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Abstract

This thesis presents an Adaptive Dynamic Programming method, Value-
Gradient Learning, for solving a control optimisation problem, using a neu-
ral network to represent a critic function in a large continuous-valued state
space. The algorithm developed, called VGL()\), requires a learned dif-
ferentiable model of the environment. VGL()) is an extension of Dual
Heuristic Programming (DHP) to include a bootstrapping parameter, \,
analogous to that used in the reinforcement learning algorithm TD(X). On-
line and batch-mode implementations of the algorithm are provided, and
its theoretical relationships to its precursor algorithms, DHP and TD(\),
are described.

A theoretical result is given which shows that to achieve trajectory opti-
mality in a continuous-valued state space, the critic must learn the value-
gradient, and this fact affects any critic-learning algorithm. The connection
of this result to Pontryagin’s Minimum Principle is made clear. Hence it is
proven that learning this value-gradient directly will obviate the need for
local exploration of the value function, and this motivates value-gradient
learning methods in terms of automatic local value exploration and im-
proved learning speed. FEmpirical results for the algorithm are given for
several benchmark problems, and the improved speed, convergence, and
ability to work without local value exploration, is demonstrated in compar-
ison to its precursor algorithms, TD(\) and DHP.

A convergence proof for one instance of the VGL(\) algorithm is given,
which is valid for control problems with a greedy policy, and a general non-
linear function approximator to represent the critic. This is a non-trivial
accomplishment, since most or all other related algorithms can be made to
diverge under similar conditions, and new divergence proofs demonstrating
this for certain algorithms are given in the thesis.

Several technical problems must be overcome to make a robust VGL(A) im-
plementation, and these solutions are described. These include implement-
ing an efficient greedy policy, implementing trajectory clipping correctly,
and the efficient computation of second-order gradients with a neural net-
work.

xx1ii
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Glossary

U(

&

AT

diag(Z)

®)

sgn(x)

An action-cost function (see below).
The sampling time for the underlying system being simulated/observed.

The diagonal matrix with ith diagonal element equal to the ith component of the vector

argument, Z.
The learned model-function, which if learned correctly, will give the expectation of the true

model-function, according to Eq. (1.10). This is a deterministic function.

The model-function which takes the agent to the next state from the current state via Eq.
(1.1).

A random vector from the space F, sampled from a probability distribution P. (€). This
random vector appears in Egs. (1.1)-(1.5) and introduces stochastic effects into these

equations. See Section 1.2.

The probability distribution for the noise vector €. See Section 1.2.

The Model-Based Approximate Q Function, defined by Eq. (3.9).

The function approximator used in Q-Learning and ADHDP (Section 2.6).

The real time of the physical system being observed or simulated. Note that 7 is not

constrained to the integers, unlike the integer step time, t.

The learned instantaneous cost-function, which if learned correctly, will give the expectation
of the true instantaneous cost-function, according to Eq. (1.10). This is a deterministic

function.

e
)

A scalar function ®(Z,€), £ € S, which gives a final impulse of cost at the instant when

the agent reaches a terminal state (Section 1.2).

The learned terminal-cost function, which if learned correctly, will give the expectation of

the true terminal-cost function, according to Eq. (1.10). This is a deterministic function.

The instantaneous-cost function, or utility function, which specifies the cost received on

transitioning from the given state Z. See Eq. (1.2).

1 ifx>0
The sgn function from computer programming languages, i.e. sgn(z) := ¢ 0 ifzx=0.

-1 ifz<0

XXV
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c A constant commonly used in an action-cost function to affect the sharpness of the step

shape in the sigmoid function used. See Table 5.2 for details.
t The integer time step of the physical system being observed or simulated.

—

Action Network A neural network A(Z,¢,Z) (or similar function approximator), parameterised by

a weight vector Z, that chooses actions to take at each state £. Defined in Section 1.2.

Action-cost function A special function which can be added on to the cost function U(Z,,€) to

ensure that the greedy policy only chooses actions in a chosen range. See Section 5.2.2.
Actor See action network.
ADHDP A model-free VL algorithm by Paul Werbos that is equivalent to Q-Learning (Section 2.6).
ADP Adaptive Dynamic Programming, also known as Approximate Dynamic Programming.
ADPRL The combined fields of ADP and RL.
Approximate Value Function See critic.
Approximate Value Gradient See critic-gradient function.
Bellman Equation The recurrence equation defining an optimal value function, given by Eq. (2.9).

Bellman’s Optimality Condition An optimality condition which states that if there exists a func-
tion which satisfies the Bellman Equation all over state space then any greedy policy on

that function will be optimal. See Section 2.4, and also Chapter 4, for further details.
Bellman’s Optimality Principle See Bellman’s optimality condition.

BPTT The backpropagation through time algorithm, as described in Chapter 6, with pseudocode
in Alg. 6.1.

Continuing Problem An environment in which trajectories are guaranteed to never meet a terminal

state. See Section 1.2.

Cost-to-go Function The function J(Z, €, 2) defined by Eq. (1.6).

Critic The function J (&, W), where o is the weight vector of a neural network. The critic function

returns a neural-network’s estimate of the cost-to-go function J(Z, &, 2).
Critic-Gradient Function The function é(f, ), as defined in Section 3.4.

DHP The Dual Heuristic Programming algorithm, by Paul Werbos. Defined in Section 3.4 and
pseudocode is given in Alg. 3.1.

DHP-Style Critic A synonym for vector critic.

Environment Functions These are the functions f(Z,,¢€), U(Z,, €) and (&, €), or their model-

based equivalents.

Episodic Problem An environment in which trajectories are guaranteed to eventually meet a termi-

nal state, no matter what the start point. See Section 1.2.

GDHP The Globalized Dual Heuristic Programming algorithm, by Paul Werbos. Defined in Section
3.4.4.
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GDHP-Style Critic A synonym for scalar critic.

Generalised Policy Iteration The process of simultaneously training the action network and critic

network, described in Section 2.7.5.

Greedy Policy A policy which chooses actions that minimise the immediate cost calculated by Eq.
1.7.

Greedy-on-Q Policy The approximate greedy policy defined by Eq. (5.2).

HDP The Heuristic Dynamic Programming algorithm, by Paul Werbos. Defined in Section 2.2.

This is equivalent to TD(0) with a neural critic.
LET Locally Extremal Trajectory, defined in Section 7.2.4.
MLP A multilayer-perceptron neural network, for example as described by Bishop (1995).
Model Exploration This is the process of exploring the environment functions.

Model-Based ADPRL In this case, it is assumed that the environment functions will be learned by
some machine-learning process and these learned functions will be available to the ADPRL
algorithm.

Model-Based Approximate Q Function The function @(:E,ﬁ,w’) defined by Eq. (3.9).

Model-Free ADPRL In this case, it is assumed that the environment functions are unknown to
the ADPRL algorithm. The only way to obtain access to these functions is by the agent

making actual interactions with the environment.

Model-Given ADPRL In this case, it is assumed that the environment functions are given and fully
known to the ADPRL algorithm.

PGL Policy Gradient Learning. See Chapter 6 for details.
PMP Pontryagin’s Minimum (or Maximum) Principle, described in Chapter 4.
Policy A generic term for an action network or greedy policy.

Policy Gradient The gradient w7 i.e. the gradient of total expected trajectory cost, J, with
respect to the weight vector of the action network, 2; or some stochastic approximation to

this gradient.
Policy Gradient Learning An algorithm which works by explicitly calculating the policy gradient.
Q-Learning A model-free VL algorithm by Chris Watkins that is equivalent to ADHDP (Section 2.6).

RL Reinforcement Learning.

~

Sampled Cost-to-go Function The function J(Z, €, Z) defined by Eq. (1.4) or Eq. (1.5), defined in
Section 1.2.

Scalar Critic A scalar critic function J(&,w) € R. This can be used to implement a critic-gradient

function G(Z,w) by G(Z, ) := 94, as defined in Section 3.4.1.

T

Target Value The function J';, defined by Eq. (2.3).
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Target Value Gradient The function G';, defined by Eq. (3.7).
TD(\) The “Temporal Differences” learning algorithm, by Richard Sutton, defined in Section 2.3.

Trajectory-Shorthand Notation The use of a subscripted time step to indicate that a variable or
parenthesised derivative is to be evaluated at a particular trajectory time step. See Section
2.1.2 for details.

Value Exploration This is the process of exploring the state space to try to increase knowledge of

the value-function or of the critic function.

Value Function See cost-to-go function.

Value Gradient The gradient %7 i.e. the gradient of the critic function j(ic'? ), with respect to

the state vector of the agent in state space, . In some contexts, the term “value-gradient”

may alternatively be interpreted to mean %.

Value Iteration A form of generalized policy iteration where the action network is always kept fully
trained in between every critic weight update. This makes the action network behave
almost equivalently to a greedy policy (subject to function-approximation limitations of

the action network).

Vector Critic A way of implementing the critic-gradient function G(Z, ) as the output of a neural

network with dim(Z) output nodes. Defined in Section 3.4.1.

VGL An acronym for Value-Gradient Learning, so this includes the algorithms DHP, GDHP and
VGL(A).

VGLQ(A) The combination of the VGL(A) algorithm with the special 2; matrix defined in Eq. (3.8).

VGL()A) The name of the main new algorithm defined in this thesis: VGL(A). This is defined by
Egs. (3.6), (3.5) and (3.7). Pseudocode is listed in Alg. 3.2 or Alg. 3.3.

VL An acronym for Value Learning, so this includes the algorithms HDP and TD()).
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Chapter 1

Introduction

This thesis is a work that contributes to the fields of Adaptive Dynamic Programming
(ADP) and Reinforcement Learning (RL). ADP is also known as Approximate Dynamic
Programming. ADP and RL are together referred to as ADP/RL, or ADPRL for short.

ADPRL is concerned with optimising the behaviour of an agent, for example a robot
or biological organism, which exists and moves around in an environment, and receives
rewards or penalties based on the actions that it performs. The agent must learn to
behave so as to minimise (/maximise) those penalties (/rewards). ADPRL could be
used, for example, to stabilise an industrial plant (here the cost function would be
how far the plant’s state is from its desired set point), or optimise stock market picks
(here the reward function would be financial gain). However ADPRL is potentially a
much more important field in artificial intelligence and machine learning, because if
the problem as so defined could be solved sufficiently efficiently, then general intelligent
behaviour could be programmed to emerge. For example, this is the problem that
evolution has solved for successful organisms (with the penalty/reward function here
being death/successful procreation, and the actions that lead to these outcomes being
the decisions and actions made by the organism during its lifetime); and this process
has resulted in intelligent creatures.

One key approach to efficiently finding optimal behaviour is to use variants of
Dynamic Programming, as created by Richard Bellman (Bellman, 1957). The key idea
there is to assign scalar values to each different state that the agent can be in, such that
those values rate how “good” each state is. The values form a scalar field over the state

space described by the “value function”, also known as the “cost-to-go” function. The
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value function can be learnt from direct or simulated experience of the agent. Once the
value function is learned, the agent can learn to behave “greedily” towards it, which
means to choose actions that will lead to states that the value function rates as “best”,
and hence the agent can (eventually) learn to behave optimally. The Bellman Equation
is a condition that the value-function must obey to guarantee optimality.

Paul Werbos initiated the field of ADP. As he wrote about the importance of using
Bellman’s method, “In the future, we may recognize that trying to build or understand
intelligent systems without exploiting the Bellman Equation is like trying to build hard-
ware without knowing Mazwell’s laws. There are times when proper understanding and
use of one key equation is the key bridge that makes it possible to connect valid large
global goals to the world of concrete mathematical reality, i.e., working designs and valid
models.” (Werbos, 2008, p.898). Similarly, regarding RL, Sutton and Barto wrote “The
central role of value estimation is arguably the most important thing we have learned
about reinforcement learning over the last few decades” (Sutton and Barto, 1998, p.8).
While there are other valid research methods which could be used to attack the ADPRL
problem, such as genetic algorithms or numerical methods, this thesis concentrates on
value-function based methods.

Solving the Bellman Equation requires learning the value function at every point in
state space. This process will be referred to as value exploration. The original dynamic-
programming method to do this was to consider every single point of the state space in
turn, in one or more full state-space sweeps. A major difficulty here is that generally
there are a huge, or infinite, number of possible states in the state space, an issue
Bellman referred to as the curse of dimensionality. Therefore each state-space sweep is
very computationally expensive. A more efficient method is to concentrate on complete
trajectories, one at a time; and this is the preferred method of the ADPRL algorithms
presented in this thesis.

A lot of successful work has been done with tabular representations of the value
function. However, if the state space is continuous-valued, as it usually is in the real
world, then there must be an infinite number of possible states, and no tabular repre-
sentation will cope with that. Similarly, no agent or biological organism can remember
values for all those possible states, or spend the time necessary to learn the correct val-

ues for all of them. So some form of generalisation and data compression is required,



and both of these problems are solved by using a function approximator, e.g. a neu-
ral network, to represent the value function. This function approximator is called the
critic. Consequently, two other synonyms for the ADP field of research are “Adaptive
Critic Designs” and “Neuro-dynamic programming”.

Heuristic Dynamic Programming (HDP) is an early ADP algorithm. This kind of
critic-learning algorithm will be referred to as a wvalue-learning (VL) algorithm, since
it works by learning the “values” of the value-function. In the RL literature, TD(\)
by Richard Sutton (Sutton, 1988) is a value-learning algorithm which extends HDP
to include a “bootstrapping” parameter A. Varying this parameter can affect learning
speed and the algorithm’s stability and convergence properties. Apart from some minor
historical differences, HDP is equivalent to TD(0).!

In an ADPRL critic-based system, the critic enables the agent to behave greedily, i.e.
to choose actions rated as best by the critic. It is proven in this thesis (in Section 4.1.1)
that if the Bellman Equation is to be satisfied, then the agent must eventually learn
to behave greedily towards the critic. However if the agent behaves greedily from the
start of learning, then the value-exploration that is necessary for solving the Bellman’s
Equation may be excluded, and therefore optimal behaviour would never be achieved.
Therefore most ADPRL schemes do not simply use greedy behaviour throughout the
whole of learning, even if ideally they would like to do so. This difficulty is part of
what is known as the exploration-versus-exploitation dilemma.

A way around this problem comes from considering what information greedy be-
haviour needs. To choose an action greedily, the agent is not concerned with the average
magnitude of the values of all the actions available to it, but only the relative values
of them, as it only needs to be able to pick the best one. In continuous-valued state
spaces, these relative values are encapsulated in the value gradient, that is the gradient
of the value function with respect to the agent’s state vector. This is what is required
for the agent to choose the best action.

The value gradient acts as an arrow pointing in the direction in which states improve
the most, and the critic-learning system must make that arrow point in the correct di-
rection, and also the agent must learn to follow it. Since this arrow is so important

for all learning systems that work with a Bellman Equation in continuous-valued state

"HDP was originally defined with a neural-critic, but TD(0) was originally defined with a tabular
critic.
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spaces, it would make sense to concentrate on learning this arrow’s direction and mag-
nitude directly, instead of learning it indirectly by first learning the values of all of the
points in state space immediately surrounding that arrow. Clearly we may expect to
attain a massive speed up in learning if we learn the value-gradient (the arrow) directly.
And it also might solve the exploration-versus-exploitation problem which occurs with
purely greedy behaviour. That is the objective of this thesis: to consider and extend
ADPRL methods which learn value gradients directly.

The speed-of-learning advantage for value-gradient learning (VGL) methods led
Werbos to invent two VGL algorithms that are pre-existing to the VGL algorithms
presented in this thesis. These two prior algorithms are Dual Heuristic Programming
(DHP) and Globalized Dual Heuristic Programming (GDHP) (Werbos, 1990b, 1992b).
As motivation for creating these algorithms, Werbos (2007) wrote “I learned very early
that the [HDP] method does not scale very well, when applied to systems of even moder-
ate complexity. It learns too slowly. To solve this problem, I developed the core ideas of
two new methods— dual heuristic programming (DHP) and Globalized DHP (GDHP).” .

