IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Ibadulla, R. (2024). High Resolution Capabilities of Free-space Optical Neural
Networks. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34330/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

High Resolution Capabilities of
Free-space Optical Neural Networks

CITY

UNIVERSITY OF LONDON
EST 1894

Riad Ibadulla

Department of Computer Science

City, University of London

This dissertation is submitted for the degree of

Doctor of Philosophy (Ph.D) in Computer Science

December 2024

"As complexity rises, precise statements lose meaning, and meaningful statements lose

precision.” " — Lotfi Zadeh

Dedication

To my parents and sister, whose unwavering love, support, and encouragement have been
my greatest strength throughout this journey; to my grandparents, whose support and values
continue to guide me; and to my uncle, who is a constant source of motivation and inspiration.

This work is as much yours as it is mine.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text.

Riad Ibadulla
December 2024

vii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my first supervisor,
Professor Thomas M. Chen, who sadly passed away during the final stage of my PhD.
Professor Chen’s guidance, encouragement, and expertise were invaluable throughout the
initial stages of this research. He was enthusiastic about admitting me to the PhD program
and about my project. His belief in my potential and his optimism have left an indelible mark
on my academic journey. I am profoundly grateful for his mentorship and support.

I am also deeply thankful to my second supervisor, Dr. Constantino Carlos Reyes-
Aldasoro, who stepped in as my primary supervisor during a challenging time. Dr. Reyes-
Aldasoro has been as supportive and insightful as my first supervisor, always there when I
needed him. His unwavering support, insightful feedback, and ability to seamlessly continue
the guidance while offering new perspectives have been immensely appreciated.

I would also like to express my gratitude to Professor Eduardo Alonso for taking on the
role of second supervisor and providing me with the feedback on my thesis.

I am grateful to other academics and staff members: Ernesto Jimenez Ruiz, Tillman
Weyde, Rajkumar Roy, Veselin Rakocevic, Konstantin Pozdniakov, Ilir Gashi, Golnaz
Badkobeh, Asif Nawaz, Ann Marie De Hare and others.

Furthermore, I extend my heartfelt regards to my peers: Ananda, Youssef Arafat, Daniel
Brito, Kaleem Peeroo, Nadine El Naggar, Dany Laksono, Kevin Allain, Mirela Reljan-
Delaney, Alex Clay, Daniel Sikar, Maeve Hutchinson, Robab Aghazadeh Chakherlou, Sevinj

Teymurova, Saidu Sokoto, Naman Singh, Amir Hosseini and others.

iX

Publications

Refereed Journal article

* R.Ibadulla, T. M. Chen, and C. C. Reyes-Aldasoro, “FatNet: High-Resolution Kernels
for Classification Using Fully Convolutional Optical Neural Networks,” Al, vol. 4, no.
2, pp- 361-374, Apr. 2023, doi: 10.3390/ai4020018

Refereed Conference article

* Riad Ibadulla, Constantino C. Reyes-Aldasoro, and Thomas M. Chen "Fat-U-Net:
non-contracting U-Net for free-space optical neural networks", Proc. SPIE 12903, Al
and Optical Data Sciences V, 1290308 (13 March 2024); doi: 10.1117/12.3008618

Xi

Abstract

Deep Learning (DL) models are powerful tools for computer vision tasks, such as image classification
and segmentation. To meet the computational demands of modern deep learning, many DL models
rely on Al accelerators. In addition to these hardware-based accelerators, optical accelerators,
such as 4f free-space systems, take advantage of Fourier optics to efficiently perform convolutions,
bypassing Moore’s law limitations. While 4f system offers high-resolution capabilities, it faces
limitations in modulation speed and data readout.

This thesis addresses these limitations by developing methods to adapt traditional neural network
architectures for high-resolution tasks within 4f free-space optical Al accelerators. We introduce
FatNet, an algorithm specifically designed to convert conventional neural network models into a
format optimised for the 4f system by accounting for the system’s advantages and constraints. FatNet
reduces the number of channels while increasing the resolution of feature maps, aligning with the
high-resolution capabilities of the 4f system. Since a bottleneck in 4f optical accelerators lies in
the readout process, FatNet enhances model efficiency by decreasing the number of channels. This
conversion assumes that the number of trainable parameters and pixels in the feature maps remains
equal or as close as possible to those in the original layers.

FatNet was applied to convert architectures such as ResNet, AlexNet, and VGGNet into Res-
FatNet, Alex-FatNet, and VGG-FatNet, respectively. These models were trained and evaluated on
the CIFAR-100 dataset using a custom-built simulator of the 4f system. Our results demonstrate
significant acceleration with minimal loss in accuracy. Furthermore, the FatNet approach was
scaled to the U-Net architecture, resulting in Fat-U-Net, which was tested on image segmentation
tasks using the Oxford-IIIT Pet and HeLa cells datasets, showcasing its effectiveness in image
segmentation within the free-space optical accelerator. The efficacy of FatNet was further examined
in the Fat-U-Net study through experiments involving Intuitive-Fat-U-Nets, which prioritised layer
weight equality over pixel count in feature maps to avoid overfitting, demonstrating that the FatNet
conversion is the optimal approach. Additionally, the impact of skip connections in U-Net and
Fat-U-Net was investigated to evaluate Fat-U-Net’s ability to preserve localisation accuracy.

Moreover, this thesis explored the potential for implementing Vision Transformers (ViTs) within
the 4f optical system. Methods are proposed for realising ViTs using only convolutional operations
to enable full functionality on the 4f system, with a particular focus on investigating potential
parallelism techniques suitable for optical settings. Additionally, the study included visualising
attention maps to determine if the methods are training using feature extraction, similar to CNNs, or
genuinely learning attention mechanisms as intended by ViTs.

This research also addressed challenges in optical computing, such as the lack of support for
negative values, by introducing algorithmic solutions to mitigate the issue.

Overall, this work contributes to the advancement of optical neural networks, providing a
pathway toward faster and more efficient deep learning models tailored for the emerging era of
optical computing.

Xiii

Contents

Dedication

Declaration

Acknowledgements

Publications

Abstract

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5

Problem statement
Objectives e e e
Scope and limitations L.
Contributions
Structureof Thesis

2 Literature Review

2.1
2.2
2.3

2.4
2.5

Optical Computing and 4f system
Fouriertransform
Convolutionoperationand CNNs
2.3.1 Convolution operation
2.3.2 Convolutional neural networks
233 BatchNormalisation
Application of CNNs for image classification
Application of CNNs for image segmentation

vii

ix

Xi

xiii

Xix

XXXi

2.6 Transformers L. L e e e e e e e e e e e e e e 28

2.6.1 Introduction to Transformers 28
2.6.2 Attention Mechanism 20
2.6.3 Multi-head attention L. 30
264 Architectureof ViT 31
2.6.5 Application of Vision Transformers 33
2.6.6 Other variations of Vision Transformers 34
2.7 Effect of high-resolution training 35
2.8 Free-space optical deep leaming accelerator 39
2.8.1 Deep Leaming with Free-space Optical Accelerators 39
2.8.2 Passive optical Accelerator 40
283 Active 4f optical Accelerator 42
2.8.4 High resolution capabilities of 4f Optical Neural Networks 45
285 Optical Transformers 50
290 Datasets e e e e e e e e e 53
201 CIFAR-100 e e 53
29.2 Classification of CIFAR-100 dataset 56
293 OxfordINTPet 57
294 Helacells 59
29.5 Segmentation of HelLa Cells and Oxford-IIIT Pet 59
2.10 Gradient Accumulation L. 62
2.11 Measurement of performance, 62
212 Conclusion L e e e e e e 64
FatNet for Classification 67
31 Imtroduction 67
32 Methods L 69
3.21 FatNetconversion 69
3.2.2 FatSpitter in Convolutional layers 13
3.23 Optical Simulator 16
324 OptNNlayer 79
3.25 Pseudonegativity 82
326 ResNet-1B 82
327 AlexNet e e e 88
328 VGG-19. . . . L. 89
33 Experiments L. L e e e e 92
34 Resultsand Discussion 93

xvi

341 ResNet-18 e
342 AlexNet. e e e
343 VGG-19. e e e e
35 Conclusion @ i e e e e e e e e e e e e
4 Fat-U-Net for Image Segmentation
4.1 Introduction to Image Segmentation
42 Methodology
4.2.1 Intwitive Fat-U-Nets
4.2.2 U-Net without skip connections
43 Experiments e e e e .
44 Resultsand Discussion i,
441 Intwitive Fat-U-Nets
442 U-Net without skip connections
45 Conclusion i i it it e e e e e e e
5 Shared Convolutional Vision Transformers (ConvShareViT)
51 Introduction & i i e e e e e
5.2 Methodology e
5.2.1 Shared Depthwise Convolution.
5.2.2 Attention Mechanism
5.23 Multilayer perceptron L.l
5.2.4 Potential Parallelisation of ConvShareViT in 4f system
53 Experiments e e e e e e
54 Resultsand Discussion
55 Conclusion @ i i i e e e e e e e e e e e e
6 Conclusions and Future work
6.1 Conclusion i i i e e e e e e e e
6.2 Futurework L e e
References

A Peer-reviewed publications

xvil

107
107
108
110
113
113
115
122
125
125

129
129
130
130
134
137
139
140
143
149

151
151
153

157

171

List of Figures

2.1

2.2

2.3

2.4

Structural flow of the Thesis. This flow chart illustrates the logical pro-
gression and dependencies between the chapters of the thesis. The arrows
indicate the flow of content, showing how each chapter builds upon the
PreVIOUS OMES. . . .+ v v v v v b v v vt e e bt e e e e e e e e

4f System hardware setup as per Chang ef al. [1]. In this particular
configuration, laser input, not shown in the figure, shines its beam onto the
input plane modulator. The beam then passes through a lens, performing a
Fourier transform of the image onto a phase mask in the Fourier plane. The
phase mask applies a predefined filter by modulating the Fourier-transformed
image. This fixed-phase mask can be replaced with a dynamic modulator if
required. The fixed phase mask used by the authors in the Fourier plane can
be replaced by another modulator if needed. The final wavefront, captured
by the camera, represents the convolution of the input image with the phase
maskkernel.
Example of the convolutional neural network for classification, VG G-
19 [2]. A cone-shaped network is where the feature maps are pooled down,

and the final one is fattened into a vector and fit into a classifier of linear layers. 19

The original architecture of AlexNet, proposed by Krizhevksy ef al. [3].
The model designed for the ImageNet classification is the network that uses
the ReL.U activation function, consisting of five convolutional layers and
threedenselayers.
ResNet Block as described in the original introduction by He et al. [4].
The residual layer or block contains two weight layers, in this case, convolu-
tional layers. The input of the block is saved and then added to the output
of the batch normalisation of the second convolutional layer right before its
activation layer. L. ..o

Xix

25

2.5

2.6

2.7

28

29

2.10

Other orders of layers in the residual block. (a) BatchNorm after addition
(b) ReLU before addition (c) ReLU preactivation (d)full-preactivaiton . . .
Visual schematic of the attention mechanism. Input vectors are combined
into one matrix and multiplied by weight matrices W,,Wj, and W,. Outputs
of W, W are used to form an attention matrix by multiplying Q with the
transpose of K. This produces attention scores, which are then passed through
a softmax function to create a distribution that reflects how strongly each
input vector relates to the others. The attention matrix is then multiplied by
the output of the W,, forming the output of the self-attention layer.
Vision Transformer architecture. The pipeline starts by dividing the image
into patches, which are then flattened into vectors to represent the input
tokens. Next, these tokens are linearly transformed using linear layers in
a process known as input embedding. To indicate the position of each
token in the original image, positional encoding is added to the embeddings.
An additional token, called the classification token, is included in the list
of embeddings. This token will ultimately contain information about all
tokens and will be used for classification. As the inputs progress through
the network, they are passed through self-attention layers and MLP layers.
Finally, the CLS token is placed into the linear classifier.
Implementation of the convolutional layer in optics using the kernel
tiling. Kernels are first padded and tiled into one block. Consequently, the
input is padded to the resolution equal to the newly tiled kernel block. The
output of the convolution of these blocks will result in the convolution of
input with each kernel tiled in the kernel block.
Kernels from the first layer of the MNIST neural network used for the
example in Figure 2.10. The kernels are extracted from the fully trained

26

29

47

custom convolutional neural networks from scratch for demonstration purposes. 48

Experimental results of the kernel tiling technique applied to an input
channel of MNIST digit "'7" and sixteen kernels extracted from the
model trained on MNIST. (a) The input image padded the resolution of the
kemel block (b) Kernel block containing all kernels padded and tiled together
(c) Tiled outputs of the convolution of the input image with the corresponding
kernel from the kernel block, achieved simply with the convolution of the
matrix (a)and (b). e e e ..

X

2.11

2.12

2.13

2.14

2.15

2.16

Implementation of the convolutional layer in optics using the channel
tiling. Channels first padded and tiled into one block. Kernels of the particu-
lar output are consequently padded and tiled in the locations corresponding
to their input channels. The middle picture of the output block,Os, is the sum
of the convolutions of each input channel with the corresponding kernel. . .
Experimental results of the channel tiling technique applied to four input
channels of MNIST digit "' 7" as input and four kernels corresponding
to one output channel extracted from the model also trained on MNIST.
The input image is padded and tiled four times (each corresponding to the
kernel). Kernels are also padded and tiled into one kernel block. Convolution
has been performed with both blocks, and the image in the middle of the
output is cropped out. The cropped-out image is the sum of the convolutions
of mputs with4 kernels. L.
Implementation of the convolutional layer in optics using mix tiling. All
input channels are tiled horizontally in the middle of the input block. Kernels
corresponding to the same output channel are tiled horizontally. In the output
block, the output matrices in the middle of each row correspond to the output
of the convolutional layer, which is the sum of the convolution of the input
channel with its corresponding kernel and summation.
Experimental results of the mix tiling technique applied to a four-input-
channel, four-output-channel convolutional layer, using the MNIST digit
"7'" as input. Sixteen 2D kernels were extracted from a custom convolutional
neural network trained on the MNIST dataset and were tiled in the kernel
block to produce four output channels. The resulting block contains 28
output images, with only four images in the middle column falling within the
valid region, which can be cropped and used as an output of the convolutional

Optical Vision Transformer hardware architecture as per Xu ef al. [5].
The left part of the setup performs the Transformer path, where SLMs are

used for the matrix multiplication and lenses to simulate the summation

while demagnifying the ray. The right side of the setup is a standard 4f
system used for the classification.
Subset of CIFAR-100 dataset. Coloured images of varios objects, animals,
vehicles and other 100 classes, with the resolutionof 32 =32

49

2.17

2.18

3.1

3.2

3.3

34

3.5

Subset of the Oxford IIIT pets dataset with ground truth segmentation
masks. This is one of the three types of labels that come with the dataset,
including segmentation mask, ROI (bounding box), and breed classes. . . .
Example of six slices from the Ground Truth of HeLa Cells dataset. The
slices are displayed in increasing order from left to right. The nucleus is
vivid in the middle slices, but gets smaller and even splits in the shallowest
and deepest slices. Arrows are added for demonstrative purposes: the green
arrow points to the manually labelled nucleus, while the red arrows point to

the adjacent cells, where the nucleus was ignored by the labeller.

Flowchart of the FatSpitter, illustrating the process of increasing the
resolution of feature maps and kernels while reducing the number of
channels, in accordance with FatNet rules. (a) Regular FatNet conversion.
(b) FatNet for cases where the number of input channels equals the number
of outputchannels. L.
Flow chart for the FatNet refinement of the convolutional layers. After
the FatNet conversion, some convolutional layers’ output channels will not
be equal to the input channels of the next layers. Hence, their output channels
are adjusted; consequently, the kernel size is adjusted accordingly.
Graphical representation of the 4f system performing the convolution
operation in the simulator. The system consists of the input plane (laser),
the convex lens, the Fourier plane (modulator or phase mask), and another
convex lens and the camera is separated from each other by one focal distance
of the lens. When light passes through the lens, it forms a 2D Fourier
transform on the Fourier plane, where it can be multiplied by the kernel in
the frequency domain. The light then passes through the second lens, which

58

60

11

converts it back into the space domain, where the output is read by the camera. 79

Visual demonstration of the regular convolutional layer performing the
2D convolution operation in 3D. This convolutional layer has the number
of input channels i and the number of output channels j. The number of 3D
kernels is j, but the number of kemels takenin 2D isix j..
Visual demonstration of the convolutional layer performing convolution
operation in 2D. The convolutional layer has an input tensor of depth i and
an output tensor of depth j. The number of kernels required for the layer is
i x j. After all convolution operations, the outputs have to be summed to
make up a channel of the outputtensor

3.6

3.7

3.8

Comparison of regular convolution and convolution using a pseudo-
negative split of the kernel on the example of the Sobel edge detection
Instead of training the model with two different positive kernels and subtract-
ing the outputs, in this method one regular kernel can be used twice one for
negative and for positive numbers using sign flip and ReL.U functions and
only then the outputs are subtracted to emulate the convolution with negative
numbers. Both processes yield identical results for convolution operations. .
The comparison between our tweaked ResNet-18 used for CIFAR-100
training and FatNet, which is built on ResNet-18 and specifically de-
signed for CIFAR-100 classification. (a) ResNet-18 architecture is slightly
altered in our version. Our model does not employ strides, given that optical
systems are unable to carry out strides in convolutions. Moreover, to en-
hance compatibility with CIFAR-100, we’ve omitted the second non-residual
convolutional layer. (b) FatNet, which is based on ResNet-18, is tailored
for CIFAR-100. This structure has fewer channels but larger resolutions
when compared to ResNet-18. The kernel sizes can reach up to 10 x 10, and
feature maps are never pooled to smaller than 10 x 10. The concluding layer
isa 10 x 10 matrix that is flattened into a 100-element vector, with each
element representing a CIFAR-100class.
The comparison between our tweaked AlexNet used for CIFAR-100
training and its FatNet equivalent, built on AlexNet and specifically
designed for CIFAR-100 classification. (a) AlexNet architecture is slightly
altered in our version. Our model contains only one linear layer to make it
more compatible with CIFAR-100. (b) Alex-FatNet tailored for CIFAR-100.
This structure has fewer channels but larger resolutions when compared to
AlexNet. The kernel size reaches 10 x 10 in the last layer, and feature maps
are never pooled to smaller than 10 x 10. The concluding layer is a 10 x 10
matrix flattened into a 100-element vector, with each element representing
CIFAR-100classes. oo it it e e e e e e

XXiii

33

3.9

3.10

3.11

3.12

3.13
3.14

3.15

The comparison between our tweaked VGG-19 used for CIFAR-100
training and its FatNet equivalent, built on VGG-19 and specifically
designed for CIFAR-100 classification. (a) VGG-19 architecture is slightly
altered in our version. Our model contains only one linear layer from 512
nodes to 100 to make it more compatible with cifar100. (b) VGG-FatNet
tailored for CIFAR-100. This structure has fewer channels but larger resolu-
tions when compared to VGG-19. The kernel sizes can reach up to 10 x 10,
and feature maps are never pooled to smaller than 10 x 10. The concluding
layer is a 10 x 10 matrix flattened into a 100-element vector, with each
element representing CIFAR-100 classes.
Visual Representation of the impact of kernel size larger than the reso-
lution of the feature map. (a) Shows a kernel from FatNet, restricted to a
10 x 10 size to match the maximum feature map dimensions. (b) [llustrates
an unrestricted kernel with a size of 37 x 37, exceeding the feature map

resolution. Note the "no training” regions along the edges of the kernel in (b) 95

First layer visualisation of kernels in (a)ResNet and (b)Res-FatNet. Both
sets of kernels represent various similar patterns learned during the training
PIOCESS. . . v v v v et e e e e e e e e e e e e e e e e
Comparison of training and validation accuracies per epoch for each
model used in the experiment. The steep jumps can be see every 50 epoch
due to the learning rate update by a scheduler. (a) The ResNet-18, Res-
FatNet, and the Optical simulation of Res-FatNet all accomplished a training
accuracy of 99%, with ResNet-18 achieving it in fewer epochs. Conversely,
the optical simulation took longer to train due to the complex computation
needed to simulate light propagation. (b) As for validation accuracy, ResNet-
18 reached up to 66%, while Res-FatNet could not exceed 60% for both
validation and testing, despite its fewer convolutional operations.
1st layer visualisation of kernels in (a)AlexNet and (b)Alex-FatNet
Training curves for AlexNet and Alex-FatNet with (a) training accuracy
and (b) validation accuracy. The validation accuracy seems to be similar
despite Alex-FatNet being constantly lower. In contrast, training accuracy

shows that Alex-FatNet took longer to reach the training accuracy of AlexNet. 100

Training curve of the training done on Alex-FatNet in the optical simula-
L

XXIV

3.16

3.17

3.18

4.1

4.2

4.3

44

Visualisation of the kernels from the first layer of the (a) VGG-19 and
(b) VGG-FatNet trained on CIFAR-100. As the kernels are only 3 x 3, the
similarity is not immediately obvious. Arrows indicate some clearly similar
kernels or rotated likeincase "4".
Training curve of the training done on Alex-FatNet in the optical simula-
tor. The curve is unstable, although it reaches a similar performance as the
original VGG-FatNet-19. L.
Training curves for VGG-19 and VGG-FatNet. (a) training accuracy and

(b) validation accuracy. Lo e

(Graphical representation of our implementation of U-Net and Fat-U-Net
architectures. (a) U-Net architecture, with all kernel sizes 3 » 3, MaxPool
with kernels size of 2 < 2 and deconvolution operations with a kernel size of
3 x 3. (b) Fat-U-Net architecture derived from our implementation of U-Net,
with the varying kemnel sizes indicated as K at each layer. The resolution of
the feature maps stay constant throughout the network. Ration of kernel to
feature map is preserved between U-Net and Fat-U-Net.
Training curve for Oxford-IIIT Pets validation dataset, trained with
U-Net and Fat-U-Net. A smoothed curve is plotted on top of the values.

104

Both curves are correlated, while the Fat-U-Net is constantly lower than U-Net. 117

Qualitative results of Oxford IIIT Pet dataset. (a) Examples of perfect
segmentation by both algorithms. (b) Examples of U-Net performing better
than Fat-U-Net. U-Net managed to segment a cat in the background, even
though that wasn’t part of the ground truth. Moreover, in the top right picture,
Fat-U-Net missed pixels in the middle of the cat. (c) Examples of Fat-U-Net
outperforming U-Net. U-Net missed the left-side pixels on the cat picture and
a tiny bit of the pixels on the back of the dog. (d) Bad segmentation examples
by both algorithms. U-Net over-segmented the cat, while Fat-U-Net under-
segmented it in the left picture. In the right picture, both algorithms classified
the hand as partof the animal.
Training curves for HeLa cells validation dataset, trained on U-Net and
Fat-U-Net. The smoothed curve is plotted on top of the original values.
The U-Net quickly reaches the desired performance around epoch 7, while
the Fat-U-Net starts with a very low loU but eventually reaches a similar
performance as the U-Net at around Epoch 12. Over time, the performance
of Fat-U-Net continues to approach thatof U-Net.

4.5

4.6

4.7

4.8

4.9

4.10

Training curves for validation set of Optical simulation of Fat-U-Net
trained on HeLa cells. A smoothed curve is plotted on top of the values.
Optical simulation of Fat-U-Net took fast to reach the performance of IoU of
0.8. But overall, due to the complexity of the simulation, it took 95 epochs
to reach the desired performance, and the projection indicates that it may
continue to IMPrOVE. ot it et e e e e e e
(QQualitative results of HelLa dataset. (a) train slice 119 (b) test slice 121 (c)
Unseen cell, taken from the largerfield.
U-Net and Fat-U-Net segmentation qualitative results on 8192 x 8192
images. Green arrows indicate areas of good performance, while red arrows
highlight areas of poor performance.
Intersection over Union (IoU) of each slice of the HeL.a cells dataset
by both models: (a) U-Net and (b) Fat-U-Net. The red points indicate
the test data slices whose patches were not included in the training process.
It is evident that both models perform similarly poorly for shallow and
deeper layers, where the nucleus is either small or non-existent, and perform
comparably well for middle slices.
Closer look on line graph of IoU metric on each slice of the HeLa cells
dataset. The line graph provides a detailed view of the IoU metric for each
slice of the Hel a cells dataset. The red points represent the test data slices
whose patches were excluded from the training process. These test slices
exhibit a slightly lower loU metric compared to the training slices, which is
particularly noticeable. L.
Learning curves of U-Net and Fat-U-Net without skip connections. (a)
Regular learning curve plot for both models without skip connections, and
both failed to train, while Fat-U-Net was slightly more stable (b) Smoothed
learning curve for both models without skip connections, showing that Fat-U-
Net performed better, even though overall the final evaluation is on U-Net’s
favour.

XXV

124

3.1

3.2

3.3

Visual comparison of input split in regular multi-head attention and our
method when the inputs are two-dimensional. (a) In regular multi-head
attention, the input vectors are split into equal-sized vectors, each assigned to
a dedicated head of attention, followed by the concatenation of the outputs.
(b) In our method, the process can be viewed as patchification, where the
two-dimensional input is divided into smaller patches that fit into the heads
of convolutional attention layers. The outputs are then merged back into their
corresponding locations. L. L.
Implementation of the linear layer using convolution and tiled convo-
lution for 4f system. (a) A simple linear layer of one vector is applied to
another vector of the same length. Each output pixel is the weighted sum of
input pixels. (b) Input pixels are in 2D matrix format, convolved with the
kemnel of the same size, with the valid padding. The output is similar to one
output pixel of the linear layer. (c) Kernel tiling is used to tile all weights
of the linear layer in the kernel block, and input is padded to the required
resolution. The output archives all output nodes of the linear layer, with the
requirement of reshaping (removing zeros in invalid regions)
Comparison of regular valid convolutional layer, depthwise convolu-
tional layer and shared depthwise convolutional layer, which copies the
weights across all input channels. (a) Regular convolutional layer, with the
groups=1. The number of 2D kernels is equal to the number of input channels
% the number of output channels. (b) Depthwise convolution, where the
number of groups is equal to the number of input channels. In this case, each
output channel gets only one 2D kernel, meaning no channel summation
happens. (c) In the shared depthwise convolutional layer, unlike the regular
depthwise convolutional layer, the weights are shared across input channels,
making it ideal for the emulation of the Linear Layer. If the kernels are the
same resolution as inputs, the valid convolution yields one pixel for each
output channel, which can be reshaped into the initial resolution.

XXVl

133

54

3.5

5.6

5.7

5.8

Shared depthwise convolutional layer with the valid convolution and
reshape of the output for full emulation of the Linear layer using convo-
lution. (a) Shared depthwise convolutional layer from one matrix to one. In
this case, two matrices have been mapped to their new corresponding matrix.
(b) Shared depthwise convolutional layer from two matrices into one. In this
case, four matrices have been mapped into two, each group of two into one
corresponding output matrix. The technique can be used from many to fewer
matrices. (c) Shared depthwise convolutional layer from one matrix into two
matrices. In this case, two matrices have been mapped into 4, where each
has been mapped into corresponding two outputs. The technique can be used
from few tomany mapping. L.
Types of Convolutional layers used for the QKV projection, with shared
and not weights across the input channels and with same or valid
padding. (a) Simple depthwise convolutional layer with same padding.
(b) Shared depthwise convolutional layer with same padding (c) Depthwise
convolutional layer with valid padding, the outputs need to be reshaped into
the initial resolution (d) Depthwise convolutional layer with shared weights
across input channels and with valid padding, the outputs need to be reshaped
into the initial resolution. L.
General flow of the attention mechanism using only convolution oper-
ations and CNN layers. The input to the attention layer is a 3D tensor,
where each token is represented as a 2D matrix. This tensor undergoes QKV
projection using one of the methods described in Figure 5.5. The attention
scores are computed by applying a valid convolution operation between all Q
and K matrices. Finally, the weighted sum of the attention scores is obtained
through a regular convolutional layer on the V tensor, with the attention

Mix tiling with depthwise convolutional layers and its use in QKV pro-
jection layers for convolutional attention layers. (a) Simple mix tiling of
kernels, but kernels other than those corresponding to the output channel are
set to zero to avoid summation (b) Demonstration of how Shared depthwise
convolutions can be used in the gkv projection.
Comparison of training and validation curves for four Vision Trans-
former (ViT) models, featuring combinations of trainable versus sinu-
soidal positional encoders and single head versus twelve heads. (a) Train
accuracy per epoch (b) Validation accuracy perepoch

XXVl

3.9

3.10

3.11

Training curves comparison for the Training set and Validation set of
CIFAR-100 with different ConvShareVit models (a) Training curve for
train set of CIFAR-100, with the best model being model 11. (b) Training
curve for the validation set of CIFAR-100, with the best model being model
Ll e e e e e e
Visualisation of the average attention scores projected onto the original
input image of Apples from the test set of CIFAR-100. This figure com-
pares the performance of the last seven models with the regular ViT (Vision
Transformer with 12 heads). The vertical axis corresponds to the models and
the horizontal to the attention layers. The ViT model achieved good attention
scores in the final layers using a standard attention mechanism. Models
0,11, and 12 also achieved attention scores similar to the original ViT. In
contrast, Model 10’s attention scores look incorrect as it is focusing on the
background instead, as evidenced by other visualisations. Model 8 did not
converge, while Models 7 and 6 did not employ the Shared DW convolutional
methods without emulating the linear layer, causing the models to not learn
the attention scores in the same mannerasthe ViT.
Visualisation of the average attention scores projected onto the original
input image of a rocket from the test set of CIFAR-100. This figure
compares the performance of the last seven models with the regular ViT
(Vision Transformer with 12 heads). The vertical axis corresponds to the
models and the horizontal to the attention layers. The ViT model achieved
good attention scores in the final layers using a standard attention mechanism.
Models 9, 11, and 12 also achieved attention scores similar to the original
ViT. In contrast, Model 10’s attention scores focused on the background
instead, which still managed to achieve a good performance. Model 8 did not
converge, while Models 7 and 6 did not employ the Shared DW convolutional
methods without emulating the linear layer, causing the models to not learn
the attention scores in the same mannerasthe ViT

XXIX

List of Tables

2.1
2.2

2.3

2.4
2.5

3.1
3.2

3.3

3.4

3.5

3.6

Performance of residual networks on ImageNet [4]
Constituent layer in the work of Agrawal and Mital [6]. K represents the
kernel size, and C is the number of output channels.
Modell and Model2 by Agrawal and Mital [6]. The difference is indicated
inbold.
Classes and Superclasses in CIFAR-100 dataset.
Mizusawa et al.baseline performance of CIFAR-100 on different models . .

Construction of FatNet from ResNet-18.
Construction table of Res-FatNet from ResNet-18, after capping the reso-
lution of the kernels at a certain limit equal to the resolution of the feature
maps. Kernel sizes do not exceed the resolution of the feature maps. The
output channels that were not equal to the input channels of the next layer
were readjusted and indicated inbold. L.
Construction table of Alex-FatNet from AlexNet. Unlike the ResNet, AlexNet
did not require the refinement of the layers.
Construction table of VGG-FatNet from VGG-19, after capping the reso-
lution of the kernels at a certain limit equal to the resolution of the feature
maps. Kernel sizes do not exceed the resolution of the feature maps. The
output channels that were not equal to the input channels of the next layer
were readjusted and indicated inbold. L.
This table summarises the key parameters used in training each network,
including the optimiser, learning rate, scheduler, batch size, dropout rate, and
the numberofepochs oL
Comparison of the test accuracy and number of convolution operations used
in ResNet and Res-FatNet. Pseudo-negativity is taken into account in optical
SEIUP. . . o o i i e e e e e e e e e e e e e e e

XXXi

86

01

3.7

38

3.9

3.10

3.11

4.1
4.2

43
44

4.5

4.6

Inference time in seconds per input for ResNet-18 and FatNet with optics and
GPU with a batch size of 64 and 3136 for cases when the 4k resolution of the
4f device is fully utilised. The frame rate of the 4f device is approximated at
IMHz [T . . e e e e 98
Comparison of the test accuracy and number of convolution operations used
in each AlexNet. Pseudo-negativity is taken into account in optical setup. . 100
Inference time in seconds per input for AlexNet and FatNet with optics and
GPU with a batch size of 64 and 3136 for cases when the 4k resolution of the
4f device is fully utilised. The frame rate of the 4f device is approximated at
IMHz [T . . e e e e 101
Comparison of the test accuracy and number of convolution operations used
in VGG-19. Pseudo-negativity is taken into account in optical setup. 103
Inference time in seconds per input for VGG-19 and FatNet with optics and
GPU with a batch size of 64 and 3136 for cases when the 4k resolution of the
4f device is fully utilised. The frame rate of the 4f device is approximated at
IMHz [T . . e e e e 104

Construction table for Fat-U-Net’s first half out of the U-Net’s contracting path. 1 10
Comparison of the architectures of the Intuitive Fat-U-Nets. Unlike a Fat-U-
Net, which is converted using a FatNet algorithm for the conversion, these
intuitive networks were developed manually by choosing smaller channel
sizes and computing the new kernel sizes without taking into account the
number of pixels in the featuremap. 112
Experimental Setup for Hela Cell and Oxford-IIIT Pet Datasets 115
Inference time in milliseconds of U-Net and its FatNet equivalent (Fat-U-Net)
model per image with different batch sizes run on 4f accelerator and Nvidia
A100. The frame rate for 4f system was approximated at 2 MHz, and Nvidia
A100 GPU was measured experimentally. 116
Comparison of the evaluation results of the accuracy, mloU, and Dice score
of U-Net and its Fat-U-Net equivalent along with other works for Oxford-IIIT
Pet. . e e e 116
Performance Comparison of our implementation of five staged U-Net, its Fat-
U-Net equivalent, and a 4 staged U-Net implementation by [8]. Evaluating
Accuracy and IoU Metrics Across the entire dataset and 150-200 range for
all odd and test slices that have not participated in the training process. . . 121

XXX

4.7

3.1

3.2

3.3

Intuitive Fat-U-Nets (other "Large kernel/Few Channel”) performance in
comparison with original Fat-U-Net. Fat-U-Net outperforms all three varia-
tions of Intuitive Fat-U-Nets in both datasets.

Summary of Methods Applied to Different Models during ConvShareViT
development. This table outlines the primary experiments conducted and the
methods applied to each model. Each row represents a distinct model and
indicates the presence of specific methods with a checkmark.
Test accuracy on CIFAR-100 of a regular vision transformer with different
configurations. Models with "_sin" indicate the use of sinusoidal position
encoding instead of trainableencoding.
Test Accuracy of models described previously in Table 5.1.

XX X1l

List Of Acronyms

ASIC - Application-Specific Integrated Circuit

CCD - Charge Coupled Device

CIFAR - Canadian Institute For Advanced Research

CMOS - Complementary Metal-Oxide-Semiconductor

CNN - Convolutional Neural Network

DMD - Digital Micromirror Device

ELU - Exponential Linear Unit

FFT - Fast Fourier Transform

GCN - Global Convolutional Network

ILSVRC - ImageNet Large Scale Visual Recognition Challenge
K-NN - K Nearest Neighbours

MZI - Mach-Zehnder Interferometer

ONN - Optical Neural Network

SGD - Stochastic Gradient Descent

SLM - Spatial Light Modulators

SVM - Support Vector Machines

TPU - Tensor Processing Unit

VIT - Vision Transformer

VGG - Visual Geometry Group

MLP - Multi Layer Perceptron

FCN - Fully Convolutional Networks

IoU - Intersection over Union

ROI - Region of Interest

D?NN - Diffractive Deep Neural Networks

MNIST - Modified National Institute of Standards and Technology
MHSA - Multi-head Self attention

QKYV - Querry (Q), Key (K), and Value (V) matrices from the Transformer models

XXXV

Notations

Symbol Description

Fourier transform operator

X Input of the model (e.g., feature map or image)

Y Output of the model (e.g., predicted result or label)
r Row index of the image or matrix

c Column index of the image or matrix

Angular frequency for Fourier transforms

ft Function in the time domain
F Fourier transform of f ¢
i Imaginary unit |

Time shift variable for convolution

t Time variable

u,v Frequency domain variables (in 2D Fourier Transform)

Width of the image/matrix

Image (input for convolution or processing)

W
H Height of the image/matrix
1
K

Kernel (convolution filter applied to the image)

Convolution operation

XXX Vil

Chapter 1

Introduction

Deep learning has revolutionised the field of artificial intelligence, enabling the development
of sophisticated models for various applications. Among these, computer vision stands out
as a particularly challenging area due to the large volume of data and the need for precise,
high-speed processing. Within the deep learning approaches, convolutional neural networks
(CNNs) have become a standard approach for various computer vision problems. CNNs
have been successfully applied to image classification [3, 9, 2], object detection [10, 11],
localisation [12], and segmentation [13, 14], among many other applications [15-19].

With the recent advancements of the transformer networks [20] in natural language
processing, this approach has also migrated into computer vision [21] with the potential
of replacing the standard of computer vision, CNNs. However, due to the computational
efficiency of CNNs, traditional CNN networks still dominate the computer vision area.

CNNs are suitable for computer vision tasks because neurons in CNNs are only connected
to the pixels of their receptive field rather than to every single neuron of the next layer as
in fully connected networks. This localised connectivity reflects the fact that neighbouring
pixels in images are more closely related to each other than distant pixels. This approach
also reduces the number of trainable parameters, which accelerates the inference and makes
the neural network more immune to overfitting. Although CNNs are computationally less
expensive than fully connected neural networks, accelerating CNNs is still an important task,
especially with the ever growing number of images and videos that are captured. As the
complexity of these machine learning models grows, so does the computational demand and
the challenge of real-time applications.

There have been many software methods to accelerate the deep learning training process,
including using shallow networks [22], pruning [23], quantisation and network binarisa-
tion [24]. One of the ways would be to reduce the depth of the deep neural networks, as
in the studies of Ba and Caruna [22], which proved that it is possible to estimate the deep

neural network with the shallower model and learn the same functions as deep networks on
the example of the CIFAR-10 dataset. A similar accuracy can be achieved by having the
same number of trainable parameters in the shallow network as in the original deep network.
Pruning redundant weights in a previously trained network to reduce the size of the network
for the inference acceleration can be considered another software-based method. In their
experiments, Han e al. [23], trained the network first using the standard network training
methods. Then, they pruned the small weights by deleting all weights below the threshold
and retrained the network. According to [23], pruning reduces the number of parameters by
thirteen times in VGG-16 and nine times in AlexNet.

While hardware accelerators, such as graphics processing units (GPUs), field-programmable
gate arrays (FPGAs), and application-specific integrated circuits (ASICs), have emerged as
a potential solution to this challenge, their effectiveness may be limited in the long run as
Moore’s Law begins to lose its predictive power [25].

In response to this challenge, researchers have begun to explore the potential of optics
for accelerating deep learning [26]. By using the properties of light, optical devices can
perform operations faster and more efficiently than traditional electronic devices, making
them a promising option for deep leaming applications.

This thesis explores the potential of free-space optics, specifically the 4f system, for
accelerating deep learning and constructing neural network architectures accordingly. The
4f system is well-suited for high-resolution tasks as its performance does not degrade
with increased input or kernel resolution, which is a significant limitation in conventional
electronic architectures. The main performance bottleneck of high-speed cameras is the
readout time, which, in fact, scales with the camera’s resolution [7]. This thesis explores
the adaptation of deep learning models, particularly CNNs and ViTs, to take full advantage
of the 4f optical system. The FatNet conversion algorithm is at the core of this adaptation.
It restructures traditional CNNs to match the capabilities of free-space optical computing
better. By increasing the resolution of feature maps and kernels while reducing the number of
channels, FatNet transforms the traditional cone-shaped architecture of CNNs into a barrel-
shaped structure optimised for the high resolution offered by an optical system. Building on
this foundation, this thesis introduces the implementation of FatNet on models like ResNet-
18 [4], AlexNet [3], and VGG-19 [2] for classification evaluated on the CIFAR-100 [27]
dataset, resulting in significant speedups in optical environments with minimal performance
trade-offs.

The CIFAR-100 dataset is a widely used benchmark in image classification, containing
100 classes of real-life images, with each class representing a distinct object category, such as
animals, vehicles, and everyday objects. Each class consists of 600 images, with 500 images

allocated for training and 100 for testing. The image resolutions are 32 x 32, which presents
a significant challenge due to the low resolution combined with the high number of classes.
This makes CIFAR-100 a much more complex and difficult version of the CIFAR-10 dataset,
which only has 10 classes.

Building on the foundation of FatNet, this thesis introduces the Fat-U-Net architecture, a
specialised adaptation of the U-Net [13] model for image segmentation tasks within the 4f
system following the principles of the FatNet conversion. The effectiveness of Fat-U-Net
is demonstrated through evaluations of benchmark datasets, such as the Oxford-IIIT Pet
and Hel a cell segmentation tasks, showcasing its advantages over traditional GPU-based
implementations.

The Oxford-IIIT Pet [28] is a well-known dataset for image segmentation. It contains
images of cats and dogs with pixel-level annotations. Due to its variability in pose, scale, and
breed, it is often used to benchmark segmentation models, providing a challenging test for
model generalisation.

The HeL.a cell datasets are widely used in biomedical image segmentation tasks [13],
particularly for cell identification and analysis. HeLa cells, an immortal cell line derived from
cervical cancer cells [29, 30], present unique challenges in segmentation due to their diverse
shapes and sizes. These datasets are crucial for evaluating the performance of segmentation
models in biomedical contexts and examining their ability to define cell boundaries [13, 31],
nuclei [32] and elements like mitochondria [33] accurately.

This thesis then explores the potential implementation of Vision Transformers on the
4f free-space optical accelerators, with the idea that the same 4f system can be used for all
kinds of neural networks. The analyses involve experiments on whether replacing the linear
layers with the convolutional layers can make the model learn attention in a similar manner
to regular multi-head self-attention. Several types of convolutions were tested, starting from
regular convolutions and ending with the shared depthwise convolutional layers developed in
this work to emulate regular MLP using convolutions. This study also investigates how our
convolutional ViTs (ConvShareViTs) can be adapted to benefit from the high parallelism and
resolution capabilities of optical systems.

1.1 Problem statement

Before diving into the problem statement, it is important to summarise the general specifica-
tions of the system under consideration. The observed system focuses on two fundamental
tasks in computer vision: image classification using CNNs and ViTs, and image segmentation
using CNNs. To accelerate the inference speed of these tasks, we explore the 4f free-space

optical system, a device capable of performing a convolution using optical components. The
4f system takes advantage of the principles of Fourier optics to compute convolutions in
parallel across high-resolution input images, offering potential for accelerating deep learning
models.

However, the 4f system introduces specific constraints that complicate its direct integra-
tion with traditional deep learning.

1. It can only perform convolutions without activation or pooling layers, requiring a
hybrid optical-electronic approach to execute complete neural network architectures.

2. The system processes high-resolution data, necessitating architectural adaptations to
utilise its parallelism effectively.

3. Finally, the readout process—extracting convolution results from the optical system—is
a significant bottleneck, as it slows down the overall inference process, negating the
potential speedup from optical computation.

Addressing these challenges requires rethinking how neural networks are designed and
integrated with the 4f system. The goal is to create architectures that can operate efficiently
in high-resolution settings, mitigate the bottlenecks caused by electronic components, and
broaden the versatility of optical accelerators to handle diverse models. These considerations
form the foundation for the core problems explored in this thesis.

Lack of research in barrel-shaped networks: Limited attention has been given to
research and investigation of high-resolution training due to its inefficiency for CPU/GPU
training. Traditionally, CNNs (Convolutional Neural Networks) are used for feature ex-
traction, and the extracted features are then fit into a classifier, which can be any type of
classifier. This structure exists due to older techniques where features used to be extracted
using methods like SIFT (Scale-Invariant Feature Transform) [34] or manually and then fit
into the classifier However, with the advent of CNNs, it became possible to cascade the
feature extractor and classifier into one model, allowing the convolutional feature extractor
and linear layers (classifier) to be trained together.

Despite this advancement, the architecture of CNNs has retained its cone shape. This
shape is a result of the pyramid-like feature extraction process in CNNs, where the feature
maps are progressively downsampled, eventually forming a vector of encoded features
that is input into the classifier. The early layers of CNNs naturally learn to extract basic
features, such as horizontal and vertical lines, while the deeper layers extract more complex
features based on the features from the previous layers. Consequently, the last layer of the
convolutional part contains sufficiently complex features that can be effectively used by the
classifier.

This cone-shaped CNN architecture is supported by historical context, particularly in the
development of multi-scale representations such as the Laplacian pyramid introduced by Burt
and Adelson [35]. Their work showed how using image encoding methods with multiple
layers of image representation, which are similar in shape but different in size, can efficiently
process both the spatial frequency and features of an image. Similar to the modern CNN
architectures, this pyramid structure was designed to enhance efficiency by progressively
downsizing the input data. This approach is still favoured in CNNs for its efficiency in
CPU/GPU inferences. The downsizing operation significantly reduces the computation,
making subsequent layers more efficient. It is important to note that the effective receptive
field of these models increases with the depth of the layers [36]. The effective receptive
field refers to the region of the input space that a particular CNN layer’s output neuron
is influenced by. Although larger kernels could also contribute to an increased effective
receptive field in CNNs, they are not commonly used due to their inefficiency.

The optical setup discussed in this thesis, specifically the 4f free-space optical accelerator,
is fully utilised only when the inputs and kernels are at maximum resolution. In this 4f
system, the resolution of the kernels and inputs does not impact the speed of inference.
Therefore, the exploration of high-resolution training becomes particularly relevant.

Constraints of the 4f system: Although the 4f system’s advantages lie in its parallelism,
high-resolution capabilities, passive Fourier transformation, and low energy consumption,
the main limitation is the frequency rate of the modulators and cameras.

Convolutional neural networks contain a non-linear activation function after each con-
volutional layer. The 4f system can perform a set of convolution operations, and if the
non-linearity could be applied optically, the output could potentially be fit into another
optical convolutional layer. Unfortunately, non-linearity in optics is still an active area of
research [37, 38]. Consequently, most research on 4f systems involves reading the output
with a camera to introduce the non-linearity electronically [39]. This means that to perform
all layers of the CNN optically, the output must be read by a camera, the non-linearity
applied electronically, and then the input modulated again. This introduces a significant
challenge, as the frequency rate of modulators and the read-out speed of the camera are the
main bottlenecks of the system. The overall number of convolution operations in the model
increases the inference time of the system. Therefore, the fewer convolution operations the
system has, regardless of the resolution of the inputs, the faster the inference will be. This
necessitates research on CNNs with fewer convolution operations and larger inputs'kernels
without substantial loss in performance.

Limitations in the Versatility of Optical Accelerators Unfortunately, optical accel-
erators are usually designed with a specific neural network architecture in mind, meaning

they are specialised for a particular type of network, such as a CNN or a transformer model.
Additionally, they are often customised for a specific architecture within that network type.
For instance, some studies use fixed weights in optical CNNs and apply the optical setup
only for the first layer or a single convolutional layer [1]. While some research explores the
use of the same device across all layers of a CNN, optical setups for transformer models
are typically designed specifically for those models [5]. This leads to the question: can
a 4f system be flexible enough to work with all types of CNNs and transformer models?
Developing a universal optical accelerator that can efficiently handle different types of neural
networks is still an open research challenge, and the solution may lie more in software
adaptation than in hardware changes.

Summary of the Problem Statement: The limitations of current deep learning architec-
tures and optical accelerators highlight several key challenges. First, traditional cone-shaped
CNN architectures, optimised for CPU/GPU efficiency, are not efficient for high-resolution
training, which the 4f optical system inherently supports due to its resolution-independent
inference speed. Second, the 4f system faces bottlenecks due to the reliance on electronic
non-linear activation function and the frequency limitations of modulators and cameras,
necessitating fewer convolution operations with larger inputs and kernels to optimise its
performance. Lastly, optical accelerators lack versatility, often being tailored to specific
architectures or layers, making the development of a universal optical accelerator for diverse
neural networks an ongoing challenge that requires both hardware and software innovations.

1.2 Objectives

Building upon the problem statement, the objectives of this research are as follows:

1. Develop, test, and compare novel CNN architectures for classification and segmentation
specifically designed and adapted to the 4f free-space systems, which provide high-
resolution capabilities that can be exploited for parallelism. To achieve this objective,
it is necessary to:

* Consider that the main bottleneck of optical systems is the camera readout and
thus, it is necessary to implement strategies to minimise camera readouts of the
4f system while maintaining performance.

2. Design and implement a simulator for the 4f system and optical convolutional layers.
Use the simulator to benchmark performance of the traditional electronic implemen-
tations and compare them with the novel proposed architectures. To achieve this
objective, it will be necessary to:

* Address and mitigate the optical accelerator’s limitation in handling negative

values, and enhance existing algorithmic solutions to improve memory efficiency.

3. Develop, test and compare novel Vision Transformer architectures that are compatible

with the 4f system. To fulfil this objective, it will be necessary to:

* Redesign multi-head self-attention mechanisms in Vision Transformers to use
convolution operations exclusively. The novel self-attention mechanisms should

be capable of learning attention scores rather than features, as in regular CNNSs.

* Evaluate the redesigned Vision Transformers for performance, computational
efficiency and parallelisation potential in the 4f system compared to measure
inference on GPU.

1.3 Scope and limitations

This research exclusively focuses on deep learning architectures using the 4f optical system
introduced in related work. Whenever proof of concept is required to demonstrate that the
architectures can run in optics, a simulation is used. It is not focused on the development of
new optical setups or addressing hardware-related issues, though some minor coverage is
provided. The study considers the advantages, limitations, and constraints of the 4f system
from previous research to enhance the architectures and discover more efficient solutions.

The primary objective is to adapt standard neural networks, such as Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs), to formats that are more efficient within
the 4f system. This work involves analysing these models to evaluate their benefits and
drawbacks, with a particular focus on the improvements in inference speed and potential
performance trade-offs.

Moreover, this research is solely focused on accelerating inference rather than backpropa-
gation. Although the 4f system simulator has been used for training purposes in this thesis,
the question of using the 4f system for backpropagation is beyond the scope of this work.

Additionally, several issues that exist in the free-space acceleration of Al are not consid-
ered in this research. These include the potential misalignment of optical elements, which
could likely affect performance, system noise, various quantisation levels, and the impact of
noise on low-precision training.

1.4 Contributions

1. Introduction of the FatNet Conversion (Chapter 3): Introduced the FatNet con-
version, which optimises neural networks for optical computing by increasing the

resolution of feature maps and kernels while reducing the number of channels. This

conversion maintains the computational complexity and adapts the network to the con-

straints of the 4f system, significantly reducing the number of convolution operations

required.

(a)

(b)

(c)

(d)

Development of the FatSpitter Algorithm (Chapter 3): Created the FatSpitter
algorithm, which automatically converts any PyTorch model into its FatNet
equivalent. This automated conversion process enables the transformation of
existing neural network architectures into versions that are optimised for optical
acceleration, facilitating broader application and experimentation. FatSpiter can
potentially be integrated into the 4f system to convert all networks to a more
optimised format before training if needed by the user.

