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Abstract—The latest 6G innovations envision various global
benefits beyond connectivity. One of the pressing issues which can
be potentially addressed by 6G is environment sustainability and
reaching net-zero. Recent research proposes 6G-enabled commu-
nications for peer-to-peer energy exchange among various entities
including grid and Electric Vehicles (EVs). The surplus energy
stored in EVs is proposed to meet the increasing demands and
reduce burden on grid through Vehicle-to-Grid (V2G) technology.
However, the supply from EVs may not completely meet the rising
energy demands. Meanwhile, the backup batteries of 6G base
stations (BSs) can be effectively utilized to supply energy to the
EVs or grid. This paper explores the concept of bidirectional
Telecom-to-Grid (T2G) and Telecom-to-Vehicle (T2V) energy
exchange and its integration with vehicular edge computing.
The utility model of BSs and EVs for bidirectional energy
trading and edge computing service is designed for efficient
resource utilization. An optimization problem maximizing sum
of utilities is solved by two solutions, which are Gale-Shapley
(GS) matching and quantum algorithm. The theoretical bounds
of time consumed in an edge computing task are also derived. The
optimization solution results in less emissions through quantum
approach as compared to classical GS algorithm.

Index Terms—6G, base stations, EVs, energy, quantum

I. INTRODUCTION

Environmental sustainability is one of the growing interests
of telecommunications industry, specifically in the implemen-
tation of 6G systems. The use of renewable resources to
power telecommunication systems is a promising step towards
net-zero. However, the fluctuations in supply of renewable
resources and rising energy demands while going towards
green 6G communications is a serious challenge [1]. The
potential of cellular Base Stations (BSs) with backup batteries
to supply energy when needed is recently being investigated
[2] - [3]. The deployment of BSs has already been increased
to ensure seamless 6G network coverage. Ultimately, the
increased number of backup batteries of BSs with spare
capacities can potentially be utilized for bidirectional Telecom-
to-Grid (T2G) energy exchange between BSs and grid.

At the same time, road transport is encountering the chal-
lenge of rapidly growing energy demands due to increase in
number of Electric Vehicles (EVs). However, energy supply
from renewable sources is unstable and existing renewable

infrastructures are inadequate to meet the rising demands of
EVs. To address this problem, battery storage systems in
EVs supplying their surplus energy through Vehicle-to-Grid
(V2G) technology has become a well-established and effective
solution [4] - [5]. EVs can supply their energy at times of
high demand and later charge their batteries during off-peak
hours. However, supply from EVs can still be insufficient.
Meanwhile, BSs are already equipped with backup batteries
which often remain unused. Keeping in view the capability
of backup batteries of BSs to provide energy, the concept
of bidirectional Telecom-to-Vehicle (T2V) energy exchange
is worth investigating. Since both EVs and BSs are integral
elements of 6G networks, they can complement each other in
terms of energy provision, connectivity and computing.

Mobile edge computing is the form of edge computing in
cellular networks where edge nodes, such as vehicles, are
capable of performing computing tasks to meet the stringent
latency or energy requirements in a resource-efficient man-
ner. Offloading a task from BS to vehicle is considered as
an efficient utilization of computing resource in Internet-of-
Vehicles [6]. As most of the vehicles are now expected to
be electric, the synergistic approach of energy management
combined with edge computing by EVs is evolving to avail
the optimum benefits of computation resources and waiting
times during charging [7] - [8]. A parked EV can perform
edge computing while being charged and earn incentive. Since
BSs are commonly employed in edge computing tasks [6], [9],
their involvement in energy exchange can further enhance their
utilization beyond their conventional role of network coverage.

Recent research aims to maximize the utilities of vehicles
and BSs in edge computing tasks through various classical
optimization algorithms and machine learning techniques [7]
- [9]. However, it is expected that quantum machine learning
and optimization techniques will revolutionize computing al-
gorithms [10]. Quantum computers use quantum bits (qubits)
to perform multi-dimensional computational tasks at a much
faster rate than standard computers. Quantum computing is not
only faster but is also observed as more energy-efficient [11]
with lower CO2 emissions than classical computing [12].