In the same way that TD()) extends TD(0)/HDP, this thesis makes an analogous
extension to the value-gradient algorithm, DHP, by defining a new algorithm called
VGL(A). VGL() is an extension of DHP which includes a constant parameter A. As
with TD(A), the A parameter in VGL(A) can affect the learning speed and convergence
properties of the algorithm. This makes it possible to give a convergence proof for
one instance of the new algorithm (other instances of the algorithm can still be made
to diverge). This convergence proof is for a full non-linear function approximator
representing the value function plus an agent whose behaviour is always greedy towards
the changing value function. This type of convergence proof is much sought after in the
ADPRL literature, with most (or all) existing proofs being only valid for non-greedy
behaviour or linear function approximation.

In the thesis, motivations for using VGL algorithms are discussed, which as men-
tioned above are principally speed of learning, and also the ability to do local value
exploration automatically. This automatic local value exploration comes for free with
VGL methods, since the mere act of learning the arrow (i.e. the value gradient) will
point the agent in the correct direction. This obviously contrasts to value-learning
methods where learning a scalar value does not point the agent in any useful direction.

In here, classical value-learning methods must learn all of the values surrounding any
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point in state space before the gradient that gives the arrow can be deduced, which
explains the need for value exploration and slower speed of value-learning systems.

It should be noted, however, that there is a separate form of exploration other than
value exploration which also needs to be performed, and which VGL methods do not
address. This other form of exploration is the need to know the model functions, and
will be referred to as model exploration. The model functions describe which state
the agent will travel to from any given current state and any chosen action. Model
exploration is a major component of exploration that many ADPRL systems need to
address, and this thesis does not tackle that problem at all. The VGL methods reduce
the need for value exploration only.

The thesis also gives theoretical properties of value-gradient algorithms, including:
the convergence proof; an equivalence between two previously unrelated algorithms,
backpropagation through time and value-gradient learning; optimality conditions for
trajectories when learning by value gradients; and divergence properties of variant
algorithms. The thesis also describes solutions to practical issues for making robust
implementations of any value-gradient learning algorithm, including clipping, second-
order gradient-finding algorithms in neural networks, plus details of how an agent can
most efficiently choose actions from the value function.

In the rest of this introductory chapter, the motivation and challenges for the re-
search line of this thesis are described in Section 1.1; a formal statement of the ADPRL
optimisation problem is given in Section 1.2; a short literature review is given in Sec-
tion 1.3 including details of how the new algorithms defined in the thesis relate to
pre-existing ADPRL algorithms; Section 1.4 is dedicated to a discussion about model-
free versus model-based algorithms; Section 1.5 describes some closely related fields to
ADPRL and also how RL and ADP are related to each other within ADPRL; Section
1.6 summarises the original contributions of the thesis; and Section 1.7 gives a brief

outline of the structure of the rest of the thesis.

1.1 Motivation and Challenges

Introducing a function approximator for the value function causes theoretical and prac-
tical difficulties in ADPRL. For example, the dynamic-programming method is only

proven to converge for an exact representation of the value function. Similarly many
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of the theoretical results from the ADPRL literature are for this exact, or tabular,
representation. However when a neural network is used for the value function, learning
values in one point of state space can unlearn values previously learned in other points
of state space. This is because a function approximator can only have finite flexibility
- bending it in one place will cause disturbances in other places. This makes proving
convergence of the learning algorithms used by ADPRL difficult.

Another difficulty is a co-dependence in that the “value” of any state depends upon
the future actions that an agent subsequently follows from that state; while simultane-
ously the optimal actions depend on the value function found by Bellman’s equation.
Hence changing the state values will change the agent’s behaviour, and changing the
agent’s behaviour will change the state values. This co-dependence makes proving con-
vergence of critic-learning algorithms hard. Therefore many critic-convergence proofs
are only valid when the agent behaviour is static.

When the agent’s behaviour is not fixed, the situation is more challenging. The
tabular-critic case was proven to converge by Howard (1960a). However when the
critic is a function approximator, there has been only limited progress in the literature.
Some successes do exist for the case of changing agent behaviour (e.g. Kakade, 2001;
Sutton et al., 2000, 2001). However these successes are not for the greedy policy,
and only for the situation where the critic is a “compatible” function approximator
(defined in Section 2.7.5). The convergence proof given in this thesis (in Chapter 8) is
an improvement upon this, because it is valid for a general non-linear critic, and also
where the behaviour of the agent is greedy.

A central motivation for learning value gradients is that value gradients act as “ar-
rows” which point the agent in the correct direction. If the agent is programmed to
follow these arrows as closely as possible, then learning the value gradients will cause
the trajectories found by the agent to bend themselves into locally optimal shapes. This
is proven in the thesis for the VGL(A) algorithm (in Chapter 7; proven for deterministic
environments only). In contrast, simply learning the values along a trajectory will not
achieve this, and hence these value-learning algorithms will generally converge to sub-
optimal trajectories if the ability to explore is taken away from them. Counterexamples
demonstrating this suboptimal convergence are given in Chapter 3 (in Fig. 3.1 and in
Section 3.7), but these are just manifestations of the exploration-versus-exploitation

dilemma (with respect to value-exploration, as opposed to model-exploration).
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Doya (2000) extended VL methods to continuous-valued state spaces, and interest-
ingly that research also used a value gradient. The value gradient was not used for
learning (so it was not a VGL method), but it was used for determining the agent’s
greedy actions. This does confirm that value gradients are especially useful in con-
tinuous spaces, and are what “drive” the greedy policy. Hence switching from values
to value gradients is a very natural way to extend ADPRL efficiently into continuous
spaces.

VGL methods are therefore designed for continuous-valued state spaces. However
this is also a limitation, in that they are not suited to discrete-valued state spaces. Two
more limitations of VGL methods are that they require known and differentiable model
functions. A fourth limitation is that in stochastic environments, VGL methods are only
derived exactly in the case of additive noise; in more general stochastic environments,
VGL methods sometimes rely on approximations (full details are given in Section 3.2.1).
In comparison, VL methods do not have any of these limitations. It is therefore hoped
that the benefits of VGL methods (i.e. with respect to learning speed and automatic
local value exploration) will outweigh these four limitations, in some circumstances.

To make any implementation of a VGL system, including the DHP, GDHP and
VGL(\) algorithms, there are a number of technical hurdles involved, which are de-

scribed and solved in this thesis. These issues are:
1. How to make an efficient implementation of a greedy policy (Chapter 5).

2. The importance of using clipping correctly in the final time step of a trajectory

(Chapter 10).

3. Efficient implementation of the second-order backpropagation that is necessary

for certain value-gradient critic architectures (Chapter 11).
1.2 Formal Specification of the ADPRL Optimisation Prob-
lem

To avoid having to continually specify the option of either maximising a reward or

minimising a cost, the convention of minimising a cost will be adopted. This situation
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can easily extended to that of maximising a reward simply by including an extra neg-
ative sign before all costs considered, and swapping all instances of “minimisation” to
“maximisation”.

ADPRL seeks to train an agent to choose actions that minimise a total long-term
cost. For example a typical scenario is an agent wandering around in a state space
S C R", such that at integer time ¢ it has state vector Z; € S. At each time ¢ the agent
chooses an action u; (from an action space #; € A) which takes it to the next state

according to the environment’s model function

Tr1 = f(Zy, Uy, €1), (1.1)

where €; is a noise vector sampled from a space £ C R™ with probability distribution
function P, (€;). Each action choice #; results in the agent receiving an immediate

scalar cost Uy, given by the function
Up = U(Zy, Uy, €). (1.2)

The agent keeps moving, forming a trajectory of states (Zy, Z1,...), which terminates
if and when a state from the set of terminal states T C S is reached. If a terminal
state ¥; € T is reached then a final instantaneous cost ®; = ® (%, €;) is given which is
independent of any action.

The functions f(Z,4,€), U(Z,u,€) and ®(Z,€) will collectively be referred to as
the environment functions. Since the environment functions are functions of a random
variable, €, it means they can be used to represent stochastic environments. If the
environment functions are independent of €, then the environment is deterministic,
and in this case € can be omitted as an argument from the environment functions.
Otherwise the environment is stochastic. In a stochastic physical environment, the
noise variable € could be an unobservable quantity coming from the environment; or in
the case of a simulated environment it could come explicitly from a computer’s random
number generator. Further details of the randomness introduced by the noise vector €
are given in the next subsection 1.2.1.

Different ADPRL approaches assume different levels of knowledge of the environ-
ment functions. For example, in “model-free RL” it is assumed that these functions are

not known or accessible other than by actual interactions with the environment; but in

10
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other forms of ADPRL it is assumed the algorithm does have access to the definitions
of these three functions. These possibilities are discussed further in Section 1.4.

In this thesis, analysis is restricted to the situation where the state vector & is fully
observable and known at every time step, although it should be noted that handling
“partially observable” state vectors is a major related research topic.

An action network is a function approximator (for example a neural network) of
the form A(Z,€, %), where Z is the parameter vector (weight vector) of the function

approximator. The action network’s purpose is to calculate actions,
Uy = A%y, €, 2), (1.3)

to take from any given state #;. The action network is also known as the actor, or
policy function.

If the function A(Z,¢€,2) is independent of € then the action network is determin-
istic, and the argument € can be omitted. If the action network is stochastic, then
the components of € that affect A(Z, €, Z) would usually come from a random-number
generator. This is useful because in some cases deliberate randomness is introduced
into the action-network, for example to encourage exploration by the agent.

For a trajectory starting from state &, if the trajectory eventually reaches a terminal

state at some time step T', then the sampled cost-to-go function is defined to be:

T-1

J(&0,80,2) = Y _+'Ur + 7" ®(&r, er), (1.4)
=0

subject to Equations (1.1), (1.2) and (1.3), where v € [0,1] is a constant discount
factor that specifies the relative importance of long-term costs over short term ones,
and where the bold €; is shorthand for all the future noise vectors from time step t
onwards, i.e. €; := (€, €+1,-..,er). Note that T, the time step at which a terminal
state is first reached, will in general be dependent on %y, €y and Z. If a terminal state is
never met, then the trajectory becomes infinitely long, and similarly €; := (€, €141, - . .)
will be infinitely long, and the sampled cost-to-go function’s definition simplifies down

to,

J (0,80, Z Z'y (1.5)

11
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In this case we would need to ensure v < 1 to keep the sum of Eq. (1.5) finite.?

If the environment is such that a terminal state is guaranteed to be met at some time,
then we say the problem is episodic, and Eq. (1.4) is appropriate. If the environment
is such that a terminal state will never be reached, then the problem is continuing, and
Eq. (1.5) is appropriate.

Algorithm 1.1 gives example pseudocode illustrating how Equations (1.1)-(1.5)
could be used together to calculate a full trajectory and sampled trajectory cost jE) =

~

J(Zy, €, Z), from a given start point Zy.

Algorithm 1.1 Trajectory Unroll and Total-Cost Calculation in the ADPRL prob-
lem.

1: t+ 0

2::]\0%0 7 :]\o%jz)—l—’tht

3: while 7; ¢ T do 8 t+t+1

4: Uy <+ ATy, €, 2) 9: end while

5: ft+1 — f(fft, 'lj:t, é;g) 10: T+t

6: Uy« U(Zy, 1, &) 11: Jo < Jo + 7' ®(Z, &)

This pseudocode omits details of the sampling of the random vector €;, which is
assumed to come from the environment and/or from a random-number generator. Sim-
ilarly, this detail is omitted from all of the pseudocode appearing in this thesis.

The expectation of the sampled cost-to-go function is written as
J(30,60,2) = E (J(30,0,7)) (1.6)

where E (-) denotes expectation and J is defined by Eqs. (1.4) and (1.5). This function,
J(Zp, €0, 2), is known as the value function, or simply as the cost-to-go function (i.e.
without the “sampled” prefix). The hat on the variable-name J denotes that the
quantity is a random sample of the true expectation given by J.

The ADPRL problem is defined to be the task of choosing a weight vector 2’ of the
action-network such that J(Zy, €y, Z) is minimized from any start state Zp, subject to
Egs. (1.1), (1.2) and (1.3).

ADPRL also often uses a second neural network (or function approximator), J(Z, @) €

R, with weight vector @, known as the critic or approximate value function. The tilde

2Some ADPRL methods can allow continuing problems with v = 1 by considering the average
infinite future cost per time step, but these methods are not considered in this thesis.

12
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on the variable-name .J denotes that the quantity is a neural-network approximation
to the underling variable, J. This convention is adopted throughout the thesis.
The intermediate objective of ADP is to train the critic to approximate the cost-

to-go function, so that J(Z,w) ~ J(Z,€, 2) for all £ € S. If this is achieved perfectly,

and if simultaneously the action network always chooses actions according to:

i = argminE (U(f,ﬁ, &) +~J(f(Z.4, é’),w)) VI, (1.7)
ue
then Bellman’s optimality condition (Bellman, 1957) shows the trajectories produced
will be optimal, and the action network is optimal. Bellman’s condition is discussed
more in Section 2.4 and Chapter 4.

The method of choosing actions purely by Equation (1.7) is called the model-based
greedy policy on J since it chooses actions that the critic rates as best. In this thesis,
the model-based greedy-policy function will be abbreviated to greedy policy function,
and denoted as 7(Z, W) to distinguish it from an action network A(Z,¢€, %), and also
to emphasise that the greedy-policy function has a dependency on W, the critic weight
vector, and not on Z. Using this notation, the greedy-policy function is defined as:

7(%, @) = arg min E (U(f,ﬁ, &) +vJ(f(Z,4,¢), w)) . (1.8)
ue

Efficient implementations of the greedy policy are described in Chapter 5, for sit-
uations where the environment functions are linear-in-u. In some stochastic situations

these efficient methods are approximations to the greedy policy defined in Eq. (1.8).

1.2.1 Stochasticicty in the Environment Functions

The environment functions f(Z,u,€), U(Z,u, €) and ®(Z, €) are functions of a random
variable, €, and therefore they can be used to model stochastic environments and cost
functions. The introduction of the vector € follows the method of handling stochastic
environments by Jacobson and Mayne (1970) and Werbos (2012). The noise vector
€, at each time step ¢, can be understood to be a collection of random real numbers,
which could be unobservable and come from the environment itself (in the case of a real
robot moving in a physical environment), or observable and come from a computer’s

random-number generator (in the case of a simulated environment). The dimensionality

of the vector € allows room for enough random numbers so that the noise in the function
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f(&,1,¢€) can be specified separately from the noise in the function U(Z, @, €). Similarly
some components of € will affect A(Z, €, 7), and these components are likely to be all
observable, since they would come from a computer’s random number generator to
enable deliberate exploration.

Under this scheme, the state transition function given by Eq. (1.1) can be used to
model any desired probability distribution P (Zy11|Z¢, 1) for taking us to the next state
(Z441) given the current state and action (#; and ;). This generality follows from the
same idea that any uniform random number-generator can be used to generate random
numbers to match any desired distribution, following the Fundamental Transformation
Law of Probabilities (see Press et al., 1992, Sec.7.2). This means that the method of
specifying stochastic state transitions used in Eq. (1.1) is just as general as specifying

a full probability distribution P (Zy1|Z, @), which is the method usually used in the
RL literature.

1.3 Literature Review

This literature review describes the history and origins of ADPRL (in Section 1.3.1),
and important modern ADPRL survey articles and applications, in Section 1.3.2. Sec-
tion 1.3.3 describes the algorithms which are very closely related to the main algorithm
of this thesis, VGL(\), clearly showing their relation to VGL(\). Section 1.3.4 describes
more distantly related ADPRL algorithms. Finally, Section 1.3.5 summarises some of

the convergence proofs that exist for ADPRL algorithms.