Design and Implementation of the FatNet Architectures (Chapters 3 and
4): FatNet was designed and implemented on off-the-shelf architectures such as
ResNet-18, AlexNet, and VGG-19. Following the successful implementation
and evaluation of the CIFAR-100 dataset, the method was scaled to segmentation
tasks. This led to the development of Fat-U-Net, the FatNet equivalent of U-Net,
by applying the FatNet principles to the contracting path of the U-Net. Fat-U-Net
features optimised kernel resolutions and reduced channel counts, making it
suitable for high-resolution image segmentation tasks in the 4f optical system.
The architecture underwent rigorous testing and evaluation on Pets segmentation
and Hel.a cells nucleus segmentation.

Performance Evaluation of FatNets (Chapters 3 and 4): Conducted compre-
hensive performance evaluations of classification FatNet networks and segmen-
tation network Fat-U-Net compared to traditional U-Net on benchmark image
segmentation tasks. Metrics such as accuracy, Intersection over Union (IoU), and
Dice coefficient were used to assess the effectiveness and efficiency of FatNet,
demonstrating its advantages in optical computing environments.

Theoretical Analysis of Optical Acceleration Speedups (Chapters 3 and 4):
Provided a theoretical analysis and quantification of the potential speed-up gains
achievable by FatNets when executed on free-space optical accelerator hardware.
Comparisons were made with conventional electronic architectures to highlight

the performance benefits of optical acceleration, particularly in terms of reduced
inference times and enhanced parallelism.

2. Development of a Custom PyTorch Layer with 4f Optical Accelerator Simulation
(Chapter 3): Created a custom Py Torch layer that incorporates a built-in simulator
of the 4f free-space optical accelerator. This simulator models the light propagation
and diffraction processes, enabling the testing and validation of optical neural. It
incorporates a new pseudo-negativity mechanism to address the inherent negativity
problem in optical computing. This mechanism ensures the accurate simulation of
optical convolutions that involve negative weights, which are not directly supported by
optical systems. Unlike other methods in the related work, the method of this work
stores only one version of the kernel instead of two.

3. Development of Convolutional Methods for Vision Transformers (Chapter 5):
Innovated novel methods for running Vision Transformers using only convolution
operations, making them compatible with the 4f system. This approach takes advantage
of the parallel processing capabilities of optical computing, providing a scalable
solution for Vision Transformer models. Provided the analyses of different methods of
integrating convolution operation into the ViT.

4. Analyses and Visualisations (Chapters 3, 4, and 5): Conducted a visualisation of
the first layer weights of the FatNets to compare them with the original layer. This
was done to find out whether the FatNets are training similarly to the original models.
The efficacy of the FatNets was proven by training Fat models that did not follow
the FatNet principles (the Intuitive-Fat-U-Nets). Furthermore, it was trained without
skip connections to demonstrate that the Fat-U-Net preserves localisation accuracy
better when compared to the U-Net without skip connections (autoencoder). Similarly,
the average attention scores were visualised and analysed to find out whether the
ConvShareViTs learn attention like ViTs.

1.5 Structure of Thesis

Figure 1.1 shows the logical flow of chapters in this thesis.Chapter 2, the Literature Review,
discusses the background, related work, datasets, and methodology relevant to the contribu-
tions of this study. Chapters 3, 4, 5 are the research chapters, which build upon the literature
review and address the gaps in knowledge highlighted in that chapter. Chapter 3 details the
development of the FatNet conversion, while Chapter 4 extends the methodologies presented

in Chapter 3 to adapt them for segmentation tasks. Chapter 5 uses methods distinct from the
previous two chapters. Chapter 6 summarises conclusion and future work.

1. Introduction

2. Literature Review

3. FatNet for Image
Classification

4. Fat-U-Net for Image 6. Conclusions and
Segmentation Future work

5. Shared
Convolutional Vision
Transformers

Fig. 1.1 Structural flow of the Thesis. This flow chart illustrates the logical progression and
dependencies between the chapters of the thesis. The arrows indicate the flow of content,
showing how each chapter builds upon the previous ones.

The detailed descriptions of all chapters are listed below:

Chapter 2: Literature Review -This chapter combines the background and related work
to provide a comprehensive understanding of the field covered in this thesis. It introduces the
foundational concepts and methods, including Optical Computing, the 4f system, Convolution
operations, Convolutional Neural Networks (CNNs), Transformer networks, and the Attention
mechanism. These methods, which form the basis of this research, are common knowledge
in the field.

The chapter also reviews related work relevant to the contribution of this thesis, discussing
the application of CNNss in classification and segmentation tasks. The datasets used in this
research are described. Specifically, the use of the CIFAR-100 dataset for image segmentation,
as well as the HeLa cell and Oxford Pets datasets for image segmentation tasks, are reviewed
in detail, with benchmarks provided for comparison purposes. Additionally, the application
of Transformers in image classification, particularly Vision Transformers, is explored.

10

The chapter further examines the impact of high-resolution training in CNNs and the
implementation of high-resolution or parallel inference in optical accelerators. Lastly, it
investigates the acceleration of deep learning within hardware, focusing on optical processors,
with an emphasis on free-space optics and the 4f system.

Chapter 3: FatNet for Image Classification This chapter details the primary method,
FatNet conversion, and its automated algorithm structure. It also explains the optical simulator
developed to evaluate model performance, the pseudo-negativity method used in the simulator.
The chapter then covers the conversion and evaluation of three off-the-shelf networks (ResNet-
18, AlexNet, and VGG-19) into their FatNet equivalents, trained with the CIFAR-100 dataset.

Chapter 4: Fat-U-Net for Image Segmentation This chapter discusses the conversion
and evaluation of a U-Net type architecture into its FatNet equivalent (Fat-U-Net), using
the Hela cancer cells dataset and the Oxford-IIIT Pet dataset. It also analyses the U-Net
and Fat-U-Net without skip connections and further evaluates the effectiveness of the FatNet
conversion using "Intuitive Fat-U-Nets".

Chapter 5: Shared Convolutional Vision Transformers (ConvShareViT) This chapter
explores using the 4f optical accelerator for Vision Transformers (ViTs). Although optical
setups for transformers exist, they are typically task-specific. We investigated using the same
4f system for ViTs by implementing ViTs with convolution operations. Different methods
were analysed, and the most effective was a shared depthwise convolution developed by us.

This method emulates linear layers using convolutions, making it suitable for the 4f system.

11

Chapter 2

Literature Review

Overview

This chapter introduces optical systems and neural networks, focusing on 4f optical accelera-
tors. It explains optical computing, the 4f system, the Fourier Transform’s role in computer
vision, and its connection to convolution operations. CNNs and their applications in image
classification and segmentation are discussed, along with a review of Transformers, attention
mechanisms, and ViTs.

The chapter also examines high-resolution training, free-space optical accelerators, their
benchmarks, and the 4f system’s capabilities, including parallelism and experimental results.
It concludes with the application of free-space optical accelerators to transformers and details
on datasets and benchmarks used in this work.

2.1 Optical Computing and 4f system

Optical computing refers to information processing systems that use light or photons to
perform computation, unlike electronics, which use electrons [40]. It started in the 1960s
when lasers were invented and found to have coherent optical properties suitable for informa-
tion transmission and processing. Optical computing exploits the high bandwidth and low
interference properties of photons to process data in parallel at the speed of light.

Some key advantages of optical computing include high bandwidth of the light beam,
high speed, zero resistance, lower energy consumption, and immunity to overheating [41].
However, optical computing also has some disadvantages:

» Lack of optical memory makes storage difficult

13

input plane lens phase mask lens camera sensor

Modulator

<

Fig. 2.1 4f System hardware setup as per Chang ef al [1]. In this particular configuration,
laser input, not shown in the figure, shines its beam onto the input plane modulator. The
beam then passes through a lens, performing a Fourier transform of the image onto a phase
mask in the Fourier plane. The phase mask applies a predefined filter by modulating the
Fourier-transformed image. This fixed-phase mask can be replaced with a dynamic modulator
if required. The fixed phase mask used by the authors in the Fourier plane can be replaced by
another modulator if needed. The final wavefront, captured by the camera, represents the
convolution of the input image with the phase mask kernel.

Difficulty of performing non-linear function in optics

Impossible to represent negative values in 4f correlator (4f free-space optical system
used in this work to perform convolution and correlation operations) as the camera
reads out the intensity

Slow optics-electronics and electronics-optics conversion

Flipped output: The input of the system is vertically flipped at the output due to the
physics of the geometrical optics in the 4f free-space correlator.

Since this work focuses on optical neural networks, it is essential to mention that there are
two main approaches to optical neural networks: free-space using Spatial Light Modulators
(SLM) [7, 1] or silicon photonics approach using Mach—Zehnder Interferometers (MZI) [42,
43]. Unlike silicon photonics, free-space optics use wireless propagation through a medium,
which can be air, outer space or vacuum. Although the silicon photonics approach’s clock
speed can reach several GHz, making it faster than free-space optics, it is inferior to the
free-space system in parallelism [26]. This research is focused on the 4f free-space approach
as described in Li ef al. [7], which takes advantage of the parallelism of free-space optics.
The 4f free-space optical system can be used to perform convolution operations faster than
traditional electronic processors.

Weaver and Goodman introduced the optical convolution method using the 4f system in
1966 [44]. Although this research urged interest in optical neural networks, such as the work

14

by Jutamulia and Yu [45] in 1996, the idea of optical neural networks only began gaining
broader popularity in the 21st century with the rise of neural networks and deep learning.

A standard 4f optical system consists of an input source, two convex lenses, two light
modulators and a sensor (see Figure 2.1). The input source is the laser emitting the light
modulated right in the beginning with the input image by altering the light intensity.

All these elements can have different parameters, and in the previous research on the
4f system, different parameters and elements have been used to build the correlator. These
different setups and their performance is discussed in Section 2.8 of the next chapter.

Laser source: The laser source is a semiconductor device similar to the LED that emits
a laser beam when current is supplied. In the previous research, different researchers used
different wavelengths. For example, in their experiments, Chang et al [1] used the green
laser with a wavelength of 532nm, while Wu et al. [46] used a red laser with a wavelength of
632.8nm.

Modulators: Modulators are the core components of the system, responsible for adjust-
ing both the amplitude and phase as required. Usually, the light emitted from the laser source
is projected onto the modulator to regulate its amplitude at the source. Numerous modulator
types exist, with preferences varying among 4f system researchers. The most common modu-
lators used in 4f systems are the Spatial Light Modulators (SLMs) and Digital Micromirror
Devices (DMDs). SLMs can regulate the signal’s amplitude and phase by manipulating
the cell’s refractive index [7]. SLMs usually contain a liquid crystal panel, similar in some
ways to the displays used in TVs and monitors. By controlling the orientation of the liquid
crystal particles, it can change the phase or amplitude of the light passing through each pixel.
Specifically designed for lasers with a certain wavelength, SLMs vary in their resolutions,
with some offering as high as 4K [47]. DMDs are commonly used in projectors and are based
on the Digital Light Processing (DLP) technology of Texas Instruments. DMDs contain
hundreds of thousands or even millions of tiny mirrors, each corresponding to a pixel. Each
of these mirrors can tilt either towards an "on’ position, reflecting light through a lens and
onto a screen or an "off’ position, where the light is directed elsewhere and not displayed,
achieving an amplitude modulation [48]. Comprised of a head and a controller, the modulator
setup allows for user-friendly adjustment via a DVI connection of the controller to a PC,
facilitating the customisation of modulator settings.

Lenses: Lenses are the optical components that manipulate the light path by refraction,
allowing for the focusing or dispersion of light beams. They are commonly made of transpar-
ent materials like glass or plastic. Lenses can come in various forms, the most common being
converging or convex lenses, which focus light to a point, and diverging or concave lenses,
which spread light out. The 4f system uses convex converging lenses, which concentrate

15

parallel rays of light at the focal point. The reason why we use the convex lens is due to the
Fourier properties of the convex lenses. In a 4f system, a pair of lenses is typically used to
transform the spatial distribution of light in the input plane to its Fourier transform in the
focal plane [49] and then back to a spatial domain in the output plane.

Camera: The camera is used at the final stage of the system to read out the results.
This is one of the crucial elements of the system, as the camera and the modulators play a
major role in keeping the system’s high frame rate and resolution. Different types of cameras
exist, with varying sensor technologies, resolutions, and capabilities. CCD (Charge Coupled
Device) and CMOS (Complementary Metal-Oxide-Semiconductor) cameras are common in
scientific applications, each having their strengths and limitations.

The general procedure of performing a Fourier transform and an Inverse Fourier transform
using an optical system is outlined as follows. Light is directed onto the modulator, where it
gets modulated and then passed through the first convex lens after covering the lens’s focal
distance. The light is then projected onto the focal plane, where the Fourier transform of the
input is formed. The light subsequently passes through the second lens, executing an inverse
Fourier transform, and is recorded by the camera. The captured output image is a flipped
version of the input resulting from the principles of geometrical optics. The key concept here
is the rapid attainment of an image’s Fourier transform and its reconversion to the spatial
domain at the speed of light without any energy loss.

2.2 Fourier transform

The Fourier transform is a well-known mathematical technique that decomposes the signal
into the fundamental sinusoids in the frequency domain that, when combined, form the initial
function [50]. By applying the Fourier transform, we obtain the frequency coefficients that
describe the signal. A key advantage of this method is its ability to switch between time (or
spatial) and frequency representations. Additionally, it converts the convolution operation
into an elementwise multiplication. The Fourier Transform is defined as:

F(o)=Ff(t) = f flt)e ™ dt 2.1)

where f(t) is an input signal in the time domain, @ represents the frequency variable in the
frequency domain, and t represents the time variable in the time domain.

The discrete Fourier transform (DFT) is a mathematical method for converting a sequence
of discrete values into components of different frequencies [51]. It allows Fourier transforms

16

to be calculated for discrete sequences using the direct formula for DFT. The discrete Fourier
transform for a sequence xp,xy_1 is defined as:

N—1 ,
X =Y xpe 70N k=0, ,N—1 (2.2)
n=0

A Fourier transform is initially defined over one dimension and can be extended to two
or more dimensions for the analysis of two-dimensional signals and images [52]. Two-
dimensional DFT operates on the two spatial dimensions x and y to convert the 2D signal into
the frequency domain with frequency components f; and fy. The output is a complex-valued
function of these spatial frequencies. The 2D DFT is defined as:

H—-1W-1 .
Fuv)=Y Y f(rc)e /W) (2.3)

r=0 =0

where F(u,v) is the 2D Fourier transform and (u,v) are discrete frequency coordinates, and
(r,c) are the spatial coordinates in the input.

The computational complexity of this process increases with the dimensions of the data.
The direct computation of the DFT has a complexity of O(n?) for a 1D sequence where
n is the number of input values. However, fast algorithms like the fast Fourier transform
(FFT) [51] significantly reduce this computational load, bringing the complexity down to
O(nlog(n)). For 2D FFT the complexity becomes O(n*log(n)), where n” is the number of
pixels of an image [53]. On the other hand, performing a 2D Fourier transform in free-space
optics can be easily achieved by passing the light through the convex lens as mentioned in
Section 2.1, where the light has to travel only two focal distances (f) from the lens [49].

2.3 Convolution operation and CNNs

2.3.1 Convolution operation

The convolution operation is the mathematical operation which is frequently used in signal
and image processing systems [54]. Convolution operation expresses the degree to which
one function is modified by overlapping another function. It is particularly used in image
and signal processing to apply filters for tasks like edge detection [55], blurring [56], and
sharpening [57] etc. Convolution operation involves two signals, an input signal and the
filter. It is often used in deep learning algorithms, especially convolutional neural networks
(CNNs).

17

The 1-dimensional convolution operation of two signals f and g is defined as:

(Fx8)0) = [_f(@)gt—v)d .4
For discrete-time signals, the convolution is represented as:
(F*g)lnl =} flmlgln—m] (25)

Similarly to Fourier transform, the convolution can be extended into the two dimensions
for the convolution on the images. The convolution of the image I and filter K can be
represented as:

(I+K)[rc] =Y. Y I[m,nlK[r—m,c—n] (2.6)

The convolution operation is closely related to the Fourier transform. Convolution
in the time domain is equivalent to multiplication in the frequency domain. Using the
Fourier transform, convolution can be performed through element-wise multiplication in
the frequency domain. Using the Fourier transform .%# () and .% (K'), convolution can be
computed as:

1+K = F YZ(I) - F(K)} 2.7)

where .# 1 is the inverse Fourier transform. This is known as the convolution theorem.

2.3.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) [9] are a class of deep neural networks initially de-
signed for computer vision tasks. They have revolutionised the field of computer vision [58],
enabling computers to perform tasks such as image classification [59], image segmenta-
tion [13] and object detection [10] with remarkable accuracy. The fundamental principle
behind CNNss is their hierarchical training process and their ability of feature extraction.

Previously, feature extraction was performed manually or through traditional computer
vision techniques before inputting into linear models for classification. CNNs, however,
unify the processes of feature extraction and classification within a single model, enabling
end-to-end learning.

CNNs work by automatically learning spatial hierarchies of features from input images.
This is achieved through the use of multiple layers that process the input in a hierarchical
manner. The key concept of CNNs is to stack convolutional layers, activation functions

18

Fig. 2.2 Example of the convolutional neural network for classification, VGG-19 [2]. A
cone-shaped network is where the feature maps are pooled down, and the final one is fattened
into a vector and fit into a classifier of linear layers.

for non-linear linearity and pooling operations to learn and extract the features. Extracted
features can then fit into the linear layers if the goal is the classification.

Regular convolutional neural networks designed for the classification are cone-shaped,
as shown in Figure 2.2. The input of the convolutional neural network is usually an image
with one or more channels. Multichannel images usually contain three channels, each
corresponding to red, green, and blue colour filters. By means of the convolutional layer,
that image is mapped into another tensor (Multidimensional Array) with more channels. At
the same time, the pooling operation reduces the resolution of the tensor, and the activation
function introduces a non-linearity into it. This process is repeated, consequently the
resolution of the tensors reduced, and number of channels increased throughout the network.
Ideally, the convolutional part of the network ends with the vector, which contains all the
information regarding the features in the original image.

The fundamental layer of the CNN is the 2D convolutional layer, usually noted as Conv2d
in deep learning frameworks. These layers perform the convolution operation by filtering
the input image with the filter (kernel) to generate a feature map. The kernel is not flipped,
unlike the original convolution operation described in the previous subsection. Hence, it
would be correct to say that CNNs perform cross-correlation, but it’s still referred to as the
convolution in machine learning and denoted as follows:

19

F{r,c]=’EEII{r+m?c+n]-K{m,n}? (2.8)

m=0n=0
where F(r,c) is the value of the output feature map at position (r,c), I(r +m,c+n) is the
region of the input image at the position that corresponds to the current kernel position,
K (m,n) is the region of the kernel at position (m,n), h and w are the height and width of the
kernel.

Apart from the standard convolution operation, padding and strides can be used in the
convolutional layer.

Stride is the number of pixels by which we slide the kernel over the input image. A stride
of more than 1 reduces the size of the output feature map.

Padding involves adding extra pixels around the input image. This is usually done to
allow the kernel to fit perfectly over the image’s borders and control the spatial dimensions
of the output feature map. Usually, padding is done with zeros. In this work, we have
mostly used "same" padding, which means we apply so much padding that the output of the
convolution keeps the same resolution as the input.

The output dimensions of the convolution of input H x W with the kernels of size h x w
with padding p and stride s are calculated using the following:

Output height — {w + 1J Output width — {WJF 1J (2.9)

The figure shows that, in practice, both the input and output involved with 2D convolu-
tional layers are not 2D matrices as initially simplified in Equation 2.8, but rather 3D tensors.
This insight leads us to a more precise mathematical formulation of a convolutional layer:

F{r,c}:ﬁi’lEIEEII{J"—HH?L‘—FH,I)-K{m,n,d}, (2.10)

m=0n=0 [=0
where F (r,c) is the output of the convolution operation at coordinates r,c, I represents the
input image or feature map, and K is the convolution kernel. The variables m and n are the
coordinates within the kernel, ranging from 0 to h— | and w— 1, where h and w are the
height and width of the kernel. The index / represents the input channel, and 4 represents the
output channel of the convolution.

In this equation, the three-dimensional tensor’s kernel slides over the input tensor, which
is also three-dimensional, performing a dot product at each position. The output from this
operation is a 2D matrix, indicating that each channel in the output tensor corresponds to a
separate three-dimensional kernel. This means that each output channel is generated by a

20

distinct 3D kernel, which combines information from all the channels in the input tensor to
extract specific features.

An activation function is typically applied after the convolution operation, and pooling is
optional, especially when valid padding is used. Valid padding naturally reduces the output
resolution, potentially making pooling less necessary. However, with "same" padding, where
zeros are added around the edges to maintain the input size, pooling is commonly employed.

The main purpose of pooling is to reduce the resolution of the feature map. There are
various methods for pooling, but they all serve this core purpose. By downsizing the feature
map, pooling helps reduce the computational load for subsequent layers, reduce overfitting,
maintain spatial hierarchy, and increase the speed of computation and memory usage in the
subsequent layers.

In CNNs, the most common types of pooling operations are 2D maximum pooling (Max-
Pool2d) and 2D average pooling (AveragePool2d), which simply either take the maximum
value in the region of the kernel and replace the region with that pixel only or use the average
of it.

When it comes to optimisation and training, the values of the kernels in the convolutional
layers act as weights for the model. By adjusting these kernels, the model can effectively
learn complex tasks like classification and find the optimal kernel to minimise loss. The
underlying hypothesis of CNNs is that images can be effectively represented and analysed
through the hierarchical extraction of features, where lower-level features (like edges and
corners) are used to progressively build up higher-level representations (such as objects).

2.3.3 Batch Normalisation

Batch normalisation [60] standardises the inputs to a layer for each mini-batch. Hence,
for each mini-batch, the layers’ inputs are adjusted so that they have a mean of zero and
a standard deviation of one. The layer keeps track of the mini-batch’s running mean and
variance, which is used during the evaluation. Batch normalisation usually involves two main
parameters per feature: the mean and variance, and if affine parameters are used, scale ()
and shift (§) the normalised value. Affine parameters are learned during the training process.

For the full operation of Batch Normalisation applied to a 2D feature map (as in Batch-
Norm2D), considering a single feature channel for simplicity, the formula can be expressed
in a more consolidated form as follows:

x—E[x]

y=\f?ar[x]+£j’+ﬁ’ R

21

where y is the output of batch normalisation, x is the input feature to be normalised, E[x] is
the expectation (mean) of x, calculated over the mini-batch, as well as spatial dimensions for
2D feature maps in the case of images, Var[x] is the variance of x, calculated over the same
dimensions as the mean, ¥ and [are parameters learned during training for each feature
channel, € is a small constant to prevent division by zero.

Batch Normalisation can be used as an additional regularisation technique. It will improve
the speed of training and reduce the number of epochs required to train the same network.

2.4 Application of CNNs for image classification

The use of convolutional layers in deep learning dates back to 1980 when Kunihiko Fukushima
developed the Neocognitron architecture, which utilised downsampling for feature extrac-
tion [61]. However, this architecture was not designed for backpropagation [62], which
was later successfully implemented by LeCun et al. [9] in 1998 with the LeNet architecture.
LeNet consists of two convolutional layers, each followed by a pooling operation and flat-
tened output of these layers, then fit into a classifier with three fully connected layers. The
activation function used after each computational layer (convolutional or linear) is a sigmoid
layer.

LeNet achieved a test error of 0.95% within 10 epochs on the MNIST dataset. Although
the test error stabilised at 0.95%, the error on training data continued to decrease, reaching
0.35% after nineteen epochs. The phenomenon, which LeCun et al. referred to as "overtrain-
ing", is now commonly known as overfitting. The issue was slightly mitigated when the
images were augmented with random distortions, leading to a further decrease in test error to
0.8%.

Today, most CNNs adhere to a design similar to that of LeNet, employing convolutional
layers together with downsampling to extract features. Consequently, it ends up with a
feature vector, which fits into a classifier, a fully connected linear classifier.

Another classical network influenced by the principles of LeNet is AlexNet, developed
by Krizhevsky et al. [27]. AlexNet consists of five convolutional layers, followed by three
linear layers for classification, as shown in Figure 2.3.

Pooling operations are applied only after the first two and the last convolutional layers.
Notably, AlexNet was the first network to employ the ReLLU activation function, effectively
mitigating the vanishing gradient problem. Furthermore, AlexNet introduced dropout regular-
isation with the probability of 50% in the activations of the linear layers within the classifier

to improve generalisation.

22

2]
m [55 |
nr

W o - e

B gy N

Fig. 2.3 The original architecture of AlexNet, proposed by Krizhevksy ef al. [3]. The
model designed for the ImageNet classification is the network that uses the ReLU activation
function, consisting of five convolutional layers and three dense layers.

AlexNet achieved a 37.5% top-1 error rate on the ILSVRC-2010 test set and a 15.3%
top-5 error rate on the ILSVRC-2012 test set, pre-trained on ImageNet 2011. Although
AlexNet is a classic convolutional neural network—which is why we used it in this research-it
has higher error rates compared to deeper and more stable modern CNNs.

Building upon the groundbreaking architecture of AlexNet, the Visual Geometry Group
(VGG) from the University of Oxford developed VGG nets [2] in 2014, marking another
significant advancement in the field of deep learning. The VGG architecture is known for
its emphasis on increasing the depth of the network using an architecture with a small 3 x 3
convolution filters, which proved to be a key factor in improving the model’s performance.
VGG used max-pooling with the kernel of 2 < 2 and stride equal to the kernel size (2), to
downsize the feature maps. In VGG, the number of channels doubles after each max-pooling
layer, which reduces the spatial dimensions of the feature maps. This expansion from 64
channels in the first layer to 512 channels in the deeper layers allows the network to capture
complex features at each level.

Moreover, VGG consists of several convolutional blocks, where each block contains
a sequence of convolutional layers followed by a max-pooling layer for spatial reduction.
This block structure enables the network to learn hierarchies of features with each block
building upon the refined outputs of the previous one. Similarly to LeNet and AlexNet,
VGG ends with the fully connected layers that learn to classify the features extracted by the
convolutional blocks.

There are six VGG networks introduced, known as A (11 weight layers), A-LRN (Same
as A, with Local Response Normalisation), B (13 weight layers), C (16 weight layers), D
(16 weight layers) , E (19 weight layers). The largest network E, also known as VGG-19,
achieved the top-1 validation error of 25.5% on e ILSVRC-2012.

Following the exploration of VGG Networks in the development of deep convolutional
neural networks by He et al. [4], the introduction of Residual Networks (ResNets) marked a
significant advancement in the field. ResNets introduced a new type of residential connection

23

Table 2.1 Performance of residual networks on ImageNet [4]

Model Top-1 error (%) Top 5 error (%)

ResNet-18 27.88 Not provided

ResNet-34 25.03 1.76

ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 571

into the networks, which helped to address the vanishing gradient problem associated with
training very deep networks.
Formally, He et al. [4] has noted the blocks of the ResNet as:

y= F{IJ‘VJ} +x, (2]2}

where x is the original input, y is the output of the residual block, and the F(x,W;) represents
the building block of the residual layer, which contains several weight layers.

The distinct characteristic of ResNet is its capability to learn the identity function — a
mapping of inputs directly to their outputs — and to build more complex classifications on
top of it. This is realised via these shortcut connections that perform identity mapping, with
extra layers explicitly learning the residual functions. When F(x, W;) = 0, it means that the
network has learned to choose an identity function for that layer, making sure that even the
deepest networks can easily be trained.

He et al.has introduced five residual networks, with 34, 50, 101, and 152 layers. Smaller
ResNet architectures like ResNet-18 and ResNet-34 are built based on basic blocks that
consist of two convolutional blocks with a residual connection around both blocks. Each
convolutional block consists of a convolutional layer with the 3 x 3 kernel followed by the
Batch Normalisation and ReL.U activation layer. It should be noted that according to He et
al.’s [4] implementation, the second ReLLU activation function is applied after the identity
summation as shown in Figure 2.4. Larger residual models, on the other hand, contain three
convolutional layers in each block, where the first and the last layers are 1 x 1 convolutions,
and the middle layer is 3 x 3 convolution.

The authors have tested the method with ImageNet and CIFAR-10 datasets. With the
lowest error achieved by ResNet152 at 21.43% and the highest error achieved by ResNet-18
at 27.88%.

24

BatchNorm

}

Output

o

Fig. 2.4 ResNet Block as described in the original introduction by He ef al. [4]. The
residual layer or block contains two weight layers, in this case, convolutional layers. The
input of the block is saved and then added to the output of the batch normalisation of the
second convolutional layer right before its activation layer.

25

Input Input Input Input

BatchMorm

Rell
| eatehiorm _ Batchorm | weight il
¥ . i 1
I& BatchMNorm _
' .) 1
_ _ Relu BatchMorm
¥ . 1
Y '
\+r " Batchiorm | weight _
L 4 !
T
! v I |
(+) T ()
® * G
¥ L L L
Qutput Output Output Output
(@) (b) (c) (d)

Fig. 2.5 Other orders of layers in the residual block. (a) BatchNorm after addition (b)
Rel.U before addition (c) ReLU preactivation (d)full-preactivaiton

In another work by He et al. [63], the authors analysed different usages of activation, as
shown in Figure 2.5. The authors tested various configurations of the ResNet architectures,
comparing standard activation to preactivation methods. The authors observed that the model
with full preactivation, where both the batch normalisation and ReLU activation are applied
before the convolutional layer, outperformed all other variations on CIFAR-100. This finding
highlights the importance of the order of operations in the network architecture.

2.5 Application of CNNs for image segmentation

This section reviews a variety of learning-based segmentation methods, prioritised based
on their relevance to the current work. Many of these methods share common architectural
features, including encoders and decoders, skip-connections, multiscale architectures, and
the recent adoption of dilated convolutions.

The backbone of image segmentation with deep learning methods can be considered
Long et al.’s [64] Fully Convolutional Networks (FCNs). FCNs are uniquely comprised of
convolutional layers, allowing them to produce a segmentation map that matches the size
of the input image. The authors adapt off-the-shelf CNN architectures like VGG16 and
GoogLeNet by eliminating all fully connected layers. This modification enables the model to

26

generate spatial segmentation maps instead of mere classification scores. FCNs incorporate
skip connections, where upsampled feature maps from the network’s deeper, more abstract
layers are combined with the more detailed feature maps from earlier layers to mitigate
localisation loss. All CNN-based architectures after FCNs follow a similar structure. The
authors used PASCAL VOC2011 for the evaluation and achieved 62.7% mean loU in their
best configuration.

Another model for image segmentation is known as DeConvNet, introduced by Noh et
al. [65]. According to the authors, FCNs face several significant issues. For example, these
networks operate with a fixed-size receptive field. As a result, objects that are much larger or
smaller than this receptive field are segmented incorrectly. Unlike FCNs, DeConvNet has a
symmetrical architecture, where the first half consists of convolutional and pooling layers,
known as the encoder, and the second half involves deconvolution and unpooling layers,
known as the decoder. The symmetry is an integral part of the architecture, as the decoder
explicitly mirrors the encoder.

Ronneberg et al. [13] proposed U-Net a convolutional neural network (CNN) architecture
designed for the segmentation of biomedical images, but now is also being used outside
the medical domain. Its distinctive architecture features contracting and expanding paths,
enabling it to effectively capture both local and contextual information, which results in
remarkable segmentation performance. It resembles the architecture of the DeConvNet, but
the main difference is that the U-Net uses the deconvolution layers for the upsampling instead
of unpooling. The contracting path functions similarly to a conventional CNN used for
classification, comprising blocks of convolutional layers, activation functions, and pooling
operations for multi-scale feature extraction. The expanding path of U-Net is responsible
for upsampling the extracted features to reconstruct the segmentation mask of the input
image. This process uses transposed convolution operations to upsample the feature maps
and involves concatenation with the corresponding feature maps of the same resolution
from the contracting path, known as skip connections. The primary function of the skip
connections is to preserve the spatial information lost during the pooling process in the
contracting path.

According to Peng et al. [66], the image segmentation method involves dividing an image
into meaningful segments by classifying each pixel by effectively combining two distinct
tasks: classification and localisation. However, these tasks often conflict, as enhancements
in one can diminish the other. Classification models, which are generally designed to be
insensitive to shifts in position or rotation, incorporate pooling operations to capture features
at various scales. As a result, in the deeper layers of such networks, where smaller 3 x 3
kernels are used, the ratio between the kernel size and the feature map resolution is greater

2

than in the upper layers. This configuration allows the deeper layers to interact with a broader
area of the original image, leading to the typical pyramid or cone shape of classification
networks. Conversely, an ideal segmentation model would adopt a barrel shape to more
accurately pinpoint the locations of different classes within the image.

Peng et al.proposed their architecture, the Global CNN, to tackle these challenges.
However, the well-known U-Net model also effectively addresses both classification and
localisation. In U-Net, the contracting path handles the classification while the expanding
path and skip connections aid in localisation, seamlessly integrating both tasks.

Another important advancement in image segmentation is the SegNet model developed
by Badrinarayanan et al. [67]. SegNet is an encoder-decoder style network, similar to U-
Net. However, unlike U-Net, SegNet does not use skip connections; instead, it saves the
indices of the max-pooling operations. Later, in the decoder stage, these indices are used to
upsample the values to their corresponding locations. This approach makes the model more
efficient, as it does not retain the feature maps of the encoder in memory and avoids the use
of computationally expensive deconvolution for upsampling. Furthermore, SegNet uses the
VGG model for its encoder path, including its pre-trained weights.

2.6 Transformers

2.6.1 Introduction to Transformers

Vision transformers are a new class of neural network architecture that has achieved state-
of-the-art results on computer vision tasks with large datasets. Originating from natural
language processing (NLP), the technique was applied in computer vision by Dosovitskiy et
al. [21] in 2020, causing a boom in the computer vision field.

Transformers introduced by Vaswani et al. [20] in 2017 demonstrated that the network
based solely on attention mechanism neglecting the recurrent or convolutional structures in
language models has more potential in quality and is faster to train due to more parallelism
capabilities. The transformer model consists of the encoder and decoder modules.

The encoder in the original work of Vaswani ef al. consists of 6 identical transformer
blocks. The depth of the encoder is the hyper-parameter, which can be adjusted depending
on the task. Each transformer block comprises a multi-head self-attention layer and fully con-
nected feed-forward layers. Both parts of this block, the attention layer and fully connected
parts have residual connections [4] around them, followed by a layer normalisation [68].
Before fitting into the encoder, all tokens are embedded, and positional encoding is applied
to the embeddings. The tokens fit into the encoder simultaneously, which shows high paral-

28

Attention

Input matrix
Input vectors - ‘ = Softmax{ :-:I Output vectors
NRNNNNNENN| NN RNE
NN
NN RNE
_ JITTITTIIT

Fig. 2.6 Visual schematic of the attention mechanism. Input vectors are combined into
one matrix and multiplied by weight matrices W,,W;, and W,.. Outputs of W, W, are used to
form an attention matrix by multiplying Q with the transpose of K. This produces attention
scores, which are then passed through a softmax function to create a distribution that reflects
how strongly each input vector relates to the others. The attention matrix is then multiplied
by the output of the W, forming the output of the self-attention layer.

lelism of the methods, unlike the sequence-to-sequence models, which accepted one token at
a time.

The decoder, which is not used in the vision transformers but is a crucial part of the
language models, generates the target sequence. While the encoder reads in the source
sequence in parallel, the decoder generates the output sequence one token at a time.

2.6.2 Attention Mechanism

To understand the application of transformer encoders in computer vision, it is essential to
look at the self-attention mechanism, a core component of these models.

In the self-attention mechanism, each input vector is an embedded token that can be
represented as a point in an n-dimensional vector space. The primary goal of the attention
layers is to compute the relationships between each pair of embeddings and update their
positions relative to one another based on these relationships. This is done by using three
components: queries, keys, and values. The detailed pipeline on tensor manipulations is
shown in Figure 2.6.

The input to a self-attention layer is a sequence of vectors, x;, which together form
a matrix X. This matrix is multiplied by three trainable matrices: W, (for Queries), Wy
(for Keys), and W, (for Values). These transformations produce the matrices Q, K, and V,

29

respectively, where each matrix is a list of transformed embedded vectors. The multiplication
of the matrix X with each of Wy, W, and W, is a linear transformation, similar to what is
commonly known as a "Linear layer” in deep learning without a bias term.

When the input x is mapped to @, K, and V, each vector is transformed independently,
without any interaction among them during this phase. However, the interaction among
vectors occurs in the subsequent steps through the computation of the dot products between
each pair of Query and Key vectors. Specifically, to calculate the relationship ¢; ; from input
i to j, the dot product g; -k j is computed. This calculation is extended across all vector pairs
to form the attention matrix through the matrix multiplication QK7 .

To ensure that each row of the attention matrix sums to one, a softmax function is applied
to each row after matrix multiplication. Additionally, since the dot product values can grow
large as the dimension of the vectors increases, the product QK T is scaled down by V.
where d is the dimension of the input vectors. This scaling helps to prevent the softmax
function from producing extreme values, ensuring smoother gradients during learning. The
final formula for the attention matrix calculation is shown in Equation 2.13.

T
o= mftmax{%} (2.13)

The output of the attention layer is then calculated by multiplying the ¢t attention matrix
by the value matrix V. This multiplication combines the weighted contributions from all
input elements to produce the final output of the layer. This dynamic combination of inputs
based on their computed contextual relationships is crucial for tasks requiring contextual
understanding, such as in natural language processing and increasingly in computer vision.

2.6.3 Multi-head attention

Single-head attention provides a framework where the model learns to assign a weighting to
each input token, determining how much focus to allocate where. However, this single set of
weights can sometimes limit the model’s ability to capture diverse relationships within the
input data.

Multi-head attention extends the concept of single-head attention by incorporating multi-
ple attention mechanisms—or "heads"—in parallel. This method allows the model to capture
various aspects of the information contained in the input sequence simultaneously. Each head
can be seen as an independent attention mechanism, with each focusing on different parts of
the input sequence or interpreting the inputs in different ways.

The embed dimension must be divisible by the number of heads. The input embeddings

fit into the multi-head attention layer and are split into h vectors, where I is the number of

30

heads. Each i-th head starts by linearly transforming the input using different learned weights
into the Q;, K;,V;. Each head operates like a regular self-attention layer. The outputs of the
attention layers are then concatenated and can be linearly transformed again.

MultiHead(Q,K,V) = Concat (head 1, head?, .., heady)W® (2.14)

2.6.4 Architecture of ViT

Unlike the NLP, images in computer vision do not contain the tokens, and the image is
a matrix rather than a sequence. Hence, image classification using transformers may not
seem to be an ideal choice. However, every image can be considered a sequence of image
patches in both x and y dimensions. Taking this into account, in 2021 Dosovitskiy et al. [21]
proposed a method of image classification using vision transformers, using no convolutional
layer at all.

The idea is to tokenise the image and fit the image tokens into the transformer encoder,
just like in NLP tasks. To turn the image into the sequence of tokens, the image x € RF*WxC
is split into non-overlapping patches x, € RN *(P*xC) where H is hight, W is width, C is the
number of channels, and P is the width and height of the patch. Following this tokensisation
method, the number of patches result in N = H x W /P2, One of the Dosovitskiy er al.’s
models, ViT-L/16, split the ImageNet images into 16 x 16 patches, taking the ImageNet
resolution 224 x 224, the result is 196 tokens per image. The tokens flattened, resulting in
vectors of length 256 (See Figure 2.7). Although, in Figure 2.7, the inputs are shown as
distinct vertical vectors. However, it is crucial to understand that, in practice, these vectors
are transposed and consolidated into a singular matrix and kept in that form across the entire
network, as described in subsection 2.6.2.

Since the transformer uses the constant vector size D in all layers, the vectorised patches
are fit into the linear layer to embed the input vectors into the desired D dimension. After
the embedding, another trainable vector known as the classification token is added to the
sequence, which keeps the information about all other patches throughout the training process,
resulting in overall N+1 tokens.

Position encoding are added to the tokens to preserve the positional information of
each original patch. These encodings can be either learnable vectors, like the ones used by
Dosovitskiy et al. [21], or fixed encoding generated through functions like sine and cosine.
Without any form of positional encoding, the network would treat an image with shuffled
patches the same as the original, leading to a loss of spatial understanding.

31

Linear Classifier

N I T O I I B

[MLP |

[Multi-head self-attention layer]

[MLP]

[Multi-head self-attention layer

UL

+
[ENRRRRRRERA]

Fig. 2.7 Vision Transformer architecture. The pipeline starts by dividing the image into
patches, which are then flattened into vectors to represent the input tokens. Next, these
tokens are linearly transformed using linear layers in a process known as input embedding.
To indicate the position of each token in the original image, positional encoding is added
to the embeddings. An additional token, called the classification token, is included in the
list of embeddings. This token will ultimately contain information about all tokens and
will be used for classification. As the inputs progress through the network, they are passed
through self-attention layers and MLP layers. Finally, the CLS token is placed into the linear
classifier.

After this process, all tokens are fit into a standard transformer encoder, and only the
output of the last layer’s classification token fits into the classification head, which consists
of the standard MLP classifier.

It is important to note that, nevertheless, only the classification token is used for the
classification; due to the attention mechanism, it contains all the required information about
other patches, as it had to attend all of them during the training process.

It is important to note that, nevertheless, only the classification token is used for the

classification; due to the attention mechanism, it contains all the required information about

32

other patches, as it had to attend all of them during the training process. As the network
processes the input, the tokens’ representations are adjusted and tend to align in the vector
space. This alignment occurs because the layers of the network modify how close or relevant
the vectors of these tokens are to each other, depending on the specific requirements of
the task. Therefore, the classification token interacts with all other patch tokens via the
attention mechanism to gather a detailed representation and capture crucial features for
accurate classification.

Out of all operations in the pipeline, the trainable paremeters include patch embeddings,
position encoding, weights for the queery, key and value, and the weights of the MLPs
including the classification head. Attention matrix, although depends on the weights of the
attention layer, are computed dynamically based on the inputs and multiplied by the value
matrix.

2.6.5 Application of Vision Transformers

ViT has less built-in inductive bias compared to CNNs. This means that ViT does not assume
translation equivariance, locality, or neighbourhood structure. However, ViT has a larger
effective receptive field compared to CNNs, while CNNs require more stacked layers or
larger kernels to maximise the effective receptive field.

Therefore, ViT generalises better than CNN only with large datasets. The best ViT model
(ViT-H/14) achieves 88.55% top-1 accuracy on ImageNet classification. In order to train
the ViT for the smaller datasets, it is required to train it first on the larger ImageNet dataset
and then fine-tune it for the smaller datasets like CIFAR-100. Following that, the fine-tuned
ViT-H/14 achieves 94.55% on CIFAR-100 and 77.63% on the VTAB suite of 19 diverse
vision tasks.

As Dosovitskiy et al. [21] mentioned that ViT does not perform well on small datasets,
their comparison of results on small datasets focused on fine-tuning pre-trained models on
ImageNet rather than training from scratch. However, Lee et al.[69] reported the results
of training ViT on datasets such as CIFAR-10, CIFAR-100, SVHN, and Tiny-ImageNet
from scratch. They improved the performance using novel methods, including Shifted
Patch Tokenization (SPT), CoordConv Position Encoding (CPE), and Locality Self-Attention
(LSA). Lee et al.’s [69] variation of ViT consists of 9 transformer layers with 12 heads per
layer and the embed dimension of 192. The patch size was set to 4 x 4, for images of 32 x 32,
resulting in 64 patches per image. The authors used regularisation as label smoothing [70],
stochastic depth [71], random erasing [72] and weight decay in AdamW [73] optimiser which
was set to (.05. Moreover, the model trained with augmentation used methods like CutMix,
Mixup, Auto Augment, and Repeated Augment. According to the authors, ViT trained from

33

scratch with CIFAR-100 achieved an accuracy of 60.01% without and 73.81% with the
augmentation methods described above.

In the work of Zhu et al. [74], the authors compared ResNet-18 to CIFAR-100, investi-
gating the reasons for ViT’s poor performance on small datasets. Their variation of ViT has a
depth of 6, each with 8 heads and an embedding dimension of 64. The authors reported an
accuracy of only 54.31%, which is lower than Lee et al [69] reported. The reason for that
could be a small depth and lack of augmentation and regularisation methods in the work of
Zhuetal.

2.6.6 Other variations of Vision Transformers

One variation of ViT is the Pyramid Vision Transformer (PVT) [75], which reshapes the
feature map into a matrix form after each transformer block and applies further patching.
This results in a pyramid-like or cone shape architecture that is more suitable for computer
vision tasks, particularly classification. It is important to note, however, that the progressive
reduction in the feature map size after each stage of the transformer block distinguishes PVT
from the standard ViT principles. While Transformers were originally designed for NLP,
where tokens remain independent and communicate via the attention mechanism, PVT differs
from this approach. Instead, it adopts a structure similar to cone shape CNNs designed for
feature extraction.

The authors showed a 0.1% decrease in top-1 ImageNet accuracy by comparing their best
model, PVT-Large, to the basic model, ViT-Base/16 [21]. However, PVT-Large performs
with 9.8 GFLOPs compared to ViT-Base/16, performing with 17.6 GFLOPs. Moreover, the
authors also show the memory efficiency, as PVT-Large contains 61.4M parameters, while
ViT-Base/16 contains 86.6M parameters.

Although PVTs have a cone-shaped architecture like CNNs, they do not include any
convolutional layers in the pipeline, like Vision Transformers. However, that cannot be said
about another work by Wu et al. [76], called Convolutional Transformers (CvT). Similar to
the contribution in this thesis, Wu et al. applied the convolution into the vision transformers
with slight deviation from our method. CvT employs a convolution operation in the token
embedding and embedding projection of the Vision Transformer.

The CvT model starts by fitting the input image into a Convolutional Token Embedding
layer. This performs overlapping convolutions to split the image into tokens and capture local
spatial information. Moreover, this stage decreases the length of the sequence and increases
the dimension of token features, mimicking the architecture of the CNN classifier, where
the feature maps are spatially downsampled while the number of feature maps (channels)

increases. The output token embeddings are normalised following the token embedding layer,
using Layer Normalisation.

Then the output token embeddings are passed into the Convolutional Transformer Block.
In each Convolutional Transformer Block, the tokens first go through a Convolutional
Projection layer, which applies depthwise separable convolutions to obtain the value, query
and key embeddings instead of the matrix multiplications as in standard ViT [21]. Tokens are
then flattened and passed through a standard transformer block containing a multi-head self-
attention layer and MLP. The outputs of this stage are then passed to the next Convolutional
Token Embedding layer.

Although this method is called a Convolutional Vision Transformer, it uses standard
multi-head self-attention layers and MLP in all transformer blocks.

In contrast to standard ViTs, CvT uses overlapping patches and reconstructs the 2D image
after each transformer block to re-tokenize it using convolution operations before the next
block. This way, the feature map pools down and retains its cone-shaped structure typically
used for classification tasks in CNNs

In standard ViTs, an image is segmented into discrete non-overlapping patches. Each
of these patches progresses independently throughout the network architecture. Interaction
between the patches is facilitated only via the attention mechanism, ensuring that while there
is communication between patches, their representations remain distinct and non-integrated.
However, in CvT, the output of each convolutional transformer block is merged into one
unified feature map by rearranging the dimensions and turning input vectors into the 2D
matrices and then pooled down throughout inference. Therefore, it can be noted that the CvT
architecture also does not follow the principles of the transformer. Instead, it integrates the
attention mechanism into the CNN.

Moreover, due to the overlapping patches and hierarchical structure of the CvT, applying a
position encoding in the transforms is not required. In fact, Wu et al. [76] have demonstrated
that the top-1 accuracy on ImageNet improved from 81.4% to 81.6% when restrained from
the position encoding.

2.7 Effect of high-resolution training

Kernel size is one of the essential hyperparameters of CNNs. Standard models today use
small kernel sizes, usually 3 x 3 or 6 x 6, except the first layers of the network, which can go
as large as 11 x 11 like in the first layer of AlexNet or 7 x 7 in ResNet.

Relatively small kernel size standards are the results of thousands of experiments, which
show that having a 3 x 3 kernel size will not lack the result and will be fast enough. Theoreti-

35

cally, having a small kernel size has a range of advantages. The reduction of kernel size not
only increases the computational efficiency during training but also decreases the number of
trainable parameters, thereby increasing the robustness of the network against overfitting.
Larger kernels, by increasing the number of trainable parameters, not only have a tendency to
overfit the network by learning too much noise and detail from the training data but also slow
down the training process due to the higher computational load required per layer. Moreover,
due to the dominance of CPU-GPU training, where the large kernel size has a negative effect
on the training speed, the research on the larger kernel size in CNNs has been lagging.

As mentioned in Section 2.5, Peng et al. [66] proposed a Global Convolutional Network
(GCN) architecture that enables using very large kernels, up to the size of the feature map, for
semantic segmentation. The motivation is that current semantic segmentation models focus
primarily on precise localisation, which can degrade their classification capability. GCN
improves classification performance by using large kernels that densely connect feature maps
and per-pixel classifiers.

However, the authors claim that large kernels are inefficient and use separable convo-
lutions like 1 15415 x 1 to reduce parameters and computation in GCN. Experiments
show GCN consistently outperforms regular small kernels and stacks of small kernels for
segmentation. The "global convolutional” version improves loU by 5.5% overa 1 x 1 base-
line. Analysis reveals GCN mainly benefits internal regions of objects, while a Boundary
Refinement block they propose improves localisation near boundaries.

Applying GCN to standard ResNet backbones boosts segmentation performance despite
marginally decreasing image classification accuracy. Their model achieves new state-of-the-
art results on PASCAL VOC 2012 (82.2% loU) and Cityscapes (76.9% loU), significantly
outperforming prior art.

The key conclusions are that larger kernels provide substantial benefits for semantic
segmentation by improving classification capability, and their GCN architecture effectively
enables this in an efficient separable manner. The results demonstrate the importance of large
kernels and dense classifier connections for pixel-level classification tasks.

In the work of Agrawal and Mital [6], the authors studied the effects of different kernel
sizes and a number of filters in CNN to train the FER-2013 and uniquely approached the
problem. They have introduced a small network called the Constituent layer, which consists
of two convolutional layers and one softmax. The network was trained with varying kernel
sizes, such as 2,4,8...64 and the number of output channels of 24,8 ... 256.

After training the small two-layered network, the authors found four combinations of
two-layered networks with the number of channels and kernel sizes 16/4 x4, 32/8 x« 8,
4/16 x 16 and 2/32 x 32, which they used to find the optimal depth of the network.

36

Table 2.2 Constituent layer in the work of Agrawal and Mital [6]. K represents the kernel
size, and C is the number of output channels.

CONV K x K x C, BATCH NORM
CONV K = K =7, RELU, STRIDE (128 x 128)
SOFTMAX

By increasing the depth of the network, the authors found the best converging network,
which is a number of output channels of 32 and kernel size of 8 x 8, with a depth of 16
convolutional layers, resulting in the model which they have called Modell. Later, the
authors modified Model 1 into Model 2 by reducing the number of channels and increasing
the depth of the networks. The standard CNNs use the VGG style approach and increase
the number of layers, while Model 2 is unique in terms of slowly decreasing the number of
channels.