This paper consolidates bidirectional T2G, T2V and V2G



Fig. 1: The proposed system architecture.

energy exchange, and vehicular edge computing for green 6G
networks. We conceptualize a model where energy can be
distributed among BSs, EVs and grid. The EVs also perform
edge computing tasks for BSs during the energy exchange.
Additionally, a quantum optimization approach, i.e., Quadratic
Unconstrained Binary Optimization (QUBO) [13] is used to
maximize the utilities of EVs and BSs.

A. Related Works

The potential of BSs to supply energy is analyzed in [2].
Also, the batteries of BSs are recommended to create a
distributed storage and flexible power supply system in [14].
Furthermore, a bidirectional energy exchange between a BS
and solar-powered grid is formulated in [3]. However, the
capability of BSs to fulfill demands of EVs is not yet explored.
Meanwhile, the exploitation of V2G is widely suggested in
literature. The utilities of EVs buying or selling energy is max-
imized through Stackelberg game in [1]. Usually, optimization
techniques are used for energy management in EVs. In [4], an
optimization algorithm reduces grid cost and avails surplus
energy from EVs. In [15], Gale-Shapley (GS) algorithm is
used to match buying and selling EVs with optimum utilities
and social welfare of the system. Social welfare of the system
involving charging stations and EVs is also maximized in [7]
through contract theory and Deep-Q learning network, where
EVs perform edge computing tasks during charging. Although
it is considered that EVs can generally supply energy to any
consumer, the specific potential of energy exchange from EVs
to BSs and vice-versa is not investigated.

Several optimization techniques exploiting quantum theory
are proposed for 6G networks. A quantum-inspired real time
genetic algorithm is presented in [10] for resource allocation
in 6G communications. Additionally, vehicle routing problems
are also solved by QUBO in [16] - [17]. However, utilizing
quantum theory to optimize T2G, T2V and V2G energy
exchange and vehicular edge computing is a novel solution.

B. Contributions and Organization

The main contributions of the paper are as follows
• We formulate V2G, T2G and T2V energy exchange

system integrated with vehicular edge computing.

• We optimize the energy exchange and vehicular edge
computing using a quantum approach, QUBO, and com-
pare it with GS matching algorithm. QUBO results in less
CO2 emissions than GS algorithm.

• We derive the bounds of time consumed in completing
an edge computing task.

The rest of the paper is organized as follows. Section II defines
system model. Section III describes problem formulation and
its optimization. Performance evaluation and conclusion are
presented in Section IV and V respectively.

II. SYSTEM ARCHITECTURE AND MODELING

A. System Architecture

As shown in Fig. 1, the proposed system includes a 6G-
enabled cloud aggregator, grid producing energy from renew-
able resources, NBS number of BSs and NEV number of EVs
acting as edge computing nodes. It incorporates both energy
and information exchange among entities in a 6G-enabled
Vehicle-to-Everything (V2X) network exploiting bidirectional
V2G, T2G and T2V technologies. All EVs, BSs and grid have
battery storage systems and can either buy or sell energy.
An aggregator receives the amount of energy demanded or
available energy to be sold from all entities and optimally
matches buyers with sellers resulting in maximum social
welfare, SW , of the system. The EVs and BSs are divided
into two sets where I ϵ {1, 2, ...., I} is the set of buyers each
with energy demand ei and J ϵ {1, 2, ...., J} is the set of
sellers each with surplus energy ej selling at the price pj .
The optimization solution matches optimal buyers and sellers.
If an optimal BS-EV pair is made, the EV performs edge
computing task for BS while being charged or discharged and
earns incentive. If a BS is not matched with an EV, then the
energy exchange takes place with the grid at a price pG, where
pG > pj to reduce burden on the grid.