1.3.1 Origins of ADPRL

The earliest attempts to create RL systems date back to the 1960’s when Minsky (1963)
proposed a general purpose reinforcement learning system. However it was soon found
that these systems could not handle as much complexity as methods based on Dynamic
Programming (Bellman, 1957; Howard, 1960a). Samuel (1959, 1967) made an early
machine-learning system to play checkers which used a look-ahead system combined
with a state-evaluation function which was self-improving with playing experience. This
state-evaluation function was similar, but not identical, to the value function used by

ADPRL (see Sutton and Barto, 1998, Sec. 11.2, for a discussion).
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1.3 Literature Review

A proposal to extend RL to use a function approximator to explicitly represent
successive representations of Bellman’s value function was made by Werbos (1968).
Widrow et al. (1974) made a very early critic-learning system, which was designed
for playing black-jack. Heuristic Dynamic Programming (HDP) is one of the main
modern ADP algorithms. This was originally defined by Werbos (1977), but described
in more detail by Werbos (1992b) and Prokhorov and Wunsch (1997a). The other main
algorithm of ADP is Dual Heuristic Programming (DHP), which is a value-gradient
algorithm. Historically, DHP was first designed in 1977 (Werbos, 1977), but greater
detail came in 1981 (Werbos, 1981). This 1981 algorithm was for the “Galerkinized”
version of DHP, but this version “converges to the wrong answer almost always for
linear dynamical systems with noise” (Werbos, 1998, 2004). It wasn’t until 1992 that
a published version of the non-galerkin version came (Werbos, 1992b).

Most ADP algorithms are variants on HDP or DHP. Out of these two algorithms,
DHP is a true value-gradient learning algorithm. HDP is a value-learning algorithm.
Prokhorov and Wunsch (1997a) give a detailed summary of the “design ladder” of ADP
algorithms including HDP and DHP.

Key works founding the RL community were by Barto et al. (1983) and Sutton
(1988) with a solution of the cart-pole benchmark problem, and the invention of the

Temporal Differences learning algorithm, TD(\).

1.3.2 Contemporary ADPRL Literature and Applications

The ADP field is nicely summarised in the review article by Wang et al. (2009) which
defines the main algorithms HDP and DHP, plus variant algorithms based on these,
and also describes industrial applications of ADPRL. Other ADP survey articles are
available (Balakrishnan et al., 2008; Lendaris, 2009; Lewis and Vrabie, 2009; Lewis
et al., 2012; Powell, 2009).

Surveys and introductions to RL are available by Kaelbling et al. (1996) and Sutton
and Barto (1998).

In the ADPRL communities, applications have been reported for missile control
(Balakrishnan and Biega, 1995; Han and Balakrishnan, 1999, 2002), automotive control
(Prokhorov, 2009), aircraft control over a flight envelope (Ferrari and Stengel, 2002),
aircraft landing control (Murray et al., 2002; Prokhorov and Wunsch, 1997a; Prokhorov

et al., 1995), helicopter reconfiguration after rotor failure (Enns and Si, 2003), power
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system control (Li et al., 2012; Lu et al., 2005; Venayagamoorthy and Wunsch, 2003),
vehicle steering and speed control (Lendaris et al., 2000), computer go (Silver et al.,
2012), computer backgammon (Tesauro, 1994), elevator dispatching (Barto and Crites,
1996) and maintaining the inverted flight of a helicopter (Ng et al., 2004).

1.3.3 The Relationship of VGL(\) to Existing ADPRL Algorithms

HDP is a value-learning ADP design, i.e. it does not consider value gradients. DHP is
a VGL algorithm. The way these two algorithms are related to each other is shown by
the two algorithms at the top of Fig. 1.1.

. DHP is
. P is N Av=a ¥, (25) Q,(¢—G
A=« Et(%)t(J't—Jt) - wjthtc(l’atwd)etﬁnte(d bty t)
with J'; defined by Glt::(%) +7(%{) Giin
T )¢ T/t

(A
Joe=U+yJi1 and 2 = 2 + 0A 0
Dz -~ oF ox ou

Sl

insert A insert A
TD() | VGL()) is
is - B
i = A= 9¢3) 0, (G —G
Au_}:azt(%) (J/t_Jt) % w azt(aw)t t( t t)
¢ - with G’y defined recursively by

with J'; defined recursively by

J/t::UH"Y()\J/t+1+(1—)\)jt+1) Glt::(%)t+7(%)t ()\Glt+1+(1_)\)ét+1)

D ._ 0 4 9A 8
and 5% = gz + 57 o7

Figure 1.1: Relationship of VGL()) to other ADPRL algorithms.

In this figure, J is the output of the critic network J (Z,w), with weight vector @,
and G is the gradient of J with respect to the state vector & of the agent, i.e. G is
the critic’s approximation of the value gradient. The A refers to a weight update for
the critic neural network, i.e. this shows the main equation of each learning algorithm,
and a > 0 is a small learning rate parameter. The subscripted ¢ indicates the time step
of a trajectory, U is the instantaneous cost received by the agent at that time step, A
is the output of the action network A(Z,¢€, %), and € is an arbitrary positive definite

square matrix. Fuller details and full pseudocode for all of the figure’s algorithms will

16



1.3 Literature Review

be given in Chapters 2-3, but at the moment the figure indicates the key relationships
between various ADPRL algorithms.

The TD(A) algorithm (Barto et al., 1983; Sutton, 1988) is an extension of HDP to
include a constant A € [0, 1] parameter which specifies how the critic neural network’s
output values are to be updated. A is a blending parameter that specifies how much
the critic values are updated towards other critic values (a process known as “boot-
strapping”) as opposed to towards the true total trajectory cost. The exact details of
this blending and the main TD(X) weight update is shown in the bottom left corner
of Fig. 1.1, but again, fuller details will be given in Chapter 2. TD()) is a unifying
extension between the earlier critic methods, such that TD(1) is equivalent to Widrow
et al. (1974)’s black-jack critic and TD(0) is equivalent to HDP.

From Fig. 1.1, the new algorithm presented by this thesis, VGL()), can be shown
in context to the other three algorithms. VGL(A) is most easily understood as an
extension of DHP that includes a A parameter analogous to that used in TD(A). The
parameter A can affect learning speed of the algorithm and convergence stability, and
it was the addition of this parameter that led to the convergence proof in Chapter 8,
so it is was an important extension to have made to DHP.

Although best understood as an extension to DHP, the VGL(\) algorithm was
actually derived by changing TD(A) to learn value gradients, i.e. by following the
right-pointing arrow at the bottom of Fig. 1.1. It was the failure of TD(\) to solve
continuous-valued state-space control problems without value exploration, and the slow
speed of its ability to solve them with value exploration, that led to the creation of
VGL(A) (Fairbank, 2008). Examples of these two kinds of difficulties, and the benefits
of VGL methods in solving them, are given in the experiments in the following two
chapters (specifically in Figs. 2.2, 3.7 and 3.10). It was the understanding that TD(\)
could be defined in this concise form using the recursive definition of J'; from Fig. 1.1

that enabled the algorithm VGL(\) to be defined easily.

1.3.4 Other ADPRL Algorithms

Other variations on the main algorithms shown in Fig. 1.1 are possible. These in-
clude Q-learning and the residual-gradient methods, plus Gradient Temporal Differ-
ences methods. These are described in Sections 2.6, 2.7.3 and 2.7.4, respectively. From

the ADP community, there is “Action Dependent HDP” (ADHDP), which is roughly
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the same as Q-learning, plus Globalized DHP. These are described in Sections 2.6 and
3.4.4, respectively. Plus there are other ADP variants including Action Dependent
DHP (ADDHP), Action Dependent GDHP (ADGDHP) and Galerkinized DHP, which
are not described in this thesis, but are described by Prokhorov and Wunsch (1997a)
and Werbos (1998).

Another group of ADPRL algorithms are policy-gradient based methods. These do
not use a critic at all, but instead do direct gradient descent on J (Z, €, 2) with respect to
the weight vector of the action network, 2. These include the REINFORCE algorithm
by Williams (1992) and Backpropagation Through Time (“BPPT”) by Werbos (1990a),
and are described in detail in Chapter 6. Despite BPTT being a critic-free method,
BPTT is an essential component of this thesis because a unification proof between
BPTT and the critic-based VGL(A) algorithm is given in Chapter 8. Since this forms
the basis of a convergence proof for one instance of VGL(A), this link to BPTT makes

the most significant theoretical achievement of this thesis.

1.3.5 Convergence Proofs for ADPRL algorithms

Convergence proofs for various RL algorithms exist, but these are mainly for tabular
representations of the critic, or linear function approximation of the critic, and/or fixed
action-networks. These include proofs by Baird (1995); Dayan (1992); Sutton (1988);
Sutton et al. (2000, 2009); Tsitsiklis and Van Roy (1996a). The work of Maei et al.
(2009) is valid for a critic with non-linear function approximation, with a fixed action
network. These works are all described in detail in Section 2.7.

Convergence proofs for the ADP algorithms include work by Al-Tamimi et al.
(2008); Ferrari and Stengel (2004); Heydari and Balakrishnan (2011); Howard (1960b);
Prokhorov and Wunsch (1997b) and these are all described in the introduction of Chap-
ter 8.

The critic-free methods, REINFORCE and BPTT, have very good convergence
guarantees with non-linear function approximation and changing action-network be-

haviour, and these convergence results are described further in Chapter 6.

1.4 Model-Free and Model-Based Algorithms

ADPRL algorithms can be split into two kinds: model-free and model-based algorithms.
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Model-free algorithms are ones that don’t have an explicit requirement to know
the environment functions, f(Z,,¢€), U(Z,u,€) or (¥, ). These algorithms often do
contain instances of the environment functions, but they are included in such a way that
they could represent a robot or agent actually exploring the environment. The agent
could still make deductions about cost received (i.e. U(Z, 1, €)) or state transition made
(i.e. f(Z,4,€)) by pure observation, and without knowledge of the functions themselves.
For example the, trajectory-unroll algorithm (Alg. 1.1) is model-free according to this
definition, and so is the TD(A) weight update, which is defined in Fig. 1.1 and in
Chapter 2.

In contrast, a model-based algorithm is one which must explicitly know the model
and cost functions. For example, all VGL based algorithms are model based, because
they need to explicitly use the derivatives of the model and cost functions, as can be
seen from their definitions in Fig. 1.1. These derivatives cannot be deduced by single
observations by the agent.

This completes the definition of what distinguishes a model-free algorithm from a
model-based one. The following two subsections describe the extent to which model-
based and model-free algorithms are used within ADPRL, and which researchers use

which.

1.4.1 Model-Based RL

The sub-field of “model-based RL” is different from the simple classification of an
algorithm as model-based by the above definition.
Kaelbling et al. (1996) define model-based RL as “Learn a model, and use it to

derive a controller.’

RL” (Sutton and Barto, 1998, chap. 9).

Model-based RL is also known as “planning in RL” or “indirect

When a neural network is trained to learn the model and cost functions using an
appropriate supervised learning method, the neural network will converge (as closely
as possible) to the expectation of the target functions, which will necessarily be deter-
ministic. In this thesis the targets for the deterministic parts of the learned model and
cost functions are denoted with overbar symbols. Using this notation, the model and

cost functions can be decomposed into a deterministic learned part plus a pure-noise
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part, so that:

(U7, 4, ¢e)) (1.10)
(®(7,€)).

If this objective is met then the expectations of the three noise terms, (&, , €),
Eu(Z,1,€) and ¢ (7, €) should all be zero.

The three functions f(Z, @), U(Z, @) and ®(Z) are all deterministic functions, which
is reflected in their notation, since they are not dependent on the noise vector €. The
overbar symbol indicates that they are each expectations of their underlying functions,
i.e. according to Eq. (1.10).

Sutton and Barto (1998) describe an advantage of model-based RL to be that it
makes fuller use of experience, that is it obtains a better policy with fewer environment
interactions, and a disadvantage of model-based RL to be that if the model is not
perfectly learned then the optimization will optimise the wrong model.

Another benefit of model-based RL can be understood by imagining the case of a
robotic flying machine that is to be trained only through the negative reinforcement
of crashes. In this situation it would clearly be beneficial for these crashes to happen
in model-based simulation rather than in reality. This example, when coupled with
the fact that many simulated trajectories can usually be evaluated in the time it takes
a real robot to complete one physical trajectory, makes a strong incentive to choose
model-based methods over model-free ones.

Concerning the disadvantage of using a possibly incorrect learned model, the model-
approximation error is just one more error on top of the approximation error in the
critic, and the approximation error in the action network; and as we shall see in Chapter
5, when model-based methods are used it is sometimes possible to remove the action
network, thus removing one layer of approximation error, and hence neutralising this

model-based disadvantage.

20



1.4 Model-Free and Model-Based Algorithms

Other potential drawbacks of model-based RL are that time must be spent learning
the model functions, and also that it is tricky to decide when it is time to stop learning
them. The second of these two issues can be addressed by never stopping the model
learning, i.e. to continually learn the model functions concurrently with the critic and
action-network training; although with a changing approximate model this could make
convergence assurance even more difficult. On the issue of the extra time spent training
the model functions, I am in agreement with Lendaris and Neidhoefer, who wrote: “We
mention that some view this model dependence to be an unnecessary ‘expense’. The
position of the authors, however, is that the expense is in many contexts more than
compensated for by the additional information available to the learning/optimization
process” (Lendaris and Neidhoefer, 2004, sec 4.3).

One of the best known and celebrated successes in RL relied upon a model-based
method: maintaining the inverted flight of a helicopter (Ng et al., 2004). This model-
based RL approach first learned the model functions and then afterwards found a

control policy.

1.4.2 Model-Given ADPRL

This thesis goes further than the approach of “learn a model, and use it to derive a con-
troller”, and generally completely skips the “model learning” phase, by just assuming
the model functions are already known or assumed pre-learned. This will be referred
to as “model-given ADPRL” to distinguish it from model-based RL. It is also known
as “Planning in Reinforcement Learning” (Sutton and Barto, 1998, chap. 9).

The possibility of learning model functions is discussed in Section 3.2, and only
a short mention of actually doing it is given in the experiment of Section 3.7; but
otherwise model learning is largely omitted from this thesis. This omission creates a
tighter focus on the second stage of model-based of RL, which is a very worthwhile
stage to study in its own right.

Potential drawbacks of the “model-given” restriction of this thesis are that we are
assuming any model functions can be pre-learned, in principle. This might not be
the case in certain examples; maybe some model functions are just too difficult to
learn. Possibilities of this kind could be the model functions to describe chaotic tur-
bulent airflow around a hovering helicopter, or learning the model function to describe

the changing states of the stock market. But in both cases, there are large unknown
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elements which could be considered as genuinely random, and therefore could be mod-
elled by attaching stochastic components to the learned model functions. Also, in the
stock-market situation, it is an open question whether any model-free algorithm could
achieve any statistically-significant advantage over a model-based algorithm where the
system-identification process had completely failed.

Another drawback of the model-given restriction of this thesis is that the experi-
ments mostly do not account for the extra learning time it would have taken to learn
the model functions. The only partial exception is the experiment in Section 3.7 which

does mention this issue briefly.

1.5 Related Fields

There is quite a large overlap between the research disciplines of RL, ADP, Control
Theory, Neurocontrol and Differential Dynamic Programming. This section aims to
describe how they all relate to each other, and therefore provide a better context for

where ADPRL and this thesis fit in.

1.5.1 How ADP Relates to RL

The ADP and RL subcommunities work on the same problem, but possibly with slightly
different areas of focus. They both have the same problem formulation as defined in
Section 1.2, i.e. both are trying to find an action network and critic function which
will optimise the cost-to-go function from any point in state space. They both tackle
the same difficulties in proving convergence of the critic function under a concurrently-
updating action network, while also dealing with the complication that bending the
critic in one place will inadvertently cause it to bend in other places. Hence the two
fields together are referred to as ADPRL.

