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SUMMARY

A key property of our environment is the mirror symmetry of many objects, although symmetry is an abstract
global property with no definable shape template, making symmetry identification a challenge for standard
template-matching algorithms. We therefore ask whether Deep Neural Networks (DNNs) trained on typical
natural environmental images develop a selectivity for symmetry similar to that of the human brain. We tested
a DNN trained on such typical natural images with object-free random-dot images of 1, 2, and 4 symmetry
axes. Symmetry coding was negligible in the earliest DNN layers. The strongest discriminability occurred
in the first fully connected layer, FC6, plausibly analogous to the human lateral occipital complex (LOC),
matching many structural properties of human symmetry processing. These results support the homology
between the feedforward DNN trained on natural images and the global processing of the extended visual
hierarchy as it has evolved in the human brain.

INTRODUCTION

The concept of reflection symmetry
Reflection symmetry is an abstract property of images that is ex-

pressed by the presence of similar elements related tomirror-im-

age inversion. The symmetry is defined as global when the mid-

points of the separations between multiple such elements are

aligned to form a symmetry axis (particularly when there is no

local symmetry information along this axis). The present study

addresses the question of whether computational neural net-

works trained to analyze structure in natural images have the

capability to extract pure symmetry information independently

of the presence of objects in the image. To assess this capability,

we rely on two levels of operational definition. The concept of

pure symmetry is operationally defined as the mirror-symmetry

relations occurring in a random pattern that has been reflected

in one or more axes. Such patterns contain no recognizable

objects, and the goal of the system is to be able to distinguish be-

tween such a symmetric image and one that does not contain

such mirror-symmetry relationships (beyond any that would

occur in a random image by chance alone). Thus, the second

level of operational definition is that pure symmetry processing

is defined as the ability to discriminate between symmetric im-

ages and their random counterparts. In the present design, the

control random images are obtained by randomly scrambling

the symmetry images in order to equate the probabilities of

repeated elements that are inherent in the symmetric images

(see STAR Methods for details).

The deep neural network model of hierarchical
perceptual organization in the human brain
Deep neural network (DNN) models developed for image classi-

fication have been suggested as biologically inspired models for

visual processing.1 Such DNN models have provided important

insights into the constraints on image processing, and shown

interesting relationships to the hierarchical neural organization

of image processing in the human brain as well as to behavioral

data on human perception. Examples of such relationships are:

general object recognition at the neural level, similarity percep-

tion,2,3 scene recognition,4 crowding,5 face processing,6,7 visual

search asymmetry,8 and other aspects of visual perception.9–14

The validity of the correspondence between DNN performance

and human brain organization has also been questioned in

some cases.15,16

For the Gestalt perceptual property of reflection symmetry,

one DNN study found that, unlike in human perception, symme-

try did not affect object discrimination by a DNN, suggesting that

it developed object coding without reference to symmetry rela-

tions.17 Another study18 decoded symmetry of natural images

from a five-layer DNN specifically trained for symmetry detection

with high correlation to the human rating of symmetry of natural

images. It is as yet unclear whether a DNN trained on natural im-

ages, in general, could have a selectivity for symmetry in unnat-

ural images such as random dot patterns, and to what degree its

performance would resemble human observers. We are inter-

ested in this capability because symmetry is a mid-level object

property that is largely independent of the edge processing
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and regional segmentation processes that are typically consid-

ered as the ubiquitous basis for early visual processing.

Consequently, we took a deeper look into the function of DNN

symmetry processing by probing a pre-trained ImageNet visual

DNN to discriminate abstract symmetry images, which excluded

other object information because they were based on random

texture seeds. In this way, we could test whether a DNN trained

on the typical range of image structures in the natural environ-

ment would be sensitive to the presence of various forms of

the Gestalt property of long-range reflection symmetry uncon-

taminated with other image features. The results can assess

whether the pre-trained DNN is an effective model of the mech-

anisms of symmetry perception in the human brain, where sym-

metry signals are found only in upper levels of the visual hierar-

chy.19 The key question for the present study was whether the

DNN exhibited similar properties, thus shedding light on the pro-

cesses underlying the human symmetry-processing characteris-

tics. For this purpose, we first review the relevant properties of

human symmetry perception, particularly those that distinguish

it from local form and contour perception processes that are

well-known to be the key features employed by DNNs trained

on natural images (e.g., Olshausen & Field20).

Symmetry as a canonical paradigm of mid-level vision
Mid-level visual processing is conceived as the encoding of fea-

tural properties of the world at a level of complexity above the vi-

sual processing at the local, first-order, and second-order pro-

cesses that have been known for half a century or more, but

prior to the high-level processes of full object perception and

categorization. Such visual processing divisions are somewhat

arbitrary from a purely theoretical perspective based on the infor-

mation available in the optic array (the plenoptic function,21; but

are neurophysiologically inspired by the processes that have

evolved to take place in the human brain. Although these pro-

cesses have local symmetries,22 they are not well suited to ex-

tracting the long-range symmetry structure of objects in the

world such as are found in many living organisms and much of

the human constructed environment of buildings, vehicles, pot-

tery, and so on. These long-range pattern symmetries are

formally defined in the Appendix and require specialized long-

range neural mechanisms for their encoding.

More specifically, local processing is conceptualized as the

kind that takes place in the retina, including specialized spectral

encoding, areal summation, luminance gain control, local lateral

inhibition, local contrast and color processing, and sustained/

transient specialization. First-order spatiotemporal processing

can be conceptualized as the kind that takes place in the first

levels of the primary visual cortex,23 elaborating the retinal sig-

nals to coding for orientation, scale (spatial frequency), phase

(edge encoding), motion speed and direction, binocular disparity

and the corresponding three-dimensional properties of stereo-

motion direction and orientation.24 Second-order processing

can be conceptualized as the kinds of spatial pattern interactions

that take place in higher retinotopic cortical representations,

although due to recurrent feedback interactions, their signature

can also be found in the primary visual cortex. These second-or-

der processes are spatial contextual interactions of contrast,

motion, and color as revealed by many visual illusions, Gestalt

grouping and figure/ground organizations,25,26 and long-range

spatial disparity structure encoding.27,28 One particular study

has identified neural responses specific to global symmetry rela-

tions in images,29 but otherwise the neural basis for symmetry

processing is unknown. How this progression from local to

global processing is structured in the neuroanatomy of the visual

processing hierarchy in the context of the DNN model is ad-

dressed in the Materials and Methods section.

Human symmetry perception
The detection of mirror symmetry is an important probe into the

global properties of form perception. Imposing symmetry on un-

patterned (random-element) stimulus fields ensures that it is pro-

cessed as the abstract transformation rather than via the shapes

of local pattern elements (except close to the axis of symmetry).