B. Base Stations Model

Assume a 6G cellular BS consisting of two main parts, i.e.,
a radio equipment known as Remote Radio Unit (RRU) and a
Base-Band Unit (BBU) [18]. We consider energy-efficient BSs
which go in sleep mode with reduced power consumption at
zero load [19] - [20]. The energy consumed by a BS for time
t is eBS = PBSt, where PBS denotes BS power defined as

PBS =

{
PRRU + PBBU , 0 < Pout < Pmax,

Psleep, Pout = 0,
(1)

where Pout is the output power of antenna upper-bounded by
Pmax, Psleep is the power consumed in sleep mode, PRRU and
PBBU are the power consumed by RRU and BBU respectively.
PRRU = Pout

η + PRF , where η is the efficiency of power
amplifier and PRF is the power of radio circuits. PBBU =
NBBU (P

min
BBU +(Pmax

BBU −Pmin
BBU )τBBUf

β
BBU ), where NBBU

is the number of active cores in the CPU of BBU, Pmin
BBU

and Pmax
BBU is the minimum and maximum power of each core

respectively, τBBU is the percentage of CPU load, fBBU is the
CPU frequency and β is its exponential coefficient. τBBU =



I(r)
NBBUfBBU

, where I(r) is the instructions per unit time at data
rate r.

1) Edge Computing Tasks by BSs: BSs also have to perform
various computing operations in a 6G network, for example,
resource allocation. In the proposed approach, a BS offloads its
task to EV to perform during energy exchange. A BS divides
the edge computing task into Ns chunks of size sEV and
assigns a single chunk to an EV. It may either wait for up
to K EVs to complete a task or compute some chunks itself.
Also, if an energy exchange between BS and EV is completed
before the EV has completed its task, it is likely that the EV
will leave and a BS will have to complete the rest of task
itself. Then, the time required by a BS in edge computing is

tcomp
BS = max

(
tcomp
task −

K∑
EV=1

tcomp
EV , 0

)
+ taddBS , (2)

where tcomp
task is the computation time required to complete

whole task, tcomp
EV is the time required by an EV to complete

a chunk and taddBS is the time required to add all computed
chunks. Theorem 1 defines the bounds of tcomp

task .
Theorem 1:√√√√(tcomp

BS )2 − 2taddBS

K∑
EV=1

tcomp
EV −

K∑
EV=1

tcomp
EV

≤ tcomp
task ≤ taddBS +

K∑
EV=1

tcomp
EV .

Proof: See Appendix A.

The utility of a BS in vehicular edge computing is

U comp
BS = αlog

(
1 + sEV

)
− λBSTEV − ptaskBS (tcomp

BS + taddBS ),

(3)
where α is the reward coefficient, λBS is the reward paid by
BS to EV, TEV is the time invested by EV and ptaskBS is the
computation and addition cost for BS. The utility definition
incorporates log function as it is asymptotically optimal [21].

C. Electric Vehicles Model

The time TEV that an EV invests in energy exchange and
edge computing is

TEV = ttrvEV +max(tchgEV , t
comp
EV ), (4)

where ttrvEV is the time required by an EV to travel to BS, tchgEV

and tcomp
EV is the charging and computing time respectively.

tchgEV = ei
Pchg

, where ei is the energy required by either
EV or BS to charge its battery and Pchg is the charging
power. tcomp

EV = tchgEV if an EV does not stay to complete
the task when an energy exchange is finished. Otherwise,
tcomp
EV = sEV CEV

fEV
, where CEV is the expected number of CPU

cycles for computation of a task per unit its size and fEV is
the computational capability of an EV in cycles/second. The
energy consumed by EV while traveling is defined in [7] as

etrvEV =
dEV

v
=

fg ·m · g · v
3, 600

+
fa · ϕ · v3

76, 140
, (5)

Fig. 2: Problem Optimization Flow.

where dEV is the distance traveled, fg , m , g, fa, and ϕ
are the ground friction coefficient, mass of EV, gravitational
acceleration, air resistance, and windward area respectively.
The utility of an EV for performing an edge computing task
is

U comp
EV = λBSTEV − pbattEV etrvEV − pcpuEV s

2
EV , (6)

where pbattEV and pcpuEV are the unit costs of energy consumption
including battery degradation and computation respectively.