The only differences between ADP and RL seem to be that the RL literature often
provides a greater focus on model-free approaches and discrete-valued state spaces, but
ADP commonly includes model-based (e.g. value-gradient) algorithms and focuses on
continuous-valued state spaces. Also, Table 1.1 shows some notational differences that
commonly occur between the RL and ADP communities. None of these differences is

strict though. For example, successful model-given applications are published in the
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RL literature; one example is computer-go using the “TD-Search” algorithm (Silver

et al., 2012).

ADP Concept/Notation Equivalent RL Concept/Notation
Cost-to-go Function: J(Z,¢€, 2) Value Function: V (Z, 2)

Critic Function: J (Z, ) Approximate Value Function TN/(f, W)
Action Network Policy or Actor

Utility Function (Cost Function): U(Z,,€) | Instantaneous Reward Function: (¥, @)
Action Vector: 4 a

HDP Algorithm TD(0) Algorithm

ADHDP Algorithm Q-Learning

Discount Factor, v Discount Factor, v

Table 1.1: Common Notational Differences (and Similarities) between ADP and RL

1.5.2 Relationship to Control Theory and Neurocontrol

Control theory (Kirk, 2004; Todorov, 2006) shares a lot of the objectives of ADPRL,
and a lot of notation from ADP (e.g. shared function names such as J, U(Z,u,¢€),
f(#,4,€)). Pontryagin’s Minimum Principle (PMP) and dynamic programming are
both fundamental principles of control theory, and both of these methods use value
functions and are therefore relevant to ADPRL. These two principles are described
further in Chapter 4.

PMP is a work-horse of control theory because it is capable of efficiently finding
an optimal trajectory from any given start point, or between any two given points,
in a deterministic environment. The calculation can be done for each trajectory using
numerical methods. This is how its use in control theory differs from its use in ADPRL:
Whereas ADPRL spends a lot of computation effort to find an optimal policy function
A(Z,€,Z) which is valid over the whole state space S, the computation of optimal
trajectories by PMP is done on individual trajectories. Hence in control theory, when
a new optimal-trajectory is required, another numerical computation must usually be

done all over again.?

3In certain cases PMP can be used to find an optimal policy function over the whole of state space,
but this has only been in cases where that function can be represented by an exact analytical solution
(Pontryagin et al., 1962, chap. 1, sec. 5).
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The use of a value function in control theory, whether by PMP or Bellman’s ap-
proach, would normally be used with numerical methods or exact analytical solutions.
If a function approximator is used to represent the value function, then the method
becomes equivalent to ADP; and when a neural network is used for the policy function
in control theory then the method becomes equivalent to “neurocontrol” (Antsaklis,
1990; Balakrishnan and Weil, 1996; Hagan and Demuth, 1999; Werbos, 1992a).

There are also major methods in control theory which do not rely on a value func-
tion, and which therefore are unrelated to PMP or Bellman’s methods. These include

inverse-kinematics control and proportional-integrator (“PI”) controllers.

1.5.3 Relationship to Differential Dynamic Programming

Differential Dynamic Programming (DDP) is a method described by Jacobson and
Mayne (1970). DDP makes a local quadratic expansion of the value function about each
state along a given trajectory. Using these local quadratic functions it is possible to
iteratively improve the trajectory until it bends into a locally optimal shape. This makes
a strong similarity to ADPRL, and the equations look very similar to those appearing in
VGL. But the key difference between DDP and VGL is that the value function learned
by DDP is only accurate locally to the single trajectory under consideration. Hence,
unlike ADPRL, the objective of DDP is not to find a policy function A(Z, €, 2) or critic

function J(Z, ) all over & € S; but instead to make a local function for each, expanded

around the current trajectory.

1.6 Contributions of this Thesis

The major contributions of this thesis are to extend the DHP method into VGL(\),

and provide the theoretical results listed in Part II. In particular these are:

1. The trajectory optimality proof in Chapter 7 shows that, in continuous-valued
deterministic environments, learning the value gradients along a trajectory with
a greedy policy will ensure the trajectory is locally optimal, for any value of the
bootstrapping parameter A. Also the proof includes an extension of Pontryagin’s
Minimum Principle to provide a sufficient condition for local optimality (whereas

in its traditional form it only supplies a necessary condition for local optimality).

24



1.6 Contributions of this Thesis

This extension is given in Corollary 7.1, which may well turn out to be an original

observation.

2. An equivalence proof between BPTT and one instance of VGL(1) is given in
Chapter 8. This equivalence doubles up as a convergence proof for that instance
of VGL(1) with a greedy policy and a general non-linear function approximator

for the critic function.

3. Concrete divergence examples for other ADPRL algorithms with a greedy policy,
including TD(1), TD(0), DHP and other instances of VGL(A) are given in Chapter
9.

Also the practical considerations listed in Part III (Advanced Implementation De-

tails) are original. These include:
1. The need to handle clipping correctly by VGL algorithms (Chapter 10).

2. The efficient calculation of the second-order gradients in neural networks which

are necessary for implementing GDHP efficiently (Chapter 11).

Publications resulting from this thesis are listed in Table 1.2.

Publication Relates to Chapters
Fairbank (2008) All chapters
Fairbank et al. (2012b) Chapters 3, 5, 8
Fairbank et al. (2013) Chapters 8, 9
Fairbank and Alonso (2011b) Chapters 3, 7, 8
Fairbank and Alonso (2012b) Chapter 9

Fairbank and Alonso (2012c) Chapters 3, 5
Fairbank and Alonso (2012a) Chapter 4

Fairbank et al. (2012a) Chapter 11
Fairbank (2013); Fairbank et al. (2014b) | Chapter 10

Table 1.2: Publications Resulting from this Thesis

This thesis is also relevant to, and contributes to, the model-free RL research field.
This, and some minor theoretical contributions of the thesis, are listed in the following

two subsections:
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1.6.1 Contributions to Model-Free RL

There are several aspects of this work which are relevant to model-free algorithms
and VL algorithms such as TD()A). In Chapter 9, a value-gradient analysis is used to
derive divergence examples for several major ADPRL algorithms when combined with
a greedy policy. One of these divergences is for TD(1). TD(1) is considered to be one
of the most reliably convergent algorithms, and it is model-free, but its convergence
was still previously only proven for a fixed action network. It is through this value-
gradient analysis that the divergence example was found for TD(1), when combined
with a greedy policy.

Also, the optimality proof of Chapter 7 states a condition that is necessary (and
usually sufficient) for trajectory optimality which affects VL algorithms just as much
as it does affect VGL algorithms. Even though VL algorithms do not explicitly learn
the value gradient, it still must be learned in these situations if optimality is to be
produced.

Finally, the VGL algorithms developed in this thesis may turn out to be rele-
vant to model-free researchers, because it might be possible in future research to de-
velop stochastic model-free approximations to the model-based VGL algorithm instance

which is proven to converge.

1.6.2 Minor Theoretical Contributions

The following minor theoretical contributions are made throughout the thesis:

1. The trajectory-shorthand notation described in Section 2.1.2 defines a consis-
tent and clear notation. This makes expressions such as U; automatically mean
U(Zy, Uy, €;), i.e. the transition cost from leaving state Z;, as opposed to arriving
there. Also, expressions like (%)t are unambiguous compared to expressions

. - 0% . OJiya
from the prior ADP literature, such as 55, Or 5=

2. The target-value recursions of Eqgs. (2.3) and (3.7) are thought to be original
to early technical reports that led to this thesis (Fairbank, 2002, 2008). Using
these definitions, the TD(\) and VGL(\) weight updates can be viewed as single
equations. This helps show the relationship between the two algorithms, and also

view clearly what the algorithms do, as opposed to how they are programmed.
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Eq. (2.3) is now a fairly well-known recursion, e.g. appearing as eq. 8 of reference

(Maei and Sutton, 2010).

3. It is deliberate that none of the ADPRL algorithms defined in this thesis are done
so by claiming them to be gradient-descent on a given error function. Section 2.7.1

discusses this point further.

4. The emphasis that “local value exploration comes for free” with VGL compared
to VL methods is an original explanation and motivation for VGL methods. This

is described in Section 3.1, plus other sections and experiments.

5. The splitting of Bellman’s principle into two parts (as described in Section 4.1.1)
is useful for motivating the importance of considering a greedy policy, even when

a greedy policy is never used.

6. The visual explanation of how Bellman’s principle relates to Pontryagin’s mini-

mum principle (Section 4.4.1).

7. The pseudocode simplifies and clarifies many ADPRL algorithms’ specifications.
This makes various subtleties explicit; such as how to handle terminal states, or

how the multiple applications of backpropagation are to be arranged.

1.6.3 Contributions to Stochastic ADP Algorithms

For stochastic environments, several clarifications have been introduced in this thesis.

These clarifications are relevant to BPTT and VGL based methods.

1. An explanation is given, in Section 6.1.2, showing that the optimum obtained by
BPTT in stochastic environments can be different from the true ADPRL objec-
tive. To counter this deficiency, the thesis also gives useful smoothness conditions
which are capable of guaranteeing that these two optima become exactly equal

to each other (see Section 6.1.2).

2. An explanation is given of why additive noise is relevant to VGL algorithms
when environments are stochastic. When non-additive noise is present, the VGL
optimality condition and weight update can become approximations (Sections

3.2.1 and 3.5.4). Also, with non-additive noise, the BPTT weight-update can
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become an approximation to true gradient descent (Section 6.1.1). In both of
these cases, when additive noise is present, the approximations change into exact

equalities.

3. A proof of how VGL methods can lead to a globally optimal control policy is pro-
vided in Section 4.5, including an extension to stochastic environments (Section
4.A).

4. For stochastic environments, a discussion is given of how additive noise will ensure
that a commonly used action-network weight update will be exactly correct, and
also that the efficient “greedy—on—@” policies will become exactly correct under

additive noise (Sections 5-5.1 and 5.A).

1.7 Outline of Thesis

This prelude has introduced the ADP problem formal definition, and described the
concept of a critic function and the cost-to-go function. The rest of this thesis develops

the value-gradient idea. The thesis is split into three main parts:

e Part I defines the terminology and algorithms, including the main existing algo-
rithms and their motivations, plus the VGL(\) algorithm. This part also describes
Pontryagin’s and Bellman’s optimality principles, and also efficient greedy-policy

implementation.
e Part II gives the main theoretical results of this thesis.

e Part III describes the more specific implementation details that can contribute

to making a successful VGL implementation.

All main chapters have their own chapter-conclusions section. Chapter 12 sum-

marises conclusions for the whole thesis.
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Chapter 2

Value-Learning Algorithms

The purpose of this chapter is to give background information on the existing value-
learning (VL) algorithms, and to provide a context for defining VGL methods in the
next chapter. The algorithms considered in this chapter include TD(0) and HDP, both
of which are described in Section 2.2, and TD(\) which is described in Section 2.3. The
chapter describes how VL algorithms relate to Bellman’s optimality condition (Section
2.4). The difference between off-policy and on-policy algorithms is described in Section
2.5, and the off-policy algorithms Q-learning and Action-Dependent HDP are described

in Section 2.6.

This chapter also describes convergence and divergence results for VL algorithms
in Section 2.7, and concludes with an empirical case-study in Section 2.8 which demon-
strates the difficulties VL. methods have in the absence of stochastic value exploration,
and this provides the motivation for developing VGL algorithms in the next chapter
(Chapter 3).

The algorithms presented in this chapter are valid for discrete and continuous-
valued state spaces, discrete and continuous-valued action spaces, non-differentiable or
differentiable model functions, and they work without knowledge of the model functions
and in general stochastic environments. This is in contrast to the VGL algorithms
presented in the rest of this thesis which require known differentiable model functions,
continuous-valued state spaces, and for which some of the theoretical results presented

are only proven for additive-noise or deterministic environments.
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2. VALUE-LEARNING ALGORITHMS

2.1 Preliminary Notation

To define the algorithms in this chapter and thesis, it is convenient to define some

fundamental notation.

2.1.1 Column-Vector Notation

A convention is used that all defined vector quantities are columns, whether they are
coordinates, or derivatives of a scalar function respect to coordinates. For example, 0,

Ty and % are all column vectors.

2.1.2 Trajectory-Shorthand Notation

Subscripted “t” indices after variable or function names are what we will call trajectory-
shorthand notation. These refer to the time step of a trajectory and provide correspond-

ing arguments @, iy and €; where appropriate; so that for example jt+1 = J (Zyg1, W),
Uy := U(&, Uy, €), and (%) is shorthand for the column-vector function 8‘](%@
t

evaluated at (&, 0).

Trajectory-shorthand notation is used in almost every chapter of this thesis.

2.2 The TD(0) / HDP Algorithms

The TD(0) algorithm is an RL algorithm defined by Sutton (1988). It is equivalent to
the ADP algorithm, Heuristic Dynamic Programming (HDP).
Using the notation of Section 2.1, the TD(0)/HDP algorithms, applied in batch

mode to a whole trajectory, can be defined succinctly by the following weight update:

aoJ ~
AT = Y - 2.1
W=« t <6u_f>t (J's — Ji) (2.1)

where a > 0 is the learning rate, and J' is the “target value”, defined by

S U+~ ifZ¢T
T e, if 7, € T.

Pseudocode for the TD(0)/HDP algorithms is given in Algorithm 2.1.
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2.3 The TD()\) Algorithm

Algorithm 2.1 Actor-Critic, On-Line Implementation of TD(0)/HDP Algorithms,
including an ADP action-network weight update.

1:t<«0

2: while Z; ¢ T do

3: Uy A(ft,é%,g)

4 Tyyr < f(@, Uy, €)

5. Calculate J'; by Eq. (2.2).

6

s a(@), (1)

T Ze7-B(%), <<(?dg>t T <%§)t (gi:>t+1>

8: t—t+1

9: end while B

1&uu—w+a(%@ @m%a)—ﬁ)
t

The pseudocode includes a critic weight update and an action-network (actor)
weight update. Hence this combination is referred to as an actor-critic algorithm.
Line 7 of the algorithm implements the action-network weight update, with learning
rate 8 > 0. This is a model-based weight update which is commonly used in the ADP
literature (for example, see Prokhorov and Wunsch, 1997a, Eq. 10). There are several
other valid choices of action-network weight update that could be used in place of this
line, including some model-free ones, described in Chapter 5. There are also different
possible arrangements for interleaving the critic and actor weight updates, as discussed
in Section 5.1.1. If the learning rate for the action network is set to zero, i.e. if 5 =0,
then this pseudocode would reduce down to the pure TD(0)/HDP critic-only weight
update.

2.3 The TD()) Algorithm

This is an extension of TD(0) made by Sutton (1988), where a constant parameter
A € [0,1] is introduced. The main idea can be described mathematically by changing
the definition of the target value, J';, from Eq. (2.2) into

U, \J! 1—\)J; if 7 ¢ T
7, ::{ t+’Y< t+1 + ( )t+1) if 7y ¢ (2.3)

Dy if ft e T.

Convergence of this recursion is ensured by requiring that either v < 1, A < 1, or
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2. VALUE-LEARNING ALGORITHMS

the environment is such that the agent is guaranteed to reach a terminal state at some
finite time (i.e. the environment is episodic).

With the above modified definition of J; (by Eq. (2.3)), Eq. (2.1) defines the
TD()) algorithm. This redefined J'; formula and definition of TD()) is represented by
the left-hand vertical arrow labelled “insert A\” in Fig. 1.1.

In a stochastic environment, .JJ/; will depend on the environment noise and random
actions taken after time step ¢, hence the observed value of J'; is a random sample.

