to dynamic loading. This technique is used for conditions of 

impulsive loads applied at different points on the tooth surface 

and moving loads normal to the tooth profile. The technique 

incorporates a viscoelastic model for the material properties and 

prespecified failure criteria. They investigated the accuracy of 

the simulation by applying a Hertzian impact on a cantilever beam. 

This simulation treats the gear as a continuum rather than a 

discrete parameter system. The mass distribution of the 

continuum was taken into consideration. They suggested that this 

technique automatically produces the stress and deformation 

patterns resulting from a dynamic excitation without prior 

idealization of the geometric boundaries or preconception of the 

primary mode of system response expected in a particular case, 

it also has an ability to simulate failure and fracture under 

dynamic loading. They also suggested that this procedure is 

applied for two-dimensional analysis and it can be extended to 

three-dimensional analysis. Finally they suggested that dynamic 

tooth stiffness information can be readily obtained from the 

simulation procedure for different material properties and gear 

wheel configurations.
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Conry and Seireg (18) have found a generalized technique 

for evaluation of load distribution in gear systems and automated 

the selection of optimal modification for the best possible 

distribution based on any prespecified type of modification. The 

procedure utilizes a simplex-type algorithm and provides an 

efficient and effective means for the design of gears with uniform 

load distribution. They suggested that the procedure can be 

applied to spur and helical gears and can easily be extended to 

other types of gears. Also it could take into consideration 

manufacturing and assembling errors as well as housing deflections 

under load.

Wilcox and Coleman (19) considered the application of the 

analytical method of finite elements to the analysis of gear tooth 

stresses. A simulation of two-dimensional tooth shape with 

finite elements is outlined. They gave special attention to the 

asymmetric profiles (used in Hypoid gears). They found that the 

developed formula tends to underpredict the stress in most cases 

by an amount ranging from a fraction of a per cent up to twenty 

perceent.

Wang (20) has extended the dynamic torsional analysis of a 

gear train to the linear and nonlinear transient analysis of 

complex torsional gear train systems. He considered in the 

formulation time-varying gear tooth stiffness, gear web rigidity, 

gear tooth backlash, shafts of nonuniform cross section, linear 

and non-linear damping elements, multishock loading, and complex- 

geared branched systems. He suggested that this modelling 

technique provides an effective tool in predicting both linear and 

non-linear transient response characteristics inherent to gear 

train systems. He also suggested that this method may be used as 

a means to analyse gear train start-stop operational problems as 

well as constant speed response subject to internal and external 

disturbances.

Randall (23) has applied cepstrum techniques for detection 

and evaluation of the side bands usually present in gear box 

vibration spectra since these give valuable information about the 

existence of effects (often undesirable) which cause modulation of 
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the basic tooth meshing pattern. The cepstrum is obtained by 

further Fourier transformation of the logarithmic (dB) spectrum. 

Peaks in the cepstrum indicate the side band spacings, and thereby 

the modulating frequencies, and thus often point to their source. 

He found that care must be taken to exclude or allow for the 

presence of low harmonics, which also give peaks in the cepstrum. 

Use of highland-low pass filters to select out the frequency range 

from j to 3| times a particular tooth meshing frequency will some­

times achieve this.

Mitchell (22) has used multi rotored transfer matrices. The 

rotors are coupled by a modified Hibner-type transfer matrix at each 

gear mesh. The method he used automatically includes the detailed 

book keeping within the matrix operations. He presented numerical 

results for the case of machining errors in the gear teeth.

Lees and Pandy (23) have analysed a complete shaft/bearing 

system as a set of segments, each segment terminated at a gear mesh. 

Equations of constraint are applied which impose on the system an 

amplitude controlled vibration (flexural and torsional). They used 

a finite element model of a gear box to determine the response of 

gear forces and bearing vibrations to gear profile errors, thus 

establishing a direct link between vibrations and gear forces. 

Bearing vibrations are recorded, averaged over a large number of 

shaft revolutions and then frequency analysed. The gear errors and 

the resulting excess forces are then estimated from the calculated 

response. They suggested that tooth pitch errors give rise to com­

ponents in the vibrational spectrum at frequencies other than 

synchronous.

Taylor (24) has found procedures for identifying gear defects 

and gear meshing problems. He analysed time signal, spectrum freq­

uencies, shape, amplitude and sum and difference frequencies to 

reveal which gears have defective tooth, the number of defective 

teeth on each gear, the number of gears that have defective tooth 

and the location of the defective teeth with respect to some 

reference point. He pointed out that defects can be indentified 

early enough to permit six months lead time before repair is required. 

This lead time facilitates planning and prevents catastrophic 

failures.
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Randall (25) made a number of practical points in the 

calculation and interpretation of the cepstrum. He pointed out 

an idea about separation of harmonics and sidebands. The side­

bands often coincide with harmonic frequencies, but physically 

the harmonics around and above the tooth meshing frequency are 

most likely sidebands related to tooth condition. The low 

harmonics may be due to entirely different reason such as: 

Unbalance, misalignment and mechanical looseness. He recommended 

cutting off the low harmonics at approximately half the tooth 

meshing frequency.

1.2,2 Studies of Impacting of Mechanical Systems with Clearances:

A number of investigations have studied the effects of 

clearances on the dynamic behaviour of mechanical systems.

Kobrinskii (26) formulated a model of a one-dimensional 

system consisting of two masses with a clearance between them. A 

piece wise linear solution is developed using the coefficient of 

restitution to account for the energy loss due to the repetitive 

impacts.

Both two-sided and one - sided collisions are studied and 

stability diagrams are plotted,

Sikarskie and Paul (27) have investigated the dynamics of 

hammer impact machines on the basis of a two-degree of freedom 

idealization. They found some difficulty about the repetitive 

impact which introduces a nonlinearity into the system. To ease 

the problem from a parametric point of view, they converted to a 

boundary value problem. They also made an assumption in the 

analysis that the steady state response of the system has a period 

equal to the forcing period, this is to verify one set of 

parameters through the use of high-speed photography of an actual 

machine.

Dubowsky and Freudenstein (28,29) have shown in their work 

that a simplified assumption (the coefficient of restitution would 
e

adequately describe the impact phenomenon) does not always result 

in a unique solution. Since surface compliance is not considered, 
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this analysis does not include dynamic coupling or contact 

stresses while the contact duration is assumed to be zero. In 

fact for systems with small clearances the magnitude of the 

contact duration may be of the same order as that for non contact.

Dubowsky and Freudenstein introduced a refinement of an 

earlier model to study torsional oscillations in the gear drive 

of a cam pump. This model which is called an impact pair includes 

surface compliance and allows for one-sided as well as two-sided 

impacts.

Using the contact compliance for a pin joint and ball 

connection based on classical Hertz theory the dynamic response 

of the impact pair is found for the case of free vibration. This 

exact solution is compared with that obtained using a linearized 

compliance model. It is concluded that the Hertzian nonlinear 

representation can be linearized so that the resultant error is 

less than two per cent.

In addition to the free vibration case, the dynamic 

response of the impact pair is found for the case of constant 

load operation and under displacement-forced excitation. Other 

results that are obtained include displacements, force amplification 

and vibrational characterstics of the impact pair.

Veluswami and Crossley (30) have made a series of physical 

experiments with a steel sphere vibrating while trapped between 

and impinging against two end plates, (as in an impact damping 

device) while the plates are shaken by an electromagnetic shaker. 

Three different materials were used for the end plates. They 

found that, for the range of frequencies (0-60 Hz) and amplitudes 

(0-5 mm), the ball generally hits several times on one boundary 

before passing over to strike the other, per cycle of the shaker. 

They also presented data about the modes of vibration and the 

duration of the contacts. A record of the effects of varying 

the frequency and amplitude of the drive were taken for a range 

of clearances, for balls with different masses and for three 

distinctly different materials. For impact of spheres of mild 

steel to mild steel , it was observed that at steady state 
impact the phase of the ball’s motion was slightly ahead of the 
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plate motion: The position of the impacts on the time 

displacement curve preceded the maximum excursion point of the 

plates by a time interval close to — of the period. Also 

thb impacts occurred uniformly with each half cycle of the drive 

motion. Two more materials were taken for the end plates; i.e. a 

mild steel ball hitting nylon or rubber. They concluded that 

the coefficient of restitution diminishes approximately linearly 

with velocity to the point where the stress incurred approaches 

the yield stress. This reduction in coefficient of restitution 

means that the energy loss to internal damping increases with 

velocity of impact.

Veluswami, Crossley, and Horvay (31) obtained a mathematical 

model based on an earlier experimental observation (30). This 

model was developed to portray the vibroimpacts of a steel sphere 

which is trapped between two flat steel plates with clearance, 

while the plates are oscillated by an electromagnetic shaker. 

During each impact the motion of the ball is taken to be a brief 

half wave, due to the highly nonlinear forces of surface compliance 

and surface damping. Modelling is done by analogue simulation.

It was found first that linearization of the surface stiffness 

does not reproduce the observed phenomena. The mathematical 

model formulated is that the motion of the ball during contact is 

governed by the equation :

1.5 2-5
MX + CX X + KX =0

1.5 
Where X is the penetration, C is the damping constant, and KX 

is the Hertzian force •

For the simulation results, the recorded runs were all 

steady state; a sufficient delay was allowed in each case to 

ensure that the transient has dissipated. Attention in taking the 

records was centered on reproducing the patterns of the multiple 

impact motions. They recommended that much more work is still to 

be done to study phase shifts, maximum penetration, and maximum 

stresses.
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J03 Objectiye of this Study

As mentioned earlier there is ample evidence that the 

dynamic behaviour of a geared system can cause excessive wear and 

fatigue failure of the gear teeth along with high dynamic shaft 

loads. This is particularly true when the speed of the gear teeth 

coincides with a natural frequency of the system and tooth 

separation occurs. This investigation of the resonant behaviour of 

geared system should include the effects of the connected inertias 

and shafts. With the notable exception of the work done by Houser 

and Seireg (5), most experimental investigations have involved the 

use of back-to-back test apparatus which excludes such effects. 

Howeyer their studies were run at speeds away from system resonances.

The test rig built for this investigation uses a direct 

drive configuration and is specifically designed to operate over a 

speed range that includes the system resonance. It also included a 

means of varying the magnitude of the gear backlash when needed.

The torsional system consisting of a drive unit, driving 

gear and fixed inertia, driven gear, adjustable inertia, and load 

is shown in Fig (J.2a), The gear teeth are assumed to be in 

contact and the system oscillates as a five degrees of freedom 

system.

When the gear teeth separate, as shown in Fig (1.2b), the 

input and output sides oscillate separately. Each inertia system 

has its own characteristic natural frequency,.

Tooth separation occurs when the mean driving torque is 

exceeded by torque variations in the drive unit, the load or the 

gear pair. Two such sources of torque variation in the gear pair 

are tooth stiffness variations and tooth form errors.

During separation the driven gear speeds up while the 
driying gear slows down because of the mean load. After separation 

the gear teeth may or may not impact on their rear faces depending 

on the size of the backlash and the magnitude of the mean load. It 

should be noted that the mean load tends to prevent separation and 

it also tends to prevent reverse impacting of the gear teeth when 

separation occurs.
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The main objective of this investigation is to study the 

impact phenomenon in the system described above. This investigation 

is to be both experimental and analytical.
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II. TEST RIG AND ITS DESIGN

2.1 Introduction

When designing a test rig one has to decide on the operating 

conditions and to allow certain variations of those conditions to 

cover all the possible operating regimes when needed. Some of the 

parameters which will be changed and measured, are: loading, speed 

and the amount of backlash. For this reason the design was divided 

into three major parts which are:

1- Driving.