The ability to match an unanticipated pattern within a presenta-

tion time of less than 100 msec (and therefore less time than

required for an eye movement), reveals important parallel-pro-

cessing properties of human pattern processing. The match be-

tween pairs of symmetric pattern elements is invisible in the

Fourier amplitude spectrum, being an obscure property of the

phase spectrum, that depends on the location of the symmetry

axis. Symmetry cannot, therefore, be extracted from differential

activation strength in a particular spatial frequency channel, but

requires specialized global matching properties.

It is often said that symmetry is extracted by selective pro-

cessing of signal along the axis of reflection. However, Tyler

et al.30 showed that, with dense random arrays of dots, the sym-

metry could be detected even with the randomization of an axial

strip up to 5 deg wide, requiring pattern matching far beyond any

plausible local axis information. Moreover,31 found that the

sensitivity to symmetry as a function of eccentricity (in uniform

random-dot noise) showed a reverse eccentricity scaling, with

the axial randomization width becoming narrower with eccen-

tricity, rather than wider as would be predicted by a cortically

scaled receptive-field model of symmetry processing. These re-

sults again support a global pattern-matching model rather than

a local receptive-field model of symmetry processing. Tyler &

Hardage32 then extended this result using eccentricity-scaled

stimuli to show that patches of noise scaled out to the far periph-

ery, from 32o to 64o eccentricity, could support symmetry detec-

tion (with dynamic noise masks) for presentation durations as

short as �50 msec, equally short at any eccentricity (Figure 1A).

These conditions involve pattern symmetry at separations of 64o

on the retina, implying a truly long-range pattern-matching capa-

bility for identifying patches of symmetry pattern.

Other nonlinear and global properties of the noise-matching

process revealed by symmetry detection tasks were also re-

ported.32 Patterns of one-tenth density could be detected

more readily than those of full density, a property of second- or-

der (rectifying) rather than first-order (linear filter) systems. This

interpretation was tested by using patterns of opposite polarity

across the symmetry axis (anti-symmetry), a manipulation to

which a second-order mechanism should be impervious. Sensi-

tivity was slightly reduced at high density, though still uniform

across eccentricity. At low density, there was no significant

reduction in sensitivity for opposite-polarity relative to same-po-

larity stimuli, supporting a dominant role in the second-order
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processing of symmetry. In summary, the human symmetry

detection results combine to reveal nonlinear, long-range, global

mechanisms of pattern matching in noise stimuli, well outside

those predicted from standard simple filter models. To extend

this comparison to another relevant dimension, we reproduce

a figure from Barlow & Reeves33 of the d’ for random-dot sym-

metry discrimination as a function of the orientation of the

symmetry axis (Figure 1B) showing that there is enhanced dis-

cernibility for the vertical and horizontal axis orientations.

Here, we ask whether the canonical form deep neural net-

work(DNN), as trained on the standard vocabulary of natural

images of environmental objects34 would exhibit discrimination

results comparable to the human response to image symmetry,

not only with respect to the standard forms of abstract (random-

dot) symmetry but also for the more extreme forms of human

long-range symmetry processing, with the axis occluded (as in

Figure 1A, lower left panel) and with opposite polarity pattern

on either side of the symmetry axis.

RESULTS

Effect of symmetry across the deep neural network
layers
The primary measure of the activation difference between sym-

metry and fully random images (see Figures 2A and 2C) across

the probed gni-DNN layers (pooling and FC layers, see Figure

3B) is plotted in Figure 4A. It is computed as the L2 difference

in dB between the response maps in a layer of pairs of images,

symmetric and fully random, averaged across N = 1000 image

pairs and plotted relative to the 1-axis symmetry results at the

input layer (see STAR Methods). As shown, the differential sym-

metry activation is very low for the first two layers, then progres-

sively increases up to later layers for the 1-, 2- and 4-axis symme-

tries, with overall strength increasing with a number of axes. The

pattern is similar for the three levels of symmetry, showing a

strong increase between layers Pool5 and FC6. The same activa-

tion difference analysis for the block-randomized control images

used later as the symmetry discrimination baseline is shown in

Figure 4B. (All SEM error bars in Figures 4A and 4B are smaller

than the symbols due to the large N, and the mean values reflect

significant differences between the DNN responses for the three

symmetry types across layers.) These images have residual local

regularities that could make them distinguishable from fully

random images, as is shown by the increasing activation differ-

ences from layer Pool4 and higher, for the 2- and 4-axis block-

randomized control images (Sym2-br, Sym4-br). Note, however,

that the 1-axis symmetry has no significant signal and nodiscrim-

inability from random in any layer, indicating that the symmetry

provides no local cue that the gni-DNN can use to discriminate

it from random.

However, to assess the symmetry-specific discriminability of

the model, it is helpful to compute d-prime measures between

the activation differences for symmetry (Figure 4A) and the

appropriate baseline of block-randomized controls (Figure 4B,

see Methods/Stimuli). The d-prime measures can show signifi-

cant differences even in conditions with very low activation dif-

ferenceswhen their variability is low. The d-prime discriminability

measures between the data shown in Figure 4A with the corre-

sponding baseline data in Figure 4B are shown in Figure 4C. Pos-

itive values reflect a larger activation difference for the symmetry

images compared to the baseline of the corresponding block-

randomized control images. As shown, a large and significant

Figure 1. Human symmetry detection data

(A) Human data for the detectability of symmetry scaled in proportion to eccentricity across the visual field to on the horizontal and vertical meridians (from Tyler &

Hardage, 1996). Error bars denote ±1 SEM across trials.

(B) Orientation selectivity in the human performance of random-dot symmetry discrimination as a function of the orientation of the symmetry axis (from Barlow &

Reeves, 1979).
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symmetry effect started from layer Pool3, slightly reducing in

layers Pool4 and Pool5, then increasing again to peak at layer

FC6. In all layers from layer Pool3 and up, the d-primes increased

between 1-, 2-, and 4-axis symmetry with a maximum close to

d’ = 1 (Figure 4C, blue, orange, and yellow bars). However, it is

important to note that this level of discriminability implies that

the DNN would perform at only about 75% correct on the basis

of the output from one of these layers for the patterns of perfect

symmetry, which the human visual system would discriminate

essentially perfectly in exposures of the order of 100 ms.35

To complete the picture, we also computed the discriminabil-

ity between the block-randomized control measures (Figure 2B)

and a baseline of fully random images (Figure 2C), to produce the

d-prime measures shown in Figure 4D. These measures show

some similarity to the d-primes for the symmetry images of Fig-

ure 4C, but the values are much lower and the advantage of the

4-axis case is relatively stronger here.

Effect of symmetry type and axis
For a closer look at the effect of symmetry type, as well as

preferred axis, we focused on two layers that showed a strong ef-

fect in Figure 4C: a ‘‘low’’ layer, Pool3, and a ‘‘high’’ layer, FC6.