Eq. (2.3) specifies a recursion for J'; that unrolls forwards in time. Using this
forwards-in-time evaluation, it is necessary to wait until the trajectory is completed
before any value of J’; can be known. However it is also possible to accumulate the
recursion backwards in time, using an eligibility-trace method derived by Sutton (1988).
Pseudocode to do this is given in Alg. 2.2. This method of evaluating the weight update
is equivalent to that described by Eqs. (2.3) and (2.1), but the eligibility trace method is
more convenient because it means the TD(\) weight update can be applied continually,
i.e. without having to wait for the trajectory to be completed. TD(A) is therefore an

on-line weight update.

Algorithm 2.2 Actor Critic, On-Line Implementation of TD(A) using Eligibility
Traces, including an Action-Network Weight Update from ADP.

. &+« 0 {“Eligibility trace” vector}
t<+0

: while 7, ¢ T do

ﬁt — A(ft, é}, 5)
ft—l—l — f(‘fél ﬁt, é%)~

0 Ut +’7Jt+l — Jt

€4+ \ye+ <%)t

W <— W + aéd {Critic update}

9. Z+Z-p (%)t ((%)t + 7y (gé)t (g—;) t+1> {Action-network update}
10: t+—t+1

11: end while N

12: 6 < O(Zy, ) — Jy

13: €4 A\ye+ (%)t

14: W < W + € {Final critic update}

I B S o

To make the pseudocode applicable to the control problems used later in this chap-

ter, the pseudocode presented here also includes an action-network weight update, i.e. it
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2.3 The TD()\) Algorithm

is presented in actor-critic form. The true TD(\) critic weight update can be recovered
by setting 8 = 0.

From the recursion in Eq. (2.3), the effect of A\ can be seen to specify a blending
of how much the target J'; is to be based upon the critic’s estimation of the future
state(s), and how much the target J'; is to be based upon the actual future total
trajectory cost. When A = 0, the above recursion simplifies down to the TD(0) target,
i.e. Eq. (2.2). In the other extreme, when A = 1, the above recursion simplifies down
to J't = jt, i.e. in this extreme J'; equals the sampled cost-to-go of the trajectory.
When ) takes intermediate values between 0 and 1, the target J'; takes an appropriate
blending between the above two extremes.

Consequently the parameter A specifies the degree to which an estimate (the critic)
is updated towards itself (also an estimate); a process Sutton and Barto (1998) liken
to trying to pull yourself up by your own bootstraps. Hence we will refer to A as the
bootstrapping parameter.

The definition of J'; is equivalent to the “A-Return” Watkins (1989), as proven in
the chapter appendix (Section 2.A.1). The J'; recursive formula of Eq. (2.3) is more
succinct than the form by Watkins. The use of J' greatly simplifies the analysis of
value functions, and value gradients.

Both TD()\) and HDP aim to attain, as closely as possible, J; = I (J';) for all t along
a trajectory, and eventually all over S. This is why the values J'; are called “targets”.
However since J'; is dependent on all future actions, and on J(Z, @) if A < 1, then the
targets are moving ones. Consequently, it is not a simple matter to attain J,=E (J't)
for all ¢; it can happen that the J; values never quite catch up with the E (J';) values.
As discussed further in Section 2.7, convergence of TD(\) is not generally guaranteed,
even when an infinitesimally small learning rate is used.

Furthermore, even if the targets were stationary, due to the limitations of func-
tion approximation it will be unlikely for the critic network to be ever able to attain
jt =E (J';) for all ¢, exactly. However due to the universal function-approximation ca-
pabilities of neural networks, a multi-layer perceptron with sufficient number of hidden

nodes can theoretically get arbitrarily close to this objective.

2.3.1 Motivations for Introducing a A Parameter

The motivations for including the A\ parameter are as follows:
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2. VALUE-LEARNING ALGORITHMS

1. Having a high value of A can make the definition of J'; do a long look-ahead into

the total future true trajectory cost, and hence this could speed up learning.

2. Setting A = 1 can turn TD(\) into true gradient descent (as we will see in Section

2.7.1), which can improve TD()) convergence assurance.

3. There is also a benefit to having a low value of A: In environments which are
heavily stochastic, or even an environment which is deterministic but chaotic, the
long-term true trajectory cost can have a high variance, which makes the quantity
J'y fluctuate around wildly and therefore is difficult to learn. By reducing \, we
can shorten the look-ahead and hence reduce the variance of .J';, and this can make
learning easier. Consequently, in experiments shown by Sutton and Barto (1998),

an intermediate value of A\ € [0, 1] often produces the most effective learning.

2.4 The Relationship of the Value-Learning Objective to

Bellman’s Optimal Principle

The TD(A) and HDP algorithms aim to satisfy Bellman’s optimality principle, which
is described here. By satisfying Bellman’s optimality conditions, the TD(\) and HDP
algorithms can discover an optimal policy function and thus solve the ADPRL problem.

The TD()) weight update has a fixed point when the expectation of the right-hand
side of Eq. (2.1) is zero. This would occur if J,=E (J'y) for all #; € S. As noted in
the previous subsection, in general it will be impossible for a function approximator to
attain this goal exactly, but it is possible for a neural network with universal function
approximation capabilities to get arbitrarily close to it. Hence this fixed point is referred
to as the “target” of neural-network training.

The reason this fixed point is desirable is because it leads to Bellman’s Optimality

Condition, via the following theorem:

Theorem 2.1. When actions iy are generated by an action network, A(Zy, €, Z), and
A €10,1] is a fized constant; if J,=E (J't) for all @y € S, then for all Z; € S, we have

. E (U@ e, @) + 7T (F (@1, @, &), @) if & ¢ T

J(Z, @) = (2.4)
E (®(Z, €t)) if Ty € T.
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Optimal Principle

Proof. First note that,

E (')

= E (J’t - Jt> 0 (2.5)
Next, for non-terminal states, we have

E (J') (by assumption of the theorem)

E (U + (AJ’t+1 +(1- A)fm)) (by Eq. (2.3); 7, ¢ T)
=E (Vi + 7T+ (Vi1 = T ))

=K (Ut + ’YJt+1) +YAE (J/t+1 - =7t+1)

E

— (Ut+7jt+1) (by Eq. (2.5)). (2.6)

Next considering the terminal states only, we have

J=E (J’t) (by assumption)
— E(0(7, &)) (by Eq. (2.3); & € T). (2.7)

Hence combining Equations (2.6) and (2.7) for both terminal and non-terminal

states, and removing trajectory-shorthand notation gives

= [E(U@E, @, E) + 4 T((E T, @), T)) i F ¢ T
E (®(Z, &) if 7, € T.

Since the above equation was derived for an arbitrary state @; in S, the theorem
holds for all Z; € S. O

If in addition to the fixed point given above, we also have the action network obeying
the greedy policy given by Eq. (1.7), i.e
iy = arg win B (U (&, 11, &) + 77 (f (@, i, @), @)) V@ €5, (2.8)

UrEA

then, combining equations (2.4) and (2.8), and renaming Z; to &, implies that we have
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achieved, for all # € S:

. minﬂeAE<U(f,ﬁ, &) +vJ(f(Z, 1, 5),@)) if7¢T
J(Z, ) =
E(®(z,&)) if 7 € T.

This is equivalent to Bellman’s optimal value function J*(&), which is defined by

the recursion:

@) = {mingeAE(U(f,ﬁ, &)+~ J*(f(Z,,€)) ifF¢T 29)

| E(9(2,8)) if # € T.

This equation (Eq. (2.9)) is also known as the Bellman Equation. Bellman (1957)
proves that if there exists a function J*(#) which satisfies the Bellman Equation for all
Z € S, then J*(¥) is the optimal value function, and the greedy policy on this value
function will be an optimal policy. This is called Bellman’s optimality principle.

It has been shown that if the TD()) fixed point, given by J; = E (J';) for all &, € S,
is attained exactly, and if the action network satisfies the greedy-policy equation exactly
(Eq. (1.8)), then Bellman’s optimality principle will be satisfied, and the action network
will therefore produce optimal actions for all & € S.

This demonstration motivates why both TD(\) and HDP have the goal of achieving
as closely as possible, jt =E (J';) for all Z; € S. If this goal was to be attained exactly,
and also if the action-network was trained to satisfy the greedy policy equation exactly
(Eq. (1.8)), then this would result in optimal behaviour. In practice, due to the finite
capabilities of function approximation, it is unlikely this goal will be met exactly; but
nevertheless the goal provides the motivation and target for the TD(A) and HDP weight
updates. The fact that these goals won’t be quite met exactly is consistent with one

expansion of the acronym ADP to mean approximate dynamic programming.

2.5 On-Policy and Off-Policy Weight Updates

Value-learning algorithms are often categorised into either “on-policy” methods, or “off-
policy” methods. Any critic-learning algorithm aims to train the critic to represent a
cost-to-go function, J(&, €, 7). The Z argument here refers to the fact that the cost-
to-go function applies to a given action network, A(Z, €, 2). While doing the learning,

the agent is exploring and learning about states in S, so the agent is following a policy

36
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function (action network) of its own. If the policy function that the agent is following
is equal to the action network used in J(Z,€, 2), then the learning algorithm is said
to be “on-policy”. Alternatively, it is possible for the agent to follow one policy (e.g.
A(Z,€,21)) while learning the cost-to-go function of another policy (e.g. J(Z,€, 22)),
which is known as “off-policy” learning.

Off-policy learning is useful because Bellman’s optimality principle requires that the
policy becomes greedy eventually (as described already in Section 2.4, and discussed in
more detail in Section 4.1.1). So the critic must learn values corresponding to the greedy
policy, eventually. However RL algorithms, and particularly value-learning algorithms,
need to do value exploration too, in order to satisfy Bellman’s Condition over the whole
state space. So it is helpful to be able to make exploratory actions while still learning
about a greedy policy, and off-policy learning achieves this goal.

As we will see in the next chapter, VGL based methods have much less need to
perform value exploration, so off-policy algorithms are much less important in VGL
than in VL.

One off-policy learning algorithm is called “off-policy Monte-Carlo learning” (as de-
scribed by Sutton and Barto, 1998, sec 5.6). Another is Q-learning, which is described

in the following section.

2.6 Q-Learning and ADHDP

Q-learning is a value-learning algorithm created by Watkins (1989). It has an equiva-
lent algorithm called “Action Dependent HDP”, or ADHDP, independently created by
Werbos (1989).

Q-learning has two important features:

)

1. Tt is an “off-policy” algorithm. That is, it can evaluate one policy (the greedy

policy in this case) while following another policy.

2. It has no requirement for knowing the model and cost functions of the environment

at all. It simply learns a function Q(Z,u,w) at every point of S x A.

Because this thesis is concerned with large continuous-valued state spaces, only

a version of Q-learning with function-approximation will be described, and hence the
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function Q(Z, i, W) will be represented by a neural network with weight vector w.* The

simplest form of Q-learning can then be written as the following weight update:

0
si=a¥(52) @-a)
t

where the “target” Q function, @’ is defined by:

Q/ — Ut + ymingey (Q(ft+1,l_[, IU)) if Z; ¢ T
LT @7, e) if 7, € T.

This weight update and target is clearly very similar to the TD(0)/HDP weight
update (Egs. (2.1) and (2.2)). The difference is in the min operator embedded into
the definition of @’. This is equivalent to a greedy-policy calculation, so it means
that Q-learning learns values of the greedy policy, no matter what policy is actually
followed. This is what makes it an “off policy” algorithm, and it means Q-learning can
be simultaneously exploring the state space while also learning about the greedy policy.

Furthermore, once a Q(&,,w) function is learned, there is no need to use an
action network to make control decisions - it is possible to simply choose actions as
the @ argument which minimises the function Q(Z,u,w) at the given state Z. And
unlike direct use of a greedy policy by Eq. (1.7), this minimisation of the @ function
is entirely model-free.

When a bootstrapping parameter, A, is introduced into Q-learning, to produce the
algorithm Q(\), difficulties occur in that whenever an exploratory action is taken.
Learning histories (in the form of eligibility traces) have to be truncated, as discussed
by (Sutton and Barto, 1998, sec. 7.6).

Werbos (2004) writes about the pros and cons of having to learn a Q-function:
“With Q learning, you only need to know the @ function. You escape the need for a
model. On the other hand, if x and u are actually continuous variables, and if you are
using a lookup table approzimation to @Q, then the curse of dimensionality here is even
worse than with conventional DP.” However it would be hoped that a good function

approximator could much-lessen the curse of dimensionality problem cited here.

4Technically, this means we are actually describing ADHDP not Q-learning, since the only actual
difference between Q-learning and ADHDP is that Q-learning was originally defined for tabular repre-
sentations of the Q-function, but ADHDP was defined with a neural-network representation.
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2.7 Convergence Results for VL. Methods

TD(0), and its generalization TD()), were originally proven to converge for a tabular
representation of the value function by Sutton (1988) and Dayan (1992). However for
the situation considered in this thesis, the state space is continuous-valued and therefore
a tabular value function is not possible. Consequently, the value function (critic) needs
representing by a function approximator. In the most general situation of the function
approximator being non-linear (such as with the critic neural networks considered in
this thesis), there is no convergence proof for the original TD()) algorithm, for any
instance where A < 1. This is largely because TD()) is not generally gradient descent
on any analytical function (as described in Section 2.7.1). Certain cases, however, are
proven to converge for linear critic functions (Section 2.7.2).

Recently created modifications to TD()), for example the algorithm named GTD,
do have proven convergence, as described in Section 2.7.4. These newer algorithms solve
these previous convergence issues, which have represented a challenge to the ADPRL

community for a decade or more, for the case where the policy is fixed.

2.7.1 Gradient Descent Issues for TD()\)

In the special case of A = 1 and a fixed action network, TD()) is gradient descent on

This fact can be verified by noticing that —a% for the above error function gives
the TD(X) weight update (Eq. (2.1)), provided A = 1. Since it is gradient descent on
E > 0, TD(1) will be guaranteed to converge; assuming the action network is fixed, and
assuming smoothness on the error surface described by FE in w-space, and assuming a
sufficiently small learning rate.

However, the TD(A) weight update is only gradient descent on the above error
function for TD(1), and not for other values of A. This is because when A = 1, the
targets given by Eq. (2.3) simplify into J' = )", 4'U;. These targets are therefore fixed
(in their expectations; assuming the action network is fixed). However when A < 1, the

targets are themselves dependent on J(&#,w) through the recursion of Eq. (2.3), and

39



2. VALUE-LEARNING ALGORITHMS

therefore each J'; is a function of @. This means for A < 1 the targets J'; are no longer
fixed and therefore TD()\) is not gradient descent on the above error function.

Furthermore, it was proven by Barnard (1993) that TD(0) is not gradient descent

on any error function, for if Eq. (2.1) was such that Aw = —a% for some analytic
function E(w), then the second-derivative matrix 631‘2 (i} = should be symmetric. Since

differentiation of Eq. (2.1) again by @ does not yield a symmetric matrix, therefore
TD(0) cannot be gradient descent on any analytic function.

This lack of gradient-descent property of TD(A) makes proving convergence very
difficult. In the weight update, the J’; values are moving targets, and the J; values are
the values which are chasing the moving targets. There is no guarantee this chase will
ever result in convergence.

When a function approximator is used for the critic, the TD(A) and HDP weight
updates necessarily include a gradient term of the form g—g , for example as appearing
in Eq. (2.1). This has encouraged HDP and TD(\), with function approximation, to
be referred to incorrectly as “gradient descent” methods. Many ADPRL papers do
this, and research into proving convergence of TD-based methods seems to have been
held back by this confusing terminology. For example, papers often jump from the
proven-convergence in the tabular case, to a supposed justification of a corresponding

proven-convergence in the function-approximation case.