D. Incentives Model
The utility of a buyer i is

Ui =

{
Qi − pjei + U comp

x , Seller is BS or EV,
Qi − pGei − pbattEV etrvEV , Seller is grid,

(7)

where U comp
x is the utility of BS or EV for an edge com-

puting task defined in (3) and (6) respectively, etrvEV = 0
if buyer is BS and Qi is the satisfaction factor defined as
Qi = γ

SoCi
log(1 + dSocial

i,j + ei), where γ is the adjustment
coefficient, SoCi is the State of Charge (SoC) of buyer i at
the beginning of charging and dSocial

i,j is the social distance
between buyer i and seller j. dSocial

i,j =
∑L

l ζld
Social
i,j,l , where

dSocial
i,j,l is the social attribute and ζl is the weight of each

attribute corresponding its value. dSocial
i,j,l represents social

factors, for example, personal interest to perform a task or
altruism according to sustainability ranking of energy [1]. The
utility of a seller j is

Uj =

{
pjei − Cost(ei) + UComp

x , Buyer is BS or EV,
pjei − Cost(ei)− pbattEV etrvEV , Buyer is grid,

(8)
where Cost(ei) = ae2i + bei is the cost of acquiring ei and
a > 0 and b > 0 are the cost factors. The Social Welfare of
the system is defined as W =

∑I
i=1 Ui +

∑J
j=1 Uj .

III. PROBLEM FORMULATION AND OPTIMIZATION

A. Problem Formulation
The aggregator maximizes SW of the system by optimally

matching buyers and sellers. After receiving information from
all buyers and sellers, the problem is formulated as

max
Ui,Uj

SW,∀i ϵ I, j ϵJ ,

s.t. C1: Ui ≥ 0 ∀i ϵ I,
C2: Uj ≥ 0 ∀j ϵJ ,

C3: etrvEV ≤ SOCi ∀EVi,

C4: ei ≤ SOCj −REj ∀i ϵ I, j ϵJ
C5: REj ≥ etrvEV ∀EVj,

(9)



TABLE I: Constraint Penalty Pairs

Constraint Equivalent Penalty
Ui ≥ 0 P(−z1)2

Uj ≥ 0 P(−z2)2

etrvEV ≤ SOCi P(−z7 + z8 − z7z8)2

ei ≤ SOCj −REj P(−z9 + z10 − z9z10)2

REj ≥ etrvEV P(−z11)2

TABLE II: Simulation Parameters

Parameter Value Parameter Value
NEV [100, 200] NBS [3, 5]
Pmin
BBU 5 W Pmax

BBU 20 W
PRF 21.9 W Psleep 6.45 W
η 31.1% fBBU 2.5 GHz
m 1000 fg 0.018
fa 0.4 ϕ 2 m2

sEV 20 M Pchg 110 kW
fEV 2 GHz CEV 2.4381×109 cycles/M
pbattEV 0.00028 pCPU

EV 0.1
a 0.1 b 0.1
α 500 γ 0.1

λBS 1 ptaskBS 500
pj 18.5 pG 18.6

where constraints C1 and C2 guarantee that all buyers and
sellers can benefit from the optimized matching, C3 ensures
that all buyer EVs have enough energy to reach seller, C4
defines the upper threshold of surplus energy provided by a
seller considering the amount of remaining energy it wants to
keep with itself after selling, i.e., REj and C5 ensures that
a seller EV must have sufficient surplus energy to reach the
buyer. The flow of optimization process is shown in Fig. 2.