2- Loading (Brake)

3- The connecting shafts, masses, gears and bearings,

A net (shown in Plate 4) was mounted on the test rig frame to provide 

extra safety for workers around the rig . in the event of a noise an 

isolation box (snown in Plate 5) was provided to reduce the high level 

of noise produced during the test rig running.

2.2 Driving (Prime Mover)

Any type of motor could provide a driving torque to the system, 

but a variable speed motor is more advantageous to investigate the 

effect of backlash at different speeds. Also a D.C. motor would be 

preferable because of its ability to provide a higher driving torque. 

For all these mentioned conditions the driving motor chosen was of the 

type: Hainsworth Speedrange Motor.

Power: 2.0 hp, F.L.C.: 10.0 A., Max, rev: 2000 rev/mino

2.3 Loading Device

2,3.1 Steady Loading:

To obtain some loading on driven masses, one has to apply 

some means of brakingo Types of braking (or loading) are: mechanical, 

hydraulic and electrical loading. It was decided that the electrical 

type is to be introduced for the following advantages:

Easy operation.

2^- Easy control.
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II. TEST RIG AND ITS DESIGN

2.1 Introduction

When designing a test rig one has to decide on the operating 

conditions and to allow certain variations of those conditions to cover 

all the possible operating regimes when needed. Some of the parameters 

which will be changed and measured, are: loading, speed and the amount 

of backlash. For this reason the design was divided into three major 

parts which are: 1- Driving.

2- Loading (Brake).

3” The connecting shafts, masses, gears and bearings.

A net (shown in Plate 4) was mounted on the test rig frame to provide 

extra safety for workers around the rig in the event of a sudden 

failure. In addition a noise isolation box (shown in Plate 5) was 

provided to reduce the high level noise produced during test rig running.

2.2 Driving (Prime Mover)

Any type of motor could provide a driving torque to the system, 

but a variable speed motor is more advantageous to investigate the 

effect of backlash at different speeds. Also a D.C. motor would be 

preferable because of its ability to provide a higher driving torque. 

For all these mentioned conditions the driving motor chosen was of the 

type: Hainsworth Speedrange Motor. Power: 2.0 hp, F.L.C.: 10.0 A.

Max. rev: 2000 rev/min.

2,3 Loading Device

2.3.1 Steady Loading:

To obtain some loading on a driven masses, one has to apply 

some means of braking. Types of braking (or loading) are: mechanical, 

hydraulic and electrical loading. It was decided that the electrical 

type is to be introduced for the following advantages;

1- Easy operation,

2^ Easy control.
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3- Accurate and prompt control.

4- Easy to measure.

The device which was used for loading is of the type made by

JAY JAY and it is called:

Eddy Current Dynamometer

Type No: DM3/50

2.3.2 Oscillatory Loading:

When using Eddy Current Brake, with its circuit all inside 

the casing, it was very difficult to add any circuit to implement 

the oscillating load. Because of this, one way to implement this 

type of loading is to control the input current to the braking 

coils which produce the magnetic flux required to load the rotor 

of the brake. These points are connected to a block under a small 

cover which was easy to take out.

Because the only way to apply an oscillating load is to 

change the input current to the coils, this means that the 

oscillating load is operated by superimposing an AC signal with a 

known frequency to the DC level of the braking current. A full 

description of the circuit design is in App.A.

2.4 Shafts, Bearings and Load Inertias

2.4.3 shafts:

There was no limitation on the use of any material for the 

shafts, except for the load it was going to take. The diameter of 

the shaft was kept to a minimum, but at the same time the shaft 

should not be too flexible specially where the gears are connected 

to it, because a line of contact is required. A full description 

of the shafts and their sizes are shown in App.B.

2.4.2 Bearings:

The bearings used were of standard type and self lubricated. 

All the bearings were of the same shape and dimensions, type: 

SKF 6004-27, single row deep groove ball bearings. The bore 

diameter was: 20mm.
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2.4.3 Load Inertias:

Two load inertias were selected to keep the natural

frequency around 15 Hz, the reason for this frequency will be 

discussed in section 2.7. The sizes and weights of these 

inertias are shown in App,B.

2.5 Test Gears

The pair of gears which was used for this research was
relatively accurate in dimensions and was specially

produced for this test; i.e.with as little machining errors as 

possible. The gears manufactured by E.G.BAXTER & Co were of the 

dame size . The general specifications of these gears are as follows:

Material Mild Steel

PCD 350 mm.

Face width 20 mm

Module m 5 mm.

Bore dia 20 mm

Boss dia 40 mm.

Boss length 40 mm

2.6 Method of Changing Backlash

To change the backlash it was enough to change the centre 

distance by moving the driving gear in or out. Looking at Fig 2.1, 

there are seven steps to be followed to change the backlash and 

they are:

1- Release the screw on the coupling D and slide D to the left 

until it clears the shaft where the driving gear is fixed.

2- Release the two screws B on the moving plate G.

3- Turn the handle A to the required centre distance.

4- Release the bolts C and E on the driving motor F.

5- Re-align the motor shaft to the shaft where the driving gear

is fixed.

6- Slide back the coupling D to the right and tighten the screw
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Fig 2.1 Schematic Drawing of Backlash

Changing Sequence



on the shaft to insure that there is no extra play between the 

coupling and the shaft.

7- Tighten the screws B.

A special dial gauge is placed at the center of the shaft to 

measure the change in center distance, which as a result will 

produce a change in backlash. The average value of the backlash can 

be calculated by the use of Fig 2.2 when the change of center 

distance is known. From Fig 2.2 we can find that;

2B^ = 2AC tan«.

Where:

AC., center distance change. 

2Bi . total circular backlash, 
oc . . pressure angle = 20° .

Fig 2.2 Calculation of the Average Backlash
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2.7 Natural Frequencies of the System

To study the effect of backlash on the dynamic behaviour 

of a mechanically vibrating system with the best possible results, 

and to analyse the system accurately, one has to know the natural 

frequencies of this system. Also to magnify the effect of 

backlash on the dynamics of this system, it has to run in and 

around one of its natural frequencies.

Because the loading device was only able to operate at a 

frequency around 15 Hz, according to a specification by the 

manufacturer,the natural frequency of that system was designed to 

be in the range of 12-18 Hz, as a result the inertias and the 

shafts sizes are as it was suggested in App.B.

Fig 2.3 is a schematic drawing of the system showing the 

position of gears and masses on the shafts. Because the gears 

were of the same size, the ratio of transmission is 1:1, and from 

that the equivalent system is a straight forward transformation of 

masses and springs without the need to use square of the gear 

ratio. Fig. 2.4 shows the equivalent system, where:

1- The springs representing the shafts, have the stiffnesses 

Ki , K2, and K3, for the input, intermediate and the final 

shafts respectively.

2- The flywheels, gears, motor rotor, and the brake rotor are 

represented by the inertias J2 , J2, J3, and J4 .

To know every detail about a system vibrating and having 

gears, one has to know all the frequencies of that system, which 

are:

1- Fundamental frequency w
nf.

2- Second and third natural frequency (0 2 and

3- Natural frequency of the separated systems (subsystems):

A- Motor side wnm
B- Brake side w , .nb

All these systems (main system and subsystems) and their 

corresponding natural frequencies are shown and calculated in 

App«C. Fig 2.5 shows a table of the calculated total system 

and subsystems natural frequencies.
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Fig 2.3 Model of Inertia and Stiffness System



I 
w
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Fig 2.4 Equivalent System



^xNatural 
X'frequency

System x.
fT(Hz) f2(Hz) f3(Hz)

Total

Experimental/^
(13.33)/^ 

><7.84 86.95 91.95

Motor-side 91.90

Brake-side 86.28 88.67

Fig 2.5 Calculated Natural Frequencies of the Total System

and Subsystems
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Plate 1 General View of the Test Rig



Plates 2 Test Rig with some Qf
Measuring Instruments



Plates 3 Test Gears with Backlash Changing Mechanisms



Plates 4 Test Rig with the Safety Net



Plate 5 Noise Isolation Box



Plate 6 Oscillating Load Generation Circuit



Ill MEASURING INSTRUMENTS

3.3 Introduction

Numerous investigations have successfully measured dynamic 

loads on rotating gear wheels and the connecting shafts. Harris 

(1) used an optical system to obtain the dynamic photo-electric 

stress patterns on his test gears. However, the use of strain 

gauges for these measurements has been much more popular. Some 

research work (2,5,30,11) have coupled strain gauges with slip 

rings, and others, strain gauges with telemetry to measure and 

transmit the test information.

Particular care was required in designing the instrumentation 

for this study. This was necessary since the instrumented shaft 

and gear were run under light load. Strain gauges were selected as 

the transducers but the electrical signal was expected to be small.

Special signal conditioning equipment was used with the 

oscilloscope to amplify the strain signals after they passed 

through the slip rings. Since the slip rings are the major source 

of noise in this type of system, the strain gauges on the teeth 

were not used so successfully. The complete measurement system 

and its various components are described in the following sections.

3.2 Strain Gauges

A standard set of four SHOWA N22-FA2 were mounted on the 

shaft, and a set of two SHOWA N31-FA2-120-11, were mounted on the 

gear tooth. Fig 3.1a and 3.1b shows the position of the strain 

gauges on both the output shaft and the gear tooth. The strain 

gauges on the output shaft were fixed as close as possible to the 

gear boss to eliminate the effect of shaft flexibility and the 

strain gauges on the gear tooth were fixed as close as possible to 

the tooth root.

The strain gauges on the shaft were arranged as a bridge 

with four active gauges, this arrangement was designed to measure 

and transmit the dynamic response of a rotating system; i.e.to 

measure torsion only, and the strain due to bending will have no
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effect on the output signal. The bridge arrangement and 

calculations are shown in App «D.

3.3 Slip Rings and Carrier Amplifier

A slip ring assembly of the type PL-OT made by IDM 

Electronics, with eight channels, was used. Four channels were 

taken for the bridge arrangement and the rest for transmitting 

the signal from the two strain gauges on the gear tooth (two 

channels for each gauge).

The carrier amplifier used was of the type: Tektronix

3C66 CARRIER AMP. The amplifier was set to a position of

200 p strain/Div,and the bridge was calibrated for the maximum 

sensitivity.

3.4 The Oscilloscope and Time Base

A Tektronix oscilloscope type 564 STORAGE OSCILLOSCOPE 

was used. The storage oscilloscope was useful to observe and 

analyse the strain signal. A time base of the type 2B67 TIME BASE 

was also used with different time settings.

3.5 R.M.S. Voltmeter

An AC voltmeter type 400E made by Hewlett Packard was used 

to determine the general behaviour of the designed system. The 

root mean square was taken for different speeds and loads and 

plots were also produced.

3.6 Speed Measuring Instruments

3.6.1 Tachometer:

For speed measurement, an AC Tacho-generator made by 

Crompton Parkinson was used. The generator was calibrated to 

produce (40) volts for each (1000) rev/min.
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3.6.2 Digital Voltmeter:

To read the voltage produced by the tacho-generator a 

digital voltmeter made by Schlumberger of the type A200 was also 

used. The digital read-out has an important advantage of easier 

and quicker reading.