2.7.2 On-Policy Linear TD()\) Convergence

In the case that J(Z,) is linear in @, and when the agent is forced to always fol-
low actions that the action network specifies during learning (i.e. the learning is “on
policy”), then convergence for TD(0) is proven (Tsitsiklis and Van Roy, 1996a). How-
ever, if J (Z,) is non-linear in ), then divergence can occur (Tsitsiklis and Van Roy,
1996a). For this reason, many research papers use a linear-in-w critic function of the
form J(Z,@) := @ h(Z), where h(¥) € RIM@) ig a basis function of & (i.e. h(Z) is

some fixed non-linear function of the state vector).

2.7.3 Residual-Gradient / Galerkinized Methods

Baird (1995) gives a specific counterexample of TD(0) diverging with a linear-in-w
critic function. In this divergence example, the TD(0) weight update is applied to all

states in S simultaneously, so this is an off-policy situation and does not contradict
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the convergence result of the previous subsection. This divergence motivated Baird to
consider the weight update formed by doing true gradient descent on Eq. (2.10) when
A = 0. He refers to this error function as the “Bellman residual error”, and his method
is called “residual gradients”. A similar method was defined by Werbos (1990c), and
he describes it as using the “Galerkin method” (Werbos, 1998). Despite this seeming
to be the obvious solution to the problem, surprisingly the residual gradients method
almost always converges to a suboptimal solution in stochastic environments. This was
discovered and explained by Werbos (1990c¢), and then further explanation was given
by Dayan (1992). This suboptimality in stochastic environments is now well-known,

and a particularly clear explanation for the reason is given by Sutton et al. (2009).

2.7.4 Non-linear and Off-Policy Convergent Methods

Recent breakthroughs by Sutton et al. (2009) and Maei et al. (2009) have effectively
solved both the off-policy TD(A) convergence problem, and the non-linear function ap-
proximation difficulties, both of which were described in Section 2.7.2. As described
in Section 2.5, off-policy algorithms are useful in VL because they allow exploration to
take place while still learning about the greedy policy. And non-linear function approx-
imation is useful to allow more powerful generalization by the critic. So solving these
two problems removes a lot of difficulties that were present in reliably creating success-
ful ADPRL architectures. The solution is only applicable to fixed action networks, i.e.
neither is valid for a greedy policy.

Both of these new methods use variants of a new weight update and algorithm called
Gradient Temporal Differences (GTD). This is a version of TD(\) that is modified into
being true gradient descent. They are stochastic algorithms where the expectation
of the weight update equals true gradient descent on the “mean squared projected
Bellman’s error” (MSPBE). This is a modification to Eq. (2.10) in that each target J;
is modified to P.J';, where P is a projection matrix that maps J'; into the closest point
in the range of the function approximator J (Z, W) (see Sutton et al., 2009, for details).

These methods effectively have solved the long-standing convergence-guarantee is-

sue for VL methods, with a fixed action network.
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2.7.5 Convergence with an Improving Action Network

When the action network is the only function approximator used in the ADPRL archi-
tecture, convergence analysis can be quite straightforward (for example, as described in
Chapter 6). However when there is a critic and an action network present, the training
of the two neural networks together can interfere with each other, and it makes ensuring
convergence more challenging.

All of the critic-convergence results for VL. methods described in the preceding
subsections, apply only when the action network is fixed. In reality, the action network
needs training too, as the ultimate objective is to produce an action network with
optimal behaviour. Training the critic is merely an intermediate goal. When the action
network is trained simultaneously with the critic, the above convergence guarantees
can fail. For example, when a greedy policy is used (which acts like an action network
which updates itself to be always fully trained), even the most robust of algorithms
such as TD(1) can be made to diverge, as proven in Chapter 9.

To train the action network concurrently with the critic, one or more action-network
weight updates can be applied alternately with one or more critic weight updates. This
process of applying alternating weight updates between the action network and critic
network is known as generalised policy iteration (Sutton and Barto, 1998, Sec. 4.6),
and various approaches of this kind are described in Sec. 5.1.1.

One of the most important convergence results for generalised policy iteration is
by Sutton et al. (2000). This result applies when the function approximator for J is
“compatible” with the function approximator for A(Z,¢€,2). Compatibility is defined
below. It is a precondition of this convergence theorem that the critic network needs
to be fully trained over the whole state space, in preparation for any action-network
weight-update.

A concern with this convergence proof is that for the above precondition to hold, the
learning rate of the action network must be considered to be infinitesimal. The reason
for this limitation can be understood if we imagine the weight update Az to be applied
gradually along a straight line from Z to z’+ AZ, then as soon as the first infinitesimal
steps are taken along this straight line, the precondition for the theorem is immediately
invalidated (since the critic’s target is dependent on the current action network, which is

—

dependent on Z). Another concern is that in between every infinitesimal action-network
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weight update, the critic must be trained to completion over the whole state space for
the precondition to hold. Having an inner loop of training the critic to completion
can make the combined actor-critic training process very slow. This slowness must be
especially true when the environment is stochastic, because then it is very difficult to
detect when the critic-training inner-loop stage has converged.

A way of interpreting the above two concerns is that the ratio of the learning rate
of the actor () over the learning rate of the critic (o)) must be infinitesimally small.
This infinitesimal learning-rate ratio, and this concern about slowness, must hold for
the theorem to apply. In practice it might be possible to violate these conditions and
still get successful results, but this will violate the convergence guarantees provided by
the proof.

For the critic and action networks to be “compatible”, it is required that the critic
function (a Q-function in the case of the proof by Sutton et al. (2000)) is a linear

function of W, and is related to the action network’s function approximator as follows:

Q(Z, 4, w, 7 (2.11)

8
Xy
I
g

This requirement implies that the critic’s Q-function has a dependency on 2, and
is also linear in w, and also that the two weight vectors @ and Z must have the same
dimensionality. The requirement for linearity in « at first seems to be a limitation,
because it means that even if a nonlinearity convergence proof exists for the critic
(such as with the MSPBE methods described in Section 2.7.4), the critic must still be
linear in w to ensure actor-critic convergence. However this limitation still allows for
some nonlinearity in the critic, due to the dependency of Eq. (2.11) on 2. In essence, the
full weight vector of the Q-function in Eq. (2.11) is the concatenation (i, Z), and this
means we can still have nonlinearity via the Z' contribution to the critic’s concatenated
weight vector.

However the requirement for linearity-in-uw is still a constraint on the successful
convergence proofs for the MSPBE methods described in Section 2.7.4, which were
designed for general nonlinearity in the critic’s weight vector. For example, the critic
weight update only acts on, and must be linear in, the @ part of the concatenated

—

weight vector (0, 2)
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Other works by Kakade (2001) and Sutton et al. (2001) also use compatible func-
tion approximators. These provide convergence results for the combined actor and
critic weight updates, but they have the same precondition for the critic network being
fully trained, and therefore have the same consequence described above for 8/a being
infinitesimal. They also have the same requirement for the two function approximators
to be compatible.

Another alternative to keeping the critic trained perfectly as the inner loop of train-
ing is to take the opposite extreme, and instead to ensure the action network is fully
trained in between every single critic weight update. This particular variant of gener-
alised policy iteration is known as walue iteration. If the neural network used by the
action network was perfectly flexible, and if the action-network’s weight update was de-
signed to make actions greedy, then this would make the action network behave exactly
like the greedy policy. Therefore using a greedy policy is like using an always perfectly-
trained action network, and like using a perfectly flexible function approximator for the
action-network.

Learning with a greedy policy does not usually suffer from the high computational
cost associated with the method of Sutton et al. (2000). For example, fast methods for
evaluating a greedy policy are described in Chapter 5, which are valid under certain
linearity or deterministic conditions. Alternatively, if an action network is being trained
to completion, it is possible to focus the training of the action network to optimise only
those actions along the current trajectory, as opposed to across the whole state space
as was required for the inner loop of the method of Sutton et al. (2000).

There are no robust results for convergence for a greedy policy, when used with
function approximation for the critic, in the RL literature. One algorithm, the Greedy-
GQ algorithm (Maei et al., 2010) does come close to this goal, as this algorithm learns
values for the greedy policy, with linear function approximation for the critic, but a
limitation of this algorithm is that the agent must be following a fixed policy while
learning about the greedy policy. The Natural Policy Gradient algorithm (Kakade,
2001) trains an action network to become equivalent eventually to a greedy policy, but
for proven convergence requires an infinitesimal learning rate for the action network,
so is the opposite of a greedy policy in this respect.

One of the value-gradient methods presented in this thesis is VGL(1), and this

algorithm is proven to converge while following a greedy policy, with general non-linear
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function approximation, in Chapter 8.

2.8 Case Study: Vertical-Lander Problem

A simple control task is demonstrated to show the ADPRL notation in action, and also
to show TD(A)’s performance on this task. In this task, a spacecraft is constrained
to move in a vertical line under gravity, and the neural controller must learn to land
the spacecraft gently. This is a deterministic problem, whose state space can be easily
plotted in two-dimensions, and it is a good problem for illustrating the ADPRL learning

algorithms described in this thesis.

2.8.1 Vertical-Lander Problem Specification

A spacecraft is constrained to move in a vertical line under gravity k4. The spacecraft
has a single thruster which can be used to make upward accelerations. The state vector
for the spacecraft is T := (zp, zy, f)T, where these three components refer to height,
velocity and fuel remaining, respectively. The actions @ := (u,) are one-dimensional,
with u, € R. wu, represents the spacecraft’s thrust, which produces an instantaneous

upward acceleration of the spacecraft. This action is constrained to,
0<ug <1, (2.12)

or in other words, A = [0, 1].

Each upward thrust action, u,, produces an immediate fuel-usage cost given by,
U((wh, T, 20) T 1) :=(kp)uaAT, (2.13)

where ky > 0 is a fuel-usage constant, and A is the sampling time used for integration
by the Euler method. The deterministic model function, f(Z,), used to calculate the

next state is,
f((xhv Ly, xf)T) ua) 3:(Ih + J:UATa Ty + (’LLa - kg)AT’ J:f - (ka)UaAT)T, (214)

which is a simple application of the Euler-method to apply the acceleration created

by the thrust plus gravity, and to consume fuel. Here, k; < 1 is a constant giving

45



2. VALUE-LEARNING ALGORITHMS

the acceleration due to gravity. Since k;, < 1, the spacecraft can produce greater
acceleration than that due to gravity. k, = 1 is a unit conversion constant.
Trajectories terminate as soon as the spacecraft hits the ground (x; < 0) or runs
out of fuel (¢ < 0). These two conditions define the terminal state set, T. In addition
to the cost function U(Z, u,) defined above, a final deterministic impulse of cost is given

as soon as a terminal state, Tp, is reached:
I
®(2r) == §m($v) + m(kg)zn, (2.15)

where m is the spacecraft mass.

So there are two objectives: To conserve fuel and to land slowly, by Equations (2.13)
and (2.15), respectively. Within the expression for the final impulse of cost, ®(Z7)
given by Eq. (2.15), there are two terms, which correspond to kinetic and potential
energy, respectively. The kinetic-energy term (%m(xv)Q) penalises landing too quickly.
The potential-energy term, m(ky)zp, is zero if the spacecraft crashes into the ground
(xp, = 0), so this term only contributes to the final cost if the spacecraft runs out of
fuel. In this case, when fuel runs out at a height x5 > 0, the potential term is equal to
the kinetic energy that the spacecraft would acquire by crashing to the ground under
free fall from height x;, by the conservation of energy. Hence if this penalty term is
used, it’s equivalent to the spacecraft running out of fuel and then free falling to the
ground, and finally receiving the usual kinetic-energy cost penalty term on crashing.

Since this is an episodic problem, i.e. where trajectories are guaranteed to terminate
at some time, it is convenient to use v = 1 for the discount factor. Other constants used
were spacecraft mass, m = 2; fuel-usage constant, ky = 4; system-dynamics sampling
time, At = 1; gravity constant, k, = 0.2.

Fig. 2.1 shows a typical trajectory in this problem.

In the state-space diagram, in the right of Fig. 2.1, the axes show velocity and
height. The third state dimension, fuel, is omitted from the diagram.’® The blue curve
shows an actual trajectory (starting at the blue square). In this example, the trajectory
shows the velocity becoming more and more negative until the height reaches zero. This

curve represents the spacecraft crashing badly.

5The fuel dimension is not usually important, because provided there is enough fuel to make a gentle
landing, then the shape of an optimal trajectory is independent of the amount of fuel left over at the
end of the trajectory.
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Key:
Blue line: Actual trajectory
Green line: Theoretical optimal trajectory

welocity

Figure 2.1: State-Space View of Vertical-Lander Trajectories. The left image shows
a time-lapse view of a typical spacecraft trajectory, i.e. the spacecraft descending in a
vertical line. The blue curve in the right-hand image shows the corresponding trajectory
in a state-space view. The green curve shows the theoretical optimal trajectory.

The green curve shows the theoretical optimal trajectory, which was calculated as
described by (Fairbank, 2008, Appendix E.2) using Pontryagin’s Minimum Principle.
The optimal trajectory shows the spacecraft free-falling for an initial time, and then
using the thruster to slow the spacecraft down to land gently. This is consistent with
the fact that optimal behaviour for a vertical descent is to descend freely for as long
as possible and then to brake as hard and late as possible. This can be understood
intuitively since the converse, hovering down slowly, would be extremely wasteful of
fuel, and therefore the optimal strategy is to behave as differently from hovering as is
possible; which means freefalling for as long as possible, and then braking at the last
possible moment.% Also, contrary to what we might expect, the optimal trajectory does
not need to reach the ground with exactly zero velocity. This is because minimising
the chosen cost function represents a compromise between landing slowly and saving

fuel.

5This can alternatively be understood as a time-reversal of a rocket taking off. Rockets are designed
with fuel efficiency as a top priority, and they are built to give one massive thrust to achieve escape
velocity in as short a time as possible, and then afterwards to coast freely into space.
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2.8.2 Use of Value-Learning Methods to Solve the Vertical-Lander
Problem

Since the Vertical-Lander is a deterministic problem, its solution by VL methods will
require some explicit value exploration over the state space. This is to satisfy the
requirement in Bellman’s Condition to have a correct value function over the whole
state space. This explicit value exploration can be provided either by using a stochastic
policy, and/or using a varying choice of the start state (“exploring starts”). In this
section the effectiveness of these two methods will be investigated.

First a stochastic policy is considered, of the form,
Uy = A(%, 2) + X, (2.16)

where A(Zy,Z) is a deterministic action network, and X, is a normally-distributed
random variable, with zero mean and standard deviation o. Eq. (2.16) is truncated if
necessary to satisfy u; € A. In the case of the Vertical-Lander Problem, this truncation
will force the constraint in Eq. (2.12) to be obeyed. The stochastic policy given by
Eq. (2.16) would be inserted into line 3 of Alg. 2.1 (or line 4 of Alg. 2.2). The
standard deviation, o, specifies the amount of stochastic exploration that the policy
should perform. When o = 0, no exploration is done. When ¢ > 0 the policy will make
exploratory actions, and hence the trajectory will take a zigzag shape.

The action and critic networks were trained using Alg. 2.2 modified into batch-
mode. (The weight updates were accumulated but only applied when a trajectory, or
set of trajectories, had been completely unrolled.) The network architectures were as
specified in Table 2.1. Neural networks work best when their input vectors are rescaled
to unit length, hence rescaled coordinates of ¥ := diag(0.01,0.1,0.035)% were used
throughout the experiments.

Results are shown both with exploration (¢ = 0.1) and without exploration (¢ = 0),
for TD(0), TD(0.9) and TD(1), in Fig. 2.2. In all cases, each trajectory was forced
to start from the state (h,v,u)” = (100, —2,50)7, so there was no form of exploration
allowed other than that provided by the parameter o appearing in Eq. (2.16). The
learning rates o and [ were tuned through search for each experiment and shown in
the graph titles. The results are shown as J — J*, where J* is the optimal trajectory

cost, which from this start state and A7 value is 23.917.
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Critic-Network Details

Network Dimensions A 3 — 6 — 6 — 1 multilayer-perceptron (Bishop,
1995), i.e. dim(Z) input nodes, two hidden lay-
ers of six nodes each, and an output layer with
exactly one node.