As expected, Model2 performed marginally worse than Modell (by 0.54%), but with two
times fewer trainable parameters. The authors compared the model size to VGG-19, which
contains 21.5 times more trainable parameters than Modell, but they did not compare the
performance. Instead, they have compared the performance to other smaller networks inspired
by AlexNet and VGGNet, like Subnet! by Liu et al. [77]. It has to be said, while Modell
and Model2 achieved an accuracy of 65.77% and 65.23% on FER2013 dataset respectfully,
VGGNet by Pramerdorfer and Kampel [78] achieved 72.70% and later in 2021 VGGNet by
Khaireddin and Chen [79] achieved 73.28% top-1 accuracy with FER-2013 dataset. Taking
into account only the work of Pramerdorfer and Kampel [78] as it was published earlier than
the Modell and Model2 of Agrawal and Mital [6] the loss in performance is 6.93%, which
the authors did not mention.

In the work of Ding et al. [36], the authors explored the potential of large convolutional
kernels in modern CNNs. This research is inspired by recent advances in Vision Transformers,
which have demonstrated superior performance across various visual tasks. The authors
aimed to bridge the performance gap between CNNs and ViTs by using large kernels in
CNN .

A critical aspect of this study is the comparison between large-kernel CNNs and the
multi-head self-attention (MHSA) mechanism used in ViTs. The authors find that large
convolutional kernels can effectively mimic the behaviour of MHSA by capturing long-range
dependencies and building large receptive fields (ERFs). This allows CNNs with large
kernels to achieve performance comparable to ViTs without the computational complexity
associated with attention mechanisms. The study reveals that while traditional small-kernel

37

Table 2.3 Modell and Model2 by Agrawal and Mital [6]. The difference is indicated in bold.

Model 1

Model2

Input data (64 x 64) grayscale image
Data augmentation

CONV 8 x 8 x 32, BATCH NORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32, BATCH NORM
CONV 8 x 8 x 32 (stride 2), RELU
CONV 8 x 8 x 32 BATCH NORM
CONV 7 x7x7, RELU
SOFTMAX

Input data (64 x 64) grayscale image
Data augmentation

CONV 8 x 8 x 32, BATCH NORM
CONV 8 x 8 x 32 (stride 2), RELU
CONYV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONYV 8 x 8 x 32, BATCHNORM
CONV 8 x 8 x 32 (stride 2), RELU
CONYV 8 x 8 x 16, BATCHNORM
CONV 8 x 8 x 16 (stride 2), RELU
CONYV 8 x 8 x 16, BATCHNORM
CONV 8 x 8 x 16 (stride 2), RELU
CONYV 8 x 8 x 16, BATCHNORM
CONV 8 x 8 x 16 (stride 2), RELU
CONV 8 x 8 x 8, BATCH NORM
CONV 8 x 8 x 8 (stride 2), RELU
CONV 8 x 8 x 8, BATCH NORM
CONV 7x 7x 7, RELU
SOFTMAX

CNNs require many layers to build large ERFs, a few large kernels can achieve this more
efficiently, enhancing both performance and computational efficiency.

The methodology by Ding et al. centres on the implementation of a novel CNN architec-
ture called RepLKNet, which uses re-parameterised large depthwise convolutions with kernel
sizes up to 31 x 31. The authors provide five key guidelines for effectively incorporating
large kernels into CNNs. They demonstrate that large depthwise convolutions can be com-
putationally efficient, especially when optimised for GPUs. The use of identity shortcuts is
critical for maintaining performance and stability in networks with very large kernels. They
introduce a re-parameterisation technique where smaller kernels are used alongside large
ones during training and then merged, addressing optimisation challenges.

38

The experimental results prove the efficacy of the RepLKNet architecture. On the
ImageNet-1K dataset, the RepLKNet-31B model achieves an impressive 84.8% top-1 accu-
racy, outperforming the Swin-B model by 0.3% while being 43% faster in inference speed.
This indicates not only superior accuracy but also enhanced computational efficiency. Further-
more, in semantic segmentation tasks on the ADE20K dataset, RepLKNet-31B outperforms
Swin-B with higher mean Intersection over Union (mloU) scores, particularly in single-scale
evaluations.

The authors provided evidence that revisiting and scaling up convolutional kernel sizes
in CNNs can lead to significant performance improvements. By effectively using large
kernels, they demonstrate that CNNs can achieve, and even surpass, the performance of
state-of-the-art ViTs in various tasks, especially in semantic segmentation. However, even
though the authors tried to replicate the ViTs using the CNN:ss, it is hard to say that this
is the emulation of the ViT since the general concept of CNNSs is still feature extraction.
Nonetheless, there is no doubt that CNNs with larger kernels can match the high effective
receptive field of ViTs.

2.8 Free-space optical deep learning accelerator

The overarching goal of optical neural networks is to implement artificial neural network
models directly in optical hardware by taking advantage of the unique properties of light. A
core requirement for any neural network implementation is the ability to perform multiply-
accumulate (MAC) operations, which involves multiplying large matrices by input vectors.
In conventional digital hardware, these matrix-vector multiplications require breaking the
operation into separate sequential multiply and accumulate steps. However, optics can
intrinsically perform these matrix-vector multiplications in a single parallel step. This section
is primarily focused on the acceleration of using different free-space optical accelerators.
This section places greater emphasis on 4f-based optical correlators, as this work primarily

utilises this technology.

2.8.1 Deep Learning with Free-space Optical Accelerators

Optical computing has emerged as a solution for enhancing the efficiency of deep learning
processes by using the computational capabilities of light. A notable example of this
technology is the implementation of the 4f optical system, which is adept at performing
two-dimensional convolutions that are critical for many deep learning applications. This

system consists of two lenses and a mask located in the Fourier plane, all spaced by the focal

39

length, f, of the lenses. This configuration allows for the convolution of an input image with
a filter mask positioned within this plane, with the resultant pattern displayed on the image
plane representing the convolved output.

The use of free-space optical accelerators, such as the 4f system, is prevalent due to its
relevance in specific tasks across various types of neural networks. This section highlights
the predominant application of the 4f system, alongside a review of both passive and active
accelerators in subsequent sections. Previous implementations of the 4f system have not
typically supported the complete inference of a model through a single pass. Instead, each
convolution layer or, in some cases, only one layer of the network is processed sequentially.
One significant limitation is the system’s inability to perform nonlinear activations, which
must be handled electronically after image readout.

Despite these technological advances, optical computing faces substantial challenges
in neural network training. Traditional training methods, such as backpropagation, require
iterative adjustments to network weights, necessitating a level of dynamic reconfigurability
that traditional optical setups do not provide. Currently, most optical neural networks are
trained offline using digital systems. After training, the optimised weight matrices are then
implemented in the optical hardware for rapid inference tasks. This limitation prevents
real-time training capabilities within current optical neural network systems. However, the
inference capabilities of the 4f system could be adapted for training purposes. The 4f system
could theoretically involve backpropagation as well. As backpropagation in CNNs includes
the convolution operations, which the 4f system can execute.

2.8.2 Passive optical Accelerator

Passive optical accelerators refer to the setup with elements like lenses or diffractive elements
that do not consume power.

One example of free-space passive optical accelerators is the diffractive deep neural
networks (D?NN) [41]. The D?NNs demonstrate remarkable capabilities in various optical
computing tasks. These networks utilise diffractive layers to modulate light for performing
functions such as image classification and feature detection directly with light waves. In this
particular work of Lin et al. [41], the D*NN models were trained and tested on two datasets:
MNIST for handwritten digits and Fashion-MNIST for clothing items. Even though the
networks performed well on both datasets, achieving an accuracy of 93.39% and 86.60% for
MNIST and Fashion-MNIST respectively, the performance is still far from the state of the
art in the electronic setup. However, the high speed of the terahertz frequency range and the
low power consumption required for performing classifications make the D>’NN a preferable
accelerator for some use cases.

As the diffractive layers are physical and cannot be altered, D?’NN’s are trained on a
computer, and the layers are fabricated using a 3D printer once the preferred training level
is achieved. Once the layers are fabricated, the device cannot be altered and therefore can
be used for only one task, but will operate passively and perform the inference with the
speed of light. This research opens new avenues for the development of optical components
and systems for rapid, power-free computing, furthering the integration of machine learning
algorithms into physical layer tasks. Since 2018, there has been increasing research based on
diffractive neural networks, like the application of the non-linearity in the D’NN.

Unlike the diffractive neural networks, the 4f system that we are focusing on in this
thesis can also be active and passive. Some of the earliest research in this area is the work of
Chang et al. [1], where the authors demonstrated the CNN implemented in the 4f system,
with the phase mask in the Fourier plane. This means that the multiplication of the image
and the kernel in the Fourier domain happens passively, and no modulator is used in this
stage. Just like the D’NN the main disadvantage of this method is the lack of flexibility as
the device can only be used for the convolution with the preset and fabricated kernels and
cannot be altered during inference. The phase masks need to be replaced if the 4f system
goes through more training or fine-tuning.

Before going into the optical convolution, the authors first tested the setup in the simulator
using only a correlator. This means that the read-out of the camera is partitioned into the
N sub-images corresponding to N classes. The sub-image with the maximum intensity is
considered the output class of the classifier. The network is trained on the Google Quick
Draw dataset, which contains 16 classes. In this preliminary setup, the learned optical
correlator achieved a classification accuracy of 70.1%, demonstrating its capability to match
the performance of a digital convolutional layer.

In their next step, the authors implemented a simulation of a full hybrid optoelectronic
CNN. This included the simulation of the optical CNN layer followed by the regular ReLU
+ Fully connected layer applied in the electronic domain. This experiment was conducted
on the CIFAR-10 dataset, and the authors achieved 51.0+ 1.4% accuracy on the simulation
of the setup while also using a pseudo-negativity (a method described in Section 3.2.5), in
contrast to regular digital convolution which achieved 51.9 £ 1.3% accuracy. Unfortunately,
when the authors tried the experiment physically, the performance dropped to 44.4%, which
the authors explained as due to imperfections in the hardware not considered in the simulator.
One of the reasons is that the SLM utilised only 16 discrete levels of height (bit depth of
4) rather than the continuous range assumed during the optimisation process. Additionally,
the alignment of the convolved sub-images with the sensor pixels was not precise due to
differences in pixel sizes between the DMD and the camera sensor, introducing errors during

41

the subtraction of kernels to produce pseudo-negative sub-images. Moreover, some dead
pixels on the DMD were detected, which was observable when comparing the simulated
input image against the actual projected version without a phase mask.

These factors are important, as this kind of deviation from the simulation and the real
device can be observed in any 4f-based accelerator, even the one assumed in this work.
Moreover, apart from the reasons mentioned by Chang et al., the noise in the system can
also play a significant role in the classification process and, in some cases, may introduce an
augmentation [80].

In another work by Colbum et al. [53], the authors designed a hybrid optoelectronic con-
volutional neural network architecture that uses an optical frontend for the first convolutional
layer of AlexNet, while subsequent layers are processed electronically. The architecture uses
an array of 288 4f correlators to perform the convolution operations in parallel, corresponding
to 96 kernels for each of the three colour channels (red, green, and blue). These 4f correlators
are implemented using metasurface optics to create a compact and efficient system. The
correlators consist of two lenses of equal focal length spaced apart by 2 f, with input and
output planes at the focal points of the first and second lenses. Similar to the work of Chang et
al. [1], the authors used a fixed phase mask in the Fourier plane.

The optical frontend is used with a modified version of AlexNet, which typically com-
prises five convolutional layers and three fully connected layers. In this hybrid approach,
the first convolutional layer is implemented optically, reducing the need for multiple energy-
inefficient optical-electronic signal conversions. Since the first layer is the most computation-
ally expensive, with a kernel size of 11 x 11, it is advantageous to use optical acceleration
here. The remaining four convolutional layers and three fully connected layers are realised
electronically. The authors conducted simulations rather than using real devices for their
study. This design was benchmarked using the Kaggle Cats and Dogs dataset, achieving a
classification accuracy of 87.1%, which is comparable to the ground truth accuracy of 87.3%
for the fully electronic version of the modified AlexNet. The study demonstrates that the
hybrid system maintains high classification accuracy while offering potential advantages in
processing speed and energy efficiency for large image sizes due to the parallelism and low
latency of the optical computations.

2.8.3 Active 4f optical Accelerator

To overcome the limitations of passive optics, a new category of optical neural network
architectures includes active optoelectronic devices for high-speed reconfigurability and
training. This approach uses DMDs, which contain millions of individually controllable
tilting mirrors or liquid crystal SLMs. DMDs can modulate light patterns at speeds of tens

42

of kHz, which is orders of magnitude faster than liquid crystal SLMs. Configured into 4f
optical systems, DMDs enable rapid amplitude-only optical multiplications in the Fourier
domain for optical convolution operations.

Even faster reconfiguration may be possible with analogue optical devices. Prototype
analogue micromirror arrays capable of MHz tuning speeds have been developed. With mil-
lions of micromirrors, these devices could pave the way toward fully optical neural network
training at unprecedented speeds. Research has shown promise, and rapid improvements in
microelectromechanical systems (MOEMS) and nanophotonic devices suggest continued
advances [39, 81, 82].

In the work of Schultz et al. [83], a 4f optical correlator was explored to accelerate
CNNs. The authors implemented the 4f system with SLMs and a camera, demonstrating its
potential to perform convolutions optically. They used a simple architecture comprising a
convolutional layer with sixteen kernels, followed by batch normalisation, max pooling, a
fully connected layer, and ReLLU activation. The authors trained only the positive half of
the kernel, disregarding any pseudo-negativity methods, and also trained the kernels in the
Fourier domain to avoid conversions into the Fourier domain during training. Achieving a
classification accuracy of 91% on the MNIST dataset, the system highlighted the efficiency of
4f systems in parallel processing, although there was a drop in performance compared to the
regular CNN's accuracy of 98.2%. The use of SLMs allowed the dynamic modulation of the
Fourier plane, enabling the implementation of different kernels without physical alterations.

Dai et al. [84] proposed an innovative on-chip 4f system based on concave mirrors
to implement the Fourier transform. Although in this thesis, we assume a free-space 4f
system, Dai ef al.’s work implements the 4f system in an innovative manner. This system
performs on-chip Fourier transforms, using etched concave mirrors to simplify construction,
reduce costs, and decrease the focal length of the mirrors to 2000um. The study simulated
convolution operations on datasets such as Iris-Flower, MNIST, and Fashion-MNIST, achiev-
ing classification accuracies of 96.67%, 95.6%, and 88.8%, respectively, compared to the
electronic counterparts’ 97.3%, 97.9%, and 89.8%. The on-chip 4f system demonstrates
performance comparable to electronic counterparts, with performance losses of 0.63%, 2.3%,
and 1% for Iris-Flower, MNIST, and Fashion-MNIST, respectively.

Li et al. [7] analysed the parallelism capabilities of the 4f system-based optical neural
networks, considering an active 4f system with the DMD in the Fourier plane for dynamic
kernel updates. The authors used the pseudo-negative approach introduced by [1], where
the number of convolution operations is doubled and the results are subtracted from each
other to emulate negativity in the 4f system. The best performance reported by the authors
using channel/mixed tiling, as described in Section 2.8.4, was 93.6% for Fashion MNIST,

43

05% for SVHN, and 91.6% for CIFAR-10, trained on VGG-16. The authors did not report
the performance of regular VGG-16 without the optical setup, as the main focus of the
work was parallelism. According to other studies, regular VGG-16 is capable of classifying
Fashion MNIST with an accuracy of 94%(85], SVHN with an accuracy of 97.85%[86], and
CIFAR-10 with an accuracy of 92.05%[87] or 93.13%][86].

Gupta and Li [88] explored architectural improvements for 4f optical neural networks,
addressing limitations such as positive sensor readout and intensity-only modulation. They
used the channel tiling method to enhance throughput and precision without additional
optical hardware. Their evaluation shows that a 4f system operating at 2MHz and 4K
resolution can outperform an NVIDIA GTX 2080 GPU, achieving up to a 20-fold speedup
for networks like AlexNet and VGG with a low 8-bit precision rate when trained on ImageNet.
According to the authors, an 8.45-fold acceleration can be achieved against the NVIDIA
GTX 2080 on VGG-16 with CIFAR-10 if channel tiling is used with the 8-bit precision rate.
This highlights the potential of high-speed optical modulation techniques to significantly
boost CNN performance. Moreover, the authors indicate that the pseudo-negative approach
required at least 12-bit camera precision to remain within a 5% accuracy drop.

In their work, Miscuglio ef al. [39] discussed the implementation of an amplitude-only
Fourier neural network using a 4F system based on DMDs. Using high-resolution DMDs
and free-space optics, the method performs convolutions as pixel-wise multiplications in the
Fourier domain. This enables the processing of large matrices (approximately 1000 x 1000)
in a single time step with a latency of 100us and 8-bit precision. Additionally, it employed
batch (input) tiling, processing up to 46 images simultaneously using the same kernel to
maximise throughput. The authors used a DMD in the Fourier plane to demonstrate a
dynamic change of the kernels, but used only a single-layered CNN, followed by batch
normalisation, max pooling, and electronic linear layers.

The experimental optical setup, validated through training a CNN on the MNIST and
CIFAR-10 datasets, achieved accuracies of 98% and 54%, respectively. In contrast, the space-
domain convolution (regular CNN) achieved accuracies of 98% and 63%. Considering that
MNIST is a relatively simple dataset, it can be assumed that the high accuracy is achieved due
to the electronic linear layers following the Fourier convolution. This was more challenging
with CIFAR-10, where the optical neural network experienced a 9% loss in accuracy.

Chen et al. [89] introduced a multilayer optoelectronic hybrid convolutional neural
network that employs an optical recurrent structure within a 4f system to perform convolution
operations. This setup uses an SLM in the Fourier plane to dynamically adjust the kernels.
Unlike previous implementations that only partially utilised optical layers, this innovation
allows the entire CNN to be processed optically. The authors employed the pseudo-negativity

44

method of Chang et al. [1] by simply subtracting the outputs of two convolution operations in
the electronic domain, followed by activation functions and pooling, before fitting the results
back into the 4f system for further convolutional layers. This recurrent structure enables the
reuse of optical components across multiple layers, thereby extending the network’s depth
without the need for additional hardware, which is crucial for handling complex tasks.

Experiments were conducted on a custom CNN consisting of three convolutional layers
with kernel sizes of 7 x 7 and output channels of 4, 4, and 8, respectively. The resulting
feature maps were then subjected to max-pooling with a kernel size of 2 x 2, flattened, and fit
into a fully connected layer. The model was first tested electronically on a grayscale CIFAR-
10 dataset. The training involved the ADAM optimiser [90] with 2000 iterations and a small
learning rate of 3 x 10~%, resulting in a test accuracy of 49.8%. Although the performance
seems poor, it should be noted that the dataset was grayscaled and the model consisted of
only three layers. In the optical experiments, a test accuracy of 30% was achieved. According
to the authors, the gap between the optical CNN and its electronic prototype is caused by
system noise and alignment issues.

Another interesting study by Li ef al. [91] used the 4f active system purely for augmenta-
tion purposes, with the SLMs used at the input and in the Fourier plane. The first modulator,
in the object plane, modulated the image using standard augmentation methods such as
translation, zoom, and shear. The SLM in the Fourier plane was used to generate a random
phase. The authors implemented and tested their method on the MNIST dataset, training the
optically augmented data on a two-layered CNN. The results showed that incorporating the
proposed optical augmentation increased the classification accuracy from 93.24% (without
augmentation) to 97.84% when combined with all augmentation transformations.

In summary, integrating active optoelectronic devices like DMDs and liquid crystal SLMs
into the fourier plane of the 4f system enhances their speed and reconfigurability. DMDs, in
particular, enable rapid optical convolutions in 4F systems. The development of analogue
micromirror arrays with MHz tuning speeds suggests the potential for fully optical neural
network training. Research shows that 4F systems can effectively accelerate CNNs, demon-
strating competitive performance with some trade-offs in accuracy. These advancements
indicate the possibility of using the 4F system for all layers of CNNs, potentially running
entire models on the 4F system, especially with the high-speed potential of MOEMS and
other nanophotonic devices.

2.8.4 High resolution capabilities of 4f Optical Neural Networks

Before going into the adaptation of the CNNs for the 4f system, it is important to go through
the advantages and constraints of the system once again. The advantages include the high-

45

speed processing of the Fourier transformation, low power consumption and high-resolution
capabilities. While the biggest constraint is the speed of the cameras and the modulators and
the incapability of representing negative numbers. We have mentioned that the negativity
problem can be mitigated using a pseudo-negative approach, like in the work of Chang et
al. [1], by performing two convolutions instead of one and subtracting the result of one from
another in the electronic domain.

To overcome the bottleneck of the camera read-out, we can take advantage of the high-
resolution capabilities and parallelism. As the primary advantage of 4f free-space optical
neural networks over the on-chip silicon photonics method is that the 4f system enables
massive parallelism. This allows the 4f system to effectively process high-resolution inputs
and kernels without compromising the frame rate. Since the 4f system efficiently processes
high-resolution kernels, it is feasible to arrange multiple smaller kernels together in one large
array to execute several convolutions simultaneously [91].

In their work, Li ef al.[7] introduce several tiling approaches to take advantage of
the parallelism of the 4f system. The authors mentioned filter tiling, which was initially
introduced by Chang et al. [1]. It involves tiling kernels in one larger block to be convolved
with one input image. The system can perform multiple convolution operations in parallel
by tiling kernels, vastly improving throughput and efficiency. Essentially, it convolved
one image with several kernels, where the output becomes equal to a number of 2D filter
tiles. Filter tiling requires careful consideration of the optical system’s resolution and kernel
resolutions and their quantity. The main task here is to pad the kernels in a way that after
tiling they do not overlap during the convolution operation.

The process starts with zero padding of the kernels to asize of (M+ N—1)x (M +N—1),
where M x M represents the resolution of the input and N x N denotes the resolution of the
kernel. Subsequently, these padded kernels are tiled into one large kernel block. At this
stage, the input must also be padded to the same dimensions as the kernel block to facilitate
optical convolution. Following this convolution, the result is a set of tiled outputs, each
corresponding to the convolution of the input image with one of the individual kernels within
the tiled array (See Figure 2.8).

We have tested this method by training a small network consisting of two convolutional
layers and one dense layer on the MNIST dataset. Sixteen kernels were extracted from
the first layer of the network, as shown in Figure 2.9. The image of the digit 7" from the
MNIST dataset, which was padded as in Figure 2.10 (a), was convolved with the earlier
extracted kernels. These kernels were also padded and tiled into one block, as illustrated in
Figure 2.10 (b). The outputs of this example can be seen in Figure 2.10 (c), which displays
16 output images. Each image corresponds to the convolution of the input with a respective

46

|]
Padding

Trllng

Fig. 2.8 Implementation of the convolutional layer in optics using the kernel tiling.
Kernels are first padded and tiled into one block. Consequently, the input is padded to the
resolution equal to the newly tiled kernel block. The output of the convolution of these blocks
will result in the convolution of input with each kernel tiled in the kernel block.

kernel in the kernel block. Without the tiling, all 16 convolutions would have to be performed
sequentially. Thus, the kernel tiling method, in this case, accelerates the convolution process
by a factor of 16.

Since the convolution operation is commutative, the order of the operands does not
matter:

frxg=gx*f

where f and g are functions and # denotes convolution.

Given this property, we can assume that inputs can be tiled similarly to the kernels, as
shown in the previous example. This allows for the implementation of batch tiling for infer-
ence, enabling several convolutions to be performed simultaneously with a large minibatch.
Suppose the batch size is equal to 64, then the inputs can be tiled into a "input block" of
8 x 8 and convolved with each kernel separately in the network. In the following chapters
on CNN-based Image Classification 3 and Segmentation 4, this method of parallelism is
assumed.

Another way of parallelism of the CNNs with the 4f system is channel tiling. Channel
Tiling aims to use the optical system’s ability to sum inputs across channels. This method
effectively uses entire space on both modulators, essentially taking full advantage of the

47

Ll b
an r
el Nl
L L

Fig. 2.9 Kernels from the first layer of the MNIST neural network used for the example
in Figure 2.10. The kernels are extracted from the fully trained custom convolutional neural
networks from scratch for demonstration purposes.

= ol =]
~d] s
o w w]
n wef] T

(a) (b) (c)

Fig. 2.10 Experimental results of the kernel tiling technique applied to an input channel
of MNIST digit "7" and sixteen kernels extracted from the model trained on MNIST.
(a) The input image padded the resolution of the kernel block (b) Kernel block containing all
kernels padded and tiled together (c) Tiled outputs of the convolution of the input image with
the corresponding kernel from the kemnel block, achieved simply with the convolution of the
matrix (a) and (b).

48

01 02 03
= 0O, Os
O, Os O

onfe -
NP EoD o

Fig. 2.11 Implementation of the convolutional layer in optics using the channel tiling.
Channels first padded and tiled into one block. Kernels of the particular output are conse-
quently padded and tiled in the locations corresponding to their input channels. The middle
picture of the output block,Os, is the sum of the convolutions of each input channel with the
corresponding kernel.

high-resolution capabilities of the device. Just like in the kernel tiling, in this case both
kernels and channels are padded to the (M +N —1) x (M +N — 1), where M x M represents
the resolution of the input and N x N denotes the resolution of the kernel. Both channels and
kemnels are tiled into a channel and kernel block and convolved.

The output of the convolution of both blocks will yield the block of outputs with (2/N: —
1) x (24/N; — 1) outputs, where N is the number of input channels. All outputs are invalid,
except the output in the middle, which is the summation of the convolution of each input
channel with its corresponding kernel (see Figure 2.11). Since this method returns the
convolution and the summation of the results, it can be applied to the channel summation as
described in the Figure 3.5.

The method has been tested, just like the kernel tiling, using the weights of the MNIST
network, as shown in Figure 2.12.

One of the disadvantages of this method is that most of the pixels in the output are useless
and must be discarded.

The third and most efficient method of parallelising the convolutional layer in the 4f
system is mixed tiling. Mixed tiling involves combining kernel tiling and channel tiling into
a single method, ensuring full parallelism of the entire convolutional layer. If the device
resolution permits, the entire convolutional layer can be executed in one inference through
the 4f system. This approach guarantees that the convolution of all input channels with their
corresponding kernels is completed, and the results are summed across the output channels.
However, in practice, the resolution of the modulators might not allow all channels to be
tiled.

49

FeAK

7

1 L :
-7

Fig. 2.12 Experimental results of the channel tiling technique applied to four input
channels of MNIST digit 7" as input and four kernels corresponding to one output
channel extracted from the model also trained on MNIST. The input image is padded and
tiled four times (each corresponding to the kernel). Kernels are also padded and tiled into
one kernel block. Convolution has been performed with both blocks, and the image in the
middle of the output is cropped out. The cropped-out image is the sum of the convolutions of
inputs with 4 kernels.

In the mix tiling method, the inputs and kernels are padded to (M +N —1) x (M +N—1)
and tiled horizontally. Similarly, the kernels are padded to (M +N — 1) x (M+N —1) and
tiled in both x and y dimensions, where each row corresponds to the output channel. The
output block, similar to the channel tiling, has invalid regions of unnecessary convolutions.
The valid outputs are present in the middle of each row of the output block.

The mix tiling method has been tested with MNIST weights, as shown in the Figure 2.14.
Unlike the real-life scenario, the same input image was used four times to emulate different
channels, similar to what has been used in channel tiling. Kernels are tiled in a manner
similar to kernel tiling; however, in this case, the rows correspond to the distinct output
channels. After the input block is padded to the same resolution as the kernel block, the
output’s middle column is extracted as the values of the new output feature map tensor.

2.8.5 Optical Transformers

Regardless of the ViTs being a new field in Deep Learning, recently, Xu ef al. [5] have
employed a free-space optical setup to accelerate ViTs, introducing an innovative Optronic
Vision Transformer (OPViT) architecture. This setup, as illustrated in Figure 2.15, combines
the principles of optical computing with the Transformer model. It is a dedicated setup
designed specifically for the implementation of ViTs using optical technology.

50

Fig. 2.13 Implementation of the convolutional layer in optics using mix tiling. All input
channels are tiled horizontally in the middle of the input block. Kernels corresponding to the
same output channel are tiled horizontally. In the output block, the output matrices in the
middle of each row correspond to the output of the convolutional layer, which is the sum of
the convolution of the input channel with its corresponding kernel and summation.

77727777

— 777177
7272277 7
7772777
i 7R

Fig. 2.14 Experimental results of the mix tiling technique applied to a four-input-channel,
four-output-channel convolutional layer, using the MNIST digit ''7"' as input. Sixteen
2D kernels were extracted from a custom convolutional neural network trained on the MNIST
dataset and were tiled in the kernel block to produce four output channels. The resulting
block contains 28 output images, with only four images in the middle column falling within
the valid region, which can be cropped and used as an output of the convolutional layer.

51

Amplitude Amplitude SCMOS3

Collimating SLM3
Laser Lens SLMA
- { ‘.. |
L1
PBS1 FBS2 LS
! Fhase-only
sCMOS1 . SLM4

L1
L2 " PBS3
N [—= I
L k ;"'".'_";""'i
"I S 13 Amplitude §
sLm2 5 i

sCMOS4

S L4

sCMOS2

Fig. 2.15 Optical Vision Transformer hardware architecture as per Xu ef al. [5]. The
left part of the setup performs the Transformer path, where SLMs are used for the matrix
multiplication and lenses to simulate the summation while demagnifying the ray. The right
side of the setup is a standard 4f system used for the classification.

The optical setup in Figure 2.15 consists of two main parts: the Transformer Encoder and
the Classifier. The process within the encoder begins with SLM1, where the input image is
loaded. This input image is divided into smaller patches, which are then tiled and displayed on
SLMI. This tiling is crucial for enabling parallel processing during the matrix multiplication
operations that follow. Concurrently, the corresponding weight matrices Wy, Wi, and W, are
loaded onto SLM2. After the input image patches are displayed on SLM1 and the weight
matrices on SLM2, the light passes through a series of lenses (L1 and L2), which focus and
sum the light. This optical summation is equivalent to the matrix multiplication needed to
compute the queries, keys, and values. The result is captured by a sensor (sCMOS1) as Q, K,
and V.

Similar to a regular attention layer, Q and K are used to calculate the attention scores.
The matrices Q and K are multiplied, and the resulting product is passed through another
set of lenses (L3 and L4) for summation. The attention-weighted values are then processed
using SLM3, where a trained matrix is applied to prepare the encoded image for the final

52

classification stage. Finally, the authors used the 4f system convolution for the classification
head, which happens in the SLM4 and is read with the CMOS4 camera.

From a deep learning perspective, the OPViT integrates the Transformer model’s self-
attention mechanism into an optical framework. The architecture uses only one layer of
self-attention with single-head attention, which is significant because Transformers typically
rely on multi-head attention for capturing diverse aspects of the input data. For classification,
the architecture requires only two to three layers of optical convolution, depending on the
complexity of the dataset.

The OPViT was evaluated on two standard image classification benchmarks: the MNIST
and Fashion-MNIST datasets. It achieved accuracy rates of 98.70% on MNIST and 88.93%
on Fashion-MNIST. Although the results are impressively good, the MNIST dataset can
be classified with SVM up to 94.005%, with MLP of six layers up to 98.85% and two-
layered CNN with test accuracy of 99.31% [92]. Unfortunately, there were no attention score
visualisations to prove the concept of attention learning.

Nevertheless, the authors demonstrated the first-ever experimental implementation of the
attention mechanism in free-space optics. They estimated the system’s latency, highlighting
that the primary delays arise from signal transduction times, such as the loading time of
SLMs and the delay in image detection by high-speed cameras. Considering these factors,
they suggest that the realistic clock speed for the OPViT system would be approximately 70
Hz.

The authors emphasise the energy efficiency of the OPViT system, stating that it achieves
1.76 x 10'2 FLOPs/J, which is significantly more efficient than current digital devices,
typically around 107 FLOPs/J.

2.9 Datasets

2.9.1 CIFAR-100

The CIFAR-100 (Canadian Institute For Advanced Research) [59] dataset is used to evaluate
the classification models in this study. The dataset is a well-established, widely-used resource
for machine learning and computer vision research. It comprises a collection of 60,000
colour images evenly distributed across 100 distinct classes. E ach of these classes represents
different objects, animals, and types of vehicles and plants, among others (See Figure 2.16).

Every class in the CIFAR-100 dataset contains 600 individual images with a low resolu-
tion of 32 x 32. Furthermore, the dataset is split into a training set of 50,000 images (500 per

33

FEEAE RO EEaAN s
® A Gl £ B
U L e Cle
NeAECER R L MDAl R
MWL B B AR
O A THELT « HE PN
A20= sNEDSRADHLS
B N Al S TR 5
EDE DN cEos =

Fig. 2.16 Subset of CIFAR-100 dataset. Coloured images of varios objects, animals,
vehicles and other 100 classes, with the resolution of 32 x 32

class), and a test set of 10,000 images (100 per class), providing a robust framework for both
model training and evaluation [27].

An additional unique aspect of the CIFAR-100 dataset is its hierarchical label structure.
The 100 classes (referred to as "fine’ classes) are grouped into 20 "coarse’ classes or super-
classes. Each coarse class contains five fine classes. For example, a 'coarse’ class may be
‘aquatic mammals’, within which would exist "fine” classes such as "beavers’, "dolphins’,
‘otters’, "seals’, and "whales’. The list of coarse classes and fine classes is shown in Table 2.4.
This offers researchers the ability to examine model performance on different levels of class
granularity. On the other hand, the similarity of fine classes under the same coarse class in
CIFAR-100 makes it harder to train.

Although CIFAR-100 is a challenging dataset for model evaluation, this was not the only
reason it was chosen for this research. The design of the FatNet models, as described in
Section 3.2.1, makes them more efficient for datasets with a large number of classes, such
as the 100 classes in case of CIFAR-100. Additionally, FatNet models have the potential to
work more efficiently with higher-resolution images. However, simulating light propagation
requires a significant amount of GPU memory. Moreover, FatNets are not optimised for GPU
acceleration, resulting in longer training times compared to the original networks. This is
why ImageNet, despite being an obvious choice for FatNet, was not used in our experiments.

Table 2.4 Classes and Superclasses in CIFAR-100 dataset.

Superclass

Classes

aquatic mammals

fish

flowers

food containers

fruit and vegetables

household electrical devices
household furniture

insects

large carnivores

large man-made outdoor things
large natural outdoor scenes
large omnivores and herbivores
medium-sized mammals
non-insect invertebrates

people

reptiles

small mammals

trees

vehicles 1

vehicles 2

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout

orchids, poppies, roses, sunflowers, tulips

bottles, bowls, cans, cups, plates

apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach

bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snail, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle

hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train

lawn-mower, rocket, streetcar, tank, tractor

55

Table 2.5 Mizusawa et al.baseline performance of CIFAR-100 on different models

VGGI1 VGGI9 ResNet-20 ResNet110 ViT

67.10 70.21 64.09 66.71 60.84

In contrast, CIFAR-100 is a low-resolution dataset with a relatively large number of classes,
making it an ideal choice for this work.

2.9.2 Classification of CIFAR-100 dataset

The CIFAR-100 dataset is one of several key benchmarks used to evaluate the performance
of neural networks om image classification tasks. Comprising images across 100 categories,
each at a resolution of 32 x 32 and including 600 instances per class, this dataset offers a
comprehensive test of the flexibility and robustness of various deep learning models. An
in-depth overview of the dataset is discussed in Section 2.9.1. Given its enhanced complexity
and larger variety of classes compared to CIFAR-10, CIFAR-100 serves as an excellent
benchmark in image classification technologies. This section describes and analyses the
performance of previously published neural network models on CIFAR-100, providing
insights into the benefits and limitations of the state-of-the-art methods.

To ensure a fair evaluation consistent with the methodologies discussed in this thesis, the
analysis focuses primarily on traditional training approaches, rather than on fine-tuning or
the application of transfer learning techniques.

In recent years, significant strides have been made to improve the classification accuracy
of models trained on the CIFAR-100 dataset by employing advanced augmentation and
regularisation techniques. These strategies aim to mitigate common issues such as overfitting
and the vanishing gradient problem, particularly in deep convolutional neural networks.

Mizusawa et al.’s [93] research on interlayer augmentation demonstrates a sophisticated
approach to data augmentation that manipulates data between network layers. This method,
involving techniques known as Batch Generalization (BG) and Random Batch Generalization
(RBG), was applied across various network architectures ResNet, VGG and ViT leading to
an average improvement in CIFAR-100 classification accuracy by up to 1.07% for RBG and
0.30% for BG compared to baseline models. For the purpose of this project, we are interested
in the baseline models, performance of which are given in the table below

The authors discussed the use of several augmentation techniques, such as cutmix, mixup,
shift, random flips, and feature space augmentation. From Table 2.5, it can be seen that the
improvements with the larger models are notable compared to smaller models, but the ViT

56

performed significantly worse than the CNNs. This can be simply justified, as discussed
earlier, because ViT is not powerful on small datasets but is extremely efficient when trained
on larger datasets and fine-tuned on small datasets like CIFAR-100.

Shah et al’s [94] modification of the ResNet-110 architecture, which integrates Expo-
nential Linear Units (ELU) [95] instead of the conventional ReLU activation functions, has
shown promising results. This modification mitigates the vanishing gradient problem and
the diminishing feature reuse, issues that are pronounced in very deep convolutional neural
networks. Shah’s network allows small negative outputs and shifts mean activations closer
to zero, thereby reducing the bias shift commonly observed with ReL.Us and speeding up
the learning process. The authors have demonstrated that by replacing ReLU with ELU,
the network benefits from faster learning speeds and improved accuracy as the network
depth increases. This modification led to an improvement in test accuracy, achieving a
new state-of-the-art performance with a 73.45% error rate on CIFAR-100, surpassing the
traditional ResNet-110"s 72.77% test accuracy.

In their research, Chen et al. [96] also uses the CIFAR-100 dataset to evaluate their
proposed method, CCPrune. This work aims to build on previous methods, such as those
introduced by Li et al. [97], which primarily focused on evaluating the importance of channels
based on single-layer data. By integrating both the convolution layer weights and the Batch
Normalisation layer scaling factors, CCPrune allows for a more comprehensive assessment
of channel importance, ensuring that interdependencies between layers are considered in the
pruning process.

Their application of CCPrune on CIFAR-100 using the Resnet-50 architecture demon-
strated its effectiveness in significantly reducing computational demands—specifically, a
reduction in FLOPs by 65.25%—while maintaining nearly the same level of accuracy, with
only a slight decrease from 77.72% to 77.74%. In the same work by pruning the ResNet-20,
the FLOPs were reduced by 53.65%, while accuracy dropped from 68.67% to 67.57%.

2.9.3 Oxford-IIIT Pet

The Oxford-IIIT Pet dataset [98, 28], developed by the Visual Geometry Group, contains
7,359 images of pets (cats and dogs) spread across 37 different breed categories, with each
category roughly comprising 200 images. It was created for fine-grained image classification,
segmentation and object detection tasks, featuring images of cats and dogs. Its primary aim
is to facilitate algorithms capable of distinguishing between different breeds of cats and dogs.
The dataset is characterised by its diversity, featuring significant variations in scale, pose,
scene and lighting conditions across the images. Each image in the dataset is labelled by breed
identification, head region of interest (ROI), and the segmentation mask (See Figure 2.17).

57

Fig. 2.17 Subset of the Oxford IIIT pets dataset with ground truth segmentation masks.
This is one of the three types of labels that come with the dataset, including segmentation
mask, ROI (bounding box), and breed classes.

Given that we used the dataset in our research for segmentation purposes, the breed
classes provided by the dataset are not our main concern. Instead, our priority lies in the
segmentation tasks that distinguish pets from their backgrounds.

This dataset was chosen for several reasons. Its diversity facilitates the evaluation of
segmentation models across a broad range of object shapes, sizes, and textures. Additionally,
the dataset provides a good balance between different breeds and includes a wide range of
backgrounds, making it ideal for testing model generalisation. The Oxford-IIIT Pet dataset is
widely used in the research community, offering benchmark results that can be compared
across studies (See Section 2.9.5).

While more complex datasets such as Pascal VOC or COCO could be employed, the
Oxford-IIIT Pet dataset served as the primary evaluation method in this work before training
on a real-life dataset: Hel.a cancer cell nucleus segmentation. Unlike Pascal VOC and
COCO, which are larger and more complex, the Oxford-IIIT Pet dataset is more manageable
in terms of memory and computational requirements for the FatNet models and is sufficient
to prove the concept before moving to HeLa nucleus segmentation.

58

2.9.4 Hela cells

Since the Oxford-IIIT Pet dataset was already being used for the evaluation of the segmen-
tation models in this work, the second dataset was chosen such that it would have a direct
real-life application.

In 1951, biomedical research discovered the first immortal human cell line sourced
from the cervical cancer cells of Henrietta Lacks. This cell line, known as "HeLa" today,
exhibited an unprecedented ability to grow and divide outside the human body. These
cells have been extensively used in a range of studies, including those on cancer [99-101],
toxoplasmosis [102-104], radiation [105-107] and AIDS [108-110].

Within cancer research, a focal point is the examination of cell distribution, form, and
detailed traits, including aspects like the nuclear envelope (NE) and plasma membrane.

This particular Hel.a cells dataset used in this research was prepared and embedded
in Durcupan for observation with serial block face scanning electron microscopy (SBF
SEM) following the protocol of the National Center for Microscopy and Imaging Research
(NCMIR). The images were acquired using a Gatan 3View2XP SBF SEM attached to a Zeiss
Sigma VP SEM. The voxel size was 10 x 10 > 50 nm with intensity values in the range of
0-255. In total, 518 slices of 8192 < 8192 pixels were acquired [111].

This work uses the 2000 x 2000 = 300 [112] voxel region of interest (ROI) containing one
cell near the centre cropped from the larger images. The ground truth used for training was
acquired from the dataset by Karabag et al. [32]. The ground truth contains the segmentation
of the central cell’s nucleus, ignoring the adjacent cells’ nuclei, as shown in Figure 2.18.
However, in their work, Karabag et al. [8] has demonstrated that the U-Net managed to
learn the segmentation of the nuclei of the 8192 x 8192 field even when trained with the ROI
where the nuclei of the adjacent cells were treated as the background.

2.9.5 Segmentation of HeLa Cells and Oxford-IIIT Pet

This section consists of an analysis and review of the previous work done in the training and
evaluation of the HeLa Cells and Oxford-IIIT Pet datasets. For a fair comparison with this
work, it will be more focused on U-Net based methods.

One of the studies by Dippen et al. [113] examines the effectiveness of different pretrain-
ing and initialisation methods for encoder-decoder architectures in image segmentation tasks,
emphasising the U-Net architecture and using the Oxford-IIIT Pet dataset for evaluation.
When randomly initialised, their U-Net achieved an average Dice score of 88.2% on 20% of
the dataset. Meanwhile, their best performance employing the ConRec method elevated the
Dice score to 90.0%.

39

m\“)’ [>l

Fig. 2.18 Example of six slices from the Ground Truth of Hel.a Cells dataset. The slices
are displayed in increasing order from left to right. The nucleus is vivid in the middle slices,
but gets smaller and even splits in the shallowest and deepest slices. Arrows are added for
demonstrative purposes: the green arrow points to the manually labelled nucleus, while the
red arrows point to the adjacent cells, where the nucleus was ignored by the labeller.

o~

One way to improve the performance of U-Net involves replacing the encoder path of
the U-Net with pre-trained classifier models, such as InceptionV3, DenseNet, ResNet34,
and others, as described by Sundarrajan et al. [114]. After training a 5-stage U-Net with the
Oxford-IIIT Pet dataset, the Intersection over Union (IoU) and Dice Score achieved were
33.3% and 46.4%, respectively. The authors used a batch size of 8 and trained the model for
50 epochs.

After replacing the encoder with pre-trained models, significant improvements were
observed. For example, U-Net+VGG-16 achieved an IoU of 89.4% and a Dice score of 94.2%.
Similarly, U-Net+Inception V3 reached an IoU of 91.6% and a Dice score of 91.5%. When the
U-Net’s encoder was replaced with ResNet34, the performance further improved, achieving
an loU of 91.0% and a Dice score of 95.1%. U-Net+Densenet performed exceptionally well,
with an lIoU of 91.5% and a Dice score of 95.3%. Lastly, U-Net+MobilenetV2 also showed
considerable enhancement, with an IoU of 89.6% and a Dice score of 92.3%.

These results illustrate the substantial gains in segmentation performance achieved by
leveraging pre-trained models as encoders in the U-Net architecture. This demonstrates
that the encoder path of the U-Net functions as the classifier, significantly enhancing the
model’s ability to accurately segment images when combined with the expanding path and
skip connections to maintain localisation.

While previous models for semantic segmentation, such as U-Net, relied on deep encoder-
decoder architectures, the ICNet model proposed by Zhao et al. [115] introduced a more
efficient approach for real-time applications. ICNet uses a multi-resolution branch structure

60

with Cascade Feature Fusion (CFF) and Cascade Label Guidance (CLG) to achieve high-
quality segmentation with reduced computational cost.

Building on ICNet, Edwards and El-Sharkawy [116] introduced ulCNet, leveraging
depthwise separable convolutions from MobileNet for enhanced efficiency. They evaluated
ulCNet on the Oxford-IIIT Pet dataset by resizing the images to 512 x 512 pixels and applying
data augmentation techniques such as random flips. ulCNet achieved mean intersection over
union (mloU) scores of 74.53% and 74.78% for its two versions, while reducing model
size by 4% compared to ICNet. In comparison, ICNet achieved an mloU of 75.12% on the
Oxford-IIIT Pet dataset. It should also be mentioned that the inference speed for both ulCNet
and ICNet is identical.

The Scale Equivariant U-Net (SEU-Net) introduced by Sangalli ef al. [31] represents a
significant advancement in segmentation tasks, particularly for datasets such as Oxford-IIIT
Pet and DIC-C2DH-HeLa cells. SEU-Net enhances the traditional U-Net architecture by
incorporating scale equivariance, which is achieved through semigroup cross-correlations
and carefully designed subsampling and upsampling layers. This approach ensures that
the network generalises well to images containing objects at different scales. Additionally,
SEU-Net employs scale-dropout during training, a technique that enhances robustness by
randomly dropping scales.

In experiments, SEU-Net outperformed both traditional U-Nets and scale-equivariant
residual networks (SResNet) at different scales of the inputs and exhibited identical perfor-
mance at a scale of one, achieving an loU of approximately 77% on the Oxford-IIIT Pet
dataset. Furthermore, SEU-Net demonstrated improved performance in the DIC-C2DH-
HelL a cell segmentation tasks, highlighting its versatility and effectiveness in handling scale
variations across different datasets.

Originally, U-Net was developed for biomedical image segmentation, and in the seminal
work by Ronneberger et al. [13], the DIC-HeLa cells dataset was used to evaluate the model,
where U-Net achieved a 77.56% loU. This performance was significantly better than other
algorithms at the time.

In contrast, the U-Net model developed by Sangalli et al. [31] achieved approximately
82.8% loU on the DIC-HeLa cells dataset and slightly lower at around 81% IoU with SEU-
Net. Similar to the results with the Oxford Pets dataset, SEU-Net performed better than
U-Net at different scales of the image.

The dataset used in this thesis is the version evaluated in the work of Karabag et al.
[8], where it achieved an IoU of 51.38% for all slices of the region of interest (ROI) and
07.12% for the middle 150-200 slices of the ROI. Since the nucleus is either very small or
non-existent in the shallowest and deepest slices of the ROI, the metrics become inaccurate

61

and irrelevant. Hence, the best performance metrics are derived from the middle-range slices,
which were also used in this thesis.

2.10 Gradient Accumulation

Since the simulation of the optics and larger kernel resolutions requires a lot of memory,
training the networks with large batch sizes becomes impossible or hard. In this work to solve
the issue, we have tumed to the gradient accumulation technique introduced by Hermans et
al.[117].

This approach is designed to overcome the constraints of GPU memory when training
deep neural networks. It accumulates the gradients over multiple mini-batches before
updating the model’s parameters, reducing memory consumption during training while
maintaining performance.

Suppose we would like to train with the desired batch size B, but we can only train with
the batch size of B/N, due to the memory requirements. We can perform N numbers of
forward and backward passes on each B/N mini-batch while accumulating the gradients.

N
A01) =Y Q" (2.15)

i=1

After the N iterations, we can perform the gradient step and update the weights.

ot — gl _ Al (2.16)

2.11 Measurement of performance

This section provides an overview of the metrics used to evaluate all models trained in this
work, covering both classification and segmentation tasks across all chapters.

Classification tasks have been evaluated using only the top-1 accuracy, referred to simply
as accuracy throughout this thesis.

Accuracy is a standard metric for evaluating classification models. It is defined as the
ratio of correctly predicted data points to the total number of data points. Mathematically,
Accuracy is expressed as:

TP+TN

Accuracy = (2.17)
TP+TN+FP+FN

62

where TP is the number of true positives (correctly predicted positive instances), TN is the
number of true negatives (correctly predicted negative instances), FP is the number of false
positives (incorrectly predicted positive instances), and FN is the number of false negatives
(incorrectly predicted negative instances)

Segmentation models were evaluated using three metrics: pixel-wise accuracy, dice score
and mloU (Mean Intersection over Union).

Pixel-wise accuracy is similar to the accuracy used for the classification, except it
measures the ratio of correctly predicted pixels to the total number of pixels, rather than
instances. Mathematically expressed as mentioned in the Formula 2.17.

The Dice Score is a widely used metric for segmentation models; it is equivalent to the
classification’s F1 score. It measures the overlap between the predicted segmentation and the
ground truth. It is particularly beneficial when the target regions are small, and the cost of
missing these regions is high. The Dice Score is defined as:

2|ANB|

DiceScore =
||+ |B|

(2.18)

where A is the set of pixels in the predicted segmentation mask, B is the set of pixels in the
ground truth.
In terms of TP, FP and EN, it is expressed as follows:
2-TP

DiceScore — 2.19
eS0T = S TP FP+FN 2.19)

where TP is the number of true positives (correctly predicted positive instances), FP is the
number of false positives (incorrectly predicted positive instances), and FN is the number of
false negatives (incorrectly predicted negative instances).

Intersection over Union, also known as the Jaccard Index, is another important metric for
evaluating segmentation models. It measures the overlap between the predicted segmentation
and the ground truth relative to their union. Unlike the Dice score, IoU does not take the
overlap twice, which makes it more interpretable and preferred when the task requires a
straightforward measure of overlap. It is also more strict for over-segmentation or under-
segmentation, which can be crucial in applications where precision is important.

IoU is defined as:

(2.20)

where A is the set of pixels in the predicted segmentation mask, B is the set of pixels in the
ground truth.