The results are shown in Figure 5 in the same format as in Figure 4,

with the activation results on the left and discriminability on the

right. The L2 distances increased from a low level to about 3 dB

for increasing numbers of symmetry axes in FC6 but only about

1/10th of this response for Pool3 (Figures 5A–5C, full curves).

The block-randomized control patterns show a much weaker

response with a similar increase up to about 1 dB in FC6 and

an essentially flat function in Pool3 (dashed curves). The d’ plots

(Figures 5B–5D) show that the discriminability does indeed in-

crease as more axes of symmetry are introduced. However,

although there is a big increase in the symmetry signal from

2-axis to 4-axis symmetry, there is also a corresponding increase

in the response to the block-randomized control patterns, such

that the net discriminability is not significantly increased by

doubling the number of axes of symmetry from 2 to 4. The signif-

icant discriminability of the symmetric from the randomized im-

ages implies that, somehow, the gni-DNN training on natural im-

ages gives it the surprising capability of extracting symmetry

information in random images that do not contain any of the ob-

jects on which it was trained.

A

C

B

Figure 2. Examples of stimuli used

The stimuli consisted of 1-, 2-, and 4-axis random-dot symmetry images (Sym1V, Sym2, and Sym4, respectively, top row, (A). The reference stimuli (bottom row,

C) were fully random images (3 examples shown). In addition to the symmetry images used as ‘‘Signal,’’ block-randomized control versions of the symmetry

images (middle row, (B) were paired with fully randomized images as a reference and were used as a baseline for comparison. Texel size was 4x4 pixels as shown

(except for the axis orientation study), with the blocks for order randomization being 4x4 texels in size resulting in 14x14 blocks, and the images were 224 x 224

pixels in size. Note that the differences between the fully random and the baseline (block-randomized) control images are subtle and difficult to detect, but were

sufficient to generate differences in the model’s response relative to fully random images.
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A

B

Figure 3. The model and pre-training ImageNet samples

(A) Examples of the ImageNet images used to train the DNN. Circles indicate those with a significant degree of image symmetry of predominantly 1-axis (white),

2-axis (yellow), 4-axis (pink), or 8-axis (red) symmetry.

(B) The generalized natural image DNN model of symmetry perception. The model uses an ImageNet pre-trained VGG16 network assumed to have learned the

regularities of natural images, including any naturally occurring symmetries. To test this, pairs of random-dot images with and without symmetry were used to

probe the model and compute the L2 metric between the response maps of different model layers as a measure of symmetry.
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It is interesting that layer FC6 of the gni-DNN shows signifi-

cantly greater discriminability in Figure 5D for vertical than

horizontal symmetry (while, as expected because they have no

orientation bias, the block-randomized control versions did

not show a difference). Thus, training the DNN on real-world im-

ages gives it a preferential capability for recognizing vertical

symmetries.

Effect of symmetry density
The effect of the ‘‘symmetry density’’ of the images is assessed

for layer FC6 in Figure 6, where a randomly selected proportion

of the dots in the image was replaced with random dots contain-

ing no symmetry information. The three curves for the different

numbers of symmetry axes separate as expected toward the

100% symmetry level, but it is interesting that they converge to

about the same low, but significant, symmetry response level

by the 40% proportion of symmetry. Beyond this point, the

curves increase roughly with the square of the symmetry per-

centage, as expected for some form of correlation process.

Orientation specificity
The orientation specificity was explored further by reducing the

texel size to 1 pixel and windowing the targets in a circular aper-

ture (see Figures 7A and 7B). This allowed the targets to be

rotated through 8 orientations to test the orientation specificity

of the gni-DNN, with the results shown in Figures 7C–7F. All

curves are plotted relative to the random condition for the corre-

sponding dot size. As shown, the strongest symmetry effect was

found in the cardinal orientations (0o and 90o), necessarily similar

for the 2-axis symmetry (solid red lines) but with differential re-

sults for 1-axis symmetry (solid blue lines) depending on the

gni-DNN level. Performance was similar in both axis orientations

in Pool3, but also for the block-randomized control patterns

(dashed lines in Figures 7C and 7E). By layer FC6, however,

the response was much stronger for the vertical (0o) orientation

for the 1-axis symmetry but showed little variation for its block-

randomized versions. Thus, the discriminability at FC6 retained

this strong vertical axis preference, whereas it was a weaker ef-

fect in Pool3.

Two-axis symmetry showed a strong cardinal axis preference

at both processing levels. Note, however, that the combined re-

sults in layer FC6 are compatible only with a single (vertical) axis

preference since the 2-axis symmetry is ambiguous in that it has

an axis on the vertical for both cardinal orientations, whereas the

1-axis symmetry is discriminative in that only the vertical axis

shows the enhancement.

Effect of image size
Oneway to assess the performance of early versus later layers of

the gni-DNN is to study the effect of image size, as shown in Fig-

ure 8 for the discrimination performance with the original image

format of Figure 2. The pattern of results is similar for all three

levels of symmetry. In the early layer (Pool3), discrimination per-

formance improved dramatically up to an image width of about

A

DC

B

Figure 4. The effect of symmetry across the gni-DNN layers, for the different symmetry types

The results were obtained with a texel size of 4x4 pixels, for vertical 1-axis, 2- axis, and 4-axis symmetry, referenced to fully random images (left column, A and C)

and for an additional baseline computed from block-randomized control images for the three types (right column, B and D). The activation difference in dB for the

different layers relative to the 1-axis symmetry results at the input layer are plotted in the upper row (A and B). The discriminability measure (SNR as d’) is plotted

on the lower row (C and D), with the SNR between the symmetry measures and the block-randomized baseline in (c), and the SNR between the block-randomized

control images and the fully random images (i.e., fully random vs. fully random activation diff) in (D). Error bars denote 1 SEM across N = 1000 images for the

activation values in (A and B), and across 10 bins of 100 images in (C and D).
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14 texels but leveled off beyond that, implying that increasing the

image area (or total number of texels) by a further factor of 16 has

little advantage. Thus, even though the total length of the sym-

metry axes is quadrupling over this range, the performance

only improved by 30% or less beyond 24 texels, implying that

the gni-DNN is only performing local processing up to layer

Pool3. The FC6 performance, on the other hand, shows weaker

discrimination for the smaller sizes but continues to improve

strongly over the range beyond 14 texels, with improvements

of 230–300%. Thus, the later fully connected layer draws from

amuch larger area of the pattern and ultimately wins out in terms

of discrimination performance.