3O7 Oscillating Load Generation

307.1 Introduction:

These instruments were used very little because the 

results obtained had no significance on the overall analysis of 

the designed system. Tor this reason there will be a little 

description on these instruments. A special circuit was designed 

to produce and measure this oscillating load.

3.7.2 The Oscilloscope:

A simple Philips portable oscilloscope of the type PM32OO 

was used for displaying the input oscillating current going into 

the Eddy Current Brake circuit.

3.7.3 Function Generator:

A Feed-Back wave form generator of the type: TWG 300, was 

used to produce the AC voltage needed to superimpose an AC signal 

on the DC level of Eddy Current Brake with the help of the electrical 

circuit designed and shown in App.A.

3.7.4 Voltmeter and Ammeter:

A separate voltmeter and ammeter were used to read out the 

values of the current going through and the voltage across the 

Eddy Current Brake coils.

3O8 Variable Filter

The variable filter was needed to eliminate the effect of 

aliasing which will be described in section (3.9.4).
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The filter used was of the type EF2 onade by Barr and

Stroud Limited0

3.9 Fourier Analyser

3.9.1 Introduction:

When a mechanical system starts to work and analysis of the 

dynamic response of that system is required, a special instrument 

should be used to break down the output of the system into freq­

uencies and amplitudes. In this study the instrument used was a 

Fourier Analyser of the type 5451C, manufactured by Hewlett 

Packard. This instrument works and analyses the signal digitally 

which means it is more accurate and flexible, and also faster than 

many types of spectrum analyser,

3.9.2 Analog to Digital Converter:

One of the main functions of the ADC is to sample the input, 

which varies with time, into small sample intervals After sampling, 

each sample becomes a digital word which is stored for further 

processing (e.g. conversion into Fourier Transform). Looking at 

Fig 3.2 the sampling parameters used in the time domain are as 

follows:

At- The time between samples and it is called the sample interval. 

N - The number of samples taken, and on the analyser it represents 

the Block Size.

T - The total time of the sample record, also called:

Total Record Length.

From the definition the following can be obtained:

T = N x A t

In frequency domain, and after the Fourier transform being 

performed, there is a similar set of parameters. These parameters 

are: (from Fig 3.3)

Af - The number of Hz between frequency points (or frequency 

resolution).

N/2 - The number of frequency points (equal to half of the block 

size). . One half for real (or amplitude) and the other
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Fmax

for imaginary (or phase) depending on the NODE setting. 

The maximum frequency of the display (or the band width).

From the above definition the following can be obtained:

F = N/2 x Afmax

The relation between time domain and frequency domain, as shown

in Fig 3.4, is:

1
At - 2~p

max

This means that any change in one parameter will change the others.

3.9.3 Sampling Window Error:

This type of error arises in an instrument such as the 

Fourier Analyser. The reason for this error is the sample window, 

if this window was not situated over the actual begining and end 

of the periodic function. The Fourier Analyser provides a function, 

called Hanning, to correct this error.

3.9.4 Aliasing:

When analysing an input signal by Fourier Analyser, one has 

to set the analyser control to a-maximum frequency F if this

frequency is lower than some frequencies contained in the input 

signal, the higher frequencies will "fold back" appearing as lower 

frequencies within the range of the display, thus the input will 

appear to contain frequencies which, in fact, are not there at all. 

Fig 3.5 illustrates that for a setting of Fnax= 2kHz, a frequency of 

2.2 kHz will show up at the 1 .8 kHz position in the display.

Aliasing is a direct result of the sampling theorem and is 

common to all digital signal analysers.

3.9.5 Fourier Series and Fourier Transform:

Any functions that vary with time can easily be interpreted 

by the analysis of its frequency content. J.B. Fourier, a French 

mathematician, discovered that a periodic time-varying function
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Fig 3.4 Relation between Time and Frequency Domains
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can be broken down into an infinite sum of properly weighted 

sine and cosine functions of the proper frequencies. The equation 

describing this statement is:

X (t) = a -+ E.fa cos (2lT^-t-) + b sin (2^'-)l
o n=J Ln T n T J

From the above equation, the amplitude and phase of each frequency 

can be determined. If the frequency is f = , the amplitude of
/ 2 2 —1

that frequency will be V an + an<^ t^ie P^ase tan (b^/a^).

The Fourier Series was a very useful tool for determining the 

frequency content of a time-varying input. But the Fourier Series 

always requires a periodic function . To overcome this problem 

Fourier evaluated his series after letting the period approaching 

infinity. This is called a Fourier Transform. The pair of 

Fourier Transform was as follows:

co * c* f r
S (f) = J~X(t) e 1 71 dt (Forward Transform)
x — 00

oo i ? TF "Ft"
X (t) = J"S (f) e df (Inverse Transform)

—oo x

Where:

e-i2]Tft_ C0S(27Tft) ± i sin(27Tft) , £s known 

as the kernel of the Fourier Transform.

S (f).... is the Fourier Transform of X(t).
-X
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IV. EXPERIMENTAL RESULTS

4.1 Introduction

In this chapter all the results obtained by experimental work, 

such as time response and frequency response will be discussed, 

taking into account the effect of speed, backlash and load. Most of 

the results obtained were of the frequency response; some of the 

important results will be shown and analysed.

4.2 Preliminary Tests

These tests were made to give some information for subsequent 

analyses. Fig 4.1 shows the effect of backlash on the dynamic res­

ponse for the system: a) When loaded, b) When running free. This was 

done for speeds ranging from 200-1800 rev/min. The block diagram 

showing the instrumentation used will be given in Fig 4.2, where:

SBR- The strain gauges used as a bridge on the output shaft.

SRA- The slip rings assembly.

OSC- The oscilloscope and amplifier.

FIL- The filter used to cut-off high frequencies and noise

(low pass).

RMS- The root mean square voltmeter.

However, a few more results were obtained to show the RMS value 

changing with the load at certain speeds. The strain in the inter­

mediate shaft under static loading is compared with the RMS value of 

the strain when the system is running. This static loading was 

produced by using a metallic arm fixed on the output inertia. Masses 

with different weights were suspended at the end of the arm and the 

value of strain was recorded for each static load setting. The area 

above the static line and below the total dynamic curve (the marked 

area),which is shown in Fig 4.3 through 4.15, is caused by dynamics 

and vibrations of the system through backlash and some machining 

errors of the rig components. For speeds lower than the first natural 

frequency corresponding speed the effect of backlash reduces for a
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loading around 3.39 N m (2.5 lbf.ft), while at higher speeds the 

effect of backlash is significant for any loading. But for the speed 

equal to the speed corresponding to fundamental natural frequency 

the effect of backlash and imperfections is very clear and critical.

4.3 Principal Tests

4.3.1 Introduction:

In the experimental work done by many scientists in the 

field of dynamics of gears no one has obtained a result which 

contains (in the frequency domain) subharmonics at any speed; i.e. 

subharmonic of the running speed (rev/s). This is the first time, 

in this study, a subharmonic was observed at speeds higher than 

the first natural frequency. In the present study the speed will 

be represented by the number of rev/s, the nominal backlash=O.73mm.

More than five hundred plots were made, many of these 

plots were of the frequency response and the rest were time 

response. Every test at a certain specified speed lasted about 15 

minutes between setting, measuring, and plotting. The minimum 

speed was taken to be 250 rev/min and the maximum speed was 2000 

rev/min, a step of 50 rev/min was taken for speeds starting from 

250 rev/min up to 1000 rev/min and a step of 100 rev/min for speeds 

starting from 1000 rev/min to 2000 rev/min. All the frequency 

response plots were log amplitude and linear frequency scale.

4.3.2. Time Response:

The time response plot was as important as the frequency 

plot, one of the main advantages of these plots was to give 

approximate idea about the main frequencies contained in each time 

response at the specified speed, and to compare these frequencies 

with the more accurate frequency response plot obtained from the 

Fourier Analyser. Fig 4.16 shows the block diagram of the 

instruments used, bearing in mind that the Fourier Analyser was 

used as second oscilloscope and plotter. The filter was used for 

cutting-off the high frequencies from the main time signal.
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A sample of time response is shown in Fig 4.17 to give an 

idea about the values of frequencies and amplitudes contained in 

the time signal. In this sample the number of revolutions is 

(750) rev/min which corresponds to a period of (80) ms, and can 

easily be shown in Fig 4.17, taking into account that each 3 volts 

corresponds to 500 ye. The other main frequency in this sample 

corresponds to either the second natural frequency co or the brake 
n2

side frequency co depending on the load value.

4.3.3 Frequency Response:

For correct and accurate evaluation of the test results, a 

determination of the frequency content was needed. The dominant 

frequencies of the spectrum plot are compared with the frequencies 

of the test components to identify the possible sources of 

excitation. A block diagram showing the system used to measure,
. . it

transmit, and analyse the continuous time signal will be shown in

Fig 4.18. The filter was used to stop aliasing as it is described 

in section 3.9.4.

Fig 4.19 shows a sample of the frequency response as an 

introduction into the test "results analysis", which will be 

discussed in section 4.3.4. In this sample, the rotational speed 

was (600) rev/min which corresponds to (10) rev/s. Note that the 

scale was linear for the frequency and log for the amplitude. First 

frequency amplitude represents the rotational speed of 10 (rev/s), 

and the rest corresponds to the multiple harmonics.

4.3.4 Test Results Analysis:

A set of spectrum plots in Fig 4.20 through 4.33 shows the 

effect of loading on separation and impact of teeth. These results 

were taken for speed of (200) rev/min which corresponds to a period 

of (300 ) ms and frequency of (3.333) rev/s, with an averaging of 

(5) times (on the Fourier Analyser).

For loading of 0.0 ~ 2,712 N m (0.0-2.0 lbf.ft), the brake­

side subsystem will oscillate at its own natural frequency the

fundamental natural frequency of the total system wnf’ and the 

rotational speed corresponding frequency and its integral muultiples 

(Fig 4.23).
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For loading of 3.389-6.78 N m (2.5-5.0 lbf.ft) the main 

frequencies contained are: the fundamental natural frequency of 

the total system to f, the rotational speed corresponding frequency 

and its harmonics, and the second natural frequency of the total 

system oj2. Note that in loading range of 3.389 N m (2.5 lbf.ft) and 

over,the harmonics of the rotational speed will be the dominant 

frequencies and will relatively reduce the effect of the first 

natural frequency and resonate the second natural frequency of the 

total system ^2 (Fig 4.32).

In this analysis each spectrum will be followed by its own 

continuous time response plot. This time response plot shows a 

period of one revolution (300 ms ) and a super-imposed frequency 

which is about 30 peaks inside the period of one revolution* this 

superimposed frequency corresponds to either wn2or wnb*

4.3.5 Analysis of Subharmonic Test Results:

Azar and Crossley (11) stated that, in no instance was the 

output shaft found to oscillate at a frequency less than the shaft 

speed measured in teeth/sec (or any other measuring unit); i.e. no 

subharmonic oscillations were observed.

In the present study this was not the case and the 

subharmonic oscillations were observed always at speeds higher than 

the speed corresponding to the first natural frequency.

About 400 runs were made and the best possible results were 

chosen. Where there was some doubt the test would be repeated. 

A block diagram showing how the results were taken and analysed is 

in Fig 4.18. The Fourier Analyser was used to analyse the time signal 

and break the signal into frequency components. A simple programme 

was introduced which helps to digitize and analyse the time signal 

i0 times and then takes the average at the end. The resulting spec­

trum was plotted by using special plotting commands on the 

Fourier Analyser. Full description of this programme and the 

various commands will be shown in App.E.