63

In terms of TP, FP and FN, loU is expressed as follows:

TP

TolU =
TP+FP+FN

(2.21)

2.12 Conclusion

The literature review began by introducing optical computing and the 4f system, examin-
ing Fourier optics, the Fourier transform, and Fourier convolution. These concepts were
connected to demonstrate how the 4f system performs convolution operations. Following
this, the review explored CNNs and their applications in image classification by examining
state-of -the-art networks in chronological order. All these networks, from early designs like
LeNet to modern architectures like ResNet, were found to share a cone-shaped structure,
aligning with the problem statement 1.1. Additionally, the application of CNNs for image
segmentation was discussed, where encoder-decoder architectures like U-Net also exhibited
cone-shaped designs for the encoding process.

The literature then shifted to high-resolution training. Agrawal and Mital [6] demon-
strated that high-resolution training can improve model performance. Peng et al. [66] noted
that barrel-shaped networks are more efficient for segmentation tasks, as they effectively
incorporate localisation and classification. Furthermore, Ding et al. [36] showed that high-
resolution kernels in CNNss can expand the effective receptive field, allowing CNNs to match
the performance of Vision Transformers, which achieve large receptive fields through atten-
tion mechanisms. Despite these promising insights, no studies have integrated high-resolution
training or barrel-shaped architectures with optical accelerators like the 4f system.

The next section focused on optical accelerator hardware. Passive 4f optical accelerators
were shown to be restricted to fixed non-editable kernels, limiting their use to single-layer
implementations. While active 4f systems can process multiple layers, they rely on electronic
non-linear activations, making the read-out speed a major bottleneck. To address these
limitations, researchers have taken advantage the high-resolution capabilities of the 4f system
to parallelise convolution operations. However, even though the high-resolution capabilities
of the 4f system enable parallelism, as discussed in Section 2.8.4, no studies have applied
high-resolution training to make full use of 4f system’s spatial bandwidth.

The review also examined attention mechanisms, transformers, vision transformers, and
their various adaptations, such as those for the CIFAR-100 dataset. Unlike CNNs, ViTs rely
on attention mechanisms instead of convolutional hierarchies and achieve a larger effective

receptive field. However, optical implementations of ViTs require entirely new setups, with

no existing work exploring the feasibility of using a single optical device, like the 4f system,
to implement both transformer and CNN layers.

Finally, the chapter provided an overview of the datasets used in this work, including
CIFAR-100, Oxford IIIT Pets, and Hela cells, as well as a review of prior benchmarks. Key
techniques such as gradient accumulation, used in this work and the metrics for evaluation
were also discussed.

In summary, the review identifies following gaps in knowledge which align with the
problem statement 1.1 and objectives of this work:

* Lack of research on barrel-shaped architectures in optical systems: Despite ad-
vantages of high-resolutional training for higher effective receptive field, and their
compatibility with 4f systems, these architectures remain unexplored in optical accel-
erators.

* Hardware bottlenecks in optical accelerators: The reliance on electronic non-linear
activations, modulator frequency limitations, and camera readouts constrains scalability
and limits the efficiency of optical accelerators. Hence there needs to be a solution to
limit the number of optics-to-electronics conversions, which is partially solved using
tiling methods, but not through experiments involving high-resolution training.

* Lack of versatility of 4f systems: Current implementations of optical ViTs require
separate setups, raising the question of whether a single optical device can handle
both transformers and CNNs and whether the same 4f system can be used to perform
inference on the linear layers.

Chapter 3

FatNet for Classification

Overview

This chapter focuses on the adaptation of the convolutional neural networks used for the
image classification for the 4f free-space optical accelerator.

It provides a detailed description of the methods developed. The chapter includes
methods for the FatNet conversion, optical simulator, and the custom optical convolutional
layer (OptNN).

Note: This chapter is related to the following publication: R. Ibadulla, T. M. Chen,
and C. C. Reyes-Aldasoro, “FatNet: High-Resolution Kernels for Classification Using Fully
Convolutional Optical Neural Networks,” Al vol. 4, no. 2, pp. 361-374, Apr. 2023, doi:
10.3390/ai4020018 [118]

This chapter provides additional experiments with other networks like VGG-16 and
AlexNet.

3.1 Introduction

Image classification is a fundamental and important task in the field of computer vision,
which involves solving the problem of identifying which set of categories or classes an
image belongs to. With the rise of deep learning, convolutional neural networks became a
standard solution for complex computer vision tasks [119, 59, 27, 3, 120-125] including
image classification. In CNNs, each neuron in a convolutional layer is only connected to a
small, localised region of the input image, known as the receptive field, rather than being
fully connected to every neuron in the following layer. This localised connectivity enables
CNNs to efficiently capture spatial hierarchies and patterns, such as edges or textures, which

67

are crucial for image classification tasks. It is known that the fully connected layers can
also perform image classification tasks but with the cost of potential overfitting and lower
computational efficiency. CNNs, on the other hand, are specifically designed to process pixel
data with convolutional layers that automatically and adaptively learn spatial hierarchies
of features and capture patterns from input images without the need for manual feature
extraction. Initial image classification methods and algorithms were employed to extract
the features from images, or alternatively, these features were extracted manually. After
this feature extraction phase, those features were fit into classifiers such as Support Vector
Machines (SVMs), k-nearest Neighbors (k-NN), Decision Trees or a perceptron. However,
CNN5s” hierarchical structure allows shallow layers to learn basic features and deeper layers
to capture more complex patterns, making them highly effective for distinguishing between
intricate image classes.

Furthermore, due to weight sharing in the convolutional layers, CNNs have fewer parame-
ters than fully connected networks, which aids in reducing the computational cost and risk of
overfitting. Additionally, pooling layers in CNNs introduce spatial invariance to changes in
position, allowing the network to recognise objects regardless of their position in the image.
Invariances to other transformations, such as rotation and scale, can be achieved through
additional techniques, such as data augmentation or specific modifications to the architec-
ture [31, 126]. Consequently, these advantages make CNNs the preferred choice for many
image classification tasks, often achieving state-of-the-art performance [3, 2, 4, 127-129].

One of the nuances of the convolutional neural networks for classification is their cone
shape. This design is important because it allows the network to recognise and learn patterns
from input images, making the model more suitable for handling spatial data. However, this
shape is the legacy of the early classification methods, as the final layers of CNNs extract
high-level features, capturing complex patterns and abstractions that are well-suited for the
dense classifier. Moreover, these networks usually contain small 3 < 3 kernels, which, when
combined with the cone structure, make them well-suited for training on modern hardware
like CPUs and GPUs. On the other hand, optical accelerators, as previously mentioned, can
handle convolution operations with the constant speed, regardless of input size or kernel
dimensions. Nevertheless, the bottleneck of such a network is the multiple conversions from
optics to electronics in the camera. This suggests that a network design with fewer channels,
but larger kernels might work better for optical accelerators. Although, initially, it’s difficult
to determine whether this network will be able to compete with a standard cone-shaped CNN,
or if it will overfit and be inefficient. If FatNet is used, it can be assured that the number of
pixels and number of weights per layer will be preserved. However, there are still questions:
whether converting the off-shelf networks into the FatNet is efficient? And can any network

68

with larger kermels and larger feature maps in the barrel shape can compete with the off-shelf
network converted to FatNet?

3.2 Methods

3.2.1 FatNet conversion

The main idea behind the FatNet is to convert any classification network from a cone shape
into a barrel shape.

Cone-shaped neural networks have demonstrated success since the first introduction of
LeNet. There are several reasons for having cone-shaped architecture. By filtering the feature
maps using convolution operations followed by activation functions and pooling operations,
the features from the image can be learned and extracted to end up with the feature maps
or vectors essential for the current classification problem. Those feature maps can then be
flattened into a vector and fit into the classifier. This can be any classifier, like MLP or KNN.
Same as the convolutional part, it can be any feature extractor. But having the convolutional
feature extraction and fully connected classifier all stacked into one network allows the
training of the filter for the feature extraction and weights of the classifier simultaneously.
Moreover, the convolutional feature extractor of these networks can be used for transfer
learning, as they have the full capability of extracting the relevant features of common
images.

The question arises why the research is following the traditional path of feature extraction
first and classification of the extracted features if it’s possible to train fully connected
networks. Today, the Vision Transformers have proven that there is absolutely no point in
following the traditional classification methods of combination of feature extraction and
classification [21]. However, the main advantage of using convolutions followed by the
pooling operations is the training speed since the network gets lighter after each feature
extraction and pooling and ends up with very low-resolution feature maps. The final dense
layers, in this case fit with the relatively short vector of the extracted features. However,
these methods became standard due to the dominance of electronic computing. Unlike in
electronics, larger resolutions for inputs and kernels in the free space optics do not affect the
speed of inference, which makes it essential to explore new architectures that are compatible
with optics. Due to the dominance of electronic computing, the research of larger resolution
kernels has been lagging as it seemed useless.

This section focuses on converting cone-shaped architectures into barrel-shaped architec-

tures. The output of such conversion is the network with high-resolution feature maps, with

69

only a few pooling operations and high-resolution kernels, sometimes the size of the feature
maps, hence called FatNet (Layers are Fat).

Through the use of larger kernel sizes and feature maps in the classifier convolutional
neural network (CNN), the efficiency of free-space optics is maximised. While it is true
that higher resolutions might lead to overfitting, our method maintains the same number of
trainable parameters as the original network, mitigating this issue. The following core rules

have been established for converting any classifier into a FatNet:

1. The FatNet should preserve the same number of layers as the original network to keep
the same number of non-linear activation functions. Since each layer’s non-linear
activation function enhances the network’s ability to capture complex patterns, it is
crucial to preserve the number of layers. Non-linear activations enable the network
to model complex, non-linear relationships in the data, thereby supporting complex
pattern recognition. By retaining the same number of non-linearities, FatNet maintains

functional equivalence and ensures performance comparability.

2. The FatNet should keep precisely the same architecture as the original network on
the shallow layers until the shape of the feature maps pools down to the shape where
the number of elements of the feature map is less than or equal to the number of
classes. This ensures that the FatNet retains the original network’s early layer structure
to capture essential low-level features accurately before necessary conversion occurs.
A key concept behind FatNet is to eliminate linear layers and transform the network
into a fully convolutional neural network to facilitate inference on the 4f system.
Consequently, it is essential to have an output tensor, where the number of elements

equals to the number of classes to represent each class. Ideally the output tensor

should have one channel, with a resolution that matches number of channels

number of channels. Before the feature maps of the original cone-shaped CNN are
pooled down below this desired resolution, the feature map resolutions remain high,
making it unnecessary to convert those layers into their FatNet equivalents.

3. FatNet has a similar total number of pixels of the feature maps at the output of each
layer as the original networks. Hence, since the feature maps’ shape stays constant
and does not use pooling, the new number of output channels needs to be calculated,
which will be less than for the original network. As the resolution of features maps in
FatNet remains high and is not downscaled, the number of features (pixels) in each
layer increases. In networks such as MLPs, this would directly impact the number
of trainable parameters. However, in CNNs, the kernel size is not directly linked to

the number of features in the features map. Although reducing the number of output

70

channels is crucial part of the FatNet conversion, as it minimises the number of 2D
convolution operations, the question arises whether this reduction should be done
arbitrarily or by preserving the number of features in the feature map. Hypothetically,
maintaining the number of pixels is essential for the model to retain similar feature
extraction capabilities as the original network. This hypothesis is later substantiated in
the experiments conducted in Intuitive Fat-U-Nets 4.2.1.

4. FatNet has a similar number of trainable parameters per layer as the original network.
Since we have reduced the number of output channels based on the third rule, the
number of trainable parameters has also been reduced. Hence, a new kernel size needs
to be calculated based on the number of output channels. If the number of parameters
is reduced too drastically, the network may lose its ability to generalise effectively or
capture complex features, potentially degrading performance. By recalculating the
kernel size to balance the reduced output channels, FatNet can achieve comparable
accuracy, ensuring it remains as effective as the original network. However, increasing
the number of parameters beyond that of the original network could lead to overfitting.
Since the original network is proven to generalise well, the kernel size should be
adjusted only enough to maintain a similar number of trainable parameters.

The previous rules are core intuitive rules. However, experimentally it has been concluded
that the next two rules should also be considered when building a FatNet:

5. If the number of input channels and output channels is equal in the original network,
that equality should be preserved for the FatNet too. This is done for the modular
CNNs, such as VGG or ResNets, where the networks consist of convolutional blocks.
Each block in such networks consists of a sequence of convolutional layers with the
same number of channels. This rule of FatNet conversion helps preserve the modular
structure of the network. When the rule was not initially applied, ResNet encountered
a minor structural inconsistency in the last layers, where the convolutional block’s
channels alternated between 151 and 155 as it can be seen from Table 3.2

6. In case the new kernel size is larger than the resolution of the new feature map, the
kernel size should be reduced to be equal to the resolution of the feature map, and
the number of channels of that particular layer should be increased accordingly. This
rule was introduced following experiments in which the FatNet achieved a network
configuration where kernels were larger than the feature map resolution and did not
train weights on the edges of the kernels, as shown in Figure 3.10.

71

In this work, PyTorch is used as the deep learning framework in all experiments, which is
flexible regarding the resolution of the input image. The convolutional layers in PyTorch do
not accept the input size as a parameter and can work with any input resolution. However,
it is important to note that FatNet conversion has to be done per one particular input size
because, according to rule 3, the number of pixels of the feature maps should remain the
same.

Based on the rules provided, the FatSpitter algorithm is developed in this work to convert
any network into its FatNet equivalent. The FatSpitter, accepts any model in PyTorch, and
spits out the "nn.Module()" object of the FatNet. The algorithm consists of three parts:
populating the construction table, conversion of layers into their FatNet equivalents and
refinement of output channels.

The Construction table contains the number of weights and the number of feature pixels
per layer. In order to follow core rule 2, the construction table is only observed after the
layer where the number of elements of the feature map is less than or equal to the number of
classes. The second stage is the replacement of layers with their FatNet equivalents. The
flow chart of this algorithm for the Convolutional layers is shown in the Figure 3.1. Note that
the algorithm recursively attends all layers in the model, and when the layer is sequential it
treats it as another network and attends all its layers too. The flow chart in Figure 3.1 only
shows the procedure of the Convolutional layers, as these ones are the most complex and
important in our case. When it comes to other layers, they are either skipped or replaced in
place. Finally the last stage, which is called refinement. Since the layers are being edited
in order from shallow to deep layers, sometimes its necessary to correct the input channels
of the current layer, meaning that the output channels of the previous layer must be refined
accordingly. This is where the refinement stage comes, in order to ensure that the outputs of
layers are always equal to the input of the following layers.

Batch Normalisation: As during the conversion, the number of channels of the layer
always gets amended, not only Batch Normalisation but any kind of normalisation layer
should be replaced by the same layer, with the number of channels equal to the number of
output channels of the previous layer.

Flatten Layer: FatNet is originally developed for the classification models, which usually
flatten the feature maps before fitting into the classifier. Unlike cone-shaped networks, FatNet
always maintains the high resolution of feature maps. Hence the output layer of the FatNet is
normally a matrix with the number of elements equal to the number of classes. Therefore,
there is no need for the commonly used flattening operation in CNN, which is replaced by
the identity layer in the FatSpitter algorithm. Although, the algorithm will automatically

72

place a flattening algorithm at the end of the network, in order to represent one hot encoding
of the output in classifier networks.

Linear Layers: The linear layers are replaced with the Convolutional layer, the input
channels of which are set to next_input _channels variable, which is determined by the output
channels of the previous layer. The number of output channels of this linear layer is set to
one, and the kernel size is set to the resolution of the feature maps.

3.2.2 FatSpitter in Convolutional layers

The main changes in the FatNet conversion occur in the convolutional layer. The primary
goal is to maintain the resolution of the feature maps as high as possible, ensuring it is not
smaller than the number of classes. Simultaneously, the number of channels is reduced
accordingly to match the number of pixels in the feature maps with those in the feature
maps of the original layer. Additionally, to maintain the original number of weights within
the kernels, their resolution is increased following the channel reduction. This principle
forms the foundation of the conversion; however, precise implementation requires adherence
to specific algorithmic guidelines, as shown in Algorithm | and illustrated in Figure 3.1.
These guidelines are outlined to ensure each layer is accurately adjusted to fit into the FatNet
configuration.

The first thing to check is whether the layer is the first updatable convolutional layer.
If it is, the input channels of the layer must remain unchanged. If the layer is not the first
updatable layer, the number of input channels should be updated to match the number of
output channels of the previous layer.

After establishing the number of input channels for the layer, the transformation of the
convolutional layer proceeds with an adjustment of the output channel dimensions while
keeping the input channels constant. Since the resolution of the feature map is higher than in
the original network, the new output channels are calculated to match the number of pixels in
the original feature map. Similarly, the kernel size is adjusted to maintain the same number
of weights as in the original layer.

If the recalculated kernel size is larger than the feature map’s resolution—a scenario that
could lead to computational inefficiencies and hinder kernel training from the sides (See
Figure 3.10)—it is resized, as it is stated in the rule 6. More precisely, the kernel size is
capped using the minimum function, taking either the resolution of the feature map or the
newly calculated kernel size, whichever is smaller. If the kernel had to be capped, to avoid
exceeding the resolution of the feature map, the output channels are recalculated based on
the new capped kemel size to match the correct number of weights.

73

(a) (b)
For convolutional block
l E nput channels equal

to the output channels)

[Output feature map s not pooled and J

maintains the previous layer’s resolution. ‘ S

o S ‘

! Pipeline in (a)
Output channels are reduced to match the]
tensor's initial feature count.

.

85 -

The kernel size is increased to Nﬂ
match the initial weight count.

New output
channets
match input

!

ew kemel is
smaller than

:

feature map
b ﬁ Yes Input channels are increased,

. and output channels are
decreased to maintain equality
while matching the treinable

arameters.
The new kernel size is capped at l
the feature map resolution

& 50

[Output channels are increased to]

match the initial weight count and
compensate the kemel cap

Fig. 3.1 Flowchart of the FatSpitter, illustrating the process of increasing the resolution
of feature maps and kernels while reducing the number of channels, in accordance with

FatNet rules. (a) Regular FatNet conversion. (b) FatNet for cases where the number of input
channels equals the number of output channels.

74

Algorithm 1 Convert Convolutional Layers to FatNet

Require: model: neural network model, construction_table: table for weight count and number of features in
layer, start_index: index to start conversion, number_o f_classes: integer
Ensure: FatNet model
1: function REPLACE_LAYERS(model)
2: for all layer in model do

3: if layer has child layers then
4: REPLACE_LAYERS(layer)
5: else
6: if layer_index start_index and layer is Conv2d then
7 Step 1: Compute New number of input channels
8: if next_input_channels is not set then
9: new_in_channels layerin_channels
10: else
11: new_in_channels next_input_channels
12: end if
13: Step 2: Compute new_out_channels and new_kernel_size
14: feature_pixels construction_table layer_index feature_pixels
15: weight_count construction_table layer_index weight_count
16: new_out_channels feature_pixels number_of_classes
17: new_kernel_size
18: weight_count new_in_channels new_out_channels
19: Step 3: Handle equal input and output channels
20: if layer in_channels layer out_channels then
21: if new_out_channels new_in_channels
22: or new_kernel_size* number_o f_classes then
23: new_kernel_size min new_kernel_size number_of_classes
24: new_channels weight_count new_kernel_size?
25: new_in_channels new_out_channels new_channels
26: end if
27: else
28: if new_kernel_size* number_o f_classes then
29: new_kernel_size number_of_classes
30: new_out_channels
31: weight_count new_in_channels new_kernel_size*
32: end if
33: end if
34: Step 4: Replace the layer
35: Replace layer with Conv2d(new_in_channels, new_out_channels,
36: new_kernel_size, padding="same")
37: next_input_channels new_out_channels
38: Increment layer_index
39: end if
40: end if
41: end for
42: return model

43: end function

75

An essential aspect of transforming convolutional layers into the FatNet architecture is
maintaining the balance between input and output channels, as stated in rule 5. If the original
convolutional layer maintains equal numbers of input and output channels, this parity is
generally preserved in the transformed layer to maintain the layer’s internal dynamics and
learning characteristics. If, after calculating the new output channels and kernel size, this
equality of channels is not preserved, new input and output channels are calculated by taking
the square root of the fraction of the number of weights over the newly calculated squared
kernel size.

After these refinements to maintain channel equality, it is evident that when the input
channels of the layers are updated, the output channels of the previous layer must be
readjusted. This process of refinement, which focuses on updating the output channels of
layers whose subsequent layers’ input channels no longer match, begins after the conversion
is finished. During this process, the output channels of these layers are updated to match the
input channels of the next layers. Additionally, the kernel size is adjusted to ensure there is
no mismatch in the number of weights between the FatNet equivalent and the original layer,
as shown in Figure 3.2.

The FatSpitter is available at the following URL:
https://github.com/riadibadulla/FatSpitter (accessed on 25.09.2024)

3.2.3 Optical Simulator

The initial step in building the optical neural network involves simulating light propagation
within the 4f system and evaluating the optical performance of the convolution operation.
This simulation can be achieved using the Angular Spectrum of Plane Waves (ASPW)
method [130].

Initially, it was anticipated that the PyOptica [131] library would seamlessly integrate
with PyTorch’s custom layer, which also uses the ASPW method and even provides its use
in the simulation of the 4f system. However, due to redundant operations that would slow
down the inference and the exclusive reliance on NumPy arrays in the code, the simulator
had to be rewritten from scratch. This new implementation retained the same methods as
those employed by the PyOptica library.

According to the Angular Spectrum method, if the initial wavefront is Uj(r,c), the next
wavefront is calculated as:

Us(r,c) = & [FU1(re)lH(fr. fo)] (3.1

where H(fr, f) is the transmittance function for free-space.

76

- =
|

If FatNet applied to this layer,
input and output channels
changed to maintain the
channel eguality

!

-7

AN
'
Th i | t o .
ba:df}r::t':dusmam:ﬁ:: The kernel size is shrinked to
cormect rumber of output match the trainable parameters

after reducing the output channels

-§-0

Fig. 3.2 Flow chart for the FatNet refinement of the convolutional layers. After the
FatNet conversion, some convolutional layers’ output channels will not be equal to the input
channels of the next layers. Hence, their output channels are adjusted; consequently, the
kernel size is adjusted accordingly.

channels

T7

The transmittance function of the free-space propagation comes from the Fresnel diffrac-
tion transfer function:

HF (fr, fc) =exp [ikz —indz(f2+ 1) (3.2)
where k = —21"5, z is the distance travelled by light and A is the wavelength [132, 130].
Since the 4f system contains two lenses, the transmittance function of each lens is:
_ .k 2 9
tq(r,c) = P(r,c)exp azfl[r +c”) (3.3)

where f is the focal length of the lens and P(r,c) is the pupil function [130].
The distance at which the angular spectrum method calculates the next wavefront depends
on the pixel scale and is calculated as:

2
L _N@

2 (3.4)

where Ax is the pixel scale, N is the number of pixels, and A is the wavelength. In case
when the propagation distance needs to be longer than the above formula for the distance,
the propagation can be calculated in several iterations. We chose such pixel scale for each
propagation, so z becomes equal to the focal distance of the lens. In this case, we have to do
only one iteration for each focal distance propagation in the 4f system.

The simulator uses pseudo-negativity, so each convolution is run twice to avoid the
kernel’s negative values in optics. Moreover, due to the laws of geometrical optics, the output
of the 4f device is always rotated 180 degrees. Luckily, this is not a problem for convolutional
neural networks since they can continue extracting the futures from the rotated feature maps.

Figure 3.3 illustrates the amplitude of the wavefront at various points within the 4f system
during the convolution operation run via the simulator. The system comprises the input plane
(laser), two convex lenses, a Fourier plane (modulator or phase mask), and a camera. Light
passing through the first lens forms a 2D Fourier transform at the Fourier plane, where it
is multiplied by the kernel. The second lens then transforms the light back into the spatial
domain, and the resulting output is captured by the camera. Due to geometrical optics, the
output image formed at the camera is flipped. This flipped output can be corrected after the
camera readout to display the correct image orientation. Alternatively, it can be left as is, as
CNNis are capable of extracting features from flipped images as well.

78

Input ima| .
—_— Kernal in Du1u:|mage

% Fowrier dormain
Faurier ~

Conves lens plane Conve ang

=N ln LB ul b

Fig. 3.3 Graphical representation of the 4f system performing the convolution operation
in the simulator. The system consists of the input plane (laser), the convex lens, the Fourier
plane (modulator or phase mask), and another convex lens and the camera is separated from
each other by one focal distance of the lens. When light passes through the lens, it forms a
2D Fourier transform on the Fourier plane, where it can be multiplied by the kernel in the
frequency domain. The light then passes through the second lens, which converts it back into
the space domain, where the output is read by the camera.

3.2.4 OptNN layer

Section 3.2.3 described the simulation of the optical inference of the image through the 4f
system. This section contains the integration of the optical simulator into the custom PyTorch
layer in order to build the simulation of the optical neural network.

Generally, the built-in convolutional layers in machine learmning frameworks like Ten-
sorflow or PyTorch take full advantage of CUDA and perform the 2D convolution layer’s
convolution operation in three dimensions. Suppose there is a convolutional layer with an
input feature map of X; x ¥; x C; and an output feature map of X, x ¥, x C,, the number of
3D kemels in the layer is equal to the number of the output channels C,. As per Figure 3.4,
each 3D kernel tensor slides over the input tensor, performs a dot product of the overlapping
section and saves it as a new pixel to the relevant channel of the output tensor. Each kernel
tensor corresponds to its specifier channel in the output tensor.

In the 4f optical device, the images are treated as 2D matrices. Hence the convolution
has to be performed in a traditional 2D format and the summed, which is not common for the
convolutional layers. As it can be seen from Figure 3.5, the input tensor is split into the i
channels, and each channel has a corresponding j number of kemels. After the convolution
operations are performed, the outputs of distinct input channel convolutions are summed to
form the j number of output channels, which are used to form the output tensor.

The simulator is available at the following URL:
https://github.com/riadibadulla/simulator (accessed on 25.09.2024)

79

¥ YY 1 J Y
D S
. 4

333 lout £

Fig. 3.4 Visual demonstration of the regular convolutional layer performing the 2D
convolution operation in 3D. This convolutional layer has the number of input channels
1 and the number of output channels j. The number of 3D kernels is j, but the number of
kernels taken in 2D isi j.

80

Tingy
=g
g

. K, Input Feature
7 Iln"1 4) Ki1 K12 K13 map
+ + + +
|: Kz Ko 5 Ko -
> lin2 K21 2 Output Feature
map
+ + + +
+ + + + Kernel (Filter)
N Iin,i L, Ki4 Kiz Kis K,
Y ¥
Iout,1 Iout,2 Iout,3 Iout,j

Ty .
&y
i

lout

Fig. 3.5 Visual demonstration of the convolutional layer performing convolution opera-
tion in 2D. The convolutional layer has an input tensor of depth i and an output tensor of
depth j. The number of kernels required for the layerisi j. After all convolution operations,
the outputs have to be summed to make up a channel of the output tensor

81

3.2.5 Pseudonegativity

As it was mentioned earlier, one of the main constraints of the 4f system is its incapability
to represent negative numbers as the camera reads out the intensity of light, which is the
square root of the amplitude. According to Chang et al. [1], one way around this constraint
is called pseudo-negativity, which can address the restriction to positive values by doubling
the number of filters. This technique involves labelling half of the kernels as positive and the
other half as negative. After the camera readout, it required a digital operation to subtract the
negative sub-images from their positive counterparts.

While the pseudonegative method has proven effective, our approach introduces a slight
modification. Rather than storing double the amount of kernels to accommodate positive and
negative values separately, we utilise a single kernel that contains both positive and negative
values, akin to standard kernels. During inference, we generate two versions of this kernel: a
positive version, retaining only the positive values and replacing negative ones with zeros,
and a negative version, which keeps the absolute values of the original kernel’s negative
elements and substitutes zeros for the positive values. Following the principles of the original
pseudonegative method, the negative version’s outcome is subtracted from the positive one
to achieve the desired convolution result (See Figure 3.6).

This method can be efficiently executed by applying the ReLU function to both the
original and its inverted form as shown in Equation 3.5.

X +K =X #ReLU(K) — X * ReLU((—1)K), (3.5)

where X is the input image, K is the kernel and ReLU(K) function can be described as
max(0,K). Just like the pseudo negative method described by Chang et al. [1], this method
carries two convolution operations instead of one, making it twice as expensive as the original
convolution operation, but neglects the negativity in optics by performing subtraction in the
electronic domain only. The result of the method is identical to the original convolution
operation with the negative values, hence no performance loss is expected. The method
can be applied to the input image as well, but is not necessary when the ReL.U activation
functions are used in the neural network.

3.2.6 ResNet-18

ResNet [4], which stands for Residual Network, was a paradigm shift in how CNNs were
designed and conceptualised. Before the introduction of ResNet, deep learning research
was focused on designing deeper networks in the hopes of achieving better performance,
like VGG networks [2], which had configurations up to 19 convolutional layers. However,

82

Regular Convolution

-1 0

* -2 0

-1 0

Original Image
v c Positive Convolution

| 00

* 0 0

0 0

1 0

* > 12 0

1 0

Fig. 3.6 Comparison of regular convolution and convolution using a pseudo-negative
split of the kernel on the example of the Sobel edge detection Instead of training the model
with two different positive kernels and subtracting the outputs, in this method one regular
kernel can be used twice one for negative and for positive numbers using sign flip and ReLU
functions and only then the outputs are subtracted to emulate the convolution with negative
numbers. Both processes yield identical results for convolution operations.

83

deeper networks often failed to converge, and the accuracy gains from additional depth were
saturating and even degrading. ResNet architecture broke the trend and has revolutionised
the field of deep learning, particularly in handling the vanishing/exploding gradients problem
that arises when training deeper networks. ResNet-18 is one of the five convolutional neural
networks introduced by He et al. [4] for the ImageNet dataset [133] training. The name
ResNet-18 indicates eighteen layers of the network; other configurations also include 34,
50, 101 and 152 layers. However, ResNet-18 became popular for applications requiring a
balance between accuracy and computational efficiency. For the dataset used in this work,
CIFAR-100, ResNet-18 is both sufficient for achieving strong performance and well-suited
for proving the concept, which is why it was chosen over other ResNet configurations.

The key feature of ResNet architecture is the use of ‘shortcut’ connections, also known
as residual connections, which allow the gradient to be directly backpropagated to shallower
layers. This makes the network easier to optimise and mitigates the degradation problem.
By skipping one or more layers and directly adding the input to the output, the network
could easily learn the identity function. This, in turn, helps the model focus on learning the
differences or residuals.

The ResNet-18 model is composed of five stages. The first stage is the %7 convolution
with a stride of 2, followed by the max pool operation to reduce the resolution of the feature
maps. Since it is impossible to perform strides convolutions in 4f system, that layer was
modified with the regular convolution layer of stride one. The other four stages contain two
basic blocks each. There is a max pool operation at the end of each stage, except the last one,
which contains an average pool instead. Just like any other classifier CNN, the output of the
convolutional part is fit into the dense layers with the number of output neurons equal to the
number of classes.

The ResNet-18 model was selected for training and evaluation in this work using the
CIFAR-100 dataset due to its balance between computational efficiency and model perfor-
mance, as well as its proven success in training on the CIFAR-100 dataset.

The initial hypothesis was to use large kernels to fully utilise the high-resolution capa-
bilities of the free-space Optical setup and investigate the effects of augmenting kernel size
in ResNet architectures. However, empirical testing revealed that an increase in kernel size
without a concomitant reduction in the number of channels led to overfitting in the resulting
FatNet architecture.

The modification strategy thus evolved to simultaneously increase the kernel size and
decrease the number of channels in the convolutional neural network. This approach resulted
in networks with a very small number of channels and disproportionately large kernels. A

challenge arose in the deeper layers of these networks when the kernel size exceeded the
dimensions of the input feature maps. The construction table of this FatNet is shown below:

Table 3.1 Construction of FatNet from ResNet-18.

Original layers Weights Pixels FatNet with larger kernels
Channels Kemel size Channels Kernel size
64 x 128 3 73,728 8,192 64 x 82 4

128 = 128 3 147456 8,192 B2 x 82 5
128 = 128 3 147456 82,192 B2 x 82 5
128 = 128 3 147456 82,192 B2 x 82 5
128 x 256 3 294912 4,09 82 x 41 9
256 x 256 3 580824 409 41 x4l 19
256 x 256 3 580824 409 41 x 41 19
256 x 256 3 580824 409 41 x 41 19
256 x 512 3 1,179648 2,048 41 x 21 37
512 x 512 3 2359296 2,048 21 x 21 73
512 x 512 3 2359296 2,048 21 x 21 73
512 x 512 3 2359296 2,048 21 x 21 73
FC(512 x 100) 3 51,200 100 21 x 1 49

Upon further analysis, it was discovered that in such cases, when the kernel is larger than
the input, in the same-padded or FFT convolution, the roles of the input and kernel were
effectively inverted. Given that the convolution output was cropped to the input dimensions,
this led to a phenomenon where the side pixels of the kernels were not being trained. As these
side pixels lay outside the network’s receptive field, they constituted trainable parameters
that neither contributed to performance nor impacted the network output while unnecessarily
consuming memory and computational resources. Despite its extreme efficiency implemented
with the optical accelerators, this kind of architecture is faulty, and the visualisation of the
kemnels is shown in the results section.

To address this issue, a new rule, Number 6, was introduced for the kernel dimensions in
problematic layers, limiting them to the resolution of the feature maps (See Section 3.2.1).
This resolution was determined to be equal to the square root of the number of classes, which
is the minimum resolution of the feature maps in FatNet. Corresponding adjustments were
made to the number of channels, ensuring a consistent count of feature pixels and trainable

85

parameters. The construction network below demonstrates the construction of the FatNet
using the new rule for the maximum kernel size constraint:

Table 3.2 Construction table of Res-FatNet from ResNet-18, after capping the resolution of
the kernels at a certain limit equal to the resolution of the feature maps. Kemnel sizes do not
exceed the resolution of the feature maps. The output channels that were not equal to the
input channels of the next layer were readjusted and indicated in bold.

Original layers Weights Pixels FatNet Fat-Net adjusted
Channels Kermel Channels Kernel Channels Kernel

64 x 128 3 73,728 8,192 64 x 82 4 64 x 82 4
128 x 128 3 147,456 8,192 82 x 82 5 82 x 82 5
128 x 128 3 147,456 82,192 82 x 82 5 82 x 82 5
128 x 128 3 147,456 82,192 82 x 82 5 82 x 82 5
128 x 256 3 204912 4,096 82 x 41 10 82 x 78 7
256 x 256 3 589824 4,096 T8 x 78 10 T8 x T8 10
256 x 256 3 589824 4,096 T8 x 78 10 T8 x T8 10
256 x 256 3 589824 4,096 T8 x 78 10 T8 x T8 10
256 x 512 3 1,179,648 2,048 78151 10 78 x 151 10
512 % 512 3 2359296 2,048 151155 10 151 x 155 10
512 % 512 3 2359296 2,048 155151 10 155 x 151 10
512 % 512 3 2359296 2,048 151155 10 151 x 155 10
FC(512 x 100) - 51,200 100 155 =1 10 155 x 1 10

The comparison of the visualised architectures can be seen in the Figure 3.7

Observing the Res-FatNet architecture, it can be seen that the last block of layers contains
fluctuations in the number of channels. The last layers, have input channels and output
channels of either 155 or 151. While these fluctuations were found to have a negligible
impact on performance, a more significant effect was noted in other architectures due to
larger fluctuations in the number of channels. Consequently, when developing the automated
conversion tool, FatSpitter, a rule Number 6 was introduced to preserve the equality of input
and output channels of the original network for the corresponding FatNet iteration (See
Section 3.2.1). This rule has been strictly adhered when adapting other architectures used in
this work.

32x32x3,

f & &% & &F & O O OSG O B B /s v
el

) > > v >
S+ 5+ o+ o) 5+
K Kl oF & &

& Q & & & Q
[$3 RO ¢ @ & <3

> > v
o v >
& <l

32x32x3

(b)

Fig. 3.7 The comparison between our tweaked ResNet-18 used for CIFAR-100 training
and FatNet, which is built on ResNet-18 and specifically designed for CIFAR-100
classification. (a) ResNet-18 architecture is slightly altered in our version. Our model does
not employ strides, given that optical systems are unable to carry out strides in convolutions.
Moreover, to enhance compatibility with CIFAR-100, we’ve omitted the second non-residual
convolutional layer. (b) FatNet, which is based on ResNet-18, is tailored for CIFAR-100.
This structure has fewer channels but larger resolutions when compared to ResNet-18. The
kernel sizes can reach up to 10 10, and feature maps are never pooled to smaller than 10
10. The concluding layeris a 10 10 matrix that is flattened into a 100-element vector, with
each element representing a CIFAR-100 class.

87

3.2.7 AlexNet

AlexNet is a deep convolutional neural network proposed by Alex Krizhevsky, Ilya Sutskever,
and Geoffrey Hinton in 2012 [3]. AlexNet architecture is known for being a turning point in
the deep learning era and significantly influenced the field of Al by winning the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). AlexNet, was the first work to use
Rel.U activation functions to eliminate the Vanishing Gradient Problem, Dropouts for
regularisation and implementation of Deep Learning on GPU.

AlexNet contains eight layers: five convolutional layers and three dense layers. The
original input of AlexNet is a 224 x 224 x 3 image, and the output is 1000 classes for the
ImageNet classification.

The first two convolutional layers use kernels of 11 x 11 and 5 x 5, respectively, and
only the next three convolutional layers use common 3 x 3 kernels. Moreover, the first
convolutional layer is the strided convolution, which we had to replace with the regular same
padded convolution (See Figure 3.8 (a)), as it is the only type of convolution possible in the

o
,p
“iill““lll |“‘|\\I‘|“‘\\I‘|“‘\\I

I---
f&"d“";

4f system.

EFEERE]

& F Fe f@*

(a) (b)

Fig. 3.8 The comparison between our tweaked AlexNet used for CIFAR-100 training
and its FatNet equivalent, built on AlexNet and specifically designed for CIFAR-100
classification. (a) AlexNet architecture is slightly altered in our version. Our model contains
only one linear layer to make it more compatible with CIFAR-100. (b) Alex-FatNet tailored
for CIFAR-100. This structure has fewer channels but larger resolutions when compared
to AlexNet. The kernel size reaches 10 x 10 in the last layer, and feature maps are never
pooled to smaller than 10 x 10. The concluding layer is a 10 x 10 matrix flattened into a
100-element vector, with each element representing CIFAR-100 classes.

After the fifth convolutional layer, max pooling is performed and then the network
switches to fully connected layers. The fully connected layers have 4096, 4096, and 1000
neurons, respectively. The output of the final layer is fed to a softmax function, which outputs

38

a probability distribution over 1000 classes. Since our classification task contains only 100
classes, the linear layers were replaced by linear layer from 4096 neurons to 100 classes
directly.

The conversion to the Fat equivalent begins right after the second feature map as it can
be seen from the Figure 3.8 (b).

The construction table provides a detailed process of converting AlexNet into Alex-FatNet
(See Table 3.3). The classifier of the model is replaced by a 256-to-1 channel convolution
with a kernel size of 10 x 10. Unlike Res-FatNet, the rule stating that the equality of input
and output channels is preserved if they are equal in the original network is taken into account
in the FatSplitter algorithm used to convert AlexNet. As seen from the Construction table,
the third layer of 384 to 384 channels is converted into 189 to 189 channels.

Table 3.3 Construction table of Alex-FatNet from AlexNet. Unlike the ResNet, AlexNet did
not require the refinement of the layers.

Original layers Weights Pixels Fat-Net
Channels Kernel Channels Kernel
96 x 256 5 614400 12,544 96x126 8

256 x 384 3 884,736 18816 126x 189 7
384 x 384 3 1,327,104 18,816 189x 189 7
384 x 256 3 884,736 18,816 189x 189 5

3.2.8 VGG-19

Another network tested and converted into the FatNet format in this work is VGG-19 [2].
VGG-19 is an abbreviation for Visual Geometry Group-19, which signifies a convolutional
neural network architecture developed by the Visual Geometry Group at the University of
Oxford. VGG network was introduced as a 16 and 19-layered convolutional network. VGG-
19 refers explicitly to a variant of the VGG model that contains 19 layers; it includes sixteen
convolutional layers with very small 3 x 3 kernels, five max-pooling layers with kernels size
of 2 x 2 and stride 2, three linear layers, and one softmax layer. It’s original version expects
an input of 224 x 224 RGB images. VGG uses RelLU layers as the activation function. The
VGG-19’s linear layers start with two linear layers of 4096 nodes and a final layer of 1000,
corresponding to 1000 classes. Since our dataset consists of images of resolution 32 x 32, the
final feature map has the resolution of 2 x 2 only, and the number of classes is significantly

39

lower; the linear layers were replaced with one layer only, which maps from 512 nodes to
100 classes (See Figure 3.9 (a)). Unlike the original setup, no dropout layers were used. The
Fat equivalent of the VGG-19 can be seen in the Figure 3.9 (b), where the conversion starts
appearing after the fourth feature map.

Fig. 3.9 The comparison between our tweaked VGG-19 used for CIFAR-100 training
and its FatNet equivalent, built on VGG-19 and specifically designed for CIFAR-100
classification. (a) VGG-19 architecture is slightly altered in our version. Our model contains
only one linear layer from 512 nodes to 100 to make it more compatible with cifar100. (b)
VGG-FatNet tailored for CIFAR-100. This structure has fewer channels but larger resolutions
when compared to VGG-19. The kernel sizes can reach up to 10 x 10, and feature maps are
never pooled to smaller than 10 x 10. The concluding layer is a 10 x 10 matrix flattened into
a 100-element vector, with each element representing CIFAR-100 classes.

The Construction Table 3.4 provides a detailed process for converting VGG-19 into
VGG-FatNet. The classifier of the model is replaced by a 154-to-1 channel convolutional
layer with a kernel size of 10 x 10. Rules 6 and 7 were followed during the construction of
VGG-FatNet, and the conversion was fully automated using the FatSpitter. In this particular

90

Table 3.4 Construction table of VGG-FatNet from VGG-19, after capping the resolution of
the kernels at a certain limit equal to the resolution of the feature maps. Kernel sizes do not
exceed the resolution of the feature maps. The output channels that were not equal to the
input channels of the next layer were readjusted and indicated in bold.

Original layers Weights Pixels FatNet Fat-Net adjusted
Channels Kernel Channels Kernel Channels Kernel
128 128 3 147,456 8,192 96 96 4 96 96 4
128 256 3 294912 16,384 96 164 5 96 164 5
256 256 3 589,824 16,384 164 164 5 164 164 5
256 256 3 589,824 16,384 164 164 5 164 77 7
256 256 3 589,824 4,096 77 77 10 77 77 10
256 512 3 1,179,648 8,192 77 153 10 77 154 10
512 512 3 2,359,296 8,192 154 154 10 154 154 10
512 512 3 2,359,296 8,192 154 154 10 154 154 10
512 512 3 2,359,296 2,048 154 154 10 154 154 10
512 512 3 2,359,296 2,048 154 154 10 154 154 10
512 512 3 2,359,296 2,048 154 154 10 154 154 10
512 512 3 2,359,296 2,048 154 154 10 154 154 10
512 512 3 2,359,296 2,048 154 154 10 154 154 10

case, it was important to preserve the equality of input and output channels when they are
equal in the original network. Otherwise, fluctuations in the channel number could occur,
disrupting the block-based structure of the VGGNet, where the organisation of convolutional
blocks must be maintained to preserve the integrity of the VGG structure. As seen in the
construction table, the output of the fourth layer was adjusted to 77 to match the number of
input channels of the next layer. Since the number of channels was reduced, the kernel size
was correspondingly increased to 7 7. In layer 6, however, the number of output channels
was increased by one. Since this change was minor, it did not result in any adjustments to the

kernel size.

91

3.3 Experiments

The primary aim of FatNet is not to enhance performance but to establish that the converted
network architecture can sustain accuracy by leveraging the high-resolution capabilities of
free-space optics for acceleration. Additionally, it aims to execute fewer inferences through
the 4f system compared to the original network. Consequently, our research efforts were
primarily focused on comparative analysis between the original networks and their FatNet
equivalents.

CIFAR-100’s training set was divided into training and validation subsets with an 80-
20% ratio, yielding 40,000 images for training and 10,000 for validation. The dataset was
normalised using the mean and standard deviation across all channels. Data augmentation
techniques, including horizontal flipping and random cropping with padding of four, were
also employed.

A modified version of ResNet-18 was replicated, transformed into its FatNet equivalent,
and both versions of the networks underwent the training process. Different variations of
ResNet-18 have been trained, but due to the simplicity and good performance, ReL.U before
the addition version was chosen (See Figure 2.5 (b)). To support Res-FatNet’s accuracy
within the optical device, the network was also trained in a simulator to demonstrate the
feasibility of inference in the 4f system after the FatNet conversion.

Parameters for the experimental setup included setting the laser wavelength to 532 nm
(green), and employing convex lenses with a diameter of 5 mm and a focal length of 10
mm. It should be noted that factors such as the device’s quantisation and noise were not
considered, and float32 type was used.

The network, within a real 4f system, would have benefited from parallelism by employing
tiling techniques for the batches. However, the simulator did not use such tiling techniques,
given that matrices were encapsulated within PyTorch’s tensor format. Operations were
conducted without tensor unwrapping, with Fourier transforms and multiplications performed
directly on the four-dimensional tensors. This methodology was selected due to the simulator-
based network training’s relatively slow pace compared to the standard PyTorch network.
For example, each epoch of Res-FatNet's optical simulation requires 67 minutes, while an
epoch within the standard Res-FatNet with Conv2d layer of PyTorch only takes 15 seconds.

ResNet and AlexNet, including their FatNet equivalents, were trained using the SGD
optimiser with momentum set at (.9. The initial learning rates were 0.01 and 0.005 for ResNet
and AlexNet, respectively. ResNet and its FatNet variant updated the learning rate every
50 steps by a factor of 0.2. In contrast, AlexNet and VGG-19 used the Cosine Annealing
scheduler [134]. The final layers of all residual networks incorporated a 20% dropout layer.

92

Both VGG-19 and VGG-FatNet were trained with the Adam optimiser due to experimentally
better convergence, with an initial learning rate set to 0.01.

The training process was conducted on two NVIDIA A100 40 GB GPUs. Both ResNet-
18 and Res-FatNet were trained with a batch size of 64 (32 per GPU), while AlexNet and
VGG-19, including their FatNet equivalents, were trained with a batch size of 128 (64 per
GPU).

When training the optical simulation of models, Res-FatNet was trained with SGD with
an initial learning rate of (.01, while Alex-FatNet and VGG-FatNet were trained with Adam
with an initial learning rate of 0.00001.

Unlike GPU training, the optical simulation of FatNet required a reduced batch size due
to the simulator’s high memory requirements. Specifically, Fat-VGGNet was trained with
a batch size of 12 (6 per GPU) and Res-FatNet and Alex-FatNet with a batch size of 16
(8 per GPU). The optical simulation increases the computational graph and gradient count,
necessitating these adjustments.

Despite the absence of a simulation for the 4f system’s parallelism, accelerating the
4f system necessitates exploiting high resolution. FatNet’s optimal acceleration could be
achieved through batch tiling (or input tiling). For effective batch tiling, all inputs of the
same batch must be tiled into a single input block, with the kernel padded to match the
input block’s size. Prior to tiling the inputs, each must be padded to M+N-1, where M = M
represents the input size, and N x N represents the kernel size. Given this methodology, the
calculation for the number of potential batch sizes proceeds as follows:

R 2
n= [mJ 3.6)

where R is the resolution of the 4f system

Upon success, the experiments were repeated with AlexNet and VGG-19. Unlike Res-
FatNet, the cosine annealing scheduler was used for these networks. The training regime of
all networks can be seen in the Table 3.5.

3.4 Results and Discussion

The results in this section evaluate the performance of FatNet-adapted models Res-FatNet,
Alex-FatNet, and VGG-FatNet—in addressing the limitations of the 4f free-space optical
system for image classification tasks. Specifically, we assume that the 4f system performs
convolution operations for each mini-batch separately, while all other operations, including

activations and pooling, are carried out electronically. The results assess how well these

93

Table 3.5 This table summarises the key parameters used in training each network, including
the optimiser, learning rate, scheduler, batch size, dropout rate, and the number of epochs

Parameter ResNet-18 AlexNet VGG-19
Optimiser SGD SGD SGD
Initial Learning Rate 0.01 0.005 0.01
Scheduler ¥=0.2 step=30 Cosine Annealing Cosine Annealing
Weight Decay 0 5e-3 Se-4
Batch Size 64 128 128
Number of Epochs 300 300 160
Random Flip, Random Flip, Random Flip,
Data Augmentation Random Crop, Random Crop, Random Crop,

Standartisation Standartisation Standartisation

adapted architectures mitigate the bottleneck of readout speed while taking advantage of
the system’s high-resolution capabilities. Furthermore, the analysis explores the trade-off
between model performance and inference speed.

In the methods section, the initial experiments were described, wherein the kernel size
was not constrained to the maximum resolution of the input feature map. This unconstrained
approach allowed the kernel size to exceed the dimensions of the feature map. Consequently,
when employing same-padding convolutions, the output is cropped to align with the dimen-
sions of the input feature map. This cropping makes the peripheral pixels of the kernel
redundant, as they do not participate in the training process. This phenomenon decreases the
network’s efficiency, increases computational demands, and necessitates more memory.

The kernels from restricted and unrestricted networks were visualised in Figure 3.10.
Figure 3.10 (b) shows that only a 10 x 10 section in the middle of the 37 x 37 kernel
underwent training and has a similar colour scheme to the kernel in Figure 3.10 (a), which
depicts a restriced kernel of 10 x 10 dimensions. The remaining pixels in Figure 3.10 (b)
retain their values since initialisation, further evidencing the inefficacy of not restricting the
kernels beyond the feature map resolution.

3.4.1 ResNet-18

Another kernel visualisation was conducted to compare Res-FatNet and ResNet-18, as shown
in Figure 3.11. This employs a visualisation technique similar to that used by Krizhevsky et
al. [3], to visualise the kernels of the first layer of the AlexNet. Given that the input image is

94

a 2 : € g a u = a
(a) (b)

Fig. 3.10 Visual Representation of the impact of kernel size larger than the resolution
of the feature map. (a) Shows a kernel from FatNet, restricted to a 10 x 10 size to match
the maximum feature map dimensions. (b) Illustrates an unrestricted kernel with a size of
37 x 37, exceeding the feature map resolution. Note the "no training” regions along the edges
of the kernel in (b)

an RGB three-channelled image, the kernels can be visualised in colour. Both ResNet and
its Fat variant maintain the same architecture until the feature maps are pooled down to a
resolution with a pixel count lower than the number of classes, allowing for a comparison of
the initial layers to ascertain if both networks train in a similar manner. It is observed that
the kernels from ResNet, as shown in Figure 3.11 (a), exhibit more vivid colours than those
from FatNet in Figure 3.11 (b), potentially explaining FatNet’s slightly lower performance.
However, both networks appear to contain similar learned kernels, indicating they indeed
learn the weights in a similar manner.