Effect of a gap around the symmetry axis
The final issue was to probe the role of paraxial symmetry infor-

mation with an analysis of the effect of gap size on the symmetry

response. In order to eliminate the possibility of local processing

of symmetry, by the relative activation in classical symmetric vs.

asymmetric receptive fields (corresponding to the enhanced

activation along the symmetry for cosine wavelet analysis of

symmetry patterns), the introduction of a gap between the

mirror-symmetric fields showed that symmetry was still perceiv-

able In human studies, though at substantially reduced

levels.32,33 The latter study also included a condition in which

the dot contrast polarity was inverted across the symmetry

axis. Nevertheless, performance was quite similar to the same-

polarity condition for all gap sizes, indicating that human mirror

symmetry processing has a large second-order (polarity-insensi-

tive) component.

For comparison with this result, the gni-DNN performance was

tested with stimuli composed of strips of 1-axis symmetric

random pattern separated by various distances (Figure 9A).

Gaps from 0 to 32 texels were tested on vertical 1-axis symme-

A

DC

B

Figure 5. The basic symmetry effect

The L2 difference between the activation maps of

a layer was computed for each pairing of random-

dot symmetry images with a fully randomized

reference image (N = 500 images). To control for

local n-gram structure, the same comparison was

run for block-randomized (4x4 texel blocks) con-

trol images. The results are shown for layers

Pool3 (A and B) and FC6 (C and D). The left plots

(A and C) show the activation difference in dB

relative to a baseline of Sym0 (fully random) im-

ages, for 1-axis H,V, 2-, and 4-axis symmetry

images (solid lines), and the corresponding block-

randomized versions referenced to sym0 images

in dotted lines. The right column (B and D) plots

the discriminability measures (signal-to-noise as

d-prime) for the data in (A and C). As shown, the

patterns of results for the early (Pool3) and later

(FC6) channels were similar, though with a much

smaller difference in dB for the Pool3 results, and a

slightly worse discriminability power (d-prime).

Error bars denote ±1 SEM across images.

try. Note that the Cartesian coordinates

of these stimuli correspond to the cortical

projection of the radial stimuli of the stim-

uli of Tyler & Hardage,32 which were designed to take into ac-

count the approximately polar transform of information from

the retina to the cortex. As for the previous gni-DNN analysis,

the gap-stimulus analysis included discriminability from a base-

line of block-randomized control images, as well as from a base-

line of fully random images.

The result is that the d-prime for 1-axis symmetry discrimina-

tion (Sym1 relative to Sym1-br) for Pool3 (Figure 9B) began at a

high level and was rapidly reduced as gap size was increased,

falling to zero at a gap size of 4 texels and remaining close

zero for all larger gap sizes. For FC6, a similar pattern was

observed for small gap sizes, but the symmetry discrimination

stayed almost constant for the 4-texel gap size and larger, at

around a d-prime of 0.6 (Figure 9C). We made two consistency

checks, showing a very similar d-prime effect for fully random

baseline images (Sym1/Sym0) as for the block-randomized con-

trol (Sym1/Sym1-br), as shown by the blue vs. red plots in Fig-

ure 9, as well as close to zero effect for all gap sizes for block-

randomized images relative to fully random (Sym1-br/Sym0, in

yellow). Moreover, the results for the inverse-polarity symmetry

images (Figures 9D and 9E) were very similar to the results for

the same-polarity ones (compare Figures 9C and 9E). In sum,

the strong discriminability for 1-axis symmetry with large gaps

in FC6 (blue curve in Figure 9C) is clear evidence that the gni-

DNN can process symmetry by mechanisms beyond the differ-

ential activation of local cosine receptive fields, such as long-

range pattern matching, for example.

Themanipulation of inverting the contrast polarity of one of the

pair of symmetric fields in the symmetry stimulus is interesting

because it probes whether the symmetry processing is first-

order (polarity-specific) or second-order (polarity-blind). If the

symmetry were processed in the brain through the symmetry

properties of even-symmetric simple-cell receptive fields, it
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would be polarity-specific. (Note that, if the local processing was

based on a combination of even- and odd-symmetric receptive

fields, or Gabor filters of all possible carrier phases, the net acti-

vation would not be symmetry-specific. It has to encode a

matching reflected pattern of activations across receptive field

positions and sizes in order to discriminate symmetry per se.).

If, on the other hand, it were processed by more specialized

pattern-processing mechanisms later in the visual processing

hierarchy,19 it might be expected to be polarity blind, as was

largely found by Tyler & Hardage.32 And if the gni-DNN is a valid

reflection of human visual processing, it should be expected to

exhibit a similar degree of polarity blindness as human visual

processing. It is interesting, therefore, to find that the gni-DNN

discrimination performance is virtually identical as a function of

gap size for opposite-as same-polarity symmetry patterns at

both low and high levels in the DNN hierarchy (Figure 9).

DISCUSSION

The goal of this study was to assess the performance of a canon-

ical 8-level deep neural network to process the formal property of

reflection symmetry in object-neutral symmetry images in the

absence of any object-specific information in the set of test

images.

Processing levels
The performance of the generalized natural image Deep Neural

Network (gni-DNN) with object-neutral, pure symmetry images

showed that it was able to pick up information about the symmetry

property per se, in the absence of any object-specific information

in the set of test images. In one sense this is surprising since few

random images of the natural environment would have image

symmetry about the central axis. On the other hand, it turned

out that many of the objects in the training set had inherent sym-

metries, such as the bilateral symmetry of most organisms, or the

artificial symmetry of constructed objects and the symmetric

viewpoints chosen to depict them (see Figure 3A).

In the 8-level DNN employed in this study, the first two main

layers (Pool1, Pool2) showed no significant symmetry response

(Figure 3). This is an interesting result that matches the symmetry

response of the human brain determined by fMRI studies, which

shows no differential symmetry/random response in the first

three layers of the human visual hierarchy (V1-3,19,36,37 even

though they give the strong visual impression that there is a spe-

cial appearance along the axis of symmetry, which evokes com-

parison with a totem pole of stacked symmetric faces and crea-

tures. In fact, the main human symmetry response in those

studies occurs beyond the primary visual hierarchy in the lateral

occipital complex, a mid-level visual integration area that en-

codes many elaborated object properties. There is very little

symmetry response in the rest of the brain if no explicit task is as-

signed to the participants.

Beyond the first two layers, the gni-DNN response builds up

from layer Pool3 to a sudden increase at layer FC6, then levels

off for layers beyond that (Figure 4). The build-up is reminiscent

of the corresponding level in the human cortex where symmetry

processing becomes manifest through increased fMRI activa-

tion. However, the gni-DNN performance differs in that the acti-

vation continues unabated to subsequent levels beyond FC6,

but symmetry activation is not evident at higher levels in the hu-

man brain. The inference is that the gni-DNN continues to oper-

ate inmid-level visionmode as far as this version is implemented,

while the human brain continues the abstraction process to

higher-level object recognition and scene processing, for which

the symmetry is no longer relevant once the objects have been

recognized.