Bias weights present? Yes, one for each network node.
Short-cut connections present? Yes, between all layers (including non-adjacent
ones).

Activation Functions on non-final | f(z) := tanh(z).
network layers

Activation Functions on final net- | Linear, with slope 10, i.e. f(x) := 10z.
work layer

Weights randomisation method Uniform probability distribution [—0.1,0.1].

Action-Network Details

All details same as critic-network, except for:

T

Activation Functions on non-final | Logistic sigmoid, f(x) := Tre="

network layers

Table 2.1: Network Architectures used for Vertical-Lander Experiments

The results show that TD(\) can solve this problem, slowly, when A < 1 and when
value exploration is present (i.e. when o > 0), but it fails without value exploration
(o = 0) for the reason stated above. When value exploration is removed, the algorithms
converge to a large suboptimal J value.

The stochastic policy was necessary for success with TD(A) with A < 1. However,
TD(1) finds this problem very difficult even when a stochastic policy is used. This is
thought to be because the stochastic policy produces a large variance in the learning
signal (i.e. the variance in J't). Reducing this variance was one of the motivations for
using A < 1, as described in Section 2.3.1, and therefore this explains why the results
for A < 1 are better than for A = 1.

The effectiveness of intermediate A values is shown in Fig. 2.3. The results indicate
that an optimal choice is A &~ 0.9 for TD(A) to solve this problem efficiently. These
results were generated after a search for optimal learning rates, which resulted in a =
1075 (for the critic) and 8 = 10~* (for the action network).

A difficulty with this stochastic-policy approach is that the value-learning algorithm
is learning values for a suboptimal policy (since the policy is stochastic), and therefore

learning cannot converge to truly optimal behaviour. One solution to this problem

49



2. VALUE-LEARNING ALGORITHMS
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Figure 2.2: Results for Using a Stochastic Policy to Solve the Vertical-Lander Problem by
TD(A)/HDP algorithms. These results correspond to the experiment described in Section
2.8.2. The graphs show total trajectory cost versus training iterations, for five different
random weight initialisations each shown in a different colour, both with policy noise
(0 = 0.1) and without policy noise (¢ = 0). Each graph’s set of five curves largely overlay
each other, but this indicates consistency of results. For successful learning, the graphs
should show J decreasing as the number of training iterations increases, which only occurs
for two top-left graphs. (For comparison to VGL methods, see also Fig. 3.7.)

would be to let ¢ slowly tend to zero, but this will slow down learning even more.
Off-policy algorithms are also designed to address this specific problem (Section 2.5),
but there are other possible solutions, such as the following exploring-starts method.
“Exploring starts” is an alternative form of exploration which addresses the above
problem of a stochastic policy, and it also addresses the difficulty encountered by TD(1)
with a stochastic policy. Using exploring starts, the experiment was repeated in batch
mode on ten trajectories simultaneously. The trajectories now had fixed scattered
start points, as specified in Table 2.2, and a deterministic policy function (i.e. o = 0).
In this case, because the there was no randomness, TD(1) does not suffer from the
disruptive variance in the learning signal, J’;; and also the behaviour is not forced to
be suboptimal because of the addition of random actions. Hence the results for TD(1)

are much improved, as shown in Fig. 2.4. The critic learning rate used was a = 1075,

50



2.8 Case Study: Vertical-Lander Problem

Final result after 10° training iterations
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Figure 2.3: Results of TD(\) under various A and noise-levels, o, for solving the Vertical-
Lander Problem, from a fixed trajectory start point. All results are generated for critic
learning rate a = 107° and actor learning rate 3 = 10~%. For each value of A, the graph
shows the value of J—J* after 10° training iterations. All results are gathered as the median
result of 10 trials (i.e. from 10 different initial randomizations of the neural weights).

and the action-network learning rate used was 8 = 10~%. The results are shown as
J — J*, averaged over all 10 trajectories. Here J* is the optimal trajectory cost, which

from this set of 10 fixed start states, averages to 27.372.

h | 100 | 50| 100 | 50 | 100 | 50 | 100 | 50 | 100 | 50
v| 00]-1.0|-20|-3.0|-40|-50|-6.0|-7.0|-80|-9.0
w| 50| 50| 50| 50| 50| 50| 50| 50| 50| 50

Table 2.2: Start-State Coordinates used for Exploring-Starts Vertical-Lander Experiment

The exploring-starts performance seems better than the stochastic-policy results.
For example, convergence to a low J value occurs more consistently and within 100,000
iterations, for both TD(1) and TD(0); whereas in the previous experiments this only
happened for TD(A) with A < 1 and within 1,000,000 iterations. However, a potential
problem still exists with the exploring-starts method, in that the trajectories at the
sides of the explored state space are not fully explored on either side of their start
points, so these trajectories will often not be optimal (because Bellman’s Condition
requires the value function to be known over the whole state space to be strictly valid).
Hence these side-most trajectories contribute to a poorer average J value than would
otherwise be possible.

In the next chapter, the value-gradient methods will be defined and shown to pro-

duce better results on the Vertical-Lander than seen so far. In Section 3.6, the VGL
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Figure 2.4: Results for Using Exploring Starts to Solve the Vertical-Lander Problem by
TD(A). The graph shows the trajectory cost averaged over 10 trajectories with fixed start
points. Each curve shows a different experimental trial (i.e. different weight initialisation);
five different trials for TD(1) and five trials for TD(0). In this experiment, both algorithms
make significant progress in solving the problem. (For comparison to VGL methods, see
also Fig. 3.9.)

methods will be shown to solve the Vertical-Lander problem with more consistent and

lower J values, in fewer training iterations, and work well across all values of A and o.

2.9 Chapter Conclusions

This chapter has introduced and defined the two main VL algorithms: HDP and TD(A).
The important Bellman’s optimality principle has been described, and so have other
variant VL algorithms, such as Q-learning, ADHDP and Gradient-Temporal Differ-
ences. The convergence and divergence properties of VL algorithms have been dis-

cussed.

A simple deterministic problem, the Vertical-Lander, has been defined. This is a
good illustrative problem because it is simple to describe, it is episodic, and its state
space is suitable for two-dimensional plotting. The results showed that TD(A) could
solve the Vertical-Lander reasonably well, when value exploration was provided through
exploring starts or a stochastic policy. In the case of TD(1), only the deterministic
exploring-starts method was successful. In the total absence of value exploration, TD(\)
could not solve the problem for any value of A attempted. This will provide a motivation

for developing VGL algorithms in the next chapter.
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2.A Chapter Appendix

The introduction of the recursive formula for J'; in Eq. (2.3) is possibly an original
contribution of early technical reports (Fairbank, 2002, 2008) that led to this thesis.
This appendix proves that J'; is equivalent to the “A-Return”, a quantity previously
defined by Watkins (1989) which can be used to specify the targets of the TD(A) weight
update, and hence to define the TD()\) weight update concisely.

2.A.1 Equivalence of the J' Notation to the A-Return

Although it was first discovered by Watkins (1989), the definition of the A-Return given
by (Sutton and Barto, 1998, sec.7.2) is used:

R} = (1-A) Y AR, (2.17)
n=1
with

n—1
R = (Z 7’“Ut+k> " T (2.18)
k=0

The aim here is to show that J’; is identical to R;.

In this section, only continuing trajectories are analysed. Episodic trajectories and
terminal states are not explicitly considered here, because they can be seen to be a
special case of continuing trajectories if we define the terminal state as a holding state
which traps the agent at the point forever afterwards (such that @, = Zp V¢t > T) and
delivers an infinite number of zero costs afterwards (U; =0Vt > T; U, = &, for t =T).

Expanding the definition of R} gives

oo n—1
R} :=(1-)) Z P ((Z 'YkUt—Hc) + ’y"jt_m) (Combining Egs. (2.17) & (2.18))
n=1 k=0

=(1 =) [U + MU; + VUss1) + X2 (U + U1 + 7 Usg2) + .. ]
+(1-A) Z )‘n_l’ynjtJrn
n=1
=A=N[U(T+A+ N +.0) + 901 A+ A2+ 2+

+ V2Usso ()\2 + A4 M4 J4. ]+ @=N Z A1 T (reordering terms)

n=1
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=(1 A)Z (7 Ut+nZA ) SRICEPVD P s
n=1
00 N 00 i~
=(1-2X) Z (VnUtJrn <1_)\>> +y(1=X) Z)\n W i
n=0 n=1

—Z’Yn/\nUt+n+’Y 1- Z)\n " Jitnt1

= Z ATAT (Ut+n +(1 - )\)jt-;-n—i-l)
n=0

(geometric series)

(2.19)

Expanding the definition of J'; (Eq. (2.3)) for non-terminal states gives

J’t = Ut + ()\J’t+1 + (1 — )\):Zf+1)

= Z A" (Ut+n +v(1— A)anH) (expanding recursion)
n=0
= Ry (by (2.19))

Thus J'; is identical to R}. The A-Return provides an equivalent formulation for

the algorithm TD(A) known as the “forwards view of TD(A)” (Sutton and Barto, 1998,

sec.7.2). This proves that Eq. 2.1 is equivalent to the TD(\) weight update. The concise

formulation for J'; given in Eq. (2.3) is much more convenient than the formula for

R}, and it is this concise form that allowed the VGL()) algorithm to be created, as

described in Section 3.5.4.
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Chapter 3

Value-Gradient Learning

Algorithms

The VGL algorithms are defined in this chapter. VGL algorithms are algorithms which
explicitly aim to learn the critic gradient, %: These algorithms include the original
VGL algorithms by Werbos (1992b), which are Dual Heuristic Programming (DHP)
and Globalized Dual Heuristic Programming (GDHP); and also the new algorithm of
this thesis, VGL(\).

The motivations for using VGL methods over VL methods are described in Section
3.1, which are principally that local value-exploration is automatic for VGL methods.
However VGL methods are model-based methods that require a learned or known
differentiable model of the environment functions, f(Z,u,¢€), U(Z,u,€) and ®(Z,¢€).
These requirements of VGL methods are limitations compared to VL methods which
are model-free methods, and which do not require differentiability of the environment
functions. These limitations of VGL methods are discussed further in Section 3.2.

In this chapter, the existing DHP and GDHP methods are first defined. Then
the VGL(\) algorithm is defined as an extension of DHP to include a bootstrapping
parameter A € [0, 1], just as TD(A) is an extension of TD(0). For A = 0, VGL(]) is
equivalent to DHP; but for A\ > 0, VGL()\) is a new algorithm. The relationship of
VGL(A) to DHP is represented in Fig. 1.1 by the right-hand vertical arrow labelled
“insert A”. The motivations for including the \ parameter into the VGL(\) algorithm
are that using A > 0 can increase the stability of learning and sometimes increase

learning speed, as discussed further in section 3.5.3.
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The rest of this chapter is structured as follows: Section 3.1 expands on the motiva-
tions for VGL method. Section 3.2 discusses the applicability of VGL methods and the
necessity of using learned or known differentiable environment functions. The DHP
algorithm is defined in Section 3.4, and the VGL(\) algorithm is defined in Section
3.5. Motivations for including the A parameter into DHP to form VGL(\) are given in
Section 3.5.3, and the relationship of VGL(A) to TD(A) is described in Section 3.5.4.

In Section 3.6, the Vertical-Lander Problem is revisited, and the efficiency and abil-
ity of the VGL method to solve it without any explicit value exploration, is shown. In
Section 3.7, further experimental results are given, showing the efficiency and automatic

exploration of the methods. Finally, in Section 3.8 chapter conclusions are given.

3.1 Motivation for VGL Methods

The main reason to develop VGL methods is to obtain automatic local value explo-
ration, detailed as follows. It was observed in the experiments of Sec. 2.8.2 that when
value exploration was removed, VL could not solve the Vertical-Lander Problem. For
example, from a fixed trajectory start point and with ¢ = 0 for the policy exploration,
the graphs in Fig. 2.2 show this failure. This failure was expected because Bellman’s
Condition requires knowledge of the value function over the whole state space to be
applicable; but this knowledge was removed by setting o = 0.

As opposed to considering Bellman’s requirement to learn the critic over the whole
state space, if we consider what critic information needs to be learned locally around a
particular trajectory, we can deduce that failure is occurring because the neighbouring
preferable trajectories are not recommended as being better ones by the critic. There-
fore there needs to be a gradient of critic values (a value gradient) between the current
trajectory and the neighbouring ones, to give the information about which neighbour-
ing trajectories are better. To attain optimality, somehow this value gradient needs
to be learned. VL methods aim to learn the value gradient indirectly, through value
exploration. VGL methods aim to learn it explicitly.

Fig. 3.1 describes this motivation for VGL methods in more detail.

Therefore the intention of using a VGL method is that it will obviate the need to
do explicit local value exploration. With VGL, it is hoped that trajectories will bend

themselves into locally optimal shapes, i.e. local value exploration will be automatic.
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height

velocity

Key: Blue line: Actual trajectory
Green line: Theoretical optimal trajectory
Red circle: The large red circle is a detail of the small red circle

Figure 3.1: The Motivation of Automatic Local Value Exploration for VGL in the
Vertical-Lander Problem.

The left image shows the converged results of TD(0)/HDP in the Vertical-Lander Problem,
from a fixed trajectory start point and in the absence of value exploration. The HDP error
is almost zero (3°,(J's — J;)? = 7.38 x 1075), but the learned trajectory (the blue curve)
has not moved at all towards the optimal trajectory (the green curve). The grey-scale
background indicates the magnitude of the critic function learned at each point in state
space. This left diagram shows that without value exploration, VL. methods can converge
to severely suboptimal trajectories.

This right-hand diagram shows an enlargement of a particular decision being made during
one time step of the crashing trajectory shown in the left-figure. This diagram only shows
the two extremes of choice, i.e. u, = 0, or u, = 1, whereas in reality there is also a
continuum of choices in between. The optimal decision is to choose the arrow on the
right (u, = 1). Since the greedy policy is defined to choose the action which minimises
U, + ’yjt_H, it is necessary for jt+1 to be significantly lower on the right branch than the
left. Therefore we need a significant average gradient in the values of jt-i—l across the
state space, decreasing in the direction of the dotted arrow (assuming J (Z,w) is a smooth
function). Furthermore the decrease in :i;jJrl along this dotted arrow needs to be monotonic,
since every continuous increment in u, leads to an improvement in the trajectory’s cost.
This demonstrates that the critic gradient (the dotted arrow) needs to be learned, and this
motivates the VGL method. Note that this gradient could also be learned by VL with value
exploration. But learning the gradient by VGL will make a greedy policy automatically
bend the trajectory into the correct shape, without any need for explicit value exploration.

Experiments at the end of this chapter confirm that this does happen. Of course it
might still be necessary to do some global exploration, as local optimality might not be
sufficient; but it is hoped that overall using VGL will simplify the exploration process.

It turns out to be only necessary to fully learn the value gradient along a single

trajectory, under a greedy policy, for it to be locally extremal, and often locally optimal.
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This is proven for deterministic environments in Chapter 7, and is closely related to
Pontryagin’s Minimum Principle (Chapter 4). Both VL and VGL methods have the
same requirement for global optimality, that is if the value function (or its gradient) is
exactly learned all over the state space, with a greedy policy, then Bellman’s condition
assures global optimality. This issue is proven in Section 4.5, for both stochastic and
deterministic environments (under certain smoothness assumptions).