The acceleration of networks inference by converting it into its Fat equivalent results
in a small decrease in performance. For example, in the case of ResNet, there is a 6%
drop in accuracy, from an average of 66% to 60% after converting to Res-FatNet (refer
to Table 3.6). The performance remained unchanged when the Res-FatNet was trained in
the optical simulator. The ResNet-18 was trained to reach state-of-the-art performance on
CIFAR-100, matching the results obtained with ResNet-18. As discussed in Section 2.9.2,
Mizusawa et al. [93] trained ResNet-20 to achieve an accuracy of 64.09%, while the smaller
ResNet-18 in this work achieved 66% accuracy. In another study, however, Chen et al. [96]
achieved an accuracy of 68.67% with ResNet-20, which is slightly higher than the ResNet-18
results in this work.

95

OSNEEEOn -~ 2020 ¢
AEEEnOEE 200
HEEEEEEE +» 0200 i
DEEFNEEN - . ' -«
EEEEEEENE - - v
DEEENOEgE - o
EENEEEE . > v 4
REES0OOEN @ o
(a) (b)

Fig. 3.11 First layer visualisation of kernels in (a)ResNet and (b)Res-FatNet. Both sets
of kernels represent various similar patterns learned during the training process.

Table 3.6 Comparison of the test accuracy and number of convolution operations used in
ResNet and Res-FatNet. Pseudo-negativity is taken into account in optical setup.

Architecture Test Accuracy Number of Conv Number of Conv
Operations Operations
mean =+ std Ratio to Baseline
ResNet-18 66+1.4% 1,220,800 1 (baseline)
Res-FatNet 60+1.4% 148,637 0.12
Optical simulation 60% 297,274 0.24
Res-FatNet

Although the Res-FatNet trained in the simulator perfromed similarly to the regular
Res-FatNet, from the training accuracy graph in Figure 3.12, it can be seen that it experienced
slower training compared to other experiments. When simulating the 4f system, PyTorch
incorporates the simulation of light propagation into the neural network’s computation graph,
significantly enlarging it. This enlargement leads to a slowdown in the network’s training
process. Regarding validation accuracy, the FatNet trained with a GPU and its optical
simulation are not significantly different, particularly after the first learning rate adjustment
at epoch 50. While the validation accuracy of both FatNet and its optical simulation did not

96

surpass 57% and 58%, respectively, the test accuracy reached 60% in both scenarios. This
drop arises from the augmentation applied only to the validation and training sets, but not to
the test set.

}_55
iy 2
g 3 ®
o 70
& E A5
o s
Em 5 33
-530 B = e Resnet-15
= m— FATHET E 25 mm—FATHET

e Oiptical FATHET e Optical FATNET

-
[=]
-
e

0O 20 40 &0 80 100 120 140 160 0 20 40 60 B0 100 120 140 160
Epoch Epoch
(a) (b)

Fig. 3.12 Comparison of training and validation accuracies per epoch for each model
used in the experiment. The steep jumps can be see every 50 epoch due to the learning
rate update by a scheduler. (a) The ResNet-18, Res-FatNet, and the Optical simulation of
Res-FatNet all accomplished a training accuracy of 99%, with ResNet-18 achieving it in
fewer epochs. Conversely, the optical simulation took longer to train due to the complex
computation needed to simulate light propagation. (b) As for validation accuracy, ResNet-18
reached up to 66%, while Res-FatNet could not exceed 60% for both validation and testing,
despite its fewer convolutional operations.

This slight drop in performance came with the acceleration in optics. The fact that Res-
FatNet requires 8.2 times fewer convolution operations means that it can perform inferences
8.2 times faster in the 4F system compared to ResNet in the same system. But it is important
that the comparison is fairly made between GPU and 4f system too.

The measured and calculated inference time for ResNet and its FatNet equivalent with
optics and GPU were obtained and observed (see Table 3.7). The observations were conducted
based on the batch size of 64, such as in our experiments, and 3136 maximum utilisation of
4f system with 4k resolution modulators and camera, and the 2MHz system, as in the work
of Li et al [7]. The GPU measurements are the average of 300 inferences using CUDA event
timing, with the GPU being warmed up initially by 10 iterations.

It is evident that for the small batch size, the acceleration between ResNet-18 and Res-
FatNet-18 is 8.2 times, as discussed earlier, but there is no acceleration in comparison to
GPU. The difference comes with a higher batch size. When the batch size is at a maximum
of 3136, the acceleration of our Res-FatNet-18 in optics surpasses all other models on GPU,
making optical Res-FatNet 2.46 times faster than ResNet-18 with the GPU. It is also evident

Table 3.7 Inference time in seconds per input for ResNet-18 and FatNet with optics and GPU
with a batch size of 64 and 3136 for cases when the 4k resolution of the 4f device is fully
utilised. The frame rate of the 4f device is approximated at 2MHz [7].

Architecture Batch 64 Batch 3136
ResNet-18(GPU) 1.3500e—4 1.1670e—4
ResFatNet(GPU) 4.5650e—4 7.9420e—4

ResNet-18(Optics) 1.9075e—-2 3.8020e—4
ResFatNet(Optics) 2.3225e—3 4.7397e—5

that without the FatNet conversion, the model wouldn’t have any acceleration in optics. Even
with the batch size of 3136, ResNet-18 would be 3.33 times faster than ResNet-18 in optics.

3.4.2 AlexNet

Experiments with AlexNet were conducted strictly following the rule that the resolution of
the kernel must not exceed the feature map resolution. Moreover, the conversion was fully
automated using FatSpitter, with the rule of equality in the number of channels being adhered
to.

The first layer kernels of both AlexNet and Alex-FatNet were visualised, similar to the
approach used for ResNet, shown in Figure 3.13. Interestingly, in contrast to ResNet, in
the case of AlexNet, AlexNet’s FatNet equivalent displayed more vivid kernels compared
to the original AlexNet. Again proving that the FatNet equivalent of the model is trained in
a similar convolutional manner in the early layers. It is also important to note that, unlike
ResNet, most layers of AlexNet underwent the FatNet conversion, yet the first layer kernel
trained to extract similar features.

AlexNet, being a small network is less efficient, particularly for complex problems like
CIFAR-100. Not only the performance was lower with the test accuracy of 59.48%, but
also it experiences a 7.13% decrease in accuracy (See Table 3.8) with the marginal smaller
decrease when trained in the simulator. The performance drop came with the 3.4 times fewer
convolution operations required to do the classification; this makes the Fat-AlexNet 3.4 times
faster when both run on the same optical accelerator.

The training curves illustrated in Figure 3.14 indicate that Alex-FatNet took more epochs
to converge. However, based on the validation set, the network had almost achieved its
peak accuracy by epoch 100. This suggests that Alex-FatNet was somewhat more resilient
to overfitting, as the training accuracy was considerably lower at epoch 100, while the

98

AmafiFEwZ ENSEIINEN
= L Y IS o e O T
= =[S EETIE NITNME RSN
e R R BTN RESIN
NEEONNNE KN =EIE
0 P T e B O 3 &=
NnENe=EsN SRS
ERERA RS el =
ERNNEINERE [IEMNE S
B EETRIRE 5NN Y
HIESEEANENE HEEEN==EE
SIEEVENED NN S-S
(a) (b)

Fig. 3.13 1st layer visualisation of kernels in (a)AlexNet and (b)Alex-FatNet

99

Table 3.8 Comparison of the test accuracy and number of convolution operations used in
each AlexNet. Pseudo-negativity is taken into account in optical setup.

Architecture Test Accuracy Number of Conv Number of Conv
Operations Operations
mean =+ std Ratio to Baseline
AlexNet 5048 £2 48% 368,028 1 (baseline)
Alex-FatNet 5235+ 1.42% 107,640 0.29
Optical simulation 52.16% 215,340 0.58
Alex-FatNet
100 e — U1
* ""ng#. " PRI
o T _-- vq‘-r"_p'f-\‘""""l-"""‘- "
§ e — T f “ .v*ﬁ
: o so |/
E a0 ;z' % I.'I
; ELI
B -'II. Abax-FatMat 104 I Abax-FatMat
| Aax bt Aaxhet
' ; 50 100 F1.'é.ﬂ" 200 250 300 0 50 100 r1éﬂ-. 200 FET 300
(a) (b)

Fig. 3.14 Training curves for AlexNet and Alex-FatNet with (a) training accuracy and
(b) validation accuracy. The validation accuracy seems to be similar despite Alex-FatNet
being constantly lower. In contrast, training accuracy shows that Alex-FatNet took longer to
reach the training accuracy of AlexNet.

validation accuracy was approaching its peak. Nonetheless, the validation accuracy continued
to improve gradually until around epoch 250, when the training accuracy also peaked. In
contrast, AlexNet reached its peak around epoch 150, after which both the training and
validation accuracies did not show much improvement.

Similar to ResNet-18, AlexNet can be accelerated using optical Alex-FatNet over AlexNet
on a GPU, only with the larger batch sizes such as 3136 (the maximum possible batch size
for a 4k resolution in a 4f system) where the acceleration factor becomes 3.2 times (refer to
Table 3.9). However, acceleration over the GPU was not possible at a batch size of 64.

Furthermore, AlexNet in optics did not experience any acceleration, and at a batch size
of 3136, AlexNet on a GPU was only 1.06 times faster than AlexNet in optics. Although the
slowdown is not significant, the energy efficiency of the 4f system can still be advantageous

100

[=4]
=

— Alex-FatNet-optical

un
(=]

I
=

R
=

Validation Accuracy
L
=

fur
=)

0 50 100 150 200 250 300
Epoch

Fig. 3.15 Training curve of the training done on Alex-FatNet in the optical simulator.

if the speed of inference is not a primary concern. However, the energy efficiency of the 4f
system is beyond the scope of this work.

Table 3.9 Inference time in seconds per input for AlexNet and FatNet with optics and GPU
with a batch size of 64 and 3136 for cases when the 4k resolution of the 4f device is fully
utilised. The frame rate of the 4f device is approximated at 2MHz [7].

Architecture Batch 64 Batch 3136
AlexNet(GPU) 1.1121e—4 1.1094e—4
AlexFatNet(GPU) 2.0056e—4 1.3594e—4
AlexNet(Optics) 5.7645—3 1.1764e—4
AlexFatNet(Optics) 1.6823e—3 3.4334e—5
343 VGG-19

Unlike ResNet and AlexNet, the first layer of VGG-19 consists of a convolutional layer with
a small 3 x 3 kernel, which makes them harder to interpret. Therefore, after the visualisation,
it is not easy to see distinct features in the kernels, but the similarity between VGG-19 and
VGG-FatNet can still be observed. The arrows in Figure 3.16 point to obviously similar
kernels, but even more similar kernels can be seen in the figure. Arrow 4 points to a kernel

101

that appears to be a flipped version of the original kernel. Nonetheless, it is evident that the
weights of VGG-FatNet are not random and exhibit meaningful patterns.

L e e b
OEEL -E
I

(a) (b)

Fig. 3.16 Visualisation of the kernels from the first layer of the (a) VGG-19 and (b)
VGG-FatNet trained on CIFAR-100. As the kernels are only 3 x 3, the similarity is not
immediately obvious. Arrows indicate some clearly similar kernels or rotated like in case
LL) 4“.

Similarly, VGG-19 exhibits around a 6% decrease in accuracy, akin to ResNet, but with
0.1 times fewer convolution operations (See Table 3.10). There was a smaller decrease in the
test accuracy when the VGG-FatNet was trained in the simulator.

Moreover, as shown in Figure 3.17 the model trained in the simulator showed instability,
and converged at around epoch 160. Since VGG-19 is a larger model than ResNet-18,
training each epoch in the simulator required 130 minutes, resulting in a total training time
of approximately 27 days. Although the real 4f system would not perform backpropagation
through the simulation of light propagation, as done in this work, the purpose of this approach
was to demonstrate that the model could still learn the weights in the simulator and perform
inference.

Nevertheless, the VGG-FatNet's training process was comparable to, though slower
than, that of the regular VGG-19, as demonstrated in Figure 3.18. This indicates that the
architecture itself is robust and converges well.

The measured and calculated inference time for VGG-19 and its FatNet equivalent
with optics and GPU were obtained and observed in Table 3.11. The observations were
conducted based on the batch size of 64, and 3136 maximum utilisation of 4f system with 4k
resolution modulators and camera, and the 2MHz system, as in the work Li et al. [7]. GPU

102

Table 3.10 Comparison of the test accuracy and number of convolution operations used in
VGG-19. Pseudo-negativity is taken into account in optical setup.

Architecture Test Accuracy Number of Conv Number of Conv
Operations Operations
mean std Ratio to Baseline
VGG-19 68 92% 131 2,211,840 1 (baseline)
VGG-FatNet 6296% 180 248,283 0.11
Optical simulation 61 92% 496,566 0.22

VGG-19-FatNet

80

—— VGG-FatNet-19 optical
701

Ul (o)}
o o

Validation Accuracy
N
o

301
201
10+
0 50 100 150 200 250
Epoch

Fig. 3.17 Training curve of the training done on Alex-FatNet in the optical simulator.
The curve is unstable, although it reaches a similar performance as the original VGG-FatNet-
19.

measurements represent the average of 300 inferences, with the GPU warmed up over ten
initial iterations. Notably, the VGG-FatNet in the optical setup with a batch size of 3136 is
2.23 times faster than VGG-19 on a GPU and 8.9 times faster than VGG-19 on the 4f system.

These results suggest that FatNet variants are more efficient with larger networks, making
the conversion to FatNet more beneficial. Additionally, it is apparent that FatNet’s efficiency
increases with a larger number of classes, as the feature maps and kernels maintain higher

resolution, enhancing performance in the 4F system.

103

WIG-Fathet-1% it
WGG-19 L 60 |
B0 - ' o
=, H] /
g / g r
e) § a0/ .
3 y El
] ; g
= il 2 Ay
/ = 20]
0] / =
r 104 o VIGG-Fathiet-19
L P, VGG-19
o B 4D 1 B 180 120 140 16D) 70 40 0 ar 1a0 120 140 M&D
Epech Epoch
(a) (b)

Fig. 3.18 Training curves for VGG-19 and VGG-FatNet. (a) training accuracy and (b)
validation accuracy.

Table 3.11 Inference time in seconds per input for VGG-19 and FatNet with optics and GPU
with a batch size of 64 and 3136 for cases when the 4k resolution of the 4f device is fully
utilised. The frame rate of the 4f device is approximated at 2MHz [7].

Architecture Batch 64 Batch 3136
VGG-19(GPU) 2.5867e—4 1.7703e—4
VGG-FatNet(GPU) 1.8463e—3 5.1951e—4
VGG-19(Optics) 3.4560e—2 T7.0531e—4
VGG-FatNet(Optics) 3.8794e—3 7.9172e—5

3.5 Conclusion

This chapter introduced FatNet, a novel conversion framework for adapting regular CNN
architectures to take advantage of the high-resolution capabilities of the 4f optical system.
FatNet reduces the number of convolution operations while maintaining the same number of
features and trainable parameters in each layer, addressing the critical challenge of minimising
the readout operations—the primary bottleneck of the 4f system. This directly supports
Objective 1, which aims to develop CNN architectures tailored for optical accelerators by
reducing convolution operations and using the system’s unique parallelism.

The chapter also detailed the development of the FatSpitter, an automated tool for
converting PyTorch models into their FatNet equivalents, and described the implementation
of a 4f system simulator. The simulator incorporated an enhanced pseudo-negativity method
to handle optical constraints, thereby fulfilling Objective 2, which focuses on designing
and implementing a simulator for the 4f system to benchmark the performance of these
architectures.

104

FatNet was evaluated on the CIFAR-100 dataset using CNN architectures such as ResNet-
18, AlexNet, and VGG-19, which were converted into their FatNet counterparts (Res-FatNet,
Alex-FatNet, and VGG-FatNet). These FatNet architectures achieved significant reductions in
convolution operations, with Res-FatNet requiring 8.2 times fewer operations than ResNet-18,
Alex-FatNet requiring 3.44 times fewer operations than AlexNet, and VGG-FatNet achieving
a 9.09-fold reduction compared to VGG-19. This optimisation aligns with Objective 1, as
it demonstrates a clear reduction in convolution operations while maintaining reasonable
accuracy metrics.

The performance trade-offs were also quantified to validate the speed-up gains. While
the FatNet architectures resulted in faster inference times in the optical setup, there was a
slight reduction in accuracy. For example, Res-FatNet experienced a 6% drop in accuracy
compared to ResNet-18, Alex-FatNet saw a 7.13% decrease, and VGG-FatNet showed a
3.96% decrease.

Kernel visualisations revealed that Res-FatNet trained similarly on the shallow layers
to the original ResNet-18, despite having larger kernel sizes and fewer channels. Although
the kernels of Res-FatNet appeared slightly less vivid than those of ResNet-18, Alex-FatNet
displayed more vivid kernel patterns than its traditional counterpart, AlexNet. These findings
suggest that FatNet preserves the training characteristics of the original models while adapting
them to the high-resolution capabilities of the 4f system

In conclusion, this chapter fulfilled Objectives 1 and 2 by demonstrating that FatNet
architectures effectively adapt CNNs to the high-resolution capabilities of free-space optical
accelerators, achieving substantial reductions in convolution operations and inference times
for image classification tasks. Furthermore, the integration of the 4f simulator addressed
key challenges, such as the lack of support for negative values. Although there is a minor
trade-off in accuracy, the speed gains underscore FatNet’s promise for optical computing.
The next Chapter 4 extends the FatNet methodology to U-Net segmentation and explores
alternative “Fat™ architectures to examine their ability to prevent overfitting and maintain

generalisation.

105

Chapter 4

Fat-U-Net for Image Segmentation

Overview

This chapter focuses on adapting the convolutional neural networks used for the image
segmentation for the 4f free-space optical accelerator. It involves modifying the FatNet
algorithm from Chapter 3 Classification to work with the U-Net model. Moreover, it also
showcases the effectiveness of the FatNet algorithm in this application.

Since Chapter 3 focused on adapting CNN-based image classification for 4f free-space
optical accelerators, it was noted that traditional classifier models are cone-shaped and
naturally inefficient in free-space optics. In contrast, CNN-based segmentation models
align better with the concept of FatNet, as segmentation tasks require detailed localisation
information, making them more suitable for the 4f free-space optical architecture.

Note: The results in this chapter were presented at the SPIE West's 2024 Al and Optical
Data Sciences conference [135]

The models and evaluation scripts are available at the following URL:
https://github.com/riadibadulla/FatUnet (accessed 25.09.2024)

4.1 Introduction to Image Segmentation

Image segmentation is a crucial task in many computer vision and image processing appli-
cations. It refers to dividing a digital image into multiple overlapping regions, where each
region corresponds to a class and normally represents an object of interest [136]. Segmen-
tation aims to simplify and transform the representation of an image into something that is
more meaningful and easier to process. From one point of view, image segmentation can be
described as pixel-wise classification [137].

107

There are several major techniques for image segmentation. Thresholding can be used
for easier tasks, by separating foreground and background based on pixel intensities [138].
Edge detection finds objects’ edges by looking for discontinuities and alterations in intensity.
Region-based segmentation divides pixels into connected regions based on similarity [139].
Clustering methods, like the k-means algorithm, divide pixels into clusters based on feature
similarity [140]. Graph-based techniques model images as graphs and segment them by
graph partitioning [141]. Active contour methods iteratively evolve curves to fit to object
boundaries [142]. Neural network-based approaches leverage deep learning to perform
semantic segmentation, as described in Section 2.5. Additional techniques include watershed
transformation, supervised versus unsupervised methods, global versus local segmentation,
and more [143].

Each approach has its own advantages and drawbacks. The choice of segmentation
method depends on factors like the application, imaging modality, and desired output.
Moreover, the task of image segmentation can also be divided into two categories: semantic
segmentation and instance segmentation. Instance segmentation refers to not just separating
and classifying pixels into semantic classes, but also differentiating between individual object
instances.

The introduction of deep learning in computer vision applications has completely changed
how digital images are processed and analysed. However, as discussed in the previous
chapter 2.8, the computational demand for image segmentation and the difficulty of real-time
applications grow with the complexity of the models. Due to this, in this chapter, we examine
the implementation of FatNet for segmentation tasks, specifically U-Net. Since U-Net is not
a cone-shaped classifier network, for which the FatNet conversion was initially designed 3,
converting an encoder-decoder style network presents its own challenges that need to be
analysed.

4.2 Methodology

U-Net is a fully convolutional neural network developed for biomedical image segmentation
by Ronnenberg ef al. [13]. The architecture consists of a contracting encoder path and
an expanding decoder path. The encoder and decoder paths stacked together resemble
a "U" shape, hence the name U-Net. The encoder follows the standard architecture of
a convolutional network used for the classification, with repeated convolution blocks of
convolutional layers, activations, and max pooling operations to downsample the input. This
part follows a cone-shaped architecture described previously in the classification chapter 3.2. 1.
The decoder gradually upsamples the encoder output using transposed convolutions, also

108

known as deconvolution layers, and concatenates it with high-resolution features from the
encoder via skip connections. The encoder and decoder paths in U-Net are symmetrical,
except that the first feature maps in each decoder’s convolution block are doubled in depth.
This is because they concatenate features both from the previous decoder layer and the
corresponding encoder layer via skip connections. This architecture enables the model to
leverage both contextual and localised information to make precise segmentation predictions.

Before U-Net, CNNs were used for segmentation and lacked one of two main features:
they either followed the cone shape and focused on the contextual information, like in the
work of Long et al. [64] or focused more on the localisation information like in the work of
Noh et al. [65] by having encoder-decoder architecture without the skip connections.

The underlying principle of FatNet conversion is to maintain the constant number of
trainable parameters and pixels in each layer while increasing the resolution of feature maps
and kernels and decreasing the number of channels in each layer. By making this conversion,
the network takes full advantage of the high-resolution capabilities of the 4f system, thereby
optimising its performance and efficiency in the context of free-space optical acceleration.

The original FatNet conversion described in the previous Chapter 3.2.1 designed specifi-
cally for the classification task, maintains the same architecture as the original network until
the feature maps are pooled down to the resolution with a number of pixels less than or
equal to the number of classes. It is posited that when it comes to the FatNet conversion for
the segmentation, pooling may be unnecessary, and the input resolution can be preserved
throughout the entire network. Consequently, increasing the resolution of kernels while
keeping the resolution of the feature maps constant would decrease the feature map-to-kernel
resolution ratio, emulating the effect of pooling the feature maps without actual pooling
implementation. This approach can significantly increase the inference time of the network
run on the 4f free-space optical accelerator and hypothetically retains localisation accuracy
even more effectively.

Since the original FatNet was designed for classification, only the contracting path of
the U-Net was converted into the FatNet. Table 4.1 presents the U-Net equivalent of the
FatNet construction table for images of 160 x 160. The table is used to compute the number
of weights per layer, excluding the bias and the number of pixels per layer. The algorithm
ensures the convolutional layers with the same number of input and output channels within
convolutional blocks have an equal number of input and output channels after the conversion
too. Upon completing the conversion of the contracting path of the U-Net into FatNet, the
path was mirrored to generate the “expanding path”, and the kernel sizes were recalculated to
match the number of weights from the original layers. Since the so-called expanding path of

109

Table 4.1 Construction table for Fat-U-Net’s first half out of the U-Net’s contracting path.

U-Net contracting ~ weights pixels New layers FatU-Net adjusted
Channels kernel Channels kernel Channels kernel

3 x 64 3 1,728 1,638,400 3 x 64 3 3 x 32 5

64 x 64 3 36,864 409,600 32 x 32 6 32 x 32 6

64 = 128 3 73,728 819,200 32 x 32 9 2x16 12
128 x 128 3 147456 204800 lexl6e 24 l6x16 24
128 x 256 3 294912 409,600 l6x16 34 16 x8 48
256 = 256 3 589,824 102,400 §x8 96 8x8 96
256 = 512 3 L179.648 204,800 8§x8 136 8x10 122
512 = 512 3 2,359,296 51,200 10 x 10 160 10 < 10 160
312 = 1024 3 4718,592 102,400 10 x 18 160 10 20 154
1024 = 1024 3 0437,184 102,400 2020 160 2020 160

the Fat-U-Net does not actually require upsampling, deconvolution operations were replaced

with simple 3 x 3 convolutions, as illustrated in Figure 4. 1(b).

4.2.1 Intuitive Fat-U-Nets

In Chapter 3 and in this chapter the same FatNet conversion technique, as described in
Section 3.2.1, was applied with minor variations. In all models, the original model and
its FatNet equivalent share a key similarity: they maintain the same number of trainable
parameters and the same pixel count in each layer’s feature maps. It was hypothesised that
these networks would train similarly. However, it is important to note that maintaining
the number of trainable parameters might have been more crucial for preserving FatNet’s
high performance. Ideally, a network with an excessive number of parameters could lead to
overfitting, while one with too few parameters might result in underfitting. Assuming that
maintaining the same number of trainable parameters is crucial, it must also be considered
whether preserving the same number of pixels in the feature maps is equally crucial.

To explore this question, the Fat-U-Net was compared with three versions termed Intuitive
Fat-U-Nets (Intuitive Fat-U-Net 1, Intuitive Fat-U-Net 2, Intuitive Fat-U-Net 3), which
considered the number of trainable parameters but disregarded the pixel count in the feature
maps, when converting the network. The architectures of all three Intuitive Fat-U-Net
versions can be seen in the Table 4.2. This conversion was not performed using the Fat-

110

- MaxPool2d Conv2d m=ConvTranspose?d

i s s bl

{r‘
“r
s

& F o, L [

-5? & o o .f?-" I L .

ﬁj FETT IS TS pp s 20 d

s f‘ﬁ“f LA *ﬁf«-“*ﬁwﬁﬁﬁ’
&
(a)

KE=5 K-& H-]!. K-N. K-dBIK-BE::'-__.i-]JIlI‘N-]EJ:K-]'H E=1BD [E=3 lK-]l?K.—]il: E=3 LK=48 [-55_ [-!. .|K-'.2 Eadd E=3) \1-3. E=5 Kzl
[t e DI (et bl | e e

e RIS N A NN SR | Im
LA 1) PP N PR L sl |l [
JI VW I|J1 W i I“]]J ia | il

| & I o ;!]L ll, . |5 I IL d oL Jd o g L i

Fig. 4.1 Graphical representation of our implementation of U-Net and Fat-U-Net archi-
tectures. (a) U-Net architecture, with all kernel sizes 3 x 3, MaxPool with kernels size of
2 % 2 and deconvolution operations with a kernel size of 3 x 3. (b) Fat-U-Net architecture
derived from our implementation of U-Net, with the varying kernel sizes indicated as K at
each layer. The resolution of the feature maps stay constant throughout the network. Ration
of kernel to feature map is preserved between U-Net and Fat-U-Net.

Spitter 3.2.2, 3.2.1; instead, it involved increasing the kernel sizes and reducing the number
of channels to preserve the number of trainable parameters. Intuitive Fat-U-Net 1 closely
resembles the original U-Net, with the kernel expanding to a maximum of 24 x 24 and the
number of channels reduced to only 128 x 128 in the bottleneck. Intuitive Fat-U-Net 3
deviates most from the original U-Net but features the largest kernel size of 153 < 153 and a
kernel size of 20 x 20, making it the most efficient network for the 4F system discussed in
this chapter. Meanwhile, Intuitive Fat-U-Net 2 has intermediate features, with the bottleneck
channels reduced to 64 x 64 and the kernel size expanded to 48 < 48.

111

Table 4.2 Comparison of the architectures of the Intuitive Fat-U-Nets. Unlike a Fat-U-Net,
which is converted using a FatNet algorithm for the conversion, these intuitive networks were
developed manually by choosing smaller channel sizes and computing the new kernel sizes
without taking into account the number of pixels in the feature map.

Layer Intuitive Fat-U-Net 1 Intuitive Fat-U-Net 2 Intuitive Fat-U-Net 3
Channels Kernel Channels Kernel Channels Kernel
Convblock1 3 8 8 3 4 12 3 4 12
8 8 24 4 4 48 4 4 48
Conv block2 8 16 24 4 8 48 4 8 48
16 16 24 8 8 48 8 8 48
Convblock3 16 32 24 8 16 48 8 10 61
32 32 24 16 16 48 10 10 77
Conv block4 32 64 24 16 32 48 10 16 85
64 64 24 32 32 48 16 16 96
Convblock5 64 128 24 32 64 48 16 20 121
(bottleneck) 128 128 24 64 64 48 20 20 153
DeConv 1 128 64 3 64 32 3 20 16 3
Convblock6 128 64 24 64 32 48 32 16 96
64 64 24 32 32 48 16 16 96
DeConv 2 64 32 3 32 16 3 16 10 3
Convblock7 64 32 24 32 16 48 20 10 77
32 32 24 16 16 48 10 10 77
DeConv 3 32 16 3 16 8 3 10 8 3
Convblock8 32 16 24 16 8 48 16 8 48
16 16 24 8 8 48 8 8 48
deconv4 16 8 3 8 4 3 8 4 3
Conv block9 16 8 24 8 4 48 8 4 48
8 3 24 4 3 55 4 3 55
segmenter 3 1 1 3 1 1 3 1 1

112

4.2.2 U-Net without skip connections

Our investigation was driven by the hypothesis that the Fat-U-Net without skip connections
would outperform the standard U-Net architecture without skip connections or significantly
narrow the performance gap between them.

The primary advantage of Fat-U-Net lies in its ability to maintain high-resolution feature
maps throughout the network. By eliminating pooling operations—which, in traditional
U-Net architectures, reduce spatial resolution to decrease computational load and expand the
receptive field—Fat-U-Net enhances its capability for precise localisation. This structural
enhancement is crucial for maintaining the integrity of spatial information, which is essential
for accurate segmentation.

Additionally, Fat-U-Net employs larger kernel sizes, allowing for a broader receptive
field at each layer. This design feature helps capture more contextual information from the
input image, preserving detailed spatial relationships that are vital for nuanced segmentation
tasks.

In the experiments, both the traditional U-Net without skip connections and the modified
Fat-U-Net were tested across various segmentation tasks. It was hypothesised that the
absence of skip connections, combined with Fat-U-Net’s high-resolution feature maps and
large kernels, would reduce performance but make Fat-U-Net more stable compared to U-Net
by preserving spatial details more effectively.

4.3 Experiments

U-Net and its Fat-U-Net equivalent were implemented and tested in two segmentation tasks
of the Oxford-IIIT pet and HeLa cells.

For the HeLa cells, the region of interest (ROI) of a single cell was used for training and
evaluation, while large fields containing 8000 8000 cells were used for qualitative results.

The version of Fat-U-Net used in this work is optimised for 160 160 image inputs.
Therefore, patches were prepared from odd-numbered slices of the ROI, each with a 50%
overlap. Since only half of the slices were used, this resulted in 529 patches per slice and
a total of 79,350 image pairs with their corresponding ground truth masks. All patches
underwent Gaussian low-pass filtering before being saved. A process was repeated during
the evaluation of new data.

To avoid bias in the training or test sets—particularly due to the inclusion of an excessive
number of background images—random shuffling of patches was replaced with a per-slice
strategy for the train-test split. Test slices included every tenth slice starting from 1 up to
291, such as slices 1, 11, 21, ..., 281, 291. Slices 5, 25, 45, ..., 285 served as validation

113

slices. Initially, the remaining slices were designated for training. However, to counteract
data imbalance caused by background-only images in the shallowest and deepest slices, the
training set was limited to slices 97 through 183, excluding every slice ending in 1 or 5. This
approach resulted in 26 slices being used, yielding 13,754 training patches (e.g., 97, 99, 103,
107, 109, ..., 177, 179). Although the training dataset might seem small, it is adequate for
effective binary nucleus segmentation.

As mentioned before in Section 2.11, performance was evaluated using pixel-wise
accuracy, mloU (mean loU), and Dice Score:

TP+TN

Aceuracy = G TN T FPLFN 4.
TP
Ioll = (4.2)
TP+FP+FN
2TP
DiceScore = (4.3)
2TP+FP+FN

Moreover, the inference times of all networks were compared to demonstrate the potential
acceleration when running on a 4f free-space optical device.

The training regime can be seen in the Table 4.3. Since Fat-U-Net had to remain consistent
across both datasets, a standard resolution of 160 x 160 was selected. The dropout has been
applied only for the Hela cell training in the bottleneck section of the U-Net. Both datasets
were normalised by subtracting the mean and dividing by the standard deviation of each RGB
channel. Same learning rate was used for both U-Net and Fat-U-Net, using cosine annealing
scheduler.

Experiments were performed for U-Net and Fat-U-Net with both datasets. The three
versions of Intuitive-Fat-U-Net were also trained on both datasets. Upon success, more
experiments were conducted on the Hela Cells dataset, including optical simulation of
Fat-U-Net and a comparison of U-Net/Fat-U-Net without skip connections.

Compared to other models, the optical training posed significant challenges, particularly
in memory management. Since the optical simulation is not memory efficient and must
store extensive data to simulate light propagation, the batch size had to be reduced to 2.
Unfortunately, such a small batch size caused instability during training. To address this
issue, the gradient accumulation technique was employed (see Section 2.10), with a step
of 16, to emulate a batch size of 32. Although this technique stabilised the training, it
resulted in poor statistical estimation during batch normalisation, necessitating the removal
of tracking statistics in batch normalisation. Unfortunately, all these adjustments led to the
model converging after a significantly higher number of epochs (300).

114

Table 4.3 Experimental Setup for Hela Cell and Oxford-IIIT Pet Datasets

Parameter Hela Cell Dataset Oxford-IIIT Pet Dataset
Initial Learning Rate le-3 le-4
Scheduler cosine annealing cosine annealing
Batch Size 32 16

Number of Epochs 20 250

Input Resolution 160 = 160 160 =< 160
Regularisation Dropouts (50%), Weight Decay le-4

Weight Decay le-4

ShiftScaleRotate, RGB5Shift,

Data Augmentation None RandomBrightnessContrast,
Normalisation
Optimiser Adam Adam

Mean: 0.6379, Mean: R-0.485, G-0.456, B-0.406,
STD: 0.0855 STD: R-0.229, G-0.224, B-0.225

MNormalisation

4.4 Results and Discussion

The inference speed was assessed on a GPU and estimated for optics to highlight the efficiency
gains achievable with a 4f free-space optical device. In this comparison, while our 5-staged
U-Net model requires 3,833,984 convolutional operations, its FatNet equivalent, Fat-U-Net,
needs only 7,123 convolution operations. Given that inference speed in the 4f optical setup
is not affected by resolution changes, Fat-U-Net’s optical inference is projected to be 538
times faster than that of U-Net when both run in optics.

The inference time was measured on an Nvidia A100 for both U-Net and Fat-U-Net,
and the results were compared to the theoretical inference time calculated for a 4f optical
accelerator, based on the work of Li er al. [7], where the authors predicted the availability of
a 2 MHz device in the near future. Similarly, Gupta et al. [88] conducted their evaluations
with the assumption of a 2 MHz device. The results are shown in Table 4.4 for batch sizes of
1,32, and 144. The batch size of 144 was chosen because it is the maximum possible batch
size for the 4f system with 4k resolution if batch tiling is applied, with the necessary padding
for each image.

Based on the results in Table 4.4, at the batch sizes of 1,32 and 144 the acceleration of
inference of Fat-U-Net with 4f optics, compared to U-Net run on high-end GPU, is 1.32,
8.27, and 37 times respectively. It is also important to note that with this setup and batch

115

size up to 144, it is impossible to get any acceleration if the vanilla U-Net is inferred on the
4f system without conversion into its FatNet equivalent.

Table 4.4 Inference time in milliseconds of U-Net and its FatNet equivalent (Fat-U-Net)
model per image with different batch sizes run on 4f accelerator and Nvidia A100. The
frame rate for 4f system was approximated at 2 MHz, and Nvidia A100 GPU was measured
experimentally.

Model and device Batch1 Batch 32 Batch 144

U-Net (Optics) 1920.00 59.900 13.300
Fat-U-Net (Optics) 3.46 0.108 0.024
U-Net (GPU) 4.55 0.894 0.883

Having demonstrated Fat-U-Net’s enhanced speed, the focus then shifted to assessing
its effectiveness. Initially, U-Net was trained to achieve state-of-the-art performance, after
which it was transformed into Fat-U-Net. The U-Net version was surpassed only by models
that integrated pre-trained VGG16 and Inception V3 as their contracting paths, as shown
in Table 4.5, though the performance difference was minimal. Given that the U-Net model
in this work was developed from scratch without pre-training, it is clear that the necessary
benchmarks were met prior to its conversion. The transition to Fat-U-Net resulted in a modest
decline of 1.93% in pixel accuracy, 4.24% in loU, and 2.46% in Dice coefficient, showcasing
relatively minor performance compromises compared to a 6% accuracy reduction observed
in classification tasks.

Table 4.5 Comparison of the evaluation results of the accuracy, mloU, and Dice score of
U-Net and its Fat-U-Net equivalent along with other works for Oxford-IIIT Pet.

Model Accuracy (%) lIoU (%) Dice Score (%)
U-Net (our implementation) 95.33 80.32 94.33
Fat-U-Net (ours) 03.40 85.08 01.87
SEU-Net [31] - = T7.00 -

ICNet [116, 115] 90.79 75.12 -
ConRec (20% of dataset) [113, 144] - - 00.00
U-Net (as per Sundarrajan et al.) [114] - 33.30 46.40
U-Net+VGG16 [114] - 89.40 04.20
U-Net+InceptionV3 [114] - 91.60 01.50

116

From Figure 4.2, it can be observed that the training process is similar for both U-Net
and Fat-U-Net, with the Fat-U-Net performing slightly lower by a constant factor. However,
it is also evident that neither curve has fully converged and both continue to rise slowly,
indicating that even higher accuracy could be achieved with additional training.

1.0

® U-Met Raw
= WU-Net Smoathead
Fat-U-Met Raw
= Fat-lU-MNet Smoothed

0.9+

=
o

=
-

0.6 4

Intersection over Union {lolU)

0.1

Epoch

Fig. 4.2 Training curve for Oxford-IIIT Pets validation dataset, trained with U-Net and
Fat-U-Net. A smoothed curve is plotted on top of the values. Both curves are correlated,
while the Fat-U-Net is constantly lower than U-Net.

The qualitative comparisons presented in Figure 4.3 highlight the different performance
of U-Net and Fat-U-Net across several cases. In Figure 4.3(a), both algorithms achieve
flawless segmentation when the pets are clearly displayed against a uniform background.
Figure 4.3(b) shows U-Net’s superior ability to segment a background cat that falls outside
the region of interest, whereas Fat-U-Net does not perform as well. However, with the case
of the cat in the background, it managed to flawlessly segment the cat in the ROL Conversely,
Figure 4.3(c) showcases Fat-U-Net’s strength, as it accurately segments both animals, unlike
U-Net, which mistakenly identifies parts of the cat and dog as part of the background.

Poor segmentation performance can be observed in Figure 4.3(d), where the scale of
the pet is notably smaller than that typically observed within the dataset. This deviation
in scale leads to both algorithms failing to accurately segment the cat in the first image:
U-Net tends towards over-segmentation, while Fat-U-Net is inclined to under-segmentation.
Furthermore, in the analysis of the second image, both algorithms incorrectly classify the

117

human hand as part of the cat, highlighting a common challenge in distinguishing between
closely interacting objects within the segmentation task.

Fat-U-Net

U-Net

(c)

Fig. 4.3 Qualitative results of Oxford IIIT Pet dataset. (a) Examples of perfect segmenta-
tion by both algorithms. (b) Examples of U-Net performing better than Fat-U-Net. U-Net
managed to segment a cat in the background, even though that wasn’t part of the ground
truth. Moreover, in the top right picture, Fat-U-Net missed pixels in the middle of the cat. (c)
Examples of Fat-U-Net outperforming U-Net. U-Net missed the left-side pixels on the cat
picture and a tiny bit of the pixels on the back of the dog. (d) Bad segmentation examples by
both algorithms. U-Net over-segmented the cat, while Fat-U-Net under-segmented it in the
left picture. In the right picture, both algorithms classified the hand as part of the animal.

Figure 4.4 shows the training curve comparison of U-Net and Fat-U-Net trained with
Hel.a cells. From this figure, it can be observed that U-Net converges faster than Fat-U-
Net with minimal performance increase over the epochs. Fat-U-Net, on the other hand,
demonstrates a very steep training curve over 20 epochs. In comparison to regular slow-
learning models, Fat-U-Net is even steeper, primarily due to its sensitivity to the learning
rate. It has been observed that the FatNet equivalents usually require smaller learning rates
than their counterparts. In these experiments, a cosine annealing learning rate scheduler was
used, resulting in performance improvements over the epochs, with the most significant step
occurring at epoch 10. After epoch 10, the network quickly reached a performance level
very close to that of U-Net. It can also be noted that the gap between the curves continues to
shrink after epoch 10.

As discussed in the Experiments section 4.3, the optical simulation required more epochs,
as shown in Figure 4.5. Compared to the original Fat-U-Net, the training process was
extended; however, the leamning curve appears smoother, with the IoU continuing to gradually
increase even after epoch 95.

A tiny instability can be seen in the first three epochs, where the accuracy suddenly
dropped. This did not affect the overall training process and possibly happened because of
the high learning rate during the initial epochs.

118

=
o

0.9 1
— 0.8
2
o
z 07
o
=
_ 0.6
9
>
o
c 0.51
©
e
(&)
8 0.4
—
[}
et
c
— 0.3 1
® U-Net Raw
U-Net Smoothed
0.2 Fat-U-Net Raw
—— Fat-U-Net Smoothed
0.1 T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

Fig. 4.4 Training curves for HeLa cells validation dataset, trained on U-Net and Fat-U-
Net. The smoothed curve is plotted on top of the original values. The U-Net quickly reaches
the desired performance around epoch 7, while the Fat-U-Net starts with a very low IoU but
eventually reaches a similar performance as the U-Net at around Epoch 12. Over time, the
performance of Fat-U-Net continues to approach that of U-Net.

119

1.0

—e— Fat-U-Net M
_a| _20_ceel
20, L o adil) L 4

0.8
=)
°
c
o
< 0.6
o}
—
(U]
>
o
5
= 0.4
(&)
()
&2
(O]
g
£

0.2

p
0.0 .
0 20 40 60 80
Epoch

Fig. 4.5 Training curves for validation set of Optical simulation of Fat-U-Net trained
on HeLa cells. A smoothed curve is plotted on top of the values. Optical simulation of
Fat-U-Net took fast to reach the performance of IoU of 0.8. But overall, due to the complexity
of the simulation, it took 95 epochs to reach the desired performance, and the projection
indicates that it may continue to improve.

120

The evaluation of U-Net and Fat-U-Net models for HeLa cells nucleus segmentation
encompassed four different testing conditions: (1) analysing all odd-numbered slices from 1
to 300, (2) focusing on a subset of odd slices (150-200) where the nucleus is prominently
visible, followed by (3) and (4) applying these approaches to the test slices, as detailed in
Table 4.6. The results of the first two scenarios, evaluation with the test set and the entire
dataset, including training and validation slices too, were comparable to the results of the
work of Karabag et al. [8] since no test split was conducted in that work.

Model Acc.all) (%) loUfall) (%) Acc.(150-200) (%) ToU(150-200) (%)
U-Net 05.71 66.32 99.59 97.15
U-Net (Test) 05.75 66.59 99.57 07.11
Fat-U-Net 05.31 64.27 99.42 96.05
Fat-U-Net (Test) 05.42 64.83 99.43 06.25
Opt Fat-U-Net 95.94 66.91 99.27 05.01
Opt Fat-U-Net (Test) 05.60 65.34 09.33 05.57
4 stage U-Net [8] 03.46 51.38 99.66 97.12

Table 4.6 Performance Comparison of our implementation of five staged U-Net, its Fat-U-Net
equivalent, and a 4 staged U-Net implementation by [8]. Evaluating Accuracy and IoU
Metrics Across the entire dataset and 150-200 range for all odd and test slices that have not
participated in the training process.

Given that ground truth (GT) annotations were available only for ROI of 2000 = 2000 =
300 voxels — a single cell within the extensive 8192 x 8192 x 518 dataset — qualitative
evaluations were conducted by training on one cell and testing with that cell and adjacent
cells as shown in the ground truth visualisation in Figure 2.18. Additionally, qualitative
evaluation extended to the segmentation of the full-sized original image of §192 x 8192
containing all the cells as shown in Figure 4.7. When evaluating with the larger 8192 x 8192
image, Fat-U-Net provided better results than U-Net, particularly noticeable in the dividing
cell located at the bottom right. The red and green arrows in Figure 4.7 indicate instances
of good and poor segmentation. Overall, it can be observed that Fat-U-Net segments the
cells more accurately, fitting the nuclear envelope tightly. However, unlike U-Net, Fat-U-Net
contains several false positives. Additionally, both models incorrectly segmented a dead cell
in the top right corner as a nucleus.

The quantitative evaluation of Fat-U-Net for segmenting the nuclei of Hel a cells was
successful. When compared to the 4-stage U-Net model reported by Karabag et al.[8] in 2023,
our 5-stage version of U-Net implementation demonstrated marginally better performance

121

on middle-range slices and achieved a 14.94% increase in Intersection over Union (IoU)
across all slices. It is important to consider that the ground truth for region of interest (ROI)
cells was limited to the segmentation of the nucleus of the central cell, treating the nuclei of
the surrounding cells as background. However, both U-Net and Fat-U-Net were capable of
segmenting these nuclei despite the noisy labelling in the ground truth data, as illustrated
in Figure 4.6. As a result, the segmentation mask surpassed the ground truth for side slices
(outside the 150-200 range), leading to a reduced IoU for all slices in comparison to those
in the middle range (See Figure 4.8). Converting to Fat-U-Net resulted in a smaller decline
in performance than observed in the evaluation with the Oxford-IIIT Pet dataset, with a
decrease of about 1% for middle-range slices and 2% for all slices.

Fig. 4.6 Qualitative results of HeLa dataset. (a) train slice 119 (b) test slice 121 (c) Unseen
cell, taken from the larger field.

4.4.1 Intuitive Fat-U-Nets

When analysing the results of the Intuitive Fat-U-Net experiments, it became apparent that the
performance of Fat-U-Nets aligned with the hypothesis that preserving the number of pixels
in the feature maps of the FatNet contributes to better performance. These Fat-U-Nets did

122

Fat-lU-Net

Fig. 4.7 U-Net and Fat-U-Net segmentation qualitative results on 8192 x 8192 images.
Green arrows indicate areas of good performance, while red arrows highlight areas of poor
performance.

epoch: 15 epoch: 20
10 10
0.6 1 0.6 1
UE R UE R
b= b=
2 2
LER LER
0. 0.
na na
a S0 1) 150 200 250 3nn a S0 1) 150 200 250 3nn
Shoe Shoe
(a) (b)

Fig. 4.8 Intersection over Union (IoU) of each slice of the HeLa cells dataset by both
models: (a) U-Net and (b) Fat-U-Net. The red points indicate the test data slices whose
patches were not included in the training process. It is evident that both models perform
similarly poorly for shallow and deeper layers, where the nucleus is either small or non-
existent, and perform comparably well for middle slices.

not follow the Fat-Spitter algorithm. Instead, they only considered the number of trainable
parameters rather than the number of pixels in each feature map.

As demonstrated in Table 4.7, our standard Fat-U-Net outperformed all three Intuitive
Fat-U-Nets, confirming that the number of pixels in each feature map is crucial for the FatNet
conversion and its efficacy.

123

epoch: 15
1.00 P

0.98 A

0.96 A

loU

0.94 4

0.92 1

0.90 T T T T T T
100 120 140 160 180 200
Slice

Fig. 4.9 Closer look on line graph of IoU metric on each slice of the HeLa cells dataset.
The line graph provides a detailed view of the IoU metric for each slice of the HeLa cells
dataset. The red points represent the test data slices whose patches were excluded from
the training process. These test slices exhibit a slightly lower IoU metric compared to the
training slices, which is particularly noticeable.

Additionally, it is evident that Intuitive Fat-U-Net I performs better than all other Intuitive
Fat-U-Nets across all scenarios. This performance is attributed to its architectural similarity
to the original U-Net, which means the number of pixels in its feature maps is also most

similar to the original U-Net.

Table 4.7 Intuitive Fat-U-Nets (other "Large kernel/Few Channel") performance in com-
parison with original Fat-U-Net. Fat-U-Net outperforms all three variations of Intuitive
Fat-U-Nets in both datasets.

Model Oxford-IIIT Pet HeLa cells
Acc IoU Acc IoU
Intuitive Fat-U-Net 1 92.71 83.71 99.08 93.90
Intuitive Fat-U-Net 2 89.39 77.84 97.95 87.58
Intuitive Fat-U-Net 3 89.18 76.98 98.45 89.75
Fat-U-Net 93.40 91.87 99.43 96.25

124

4.4.2 U-Net without skip connections

The experiments involving the training of Fat-U-Net and U-Net without skip connections
have somewhat proven the hypothesis described in Section 4.2.2, that Fat-U-Net architecture
without skip connections might surpass or considerably close the performance gap with the
standard U-Net architecture that also lacks skip connections. Both U-Net and Fat-U-Net
performed poorly and were unstable, failing to converge. As shown in Figure 4.10, Fat-U-Net
was relatively more stable compared to U-Net, which aligns with the hypothesis. However,
even Fat-U-Net exhibited fluctuations in performance throughout the epochs.

Furthermore, in Figure 4.10 (b), where the curves are smoothed, it is evident that Fat-U-
Net performs more stably on average. Nevertheless, when evaluating on test data, U-Net’s
IoU was 86.71%, while Fat-U-Net's IoU was 86.53% on middle slices. This indicates that
although the performance of both networks dropped, the gap between U-Net and Fat-U-
Net without skip connections indeed shrank because Fat-U-Net manages to preserve the
localisation information well.

4.5 Conclusion

In this chapter, the expansion of the application of FatNet to segmentation tasks was success-
fully demonstrated by applying it to the contracting path of the U-Net model. This aligns
with Objective 1, which aims to develop and adapt novel CNN architectures for acceleration
in the 4f system, building on the classification tasks fulfilled in Chapter 3 and extending them
to segmentation tasks here in this Chapter.

Our adapted model, Fat-U-Net, required 538 times fewer convolution operations than
the traditional U-Net, leading to an inference speed 538 times faster when using optical
accelerators and 37 times faster than U-Net running on a GPU, assuming a 2MHz device. Both
models were tested on the Oxford-IIIT Pet dataset and the HeL a cell nucleus segmentation,
achieving unparalleled results. The performance degradation was minimal, with a maximum
loss of 4.24% in test loU for the Oxford-IIIT Pet dataset and 1.76% for the HeLa cell
nucleus segmentation. This makes the FatNet transformation even more advantageous than
in classification tasks.

Moreover, this chapter demonstrated the efficacy of the FatNet, particularly the necessity
of taking into account the number of pixels in each feature map when performing the
conversion. This was achieved by training three Intuitive Fat-U-Nets. These Intuitive
Fat-U-Nets only used the number of trainable parameters for the conversion, and all three
underperformed compared to the original Fat-U-Net.