N-gram structure
A unique aspect of this study is that it identifies the n-gram

structure implicit in the symmetry operation. Although the

only operation used to generate a symmetric image from the

purely random base arrays was to repeat the half-image after

a symmetry-reflection flip, the result includes local structure

at the n-gram level as explained in the introduction, which al-

lows the symmetry to be picked up from an increased response

variance from the local repeated elements in the image as a

whole.

A significant aspect of the block-randomization discrimination

procedure is that it also removes the consistent symmetry infor-

mation extending along the horizontal and vertical symmetry

axes at the scale of the blocks in the full-size images. Thus, to

the extent that symmetry detection is mediated by such local

A B

Figure 6. The effect of the symmetry type

and density

The symmetry density (percentage of symmetric

texels) was manipulated by mixing symmetric

images and their block randomized counterparts

with some proportion of fully randomized images,

referenced to fully randomized images. The plots

compare 1-axis vertical, 2-, and 4-axis symmetry.

(A) Activation differences as a function of percent-

symmetry referenced to fully randomized images

and presented in dB relative to the zero-symmetry

condition for each type.

(B) The same data presented in d-prime values, as

the difference between the symmetry measures

and the corresponding block-randomized control

images expressed in SD units. Note the steep in-

crease of the symmetry effect with the percentage of symmetry points from 60%. Data were averaged across N = 1000 images of 56x56 texels. Error bars

denote ±1 SEM.
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paraxial content, it should be eliminated under this manipulation,

as is the case for block-randomized control discrimination for

single-axis symmetry. However, some local symmetry informa-

tion of this type will remain from the oblique symmetry axes in

the 4-axis symmetry case. The data of Figure 4 show that a

low level of symmetry detection performance remains for 2-

and 4-axis detection for Pool5 and beyond. Since the symmetry

information is eliminated by block-randomization in the 1-axis

case, this multi-axis performance is attributable to the residual

variance cue of higher overall variance in the symmetry than

the fully random patterns.

Mid-vs. high-level processing
The remainder of the study focuses on differences in symmetry

processing between the mid-level layers (represented by

Pool3) and the high-level layers (represented by the FC6 layer)

of the gni-DNN. The response to the symmetry vs. random pat-

terns is roughly proportional to the number of symmetry axes in

A

D

E F

C

B
Figure 7. The effect of symmetry axis orien-

tation on the symmetry effect

The random dot stimuli were rotated in 8 orienta-

tions in a circular window, with 1 pixel per texel to

avoid rotation artifacts. Error bars denote ±1 SEM.

(A) Example of stimulus image of 2-axis symmetry

(Sym2) rotated by 22.5o; (B) a similar Sym2 image,

block-randomized (16x16 pixel blocks) before

rotation, used for computing a baseline.

(C and E) Activation differences between sym-

metry and fully randomized reference images for

1- and 2-axis symmetry as a function of symmetry

axis orientation, expressed in dB relative to the

block-randomized condition of Sym1, for layers

FC6 in (C) and Pool3 in (E), plotted in solid lines,

with the corresponding baseline measures (block-

randomized control stimuli) plotted in dotted lines.

(D and F) The corresponding discriminability

measures are computed as the difference be-

tween the symmetry effect and the control effect in

SD units (signal to noise ratio as d-prime), for layer

FC6 in (D) and Pool3 in (F). As shown, the stron-

gest symmetry effect was found in both cardinal

orientations of 2-axis symmetry, while the 1-axis

symmetry conditions showed that it was much

stronger for the vertical for in layer FC6, but less so

in layer Pool3.

the image (1, 2, or 4). In terms of discrim-

inability (Figures 4B and 4D), consider

first the 1-axis case, which was tested

in two orientations. Although the mid-

level response (Pool3) was the same for

the two orientations, the high-level

response was significantly stronger for

the vertical than the horizontal orienta-

tion, implying that the vertical axis prefer-

ence is a function of the longer-range

processing available at FC6, whereas

the processing is predominantly local at

Pool3.

The increased number of axes provides enhanced discrimina-

bility in both Pool3 and FC6, but it is notable that there is no sig-

nificant improvement for the 4-axis over the 2-axis discriminabil-

ity. This saturation effect is attributable to the significant increase

in block-randomized discriminability for the 4-axis over the 2-axis

patterns, implying that the 4-axis advantage in basic symmetry

response is attributable to the local symmetry information that is

not canceled by the block-randomization control procedure.

However, it should be recognized that these d-prime levels are

not sufficient for the gni-DNN to provide an accurate symmetry/

random decision for each individual image, as could the human

visual system. This level of performance ismore similar to the hu-

man performance found for short (e.g., 50 msec) exposures by33

and,31 while these targets would be perfectly discriminable for

the entire stimulus set with longer (e.g., >100 ms) exposures.

In this sense, the gni-DNN is operating equivalently to the pri-

mary response of the human visual hierarchy, not to the full pro-

cessing of image structure the human brain.
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Orientation specificity
Like humans, the gni-DNN shows a substantial performance

boost for symmetry on the cardinal meridians (horizontal and

vertical axes; Figures 4 and 5). This anisotropy could only derive

from the natural-image training of the network since the symme-

try patterns were simply rotated versions of each other. The

weaker performance in the oblique orientations is consistent

with the oblique effect in human vision, as has been established

both for contrast sensitivity38,39 and for symmetry detection.35,40

The latter authors found that both cardinal orientations were

more detectable than other orientations in long (2 s) presenta-

tions, but that the vertical axis symmetry predominated for brief

(150 ms) presentations.

Range of symmetry discriminability
The final issue to be examined was the degree to which the sym-

metry response was derived from paraxial vs. long-range infor-

mation, as developed in the introduction. This question was ad-

dressed by restricting the symmetry and control patterns to

narrow strips of 1-axis and 2-axis texels and moving them apart

so that they were separated by gaps of various sizes, without

changing the amount of pattern information in the image as a

whole. Under this manipulation, the symmetry responses drop-

ped precipitously as soon as a small gap was introduced be-

tween the strips, implying that the gni-DNNwas drawing the ma-

jority of the symmetry information locally from around the axis

(see Figure 6). This suggests the interpretation that the gni-

DNN was deriving the symmetry estimate from something such

as even-vs. odd-symmetric receptive fields lying along the

axis, with the predicted proportion of activation response rising

from 0.5 even-symmetric activation for random patterns to 1.0

for fully symmetric patterns. The fact that the behavior was

similar for inverse-polarity symmetry could be attributed to the

even/odd ratio deviating in the other direction, from 0.5 for

random patterns to a 0.0 even-symmetric proportion on the

axis for fully inverse-symmetric patterns.

Beyond the 4-texel range, a residual symmetry-specific

response remained in the FC6 layer at about the same level all

the way out to gaps of 32 texels. This behavior implies the oper-

ation of a long-range process similar to that identified by

Barlow & Reeves32 for humans, which not only extended across

the entire visual field as far as could be tested but was only

marginally degraded for the long-range detection of inverse-po-

larity symmetry. The latter property of undiminished long-range

discriminability, for both the human and the gni-DNN perfor-

mance, implies that the image symmetry is processed by a sec-

ond-order, contrast-polarity-insensitive processing mechanism.