Figs 4.34 through 4.71 show a sample of the results for a 
ioading of 0.0 N m (0.0 lbf.ft), 2.712 N m (2.0 lbf.ft) and 

5,424 N m (4.0 lbf.ft).
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For each loading, the speed of the driving motor was varied 

and the results were plotted, Figs 4.34 through 4.41 show the 

spectrum plot and corresponding time response for a loading = 

0.0 N m (0.0 lbf.ft) Figs 4.42 through 4.55 show the spectrum 

plot and corresponding time response for different speeds and 

constant loading of 2.712 N m (2.0 lbf.ft): and finally Figs 4.56 

through 4.71 show the spectrum plot and corresponding time response 

for loading of 5.424 N m (4.0 lbf.ft).

for loading of 0.0 N m (0.0 lbf.ft) in Fig 4.34 the speed 

was 600 rev/min (which is lower than tne speed corresponding to tae 

natural frequency of 780 rev/min) and the number of rev/s is 10. 

From this figure it can be seen that the first frequency is 10 Hz; 

i.e. there are no subharmonics at this speed, the integral 

multiples of the first frequency can also be seen in this figure. 

Fig. 4.35 which represents the time response of the same speed 

verify this explanation and a period of 100 ms corresponding to 

speed of 600 rev/min is also shown.

Looking at Fig 4.38 which represent the speed of 1100 rev/min 

(which is higher than the speed corresponding to the natural 

frequency). This figure shows the first subharmonic at 9.166 Hz 

which is half the number of rev/s for that speed of 18.33 Hz. As 

confirmation Fig 4.39 shows a period of 109.08 ms which is twice 

the period corresponding to a speed of 1100 rev/min (54.54 ms).

All the speeds higher than 1000 rev/min contain a 

subharmonic at half the speed measured in rev/s. Figs 4.40 and 

4.41 show spectrum plot and time plot respectively, for speed of 

1300 rev/min for the same condition of loading = 0.0 N m 

(0.0 lbf.ft).

For loading of 2.712 N m (2.0 lbf.ft) Figs 4.42 and 4.43 

represent the spectrum plot and time plot for a speed of 

250 rev/min (4.166 rev/s), one can easily see that the first 

frequency is the rotational speed of 4.166 rev/s. The same applies 

for Figs 4.44 and 4.45 for speed of 350 rev/min, and Figs 4.46 

and 4.47 for speed of 600 rev/min, and Figs 4.48 and 4.49 for 

speed of 900 rev/min.
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The first subharmonic for this loading appears at speeds 

of 1100 rev/min and higher. Fig 4.50 shows the spectrum plot for 

speed of 1100 rev/min, the figure shows first subharmonic at 9.166 

rev/s and multiples of that subharmonic, the second frequency 

corresponds to speed of 1100 rev/min (18.33 rev/s).

Figs 4.51 and 4.52 show the spectrum plot and time plot for 

speed of 1200 rev/min, the subharmonic in these figures is shown at 

half the running speed corresponding frequency of 20 rev/s.

Figs 4.53 and 4.54 and Figs 4.55 and 4.56 show the spectrum 

plot and time response plot for speeds of 1400 and 1700 rev/min, 

respectively. The subharmonic is clearly shown in these figures at 

half the respective running speed corresponding frequency.

Finally for loading of 5.424 N m (4.0 lbf .ft) , Figs 4.57 and 

4.58, Figs 4.59 and 4.60, Figs 4.61 and 4.62 and Figs 4.63 and 4.64 

show the spectrum plot and time plot for speeds of 250,600,850, and 

900 rev/min (bearing in mind that the frequency plots have different 

scales for all the speeds and the time response plot have the D.C. 

input corresponding to constant loading included for speeds of 

900 rev/min and over). These figures show that the system oscillates 

at a frequency equal to the corresponding running speed frequency 

and its integral multiples.

But Figs 4.65 and 4.66 show the spectrum plot and time plot 

for speed of 1100 rev/min and this is the first speed where the 

subharmonic appears at 9.166 rev/s, it can be seen that the system 

oscillates at the subharmonic and its integral multiples. Figs 4.67 

and 4.68 also show that the system oscillates at subharmonic and 

its integral multiples,for the speed of 1400 rev/min. While Figs 4.69 

and 4.70 show the spectrum plot and time plot for speed of 1700 

rev/min, the system was also found to oscillate at a subharmonic 

corresponding to half the speed and its integral multiples. It can be 

noticed that the subharmonic oscillation is getting weaker at this 

speed with a loading of 5.424 N m (4.0 lbf.ft). Finally Figs 4.71 

and 4.72 show that the system oscillates at the first harmonic 

corresponding to rotational speed of 1900 rev/min (31.66 rev/s) and 

its integral multiples. The subharmonic does not appear for this 

value of loading and speed.
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Figs 4.73, 4.74 and 4.75 show the output frequency against 

the input speed for a loading of 0.0 N m (0.0 lbf.ft) , 2.712 N m 

(2.0 lbf .ft) and 5.424 N m (4.0 lbf.ft) respectively, each figure 

shows very clearly the lines of harmonics and subharmonics in 

every revolution. For the case of no loading Fig 4.73 shows a 

definite line of subharmonics (at half the running speed 

corresponding frequency) which crosses the line of fundamental 

natural frequency and these subharmonics appears around the area 

where the subharmonics line crosses the fundamental natural 

frequency line. For a loading of 2.712 N m (2.0 lbf.ft), Fig. 4.74 

shows the same features except for speeds of 1000 rev/min and 

1900 rev/min another line appears at a subharmonic which is 1/3 of 

the running speed corresponding frequency. Again it can be seen 

that the subharmonics appear in the area when the subharmonics 

line crosses the fundamental natural frequency line. Finally, 

Fig 4.75 shows that for a loading of 5.424 N m (4.0 lbf.ft) the 

subharmonic starts to shrink for a speed of 1700 rev/min and to 

disappear at a speed of 1900 rev/min.

4.3.6 Question of Subharmonic;

Harris (1) and Gregory (3) found in their study of tooth 

errors that random errors stimulate the peak load of the impact 

of teeth and cause the impact to miss one or more teeth; i.e. 

impacting every second, third and so on. This only happens when 

the speed increases. Taking that into account the question of 

subharmonic can be answered.

At lower speeds the pair of gears starts to impact every 

tooth which means impacting 30 times per one rev. (because the number 

of teeth in each gear are 30). For higher speeds the gear begins

to miss one and impact every second tooth, for even higher speeds the 

gear begins to miss two teeth and impact every third tooth. In all 

the above mentioned cases (the gear impacting every first, second, 

or third) and because the number of gear teeth are 30 and the 

gears are of the same size, the impacting of tooth cycle will be 

completed in one revolution and the output shaft will not be 

stimulated at a subharmonic.
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At even higher speed the gear impacts every fourth tooth 

and misses three teeth. Looking at Figs 4.76 a,b it can be 

seen that the impacting cycle will only be completed in two 

revolutions; i.e. impacting the same tooth a second time will 

only occur after two revolutions have been completed.

-142-



V."THEORETICAL ANALYSIS AND SYSTEM MODELLING

5.1 Introduction

In order to reproduce the experimental results described in 

the previous chapter a simulation study was worked out for the 

geared torsional system in hand.

A mathematical model was developed to take into account 

some of the important factors affecting the system in this study. 

The model was developed to:

1- Take into account the inertias and stiffnesses of the system.

2- Simulate the loss of contact and the impact phenomenon.

3- Take into account the effect of backlash variation or some 

times the effect of stiffness variation of the gear teeth in 

mesh during system rotation.

4- Consider the load (steady or variable) at the gear pair or at 

both ends of the drive.

5- Include the effect of friction (i.e. damping) throughout the 

system.

5.2 Impact Pair Model

The discussion in chapter (I) shows that Dubowsky (28,29) 

has developed an impact pair model to investigate the dynamic effect 

of clearances on mechanical system. This model is shown in Fig 5.1, 

where:

F2 (t) external force applied to mass M2.

F3 (t) external force applied to mass M3.

X2 displacement of mass M2.

X3 displacement of mass M^

B clearance (backlash for gears model).

M2 mass of body 2.

M3 mass of body 3.
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C23 contact viscous damping.

K23 Contact stiffness.

Dubowsky has shown that the impact pair model yields a unique 

solution while exhibiting nonlinear behaviour common to complex 

mechanical systems with clearances. He has investigated the 

Hertzian contact characteristics of the ball joint and pin joint 

and has found that a linear approximation for the contact stiff­

ness results in an adequate representation of the impact phenomenon 

for both cases, for load values below the fatigue limit.

In this study, the impact pair was used to represent the 

spur gears. Based on Dubowsky*s results a constant viscous 

damping coefficient and a constant contact stiffness with respect 

to the surface compression were used for this study. However, the 

contact stiffness in most of this study was assumed to vary with 

time to reflect the stiffness variations that occur in the gear 

mesh due to the alternate single and double contact of the gear 

teeth.

5.3 Mathematical Model of The

Geared Torsional System

The model discussed in section (5.2) was expanded to 

include all the inertias and stiffnesses, to simulate the system 

under test. By using this expanded model the response of the 

entire system to both external and internal effects can be 

determined. The mathematical model of the system is shown in 

Fig 5.2. In this model, the torques are represented by horizontal 

forces and the angular rotations relative to the mean rotation of 

the system are represented by horizontal displacements. A further 

simplification is possible because the gears are equal in size.

Fig 5.2 represents a rotational system where:

Fj (t) the external torque due to driving motor.

F2(t),F3(t) the torque effects of the driving and driven gears

due to gear teeth errors.
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Fs (t) the load torque representing the Eddy Current Brake.

Mil the moment of inertia of the driving motor.

m2 the moment of inertia of the fixed mass and the driving 

gear.

m3 the moment of inertia of the driven gear.

the moment of inertia of the movable mass (to shift the 

natural frequency when needed).

M5 the moment of inertia of the Eddy Current Brake.

Xt the displacement of the mass Mp

X2 the displacement of the mass M2.

X 3 the displacement of the mass M3.

X u the displacement of the mass M4.

X5 the displacement of the mass M5.

2B the angular backlash between the gears in mesh.

C12 the equivalent viscous damping coefficient of the input 

shaft.

C23 the equivalent viscous damping coefficent of the gear 

teeth.

C3U the equivalent viscous damping coefficent of the shaft 

between the driven gear (M3) and the movable mass (Mu).

C.U the equivalent viscous damping coefficent of the shaft 

between the movable mass (Mu) and the Eddy Current 

Brake (M 5).

k12 the stiffness of the input shaft.

K23(t) time-varying stiffness of the gear teeth.

K34 the stiffness of the shaft between M3 and Mu.

Kus the stiffness of the shaft between Mu and M5.

FXT the torque transmitted through the gears.
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Fig 5.2 Model of Torsional Geared System



Bearing in mind that:

1) - Mi(in the linear model) = Ji Cin the torsional system),

M2= J2, M3H J2 (moment of inertia of the driven gear)= 

0.00865 kg.m2, M4H J3, and M5E J4,

2) - Xj(in the linear model) =0^(in the torsional system),

X2 —02 ,^3 E03 ,Xi+ H04 , and X5H95.

3) - K (in the linear model) = Ki(stiffness of the input shaft)
12

K23=1.3xl0G N.m/rad Htorsional stiffness of a pair of 

teeth in contact.