B. Gale-Shapley (GS) Optimization

GS optimization is a game theory approach which solves a
bipartite matching problem with two-sided preferences [15].
It considers individual rationality as identified by constraints
C1 and C2. In GS optimization, a preference list of sellers for
each buyer i is formed with the most preferred seller providing
highest Ui and vice-versa. A match is finalized resulting in
maximum Ui+Uj . The algorithm results in optimum number
of BSs matched with EVs resulting in maximum SW . The
remaining buyers and sellers carry out their energy exchange
with grid in return of positive utilities.

Fig. 3: Traffic simulation in SUMO.

C. Quantum Optimization

Since (9) is a combinatorial problem, QUBO is one of the
most appropriate quantum approaches to solve it [13]. For
QUBO, we need to formulate a problem over binary variables
only. Therefore, we begin with the arbitrary connected bipartite
graph of y vertices and a binary decision variable xi,j which
has a value 1 if there exists an edge (matching pair) between
i and j for edge weight wi,j and the value is 0 otherwise [16].
(9) is now transformed into min{xi,j}i→jϵ{0,1}

∑
i→j wi,jxi,j ,

where wi,j = −Ui − Uj , i.e, the sum of negatives of utilities
because QUBO models a minimization problem. The maxi-
mization problem is solved through QUBO by minimizing the
negatives of its objective function [22]. QUBO problem can
be expressed as minx fQ(x).

fQ(x) =
∑
i,j

∑
k,l

Qi,j,k,lxi,jxk,l+
∑
i,j

gi,jxi,j = x⊤Qx+gx,

(10)
where Q is a quadratic coefficient and g is a linear coefficient
representing information about relationships between variables
in x. xi,j decides the allocation of qubits, i.e., a logical
qubit i is assigned to hardware qubit j when xi,j = 1
[24]. Also, (9) is a constrained problem which is converted
into a QUBO problem by reformulating the constraints using
penalties [22]. The inequality constraints in (9) are transformed
into equivalent penalties as defined in Table I, where P is
a user-defined penalty coefficient and z is equivalent binary
variable [23]. We then form the Ising Hamiltonian of the
problem as H = HA +

∑5
p=1 Hp, where HA represents the

QUBO problem and Hp represents each of the equivalent
penalty constraints defined in Table I. The quadratic coefficient
Q in (10) can be found in the QUBO formulations of H using
quadratic optimization tools [25].

IV. PERFORMANCE EVALUATION

We analyze the performance of the proposed solution using
Python. Table II lists the simulation parameters which align
with other related research [7], [18]. As shown in Fig. 3,
the vehicular traffic is simulated in a 2.5 × 2.5 km area of
Central London using Simulation of Urban Mobility (SUMO)
where BSs are uniformly distributed. The speed of EVs is
received from SUMO simulation and its SoC is considered as
a uniform random variable with range [10,100]. The SoC of
BSs is extracted at a random time from open-source dataset
provided in [26]. REj for each seller is computed as an energy
consumption for an hour according to the models defined in
Section II. The results are averaged over 100 simulation runs.

Fig. 4 compares the performance of optimization algorithms
using emissions tracker feature of the Python library code-
carbon [27]. As shown in Fig. 4 (a), the CO2 emission rate
significantly rises in GS algorithm with increase in NEV . The
reason of high CO2 emission rate is the rising GPU power
as shown in Fig. 4 (b). Therefore, quantum optimization is
an environment-friendly option. The trade-off is shown in
Fig. 4 (c), where the quantum optimization consumes more



(a) CO2 Emission Rate (b) GPU Power (c) Optimization Time

Fig. 4: Comparison of Gale-Shapley and Quantum Optimization.

(a) V2G (b) T2G (c) T2V

Fig. 5: Energy supplied by BSs and EVs.