Thus, although humans are perceptually aware of whether the

dots and the local patterns they form are black or white, the

symmetry structure (and presumably other form descriptors) is

processed as a sign-insensitive property to both humans and

machines.

Conclusion
One of the key properties of the world around us is the mirror

symmetry of many kinds of objects found in it. Notably, symme-

try is an abstract visual property with no definable template

matching involved. To assess whether DNNs trained on a gen-

eral natural-image database (gni) typical of the cultural environ-

ment experienced by human brains would encode the symmetry

of image structure, we probed the symmetry-specific perfor-

mance of standard feedforward gni-DNN with pure (random-

dot) symmetry images that would not typically be encountered

in that environment. The results reveal that the gni-DNN discrim-

ination performance was similar to that of humans in many re-

spects, including the effects of symmetry axis orientation, num-

ber of symmetry axes, and texture separation around the

symmetry axis, even in extreme cases of widely separated strips

with symmetry present only in matching or polarity-inverted

form. In particular, the results showed that there was no signifi-

cant coding for abstract symmetry in the earliest layers of the

gni-DNN, and its strongest discriminability was found in the first

fully connected layer, FC6, plausibly analogous to the human

Lateral Occipital Complex (LOC), where symmetry coding is

first identified in human fMRI studies.19 In more detail, this area

can be distinguished from more elaborated processing of the

Figure 8. The effect of image size on the symmetry effect

Image size was varied from 4 to 56 texels of image width. The discriminability (signal-to-noise, as d-prime) is plotted for 1-, 2-, and 4-axis symmetry relative to

corresponding block-randomized control images for each symmetry type for two layers: Pool3 (red symbols) and FC6 (blue symbols). Error bars denote ±1 SEM

across 10 bins of 150 images (N = 1500 images per condition). As shown, the symmetry effect increased with size, but for the early layer (Pool3) it saturated early,

while for the higher layer (FC6) the integration spanned the whole range, starting slowly but ultimately reaching a higher level of discriminability.
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posterior fusiform gyrus, which is specialized for face processing

and other complex object stimuli, but is insensitive to image

symmetry per se.41 The same study identifies a cortical special-

ization for image symmetry as being co-locatedwith the occipital

face area (OFA), a subregion of the LOC, which would therefore

be the portion of LOC homologous with layer FC6 of the gni-

DNN. The posterior fusiform gyrus (PFG), on the other hand,

would be excluded by virtue of its insensitivity to image

A

D E

CB

Figure 9. Effect of vertical gaps on the symmetry effect

Gaps of 0, 2, 4, 8, 16, and 32 texels (of 4x4-pixels) were tested in vertical 1-axis symmetry (Sym1), both same polarity and inverse polarity, to explore non-local

effects.

(A) Examples of stimuli used, with 0-, 4-, and 32-texel gaps of the same polarity (3 right panels) and no gap inverse polarity (left panel).

(B–D) Discriminability (signal-to-noise, as d-prime) is plotted for Sym1 relative to the corresponding block-randomized control images (Sym1-br) as well as

relative to fully random images (Sym0), with Sym1-br relative to Sym0 for comparison of the local vs. long-range selectivity; (A and B) same-polarity and (D and E)

inverse-polarity symmetry; (B and D) for Pool3 and (C and E) for the FC6 layers. Error bars denote ±1 SEM across 10 bins of 200 images (N = 2000 images per

condition). As shown, the symmetry effect decreased rapidly with the gap size, reached zero for the 4-texel gap in Pool3, but maintained an almost constant level

of discriminability around d’ = 0.6 in FC6 (dashed lines in c). The discriminability of Sym1-br control stimuli relative to Sym0 was close to zero for all gap sizes.
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symmetry per se. (In,41 the PFG area was sensitive to object

inversion with the same symmetry but insensitive to changes

from symmetric to asymmetric 3D poses of the same object,

while the OFA responded in the opposite manner.) In this way,

the present study expands the range of homology between the

feedforward gni-DNN trained on natural images and the early vi-

sual hierarchy of the human brain with respect to an important

aspect of visual object processing, the abstract processing of

object-independent symmetry structure.

Limitations of the study
This study shares the general limitation that there is no absolute

proof of the underlyingmechanism for any neuroscientific perfor-

mance result, be it neurophysiological, biochemical, psycho-

physical, or through mathematical modeling. The inferred mech-

anism is always based on inferences from empirical evidence

relative to control conditions that are designed to eliminate all

factors other than the one that is the focus of a particular study.

However, it is difficult to define the perfect control that truly elim-

inates all possible factors for any particular stimulus, as has

become evident in functional imaging studies, in particular. In

the present work, we have come closer than any other study of

symmetry processing with the block-randomized controls. How-

ever, just as the brain is a black box, the gni-DNN is a black box

whose processing has to be inferred from the distinction be-

tween the test and control stimuli, which is designed to equate

the responses of all known types of local cortical receptive fields

(other than the explicitly second-order symmetry neuronal

response coding reported29). The discriminability for long-range

symmetry structure relative to these block-randomized controls

in Figure 9 is therefore the strongest evidence that we can

envisage for the operation of long-range symmetry processing

by the gni-DNN.

Given the relative and implicit measure of symmetry we obtain,

it should be noted that we do not claim that the gni-DNN can

‘‘detect’’ symmetry but that it ‘‘has a selectivity for symmetry

similar to that of the human brain,’’ and that it ‘‘encode(s) the

symmetry of image structure.’’ These claims are based on differ-

ences in the main activation patterns in the fully connected

layers, which are not seen in the earlier pooling layers. Neverthe-

less, themodel’s selectivity for random-dot symmetry could also

be obtained from a single image by computing the L2 difference

between the activation patterns for that image and a block-ran-

domized version of that image (here ‘‘activation diff’’). If statisti-

cally significant, this ‘‘activation diff’’ would then provide a mea-

sure of the selectivity of the gni-DNN for the symmetry of this

single image.

Another limitation of the study is that we did not explore mea-

sures other than the L2 for the differences in activation patterns

evoked by symmetric and random images, such as simple activ-

ity distribution properties or the existence of ‘‘symmetry sensitive

units.’’ For example, one of our reviewers suggested that in the

upper layer (FC8), units associated with the image category of

symmetric objects (rather than the structural symmetry per se)

might be more activated in response to random-dot symmetry

compared to fully random. However, we consider this an overin-

terpretive projection of the human designation of the category

membership onto the inner workings of the DNN, which would

have to develop its category discrimination based on local bot-

tom-up information. This evaluation is consistent with the current

results because the present measures do not just separate

random from non-random but reveal similarities to various struc-

tural characteristics of human symmetry perception and how

they build up across the DNN layers.