K34 = K2 , K45 H K3

By using Newton’s law we can write the equations of motion,

(torques due to teeth errors will be neglected).

M1X1 = -K12(X!-X2) - CjzCX^Xz) + Fi

m2x2 = -k12(x2-x1) - C12(X2-X1) ~ f^t

M3X3 = -K3u(X3-X4) - C34(X3-XU) + Fxt

(5.1)

(5.2)

(5.3)

,XU = -K34(X4-X3) - C34(X4-X3) - K45(X4-X5)M4X4 = -K34(X4-X3)

- C45(X4-X5) (5.4)

M5X5 = -K4 5(X5-X4) - C4s(X5-X4) (5.5)

The torque F has three possible values depending on the 

position of contact.

0

(5.6)

and X3-X2 > 0

and X3-X2 < 0>
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Dividing each equation by its mass to find the accelerations

we get:

Xi= -uh(X3-X2) - 2CiU)i (Xi-X2) * (5.7)

.. 2
X2= -GJ 2 (X2-Xj) -

.. 2
x3= -GJ3(X3-Xu) -

F
25^2 (X2-X,)------ g-

• * fxt
2?3W3(X3-Xu) + —Jfi-

(5.8)

(5.9)

.. 2
Xu= (Xu-X3) -

. . 2
24^(Xlt-X3) - w^Xu-Xs)

-2c„^(X1,-X5) (5.10)

2
X5— —G) 5 (X 5 —X u ) - 245W5

- . *1
(Xs-Xu) - Ms (5.11)

Where:

2 V_ k12
0)1 ~ (5.12)

,1 _ K12
“2 m2 (5.13)

M2 - K23
“2 m2 (5.14)

n2 - K34
“3 m3 (5.15)

,.x _ K23
“3 Mj (5.16)

J - K3U
(5.17)

2 Kus
(5.18)

2 _ Kus
Ws m5 (5.19)

>- _ C12 S W £ = °-008
(5.20)21^0)1

?2= ?3 \J/m3
m2 : 0.1 (5.21)

?3= \J
m3

■■ 0.01 (5.22)

Cu= Cs y
Ms _
Mu ■■ 0.0018 (5.23)

Where £1,^2,43and ^represent convenient ratios (as described 

above) related to the system damping
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5,4 Computer Programme

5.4.1 Introduction;

The mathematical model obtained in the previous section as 

a set of equations (5.7 - 5.11) will form a set of coupled, second 

order, nonlinear differential equations with time-varying 

coefficients.

The exact solution obtained by Dubowsky (28) for a 

linearized two mass model, is clearly not possible.

5.4.2 Subroutines;

Fig 5.3 shows the three possible positions of the gear (M3) 

with respect to the gear (M2) when the gears start to oscillate. 

These positions are as follow :

1- The tooth floating between the R.H.S, and L.H.S.

2- The tooth touching the right hand side.

3- The tooth touching the left hand side.

The five equations of motion (5.7 - 5.11), according to the three 

possible positions, will become three sets of equations. Each set 

includes five equations of motion. These equations of motion will 

be used in the main computer programme as subroutines. After small 

mathematical operations each set of equations will became a sub-

routine and will be called as: FCN1, FCN2, FCN3. A detailed

description of how this subroutine will be used in 

programme is shown in section (5.4.3).

The three sets of equations (or subroutines) 

1) FCN1 : ( F =0 )
.. 2 XT . .
X1= -UJi/Xj-Xz) - 2^Uh(Xi-X2) +

the main 

are:

(5.24)

2
X2= -W2(X2-X!) " 2^2^2(X2"Xi) (5.25)

..2 . .
X3— -(^(Xa-X^) - 2^-3013 (X3-X4) (5.26)
„ 2 . . 2
X4= -wfCX^-Xa) - 2^U)C(Xlt-X3) - WUX4-X5)

- 2^(A)tt(Xk-X5) (5.27)

X5— -XJs(X5-X4) - 2£5(j05 (X5-X4) - (5.28)
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(3)

M2

Fig 5.3 Positions of Tooth on M3 Relative to M2
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2) FCN2; FXT= -C23(X3-X2) - K23 (|x3-X2 |-B)

.. 2 . • Fi
*1' -UhCX-i-X2) - 2^W1(X1-X2) +

2 . .
X2= -a)2(J2“Xa) - 2^2C02 (X2-Xi)

+ *•-*»> + (fe-xil-B)

.. 2 . .
^3~ ”^3 (X3-X4 ) - 2^30)3 (X3-Xu)

■ - ttt <|x3-x2|-b)

.*2 • .
xu- -co4 (X4-X3) — 2t,^ii)4 (X^—X3 )

2
-U)U(XU-X5) — 2£uwlt(Xlt-X5)

• * 2 , t p
x5= -WsfXs-Xu) - 2^50)5 (X5-XO - -y-

w5

3) FCN3: Fxt= - C23(X3—X2) + K23(|x3-X2|-B)
..2 „
Xj= -W1(X1-X2) - 2£1W1(X1-X2) +

.. 2
X2= -w2(X2-Xi) - 2^2w£(X2-X1)

* 4r (i3_i2) ’-ST C|x3-x2|-B)

,, 2
X3= -U)3(X3-XO " 2^3C03(X3-XU)

", (i3_i2) * <|x3-x2 i-b)

„ 2
X„ = -wJ(X^-X3) - 2CiX(X„-X3)

2 
-iMXk-Xj) - 2?I1<i>i,(Xi,~X5)

2 , p
X5= -W5(X5-XU) - 2£5U)5 (X5-&O - -41

m5

(5.29)

(5.30)

(5.31)

(5.32)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

5.4.3 NAG Library Subroutine:

Before solving the set of equations described in section

5.4.2 one has to classify the equations. The equations of motion

(5.7-5,ll)are; second order, nonlinear differential equations.

But after deriving the three sets of equations from the position

of the mass M2 relative to M3 each set will become a set of second order 

linear differential equations; this means that the sets of equations 

(5.24-5.28), (5.29-5.33), and (5.34-5.38) will be considered as 
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second order linear differential equations.

The solution of these equations becomes easier, by finding 

a way of solving the differential equations. There are many 

available subroutines in the computer library which is known as the 

NAG Library. More than one routine was tried before deciding on 

the present subroutine; the subroutine used was D02EAF. The 

purpose of this routine is to integrate a stiff system of first 

order differential equations over a range with suitable initial 

conditions using a variable-order variable-step Gear method. The 

subroutine was of the form:

SUBROUTINE D02EAF (T,TEND,N,X,TOL,FCN,W,IW,IFAIL)

INTEGER N, IW,IFAIL

REAL TOL,T,TEND,X(N),W(N,IW)

EXTERNAL FCN

App.F will show in detail how this subroutine was used and 

what the parameters used represent.

To reduce the second order differential equation to first 

order differential equation the following change in variables will 

be used: (as required by the subroutine).
Fi = Xi = X6 

F 2 ~ X2 = X7 

F3 = X3 = Xb 
F — X4 — Xg 

F5 ~ X5 = Xj Q 

And to avoid using the same index for two different variables the 

first derivative will take a new sequence which is:

Fg = X2

F7 = X2

F8 = X3 (By taking the first five indices for X!,X2...& so on)

Fg = X.
Fio~ ^5

This means each set of equations (5.24-5.28), (5.29-5.33), and 

(5.34-5.38) will become a set consisting of (10) equations of 

motion of first order, for example, the set of equations 

(5.24-5.28) will be written as:

Fi = X6 (5.39)
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f2 = X7 (5.40)

f3 = x8 (5.41)

Fu = X9 (5.42)

f5 = x10 (5.43)
2

Fg = —o>i(Xi—X2) - 2<JaOhCXs-X7) ± (5.44)
2

F7 = -w2(X2-X-i) - 2^20)2 (X7-X6) (5.45)
2

F8 = -WaCXs-Xr.) - 2^3^3 (X8-Xg ) (5.46)
2 2

Fg = -coaXu-Xa)- 2^^CXg-X8) - WuCX^-Xs)

-2CuU)U(Xg-Xa 0) (5.47)
2

Fio= “OJsCXg-X^) - 2450)5CXi 0-X9) - (5.48)

Taking the values of inertias and stiffnesses to obtain the 

ratios u)i ,co2 ,0)2 ,0)3 ,0)3 ,0)t» ,& w5 & taking the values of the ratios

£1 ,£2, C3 & then substituting these values into the three

sets of equations (5.24-5.38) the following sets of equations were 

obtained:

FCN1: (Fxt=0)

FC1) = X(6)

F(2) = X(7)

F(3) = X(8)

F(4) = X(9)

F(5) = X(10)

F(6) = - 318784.45 * (X(l)-X(2)) - 9.03376 * (X(6)-X(7)) +

F(7) = - 14636.16 * (X(2)-X(l)) - 0.4162 * (X(7)-X(6))

F(8) = - 300358.8 * (X(3)-X(4)) - 10.961 * (X(8)-X(9))

F(9) = - 5772.96 * (X(4)-X(3)) -0.2097 * (X(9)-X(8))

- 9621.648 * (X(4)-X(5)) - 0.3531 * (X(9)-X(10))

F(10)= -288680.54 * (X(5)-X(4)) - 10.5954 * (X(10)-X(9)) - Ms

FCN2:

F(l) = X(6)

F(2) = X(7)

F(3) = X(8)

F(4) = X(9)
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F(5) = X(10)
F(6) - - 318784.45 * (X(l)-X(2)) - 9.03376 * (X(6)-X(7)) + -El

F(7) = - 14636.16 * (X(2)-X(l)) - 0.4162 * (X(7)-X(6))

+ 366197.98 El * ((X(3)-X(2) )-B) + 382.726 * (X(8)-X(7))

F(8) = - 300358.8 * (X(3)-X(4)) - 10.961 * (X(8)-X(9))

- 150288.00 E3 * ( (X(3)-X(2) )-B) - 15691.827 * (X(8)-X(7))

F(9) = - 5772.96 * (X.(4)-X(3) >- 0.2097 * (X(9)-X(8))

- 9621.648 * (X(4)-X(5)) - 0.3531 * (X(9)-X(10))
F(10) = -288680.54 * (X(5)-X(4)) - 10.5954 * (x(10)-X(9)) -

m5

and finally:

FCN3:

F(l) = X(6)

F(2) =X(7)

F(3) = X(8)

F(4) = X(9)

F(5) = X(10)

F(6) - - 318784.45 * (X(l)-X(2)) - 9.03376 * (X(6)-X(7)) +

F(7) = - 14636.16 * (X(2)-X(l)) - 0.4162 * (X(7)-X(6))

- 366197.97 El * ((X(2)-X(3))-B) + 382.726 * (X(8)-X(7))

F(8) = - 300358.8 * (X(3)-X(4)) - 10.951 * (X(8)-X(9))

+ 150288.00 E3 * ((X(2)-X(3))-B) - 15691.827 * (X(8)-X(7))

F(9) = - 5772.96 * (X(4)-X(3))- 0.2097 * (X(9)-X(8))

- 9621.648 * (X(4)-X(5)) - 0.3531 * (X(9)-X(10))
F

F(10) = - 288680.54 * (X(5)-X(4)) - 10.5954 * (X(10)-X(9)) -

Note that the values of inertias and stiffnesses are shown in

App.C and the value of tooth stiffness was taken from the graph in 

ref.(40).

5.4.4 Programme Description:

The source programme is stored in a specially created user 

file in the university Honeywell computer system. This programme 

can be called and executed using a remote control VDU terminal.
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The principal feature of the source programme is a NAG 

Library Subroutine for solying first order ordinary differential 

equations using a variable order variable step Gear method.