125

0.8+

061

0.4+

Intersection over Union {loll)

021

0.0

25 5.0 s 10.0 125
Epoch
(a)

® U-Het Raw
—— U-Net Smocthed
Fart-L-Net Raw
oed Fat-U-Net Smsathed

=)
o
g
Eody . = /__F———.____ .
= ——
S — .
c I E— -
2044 e —
o
i _/
o —
£ . /
0.2 — #
.
T e, . N
A - . * .
0.0 ' =
25 5.0 1.5 10.40 125 1540 1r5 2000

(b] Epach

Fig. 4.10 Learning curves of U-Net and Fat-U-Net without skip connections. (a) Regular
learning curve plot for both models without skip connections, and both failed to train, while
Fat-U-Net was slightly more stable (b) Smoothed learning curve for both models without
skip connections, showing that Fat-U-Net performed better, even though overall the final
evaluation is on U-Net’s favour.

This chapter also analysed the effect of preserving the localisation information in Fat-U-
Net by training U-Net and Fat-U-Net without the skip connections. Experiments showed that
both networks failed to converge as effectively as with skip connections, although Fat-U-Net
trained more stably than U-Net.

In conclusion, this chapter successfully fulfilled Objective 1 by extending FatNet’s
application from classification (as demonstrated in Chapter 3) to segmentation, achieving
significant efficiency gains while maintaining high performance. Additionally, this chapter
validated the algorithm through experiments such as Intuitive Fat-U-Nets and U-Net without
skip connections to prove the efficacy of the approach. These results further demonstrate

126

FatNet’s adaptability across diverse tasks and its potential to optimise deep learning models

for free-space optical accelerators.

127

Chapter 5

Shared Convolutional Vision
Transformers (ConvShareViT)

Overview

In this chapter, we introduce ConvShareViT, a new architecture for Vision Transformer
models that exclusively uses convolution operations. The chapter examines different methods
for incorporating convolutions within the attention mechanism and the MLP blocks of the
ViTs, with the main focus on enabling efficient inference in the 4f free-space accelerator.
Additionally, the chapter explores various parallelisation techniques that are both feasible
and effective for the 4f system.

5.1 Introduction

In the previous chapters, the conversion of convolutional networks into formats more compati-
ble with the 4f system was discussed. It has been noted that transformers can be implemented
in an optical setup, as reviewed in the literature (See Section 2.8.5). However, this neces-
sitates a completely new setup and does not utilise the existing 4f system, which would be
preferable. Since the 4f system is already employed for convolution operations, its appli-
cation to transformers could be considered without any modification to the optical setup.
Unlike convolutional neural networks, transformer models rely on linear layers and matrix
multiplications. Matrix multiplication can be represented through convolution operations and
processed using the 4f system, suggesting the feasibility of implementing transformers within
this system. However, this approach is inefficient, as it results in many irrelevant pixels in the
output. A question arises: Is it possible to employ only the convolution operation to learn the

129

attention, preserving the attention mechanism exactly as in the original Vision Transformer
(ViT), but replace the matrix multiplications with convolution operations and run it efficiently
on the 4f system?

3.2 Methodology

The methodology involved first training a regular vision transformer on the CIFAR-100
dataset, and, once reaching the state-of-the-art accuracy of ViT trained on CIFAR-100
without fine-tuning, the variety of methods is explored to reach the optimal solution for the
convolutional neural network.

The difference between the ConvShareViT network of this work and transformers starts
right at the vector projection stage. In transformers, images are typically divided into
patches and embedded into a high-dimensional vector space using linear layers. In contrast,
ConvShareViT networks keep the tokens in a two-dimensional format after diving into
patches. If the Vision Transformers activations are in the shape of [batch, number of patches,
embed dimension], in this case they are [batch, number of patches, embed dimension y,
embed dimension x]. To embed the patches into the desired resolution, transpose convolution
is used. Additionally, transpose convolution is employed to embed the 3 RGB chanrels into
a single channel with higher resolution. In this case, the resolution of the patch is analogous
to the embed dimension.

It is important to initially note that the linear layer is the primary component of all layers
in the transformer’s encoder. Linear layers are present in both the Multi-Head Self-Attention
(MHSA) layers and the Multi-Layer Perceptron (MLP) layers situated between the MHSA
layers. Each output node of a linear layer represents a weighted sum of the input nodes.

Since our model processes patches as matrices rather than vectors, each patch can be
convolved with a weight matrix of identical resolution using valid padding to produce the
output node, as shown in Figure 5.2. When using same padding, the centre pixel of the
output will be within the valid region. This process must be repeated for each output node.
However, in an optical context, kernel tiling can be employed to generate all output pixels
simultaneously (See Figure 5.2 (c)).

5.2.1 Shared Depthwise Convolution

The regular Convolutional layer consists of the 3D feature maps and 3D kernels, where the
number of kernels is equal to the number of the output channels, and depth is equal to the
number of input channels as shown in Figure 3.4. This can also be viewed as a number

130

N\l
"\
e

embed dimr
2

embed dimr

Numper

of t
(humbe, Okens

of Patches)

(b)

Fig. 5.1 Visual comparison of input split in regular multi-head attention and our method
when the inputs are two-dimensional. (a) In regular multi-head attention, the input vectors
are split into equal-sized vectors, each assigned to a dedicated head of attention, followed
by the concatenation of the outputs. (b) In our method, the process can be viewed as
patchification, where the two-dimensional input is divided into smaller patches that fit into
the heads of convolutional attention layers. The outputs are then merged back into their

corresponding locations.

131

. § B - .W11+|_“'r':1+.1s1'.w¢:
Bt B = ve s v+ vl v
B B - Bve Bve BBl v
. @ @ = .""FH+ L“‘r'n*'.w.ﬂ'.w*-r
(a)
WuWy Wik,
E L""?u”"; W:I;?Wq: § |—|
L
1M = = Wikt Wiy o
n : ELL & IIlI".:I.Il""'f I"*I;L“"a: § &
(b) (c)

Fig. 5.2 Implementation of the linear layer using convolution and tiled convolution for
4f system. (a) A simple linear layer of one vector is applied to another vector of the same
length. Each output pixel is the weighted sum of input pixels. (b) Input pixels are in 2D
matrix format, convolved with the kernel of the same size, with the valid padding. The output
is similar to one output pixel of the linear layer. (c) Kernel tiling is used to tile all weights of
the linear layer in the kernel block, and input is padded to the required resolution. The output
archives all output nodes of the linear layer, with the requirement of reshaping (removing
zeros in invalid regions)

of input channels > number of output channels 2D kernels, where the results are summed
across the input channels, as shown in Figure 3.5.

When trying to represent MLP through the convolutional layer, as shown in Figure 5.2,
there is one challenge which needs to be addressed. In the linear layer, the input channel is a
separate patch and should be treated independently without any interaction with other patches,
and the channel summation should be avoided. Hence, depthwise convolution must be used,
meaning the number of groups of convolution is equal to the number of input channels (See
Figure 5.3 (b)).

However, when a tensor is passed through a linear layer, the transformation is applied
to the last dimension, mapping these dimensions into new vectors. This process involves
sharing the same weights across all channels of the tensor. Hence, if a linear layer is to
be emulated via convolution, the kernels must be repeated across the input channels in a
depthwise convolution. This method is referred to as shared depthwise convolution (See
Figure 5.3 (c)).

Figure 5.4 shows a more detailed implementation of Shared Depthwise Convolutional
layers. In certain scenarios, an input matrix must be mapped to two or more outputs, as shown
in (See Figure 5.4 (c)). In such cases, the number of output channels is simply increased
while the number of groups remains equal to the number of input channels. The weights are
repeated across input channels. Conversely, when two or more channels need to be mapped

132

EEBEENNNNON EEEEE

*EEL/OeEN .= OdNEn

BE D HEE B OB BB E BB DB B
(a) (b)

L . . . |:| « Shared weights
]
HENEN

B D EE B OB @
©

Fig. 5.3 Comparison of regular valid convolutional layer, depthwise convolutional layer
and shared depthwise convolutional layer, which copies the weights across all input
channels. (a) Regular convolutional layer, with the groups=1. The number of 2D kernels
is equal to the number of input channels the number of output channels. (b) Depthwise
convolution, where the number of groups is equal to the number of input channels. In this
case, each output channel gets only one 2D kernel, meaning no channel summation happens.
(c) In the shared depthwise convolutional layer, unlike the regular depthwise convolutional
layer, the weights are shared across input channels, making it ideal for the emulation of the
Linear Layer. If the kernels are the same resolution as inputs, the valid convolution yields
one pixel for each output channel, which can be reshaped into the initial resolution.

133

back into fewer channels—such as in Figure 5.4 (b) where they are mapped into one—the
channels to be merged are treated as a single input, and their weights are not shared but
summed, similar to the process in the regular convolutional layer. In this scenario, the number
of groups corresponds not to the total number of input channels but to the number of input
channels being treated as a single input. In the case of Figure 5.4 (b), this number is two.
These methods are enough to emulate the MLP in Vision Transformers using convolution
operations. For instance, by following the sequence of operations in Figure 5.4 (c) and (b),
an MLP with a ratio equal to two can be emulated. This emulation can be implemented

optically using the tiling method shown in Figure 5.2 (c).

5.2.2 Attention Mechanism

The attention mechanism can be divided into three main stages, these are QK'V projection,
attention scores calculation, and the weighted sum of the attention scores. The QKV (query,
key, and value) projection, a crucial part of multi-head self-attention (MHSA), transforms
input data into these three components, facilitating attention calculations as described in
Section 2.6.2. In this work’s experiments, several methods were used before achieving the
ideal solution for the QKV projection, and the final method was to use the shared depthwise
convolutional layers, which would be a full mimic of the linear layers. Apart from these,
regular depthwise convolution and depthwise convolution with the reshaping of the outputs
were used.

Mainly four variations of convolutional layers were used, firstly with the same padded
depthwise convolution, with weights shared and not shared across the input channels. Then
the valid padded depthwise convolution, with weights shared and not shared across the input
channels.

The calculation of the attention scores is a simple valid convolution of all patches
with each other and softmax function taken in the dimension one, or dimension two when
minibatches are used.

The last step is the weighted sum of the attention scores, which we do using a point-wise
convolutional layer, treating the attention scores as weights of the layer. The outputs are then
located in the correct location of the main larger patches.

In the regular self-attention layer, this last step is performed by a simple matrix multipli-
cation:

Y =AxV (3.1)

134

+ 0+ o+ o+

+ 0+ o+ o+

(b)

EEEESCOEEE

EEEECEEN

B DB B EHODEBEBBEBODEBEBB O B

Reshape Reshape

Fig. 5.4 Shared depthwise convolutional layer with the valid convolution and reshape of
the output for full emulation of the Linear layer using convolution. (a) Shared depthwise
convolutional layer from one matrix to one. In this case, two matrices have been mapped to
their new corresponding matrix. (b) Shared depthwise convolutional layer from two matrices
into one. In this case, four matrices have been mapped into two, each group of two into one
corresponding output matrix. The technique can be used from many to fewer matrices. (c)
Shared depthwise convolutional layer from one matrix into two matrices. In this case, two
matrices have been mapped into 4, where each has been mapped into corresponding two

(©

Reshape Reshape

outputs. The technique can be used from few to many mapping.

135

Depth-wise convolution, Shared depth-wise convolution,
same-padded same padded

L . L .‘ Shared weights
|| I:' || . r

(a) (b)
Depth-wise convolution Shared depth-wise convolution

L ...I:‘ L ..-D < Sh?redweights
m ONENE = EEEE

B D BHE B B O @ B B E B B B B H

Reshape Reshape Reshape Reshape

(©) (d)

Fig. 5.5 Types of Convolutional layers used for the QKV projection, with shared and
not weights across the input channels and with same or valid padding. (a) Simple
depthwise convolutional layer with same padding. (b) Shared depthwise convolutional layer
with same padding (c) Depthwise convolutional layer with valid padding, the outputs need to
be reshaped into the initial resolution (d) Depthwise convolutional layer with shared weights
across input channels and with valid padding, the outputs need to be reshaped into the initial
resolution.

136

where A is the attention score tensor, and V is the tensor of values. To do this using the
convolution, first need to look at the general formula for the 2d convolutional layer without
the bias:

CHypy H—-1W—1

Yire= Y, Y. Y Xonrvictj X Wechijs (5.2)
ch=1i=0 j=0

where k is the output channel, r is the row index in the output, ¢ is the column index in the
output, Xep 4 ¢+ j refers to the input feature map with the dimension |CH;y,, Hyy Wiy), and the
output ¥ with the dimensions [CH_y,,Hpy, Woy |- W represents the set of kernels with the
dimension [CH,,, ,CH;,, H . W|.

When the convolution is 1D, the spatial dimension is reduced to one, the convolution is
simplified to:

CHyp a
Yir= Y, Y Xehrsi X Wichis (5.3)

ch=1li=—a
where a is half the kernel size(i.e., the filter has 2a + | elements), and r represents the spatial
position in the 1D output (analogue of rows in 2D case).
When the convolutional layer uses 1 x 1 kernels, the convolution effectively becomes a
point-wise matrix multiplication across channels, identical to dense layer operations. For 1D
convolution, the formula with 1 » 1 kernels becomes:

Cin

}1-1,-= ZXE_;” XWk’m (54}
ch=1

which is equivalent to W < X . This leads to the conclusion that matrix multiplication can
be treated as the convolutional layer, with the left term being a weight matrix, as can be seen
in Figure 5.6.

5.2.3 Multilayer perceptron

In a vanilla transformer encoder, each multi-head self-attention layer is followed by a multi-
layer perceptron (MLP) layer. The MLP usually consists of two linear layers: the first maps
the embedding vectors into a higher-dimensional space, and the second maps them back to
the original dimension. One of the hyperparameters of the MLP is the MLP ratio, which
indicates the scaling factor of the dimension, representing the ratio of the hidden layer to the
input or output layer.

137

Convolution of all patches
with each other

:
g - HE-H
[=] o wam o

c s
-
; . = . B O e @ -
o , O Q N R Z
= - 2
. /O . E o o . 9
s B < i ~
2 -8 l
o & 0 Softmax(dimz1) 3 7
- =
2 | :
o}
E x.'x v
s B] | ;
w . . =t
o . Attention weights w
\ — ' * ##..9 —— [P S
=
O o
65xdnd 65xdxd B5xdxd B5xB5x1x1 65xdxd

resolution

Fig. 5.6 General flow of the attention mechanism using only convolution operations and
CNN layers. The input to the attention layer is a 3D tensor, where each token is represented
as a 2D matrix. This tensor undergoes QKV projection using one of the methods described
in Figure 5.5. The attention scores are computed by applying a valid convolution operation
between all Q and K matrices. Finally, the weighted sum of the attention scores is obtained
through a regular convolutional layer on the V tensor, with the attention scores acting as the
weights of the layer.

138

Since the original transformer uses a linear layer, our method uses the same concept
used for the QKV projection in the multi-head self-attention (MHSA) layer. First, a shared
depthwise convolutional layer with a kernel size equal to the input size is used to map the
input into the higher dimension. The output of this layer is | x 1 x (number of tokens x
MLP ratio x x x y). This output is then reshaped into x < y x (number of tokens x MLP ratio),
increasing the number of tokens by the MLP ratio.

Similarly, the output of the second shared depthwise convolutional layer is 1 x | x
(number of tokens x x x y), which can be reshaped to the input’s original shape x x y x

number of tokens

5.2.4 Potential Parallelisation of ConvShareViT in 4f system

The primary purpose of using the convolution operation in attention layers is to use the
4f system’s ability to perform these operations faster and more efficiently than standard
electronic components. The key advantage of free-space optics lies in its capability to
execute high-resolution operations without inference delays. To take advantage of the
parallelism and high-resolution capacities of 4f free-space accelerators, earlier chapters on
FatNet emphasised increasing the resolution of neural networks by employing input tiling to
fully utilise the system’s resolution.

Unlike CNNs, which rely on convolutional layers, Transformers are based on linear layers
and typically perform more efficiently on GPUs, where entire tensors are loaded, allowing
for optimised and rapid computation. However, in the optical setup, regular input tiling to
execute the described methodology is insufficient. Given that the FatNet conversion approach
was not originally developed for Transformers, the methods discussed can be parallelised
using mixed tiling, as described in Section 2.8.4, introduced by Li et al. [7].

While mixed tiling is traditionally applied to standard convolution operations, in our case,
it needs to be adapted for depthwise convolutional layers. This can be achieved by setting all
kernels, except the one corresponding to the output channel, to zero, as shown in Figure 5.7
(a).

In QKV projection, the kernels for the output pixels q, k, and v can be tiled within a
single mixed tiling block and then split after the output is generated, as shown in Figure 5.7
(b). In most cases, the number of kernels will likely exceed the resolution of the 4f system,
potentially requiring multiple inferences.

139

(a) (b)

Fig. 5.7 Mix tiling with depthwise convolutional layers and its use in QKV projection
layers for convolutional attention layers. (a) Simple mix tiling of kernels, but kernels
other than those corresponding to the output channel are set to zero to avoid summation (b)
Demonstration of how Shared depthwise convolutions can be used in the gkv projection.

5.3 [Experiments

In this chapter, as in Chapter 3, the CIFAR-100 dataset was used for classification. Data aug-
mentation was applied with all models in this study, including PyTorch’s built-in "CIFAR10"
auto-augmentation, random cropping with a padding of 3, random horizontal flipping, and
standardisation using the mean and standard deviation of the dataset.

Initially, four regular Vision Transformers (ViTs) were trained on CIFAR-100 to serve
as baseline models. These included combinations of ViTs with and without trainable posi-
tional encoders, as well as models using multi-head (12 heads) and single-head attention
mechanisms. The image patch size was set to 4 x 4 from the original image size of 32 x 32,
resulting in 64 patches overall (65 when including the classification token). The tokens are
embedded into the 192 dimensions. The number of transformer blocks was set to 9, with
an MLP ratio of 2. The models were trained for 310 epochs, with 10 epochs reserved for
warmup. The Adam optimiser was used, with a starting learning rate of 5 x 10~ with the
Cosine Annealing Scheduler.

When it comes to ShareConv Vit models, the main twelve experiments out of multiple
experiments are reported in Table 5.1. Several methodologies had to be tested to determine
the optimal configurations for our models. The table specifies which techniques are applied to
each model, including Trainable Positional Encoding, Multi-Head Attention, usage of Multi-
Layer Perceptron (MLP), Shared Depthwise Convolution, and Valid Convolution. Each model

140

represents a unique combination of these methods, allowing us to systematically evaluate
their impact on performance. Additional details, such as the embedding dimensions and the
absence of bias in certain models, are also noted to provide a comprehensive understanding
of the configurations tested. All models were trained using the Adam optimiser [73], with a
learning rate of 0.0005 for Models 1-5 and 0.0008 for Models 6-12.

It can be seen that Models 2, 3, and 4 seem identical. The difference lies in the QKV
projection, which is listed below:

* Model 2 uses a simple depthwise convolutional layer with the same padding and a
kernel size equal to the resolution of the head patch, which is 4 in this case. The
number of input channels and output channels is the same, equal to the number of
patches.

* Model 3 uses four consecutive depthwise convolutional layers to increase the number

of channels by 7 times, then reduces it back to the original number and repeats it again.

* Model 4 uses two consecutive depthwise convolutional layers to increase the number
of channels by 14 times, then reduce it back to the original number.

A similar pattern can be observed with Models 5 and 6; both models use valid depthwise
convolution, meaning they reshape the 1 x 1 outputs to match the original resolution. How-
ever, Model 5 contains one more depthwise convolutional layer, similar to the one in Model
2, before the valid convolution.

The primary aim of the project is to analyse not only the performance of the models but
also to determine whether these models can learn attention in a manner similar to Vision
Transformers. To achieve this, the average attention scores were visualised.

With the ShareConvViTs, the aim was to maintain as much similarity as possible to the
original ViTs that were trained in this work, preserving the same MLP ratio, the same number
of layers, and the same patch size of 4 x 4. The difference lay in the embedding dimension,
as the ShareConvViTs needed to retain a square shape, as shown in Figure 5.1. All models,
except for Models 10 and 12, had embedding dimensions of 16 < 16, resulting in a total
of 256, which is higher than the original ViTs’ embedding dimension. This increase was
necessary to extract 16 heads from the tokens, each being 4 < 4. However, Models 10 and
12 had an embedding dimension of 13 x 13, making 169 in total, which is lower than the
original ViTs’ embedding dimension. Since these models were single-head, the tokens did
not need to be further patchified when fit into the convolutional attention layers.

141

Trainable Multi head Shared dw Valid

Model Pos Encoding Attention MLP used Convolution Convolution notes

Model 1

Model 2 Bias in gkv
Model 3 Bias in gkv
Model 4 Bias in gkv
Model 5 Bias in gkv
Model 6 Bias in gkv
Model 7

Model 8

Model 9

Model 10 Embed dim=13
Model 11

Model 12 Embed dim=13

Table 5.1 Summary of Methods Applied to Different Models during ConvShareViT devel-
opment. This table outlines the primary experiments conducted and the methods applied
to each model. Each row represents a distinct model and indicates the presence of specific
methods with a checkmark.

142

Model ViT 12heads ViT 1 head ViT 12 heads sin ViT 1 head_sin
Acc (%) 6l 63 64 64

Table 5.2 Test accuracy on CIFAR-100 of a regular vision transformer with different con-
figurations. Models with "_sin" indicate the use of sinusoidal position encoding instead of
trainable encoding.

100

!
1
\
\
}i
i

=
\
LN

&
=

—— WiT single head —— WiT single head
VIT single head Jsin VIT single head Jsin
WiT 12heads fsin WiT 12heads fsin

y i
|I' — WiT 12heads — WiT 12heads

Train Accuracy
-u i
= = =
-
w
walidation Accuracy
5 B

-
(=]

o 0 100 150 200 P20 ;o b s 100 150 200 0 oo
Epach Epach

(a) (b)

Fig. 5.8 Comparison of training and validation curves for four Vision Transformer (ViT)
models, featuring combinations of trainable versus sinusoidal positional encoders and
single head versus twelve heads. (a) Train accuracy per epoch (b) Validation accuracy per

epoch

5.4 Results and Discussion

The test accuracy of four variations of the regular Vision Transformer (ViT) is shown in
Table 5.2. It is evident that the fixed sinusoidal positional encoder outperforms the models
with trainable position encodings. Additionally, the single-head model performs slightly
better than the twelve-headed model when the positional encoder is trainable, although the
difference is not substantial. With sinusoidal positional encoding, the performance is nearly
identical between the two models. Although both test accuracies are equal to 64%, the
training curves in Figure 5.8 demonstrate that the ViT with 12 heads and sinusoidal positional
encoding achieved the best performance in terms of validation accuracy. In contrast, the
ViT with 12 heads and a trainable positional encoder, despite showing better performance
on the training set, shows poor validation performance, as reflected in the test accuracy of
61%. This suggests that using 12 heads may have been excessive for a simple dataset like
CIFAR-100, especially when combined with a trainable positional encoder, as the additional
parameters likely led to overfitting.

These results can be directly compared to those reported in previous works. Specifically,
the choice of the 12-headed, 9-layer Vision Transformer (ViT) with 4 x 4 patches was

143

Table 5.3 Test Accuracy of models described previously in Table 5.1.

Model 1 2 3 4 5 6 7 8 O 10 11 12

Acc(%) 49 42 52 52 48 53 54 25 58 62 63 59

motivated by the work of Lee et al. [69]. In their research, they also trained ViTs on
the CIFAR-100 dataset from scratch, which is not a usual case as ViTs are typically pre-
trained on larger datasets before being fine-tuned on smaller ones. Lee et al.achieved a test
accuracy of 60.01% without augmentation and 73.81% with a combination of augmentations,
including CutMix, Mixup, and AutoAugment. Additionally, they used techniques such as
label smoothing, stochastic depth, and random erasing.

In contrast, the approach in this work used only AutoAugment, yet it achieved higher
performance than Lee’s model, which did not incorporate all the augmentation methods.
Although our results were lower than those of Lee’s model, which employed the full suite
of augmentation techniques, our method still demonstrates significant effectiveness. The
exclusion of CutMix and Mixup in this work was due to their potential to slow down the
training process, which needed to stay efficient for running multiple experiments to validate
the concept. Another study by Zhu et al. [74] trained a smaller ViT on CIFAR-100 with a
depth of 6 layers and 8 heads, achieving a test accuracy of 54.31%.

Turning to our novel method, ShareConvViT, specific performance characteristics were
observed. Interestingly, models 10, 11, and 12 were single-headed models and performed
better than the multi-headed models, as shown in Table 5.1. Model 8 was the only model
among the final ones to use the same padding in the gkv projection, resulting in a poor
test accuracy of 25%. This suggests that using valid convolution and reshaping the outputs
(essentially replicating MLP) is essential. However, it is notable that models up to and
including model 4 also used the same padding and retained the original output shapes. These
models did not share weights across input channels, resulting in a higher number of trainable
parameters, which contributed to their relatively high performance. Unfortunately, despite
their strong performance, these models did not learn classification in the traditional attention
mechanism way, as shown later in the visualisation analyses.

Figure 5.9 shows the training process of all models that led to the ConvShareViT. All
models ran until 310 epochs, 10 of which were reserved for warmup, except model 2, which
was stopped due to poor performance and no updates in the loss. Model 11 is leading in
both training and validation train curves, just like in the test accuracy Table 5.1. Although
model 9 seems to be second in the train accuracy plot, it is behind model 10 in the validation
accuracy plot. This is also obvious from the test accuracy Table 5.1, where models 9 and

144

10 achieve 58 and 62, respectively. This means that Model 9 could have minor overfitting
issues. It is worth pointing out that model 10 is also a single-head model, while model 9 is a
multi-head model. Moreover, model 10 uses a smaller embed dimension of 13 instead of
16. This again leads to the suggestion that single-head attention is enough to perform the
classification of CIFAR-100.

Figures 5.10 and 5.11 show the comparison of the average attention scores per layer of
ViT and the ConvShareViTs. Notably, only models starting from Model 8 onward use shared
depthwise convolution. However, Model 8 itself does not apply valid convolution with output
reshaping, making the attention score visualisations clear only from Model 9 onwards.

In Model 9, the attention scores begin to focus primarily on the objects in the image from
the 5th layer onward. Interestingly, Model 10 exhibits attention scores concentrated only on
the background, yet it still achieves good performance. Model 11, which delivers the best
performance, demonstrates strong attention scores across both figures, indicating effective
learning of attention mechanisms. However, Model 11 also shows a bias in the learnable
positional encoding, leading to high attention scores in the top corners across all layers.

To address this issue, Model 12, which incorporates fixed sinusoidal positional encoding,
was developed. This adjustment resulted in more balanced attention scores, although the
performance slightly decreased, with test accuracy dropping to 59%. This performance
decline is likely due to Model 12’s smaller size, with an embedding dimension of only
13 % 13.

The results indicate that while all models can achieve high performance, the model
using same padding did not perform well when applied in the shared depthwise convolution.
However, models with same padding achieved relatively good performance when the weights
were not shared across the input channels in the depthwise convolution. The visualisations
reveal that the models only learn the attention mechanism when they use shared depthwise
convolution with valid padding and reshape the outputs— essentially, when the convolution
function emulates the regular linear layers.

Unfortunately, this observation suggests that the effectiveness of using convolutions in
self-attention layers depends on their ability to replicate linear layers. In other cases, the
convolutions may behave more like traditional convolutional neural networks, adding com-
plexity without necessarily enhancing the model’s performance. Although the performance
of models 7 and below is not poor, and they do converge, it is difficult to categorise these
models as transformers. Nevertheless, the results demonstrate that convolutions can be used
to emulate linear layers by employing shared depthwise convolutional layers and can be
effectively integrated into the 4f system.

145

100

—&— model 12
—— model 11
—&— model 10
—— model 9
807 s model 8

model 7
—»— model 6

model 5
1 =—— model 4
—e— model 3

model 2
—+— model 1

o))
o

Train Accuracy

40
20+
0 50 100 150 200 250 300
Epoch
(a)
60
50+
>
O
e
S 40'
S .
—e— model 12
< 30 - mZd:I_ll
g —o— model_10
- —— model_9
© —¥— model_8
.-9 20+ model_7
= —— model_6
g modeI:S
—— model_4
10' —— modeI:B
model_2
—— model_1
0 50 100 150 200 250 300
Epoch
(b)

Fig. 5.9 Training curves comparison for the Training set and Validation set of CIFAR-
100 with different ConvShareVit models (a) Training curve for train set of CIFAR-100,
with the best model being model 11. (b) Training curve for the validation set of CIFAR-100,
with the best model being model 11

146

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9

ViT

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9
. =
Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map a

Original Image Attention Map 1 Attention Map 2 Altenlmn Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9

-
13 = E
Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9

Attention Map 1
E - m

M-12

M-11

Attention Map 9
=]

Original Image

ﬁ:‘.il

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8

BRAt B [e

Fig. 5.10 Visualisation of the average attention scores projected onto the original input
image of Apples from the test set of CIFAR-100. This figure compares the performance of
the last seven models with the regular ViT (Vision Transformer with 12 heads). The vertical
axis corresponds to the models and the horizontal to the attention layers. The ViT model
achieved good attention scores in the final layers using a standard attention mechanism.
Models 9, 11, and 12 also achieved attention scores similar to the original ViT. In contrast,
Model 10’s attention scores look incorrect as it is focusing on the background instead, as
evidenced by other visualisations. Model 8 did not converge, while Models 7 and 6 did not
employ the Shared DW convolutional methods without emulating the linear layer, causing
the models to not learn the attention scores in the same manner as the ViT.

-6

>

147

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5
= L

Attention Map 6

Attention Map 7 Attention Map 8 Attention Map 9

ViT

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9
- - [3 -
> ' 1 T
— L8 1
1 i’ P
2 - l.‘. | [. | T S—
Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9
- -
— k. .
—
1
2 e 1 [-

Original Image Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6 Attention Map 7 Attention Map 8

1L

Attention Map 5 Attention Map 6

Attention Map 9

Original Image

M-10

F—

Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 7 Attention Map 8 Attention Map 9

e

SN § PSS RS S—

[.

M-9

Original Image Attention Map 7 Attention Map 8 Attention Map 9

Attention Map 9

Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6
- = -

\ & "l A s | u m.' .
IR

e B et D B il
Attention Map 1 Attention Map 2 Attention Map 3 Attention Map 4 Attention Map 5 Attention Map 6
L ' -]

M-8

Original Image

Attention Map 7 Attention Map 8
" =

u---‘-ikﬁ—l.—-; -‘i:r;-

M-7

Original Image Attention Map 1 Attention Map 2 Attention Map 6 Attention Map 7 Attention Map 8 Attention Map 9
-

'L L

- , A o
l.ﬁ.l.-- ..ﬂ_"l

>

Fig. 5.11 Visualisation of the average attention scores projected onto the original input
image of a rocket from the test set of CIFAR-100. This figure compares the performance of
the last seven models with the regular ViT (Vision Transformer with 12 heads). The vertical
axis corresponds to the models and the horizontal to the attention layers. The ViT model
achieved good attention scores in the final layers using a standard attention mechanism.
Models 9, 11, and 12 also achieved attention scores similar to the original ViT. In contrast,
Model 10’s attention scores focused on the background instead, which still managed to
achieve a good performance. Model 8 did not converge, while Models 7 and 6 did not employ
the Shared DW convolutional methods without emulating the linear layer, causing the models
to not learn the attention scores in the same manner as the ViT

148

When it comes to paralleling inference as described in the preceding section, the most
efficient approach for a 4f system network is a single head with a 13 13 embedding
dimension, similar to models 10 and 12. This configuration can be parallelised using mixed
tiling. Since the number of possible input or output channels in mixed tiling depends on both
the kernel size and the input size, the number of required convolutions can be observed as
follows:

R

"OMN 1 -5

In the shared depthwise convolution with valid padding, the input sizes are equal to the
kernel size, which is 13 in this case. With a resolution estimated at 4K, i.e., 2160 pixels, the
number of possible input and output channels in the convolution is 86. Thus, we have 65
input channels and 65 132 output channels. The number of inferences required to perform
all three QKV (Query, Key, Value) projections will be 384. For attention score calculation,
the required output channels equal to 65 65 necessitating 50 inferences on a 4K resolution
4f system using mixed tiling. Finally, the weighted sum attention score can be computed
with one inference using mixed tiled convolution.

For the convolutional MLP blocks, however, kernel tiling is more efficient. In this
scenario, the number of required input channel inferences is 65 and 65 2, resulting in 195
inferences per block. This totals 5,670 inferences for all nine layers with the 4f system. With
a 2 MHz device, this is equivalent to 2.8 ms, whereas the T4 GPU performs the same task in
8.5 ms. The GPU measurements are the average of 700 inferences using cuda event timing,

with the GPU being warmed up by 10 iterations.

5.5 Conclusion

In this chapter, the training of ViTs on the CIFAR-100 dataset was explored, with a focus on
replacing traditional attention mechanisms with convolution-based methods. Twelve alterna-
tive models were developed and evaluated, incorporating various convolutional operations
within the attention mechanism. Among these, the models employing shared depthwise
convolutional layers with valid padding and reshaping to emulate linear layers demonstrated
the most success. These models effectively learned the attention mechanism, as evidenced
by the average attention visualisation. This supports Objective 3, particularly its first sub-
objective of redesigning multi-head self-attention mechanisms to use convolutional layers

while preserving their ability to learn attention scores.

149

The development of ConvShareViT, a ViT architecture built using shared depthwise
convolutions, demonstrated that linear layers, can now be efficiently implemented using
shared depthwise convolutional layers within 4f system. This innovation addresses the
limitations in the versatility of optical accelerators, as described in Section 1.1.

Additionally, this chapter explored potential mixed tiling methods within the convolu-
tional attention mechanism. These methods demonstrated that ConvShareViT can theoret-
ically achieve up to 3.04 times faster inference than GPU-based ViTs when deployed on
the 4f system. This aligns with second sub-objective of Objective 3, further validating the
computational efficiency and parallelisation potential of ConvShareViT in optical systems.

The visualisations of average attention scores demonstrated the learning behaviour of
the models. Unlike other convolution-based approaches, the shared depthwise convolutional
models showed attention scores comparable to regular ViTs. This confirms that these models
were learning attention mechanisms rather than simply performing feature extraction, as is
often the case with CNNs.

In conclusion, this chapter successfully addressed Objective 3 by showing that Vision
Transformers can be trained using convolution-based attention mechanisms and adapted for
acceleration in the 4f system. The shared depthwise convolutional layers developed in this
work allow linear layers to be emulated in the optical system, making the implementation
of ViTs more practical. The exploration of mixed tiling methods demonstrated potential
inference speed improvements, further showcasing the advantages of using the 4f system.
These contributions demonstrate the flexibility of optical systems for different types of
neural networks and provide a foundation for future work on convolution-based Vision

Transformers.

150

Chapter 6

Conclusions and Future work

6.1 Conclusion

This thesis focused on the adaptation of deep learning models for 4f free-space optical
accelerators. The primary focus of this research was to enhance the efficiency and speed of
neural networks by taking advantage of the capabilities of free-space optical systems. A key
achievement was the development of the FatNet conversion algorithm (Contribution 1), which
optimises neural networks by increasing the resolution of feature maps and kernels while
reducing the number of channels, thus aligning computational demands with the capabilities
of the 4f system. In this conversion, the number of trainable parameters and the number of
pixels are equal or as close as possible to the one in the original network.

This research includes the application of the FatNet conversion to several well-known
neural network architectures, including ResNet-18, AlexNet, and VGG-19 (Contribution
1 (b)). The conversion was executed using the FatSpitter algorithm, an automated process
we developed to convert PyTorch model objects into “Fat™ versions of the models (Contri-
bution 1 (a)). The FatNet conversions demonstrated substantial reductions in the number
of convolution operations, leading to significantly faster inference times when deployed on
optical systems. For instance, the FatNet adaptation of ResNet-18 achieved a test accuracy
of approximately 60%, slightly below the original model’s 66%. However, this modest 6%
reduction in accuracy was offset by a substantial speedup, with inference times up to 2.46
times faster than those achieved using traditional GPU-based processing (Contribution 1
(c,d)). This was possible because of the high parallelism and resolution capabilities of the 4f
system of 2MHz [39]. Moreover, if both ResNet and Res-FatNet were implemented on the
4f system, Res-FatNet would perform inference 8.3 times faster.

Similarly, Alex-FatNet and VGG-FatNet-19 experienced decreases in test accuracies by
7.13% and 5.96%, respectively. However, the inference of Alex-FatNet in the 4f system

151

achieved a 3 231 acceleration compared to AlexNet on a GPU, while VGG-FatNet in optics
demonstrated a 2 23 acceleration over VGG on a GPU (Contribution 1 (c,d)).

The research also extended the application of the FatNet concept to image segmentation,
leading to the development of Fat-U-Net, a FatNet equivalent of the U-Net architecture
(Contribution 1 (b)). This model was thoroughly tested on the Oxford-IIIT Pet and HeLa
cell nucleus segmentation datasets. On the Oxford-1IIT Pet dataset, Fat-U-Net achieved a
mean Intersection over Union (mloU) of approximately 85%, which is comparable to the
traditional U-Net’s 89%. The computational efficiency was significantly enhanced, with
inference times reduced by a factor of 37 compared to GPU processing (Contribution 1 (c)).
On the HeLa dataset, Fat-U-Net maintained strong performance with a mloU of around
96.25% on test data, while U-Net achieved 97.15% (Contribution 1 (c)), demonstrating the
capability of FatNet models to handle complex segmentation tasks with high efficiency.

Additionally, the performance of both Fat-U-Net and U-Net was explored with and
without skip connections to assess the preservation of localisation accuracy in Fat-U-Net,
attributable to its high receptive field (Contribution 4).

To demonstrate that the performance of FatNet equivalents is not merely due to chance or
favourable architectural structure, we tested the Intuitive-Fat-U-Nets (Contribution 4). These
models were transformed into their FatNet equivalents without using the FatSpitter. Specifi-
cally, the models’ kernels and feature maps were expanded while the number of channels
was reduced. Although the constraint of preserving the number of trainable parameters was
maintained, no restrictions were imposed on the number of elements in the feature maps. This
led to unsatisfactory performance, with the model closest to the original U-Net performing
slightly worse than the U-Net itself, and the more "Fat" models exhibiting substantially worse
performance. This outcome proved the efficacy of the original FatNet conversion.

In addition to CNNgs, this thesis explored the adaptation of ViTs for optical systems
by developing convolutional methods that enable these models to operate within the 4f
framework, referred to as ShareConvViT (Contribution 3). This innovation was particularly
important as it broadens the scope of optical acceleration beyond traditional CNNs. Various
methods were analysed to implement the convolutional attention mechanism. The most
successful approach involved the use of Shared Depthwise Convolutional layers, developed in
this work, in combination with reshape functions, which effectively emulated the linear layers
using convolutional layers. The same methods were also applied in the MLP blocks of the
ViTs. To demonstrate that the models learned the attention mechanism, the average attention
scores of the models were visualised (Contribution 4). This analysis confirmed that models
using Shared Depthwise Convolutional layers in QKV projection indeed learned the attention

mechanism, whereas models using Depthwise Convolutional layers with "same" padding

152

did not. Additionally, the study analysed the potential parallelism and implementation of the
models in the 4f system using mixed tiling and kernel tiling techniques.

The research also validated models by introducing a custom PyTorch layer with a 4f
system simulator (Contribution 2). Additionally, the pseudo-negativity mechanism tackled
the challenge of negative weights in optical computing, ensuring accurate simulations with
efficient memory use.

All contributions in this thesis were aimed at achieving the objectives outlined in Sec-
tion 1.2, focusing on adapting neural networks for acceleration using the 4f optical system.
The FatNet conversion algorithm and FatSpitter tool addressed Objective 1 by creating CNNs
optimised for classification and segmentation tasks, reducing convolution operations, and
taking advantage of the high-resolution capabilities of the 4f system.

The custom PyTorch layer with a built-in 4f simulator supported Objective 2, while the
novel pseudo-negativity mechanism addressed memory and weight-handling challenges,
satisfying its sub-objective.

Finally, convolution-based Vision Transformer architectures such as ConvShareViT
fulfilled Objective 3 by enabling compatibility with the 4f system. Shared depthwise convo-
lutional layers demonstrated attention learning (sub-objective 3.1), and theoretical speed-up
of up to 3.04x (sub-objective 3.2).

The innovations presented make notable contributions to the field and open opportunities
for future developments in deploying deep learning models on optical systems.

6.2 Future work

Future work should build upon this foundation and explore additional applications of these
models.

One potential area of exploration is the extension of this work to object detection tasks.
While object detection shares similarities with classification, as it involves identifying
the class of objects, it also requires localisation information. As discussed in Chapter 4,
segmentation involves predicting pixel-level labels and also preserving the localisation
information. Since the object detection also involves that classification and identifying
bounding boxes around objects, it may also benefit from high effective receptive field of the
high resolution kernels discussed in this thesis. Investigating how the techniques used in
this thesis can be applied to object detection would be valuable, particularly in integrating
localisation with classification tasks.

Additionally, while this research focused on encoder-decoder style segmentation models,
particularly U-Net, future work could explore scaling these techniques to other segmentation

153

models such as DeepLab [145] or Mask R-CNN [146]. Future studies could also examine
using Fat-U-Net’s contracting path alone to further explore the benefits of high-resolution
kernels. Generally, since the model does not necessarily contract and expand, one might
suggest that half of the Fat-U-Net model is sufficient for segmentation. However, our early
experiments showed that this was not the case, as half U-Net contains fewer non-linearities.
Nonetheless, research in this direction can be expanded, and it may be worth exploring new
methods of using half of the Fat-U-Net model for segmentation. The segmentations uses
cases in this thesis proved the princinple of work and analysed the Fat-U-Net architecture,
but the future work can also include task-specific models and exploration of Fat-U-Net in
other domains, such as self-driving.

The FatNet conversion developed in this thesis was primarily designed for sequential
cone-shaped networks. As such, it cannot be directly applied to networks using depthwise
separable convolutions like EfficientNet [129] or Xception [147]. While it may be possible
to adapt the algorithm to incorporate branching, the main challenge lies in implementing
1 x 1 convolutions. These convolutions, which reduce dimensionality, could be treated as
standard convolutions in a 4f system, but it is unclear whether they should be converted into
FatNet layers. Although converting 1 < 1 convolutions could further reduce the number of
channels, this may not always be necessary.

Further future work could explore additional optimisations of FatNet architectures, such
as fine-tuning the trade-offs between kernel size and the number of channels to minimise
performance loss.

As Transformer models were originally developed for language tasks before being adapted
for vision, researching models like ConvShareViT and others from Chapter 5 could expand
their use in NLP. This would require an analysis of new methods for the decoder path of
transformers, as the current work focuses primarily on the encoder. Future research could
investigate FatNet-style conversion methods to optimise the use of ShareConvViTs with
minimal inferences, leveraging the higher resolution capabilities of the 4f system, similar to
how FatNet optimised CNNs.

On the hardware side, real-world implementations and testing on physical 4f systems
would provide valuable insights into the practical applicability and performance of these
networks in real-life systems. It is evident that the 4f system presents certain challenges,
particularly in noisy environments. It would be beneficial to conduct further experiments to
study the effects of Poisson noise on both standard models and FatNet. Since noise can play
a role in data augmentation, understanding its impact could lead to improvements in model
training.

154

Finally, since this thesis has primarily contributed to deep learning, an important question
remains: how would these models perform on real devices? Real-world applications may
introduce issues such as alignment errors, which could significantly impact performance.
Additionally, due to the computational expense of simulations, larger datasets like ImageNet
were not used in this study. However, since FatNet is more advantageous with large datasets
containing numerous classes, it would be valuable to test these models on real devices to
observe these benefits.

155

References

[1]

[3]

[4]

[5]

[6]

[10]

Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Heidrich, and Gordon Wet-
zstein. Hybrid optical-electronic convolutional neural networks with optimized diffrac-
tive optics for image classification. Scientific Reports, 8(1):12324, August 2018.
Number: 1 Publisher: Nature Publishing Group.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, September 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, June 2016. ISSN: 1063-6919.

Chen Xu, Xiubao Sui, Jia Liu, Yuhang Fei, Liping Wang, and Qian Chen. Transformer
in optronic neural networks for image classification. Optics & Laser Technology,
165:109627, October 2023.

Abhinav Agrawal and Namita Mittal. Using CNN for facial expression recognition:
a study of the effects of kernel size and number of filters on accuracy. The Visual
Computer, 36(2):405—412, February 2020.

Shurui Li, M. Miscuglio, V. Sorger, and Puneet Gupta. Channel Tiling for Improved
Performance and Accuracy of Optical Neural Network Accelerators. ArXiv, 2020.

Cefa Karabag, Mauricio Alberto Ortega-Ruiz, and Constantino Carlos Reyes-Aldasoro.
Impact of Training Data, Ground Truth and Shape Variability in the Deep Learning-
Based Semantic Segmentation of HeLLa Cells Observed with Electron Microscopy.
Journal of Imaging, 9(3):59, March 2023. Number: 3 Publisher: Multidisciplinary
Digital Publishing Institute.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 779-788, LAS VEGAS,
June 2016. IEEE.

157

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Ross Girshick. Fast R-CNN. In /EEE International Conference on Computer Vision,
pages 1440-1448. IEEE, December 2015.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.
Efficient Object Localization Using Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 648—656, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation, May 2015. arXiv:1505.04597 [cs].

Risheng Wang, Tao Lei, Ruixia Cui, Bingtao Zhang, Hongying Meng,
and Asoke K. Nandi. Medical image segmentation using deep learn-
ing: A survey. [IET Image Processing, 16(5):1243-1267, 2022. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1049/ipr2.12419.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer Using
Convolutional Neural Networks. In IEEE Conference onComputer Vision and Pattern
Recognition, pages 2414-2423, 2016.

Ramazan Enisoglu and Veselin Rakocevic. Low-Latency Internet Traffic Identification
using Machine Learning with Trend-based Features. In 2023 International Wireless
Communications and Mobile Computing (IWCMC), pages 394-399, June 2023. ISSN:
2376-6506.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In

Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014.

Tomoki Uchiyama, Naoya Sogi, Koichiro Niinuma, and Kazuhiro Fukui. Visually
Explaining 3D-CNN Predictions for Video Classification With an Adaptive Occlusion
Sensitivity Analysis. In IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1513-1522, 2023.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image Super-
Resolution Using Deep Convolutional Networks. [EEE Transactions on Pattern
Analysis and Machine Intelligence, 38(2):295-307, February 2016. Conference Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L.ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale, June 2021. arXiv:2010.11929 [cs].

Lei Jimmy Ba and Rich Caruana. Do Deep Nets Really Need to be Deep? In Advances
in neural information processing systems, volume 27, 2014. _eprint: 1312.6184.

158

[23] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep
Neural Network with Pruning, Trained Quantization and Huffman Coding. arXiv:
Computer Vision and Pattern Recognition, 2016.

[24] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural Networks. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision
— ECCV 2016, Lecture Notes in Computer Science, pages 525-542, Cham, 2016.
Springer International Publishing.

[25] M. Mitchell Waldrop. The chips are down for Moore’s law. Nature News,
530(7589):144, February 2016. Cg_type: Nature News Section: News Feature.

[26] Xiubao Sui, Qiuhao Wu, Jia Liu, Qian Chen, and Guohua Gu. A Review of Optical
Neural Networks. IEEE Access, 8:70773-70783, 2020.

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[28] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and
dogs. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
3498-3505, June 2012.

[29] John R. Masters. HeLa cells 50 years on: the good, the bad and the ugly. Nature
Reviews Cancer, 2(4):315-319, April 2002. Publisher: Nature Publishing Group.

[30] Raheleh Rahbari, Tom Sheahan, Vasileios Modes, Pam Collier, Catriona Macfarlane,
and Richard M. Badge. A novel L1 retrotransposon marker for HeLa cell line iden-
tification. BioTechniques, 46(4):277-284, April 2009. Publisher: Taylor & Francis
_eprint: https://doi.org/10.2144/000113089.

[31] Mateus Sangalli, Samy Blusseau, Santiago Velasco-Forero, and Jesus Angulo. Scale-
Equivariant U-Net. In 33rd British Machine Vision Conference 2022, London, UK,
London, UK, November 2022. {BMVA} Press.

[32] Cefa Karabag, Martin L. Jones, Christopher J. Peddie, Anne E. Weston, Lucy M.
Collinson, and Constantino Carlos Reyes-Aldasoro. HeLa cell images with four
labels (nuclear envelope, nucleus, rest of the cell, and background) for deep learning
architecture training., May 2020. doi.org/10.5281/zenodo.3874949.

[33] D. Brito-Pacheco, C. Karabag, C. Brito-Loeza, P. Giannopoulos, and C. C. Reyes-
Aldasoro. Relationship Between Irregularities of the Nuclear Envelope and Mito-
chondria in HeL a cells Observed with Electron Microscopy, November 2023. Pages:
2023.11.14.567016 Section: New Results.

[34] D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, volume 2, pages
1150-1157 vol.2, September 1999.

[35] PETER J. Burt and EDWARD H. Adelson. The Laplacian Pyramid as a Compact
Image Code. In Martin A. Fischler and Oscar Firschein, editors, Readings in Computer
Vision, pages 671-679. Morgan Kaufmann, San Francisco (CA), January 1987.

159

[36]

[45]

[46]

[47]

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling Up Your
Kernels to 31x31: Revisiting Large Kernel Design in CNNs. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11953-11965,
June 2022. ISSN: 2575-7075.

Hoda Sadeghzadeh, Somayyeh Koohi, and Ali Fele Paranj. Free-Space Optical
Neural Network Based on Optical Nonlinearity and Pooling Operations. IEEE Access,
9:146533-146549, 2021. Conference Name: IEEE Access.

Hao Wang, Jianqi Hu, Andrea Morandi, Alfonso Nardi, Fei Xia, Xuanchen Li, Romolo
Savo, Qiang Liu, Rachel Grange, and Sylvain Gigan. Large-scale photonic computing
with nonlinear disordered media. Nature Computational Science, 4(6):429-439, June
2024. Publisher: Nature Publishing Group.

Mario Miscuglio, Zibo Hu, Shurui Li, Jonathan K. George, Roberto Capanna, Hamed
Dalir, Philippe M. Bardet, Puneet Gupta, and Volker J. Sorger. Massively parallel
amplitude-only Fourier neural network. Optica, 7(12):1812—-1819, December 2020.
Publisher: Optica Publishing Group.

Xiujian Li, Zhengzheng Shao, Mengjun Zhu, and Junbo Yang. Fundamentals of Opti-
cal Computing Technology: Forward the Next Generation Supercomputer. Springer,
New York, NY, Ist ed. 2018 edition edition, May 2018.

Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, Mona Jarrahi,
and Aydogan Ozcan. All-optical machine learning using diffractive deep neural
networks. Science, 361(6406):1004—1008, September 2018. Publisher: American
Association for the Advancement of Science.

Yichen Shen, Nicholas C. Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones,
Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, and Marin
Soljaci¢. Deep learning with coherent nanophotonic circuits. Nature Photonics,
11(7):441-446, July 2017. Number: 7 Publisher: Nature Publishing Group.