As with most DNN studies, the architecture of the gni-DNN as-

sessed in the present work had homogeneous spatial sampling

across the image space, whereas a more realistic model of hu-

man visual processing would incorporate the cortical scaling

factor of a radial gradient of progressively coarser spatial resolu-

tion in peripheral vision (as reflected in the stimuli employed for

Figure 1A). On the other hand, this polar transformation that hu-

man visual processing incorporates from retina to cortex implies

that the human cortical processing is effectively Cartesian there-

after, making it analogous to the DNN with Cartesian input to its

initial layer. Thus, in specific reference to Figure 1A, it is the case

that the psychophysical performance is uniformwith eccentricity

when the stimuli are scaled in proportion to the distance from fix-

ation, whereas performance falls with eccentricity when the

stimuli are uniform in a manner similar to the initial parts of the

discrimination functions of Figure 9.

However, in contrast to the retino-cortical scaling, human

perception is strongly Cartesian across the primary perceptual

field of conscious awareness (such that a physically regular

grid appears to have regular spacing, not the profound distortion

of its neural projection onto the primary visual cortex). This visual

appearance implies that the accessible perceptual representa-

tion retains the homogeneous spatial relationships despite the

polar sampling of the retinal input.
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Appendix

Although the above contextual interactions are sometimes classified as mid-

level vision, here we adopt a more discriminative definition of mid-level vision

as referring to properties that are represented by long-range abstract relation-

ships rather than being progressive concatenations of low-level features such

as the ubiquitous Gabor filters. These long-range relationships are the Gestalt

principles, which have never been mathematically formalized to our knowl-

edge, although initial attempts have been made by42 and.43 Thus, we treat

mid-level (spatial) vision as consisting of relationships such as

fðr0Þ = T½ fðrÞ �

where r is a region of space, r’ is a displaced replication of that spatial region,

and T[ ] is some transformation operator.

Thus, for example, this relationship would form a plane-perspective operation

if T[ ] was a scale change, or could represent a closure principle if r’ defined line

extension for a curved line element and was a complete set. In the present

study, the transformation to be considered is the mirror symmetry of a 2D

pattern at location r’ relative to that at location r, such that r(f, q) = r(f, -q),

where f, q are frontoparallel Cartesian axes. The same principle can be gener-

alized to the specification of relative proximity (when applied to the spacing be-

tween elements) and common motion (when the long-range transformation is

on a spatiotemporal variable). Further long-range Gestalt relationships that are

less amenable to such formalization are those of 3D structural inference, amo-

dal completion, and figure/ground relationships.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Deep neural network model
As a DNN model for pure symmetry, we used a standard VGG-16 Convolutional Neural Network architecture44 that has been pre-

trained on approximately 1.2 million images from the ImageNet Dataset34 to classify images into 1000 object categories. A sampling

of these images is depicted in Figure 3A, illustrating that they are not only images from nature, but predominantly images from the

human cultural sphere, in which a substantial proportion have strong reflection symmetries onmultiple axes. It is also noteworthy that

these images were often photographed from a symmetric viewpoint, so that they contain strong image symmetry (which would

seldom be the case if photographed from a nonselective viewpoint). There is thus a substantial degree of image symmetry in the im-

age training set.

The model is depicted in Figure 3B, where the zero-symmetry reference and signal symmetry images are shown at left, and the

various processing layers of the hierarchical DNN are depicted by the stacks of square plates at right. A stack of plates of the

same size represents the convolution layers of one level in the hierarchy with different parameters for the input processing at that

level, such as different orientations, sizes, and so forth of the local processing units at that level. Each level represents a smaller array

of processing units encoding a more abstracted representation than the previous level. There are 8 levels pooling from each layer to

the next, with 5 layers of max-pooling (in red, labeled as Pooling 1–5) and 3 levels of fully-connected layers (labeled as Fully Con-

nected 6–8). In the analyses we probe the 5 pooling layers Pool1 to Pool5 and the last 3 fully connected layers FC6 to FC8. In addition,

we also probe the input layer for validation of the analyses.

In the context of this DNN architecture, we can make the comparison with the neuroanatomy of the biological image processing in

the human brain. We note that this organization consists of a hierarchy of processing layers involving progressive convergence and

specialization of the information processing from one layer to the next, in the form of the receptive field organization of each layer. In

overview, this convergence and specialization operates for 5 parallel processing layers (retina, lateral geniculate nucleus, V1, V2, V3)

before breaking into an array of more specialized aggregation centers for color, motion, depth structure, and so on (e.g., Maunsell &

van Essen45), many of which are located in the association cortex of Brodmann area 19, now often known as the lateral occipital cor-

tex (LOC), which hasmuch in commonwith the region designated as V4 in themacaquemonkey, although the older literature46 would

suggest that this full convergence is not achieved until the next neuroanatomical layer, which is the inferotemporal cortex (IT) in ma-

caque. Thus, it is roughly at the level of the 5th or 6th processing layer that the primate visual cortex can be regarded as fully con-

nected, making LOC or IT the plausible neuroanatomical analog of the first fully-connected layer of the visual processing hierarchy

of Figure 3.

METHOD DETAILS

To assess pure symmetry independent of recognizable objects, we used the standard ImageNet-trained VGG16 network model44 to

compute the average L2 distance from zero symmetry, for sets of random-dot symmetry images with one, two, and four axes of sym-

metry. To identify the fact that this DNNwas trained on a general database of natural images, we term it a gni-DNN. The various stim-

ulus conditions are described in Figure 2 and below, while the model used for the analyses is depicted in Figure 3 and described in

detail below (see Model).

Stimuli
Example stimuli are shown in Figure 2, with detailed information on stimulus parameters appearing in the figure caption. The stimuli

consist of purely random spatial noise with a uniform intensity distribution (Sym0, Figure 2C), vertical reflection symmetry around a

central axis for the same kind of noise (Sym1 Vertical), and two and four axis reflections (Sym2 and Sym4), all shown in Figure 2A.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Code (MATLAB) and pre-computed data This paper https://doi.org/10.17605/OSF.IO/8F7YT

Software and algorithms

MATLAB R2022a Mathworks www.mathworks.com
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Thus, in MATLAB terminology, these symmetries are given by the following, where R is a random n � nmatrix of decimal numbers in

[0 1], and k = texel size (and where k = 4 in all experiments except one):

Sym1V = ½R;Rð2 � k � n : � 1 : 1; : Þ�;

Sym1H = ½R;Rð2 � k � n : � 1 : 1; : Þ�0;

Sym2 = ½R;Rð :; k � n : � 1 : 1Þ; Rðk � n : � 1 : 1; : Þ;Rðk � n : � 1 : 1; k � n : � 1 : 1Þ�;

Sym4 = ½R1;R1ð :; k � n : � 1 : 1Þ; R1ðk � n : � 1 : 1; : Þ;R1ðk � n : � 1 : 1; k � n : � 1 : 1Þ�;
where R1 = kronðR;onesðkÞÞ; and R is symmetric around the diagonal, Rði; jÞ = Rðj; iÞ for all i; j.