A complete listing of the source programme used in this 

study is shown in Fig 5.4.Statements numbered 40 through 120 define 

the constants and parameters whose values are read in as input data. 

Statements numbered 170 through 270 give the values of the input 

data. Statements 290 through 380 represent the initial condition 

for displacements and speeds. Statements 460 through 700 evaluate 

the amount of shifting in each tooth depending on which side is the 

contact. Statements 940 through 1670 define> the three external 

subroutines for which the solution should be found.

5.4.5 Numerical Tooth Shifting:

The main idea of shifting was to create an internal input 

rather than external one which is the case for gears in mesh.

The tooth shifting was done assuming that contact was 

established between one tooth from each gear; i.e. the contact 

ratio is 1,0.

Assuming that the change which takes place is the change in 

displacements X2 and X3 ; there are two cases:

1) When X3 (on gear M3) travels to the right hand side a distance 

bigger than the distance covered by X2 (on gear M2) and to 

consume all the backlash Bj(i.e.|X3-X2|>B2; X3-X2>0), and

assuming that the tooth equivalent spring deflects an amount 

DX, then each spring (K23/2) of the tooth on M3and of the tooth
DX on M2 will deflect an amount equals to - , this only applies

for the pair of teeth when they are in contact (see Fig 5.5).

The next pair of teeth will begin contact as soon as 

the first pair leaves the area of contact and will not be 

deflected which means that the next pair of teeth will have the
DXnew displacements changed by an amount of —x— :

X3 new
DX
2 and X2 new
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2) When X3 (on gear M3) trayels to the left hand side a distance 

bigger than the distance coyered by X2 (on gear M2) and to 

consume all the backlash Bi (i.e. |Xs-X2|>Bn; X3-X2<0), and 

assuming that the tooth equivalent spring deflects an amount 

DX, then each spring (K2372) of the tooth on M3 and of the
DXtooth on M2 will deflect an amount equal to “y-> this only 

applies for the pair of teeth when they are in contact (see 

rig 5. 6).

The next pair of teeth will begin contact as soon as the

first pair leaves the area of contact and will not be deflected 

which means that the next pair of teeth will have the new
DXdisplacements changed by an amount of —y-:

X3 = X3 , , new old and X2 = X2 , , -u new old
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Computer programs 
(p. 158-161) removed 
for copyright reasons
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VI. THEORETICAL RESULTS

6.1 Introduction

The computer programme produced from the mathematical model 

shown in Fig 5.2, was verified for a simple and known input. When 

the programme was running satisfactorily, more than (200) runs 

were made while varying damping, backlash (or tooth stiffness) 

variation, shaft speed, backlash, tooth error, and the initial 

conditions. Some of these runs presented very little valuable 

information and they were ignored.

This chapter will give some information which could be 

considered as reasonable. In Chapter VIII a recommendation 

will be offered for future research regarding this part of the 

study.

6.2 Batch Programme

This programme was used to run the source programme in an 

easy and quick way, in order to save time and to store the result­

ing solution in a specially created file called DATAF, which will 

be used as an input data file for the plotting programme. A limit 

of (100) mil was used for this programme which corresponds to one 

hour running time, in some cases this time was not enough.

A complete list of the batch programme will be shown in App.G.

6.3 Plotting Programmes

6.3.1 Introduction:

Each time the source programme was run, the output which 

corresponds to certain input conditions was then stored in a 

specially created file to plot it and compare it with the 

experimental results obtained before as explained in chapter IV. 

Special programmes were used for plotting and observing the 

resulting data which was obtained by running the source programme.

-164-



6.3.2 Plotting on IMLAC:

This programme will read and plot the data from the DATAF 

file which stores the output of the source programme, then if 

required a plot can be obtained by.pressing a special key 

required for transferring the graph on the screen to the printing 

machine. A list of this programme will be shown in App.H.

6.3.3. Plotting on Tektronix:

For quick plotting and observing the time signal obtained 

by solving the source programme, another programme was used to 

plot the results from the DATAF. This programme will be shown 

in App.I.

6.3,4 Plotting Direct From Computer:

A third plotting programme was also used to plot the 

solution of equations (5.24 - 5.38) on a bigger roll paper (size 

1.0x3.0m app.) for better and clearer observation of the resulting 

graph. The programme list is in App.J.

6.4 Paper Tape Programme

For future analysis a paper tape programme can be used to 

record the source programme results on a standard 9 holes ASCII 

tape. This programme which is called ’’Punch" will be shown in 

App.H.

6.5 Computer Programme Results

6.5.1 Introduction:

The computer results which are presented in this part of 

the study are not complete and a recommendation is offered in 

chapter VII to continue the progress being made by the present 

method and to modify the idea of tooth shifting (which simulates 

the tooth meshing),

When the method of solving the differential equations 

representing the mathematical model used in chapter V was decided, 
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many subroutines were available and it was decided to use D02EAF 

subroutine because this subroutine was the most suitable one in 

the author's opinion. There is a possibility that a -more advanced 

method could be used to solve this numerically stiff system.

In this programme many factors and parameters could be 

varied, these include; damping, backlash, backlash variation, 

loading and speed.

There are two ways of including the effect of time variation 

during gear rotation; one is the stiffness variation and the other 

is the backlash variation. After trying both it was decided to 

use the backlash variation because the results obtained from 

this variation were more realistic. The function used to represent 

this variation is:

BQ-C! cos ent) ; Cj= 0.38

Another function was added to gears M2 and M3 to represent 

the forces due to errors which could exist in the gears, this 

function is:

F2(t)s=F3(t) = -C2coswt - C3COS 2tot

where to represents the rotational speed frequency.

6,5.2 Time Response Results:

The first results (Figs 6.1 through 6.4) show that the 

mathematical model was working and could be applied to represent 

the system shown in Fig 5.2.

Fig 6.1 shows the system running at a speed of 200 rev/min, 

no damping, a circular backlash of 1.46 mm and a loading of 0.05 N m 

Fig 6.2 shows a time response plot without numerical tooth shift, 

no backlash and a loading of 0.05 N m. It can be seen that the 

system is running at a frequency equal to the calculated natural 
frequency of 17.84 Hz (or T = —|—= 56 ms). Also Fig 6.3 shows 

the same conditions as in Fig 6,2 but with numerical tooth shift 

every 2 ms. Fig 6.4 shows the time response for a speed of 

1200 rev/min, backlash of 1.46mm and a loading of 5.0 N m. A 

subharmonic is clearly seen in this figure but the backlash is 

twice the value used in chapter TV (Experimental Results).
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Figs 6.5 through 6.14 will haye the same yalue of backlash 

as used in experimental study in Chapter IV, this backlash 

■= 0.73 mm (or AC = 1.0 mm)

Figs 6.5 and 6.6 show the time response for a speed of

200 rev7min and a loading of 1.0 N m and 2.0 N m respectively. A 

tooth shift of 2 ms has been used. It can be seen that a period of 

300 ms (equivalent to 1 revolution for that speed) is apparent and 

no subharmonic was obtained for this low speed. Figs 6.7 and 6.8 

show the time response for a speed of 1600 rev/min and a loading

of 1.0 N m and 2.ON m respectively. A shift of 2 ms has been used. 

It can be seen that for both loadings the system oscillates at a 

subharmonic of that speed. Figs 6.9 and 6.10 show the time 

response for a speed of 1200 rev/min and a loading of 1.5 N m and 

5.0 N m respectively. A shift of 2 ms has been used. It is seen 

that for the lower loading the system oscillates at a subharmonic 

(half the running speed) while for the higher loading the system 

oscillates at a harmonic corresponding to the running speed, this 

is shown in Fig 6.10 where a period of T = = 50 ms (corresponding

to 1 revolution for that speed) is clearly marked.which verifies 

the point made in Fig 4.75, that the subharmonic has disappeared 

for higher loading. Fig 6.11 shows the time response for a loading 

of 4.0 N m and a speed of 200 rev/min. A shift of 10 ms related 

to the speed and the number of teeth has been used. It can be seen 

that the system oscillates with a period of 300 ms corresponding to 

1 revolution of the running speed. The shift related to the number 

of teeth (which equals 30 teeth) can be calculated as follows:

Shift = 300 (period of 1 rev)
30 (number of teeth) 10 ms

Also Fig 6.12 shows the time response for a loading of 4.0 N m and 

a speed of 333.33 rev/min. A shift of 6 ms related to the speed 

and the number of teeth has been used. It can be seen that the 

system settled down to a period of 180 ms (corresponding to 1 

revolution of that speed).

Finally, Figs 6.13 and 6.14 show the time response for 

speeds of 200 rey/min and 1000 rev/min respectively and constant 

loading of 1.7 N m. Each figure has a related shift of 10 ms 

(for 200 rev/min) and 2 ms (for 1000 rev/min). These results were 

-167-



obtained by a slightly different approach from the preyious ones 

and it is clearly seen that the relevant response was produced 

with no subharmonic for a lower speed and with subharmonic for a 

higher speed for these loading conditions.

Because of some numerical difficulties the results obtained 

were limited. One of the main difficulties in the present method 

is the time step used for the integration inside the subroutines 

which solves the set of differential equations, A smaller time 

step was needed to overcome this problem and this was sometimes 

not possible because the small time step could cause instability 

in the system.
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VII. DISCUSSION

In any geared system with backlash between the mating gears the 

tooth impact resulting from loss of contract is particularly important.

The loss of contact occurs when the amplitude of the vibratory torque 

exceeds the mean torque; this vibratory torque could be caused by many 

parameters and factors existing in the geared system. These 

parameters and factors include:

1 - Errors due to imperfect manufacturing of the gears

and/or the parts and units connected to the gears.

2 - Errors due to assembly.

3 - Operation of the drives and loads which could cause

considerable vibration.

One of the main factors studied in research of gear dynamics is 

the error due to imperfect manufacturing of the gears. Much research 

work was carried out to predict the dynamic effect of these errors and 

the results were published. Some of these are mentioned in this 

research study. One of the research works (11) suggested that in no 

instance was the output shaft found to oscillate at a frequency less 

than the shaft-speed; i.e. no subharmonic oscillations were observed.

In the present study the gears used had a standard straight cut 

spur teeth and a transmission ratio of 1:1. The number of teeth on 

each wheel was 30.

Using the instrumentation shown in Fig.4.18 the system was run 

under various conditions of speed and load. The torsional strain in 

the output shaft was analysed and plotted to identify the frequencies 

which are related to the system dynamics. The results obtained were 

for an average backlash of 0.73 mm. The gears’ PCD was 150 mm.

The tests were run for a speed range of 200-2000 rev/min and for 

three loading values of 0.0 N m (0.0 lbf.ft), 2.712 N m 

(2.0 lbf.ft) and 5.424 N m (4.0 lbf.ft). The subharmonic of the 

frequency corresponding to the running speed was observed at all speeds 

above 1000 rev/min, but when the loading takes the value of 5.424 N m 

(40 lbf.ft) the subharmonic appears at speeds above 1000 rev/min until 
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the speed reaches 1700 rev/min; at this speed the subharmonic starts 

to weaken and disappear. It is also observed that the subharmonic did 

not appear at any speed between 200-1000 rev/min inclusive for all the 

load values of 0.0 N m (0.0 lbf.ft), 2.712 N m (2.0 lbf.ft) and 5.424 

N m (4.0 lbf.ft).