Fig. 6: Average sum of utilities after optimization.

Fig. 7: Time consumption in edge computing.

time than GS with the increase in NEV . However, keeping in
view the net-zero goal, a few seconds delay in exchange of
less CO2 emissions can be tolerated in this case.

Fig. 5 shows the amount of energy supplied by EVs and
BSs. Fig. 5 (a) indicates that EVs contribute significantly in
V2G exchange. The contribution slightly reduces as NBS

rises. It is because larger NBS leads to more BS-EV pairs
resulting in increased EV to BS energy transfer with some
reduction in V2G energy exchange. Similarly, Fig. 5 (b) shows

that the T2G energy transfer from BS to grid decreases with
rising NEV because it leads to increased demands of EVs
which are fulfilled by BSs. The amount of energy transferred
from BSs to EVs is significantly higher than that from EVs
to BS via T2V exchange, as shown in Fig. 5 (c). The energy
transferred from BSs to EVs shows the promising potential
of utilization of BSs as energy suppliers when the demand
increases in a road transportation network.

Fig. 6 shows the average sum of utilities of buyers and
sellers resulted after optimization, which is at its peak when
NBS is large. The minimum value is observed at lowest NBS

and NEV . When the density of EVs and BSs is high, it is more
likely that they are located closer to each other and an EV has
to travel less to reach to a BS, which ultimately results in a
greater Ui + Uj . It shows that the proposed model is suitable
for 6G networks with high densities of BSs and EVs.

Fig. 7 shows the time required to complete an edge com-
puting task. tcomp

task increases with sEV and lies within the
bounds defined in Theorem 1. When Pchg is higher, it is more
likely that an EV completes the energy exchange before an
edge computing task. Since fBBU > fEV , the BS can finish
the task faster than an EV. Therefore, the average tcomp

task at
Pchg = 40 kW is 137 s higher than tcomp

task at Pchg = 110 kW.
However, edge computing by EV saves the power and com-
puting resources of a BS. The bounds of tcomp

task can assist a
BS to decide if it can wait for EVs or needs to complete a
task itself in time-critical applications.

V. CONCLUSION

This paper presents a bidirectional V2G, T2G and T2V
energy exchange orchestrated by a 6G-enabled aggregator.
Additionally, a simultaneous edge-computing task offloading



from BSs to EVs is proposed for efficient utilization of com-
puting resources and charging or discharging times of EVs.
The optimization problem is formulated aiming to maximize
SW of the system which comprises of individual utilities
of BSs and EVs. GS and quantum optimization algorithm
are utilized to match BS-EV pairs resulting in highest SW .
Simulation results show that quantum optimization produces
less emissions as compared to GS. The proposed optimization
shows the potential of BSs to trade energy with grid and EVs.
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APPENDIX A: PROOF OF THEOREM 1
Taking squares on both sides of (2) and using

(max(a − b, 0) + c)2 ≤ a2 + b2 + c2 − 2a(c − b), for any
a, b, c ≥ 0, we get

(tcomp
BS )2 ≤(tcomp

task )2 +
( K∑

EV=1

tcomp
EV

)2

+
(
taddBS )

2 − 2tcomp
task (taddBS −

K∑
EV=1

tcomp
EV

)
,

(11)

which is a quadratic equation over tcomp
task whose solution leads

to

tcomp
task ≥ taddBS −

K∑
EV=1

tcomp
EV +

√√√√(tcomp
BS )2 − 2taddBS

K∑
EV=1

tcomp
EV .

(12)
Considering taddBS ≈ 0,

tcomp
task ≥

√√√√(tcomp
BS )2 − 2taddBS

K∑
EV=1

tcomp
EV −

K∑
EV=1

tcomp
EV . (13)

If a BS does not have to compute itself and waits for all EVs to
perform edge computing then, tcomp

task ≤ taddBS +
∑K

EV=1 t
comp
EV .
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