It is noticeable in Figure 2A that the symmetry structure becomes progressively more salient as the number of axes increases.

The gni-DNN processing for discriminating the symmetric stimuli was assessed with respect to that for the null stimulus

of Sym0.

As described in the introduction, two kinds of symmetry information can be distinguished in these stimuli. One is the local structure

around the axis of reflection, which is constrained to have even symmetry (cosine phases of its Fourier component representation) at

the scale of the local cortical receptive fields. The other is the long-range symmetry relations, the fact that the patterns in local

patches away from the symmetry axis should match after a reflection operation. Although this long-range information is formally

equivalent to the local structure constraint in terms of a complete Fourier description, the long-range symmetry relations are inac-

cessible to the kinds of local (complex Gabor) processing units known to exist as receptive fields in the human cortex, and thus pre-

sumably also in a DNN trained on the natural image array (as the brain has been). This distinction is an empirical question of the kind

that the present study is designed to address. In order to differentiate between the discriminability of the local and long-range aspects

of the symmetry information by the gni-DNN, we introduced strips of random dots extending various distances around the symmetry

axes of the symmetry stimuli in order to eliminate the local axis information and restrict the processing to the long-range information

alone.

Control stimuli

One issue with such stimuli is that, in addition to the symmetry structure of matching local elements around and equidistant

from the symmetry axes, the symmetry stimuli have pattern redundancies not present in the random pattern (Sym0). For

example, the Sym4 pattern consists of 8 identical triangular patches in an alternating symmetrical arrangement. It

would thus be possible to discriminate the symmetrical patterns from the random one (and from each other) purely on the basis

of the elemental histogram statistics, without recourse to any higher-order (n-gram) spatial relationships (see Julesz &

Bergen47).

To avoid this potential confound, the basic comparisons were rerun with patterns of the form shown in Figure 2B, where block-

randomized control patterns (BR) are made by breaking the symmetry image into texel blocks of 4x4 pixels and re-arranging

them in a random permutation order, which gives similar perceptual impressions to the purely random ones, but eliminates the dif-

ferences in histogram between the symmetric and null patterns for each symmetry type. The random permutation of image blocks

was made by the function randblock() (Jos van der Geest, https://www.mathworks.com/matlabcentral/fileexchange/17981-

randblock, MATLAB Central File Exchange).

This novel manipulation, combined with the randomization along the symmetry axes, is a stringent test of the ability of the gni-DNN

to extract pure long-range symmetry information, such as (a) its presence along extended axes of symmetry, (b) the mirror reflection

of salient patterns at long distances from the axes, and (c) the tendency to form recognizable shapes with multiple numbers of sym-

metry axes. All these types of extended symmetry structure are eliminated by the block-randomization procedure, which confines the

residual information to local self-similar blocks in random locations. Although strongly degraded, this local n-gram self-similarity is

thus still present in the block-randomized images (though completely absent in the fully random images). The block-randomized con-

trols were then used as a rigorous base for the discriminability of the long-range information in the full symmetry relative to the scram-

bled symmetry images.

It is therefore an empirical question whether this kind of information is accessible to the mid-level processing at the intermediate

stages of the gni-DNN, which in turn are likely to mimic aspects of the mid-level processing of human vision, or of biological vision

in general. This is an interesting issue because mid-level biological vision is not necessarily accessible to conscious perception

and will not necessarily be detectable in psychophysical studies. Such kinds of higher-order regularities have, however, been

shown by Tyler42 to be perceptually accessible, though not specifically in this novel block-randomized symmetry paradigm. These

mid-level vision attributes, if detectable in the gni-DNN output, could then be a target for direct neural response investigations.

(Note that the randomization of the blocks will preserve the local mirror-reflection relationships within each block, though strongly

disguised by the random global reordering, whereas different properties were preserved to higher order in the previous papers.

Control studies were therefore run to determine the gni-DNN discriminability of the block-randomized stimuli relative to the full

random ones.).
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QUANTIFICATION AND STATISTICAL ANALYSIS

The basic computation for the DNN symmetry effect for a given layer (see Figure 3B) was as follows: (1) Compute the activation dif-

ference for pairs of images, a ‘‘signal’’ of one symmetry image and a ‘‘reference’’ of a fully randomized image, by (a) computing the

layer activation map for each image used as the DNN input; and (b) computing the L2 (or Euclidean) distance between the response

maps of the two images in a pair, resulting in one positive scalar value per image pair for that layer; (2) Compute a scrambled baseline

control activity level per condition by using ‘‘block-randomized’’ symmetry images as ‘‘signal’’ in the procedure of (1) above. This was

done to assess local regularities associated with the symmetry images as explained in Stimuli (above), rather than the full effect of

mirror symmetry; (3) Compute the discriminability between the signal activation difference (S) described in (1) and the baseline used

as ‘‘noise’’ (N) described in (2) for multiple image pairs (500–2000 depending on the experiment). This was implemented by first con-

verting both vectors to log ratios (dB), and then computing a d-prime (d’) or signal to noise ratio (SNR) values in this metric (log dis-

tance between the means expressed in standard deviation (SD) units as log(SAV/NAV)/SD, where SD (scalar) is, as in Cohen’s D, the

Euclidean norm of SSD and NSD divided by O2. For computing error bars for the d-primemeasures, we divided the data into 10 bins of

image pairs and computed the average and standard error of themeans (SEM) across the d-prime values for these bins. This compu-

tational scheme was used for the various discriminative conditions analyzed in the study.

To summarize the terms, we use: (a) ‘‘Activation Diff’’ – activation L2 differences, in arbitrary unis, plotted in dB ‘‘relative to’’ some

appropriate value; (b) ‘‘Relative to’’ - used for plotting Activation Diffs (see (a)), determines the zero in the plot (c) ‘‘Referenced to’’ for

computing ‘‘activation diffs’’, e.g., from fully random images; (d) ‘‘Discriminability’’/SNR/d-prime - between Activation Diffs of Symx

and Symx_br; (e) ‘‘Baseline’’ – for discrimination, i.e., the Activation Diff measure from which to compute discriminability.

The analyses were run on a GTX 2080Ti GPU, in MATLAB (Natick, Massachusetts) using its Deep Learning Toolbox, with the sim-

ulations broken into up to 20min segments and repeated asmany times as needed. Results are discussedwhere they are statistically

significant by the criterion that they exceed differences of 3 SEMs, for the larger of the two SEMs of the means being compared.
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