A possible explanation for the presence of a subharmonic in this 

geared system is that the subharmonic of the tooth engaging frequency 

(i.e. impacting of teeth every second tooth or third tooth and so on) 

may cause the subharmonic of the geared system to appear at speeds 

above the first natural frequency (the term ’first natural frequency* 

is used as a reference point). For the case of 30 teeth on each wheel 

the explanation of the subharmonic of the geared system can be given as 

follows. When the running speed is between 200-1000 rev/min, the 

gears impact on every tooth, second tooth or third tooth and the 

impacting of tooth cycle will be completed in one revolution, in which 

case the output shaft will not be stimulated at a subharmonic. If the 

speed of the gears is higher than the speed corresponding to the first 

natural frequency and also above 1000 rev/min, the gears may impact 

every fourth tooth, thus the impacting cycle will be completed in two 

revolutions. This is because the number of teeth on the gear is 

thirty, the factors of which are 1,2,3,5,6,10 and 15. From this 

sequence of factors it is possible to see that impacting every tooth, 

second tooth and third tooth will not stimulate a subharmonic while 

impacting every fourth tooth will stimulate a subharmonic of the second 

order (i.e. subharmonic at half the speed (since the number 4 is a 

factor of 2 x 30). For the factors 5 and 6 (which means impacting 

every fifth tooth and sixth tooth) the impacting of teeth will not 

stimulate a subharmonic. But for the case of impacting, every seventh 

tooth will stimulate a subharmonic of the seventh order, because the 

number 7 is a factor of 7 x 30 and this is very unlikely to occur. 

This is why the number 4 is important in this study.

If the number of teeth is changed to any other number (which could 

be itself a prime number or have a different set of factors), then 

depending on the new number of teeth and speed range the position of 
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the subharmonic may be shifted from the position found in the present 

study, for example, if the number of teeth on each wheel is 31 (which 

is a prime number) and if the pair of gears impact every second tooth 

(which may occur at a lower speed), then the tooth impacting cycle will 

be completed in two revolutions and a subharmonic of the second order 

may appear at a lower speed (the number 2 is a factor of 2 x 31). In 

the two previous cases the transmission ratio was 1:1. If the 

transmission ratio is changed, then there are two cases: one case when 

the number of teeth of the driven gear is 30 and the driving is not 30 

the subharmonic of the driven gear speed may appear at the same speed 

as suggested in this study (when impacting of teeth takes place every 

fourth tooth). The second case when the number of teeth of the 

driving gear has any number not equal to the driven gear and the number 

of teeth of the driven gear is not 30, then depending on the new number 

of teeth on the driven gear the subharmonic of the geared system may 

appear when the tooth impacting cycle will be completed in more than 

one revolution.

The maximum speed available in this test rig was 2000 rev/min. Up 

to this speed the tooth subharmonic of engaging frequency (in 

particular impacting every fourth tooth) may have caused the 

subharmonic of the geared system to appear for the conditions of load 

and speed mentioned before. If the speed is high enough to cause the 

gear teeth to impact every fifth tooth, which means that the tooth 

impacting frequency will be completed in one revolution (because 5 is 

a factor of 30), then the subharmonic will disappear again.

For the test rig in hand the maximum torque which is applied to 

the subharmonic test results was 5.424 N m (4.0 lbf.ft). If this 

torque is increased to a higher value than the present maximum value, 

then the subharmonic will start to disappear at a lower speed than 1700 

rev/min. At even higher torque the subharraonic may not appear at 

all, this is because the higher torque tends to prevent separation.
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To discuss the effect of changing backlash on the existence of a 

subharmonic one has to think about the time available for the free 

flight of the tooth on the driving gear. If the backlash is reduced, 

then the time available for free flight is also reduced. As a result 

the tooth on the driving gear has less time to separate and impact 

again, and depending on the amplitude of torque variation, the tooth 

may even impact on the rear side. this means that the subharmonic may 

appear at a speed much higher than 1100 rev/min and it could completely 

disappear (in the speed range of 1100-2000 rev/min) for certain 

backlash values. If the backlash takes a value bigger than the 

present amount, then, depending on the amplitude of the torque 

variation, it can be deduced whether the backlash will have any effect 

on the presence of a subharmonic, for if the amplitude of torque 

variation is big enough to produce an impact on the rear side, then a 

bigger backlash will cause the subharmonic to appear at an earlier 

speed. However, if the amplitude is not great enough to produce an 

impact on the rear side, then a bigger backlash will have no effect on 

shifting the subharmonic from the suggested speed range.

Finally, the damping may have the effect of either shifting the 

position or reducing the effect of the subharmonic in the present 

geared system. The effect of damping depends greatly on whether it is 

negative damping or positive damping.

In this experimental study it was mentioned many times that the 

subharmonic of tooth engaging frequency may cause the subharmonic of 

the geared system. A possible explanation for the subharmonic of 

tooth engaging frequency was offered by Harris (1) and Gregory (3). 

They found in their study of tooth errors that random errors tend to 

stimulate the peak load of the tooth impact and when the speed gets 

higher these errors cause the impact to miss one or more tooth; i.e. 

impacting every second tooth, third tooth and so on, which is called 

’subharmonic of the tooth engaging frequency'.

An expansion of the model previously used by Azar (11), which is 

based on an impact pair model produced by Dubowsky (28,29), was used to 

develop a simulation model for the geared torsional system in hand.
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This model was simple and easy to solve numerically. The model 

represents a vibrating rear system and can be transferred to represent 

a torsionally vibrating system by introducing the assumptions that the 

parameters in the linear model contain the actual values of the 

parameters in the torsional model as it is described in section 5.3; 

then the solution of this model can be dealt with relatively easier.

The conditions that determine on which side the contact is 

established (by the use of the interaction force F between the
A 1 

mating teeth) was useful for transferring the equations of motion from 

the non-linear situation to the linear one.

Two functions were added to the model, one of which was to include 

the effect of vibrations of backlash during gear rotation and the 

second was added to represent the forces due to other errors (which 

could exist in the gears) such as eccentricity and ovality. These 

forces are only applied to the driving and driven gears. A stiffness 

variation during gear rotation was also tried but the results obtained 

from this variation did not give an output which could be related to 

the geared torsional system from the point of view of amplitude or 

frequency content. The function used to represent the backlash 

variation each time the backlash came into action was

B ==>B( 1 - Cx cos wt); CT = 0.38

This variation comes into action only when the teeth are in contact 

either on the left side or on the right side of the tooth flank.

The principal novel feature of the mathematical model is the 

numerical tooth shifting. This was based on the fact that when a pair 

of teeth move out of contact they are deflected and when the next pair 

of teeth approach the area of contact they are undeflected. This 

means that the deflection has to be taken out by subtracting the amount 

of deflection DX from the next pair and this is done by changing the 

displacements on the gears at the moment of shift from one pair to the
DXnext by an amount —- (because the driving gear tooth and the driven 

-187-



gear tooth have the same stiffness). This is only applied when the 

teeth are in contact. The time between the engagement of each pair 

can be determined when the speed is known, because this time is related 

to the speed and the number of teeth and can be calculated as follows:

Shift - Per,j-od of one revolution (ms)

Number of gear teeth (30)

Looking at the results obtained, it can be seen that the programme 

derived from the mathematical model produced reasonably good results 

which represent the general behaviour of the present geared torsional 

system. This shows that the model is a good representation of the 

real system and reproduced some of the results which were obtained 

experimentally. With a shorter calculation time step it would be 

possible to reproduce most of the experimental results for the present 

system.



VIII CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The main direction in the present study is to investigate the 

effect of backlash on dynamic behaviour of torsional systems, taking 

that into account one can conclude:

1. If there is no subharmonic of the tooth impacting frequency,

then no subharmonic of the gear speed corresponding frequency will 

be stimulated for any number of teeth.

2. For a similar test set-up, if the driven gear has a prime tooth 

number, then any subharmonic of the tooth impacting frequency of 

order N will produce a subharmonic of the gear speed corresponding 

frequency of the same order. If the driven gear does not have a 

prime number of teeth and if the subharmonic of the tooth impacting 

frequency of order N is a factor of this tooth number, then there 

is no possibility of a subharmonic of the running speed being 

produced for this number of teeth. The subharmonic of the tooth 

impacting frequency can only stimulate a subharmonic of the running 

speed if the tooth impacting cycle is completed after ”k” number 

of revolutions. The subharmonic of the running speed will then be 

of order ”k”.

3. The presence of a subharmonic in any vibrating system could make a 

significant contribution to the study of the dynamics of gears and 

may explain many problems existing in similar geared systems.

A. If a geared torsional system is running at a speed high enough to 

produce a subharmonic of this speed then not only the frequency of 

the running speed will exist but also the frequency of half of the 

running speed will occur. This may cause a new and unexpected 

regime of dynamic operation of gears through backlash.
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5. Any loading which is high enough to stop tooth separation will 

prevent the occurrence of subharmonic response.

6. The speed range of the subharmonic and the backlash value are 

related to each other. The presence of a subharmonic of the 

running speed means that a change in backlash value will produce a 

subharmonic of the running speed in a different speed range.

7. One of the main advantages of the computer program used in this 

study is the development of the idea of tooth shifting numerically 

without the need to add any type of function to represent certain 

criteria; i.e. to create an internal input rather than the assumed 

external input.

8.2 Recommendations

An investigation of dynamics of gears due to impact through 

backlash, especially from the point of view of subharmonics, should 

include the following:

1. Extensive experimental work is strongly recommended to be carried 

out on the presence of subharmonics in a similar torsional system.

2. Separation of the system’s natural frequencies would be helpful 

for easy identification of all sources of input frequencies.

3. An extensive study needs to be done for similar conditions with 

the strain guage fixed near the teeth to confirm the number of 

tooth impacts during one revolution.

4. Tooth shifting, as described in section 5.4.5 should be studied 

more to include the shifting of two or more teeth as real gear 

systems have a contact (meshing) ratio always greater than unity.
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5. More advanced theoretical work needs to be done for the 

mathematical model presented in Chapter V, Fig. 5.2 to overcome 
the problem of time shift related to the number of teeth which 
limited the number of results obtained in Chapter VI.

6. The theoretical work has to be extended to include a suitable 
transformation of the time response into a frequency spectrum for 
more accurate analysis of the theoretical results.
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APPENDIX B

Shafts and Inertias, Materials and Sizes

1- Shafts;

Material EN 1A

Sizes:

a- Input shaft

Diameter 20mm.

Length 250mm.

b- Intermediate shaft

Diameter 20mm.

Length 500mm. 

C- Final shaft

Diameter 20mm.

Length 300mm.

Material Mild Steel

Sizes:

a- Input Inertia

Weight 38.0kg.

Diameter 270mm. 

b- Output Inertia

Weight 40.0kg.

Diameter 300mm.

-198-



APPENDIX C

Natural Frequencies of the System and Subsystems

a)— Natural Frequencies of the Whole System,

^2 > 62 ^3 » 03

The first figure represents the vibrating system, but the 

second representsthe equivalent system after being transfered 

through gears with transmission ratio of 1:1 . The equations 

of motion are:

Al * MW “ 0
At * MW> * MW -0

M * VW ♦ MW * 0
■V + MW = o
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From these equations of motion

and stiffness matrix which are:

we can find the mass matrix

form after

J1 0 0 0 *1 -*1 0 0

0 J2 0 0
and

-K1 k1+k2 -K2 0

0 0 J3 0 0 -K2 K2+K3 -K3

0 0 0 J4 0 0 -*3 *3
— — —

The system matrix in equations

assumed solution of 9 = A cos cot, is:

substituting the

(Kx-u Jx) 0

-K1

"K1

(kx+k2- w2j2) -k2

0 -K2

0 0 -k3

(k2«3-Jj3)

the system, the

0

frequencies of 

system matrix has to be found.