Tyler W. Hughes, Momchil Minkov, Yu Shi, and Shanhui Fan. Training of photonic
neural networks through in situ backpropagation and gradient measurement. Optica,
5(7):864-871, July 2018. Publisher: Optica Publishing Group.

C. S. Weaver and J. W. Goodman. A Technique for Optically Convolving Two
Functions. Applied Optics, 5(7):1248-1249, July 1966. Publisher: Optica Publishing
Group.

S. Jutamulia and F. T. S. Yu. Overview of hybrid optical neural networks. Optics &
Laser Technology, 28(2):59-72, March 1996.

Qiuhao Wu, Xiubao Sui, Yuhang Fei, Chen Xu, Jia Liu, Guohua Gu, and Qian Chen.
Multi-layer optical Fourier neural network based on the convolution theorem. AIP
Advances, 11(5):055012, May 2021.

Gaea-2 10 megapixel phase only LCOS-SLM (reflective). Publication Title: HOLO-
EYE Photonics AG.

160

[48] Dana Dudley, Walter M. Duncan, and John Slaughter. Emerging digital micromirror
device (DMD) applications. In MOEMS Display and Imaging Systems, volume 4985,
pages 14-25. SPIE, January 2003.

[49] Suganda Jutamulia and Toshimitsu Asakura. Fourier transform property of lens based
on geometrical optics. In Optical Information Processing Technology, volume 4929,
pages 80-85. SPIE, September 2002.

[50] Ronald N. Bracewell. The Fourier transform and its applications. McGraw-Hill series
in electrical and computer engineering Circuits and systems. McGraw-Hill, Boston, 3.
ed edition, 2000.

[51] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297-301, 1965.
Publisher: American Mathematical Society.

[52] Jack D. Gaskill. Linear Systems, Fourier Transforms, and Optics. Wiley-Interscience,
New York, 1st edition edition, June 1978.

[53] Shane Colburn, Yi Chu, Eli Shilzerman, and Arka Majumdar. Optical frontend for
a convolutional neural network. Applied Optics, 58(12):3179-3186, April 2019.
Publisher: Optica Publishing Group.

[54] Moez Krichen. Convolutional Neural Networks: A Survey. Computers, 12(8):151,
August 2023. Number: 8 Publisher: Multidisciplinary Digital Publishing Institute.

[55] Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image processing.
Fattern Classification and Scene Analysis, pages 271-272, January 1973.

[56] D. Marr, E. Hildreth, and Sydney Brenner. Theory of edge detection. Proceedings
of the Royal Society of London. Series B. Biological Sciences, 207(1167):187-217,
January 1997. Publisher: Royal Society.

[57] J. G. M. Schavemaker, M. J. T. Reinders, J. J. Gerbrands, and E. Backer. Image
sharpening by morphological filtering. Pattern Recognition, 33(6):997-1012, June
2000.

[58] Priyanka Patel and Amit Thakkar. The upsurge of deep learning for computer vision
applications. International Journal of Electrical and Computer Engineering (IJECE),
10(1):538-548, February 2020. Number: 1.

[59] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 and CIFAR-100
datasets, August 2009.

[60] Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd
International Conference on Machine Learning, pages 448—456. PMLR, June 2015.
ISSN: 1938-7228.

[61] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cybernet-
ics, 36(4):193-202, April 1980.

161

[62]

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. nature, 323(6088):533-536, October 1986.
Publisher: Nature Publishing Group.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep
Residual Networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision — ECCV 2016, pages 630-645, Cham, 2016. Springer International
Publishing.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks
for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431-3440, 2015.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning Deconvolution
Network for Semantic Segmentation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1520-1528, Santiago, Chile, 2015. IEEE.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large Kernel
Matters — Improve Semantic Segmentation by Global Convolutional Network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4353-4361, 2017.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Convolu-
tional Encoder-Decoder Architecture for Image Segmentation. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 39(12):2481-2495, December 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July
2016. arXiv:1607.06450 [cs, stat].

Seunghoon Lee, Seunghyun Lee, and Byung Cheol Song. Improving Vision Trans-
formers to Learn Small-Size Dataset From Scratch. IEEE Access, 10:123212-123224,
2022. Conference Name: IEEE Access.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818-2826, June 2016.
ISSN: 1063-6919.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep
Networks with Stochastic Depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision — ECCV 2016, Lecture Notes in Computer Science,
pages 646661, Cham, 2016. Springer International Publishing.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random Erasing
Data Augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 13001-13008, April 2020. Number: 07.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
CoRR, December 2014.

Haoran Zhu, Boyuan Chen, and Carter Yang. Understanding Why ViT Trains Badly
on Small Datasets: An Intuitive Perspective, February 2023. arXiv:2302.03751 [cs].

162

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. Pyramid Vision Transformer: A Versatile Backbone for
Dense Prediction without Convolutions. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 548-558, October 2021. ISSN: 2380-7504.

Qiuhao Wu, Xiubao Sui, Liping Wang, and Qian Chen. Convolutional Free-space
Optical Neural Networks for Image Recognition, 2021. _eprint: 2103.07862.

Kuang Liu, Mingmin Zhang, and Zhigeng Pan. Facial Expression Recognition with
CNN Ensemble. In 2016 International Conference on Cyberworlds (CW), pages
163-166, September 2016.

Christopher Pramerdorfer and Martin Kampel. Facial Expression Recognition using
Convolutional Neural Networks: State of the Art, December 2016. arXiv:1612.02903

[cs].

Yousif Khaireddin and Zhuofa Chen. Facial Emotion Recognition: State of the Art
Performance on FER2013, May 2021. arXiv:2105.03588 [cs].

M. Eren Akbiyik. Data Augmentation in Training CNNs: Injecting Noise to Images,
July 2023. arXiv:2307.06855 [cs].

Luc Haspeslagh, Jeroen De Coster, Olalla Varela Pedreira, Ingrid De Wolf, Bert
Du Bois, Agnes Verbist, Rita Van Hoof, Myriam Willegems, Sabrina Locorotondo,
George Bryce, Jan Vaes, Bert van Drieenhuizen, and Ann Witvrouw. Highly reliable
CMOS-integrated 11MPixel SiGe-based micro-mirror arrays for high-end industrial
applications. In 2008 IEEE International Electron Devices Meeting, pages 1-4,
December 2008. ISSN: 2156-017X.

Jan-Uwe Schmidt, Ulrike A. Dauderstaedt, Peter Duerr, Martin Friedrichs, Thomas
Hughes, Thomas Ludewig, Dirk Rudloff, Tino Schwaten, Daniela Trenkler, Michael
Wagner, Ingo Wullinger, Andreas Bergstrom, Peter Bjoernangen, Fredrik Jonsson,
Tord Karlin, Peter Ronnholm, and Torbjorn Sandstrom. High-speed one-dimensional
spatial light modulator for Laser Direct Imaging and other patterning applications. In
MOEMS and Miniaturized Systems XIII, volume 8977, pages 167-176. SPIE, March
2014.

Eloy Schultz, Joris de Nijs, Bin Shi, and Ripalta Stabile. Optical 4F Correlator for
Acceleration of Convolutional Neural Networks: 25th Annual Symposium of the
IEEE Photonics Benelux Chapter. In 25th Annual Symposium of the IEEE Photonics
Benelux, Belgium, November 2021.

Jun Dai, Xiaowen Dong, Chong Li, and Jian-Jun He. On-chip 4F-system based on
concave mirrors for optical neural networks. In Holography, Diffractive Optics, and
Applications XIII, volume 12768, pages 292-297. SPIE, November 2023.

Jyoti Rawat, Doina Logofatu, and Sruthi Chiramel. Factors Affecting Accuracy of
Convolutional Neural Network Using VGG-16. In Lazaros Iliadis, Plamen Parvanov
Angelov, Chrisina Jayne, and Elias Pimenidis, editors, Proceedings of the 21st EANN
(Engineering Applications of Neural Networks) 2020 Conference, pages 251-260,
Cham, 2020. Springer International Publishing.

163

[86]

[90]
[91]

[92]

[93]

Wei Wang, Ligiang Zhu, and Baoqing Guo. Reliable identification of redundant kernels
for convolutional neural network compression. Journal of Visual Communication and
Image Representation, 63:102582, August 2019.

Yuzhe Ma, Ran Chen, Wei Li, Fanhua Shang, Wenjian Yu, Minsik Cho, and Bei
Yu. A Unified Approximation Framework for Compressing and Accelerating Deep
Neural Networks. In 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pages 376-383, November 2019. ISSN: 2375-0197.

Puneet Gupta and Shurui Li. 4F optical neural network acceleration: an architecture
perspective. In Al and Optical Data Sciences I1I, volume 12019, pages 77-84. SPIE,
March 2022.

Jie Chen, Huarong Gu, Hongwei Zhang, Jie Zhong, and Y1 Xiong. Multilayer opto-
electronic hybrid convolutional neural network with an optical 4f-system recurrent
structure. In Holography, Diffractive Optics, and Applications XIII, volume 12768,
pages 120-129. SPIE, November 2023.

P. K. Diederik. Adam: a method for stochastic optimization. (No Title), 2014.

Baopeng Li, Okan K. Ersoy, Caiwen Ma, Zhibin Pan, Wansha Wen, and Zongxi Song.
A 4F optical diffuser system with spatial light modulators for image data augmentation.
Optics Communications, 488:126859, 2021.

Ritik Dixit, Rishika Kushwah, and Samay Pashine. Handwritten Digit Recognition
using Machine and Deep Learning Algorithms. International Journal of Computer
Applications, 176(42):27-33, July 2020. arXiv:2106.12614 [cs].

Satoru Mizusawa and Yuichi Sei. Interlayer Augmentation in a Classification Task.
In 2021 International Conference on Computing, Electronics & Communications
Engineering (iCCECE), pages 59—64, August 2021.

Anish Shah, Eashan Kadam, Hena Shah, Sameer Shinde, and Sandip Shingade.
Deep Residual Networks with Exponential Linear Unit. In Proceedings of the Third
International Symposium on Computer Vision and the Internet, VisionNet’ 16, pages
59-65, New York, NY, USA, September 2016. Association for Computing Machinery.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs), February 2016.
arXiv:1511.07289 [cs].

Yanming Chen, Xiang Wen, Yiwen Zhang, and Weisong Shi. CCPrune: Collaborative
channel pruning for learning compact convolutional networks. Neurocomputing,
451:35-45, September 2021.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
Filters for Efficient ConvNets. In International Conference on Learning Representa-
tions, April 2017.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. The
Oxford-1IIIT Pet Dataset, June 2012.

164

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Benjamin Yat-Ming Yung and Amy Meei-Shuu Bor. Identification of high-
density lipoprotein in serum to determine anti-cancer efficacy of doxorubicin in
HeLa cells. International Journal of Cancer, 50(6):951-957, 1992. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.2910500622.

Song-Ling Zhang, Yi-Shu Wang, Tong Zhou, Xiao-Wei Yu, Zhen-Tong Wei, and
Yu-Lin Li. Isolation and characterization of cancer stem cells from cervical cancer
HelLa cells. Cytotechnology, 64(4):477-484, August 2012.

Jing Yang, Beibei Zhang, Zifei Qin, Shishi Li, Jinjin Xu, Zhihong Yao, Xiaojian Zhang,
Frank J Gonzalez, and Xinsheng Yao. Efflux excretion of bisdemethoxycurcumin-
O-glucuronide in UGT1Al-overexpressing HelLa cells: Identification of breast
cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1
(MRP1) as the glucuronide transporters. BioFactors, 44(6):558-569, 2018. _eprint:
https://onlinelibrary.wiley.com/doi/pd{/10.1002/biof.1452.

Zhaoshou Yang, Hye-Jin Ahn, and Ho-Woo Nam. Gefitinib Inhibits the Growth of
Toxoplasma gondii in HeLa Cells. The Korean Journal of Parasitology, 52(4):439-441,
August 2014.

Zhaoxia Zhang, Haorong Gu, Qi Li, Jun Zheng, Shinuo Cao, Changjiang Weng,
and Honglin Jia. GABARAPL?2 Is Critical for Growth Restriction of Toxoplasma
gondii in HeLa Cells Treated with Gamma Interferon. Infection and Immunity,
88(5):10.1128/1a1.00054-20, April 2020. Publisher: American Society for Microbiol-

ogy.

Raquel Arruda Sanfelice, Lais Fernanda Machado, Larissa Rodrigues Bosqui,
Milena Menegazzo Miranda-Sapla, Fernanda Tomiotto-Pellissier, Gabriela de Al-
cantara Dalevedo, Dielle loris, Guilherme Fonseca Reis, Luciano Aparecido Panagio,
Italmar Teodorico Navarro, Juliano Bordignon, Ivete Conchon-Costa, Wander Rogério
Pavanelli, Ricardo Sergio Almeida, and Idessania Nazareth Costa. Activity of rosu-
vastatin in tachyzoites of Toxoplasma gondii (RH strain) in HeLa cells. Experimental
Farasitology, 181:75-81, October 2017.

Bei Zhang, Jia-yin Liu, Jin-shun Pan, Su-ping Han, Xiao-xing Yin, Bing Wang, and
Gang Hu. Combined Treatment of Ionizing Radiation With Genistein on Cervical
Cancer HeLa Cells. Journal of Pharmacological Sciences, 102(1):129—-135, January
2006.

W. Ziegler, P. Birkenfeld, and K. R. Trott. The effect of combined treatment of HelLa
cells with actinomycin D and radiation upon survival and recovery from radiation
damage. Radiotherapy and Oncology, 10(2):141-148, October 1987.

N Zinberg and A Kohn. Dimethyl sulfoxide protection of HeLa cells against ionizing
radiation during the growth cycle. Israel journal of medical sciences, 7(6):719-723,
June 1971.

Yuhuang Zheng, Huaying Zhou, Chunying Zhang, Yan He, Hui Li, Zi Chen, and
Meng Liu. The Apoptosis-Inducing Effects of HIV vpr Recombinant Eukaryotic
Expression Vectors with Different Mutation Sites on Transfected Hela Cells. Current
HIV Research, 7(5):519-525, September 2009.

165

[109] M. Tominaga, E. Kumagai, and S. Harada. Effect of electrical stimulation on HIV-
1-infected HeLa cells cultured on an electrode surface. Applied Microbiology and
Biotechnology, 61(5):447-450, June 2003.

[110] Talia Hahn, Ami Schattner, Zeev T. Handzel, Stanley Levin, and Zvi Bentwich.
Possible role of natural cytotoxic activity in the pathogenesis of AIDS. Clinical
Immunology and Immunopathology, 50(1, Part 1):53-61, January 1989.

[111] Christopher J. Peddie, Martin L. Jones, and Lucy M. Collinson. Serial Block Face
SEM of HeLa cell pellet with 10 nm pixels and 50 nm slices (benchmark dataset),
May 2019. 10.6019/EMPIAR-10094.

[112] Christopher J. Peddie, Martin L. Jones, and Lucy M. Collinson. Cropped regions
from Serial Block Face SEM of HeLa cell pellet with 10 nm pixels and 50 nm slices
(benchmark dataset), August 2020. 10.6019/EMPIAR-10478.

[113] Jonas Dippel, Matthias Lenga, Thomas Goerttler, Klaus Obermayer, and Johannes
Hohne. Transfer Learning for Segmentation Problems: Choose the Right Encoder and
Skip the Decoder, July 2022. arXiv:2207.14508 [cs].

[114] Kavitha Sundarrajan, Baskaran Kuttva Rajendran, and Dhanapriya Balasubrama-
nian. Fusion of Ensembled UNET and Ensembled FPN for Semantic Segmentation.
Traitement du Signal, 40(1):297-307, February 2023.

[115] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. ICNet
for Real-Time Semantic Segmentation on High-Resolution Images. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision
— ECCV 2018, Lecture Notes in Computer Science, pages 418—434, Cham, 2018.
Springer International Publishing.

[116] Justin Edwards and Mohamed El-Sharkawy. ulCNet: Lightweight Image Segmenta-
tion. In 2022 International Conference on Advanced Computer Science and Informa-
tion Systems (ICACSIS), pages 99—104, October 2022.

[117] Joeri R. Hermans, Gerasimos Spanakis, and Rico Mockel. Accumulated Gradient
Normalization. In Proceedings of the Ninth Asian Conference on Machine Learning,
pages 439-454. PMLR, November 2017. ISSN: 2640-3498.

[118] Riad Ibadulla, Thomas M. Chen, and Constantino Carlos Reyes-Aldasoro. FatNet:
High-Resolution Kernels for Classification Using Fully Convolutional Optical Neural
Networks. Al, 4(2):361-374, June 2023. Number: 2 Publisher: Multidisciplinary
Digital Publishing Institute.

[119] Yann LeCun, Lawrence D Jackel, Léon Bottou, Corinna Cortes, John S Denker, Harris
Drucker, Isabelle Guyon, Urs A Muller, Eduard Sackinger, Patrice Simard, and others.
Learning algorithms for classification: A comparison on handwritten digit recognition.
Neural networks: the statistical mechanics perspective, 261(276):2, 1995.

[120] Waseem Rawat and Zenghui Wang. Deep Convolutional Neural Networks for Image
Classification: A Comprehensive Review. Neural Computation, 29(9):2352-2449,
September 2017. Conference Name: Neural Computation.

166

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

Leiyu Chen, Shaobo Li, Qiang Bai, Jing Yang, Sanlong Jiang, and Yanming Miao.
Review of Image Classification Algorithms Based on Convolutional Neural Networks.
Remote Sensing, 13(22):4712, January 2021. Number: 22 Publisher: Multidisciplinary
Digital Publishing Institute.

R. Anand, T. Shanthi, M. S. Nithish, and S. Lakshman. Face Recognition and Classifi-
cation Using GoogleNET Architecture. In Kedar Nath Das, Jagdish Chand Bansal,
Kusum Deep, Atulya K. Nagar, Ponnambalam Pathipooranam, and Rani Chinnappa
Naidu, editors, Soft Computing for Problem Solving, pages 261-269, Singapore, 2020.
Springer.

Yaniv Taigman, Ming Yang, Marc’ Aurelio Ranzato, and Lior Wolf. DeepFace: Closing
the Gap to Human-Level Performance in Face Verification. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1701-1708, 2014.

Mei Wang and Weihong Deng. Deep face recognition: A survey. Neurocomputing,
429:215-244, March 2021.

Wei Wang, Yujing Yang, Xin Wang, Weizheng Wang, and Ji Li. Development of
convolutional neural network and its application in image classification: a survey.
Optical Engineering, 58(4):040901, April 2019. Publisher: SPIE.

Alhassan Mumuni and Fuseini Mumuni. CNN Architectures for Geometric
Transformation-Invariant Feature Representation in Computer Vision: A Review.
SN Computer Science, 2(5):340, June 2021.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V. Le. Meta Pseudo Labels. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11557—
11568, 2021.

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Au-
toAugment: Learning Augmentation Strategies From Data. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 113-123, 2019.

Antonio Bruno, Davide Moroni, and Massimo Martinelli. Efficient Adaptive Ensem-
bling for Image Classification, June 2022. Publication Title: arXiv e-prints ADS
Bibcode: 2022arXiv220607394B.

David G. Voelz. Computational Fourier Optics: A MATLAB® Tutorial. SPIE, 1000
20th Street, Bellingham, WA 98227-0010 USA, January 2011.

Michal Miler Maciej Grochowicz. PyOptica Documentation. Gitlab, 2020.

Junchang Li, Zujie Peng, and Yunchang Fu. Diffraction transfer function and its
calculation of classic diffraction formula. Optics Communications, 280(2):243—-248,
December 2007.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248-255, June 2009. ISSN: 1063-6919.

167

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm

Restarts. In International Conference on Learning Representations. arXiv, May 2017.
arXiv:1608.03983 [cs, math].

Riad Ibadulla, Constantino C. Reyes-Aldasoro, and Thomas M. Chen. Fat-U-Net:
non-contracting U-Net for free-space optical neural networks. In Al and Optical Data
Sciences V, volume 12903, pages 42-52. SPIE, March 2024.

Tao Lei and Asoke Kumar Nandi. Image segmentation: principles, techniques, and
applications. Wiley, Hoboken, NJ, 2023.

Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian Schroff, Peng
Wang, and Hartwig Adam. MaskLab: Instance Segmentation by Refining Object
Detection With Semantic and Direction Features. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 4013—-4022, 2018.

Mehmet Sezgin and Biilent Sankur. Survey over image thresholding techniques and
quantitative performance evaluation. Journal of Electronic Imaging, 13(1):146-165,
January 2004. Publisher: SPIE.

Stephen Gould, Tianshi Gao, and Daphne Koller. Region-based Segmentation and
Object Detection. In Advances in Neural Information Processing Systems, volume 22.
Curran Associates, Inc., 2009.

Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chanu.
Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering
Algorithm. Procedia Computer Science, 54:764—771, January 2015.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Graph-Based Image
Segmentation. International Journal of Computer Vision, 59(2):167-181, September
2004.

Xu Chen, Bryan M. Williams, Srinivasa R. Vallabhaneni, Gabriela Czanner, Rachel
Williams, and Yalin Zheng. Learning Active Contour Models for Medical Image
Segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11632-11640, 2019.

Ying Yu, Chunping Wang, Qiang Fu, Renke Kou, Fuyu Huang, Boxiong Yang, Tingt-
ing Yang, and Mingliang Gao. Techniques and Challenges of Image Segmentation:
A Review. Electronics, 12(5):1199, January 2023. Number: 5 Publisher: Multidisci-
plinary Digital Publishing Institute.

Jonas Dippel, Steffen Vogler, and Johannes Hohne. Towards Fine-grained Visual
Representations by Combining Contrastive Learning with Image Reconstruction and
Attention-weighted Pooling, February 2022. arXiv:2104.04323 [cs].

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 40(4):834-848, April 2018. Conference Name: 1EEE
Transactions on Pattern Analysis and Machine Intelligence.

168

[146] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. In
IEEE international conference on computer vision 2017, pages 2961-2969, 2017.

[147] Francois Chollet. Xception: Deep Learning With Depthwise Separable Convolutions.

In EEE Conference on Computer Vision and Pattern Recognition, pages 1251-1258,
2017.

169

Appendix A

Peer-reviewed publications

171

Article

FatNet: High-Resolution Kernels for Classification Using Fully
Convolutional Optical Neural Networks

Riad Ibadulla */, Thomas M. Chen =’ and Constantino Carlos Reyes-Aldasoro

check for
updates

Citation: Ibadulla, E.; Chen, T.;
Reyes-Aldasoro, C.C. FathNek
High-Resolution Kernels for
Classification Using Fully
Comveluticnal Optical Meural
Mebworks. Al 023, 4, 361-374.
hitps:/ / dosorg,/ 10,3390/ 020018

Academmc Editor: Andrea Calinera
Recerved: 10 February 2023
Rewised: 25 February 2023
Accepted: 24 March 2023
Publshed: 3 April 2003

() O

Ny 4 ay

Department of Computer Scienoe, City University of London, Northampton Square, London EC1V 0HB, UK
* Correspondence: riad.ibadulla@city.ac.uk

Abstract: This paper describes the transformation of a traditional in silico classification network
into an optical fully convolutional neural network with high-resolution feature maps and kernels.
When using the free-space 4f system to accelerate the inference speed of neural networks, higher
resolutions of feature maps and kernels can be used without the loss in frame rate. We present FatMNet
for the classification of images, which is more compatible with free-space acceleration than standard
convolutional classifiers. It neglects the standard combination of convolutional feature exfraction and
classifier dense layers by performing both in one fully convolutional network. This approach takes
full advantage of the parallelism in the 4f free-space system and performs fewer conversions bebween
electronics and optics by reducing the number of channels and increasing the resolution, making this
network faster in optics than off-the-shelf networks. To demonstrate the capabilities of FatNet, it was
trained with the CIFAR100 dataset on GPU and the simulator of the 4f system. A comparison of the
results against ResNet-18 shows 8.2 times fewer conwolution operations at the cost of only 6% lower
accuracy. This demonstrates that the optical implementation of FatMNet results in significantly faster
inference than the optical implementation of the original ResMet-18. These are promising results
for the approach of training deep learning with high-resolution kernels in the direction toward the
upcoming optics era.

Keywords: optical neural nebworks; high resolution; convolutional neural networks

1. Introduction

One of the major problems of the modern deep learning approach is the speed of
training and inference of architectures where there are a very large number of parameters
to train. Computer vision, which can involve a large number of images with very slight
differences, is considered to be one of the most complex problem areas for AL Within the
deep learning approaches, convolutional neural networks (CINNs) have become a standard
approach for various computer vision problems. Recently, CNNs have been successfully
applied to image classification [1], object detection [2], localization [3], and segmentation [4],
among many other applications. CNNs are suitable for computer vision tasks because
neurons in CNNs are only connected to the pixels of their receptive field, rather than
to every single neuron of the next layer as in fully connected networks. This approach
reduces the number of trainable parameters, which accelerates the inference and makes
the neural network more immune to overfitting. Although CNNs are computationally less
expensive than fully connected neural networks, accelerating CNINs is also an important

Copyright © 23 by the authors.
Licenses MDPI, Basel, Switzerland.
Thas artick 18 an open access arbicle
distributed wnder the terms and
conditions of the Creative Comumens

task, especially with the ever growing number of images and videos that are captured.
There are many techniques to accelerate deep leaming training, e.g., using shallow
networks, pruning redundant weights, or using lower quantization levels [5]. In addi-
tion, hardware accelerators can be used to speed up the training and inference of neural
Attribution (CC BY) kense (hitps:s/ N€tWorks, for example, in application-specific integrated circuits (ASICs), which can out-
creativecommons org/Eicenaes/ by / perform standard CPUs and GPUs [5]. Large tech companies are actively working on
40/} their Al accelerators, such as Google's TPU [7], Intel’s Loihi [8], and IBM's TrueNorth [9].

AT 2023, 4, 361-374. https:// doi.org,/ 10.3390/2i4020018 https: / /www.mdpi.com /journal/ ai

Al2023,4

362

Unfortunately, these accelerators are starting to face limitations in the post Moore’s law
era, since the computational power of the processors is not improving at the same pace as
before [10].

Optical processors are an interesting alternative to processing data with silicon chips.
Optical computing uses photons of light, instead of electrons, as the information carrier
for data processing [11]. Since Moore’s law does not affect optical computing, optical
accelerators can be used for deep learning, offering advantages such as the high bandwidth
of the light beam, high speed, zero resistance, lower energy consumption, and immunity
to overheating [12]. There are two main approaches to optical neural networks: free
space using spatial light modulators (SLM) [13,14] or silicon photonics approach using
Mach-Zehnder interferometers (MZI) [15,16]. Unlike the silicon photonics approach, free-
space optics uses wireless light propagation through a medium which can be air, outer
space or vacuum. Although the silicon photonics approach is faster, as its clock speed can
reach several GHz, it is inferior to the free-space system in parallelism [17].

This research is focused on the 4f free-space approach as described in Li et al. [13], which
takes advantage of the parallelism of free-space optics. The 4f free-space optical system can be
used to perform convolution operations faster than traditional electronic processors.

The Fourier transform is a well-known mathematical operation that decomposes a
signal into its fundamental sinusoids in the frequency domain that, when combined, form
the original function [18]. A Fourier transform is initially defined over one dimension,
and can be extended to two or more dimensions [19]. The computational complexity of this
process increases with the dimensions of the data, and even with fast methods such as the
fast Fourier transform [20], transforming large data can take considerable resources with
complexity in the order of O(n%log(n)), where n? is the number of pixels of an image [21].
On the other hand, performing a 2D Fourier transform in free-space optics can be easily
achieved by passing the light through the convex lens, where the light only has to travel
two focal distances (f) from the lens [22].

Taking the convolution theorem into account, the convolution of two signals can be
represented as the inverse Fourier transform of the pointwise product of their Fourier
transforms [18]. The 4f correlator is based on the Fourier transform properties of the convex
lenses [23] and performs the convolution operation based on the convolution theorem. Any
convex lens projects a Fourier transform of the input object located on the front focal plane
onto the back focal plane [23], where it can be pointwise multiplied by the kernel in the
Fourier domain. After passing through the second lens, it can be converted back into the
space domain. The system is called 4f because the light in the 4f system travels four focal
distances of the lens. Hence, the 4f approach can accelerate convolutional neural networks
by performing the Fourier transforms at the speed of light. The parallelism advantage of
the 4f system comes from the theoretically infinite resolution that is bounded in reality by
the resolution of the modulators and the camera.

The first optical convolution technique with the 4f system was described by Weaver
and Goodman [24] in 1966. It was not used for the acceleration of neural networks until
neural networks started gaining popularity in the 21st century [25]. A standard 4f optical
system consists of an input source, two convex lenses, two light modulators, and a sensor
(see Figure 1). The input source is the laser emitting the light modulated right in the
beginning with the input image by altering the light intensity. The modulated light passes
through the first convex lens after travelling the focal distance of the lens and is projected
onto the focal plane, where the Fourier transform of the input is formed. On the focal
plane using another modulator, the input is element-wise multiplied with the kernel in
the frequency domain. After the multiplication in the Fourier domain, the light passes
through the second lens to perform the inverse Fourier transform and is captured by the
camera or the array of photodetectors. In some cases, instead of the modulator, the fixed
phase mask is used to perform the multiplication in the Fourier plane, as demonstrated in
Chang et al. [14].

Al 2023,4

363

The 4f system is used in combination with the electronic compound, called an
optical-electronic hybrid system [14]. This system is used only for inference, and training
is performed using the simulator. The networks were trained using the simulator, and the
phase mask of the trained kernels of the first layer was fabricated. Those fabricated kernels
were used only for the inference of the pre-trained first layer. Hence, the inference of the
first convolutional layer is optically computed, and the output of the electronic network
is then fitted into the electronic portion of the network. This allows the multiplication
to be performed passively, i.e., without energy consumption or latency. It also enables
high speed-up, since the first layer of the network is usually the heaviest due to the high
resolutions, which the free-space optics can handle for free. Since the optical-electronic
hybrid system uses kernel tiling, this system can perform several convolution operations
of the first layer in parallel without losing frame rate and power. However, a passive
architecture such as this lacks flexibility and can only be used with one set of kernels,
meaning it cannot be reused for all network layers. This is the reason for considering only
active 4f architecture in our approach, allowing the device to perform all convolutional
layers of the network by altering the kernel on the Fourier plane.

Input image 4
. y * Kernel in Output image

Fourier domain

Fourier
plane

Phase
> > Mask > > Camera
f f f f

Convex lens Convex lens

Figure 1. Graphical representation of the 4f system performing the convolution operation, consisting
of the input plane (laser), the convex lens, Fourier plane (modulator or phase mask), and another
convex lens and the camera separated from each other by one focal distance of the lens. When
light passes through the lens, it forms a 2D Fourier transform on the Fourier plane, where it can be
multiplied by the kernel in the frequency domain. The light then passes through the second lens,
which converts it back into the space domain, where the output is read by the camera.

Unlike standard neural networks, optical neural networks involve various bottlenecks
and constraints. Since the read-out camera captures the intensity of light, which is the
square of the amplitude, it is impossible to perform the computations with negative values.
One of the possible ways for getting around this problem is the non-negative constraint,
which can significantly affect the accuracy. One way around this constraint is called pseudo-
negativity, which can address the restriction to positive values by doubling the number
of filters [14]. This method only uses positive values for the kernel by labeling half of the
kernels as positive and the other half negative. After the read-out, the results of “positive’
convolutions are subtracted from the ‘negative’ results, thus providing the correct outcome
for the convolution operation. Another bottleneck is the resolution of the modulator and
the camera. Although modern cameras can capture up to 4K resolution, this limit does not
allow many channels to be tiled and high-resolution feature maps to be used in combination
with tiling.

Despite the many advantages of 4f systems, they have not been popular among
the modern Al accelerators. The main problem lies in the very slow cameras and light
modulators used in the system. However, there is the possibility to gain acceleration
using parallelism and through simultaneously performing several convolution operations.
For example, Li et al. [13] proposed kernel, channel, and mixed tiling approaches to better
utilize the resolution of the 4f system. Their approaches enable all convolution operations
for specific output channels and sum them using one inference through the 4f system. In
a technique used by [13], zero-padding is applied to the input channels, which are tiled into

Al2023,4

364

one big input block, while their corresponding kernels are tiled in the same manner, forming
a kernel block. This method takes advantage of the massive parallelism of free-space optics.
It performs all convolutions of each output channel of the convolutional layer, including
the channel summation via one optical inference. By optically convolving the input block
and the kernel, the summation of all convolutions of those particular input channels with
output channels appears in the middle of the output tensor. This significantly reduces the
number of conversions between optics and electronics. That is why it is essential to use the
high-resolution capabilities of the 4f system.

Tiny kernel resolutions have become one of the nuances of building CNN architectures.
Kernel sizes of 3 x 3 or 5 x 5 are now the standard for CNNs [1]. Although sometimes in
ResNet architectures, a large kernel size can be seen in the first layer of the networks [26].
Theoretically, having a small kernel size has a range of advantages. The reduction of kernel
size not only increases the computational efficiency during training but also decreases the
number of trainable parameters, thereby increasing the robustness of the network against
overfitting [27,28]. Modern neural networks are all trained on CPU/GPU, whose training
time depends on the number of parameters. This led to the development of architectures
with a very small resolution of kernels. For the same reason, all classifier architectures were
developed in the cone shape, where the image is pooled down at every layer, making it
faster for the CPU/GPU process. However, this works entirely differently for optical neural
networks. Due to the nature of free-space optics, the use of large kernels in 4f system-based
neural networks will not affect the inference time. Unfortunately, almost all the attempts
to train the convolutional neural networks on the 4f system are based on the standard
convolutional cone-shaped architectures.

To overcome underutilization of the 4f system, we propose FatNet, which takes
advantage of the high-resolution capabilities of the 4f system by using fewer channels
and larger input/kernel resolution in CNNs. Since the resolution does not affect the
speed of inference in the 4f system, increasing the resolution and reducing the number
of channels results in the network performing fewer convolution operations. This means
fewer translations from optics to electronics, since the main bottleneck of the system is
based on optics—electronics conversions. Our approach does not require pooling between
most layers, which speeds up the inference even more for the small cost of a loss in accuracy.

2. Materials

We trained our network with the CIFAR-100 dataset (see Figure 2) and chose ResNet-
18 as the backbone network. The CIFAR-100 (Canadian Institute For Advanced Research)
dataset consists of 60,000 images of 32 x 32 resolution. It is split into 20 superclasses
sub-grouped into 100 classes, with 600 images per class [29]. Only 50,000 images are used
for training, and the other 10,000 data samples are in the test set. The similarity of classes
under the same superclass in CIFAR-100 makes it harder to train.

Shah et al. [30] managed to train CIFAR-100 using different ResNet models, including
their variation, where ELU (exponential linear unit) [31] was used as an activation function.
Their test error on standard ResNet-101 achieved 27.23%. For this reason, we decided to
use residual networks in our experiments. In our research, we have limited our focus to
serial networks that do not contain branching structures. Therefore, networks that use
depthwise convolutions, such as the highly accurate EfficientNet-B0O [32] with an accuracy
rate of 88.1%, are outside the scope of our analysis.

ResNet-18 is a CNN, one of five networks introduced in He et al. [26] for the Ima-
geNet dataset [33]. The feature distinguishing these networks from others is the residual
connections between layers. Formally, He et al. [26] noted the blocks of the networks as:

y=F(x,{Wi}) +x @

where x and y are the input and the output of the residual block, and F(x, {W;}) represents
the building block of the residual layer, which can contain one or several weight layers.

Al 2023,4

365

I O o AR
® PSP A
24 & HCMELEE -

-lH%&Em%IEM9mIHE
O AaTHBELT Y » REPHLS
A2Q= dNEISRIDRL G0

Figure 2. Illustration of CIFAR-100 dataset examples. CIFAR-100 contains tiny images of 100 classes,
with a resolution of 32 x 32.

Residual connections are the connections in which one or more layers are skipped.
In ResNet, those connections perform identity mapping, and the outputs of these connec-
tions are added to the output of the stacked layers. This configuration allows the use of
deeper networks by avoiding vanishing/exploding gradient problems.

PyTorch was used to train all our networks [34]. PyTorch is an open source machine
learning framework originally developed by Meta AL We used PyTorch for its flexibility
and ease in creating custom neural network layers. One example is the simulation of our
optical layer, which we also built using PyTorch. PyTorch was also used by Miscuglio [35]
to precisely simulate an actual 4f system.

3. Methods

Nearly all classifier CNNs are cone-shaped and use either strides or pooling layers
to reduce the resolution of the feature map [28]. This architecture has several advantages.
The main advantage is the training speed, since the network gets simpler after each feature
extraction and ends up with very low-resolution feature maps, which are flattened and
passed to the fully connected layers for further classification. However, this kind of
structure became standard only due to the dominance of electronic computing. Unlike
in electronics, having larger resolutions for inputs and kernels in the 4f system does not
affect the speed of inference, which makes it essential to explore new architectures that are
compatible with optics. Our approach is called FatNet, due to its barrel shaped structure
and most of the kernels having the same resolution as the feature maps (see Figure 3b).

By having larger feature maps and kernel sizes in the classifier CNN, we can ensure
full utilization of the free-space optics. Although higher resolutions come with the problem
of overfitting, our approach uses the same number of trainable parameters as the standard
approach. Essentially, we have created the following rules for turning any classifier into
a FatNet:

1. The FatNet should preserve the same number of layers as the original network to
keep the same number of non-linear activation functions.

2. The FatNet should keep precisely the same architecture as the original network on the
shallow layers until the shape of the feature maps pools down to the shape where the
number of elements of the feature map is less than or equal to the number of classes.

3. FatNet has the same total number of pixels of the feature maps at the output of each
layer as the original networks. Hence, since the feature maps’ shape stays constant

Al 2023,4

366

32x32x3

32x32x3

and does not use pooling, the new number of output channels needs to be calculated,
which will be less than for the original network.

4. FatNet has the same number of trainable parameters per layer as the original net-
work. Since we have reduced the number of output channels based on the third rule,
the number of trainable parameters has also been reduced. Hence, a new kernel size
needs to be calculated based on the number of output channels.

%\ ,,;'-” G o
&
cok‘ (90 ey

Figure 3. Architecture comparison of our modified ResNet-18 used to train CIFAR-100 and FatNet
constructed from ResNet-18 specifically for CIFAR-100 classification. (a) ResNet-18 architecture,
slightly modified from the original. Our version does not use strides, since optics cannot perform
strides in convolutions. We also skipped the second non-residual convolutional layer to make it more
compatible with CIFAR-100. (b) FatNet derived from ResNet-18 for CIFAR-100. Compared with
ResNet-18, this architecture contains fewer channels but larger resolutions. Kernel resolutions can
go up to 10 x 10, while feature maps are not pooled lower than 10 x 10. The last layer is a 10 x 10
matrix flattened to form a vector of 100 elements, each representing a class of CIFAR-100.

It is also important to remember that FatNet is more efficient when the number of
classes is significant; for example, ImageNET contains 20,000 classes. We chose ResNet-18
as the backbone network for proof of concept and trained the network with the CIFAR-100
dataset. We chose CIFAR-100 over CIFAR-10 due to the larger number of classes and the
ability to keep the feature maps in the square shape of 10 x 10. It is essential to know that
one of the limitations of the 4f-based convolution is the failure to perform the convolutions
with the stride. Since most off-the-shelf networks contain stridden convolutions, this can
be a potential problem. However, we can get around the problem by replacing the stridden
convolutions with the combination of standard convolution and pooling. Because we do
not want to reduce the resolution of our feature maps, we decided to ignore the strides in
our ResNet-18 architecture and use 2 x 2 MaxPooling after the first layer.

No modification of the first five layers is carried out, since they all have 16 x 16 resolution.
For the following layers, we have calculated the number of pixels in each feature map and

Al2023,4

367

measured how many channels the layers should contain if all layers’ feature maps remain
10 x 10. We then calculated the number of trainable parameters in the original network
(excluding bias). Based on the number of trainable parameters and the new number of
channels, we have calculated the new kernel resolutions as shown in Table 1.

Table 1. Construction of FatNet from ResNet-18.

Layer Number of Weights Feature Pixels FatNet Layer

64 x 128,k = (3 x 3) 73,728 8192 64 x 82, k=(4x4)
128 x 128,k = (3 x 3) 147,456 8192 82 x82,k=(5x5)
128 x 128,k = (3 x 3) 147,456 82,192 82 x82,k=(5x5)
128 x 128,k = (3 x 3) 147,456 82,192 82 x82,k=(5x5)
128 x 256,k = (3 x 3) 294,912 4096 82 x41,k=(9 x9)
256 x 256,k = (3 x 3) 589,824 4096 41 x 41,k =(19 x 19)
256 x 256,k = (3 x 3) 589,824 4096 41,41,k = (19 x 19)
256 x 256,k = (3 x 3) 589,824 4096 41,41, k=19 x 19)
256 x 512,k = (3 x 3) 1,179,648 2048 41 x 21,k = (37 x 37)
512 x 512,k =(3 x 3) 2,359,296 2048 21 x 21, k= (73 x 73)
512 x 512,k =(3 x 3) 2,359,296 2048 21 x 21, k= (73 x 73)
512 x 512,k = (3 x 3) 2,359,296 2048 21 x 21,k = (73 x 73)

FC (512, 100) 51,200 100 21 x 1,k = (49 x 49)

Unfortunately, kernels larger than the input features in the last layer cause a problem.
The main problem is that the convolutions are the same padding type, meaning that the
input and output resolutions are the same 10 x 10 in our case. This means the outer regions
of the kernels larger than 10 x 10 are redundant and will not be trained. This restricts us
to the convolutions of the kernel with a maximum resolution of 10 x 10. Therefore, we
reduced the kernel size by increasing the number of channels in those layers, which violates
the third rule of the FatNet construction (see Figure 3). However, this is the better solution,
since the network may underfit if the number of trainable parameters is reduced.

Usually, the image classifier neural networks are based on the convolutional layers for
the feature extraction and dense layers for the classification. Sometimes, fully convolution
networks end up with a convolutional layer with a 1 x 1 shape and the number of output
channels equal to the number of classes. The FatNet’s output layer is a convolutional layer
with one channel and each pixel representing the probability of the class in the classification
network. In our case with CIFAR-100 training, the output shape is 10 x 10 with one output
channel. The main advantage of FatNet and its suitability for free-space optical training
is that FatNet uses fewer output channels but larger resolution feature maps and kernels.
Moreover, it is a fully convolutional network, which makes it fully compatible with the
4f accelerator.

As part of this work, we developed an application called FatSpitter to convert any
sequential network into a FatNet model. FatSpitter accepts a PyTorch neural network object
as an input and outputs a refined FatNet model that ensures that the size of the kernel never
exceeds the input size of the corresponding convolutional layer. It follows an algorithm
similar to that described above. Initially, a construction table, as demonstrated in Table 1, is
established. Upon obtaining the construction table and determining the index of the layer at
which FatNet has to start, the implementation begins by substituting original convolutional
layers with the new “Fat” convolutional layer, which features altered kernel sizes and
output channels. If the kernel size is larger than the input, the kernel size is adjusted
to match the input, and the number of output channels is recalculated. It is important
to remember that if the number of input channels in the original convolutional layer is
equal to the output channels, this equality must also be maintained in FatNet. If this is
not considered, the number of output channels will keep rising and falling in the network,
making it impossible to train.

To validate our results, we developed a simulator as the custom layer on top of
PyTorch called OptConv2d. OptConv2d replaces the convolution operation of the standard

Al2023,4

368

convolutional layer with the simulation of 4f inference. In order to achieve this, we had to
simulate the propagation of the amplitude-modulated light using the angular spectrum
of plane waves (ASPW) method. According to the angular spectrum method, if the initial
wavefront is U (x, y), the next wavefront is calculated as:

Uz (x,y) = F ' [F[Un (x,y)H(fx, fy)] @

where H(fy, fy) is the transmittance function for free space.
The transmittance function of free-space propagation comes from the Fresnel diffrac-
tion transfer function:

H(fr, fy) = exp [jkz —jmAZ(f + fy) ®)
where k = 27”, z is the distance travelled by light, and A is the wavelength [36,37].
Since the 4f system contains two lenses, the transmittance function of each lens is:
=P — ﬁ 2 2 4
ta(x,y) = P(xy)exp| =52 (x" +))

where f is the focal length of the lens, and P(x, y) is the pupil function [37].
The distance at which the angular spectrum method calculates the next wavefront
depends on the pixel scale and is calculated as:

©)

where Ax is the pixel scale, N is the number of pixels, and A is the wavelength. In case
when the propagation distance needs to be longer than the above formula for the distance,
the propagation can be calculated in several iterations. We chose such a pixel scale for each
propagation, so z becomes equal to the focal distance of the lens. In this case, we have to do
only one iteration for each focal distance propagation in the 4f system.

The simulator uses pseudo-negativity, so each convolution is run twice to avoid
negative values for the kernels in optics. Moreover, due to the laws of geometrical optics,
the output of the 4f device is always rotated 180 degrees. Luckily, this is not a problem for
convolutional neural networks, since they can continue extracting the future values from
the rotated feature maps.

Experiments

The main goal of FatNet is not to gain accuracy but to demonstrate that the network
with its prescribed architecture can maintain accuracy by being accelerated using free-space
optics while performing fewer inferences through the 4f system than the original network.
Hence, our experiments aimed at testing and comparing the original network and FatNet.

We recreated the modified version of ResNet-18, converted it to the FatNet, and trained
both networks. To validate the accuracy of the FatNet in the optical device, we trained the
network in the simulator. In the real 4f system, we would have taken advantage of the
parallelism of the network by tiling the batches. However, batches were not tiled in the
simulator, since the matrices are represented in PyTorch’s tensor format. All operations were
performed without unwrapping the tensor, and the Fourier transforms and multiplications
were performed directly on the 4-dimensional tensors. We chose this approach since the
simulator-based training of the network was much slower than the standard PyTorch
network. Each epoch of the optical simulation of FatNet takes 67 min, while the epoch in
the standard FatNet with Conv2d layer of PyTorch is 15 s only.

Al2023,4

369

The wavelength of the laser was set to 532 nm (green), and convex lenses with a 5 mm
diameter and focal distance of 10 mm were assumed. It should also be noted that we have
not taken the device’s quantization and noise into account and used type float32.

We split our training set into training and validation sets according to a 80-20% ratio,
respectively, resulting in 40,000 for training and 10,000 images for validation. The dataset
was normalized using the mean and standard derivation of the CIFAR-100 at all channels.
Moreover, we have applied augmentation methods, including the horizontal flip and
random crop with the padding of four. All networks were trained with the SGD optimizer,
0.9 for the momentum, and the starting learning rate of 0.01, updating every 50 steps by 0.2.
The last layers of all networks were passed through the 20% dropout layer. We trained all
the networks using 2x NVIDIA A100 40 GB GPUs.

ResNet-18 and FatNet were trained with a batch size of 64 (32 per GPU). However,
the optical simulation of FatNet had to be trained with a batch size of 16 (8 per GPU)
due to the high memory requirement of the simulator, as the optical simulation enhances
the computational graph and number of gradients. Although we have not simulated the
parallelism of the 4f system, to gain acceleration, the 4f system needs to take advantage
of high resolution. FatNet’s best acceleration can be achieved if batch tiling is performed.
In order to use batch tiling, all the inputs of the same batch have to be tiled in one input
block, and the kernel has to be padded to the same size as the input block. Before tiling the
inputs, they must be individually padded to M 4+ N — 1, where M x M is the input size,
and N x N is the kernel size. According to this method, the number of possible batch sizes

can be calculated as follows: R

2
M+N—1J ©)

where R is the resolution of the 4f system and | -] is the floor function.

n=|

4. Results

Based on the configurations described above, our implementation of ResNet-18
achieved an accuracy of 66%. In comparison, FatNet’s implementations, both with GPU
and simulation of optics, lagged in accuracy with a result of 60% (see Table 2). However,
FatNet implementation performs 8.2 times fewer convolution operations to reach this level
of accuracy and does not require any dense layers for classification.

Table 2. Comparison of the test accuracy and number of convolution operations used in each
tested network.

Architecture Test Accuracy Number o.f Conv Number o.f Conv
Operations Operations
mean =+ std Ratio to Baseline
ResNet-18 66 +1.4% 1,220,800 1 (baseline)
FatNet 60 £ 1.4% 148,637 0.12
Optical simulation 60°% 148 637 012

FatNet

The same can be said about the training process. Since it may take more epochs for
the FatNet to reach the desired accuracy, this architecture is only beneficial if accelerated
with the 4f system.

The measured and calculated inference time for FatNet and ResNet-18 with optics and
GPU were obtained and observed (see Table 3). The observations were conducted based on
the batch size of 64, such as in our experiments, and 3136 maximum utilization of 4f system
with 4k resolution modulators and camera.

Al2023,4

370

Table 3. Inference time in seconds per input for ResNet-18 and FatNet with optics and GPU with
batch sizes of 64 and 3136 for cases when the 4k resolution of the 4f device is fully utilized. The frame
rate of the 4f device is approximated at 2 MHz [13].

Architecture Batch 64 Batch 3136
ResNet-18 (GPU) 1.350 x 10~* 1.167 x 1074
FatNet (GPU) 4565 x 1074 7.942 x 10~
ResNet-18 (Optics) 3.815 x 1072 7.786 x 10~*
FatNet (Optics) 4.645 x 1073 9.479 x 1075

5. Discussion

Although FatNet does not converge as well as ResNet-18, it is still 8.2 times faster,
if both are trained with optics. CIFAR-100 is an extended dataset of CIFAR-10, but unlike
CIFAR-10, CIFAR-100 is much harder to train. Numerous researchers have tried different
augmentation and regularization methods to improve the classification performance of the
CIFAR-100. For instance, Mizusawa [38] tried the interlayer regularization method and
improved the accuracy of the classification of CIFAR-100 in ResNet-20 from an average of
64.09% to 65.59%. Shah [30] used ELU activation layers to improve the CIFAR-100 accuracy
from 72.77% to 73.45%. Our modification of ResNet-18 achieved an average test accuracy
of 66%, which is comparable to Mizusawa but lower than Shah. Then, our tests of FatNet
showed that by sacrificing only 6% of test accuracy, we could perform 8.3 times fewer
convolutions in optics, which will mean fewer conversions from optics to electronics and
vice versa. During the training process of the original FatNet on GPU, three trials were
conducted, achieving accuracies of 59%, 59%, and 62%. These results suggest that it may
be possible to achieve a smaller loss with FatNet through further optimization efforts.

In contrast to our approach of reducing the number of convolution operations to
improve speed and adapt the network to optical implementation, other research has
focused on accelerating networks by accepting a small sacrifice in performance when run
on CPU/GPU. For example, Luo et al. [39] accelerated the neural networks by discarding
redundant weights. One of their implementations, ThiNet-Tiny, accelerated the forward
and backward timing of VGG-16 by 6.4 and 7.3 times, respectively, at the cost of a 9%
reduction in top-1 accuracy. Moreover, Rastegari et al. [5] achieved an acceleration of
approximately 58 times by binarizing the inputs and weights of convolutional operations
and estimating convolutions using XNOR and bit counting operations. However, when
testing ImageNet trained on ResNet-18 with this method, they observed a loss of 18.1%
in accuracy.