The expansion of this system is reduced to the following 

equation: 

- [<W3J4>

To calculate the natural

expansion of the determinant of

+ (K1K2K3J3> 4- (kxk2k3j2) + Wl>] 2CO

[ (K1k2j3j4) + <kik2j2j4> + (kik3j2j4> +

(K1K2J1J4} + <W1J4> + (K1K3J1J3) + (r2k3J1J4) -

(k2k3jxj3) + (K2K3J1J2)| 4W r (ktj2j3j4) + (k1j1j3j4) +

(K2J1J3J4) + (k2jxj2j4) + (KqJ_J0J.) + (K„J_ JOJQ)V
3 12 4 3 12



Or;
6

Aoj " B
4U) 2

* C Q) D — 0

Where;

A = 1
K

B= ( —

k
3-

J2

k2 J k2

J2 J3
a-

k„ k„
— + _2_ )
J3 J4

K1K2
C = ( ——

J1J2

K1K2+ K1K3 K1K2+ K1K3+ K2K3

J1J3 J2J3

K1VK2K3

J2J4

K K
+  ±—i

J1J4

k2k3

J3J4

+ +

J- )

J-+ J\+ J + J,
D = ( - ---------------- 2----- 1 ) K K K

J1 J2 J3 J4

The values of the inertias and stiffnesses are as follows,

(Bearing in mind that

1^= 5196.2

K2= 2598.1

1^= 4330.2

Jp 0.0163

J2= 0.355

J3- 0.45

J4= 0.015

A A = 1

N m/rad.

N m/rad.

N m/rad.

. 2kg.m

i 2kg.m

. 2kg.m

, 2kg.m

B = 644817.27

C = 10.756876 1010

D = 1.2516763 1015
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Solying the equation of frequencies, by finding the roots
222

W1 , W2 , and , the natural frequencies of the whole system are:

<joni= 112.088 rad/s.

fx = 17.839 Hz.

0^2= 546.347 rad/s.

f3 = 86.954 Hz.

0^3= 577,718 rad/s.

f3 = 91.947 Hz.

b ) - Natural frequencies of the separated systems.

1- Natural frequency of the input system

The equations of motion are: J2

JlQi + K1(01~02) = 0

J202 + ^(02'^1) = 0

The natural frequency of input system (motor side) is:

K^+jp

J1J2

= 577.427 rad/s.

f = 91.900 Hz.m

2- Natural frequency of the output system:
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The equations of motion are;

j^e2 + K2<e2-e3) = o
J,e, + K2(03-e2) + k3(93-6j = o

J, 5, + k, (0,-03) = o
Where

J' is the moment of inertia of the driven gear

J' = 0.00865 Kg.m2

The equation for which the roots have to be found is: 

u 2
Aw - B u) + C = 0

A = 1
K K K?+K

B = —- + —- + —-—~ 
T-'' T TJ2 4 3

C =
K2K3 ,
J?4 +

J3J4 J2J3

•’» The natural frequency of the output system (brake side) is:

0)^ ~ 542.140 rad7s.

f, = 86.284 Hz.b

0) , = 557.13 radVs.nb2

= 88.67 Hz,
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APPENDIX D

Strain Gauge Bridge Calculation

The relationship between the input and output voltages of 

the strain gauge bridge shown in the figure is:

E -= E. (----- — - -— )out in R +R R +R 7 
13 2 4

When R^/R^ = R2^R4 t^le bridge is balanced.

Letting R^R^R^R^R be the resistance of each strain 

gauge and AR^=-AR2=AR^=-AR^=AR be the change in resistance of 

each strain gauge then the voltage equation can be written as

Eout

For a strain gauge:

where GF is the gauge factor ande is the strain. After substitution 

the output voltage is defined by:

E = GF E. £ out in

-204-



APPENDIX E

Programme List of Fourier Analyser Operation

Key name Symbol

Labe1-0 L - 0

Clear - 1 CL- 1

Label - 1 L - 1

Analog In - 0 - 1 RA - 0 - 1

Fourier F

Power Spectrum SP

Count - 0 - 10 #- 0-10-0

Divide - 1 - 10 : - 1 - 10

Display - 1 D - 1

Take Log TL

Display - 1 D - 1

End •

Special commands were used to plot the graph from the 

screen onto a white paper placed on the plotter.
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APPENDIX F

Description of NAG Library Subroutine

J.Purpose•

D02EAF integrates a stiff system of first-order ordinary 

differential equations over a range with suitable initial conditions, 

using a variable-order variable-step Gear method.

2.Specification: (FORTRAN)

SUBROUTINE D02EAF (T,TEND,N,X,TOL,FCN,W,IW,IFAIL)

C INTEGER N,IW ,IFAIL

C real T,TEND,X(N),TOL?W (N,IW)

C EXTERNAL FCN 

3.Description:

The routine integrates a system of ordinary differential 

equations

X.' = Fi(T,X ,X2,...,X^), i = 1,2,...,N,

From Z=T to Z=TEND using a variable-order variable-step Gear method.
The system is defined by a subroutine FCN supplied by the 

user, which evaluates F^ in terms of Z and X^•.X^(see Section 5), 

and the values of X^,X2,...,X^ must be given at Z<=T. The accuracy 

of the integration is controlled by the parameter TOL. This routine 

is primarily intended for integrating stiff systems of differential 

equations, that is systems with widely differing time constants, 

but should integrate all systems satisfactorily. For a description 

of Gear’s method and its practical implementation see (1).

4.References:

(1) Hall, G, Modern Numerical Methods for Ordinary

Watt; J.M. (eds.) Differential Equations. Clarendon Press, 

Oxford, 1976.
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5.Parameters:

T- real

Before entry, T must be set to the initial value of the 
independent variable Z. On exit, it contains TEND, unless 

an error has occurred, when it contains the value of Z at 

the error.

TEND- real

On entry, TEND specifies the final value of the independent 

variable. If TEND < T on entry, integration will proceed in 

the negative direction. Unchanged on exit.

N- INTEGER

On entry, N specifies the number of differential equations. 

Unchanged on exit.

X- real array of DIMENSION at least (N).

Before entry, X(l), X(2),..,, X(N) must contain the initial 

values of the solution X^X^, ... jX^ On exit, X(l), X(2),... 

2X(N) contain the computed values of the solution at the final 

value of Z.

TOL’- real

Before entry, TOL must be set to a positive tolerance for 

controlling the error in the integration. The routine

D02EAF has been designed so that for most problems a reduction 

in TOL leads to an approximately proportional reduction in 

the error in the solution at TEND. However, the actual 

relation between TOL and the accuracy achieved cannot be 

guaranteed. The user is strongly recommended to call

D02EAF with more than one value for TOL and to compare the 

results obtained to estimate their accuracy. In the absence 

of any prior knowledge, the user might compare the results
**(-P)

obtained by calling D02EAF with TOL = 10.0 and
**(—P—1) , , ...

TOL = 10.0 if he requires P correct decimal digits

in the solution. TOL is normally unchanged on exit. However 

if the range T to TEND is so short that a small change in 

TOL is unlikely to make any change in the computed solution, 

then, on return, TOL has its sign changed. This should be 

treated as a warning that the computed solution is likely to 
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be more accurate than would be produced by using the same 

value of TOL on a longer range.

FCN-SUBROUTINE, supplied by the user. FCN must evaluate the 

functions F^ (i.e. the derivatives X^’) for given values of 

its arguments Z,X^,...,X^. Its specification is:

SUBROUTINE FCN (Z,X,F)

real Z,X(n),F(n)

Where n is the actual value of N in the call of D02EAF.

Z-real

On entry, Z specifies the value of the argument

Z. Its value must not be changed.

X-real array of DIMENSION (n).

On entry, X(I) contains the value of the argument 

Xj, for 1=1,...,n. These values must not be 

changed.

F-real array of DIMENSION (n).

On exit, F(I) must contain the value of F^, for 

1=1,...,n.

FCN must be declared as EXTERNAL in the (sub) program from 

which D02EAF is called.

W- Real array of DIMENSION (N,IW). used as a working space.

IW-INTEGER.

On entry, IW must specify the second dimension of the array W 

as declared in the calling (sub) program. IW > 18 + N. 

Unchanged on exit.

IFAIL-INTEGER.

Before entry, IFALL must be set to 0 or 1. Unless the routine 

detects an error (see Section 6), IFAIL contains 0 on exit.

6.Error Indicators:

Errors detected by the routine:

IFAIL=1 On entry, TOL ^0.0 or IW< 18+N or N< 0. The latter 

error will cause a program breakdown with some 

compilers.

IFAIL=2 With the given value of TOL, no further progress can be 

made across the integration range from the current 
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point Z=T, or the dependence of the error on TOL would 

be lost if further progress across the integration range 

were attempted (see Section 11 for a discussion of this 

error exit). The components X(l),X(2),...,X(N) contain 

the computed values of the solution at the current point 

Z=T.

IFAIL=3 TOL is too small for the routine to start the integration 

(see Section 11). T and X(l) ,X(2) ,... ,X(N) retain their 

initial values.

IFAIL=4 A serious error has occurred in an internal call to

DO2QBF. Check all subroutine calls and array dimensions.

7. Auxiliary Routines:

This routine calls the NAG Library routines DO2QBF and 

P01AAF.

8. Timing:

This depends on the complexity and mathematical properties 

of differential equations defined by FCN, on the length of the 

range, and on the tolerance. There is also a small overhead of 

the form A+B*N, where A and B are machine-dependent computing 

times.

9.Storage:

The storage required by internally declared arrays is 33

real elements.

10.Accuracy:

The accuracy depends on TOL, on the mathematical 

properties of the differential system, on the length of the range 

of integration and on the method. It can be controlled by 

varying TOL but the approximate proportionality of the error to 

TOL holds only for a restricted range of values of TOL. If TOL is 

too large, the underlying theory may break down and the result of 

varying TOL may be unpredictable. If TOL is too small, the rounding 

error may affect the solution significantly and an error exit 

with IFAIL=2 or IFAIL=3 is possible. If the user requires a 

more reliable estimate of the accuracy achieved than can be 

obtained by varying TOL, he is recommended to call the routine
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D02BDF where both the solution and a global error estimate are 

computed.

11.Further Comments:

If the routine fails with IFAIL=3 then it could be called 

again with a larger value of TOL if this had not already been 

tried. If the accuracy requested is really needed and cannot be 

obtained with this routine, then the system may be very stiff or 

so badly scaled that it cannot be solved to the required 

accuracy.

If the routine fails with IFAIL=2, it is probable that 

it has been called with a value of TOL so small that a solution 

cannot be obtained on the range T to TEND. This can happen for 

well-behaved systems and very small values of TOL. The user 

should, however, consider whether there is a more fundamental 

difficulty. For example, in the region of a singularity 

(infinite value) of the solution, the routine will usually 

stop with IFAIL=2, unless overflow occurs first.

If overflow occurs using D02EAF, routine DO2QBF can be 

used instead to trap the increasing solution before overflow 

occurs. In any case, numerical integration cannot be continued 

through a singularity, and analytical treatment should be 

considered.
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