The training accuracy graph in Figure 4 shows that the network trained with the
optical simulation trains slower than in other experiments. When simulating the 4f system,
PyTorch uses the simulation of light propagation as part of the computation graph of the
neural network, which vastly increases the computation graph. This causes a slowdown in
network training. From the point of view of validation accuracy, the FatNet trained with
GPU, and its optical simulation, are not altered much, especially after the first learning rate
step on epoch 50. Although the validation accuracy of FatNet and optical simulation of
FatNet did not exceed 57% and 58%, respectively, the test accuracy reached 60% in both
cases. This difference is caused by the augmentation applied only to the validation and
training sets and not to the test set.

However, it should be noted that the acceleration in a 4f system with FatNet is only
possible if the parallelism of the 4f system is utilized not with the channel or kernel tiling
but with batch tiling. The increase in resolution and reduction of the number of channels
will not change the performance much if channel tiling is used. Unfortunately, due to the
high latency of modern light modulators and cameras, it is almost impossible to get an
acceptable acceleration over GPU with 4f, with the efficiency batch size shown in Table 3.
However, the 4f system’s acceleration is almost equalized to the GPU in comparison with
non-GPU inference (see Table 3). If we fully utilize the 4K resolution of the 4f system,

Al 2023, 4

the batch size of 3136 can be used, and the acceleration of the 4f system over GPU becomes
obvious. Moreover, it can be seen that the use of FatNet improves the speed of the inference
in optics and works in a completely opposite way with the GPU, regardless of the batch size.
However, enormous batch sizes such as this are not efficient and will lead to overfitting,

o
o

35

a5

25

Training Accuracy

g 8 7 B

“alidation Accuracy
&

(=]

15

0 20 40 &0 B0 100 1ZD 140 16D 0 20 40 &0 B0 100 120 140 16D
Epoch Epach

(a) (b)

Figure 4. Training and validation accuracy for each experimented network at every epoch. (a) Training
accuracy of ResNet-18, FatMNet and Optical simulation of FatiNet. All networks achieved an accuracy
of 99%. However, the ResNet-18 required fewer epochs. Un the other hand, the optical simulation
took longer to train since it uses a more extended computation graph to simulate light propagation.
(b) Validation accuracy of ResMNet-18, FatMNet and Optical simulation of FatNet. ResMNet-18 trained up
to 66%, while FatMNet could not achieve the validation and test accuracy higher than 60%, although it
performed fewer convolution operations.

Moreover, it should be mentioned that in our experiments, we have not tested the
network with the different quantization levels and noise that can occur in the system.
Low-precision training can potentially affect the test accuracy of the network, but there
have been many successful attempts to train the neural networks with low precision to
save on memory or accelerate the inference. On the other hand, noise can be used as a
regularization method, since random and unpredictable noise can be a sort of augmentation
method for our dataset. If we use a smaller bit depth, the noise may not affect the accuracy,
since the changes in resulting light intensity will be low.

Another issue that is important to consider is the alignment of the optical elements.
One of the main disadvantages of the 4f system compared with the silicon photonics
approach is the alignment of optical elements. A slight alteration in the alignment of the
elements of the 4f system can lead to entirely wrong results and to the inability to correctly
keep track of the graph. Unfortunately, our simulator is not designed to consider alignment
problems. In practice, optical cage systems can be used to keep elements fixed and aligned.

The FatSpitter algorithm, used to convert ResNet to FatMNet, follows the rules we have
established but only takes into account serial networks. Hence, it cannot be applied to
networks that use depth-wise separable convolutions. It is possible to integrate branching
into the algorithm for future implementation, but the most significant challenge remains
the implementation of 1 x 1 convolutions. These convolutions can be executed in a 4f
device as normal convolutions, but the question remains whether they need to be converted
into fat layers. The main purpose of 1 x 1 convolutions is to reduce the dimensionality, so
it makes sense not to convert them into FatMNet and keep them as they are. On the other
hand, converting 1 x 1 convolutions into FatNet would lead to a further reduction in the
number of channels, which may not be necessary.

The design of the FatNet makes it more suitable for datasets with a large number of
classes, such as 100 in our case, but it can also potentially work with images of a higher
resolution. Unfortunately, the simulation of light propagation takes a large amount of GPU
memaory, which is the reason for not using ImageNMNet in our experiments when it seemed
the most obvious choice for FatNet.

Al 2023,4 372

6. Conclusions

In this research, we looked at a new way of fully utilizing the high-resolution capa-
bilities of the 4f system for classification. We introduced a transformation method, which
makes the regular neural network designed for the CPU/GPU training more compatible
with the free-space optical device. After testing FatNet with the CIFAR-100 dataset, using
ResNet-18 as the backbone network and the optical simulation of the FatNet using the
angular spectrum method, we reached a test accuracy of 66% with ResNet and 60% with
FatNet. Eventually, it was demonstrated that FatNet performs 8.2 times fewer convolution
operations than ResNet-18 without a loss in frame rate when both were implemented in
optics. Compared with the standard ResNet-18, FatNet is always faster than ResNet-18
when run with the optical device and also than ResNet-18 run with GPU when the batch
size is as large as 3136. Moreover, our research demonstrates the importance of using
high-resolution kernels in CNN, especially in the future, when the speed of cameras and
light modulators improves.

Author Contributions: Conceptualization, R.I.; methodology, R.I; software, R.I.; validation, R.I,
TM.C. and C.C.R.-A,; formal analysis, R.I.; investigation, R.I.; resources, R.I.; writing—original draft
preparation, R.I.; writing—review and editing, C.C.R.-A. and T.M.C,; visualization, R.I; supervision,
TM.C. and C.C.R.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Simulator and the models repository: https:/ /github.com /riadibadulla/
simulator; FatSpitter: https://github.com/riadibadulla/FatSpitter; CIFAR-100 dataset: https://
www.cs.toronto.edu/~kriz/cifar.html, accessed on: 1 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CIFAR Canadian Institute For Advanced Research
CNN Convolutional Neural Network

ASIC Application-Specific Integrated Circuit
ELU Exponential Linear Unit

SGD Stochastic Gradient Descent

FFT Fast Fourier Transfer

TPU Tensor Processing Unit

MZI Mach-Zehnder Interferometer

SLM Spatial Light Modulators

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM
2017, 60, 84-90. [CrossRef]

2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016,
arXiv: 1506.02640.

3. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient Object Localization Using Convolutional Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015 ; pp. 648-656.

4. Ronneberger, O.; Fischer, P; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,
arXiv:1505.04597.

5. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks. In Proceedings of the Computer Vision—ECCYV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 525-542.

6. Sunny, EP; Taheri, E.; Nikdast, M.; Pasricha, S. A Survey on Silicon Photonics for Deep Learning. ACM |. Emerg. Technol. Comput.

Syst. 2021, 17, 1-57. [CrossRef]

Al 2023,4 373

10.
11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

Jouppi, N.P; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. arXiv 2017, arXiv:1704.04760.

Davies, M,; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82-99. [CrossRef]

DeBole, M.V,; Taba, B.; Amir, A.; Akopyan, E; Andreopoulos, A.; Risk, W.P; Kusnitz, J.; Ortega Otero, C.; Nayak, T.K.; Appuswamy,
R.; et al. TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years. Computer 2019, 52, 20-29. [CrossRef]

Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [CrossRef]

Li, X.; Shao, Z.; Zhu, M.; Yang,]. Fundamentals of Optical Computing Technology: Forward the Next Generation Supercomputer, 1st ed.;
Springer: New York, NY, USA, 2018.

Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep
neural networks. Science 2018, 361, 1004-1008. [CrossRef]

Li, S.; Miscuglio, M.; Sorger, V.; Gupta, P. Channel Tiling for Improved Performance and Accuracy of Optical Neural Network
Accelerators. arXiv 2020, arXiv:2011.07391 .

Chang, J.; Sitzmann, V.; Dun, X.; Heidrich, W.; Wetzstein, G. Hybrid optical-electronic convolutional neural networks with
optimized diffractive optics for image classification. Sci. Rep. 2018, 8, 12324. [CrossRef] [PubMed]

Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al.
Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441-446. [CrossRef]

Hughes, T.W.; Minkov, M,; Shi, Y.; Fan, S. Training of photonic neural networks through in situ backpropagation and gradient
measurement. Optica 2018, 5, 864-871. [CrossRef]

Sui, X.; Wu, Q.; Liu, J.; Chen, Q.; Gu, G. A Review of Optical Neural Networks. IEEE Access 2020, 8, 70773-70783. [CrossRef]
Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed.; McGraw-Hill Series in Electrical and Computer Engineering
Circuits and Systems; McGraw-Hill: Boston, MA, USA, 2000.

Gaskill, J.D. Linear Systems, Fourier Transforms, and Optics, 1st ed.; Wiley-Interscience: New York, NY, USA, 1978.

Cooley,].W.; Tukey,] W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297-301.
[CrossRef]

Colburn, S.; Chu, Y.; Shilzerman, E.; Majumdar, A. Optical frontend for a convolutional neural network. Appl. Opt. 2019,
58,3179-3186. [CrossRef] [PubMed]

Jutamulia, S.; Asakura, T. Fourier transform property of lens based on geometrical optics. In Proceedings of the Optical
Information Processing Technology, Shanghai, China, 14-18 October 2002; Volume 4929, pp. 80-85. [CrossRef]

Culshaw, B. The Fourier Transform Properties of Lenses. In Introducing Photonics; Cambridge University Press: Cambridge, UK,
2020; pp. 132-135. [CrossRef]

Weaver, C.S.; Goodman, J.W. A Technique for Optically Convolving Two Functions. Appl. Opt. 1966, 5, 1248-1249. [CrossRef]
[PubMed]

Jutamulia, S.; Yu, ET.S. Overview of hybrid optical neural networks. Opt. Laser Technol. 1996, 28, 59-72. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778. [CrossRef]

Gron, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
1st ed.; O'Reilly Media, Inc.: Sebastopol, CA, USA, 2017.

Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large Kernel Matters—Improve Semantic Segmentation by Global Convolutional
Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July
2017; pp. 4353—4361.

Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Technical Report, 2009, University of Toronto, Toronto.
Available online: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 23 March 2023) .

Shah, A.; Kadam, E.; Shah, H.; Shinde, S.; Shingade, S. Deep Residual Networks with Exponential Linear Unit. In Proceedings
of the Third International Symposium on Computer Vision and the Internet, Jaipur, India, 21-24 September 2016; pp. 59-65.
[CrossRef]

Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
arXiv 2016, arXiv:1511.07289.

Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946.
Deng, J.; Dong, W.; Socher, R; Li, L.].; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255. [CrossRef]
Paszke, A.; Gross, S.; Massa, E; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems; Curran Associates, Inc.: Vancouver, BC, Canada, 10-12 December 2019; Volume 32.

Miscuglio, M.; Hu, Z.; Li, S.; George,].K,; Capanna, R.; Dalir, H.; Bardet, PM.; Gupta, P; Sorger, V.J. Massively parallel
amplitude-only Fourier neural network. Optica 2020, 7, 1812-1819. [CrossRef]

Li, J.; Peng, Z.; Fu, Y. Diffraction transfer function and its calculation of classic diffraction formula. Opt. Commun. 2007,
280, 243-248. [CrossRef]

Voelz, D.G. Computational Fourier Optics: A MATLAB® Tutorial; SPIE: Bellingham, WA, USA, 2011. [CrossRef]

Al 2023,4 374

38. Mizusawa, S.; Sei, Y. Interlayer Augmentation in a Classification Task. In Proceedings of the 2021 International Conference on
Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16-17 August 2021; pp. 59-64. [CrossRef]

39. Luo,].H,; Wu,J,; Lin, W. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 2229 October 2017; pp. 5058-5066.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Fat-U-Net: Non-Contracting U-Net for Free-Space Optical
Neural Networks

Riad Ibadulla®, Constantino C. Reyes-Aldasoro®, and Thomas M. Chen®
aCity, University of London, Northampton Square, London, UK, EC1V 0HB

ABSTRACT

This paper describes the advantages and disadvantages of adapting the U-Net architecture from a traditional
GPU to a 4Af free-space optical environment. The implementation is based on an optical-based acceleration
called FatNet and thus this adaption is called Fat-U-Net. Fat-U-Net neglects the pooling operations in U-
Net, but maintains a similar number of weights and pixels per layer as U-Net. Our results demonstrate that
the conversion to Fat-U-Wet offers significant improvement in speed for segmentation tasks, with Fat-U-Net
achieving a remarkable %538 acceleration in inference compared to U-Net when both are run on optical devices
and %37 acceleration in inference compared to the results provided by U-Net on GPU. The performance loss after
conversion remains minimal in two datasets, with reductions of 4.24% in IoU for the Oxford I1It pet dataset and
1.76% in IoU of Hela cells nuclens segmentation.

Keywords: FatNet, HeLa segmentation, Optical Neural Network, segmentation

1. INTRODUCTION

The introduction of deep learning in computer vision applications has completely changed how digital images are
processed and analysed. The application of Deep learning approaches to image segmentation has demonstrated
remarkable results.!™ However, as the complexity of these machine learning models grows, so does the com-
putational demand and the difficulty of real-time applications. While hardware accelerators, such as graphics
processing units (GPUs), field-programmable gate arrays (FPGAs), and application-specific integrated circuits
{ASICs), have emerged as a potential solution to this challenge, their effectiveness may be limited in the long
run as Moore's Law begins to lose its predictive power.*

Advances in optical computing have shown the potential of optical accelerators to complement electronics-
based hardware accelerators. Since optical computing is unaffected by Moore’s law, it can be used for deep
learning through optical accelerators, offering advantages such as higher bandwidth, faster processing, no re-
sistance, reduced power consumption and immunity to thermal disturbances.® Two primary methods exist for
building optical neural networks: the free space approach employing spatial light modulators (SLMs), and the
silicon photonics method which utilises Mach-Zehnder interferometers (MZ1s). The free space approach relies
on light travelling through mediums like air, outer space, or a vacuum, unlike silicon photonics which relies on
guided light paths. While the silicon photonics technique offers higher speed, with potential clock speeds of
several GHz, it lags behind the free-space method in terms of parallel processing capabilities.® Free-space optical
accelerators provide massive parallelism capabilities, and 4f optical accelerators can perform convolution oper-
ations faster than the traditional electronic processor with theoretical infinite resolution.” In practice, they are
limited by the resolution of the modulators and the speed of the cameras used. In this research, we focus on the
4f free-space approach as described in Li et al.? in order to accelerate the inference and training of convolutional
neural networks (CNNs) for image segmentation.

One of the main tasks in computer vision, semantic segmentation aims to partition an image into meaningful
segments by assigning a class to each pixel. According to Peng et al.,” semantic segmentation is considered a
pixel-wise classification problem, and a well-designed segmentation model should simultaneously encompass two
tasks, classification and localisation. It was observed that these tasks are naturally * contradictory”, as improving

Further author information: (Send correspondence to R.IL)
R.L.: E-mail: riad.ibadulla@city.ac.uk

Al and Optical Data Sciences WV, edited by ichi Kitayama, Volker J. Sorger, Proc. of SPIE
Vol 12903, 1290308 - @ 2024 SPIE - 0277-786X - doi: 10.1117/M12.3008618

Proc. of SPIE Vol. 12903 12903081

one tends to diminish the other. This is becanse the classification model is insensitive to translation or rotation,
while the localisation task should contain information regarding the appropriate coordinates in the output mask.
For that reason, the classification models consist of pooling operations to extract the features at every scale.
When having small 3x3 kernels on the deepest layers of the classification network, the kernel size - feature map
resolution ratio is larger than on the shallow layers. Hence the features of the deeper layers can be affected
by more pixels of the original image. This is why classification networks are mostly pyramid- or cone-shaped.
Ideally, a barrel-shaped segmentation model would locate pixels of each class more precisely.

Although Peng et al.® proposed their own architecture, Global CNN, the well-established U-Net! can also
address both problems simultaneously, where the contracting path solves the classification task, expanding
path and skip connections support the localisation. However, it can be seen that most of the segmentation
networks,” 1° including U-Net, use an encoder-decoder structure or contain some piece of architecture for pulling
the feature maps down in order to extract the features.!! These networks simply inherit the successful structure
of predecessor networks like AlexNet!'? or LeNet,'® which are meant to do the classification task. It is important
to keep in mind that higher-resolution feature maps and kernels are more suitable for segmentation tasks since
high-resolution kernels have a higher effective receptive field than de-facto standard 3x3 kernels.

One of the key advantages of employing small kernels and cone encoder-decoder architectures is the speed of
inference on CPU/GPU-based hardware. On the other hand, this acceleration in optical environments can be
provided intrinsically by the optics. In previous work, we proposed the FatNet'?conversion for classifier CNNs
which reduced the number of channels and increased the kernel size and resolution of the feature map accordingly
by keeping same number of parameters and pixels in each feature maps of the network. This conversion makes
the network more suitable for Af free-space optical acceleration.

In order to understand the reason behind it, it is worth locking at the principle of work in the 4f optical
neural network accelerator. The 4f setup consists of an input laser, two convex lenses, and modulators. The idea
is based on the Fourier transform properties of the convex lenses and performs the convolution operation based
on the convolution theorem. Any convex lens projects a Fourier transform of the input object located on the
front focal plane onto the back focal plane.!® At this point, it can be pointwise multiplied by the kernel in the
Fourier domain. After passing through the second lens, the multiplied output is converted back into the spatial
domain and read by the camera. The process described ahove can perform the convolution operation using the
Af system, but in order to be able to apply the method to the convolutional neural network, it is essential to read
the output of the 4f system, apply the activation function electronically and repeat the process. This causes the
main hottleneck of the optical acceleration. Moreover, it is important to note that the resolution of the input
and the kernel will not affect the system’s frame rate. Hence, in order to maximise the utilisation of the system,
the number of conversions to electronics should be reduced, but the resolution should be used to our advantage.

One of the obvious ways to utilise the high-resolution capabilities of the 4f system is to tile the inputs and
kernels and perform convolutions in parallel, in other words, perform the batch tiling. According to Li et al.,'®
the high-resolution capabilities of 4f system can also be used to tile the channels and kernels, to perform several
2D convolution operations of one convolutional layer simultaneously. However, the FatNet algorithm ensures
faster training in the 4f optical accelerator by reducing a number of channels and increasing the resolutions of
the feature maps and kernels of CNNs, while relying on batch tiling. As the resolution is not an obstacle for the
Af optical accelerator, while fewer convolution operations mean fewer optics-electronics conversions. However, it
can be assumed the FatNet conversion is even more suitable for segmentation tasks, which we have proposed in
our work, and developed a Fat-U-Net, which is described in section 2.4.

Our previous work'! was based on the conversion of the ResNet-18 into the FatNet. In this work, we
demonstrate the possibility of expanding the FatNet further for segmentation tasks with U-Net, turning it into
a Fat-T-Net. Notably, Fat-U-Net achieves a theoretical %538 faster inference when run on optical devices and
%37 acceleration in inference compared to the results provided by U-Net on GPT.

Moreover, this work demonstrates the validity of the FatNet conversion algorithm. We trained other networks,
called Intuitive Fat-U-Nets, with fewer channels and larger kernels, which did not adhere to the FatNet conversion
principles. These networks were converted from U-Net based on the number of weights, without considering the
mumber of pixels in each feature map. Despite this, none could outperform the original Fat-U-Net in terms of
performance.

Proc. of SPIE Vol. 12503 1290308-2

The performances of U-Net and Fat-U-Net implementations are compared using the Oxford 11t pet dataset
and HeLa cells dataset.

2. MATERIALS AND METHODS
2.1 Oxford-IIIT Pet

The first dataset analysed was the Oxford-IIIT pet dataset!” developed by the Visual Geometry Group, consisting
of 7,359 images and 37 pet categories, each containing approximately 200 images. These images exhibit significant
differences in scale, pose, and lighting conditions. Each image iz accompanied by ground truth annotations,
including breed identification, head region of interest (ROI), and pixel-level trimap segmentation. Since our
network is focused on segmentation, we are not taking the classes into account but focusing on the segmentation
of the pets and backgrounds. The dataset provides a train-test split, where 3 680 images are designated for
training and 3,669 for testing. Because the images are of different sizes, the images are resized to 160x160 in this
work. The intensity of the channels of the dataset is normalised between 0 and 1, and the centring is performed
with the mean of (0.485, 0.456, 0.406) and standard deviation of (0.229, 0.224, 0.225) for each RGB channel,
respectively.

2.2 HeLa Cells

The second case analysed a high-resolution dataset of HeLa cells observed with Serial Block Face Scanning
Electron Microscopy. It consisted of 8192 x 8192 x 518 voxels'® from which a 2000 x 2000 x 300 region of
interest (ROI) with a single cell has been cropped.!’® The hand-segmented ground truth (GT) with four classes
(background, cell, nuclear envelope, and nucleus) is publicly available only for the ROT?® and GT can be generated
with image-processing algorithms .2' In this work, we focus only on the segmentation of the nucleus.

Since our version of Fat-U-Net was designed for 160x160 images, we have prepared patches of 160x160 from
odd-numbered slices of the ROT with 50% overlap. Taking only half of the slices and accounting for the 529
patches within each slice, we generated 79,350 image pairs along with their corresponding ground truth masks.
Before saving the dataset of patches, all patches were low-passed filtered with a Gaussian filter. For that reason,
we perform the same Gaussian filtering every time when evaluating new data.

Performing the data split among the shuffled patches could potentially result in a training or test set biased
towards a specific class due to the inclusion of an excessive number of background images. Therefore, we
performed a train-test split on a per-slice basis. Slices (1,11,21,...,281,291) were set as test slices, and slices
(5,25, 45, ..., 285) were set as validation slices. Originally the rest of the data was used for training. However,
as the shallowest and deepest slices contain only background, this leads to data imbalance and the training slices
were set only to the slices where the cell and the nucleus are fully visible in the middle of the ROI. With this
strategy, the training slices were defined within the range of 97 to 183 with step 2, excluding slices ending with 1
and 5, which resulted in 26 slices and 13,754 patches, such as (97, 99, 103, 107, 109,..., 177, 179). Although the
number of training patches may appear limited, it is sufficient for binary nucleus segmentation. In contrast to
Karahag et al,”' we ensured that our model evaluation did not include any slices that were part of the training
process,

No data aungmentation was applied to the dataset in this study. However, normalisation was performed to

scale the data values between 0 and 1. Furthermore, centring was conducted using the calculated mean and
standard deviation values, which were determined to be 0.6379 and 0.0855, respectively.

2.3 U-Net

U-Net! is a CNN architecture initially developed for the segmentation of biomedical images. Its unique archi-
tecture, consisting of contracting and expanding paths, allows it to capture local and contextual information
effectively, leading to impressive segmentation results. The contracting path of the network can be seen as the
typical CNN used for classification. It consists of blocks of convolutional layers, activation functions and pooling
operations for feature extraction at different scales.

The expanding path of the U-Net serves for the upsampling of the extracted features to reconstruct the
segmentation mask of the input image. This is achieved using transposed convolution operations to upsample the

Proc. of SPIE Vol. 12503 1290308-3

feature maps and concatenation with the corresponding feature maps of the same resolution from the contracting
path. The main role of the skip connections is to conserve the spatial information that is lost during the pooling
process in the contracting path. Our implementation of U-Wet iz shown in Figure 1{a). It contains five stages,
and unlike the original implementation of U-Net by Ronnenberg et al.,! it does not require cropping of the feature
maps when performing skip concatenation, as it only uses convolutions with the “same padding”.

2.4 Fat-U-Net

The idea of Fat layers, i.e., layers where there is no reduction in size, was introduced in'? for the conversion
of the CNN for classification into a form which is more compatible with 4f free-space optical accelerators. The
underlying principle of FatNet conversion is to maintain the constant number of trainable parameters and the
pixels in each layer while increasing the resolution of feature maps and kernels and decreasing the number
of channels in each layer. By making this conversion, the network takes full advantage of the high-resolution
capabilities of the 4f system, thereby optimising its performance and efficiency in the context of free-space optical
acceleration. Since the main bottleneck of the free-space 4f accelerator is the latency of the camera, the fewer
convolution operations that the networks have, the fewer optic-electronics conversions are required. Eventually,
the cone-shaped classifier convolutional networks turn into barrel-shaped networks with higher-resolution feature
maps and high-resolution kernels, which sometimes reach the size of the feature maps making it a “Fat” Layer.

The original FatNet conversion, designed specifically for the classification task, maintains the same architec-
ture as the original network until the feature maps are pooled down to the resolution with a number of pixels
less than or equal to the number of classes. It is posited that when it comes to the FatNet conversion for the
segmentation, pooling may be unnecessary, and the input resolution can be preserved throughout the entire
network. Consequently, increasing the resolution of kernels while keeping the resolution of the feature maps
constant would decrease the feature map-to-kernel resolution ratio, emulating the effect of pooling the feature
maps without actual pooling implementation. This approach can significantly increase the inference time of the
network run on the 4f free-space optical accelerator and hypothetically retains localisation accuracy even more
effectively.

UU-Net contracting weights pixels New layers | FatU-Net adjusted
Channels kernel Channels kernel Channels kernel
3 = 64 3 1,728 | 1,638,400 3 = 64 3 3 = 32 3

64 x= 64 3 36,864 409,600 | 32 = 32 G 32 = 32 6

64 = 128 3 T3, 728 819,200 | 32 = 32 9 32 = 16 12
128 = 1328 3 147 456 204,200 16 = 16 24 16 = 16 24
128 = 256 3 204,012 409,600 16 = 16 34 16 = 8 48
256 = 256 3 580,824 102,400 8x 8 96 B x8 96
256 = 512 3| 1,179,648 204,200 8x 8 136 8= 10 122
512 = 512 3| 2,359,296 51,200 10 = 100 160 10 = 10 160
512 = 1024 3| 4,718,592 102,400 10 = 18 160 10 = 20 154
1024 = 1024 3| 9,437,184 102,400 20 = 20 160 20 = 20 160

Table 1. Construction table for Fat-TU-Net's first half out of the U-Net's contracting path.

Since the original FatNet was designed for classification, only the contracting path of the U-Net was converted
into the FatNet. Table 1 presents the Fat-U-Net equivalent of the FatNet construction table, as described in. !4
The table is used to compute the number of weights per layer, excluding the bias and the number of pixels
per layer. The algorithm ensures the convolutional layers with the same number of input and output channels
within convolutional blocks have an equal number of input and output channels after the conversion too. Upon
completing the conversion of the contracting path of the U-Net into FatNet, the path was mirrored to generate
the “expanding path”, and the kernel sizes were recaleulated to match the number of weights from the original
layers. Since the so-called expanding path of the Fat-U-Net does not actually require upsampling, we have
replaced the deconvolution operations with the simple 3x3 convolutions as illustrated in Figure 1(b).

Proc. of SPIE Vol. 12503 1290308-4

Jo
—
4=
.
J

= MaxPool2d Conv2d = ConvTranspose2d
—

|
gt :H [as0ssabstni

g“ﬁﬁ*ﬁﬁ;ﬁ s i f«f{# fﬁ F;’

(a)

._

Figure 1. Graphical representation of our implementation of U-Net and Fat-U-Net architectures. (a) U-Net architecture,
with all kernel sizes 3x3, MaxPool with kernels size of 2x2 and deconvolution operations with a kernel size of 3x3. (b)
Fat-U-Net architecture derived from our implementation of U-Net, with the varving kernel sizes indicated as K at each

layer.

3. EXPERIMENTS AND RESULTS

U-Net and the Fat-1T-Net equivalent were implemented and tested in two segmentation tasks of the Oxford 1Tt
pet and Hela cells. Performance was assessed by pixel-wizse Accuracy, Intersection over Union (Ioll), and Dice

Score:

TP+TN

Accuracy = 5 N T FP T FN (1)
TP
IoU =+ FPTFN (2)
_ oTP
DiceScore = o5 TP T FN (3)

Inference time was also measured on GPU and theoretically caleulated for the optics to demonstrate the
acceleration on a 4Af free-space optical device. Owverall if our U-Net implementation contains 3,833,984 convolution
operations, its Fat-U-Net equivalent contains only 7,123. Since the resolution does not affect the speed of inference

Proc. of SPIE Val. 12503 1250308-5

in the 4f free-space optics, the inference of Fat-U-Net in optics will be 538 times faster than U-Net if both run
in optics. This acceleration is possible with only a small sacrifice in performance, as seen in Tables 3, 4.

We have measured the inference time of Nvidia A100 with both U-Net and Fat-T-Net, and compared the
results to the calculated theoretical inference time on 4f optical accelerator based on Li et al.'® The results are
shown in Table 2 for batch sizes of 1, 32, and 144. The batch size of 144 was chosen because it is the maximum
possible batch size for the 4f system with 4k resolution, if batch tiling is applied.

Based on the results in Table 2, at the batch size of 144, the acceleration of inference of Fat-U-Net with 4f
optics, compared to U-Net run on high-end GPU, is 37 times.

Model and device | Batch 1 | Batch 32 | Batch 144
U-Net (Optics) 1020.00 59.900 13.300
Fat-U-Net (Optics) 3.46 0.108 0.024
U-Net (GPU) 455 0.894 0.883

Table 2. Inference time in milliseconds of U-Net and its Fat-U-Net equivalent model per image with different batch sizes
run on 4f accelerator and Nvidia A100. The frame rate for 4f system was approximated at 2 MHz, and Nvidia A100 GPU
was measured experimentally.

3.1 Oxford IIIt pet

Training of the Oxford IITt pet dataset nsed the Adam optimiser; the learning rate was set to le-4 with a batch
size of 16 and a number of epochs of 250. The training data went through augmentation during training, by
random shift, scale, rotation, RGB shift, random brightness and contrast. We have used the BCEWithLogitsLoss
of PyTorch, which combines Binary Cross-Entropy loss with the sigmoid layer. We have ensured that our U-
Net results adhered to state-of-the-art standards before converting them into the Fat-U-Net and conducting the
comparison of evaluation metrics between Fat-U-Net, its backbone U-Net, and previous research employing the
Oxcford It pet dataset as a henchmark (Table 3).

Model Accuracy (%) | IoU (%) | Dice Score (%)
U-Net (our implementation) 895.33 8932 04.33
Fat-T-Net (ours) 93.40 85.08 91.87
SEU-Net?? - == 77.00 -
ICNet23.24 90.79 75.12 -
ConRec (20% of dataset) 2526 - - 90.00
U-Net (as per Sundarrajan et al)7 - 33.30 46.40
U-Net+VGG16%7 - £9.40 94.20
U-Net+InceptionV3*7 - 91.60 91.50

Table 3. Comparison of the evaluation results of the accuracy, mIolU, and Dice score of U-Net and its Fat-TU-Net equivalent
along with other works for Oxford 1Tt pet.

We have visualized the predicted mask on the data for both U-Net and Fat-U-Net in Figure 2, to understand
where the segmentation is excellent, where it is unacceptable, and where Fat-U-Net outperforms U-Net or vice
Versa.

3.2 HeLa cells

The Adam optimiser was used to train Hela nuclens segmentation as well, with the inclusion of a weight decay
set at le-d. We have applied two dropout layers with a probability of 50% to the beginning and end of the
bridge section of U-Nets. The learning rate was set to le-3, with a batch size of 32 and a number of epochs of
20. The loss function remained the same, BCEWithLogitsLoss, which combines binary cross-entropy loss and
the sigmoid layer.

Both U-Net and Fat-U-Net models were evaluated with four scenarios: (1) the complete set of odd slices
ranging from 1 to 300, (2) the middle-range of odd slices (150-200) where the nuclens is visible, and (3)-(4) then

Proc. of SPIE Vol. 12503 1290308-5

Fat-T-Net

U-MNet

(a) (b)
Figure 2. Qualitative results of Oxford IIIt pet dataset. (a) Examples of perfect segmentation by both algorithms.
(b} Examples of U-Net performing better than Fat-U-Net. (c) Examples of Fat-U-Net outperforming U-Net. (d) Bad
sopmentation examples by both algorithms

Model Acc.(all) (%) | IoU(all) (%) | Acc.(150-200) (%) | IoU(150-200) (%)
U-Net 95.71 66.32 99.59 97.15
U-Net (Test data) 05.75 66.59 99.57 97.11
Fat-U-Net 95.31 64.27 99.42 96.05
Fat-TU-Net (Test data) 95.42 64.83 99.43 96.25
4 stage U-Net?! 93.46 51.38 09.66 97.12

Table 4. Performance comparison of our implementation of five staged U-Net, its Fat-U-Net equivalent, and a four staged
U-Net implemented in.?' Evaluating Accuracy and InU Metrics Across the entire dataset and 150-200 range for all odd
and test slices that have not participated in the training process.

repeating the same strategies for the test slices (See Table 4). The results of the first two scenarios, which include
both training and validation slices, were comparable to the results of the work of Karabag et al. %

Since GT was only available for the ROI, which is one cell of the larger 8192 » 8192 x 518 datasets, qualitative
tests were performed training on one cell and testing in an adjacent cell as demonstrated in Figure 3. Moreover,
the qualitative tests were also performed on the segmentation of the larger original image of 8192 % 8192 containing
all the cells (Figure 4).

All qualitative evaluation was performed for both U-Net and Fat-U-Net, for comparison purposes.

3.3 Validity of FatNet

To demonstrate the efficacy of the FatNet conversion, we have trained alternate networks with fewer channels
and larger kernels. These networks, which we call Intuitive Fat-U-Nets, deviate from the FatNet conversion
formula by focusing only on the number of weights and not considering the pixel count in each feature map.
Three versions of Intuitive Fat-U-Net were designed and shown in Table 5.

Among all networks, Intuitive Fat-TU-Net 1 is the closest to the original U-Net as the channels in the bottleneck
rise up to 128, with the largest kernel size being 24. However, even Intuitive Fat-U-Net 1 performed worse than
the Fat-T-Net as it can be seen in Table 6. While the Intuitive Fat-U-Net 3, the closest network to the Fat-U-Net
with the largest kernel size, 153, performed the worst of all networks.

4. DISCUSSION

In this study, we successfully demonstrated that the FatNet conversion of in silico networks to optical devices
is more efficient for segmentation tasks than for classification. For comparison, Ibadulla et al'? reported an
acceleration of 8.2 times for the ResNet-18, if HesNet-18 and FatNet run on the optical device. This work shows
a remarkable 538 faster inference of Fat-U-Net compared to the U-Net under the same conditions and =37
acceleration in inference compared to the results provided by U-Net on GPU. Moreover, from Table 2 it can be
seen that the GPU Nvidia A100, being one of the best hardware accelerators, outperforms optical accelerator of

Proc. of SPIE Val. 12503 1250308-7

Fat-1-Net

U-Net

(a) (b) (c)
Figure 3. Qualitative results of Hela dataset. (a) train slice 119 (b) test slice 121 (c) Unseen cell, taken from the larger

Figure 4. U-Net and Fat-U-Net segmentation results on 8192 x §192 images.

2 MHz frame rate when running U-Net, but stays slow for all batch sizes when compared to Fat-U-Net run on
optical accelerator. Given that the 4f optical device is meant to accelerate only the convolution operations, it
is intuitive that fully convolutional networks like U-Net are ideally suited for the 4f accelerators, as they do not
even need any amendments of the dense layers, as required in the classification.

With the speed advantages of Fat-U-Net established, our next objective was to validate its performance. We

Proc. of SPIE Vol. 12903 1250308-3

Layer Intuitive Fat-U-Net 1 | Intuitive Fat-T-Net 2 | Intuitive Fat-U-Net 3
Channels Kernel Channels Kernel Channels Kernel
Convblockl [3—8 2 34 12 34 12
B8 24 44 48 44 48
Conv block 2 | 8 — 16 24 48 48 48 48
16 — 16 24 B8 48 E— R 48
Conv block 3 | 16 — 32 24 88— 16 48 E—10 61
32— 32 24 16 — 16 48 10 — 10 77
Conv block 4 | 32 — 64 24 16 — 32 48 10 —+ 16 85
64 — 64 24 32 —+32 48 16 —+ 16 96
Conv block 5 | 64 — 128 24 32 —+64 48 16 —+20 121
{bottleneck) 128 — 128 24 64 —+ 64 48 20 —+20 153
DeConv 1 128 — 64 3 64 —32 3 20 —+16 3
Conv block 6 | 128 — 64 24 64—+ 32 48 32 —+16 96
64 — 64 24 32 —+32 48 16 —+ 16 96
DeConv 2 64 — 32 3 3216 3 16 —+10 3
Conv block 7 | 64 — 32 24 32 —+16 48 20 —10 77
32— 32 24 16 — 16 48 10 — 10 77
DeConv 3 32— 16 3 16—+ 8 3 10—=8 3
Conv block 8 | 32 — 16 24 16 —+ 8 48 16 =+ 8 48
16 — 16 24 B8 48 E— R 48
deconvd 16 + 8 3 B4 3 B4 3
Conv block 9 | 16 = 8 24 B4 48 B4 48
83 24 43 a5 43 55
segmenter 3—=1 1 3—=1 1 i—=1 1

Table 5. Comparison of the architectures of the Intuitive Fat-U-Nets. Unlike a Fat-U-Net, which is converted using a
FatMNet algorithm for the conversion, these intuitive networks were developed manually by choosing smaller channel sizes
and computing the new kernel sizes without taking into account the number of pixels in the feature map.

Model Oncford 11Tt pet Hela cells
Acc IoU Acc IolU
Intuitive Fat-U-Net 1 | 92.71 B3.T1 9908 93.90
Intuitive Fat-U-Net 2 | 89.39 77.84 9795 BY.58
Intuitive Fat-U-Net 3 | 89.18 76.98 0845 BO.TH
Fat-U-Net 03.40 ©O1.87 | 09.43 06.25
Table 6. Other " Large kernel/Few Channel” architectures in comparison with Fat-U-Net.

initially trained the U-Net to state-of-the-art standards before converting it to Fat-U-Net. Our U-Net imple-
mentation is marginally outperformed only by networks with pre-trained VGG16 and Inception V3 contracting
paths (Table 3). As our implementation was trained from scratch, we believe it met the required standards
hefore conversion. Fat-U-Net sacrificed only 1.93% in pixel accuracy, 4.24% in IolU, and 2.46% in Dice score.
These results compare favourably to classification problems, where the accuracy drop was 6%.

(Qualitative results in Figure 2 reveal that U-Net and Fat-U-Net exhibit distinct behaviour in various scenarios.
Figure 2(a) is the demonstration of the perfect segmentation by both algorithms in instances where pets are
clearly visible against a monochromatic background. Interestingly, in Figure 2(b), U-Net outperforms Fat-U-Net
by segmenting a background cat, which is not part of the ROL. However, we can see the advantage of Fat-U-Net
in Figure 2(c), where it has perfectly segmented both animals, in contrast to U-Net, which incorrectly classified
some pixels of the cat and dog as background.

Our evaluation of Fat-U-Net for Hela cell nuclens segmentation proved successful. Compared to the 4-staged
U-Net,?! our 5-stage U-Net implementation demonstrated marginally better performance on middle-range slices

Proc. of SPIE Vol. 12503 1290308-9

and achieved a 14.94% higher IoU for all slices. It is important to consider that the ground truth for ROI
cells includes only the segmentation of the central cell, excluding adjacent cells. Nevertheless, both U-Net and
Fat-U-Net managed to segment these nuclei even with noisy ground truth data (Figure 3). Consequently, the
segmented mask outperforms the ground truth on side slices (non-150-200), resulting in a lower ol for all slices
compared to middle-range slices. After converting to Fat-U-Net, the performance loss was smaller than in the
Oxford ITIt pet dataset evaluation, at approximately 1% for middle-range slices and 2% for all slices. For the
large images, Fat-1TJ-Net provided better results than U-Net as can be seen in the cells on the bottom right.

To assess Fat-U-Net’s performance in the original optical setup, it was trained using the 4f simulator. While
this simulator does not completely replicate the real optics’ performance, it demonstrated comparable results
in the training for Hela Cells segmentation. Notably, it achieved an IoU of 95.58% on test slices 150-200 and
65.34% on all test slices.

5. CONCLUSION AND FUTURE WORK

In our research, we have successfully extended the application of FatNet conversion to the task of segmentation,
by adapting the U-Net architecture for use with free-space optical accelerators. We have achieved 538 times
fewer convolution operations in Fat-T-Net compared to U-Net, meaning 538 times faster inference when both
networks run with the optical accelerator and 37 times faster inference compared to U-Net run on GPU. Both
networks were evaluated across the Oxoford IIIt pet dataset and HeLa cell nuclens segmentation, on which we
have achieved state-of-the-art performance. When it comes to the performance loss, the maximum loss was 4.24%
in the test IoU for the Oxford IIlt pet dataset and 1.76% in the test IoU of Hela cells nucleus segmentation,
making the FatNet transformation even more preferable than the classification.

As this research primarily focuses on Fat-U-Net conversion, future work could investigate segmentation using
only the contracting path of Fat-U-Net, to explore the advantages of high-resolution kernels in detail. Hypothet-
ically, a U-Net with an extensive receptive field like in Fat-U-Net would not require skip connections. However,
our experiments with U-Net and Fat-U-Net without skip connections yielded unsatisfactory results, even after
removing the 3x3 convolutions that replaced transposed convolutions. A possible explanation is that Fat-U-Net
maintains the U-Net architecture, and instead of pooling down feature maps, it increases kernel resolution, re-
sulting in a feature map kernel ratio similar to U-Net. Therefore, future work will include investigating the
possibility of the enhancement of the effective receptive field by dropping the skip connections.

REFERENCES

[1] Ronneberger, 0., Fischer, P., and Brox, T., “U-Net: Convolutional Networks for Biomedical Image Seg-
mentation,” (May 2015). arXiv:1505.04597 [es].

[2] Badrinarayanan, V., Kendall, A., and Cipolla, R., “SegNet: A Deep Convolutional Encoder-Decoder Ar-
chitecture for Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence 39,
2481-2495 (Dec. 2017).

[3] Farabet, C., Couprie, C., Najman, L., and LeCun, Y., “Learning Hierarchical Features for Scene Labeling,”
IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1915-1929 (Aug. 2013).

[4] Waldrop, M. M., “The chips are down for Moore's law,” Nafure News 530, 144 (Feb. 2016). Cg_type: Nature
News Section: News Feature.

[5] Lin, X., Rivenson, Y., Yardimei, N. T., Veli, M., Luo, Y., Jarrahi, M., and Ozcan, A., *All-optical machine
learning using diffractive deep neural networks,” Science 361, 1004-1008 (Sept. 2018). Publisher: American
Aszsociation for the Advancement of Science.

[6] Sui, X., Wu, Q., Liu, J., Chen, Q., and Gu, G., *A Review of Optical Neural Networks,” IEEE Access B,
70773-70783 (2020).

[T] Miscuglio, M., Hu, Z., Li, 5., George, J. K., Capanna, R., Dalir, H., Bardet, P. M., Gupta, P., and
Sorger, V. 1., *Massively parallel amplitude-only Fourier neural network,” Optica T, 1812-1819 (Dec. 2020).
Publisher: Optica Publishing Group.

[8] Li, B., Ersay, O. K., Ma, C., Pan, Z., Wen, W., and Song, Z., "A 4F optical diffuser system with spatial
light modulators for image data angmentation,” Optics Communications 488, 126850 (2021).

10

Proc. of SPIE Vol. 12903 1290308-10

[9] Peng, C., Zhang, X., Yu, G., Luo, G., and Sun, J., “Large Kernel Matters — Improve Semantic Segmentation
by Global Convolutional Network,” in [Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition], 43534361 (2017).

[10] Noh, H., Hong, 5., and Han, B., “Learning Deconvolution Network for Semantic Segmentation,” in [Pro-
ceedings of the IEEE International Conference on Computer Vision], 1520-1528, IEEE, Santiago, Chile
(2015).

[11] Long, J., Shelhamer, E., and Darrell, T., *Fully Convolutional Networks for Semantic Segmentation,” in
[Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition], 3431-3440 (2015).

[12] Krizhevsky, A., Sutskever, 1., and Hinton, G. E., *ImageNet Classification with Deep Convolutional Neural
Networks,” in [Advances in Newral Information Processing Systems], 25, Curran Associates, Inc. (2012).

[13] LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. 5., Drucker, H., Guyon, L, Muller, U. A,
Sackinger, E., Simard, P., and others, “Learning algorithms for classification: A comparizon on handwritten
digit recognition,” Newral networks: the statistical mechanics perspective 261(276), 2 (1995).

[14] Ibadulla, R., Chen, T. M., and Reyes-Aldasoro, C. C., “FatNet: High-Resolution Kernels for Classification
Using Fully Convolutional Optical Neural Networks,” AT 4, 361-374 (June 2023). Number: 2 Publisher:
Multidisciplinary Digital Publishing Institute.

[15] Culshaw, B., “The Fourier Transform Properties of Lenses,” in [Introducing Photonics], 132-135, Cambridge
University Press, Cambridge (2020).

[16] Li, 5., Miscuglio, M., Sorger, V., and Gupta, P., *Channel Tiling for Improved Performance and Accuracy
of Optical Neural Network Accelerators,” ArXiv (2020).

[17] Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V., “Cats and dogs,” in [2012 IEEE Conference
on Computer Vision and Pattern RHecognition], 3498-3505 (June 2012).

[18] Peddie, C. 1., Jones, M. L., and Collinson, L. M., “Serial Block Face SEM of HeLa cell pellet with 10 nm
pixels and 50 nm slices (benchmark dataset),” (May 2019). 10.6019/EMPIAR-10094.

[19] Peddie, C. I, Jones, M. L., and Collinson, L. M., *Cropped regions from Serial Block Face SEM of HeLa
cell pellet with 10 nm pixels and 50 nm slices (benchmark dataset),” {Aug. 2020). 10.6019/EMPIAR-10478.

[20] Karabag, C., Jones, M., and Reyes-Aldasoro, C. C., “Multiple Nuclei HeLa cell ground truth images with
four labels (nuclear envelope, nucleus, rest of the cell, and background) for deep learning architecture
training.,” (Mar. 2022). doi.org,/10.5281 /zenodo 6355622,

[21] Karabag, C., Ortega-Ruiz, M. A., and Reyes-Aldasoro, C. C., “Impact of Training Data, Ground Truth
and Shape Variability in the Deep Learning-Based Semantic Segmentation of Hela Cells Observed with
Electron Microscopy,” Jouwrnal of Imaging 9, 59 (Mar. 2023). Number: 3 Publisher: Multidisciplinary
Digital Publishing Institute.

[22] Sangalli, M., Blusseau, 5., Velasco-Forero, 5., and Angulo, J., “Scale-Equivariant U-Net,” in [33rd British
Machine Vision Conference 2022, London, UK], {BMVA} Press, London, UK (Nov. 2022).

[23] Edwards, J. and El-Sharkawy, M., "ulCNet: Lightweight Image Segmentation,” in [2022 International
Conference on Advanced Computer Science and Information Systems (ICACSIS)], 99-104 (Oct. 2022).

[24] Zhao, H., Qi, X., Shen, X., Shi, J.,, and Jia, J., ¥ICNet for Real- Time Semantic Segmentation on High-
Resolution Images,” in [Computer Vision — ECCV 2018], Ferrari, V., Hebert, M., Sminchisescu, C., and
Weiss, Y., eds., Lecture Notes in Computer Science, 418-434, Springer International Publishing, Cham
(2018).

[25] Dippel, 1., Lenga, M., Goerttler, T., Obermayer, K., and Hohne, J., “Transfer Learning for Segmentation
Problems: Choose the Right Encoder and Skip the Decoder,” (July 2022). arXiv:2207.14508 [cs].

[26] Dippel, J., Vogler, 5., and Hohne, J., *“Towards Fine-grained Visual Representations by Combin-
ing Contrastive Learning with Image Reconstruction and Attention-weighted Pooling” (Feb. 2022).
arXiv:2104.04323 [cs].

[27] Sundarrajan, K., Rajendran, B. K., and Balasubramanian, D., “Fusion of Ensembled UNET and Ensembled
FPN for Semantic Segmentation,” Traitement du Signal 40, 297-307 (Feb. 2023).

11

Proc. of SPIE Vol. 12903 1290308-11

	Dedication
	Declaration
	Acknowledgements
	Publications
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement
	1.2 Objectives
	1.3 Scope and limitations
	1.4 Contributions
	1.5 Structure of Thesis

	2 Literature Review
	2.1 Optical Computing and 4f system
	2.2 Fourier transform
	2.3 Convolution operation and CNNs
	2.3.1 Convolution operation
	2.3.2 Convolutional neural networks
	2.3.3 Batch Normalisation

	2.4 Application of CNNs for image classification
	2.5 Application of CNNs for image segmentation
	2.6 Transformers
	2.6.1 Introduction to Transformers
	2.6.2 Attention Mechanism
	2.6.3 Multi-head attention
	2.6.4 Architecture of ViT
	2.6.5 Application of Vision Transformers
	2.6.6 Other variations of Vision Transformers

	2.7 Effect of high-resolution training
	2.8 Free-space optical deep learning accelerator
	2.8.1 Deep Learning with Free-space Optical Accelerators
	2.8.2 Passive optical Accelerator
	2.8.3 Active 4f optical Accelerator
	2.8.4 High resolution capabilities of 4f Optical Neural Networks
	2.8.5 Optical Transformers

	2.9 Datasets
	2.9.1 CIFAR-100
	2.9.2 Classification of CIFAR-100 dataset
	2.9.3 Oxford-IIIT Pet
	2.9.4 HeLa cells
	2.9.5 Segmentation of HeLa Cells and Oxford-IIIT Pet

	2.10 Gradient Accumulation
	2.11 Measurement of performance
	2.12 Conclusion

	3 FatNet for Classification
	3.1 Introduction
	3.2 Methods
	3.2.1 FatNet conversion
	3.2.2 FatSpitter in Convolutional layers
	3.2.3 Optical Simulator
	3.2.4 OptNN layer
	3.2.5 Pseudonegativity
	3.2.6 ResNet-18
	3.2.7 AlexNet
	3.2.8 VGG-19

	3.3 Experiments
	3.4 Results and Discussion
	3.4.1 ResNet-18
	3.4.2 AlexNet
	3.4.3 VGG-19

	3.5 Conclusion

	4 Fat-U-Net for Image Segmentation
	4.1 Introduction to Image Segmentation
	4.2 Methodology
	4.2.1 Intuitive Fat-U-Nets
	4.2.2 U-Net without skip connections

	4.3 Experiments
	4.4 Results and Discussion
	4.4.1 Intuitive Fat-U-Nets
	4.4.2 U-Net without skip connections

	4.5 Conclusion

	5 Shared Convolutional Vision Transformers (ConvShareViT)
	5.1 Introduction
	5.2 Methodology
	5.2.1 Shared Depthwise Convolution
	5.2.2 Attention Mechanism
	5.2.3 Multilayer perceptron
	5.2.4 Potential Parallelisation of ConvShareViT in 4f system

	5.3 Experiments
	5.4 Results and Discussion
	5.5 Conclusion

	6 Conclusions and Future work
	6.1 Conclusion
	6.2 Future work

	References
	A Peer-reviewed publications