By making local value exploration automatic, the VGL method aims to solve some

problems that were affecting the experiments given in Section 2.8.2, which were that:

e A stochastic policy (o > 0) in the Vertical-Lander Problem is necessarily sub-
optimal. Since TD() is an on-policy method, TD(A) will be learning values for
the suboptimal stochastic policy. One way to avoid this problem is to slowly let

o — 0 over time, but this has performance implications.

e Off-policy solutions to the above problem can have their own problems, for ex-
ample as noted in Section 2.6, Q-learning experiences eligibility-trace truncation

whenever an exploratory action is taken.

e Exploring starts can be used and obtain better results, but these are not per-
fect either because they can have difficulties learning the edge-most trajectories

properly (as noted in Section 2.8.2).

e When a fixed trajectory start point is used, the vertical-lander from cannot easily

be solved by VL methods without some form of stochastic assistance.

Another intention is that VGL methods will lead to faster learning. The experiments
at the end of this chapter show this speed up in learning.

Fig. 3.2 shows a representation of what VGL algorithms learn in each sampled
trajectory, compared to what VL algorithms would have to do to learn the same in-
formation by sampling multiple trajectories. This diagram is intended to show how
quickly VGL methods can learn the value-function surface compared to VL methods,
and also how VGL algorithms go about learning the value gradient in a very direct and
straightforward manner. Since learning the value gradient is necessary for optimality
and providing automatic local-exploration (as described in Fig. 3.1), this motivates the

design of VGL algorithms.
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Figure 3.2: The Portion of Value-Function Surface Learned by VGL Compared to that
Learned by VL. The left-hand image shows what the VGL learning-targets describe in
just one sampled trajectory, and the right-hand image shows what the VL learning-targets
describe in four sampled trajectories. The purpose of this image is to show how much
more information the VGL weight update contains, compared to the VL weight update.
However, this is a simplistic view; in reality VL would be hindered by several further
factors: 1. The height-profiles in the right-hand diagram would show distortion due to
the necessary random value exploration that VL needs, and thus contain much less useful
information. 2. Trajectories often are not parallel like this but may converge, thus learning
less useful area of the value-function surface. 3. The VL image would take at least dim(Z)
trajectories to learn as much as the VGL approach can learn in just one trajectory (hence
the four plotted trajectories are meant to be representative of higher dimensions).

A final intention of VGL methods is that convergence analyses could become sim-
plified. Since the greedy policy and the value gradient depend upon each other, as
described in Fig. 3.1, it is potentially easier to understand what effect a VGL weight
update will have upon a greedy policy, and thus more easily predict whether diver-
gence or convergence can occur when the policy and critic interact with each other.
This forms the basis of the convergence and divergence proofs in Chapters 8 and 9,

respectively.

3.2 Applicability and Limitations of the VGL algorithms

VGL methods are strictly model-based methods. It is assumed that environment func-
tions are known a priori, or at least can be learned by a separate “system identification”
learning process, for example as described by Werbos et al. (1992). This system iden-
tification process could have taken place prior to the main learning process (e.g. like
Ng et al. (2004)’s successful application of a hovering inverted helicopter), or con-
currently with it, and results in learned environment functions f(#, ), U(%, @) and
®(Z), consistent with Eqs. (1.9)-(1.10). Alternatively, there is an extremely fast on-
line model-learning method by Munos (2006) which could be used, which is capable of

learning the necessary derivatives of the model and cost functions at the same time as
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3. VALUE-GRADIENT LEARNING ALGORITHMS

the trajectory is unrolled. That method is thought to be exact only in deterministic
continuous-time environments. Except for Section 3.7.1, where model-learning is briefly
described for an example problem, the model-learning process is not discussed further
in this thesis.

The VGL methods work naturally with continuous-valued state-space problems, and
are not applicable to discrete-valued state spaces. They are also limited to situations to

where the learned environment functions and policy are once-differentiable, since VGL

algorithms require usage of derivatives of the form % and %, and similar
derivatives of U(%, %) and ®(¥). Sometimes, as described more in Section 3.2.1, the
derivatives of the true environment functions can be used in place of these learned
environment-function derivatives.

VGL methods also require the differentiability of the policy function A(Z,€,Z2).
This can be achieved by using a neural network for the action network. However when
a greedy policy is used, it can be harder to assure differentiability since bang-bang
control often arises then. Using the techniques of Chapter 5, it is possible to define
greedy-policy functions that are always smooth and differentiable. In their main form,
VGL methods also require a continuous-valued action space. However it is possible to
override this limitation using a method described later in Section 5.2.1.

It should be noted that since they are model-based, VGL algorithms optimise per-
formance with respect to the learned environment functions, as opposed to the true
environment functions.

VGL methods work well in continuous-valued state spaces. This has led to suc-
cesses in industrial control (Venayagamoorthy and Wunsch, 2003), autopilot landing
(Prokhorov and Wunsch, 1997a), and many others (Wang et al., 2009). However some
traditional RL problem domains with discrete spaces would not be readily solvable by
VGL methods, such as a “grid world” problem, backgammon, or a k-armed bandit
problem. Also, step cost functions would not be applicable, thus excluding problems
such balancing a pole where the total cost is a function of the integer number of time
steps that the pole is balanced for. However the pole-balancing problem can be solved
by VGL if a smoothed out cost function is used, as shown in Chapter 5, or if the number
of time steps is transformed into a continuous quantity, as demonstrated in Chapter

10. As a rule of thumb, if a problem is suitable for smooth gradient descent on J with

respect to w, then it will be suitable to work on VGL methods.
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3.2.1 The Use of Learned Environment Functions in VGL Algorithms

VGL methods make use of the derivatives of the environment functions, f(Z,,¢),
U(#,u,€) and ®(Z,€). That is why VGL methods are classified as model-based (or
model-given) methods. However it is usually more practical for the VGL algorithms to
work with the derivatives of the learned environment functions, f(#,#), U(Z,#) and
®(F), as opposed to derivatives of the true environment functions, because the learned
functions often are what the system has knowledge of; and also because these learned
functions can more easily be assured to be differentiable (for example the learned func-
tions may be represented by a neural network, which will force the necessary differ-
entiability). Another reason to use the learned environment functions is because true
partial derivatives of the form w require knowledge of the € vector, which may
not be a fully-observable quantity (as noted in Section 1.2). A significant exception
where the true environment functions definitely could be used is where the environment
is intended to be a virtual world, for example a computer game, and then the function

f(#,4,€) and the vector € could be assumed to be fully known; but still, f(Z,u,¢€)

would have to be differentiable to be applicable for VGL algorithms.

For the above reasons, the DHP, VGL(A) and BPTT algorithms presented in this
thesis are written explicitly with the use of the derivatives of the learned environment
functions, g—g, g—{; %, % and ‘3—? However if the above conditions for an exception

exist, then these derivatives could be replaced by the derivatives of the true environment

functions.

In general stochastic environments, these learned derivatives will only be approxi-

mations to the true derivatives, i.e.:

of _of of _of U _ou U U 9% _ 9P

~ ~ iy P ~ N —. 3.1
or  9r’ ou ou OF OF Ou Ou or  OF (3.1)

The circumstances under which the derivatives of the learned functions will equal the
derivatives of the true functions, i.e. the circumstances under which the approximation
symbols in Eq. (3.1) could be turned into equality symbols, are if the noise terms in

Eq. (1.9) were all independent of # and . This deduction follows by consideration of
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Egs. (1.9)-(1.10), and can be summarised as:

R of _of of _o
f(@,1,€) = f(@,0) + (&) = 55 = 9% 9 = o
- ou _oU oU _oU
¥ a7 ) = - = . = _ 32
U(Z,u,e) =U(Z,d) + &u(e) = 57 = 97 90 = Ba (3.2)
S o 0P _ 0P

The above set of equations describes what will be referred to as uniform additive
noise. Another obvious situation where the learned derivatives are equal to the true
derivatives is in a deterministic environment, in which case the noise terms in the above
equations vanish and the equalities automatically hold. Hence some references define
VGL-based methods as being defined for the situation of deterministic environments
or stochastic environments with additive noise (Fairbank and Alonso, 2012c), as this
will ensure that Eq. (3.2) holds.

To summarise, the derivatives of the environment functions used by the VGL al-
gorithms are usually only approximations to the derivatives of the true environment

functions, i.e. Eq. (3.1) generally holds; except in three circumstances:

1. If the true environment functions are the ones that are used in the VGL algorithm
(which is possible in a virtual world such as a computer game), and are also

differentiable; or,

2. If the environment is deterministic, and the learned environment functions are

exact (according to Eq. (1.10)); or,

3. If the noise is uniform and additive, as defined by Eq. (3.2), and the learned

environment functions are exact (according to Eq. (1.10)).

In any of these three circumstances, the VGL(A)/DHP/BPTT algorithms’ pseu-

docode could exchange all the uses of learned derivatives (e.g. g—f;) by true derivatives

]
(e.g. 9L).

3.3 Vector and Jacobian Notation for VGL Algorithms

Before defining the value-gradient algorithms, it is necessary to define some basic nota-

tion describing how we differentiate vector functions and functions of vector arguments.
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As previously stated in Section 2.1.1, all defined vector quantities are columns,

whether they are coordinates, or derivatives with respect to coordinates. For example,

U, W, &, 7, 8J((93:in) and m(g;‘ 2 are all column vectors.
Vector-by-vector differentiation is defined by example. % is defined to be a ma-

of(&,a)’

oz

. This is the transpose of the usual Jacobian
_ 9GI

- 0w

trix with element (i, 5) equal to

- ~\ ij
notation. Similarly, for a vector function G(Z, &), we have (%) Combining

with trajectory-shorthand notation defined in Section 2.1.2, 8—%) is the matrix %
t

evaluated at (&, ).

3.4 The DHP and GDHP Algorithms

The approximate value gradient, or critic gradient, is defined to be

~ . OJ(Z )

S (3.3)

where J (&, W) is the scalar critic function previously defined.

A key concept in the DHP based algorithms is the target value gradient. This is
the value-gradient analogy to the “target value” used in TD(0) (Equation (2.2)). Using
the definitions from the previous section, and some implied matrix-vector products, the

target value gradient for DHP is defined to be

G = <%g>t +7 (%ﬁ;)t Gy, for@ ¢ T

g (3.4)
% g for 2, € T
where [% is shorthand for
D 0 0A 0O
D= oz arou (3:5)

Df(@a)
D7

so that for example (%ﬁ;) is the derivative
¢

evaluated with arguments (&, @)
for the given trajectory, and (%)t CNJtH is an implied matrix-vector product.

This transformation of the VL target value, .J’, to the DHP target value, G, is rep-
resented by the uppermost horizontal arrow in Fig. 1.1 which is labelled 8%. Whereas
the VL algorithms aim to make J; equal E (J'¢) for all ¢, the VGL algorithms aim to

make Gy equal E (G';) for all ¢, hence the name “value-gradient learning”.
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3. VALUE-GRADIENT LEARNING ALGORITHMS

Using these definitions, and the implied matrix-vector products, the DHP algorithm
is defined by a weight update of the form:

AT = o ; <g§> O (G’t - ét) (3.6)

where a > 0 is the learning-rate; G'; and G, are the target and approximate value gradi-

ents, respectively; ; € Rdim(Z) xdim(Z)

is an arbitrary positive-definite matrix explained
in Section 3.4.3, which can be chosen freely by the researcher; and where all of these
derivatives are assumed to exist. Equations (3.4)-(3.6) define the DHP algorithm.”

Pseudocode for the DHP algorithm is given in Algorithm 3.1. An action-network
weight update is included in line 7 of the code, which is equivalent to the one used
earlier for HDP (in Alg. 2.1). This is the commonly used model-based ADP action-
network weight update (e.g. Prokhorov and Wunsch, 1997a; Wang et al., 2009; Werbos,
1992b), but other weight-update schemes are also possible, as described in Chapter 5.

The DHP algorithm has a running time of O(max(dim(w),dim(Z),dim(w;))) op-
erations per trajectory time step, where dim(wy) is the running time of the function
f(#,1), as proven in Section 3.4.2. DHP therefore has the same asymptotic running
time as the VL algorithms HDP and TD(\).

Algorithm 3.1 Actor-Critic, On-Line Implementation of DHP algorithm.
1: 10
2: while Z; ¢ T do
3 l_I:t — A(ft,ag,g)
4: i"tJrl < f(ft, ﬁt, é;t)
5.
6

Calculate G'; by Eq.

(3.4
v a(g) 0 (6 0)

. Z+Z-pf (W)t ((%) + 7 ( ) Gt+1) {Action-network weight update}
t—t+1

9: end while B

0 it o () 0, (28 - G)

This completes the core details of DHP. Subsections 3.4.1 to 3.4.4 describe some

"Note that Werbos (1992b) used the variable names A and \* in place of G and &, respectively,
when defining the DHP algorithm. I used different variable names to avoid the clash with the X\ in

TD()), and also to avoid the clash with the superscripted asterisk in Bellman’s optimal value function,
J*.
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technical issues and design variants possible for DHP. These include: Two different
ways that the function é(i" , W) can be implemented (sec. 3.4.1); how the computation
complexity of DHP was calculated (sec. 3.4.2); what choices exist for the €; matrix
(sec. 3.4.3); and what the variant algorithm GDHP is exactly (sec. 3.4.4). After those
short technical sections, the VGL(A) will be defined in the next main section (Section
3.5).

3.4.1 Scalar Critics and Vector Critics

. L. o o . . ~ . 0J
The theoretical definition of G(#,w) given so far was by Eq. (3.3), i.e. G = %z.

However when it comes to programming a DHP/VGL implementation, the function

G(Z,wW) can be implemented in two different ways.

The first way is to use the theoretical definition as the basis for an actual imple-
mentation, i.e. to implement the function G(Z,@) := %. This will be referred to
as using a “scalar critic”. Since the DHP algorithm uses terms of the form ‘g—g, when
a scalar critic is used, these terms will require second-order derivatives; since then,

% = a?;gf. Chapter 11 describes techniques to calculate this second derivative very

efficiently.

The second way, and the more common way to implement DHP, is to have G (Z, W)
directly implemented as the output of a smooth vector function approximator, such
as a neural network with output dimension dim(Z) (for example, see Prokhorov and
Wunsch, 1997a; Werbos, 1992b). This method will be referred to as using a “vector
critic”. Traditionally, DHP has always been defined this way, contrary to the way DHP
was defined in Section 3.4.

Out of the two options, usually a vector critic is easier to implement, since it only
requires first-order backpropagation to calculate the gT; term.

Figs. 3.3 and 3.4 show illustrations of a scalar critic compared to a vector critic.

A scalar critic is better for understanding the connection of DHP to value learning:
When DHP aims to learn G all over S, it is really learning g—g all over S, which is
the same as learning J(Z, @) all over S (with the addition of an arbitrary constant).
This statement is proven in Section 4.5. So this meets the value-learning objective,
and Bellman’s Condition too. Another possible advantage of using a scalar critic is

that it might be advantageous for G to be the true gradient of a scalar field J (Z, ).

This would force it to satisfy the vector calculus identity that its curl must be zero
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Figure 3.3: Scalar Critic. The vec- dadad b

tor field (shown below) is derived as Figure 3.4: Vector Critic. The vec-

the gradient of the value function sur- tor field is arbitrary.

face (shown above).

everywhere, unlike the pattern of vectors shown in Fig. 3.5, and this might yield some

advantage. But this remains to be seen.
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Figure 3.5: A non-zero curl field allowed by a vector critic. This pattern of vectors is
allowed by a vector critic, but will never be required by an optimal value function, since
the curl is non-zero. A scalar critic has an advantage of not allowing this possibility.

3.4.2 Algorithmic Complexity of DHP

In calculating the complexity of Alg. 3.1 (DHP), the computationally expensive lines
to consider are lines 5-7. Whenever a matrix-matrix-vector product appears, it is most
efficient to evaluate it from the right first (using the associativity of matrix multiplica-
tion).

Line 5 of Alg. 3.1 expands into

C (U (04 (30N _((0F\ . (04Y (01)\g
= <af>t+ <ax> <8ﬁ>t” ((%)ﬁ <ax) <au>> Gt

using Eqgs. (3.4) and (3.5). If the model function f(#,#) is given analytically then the

derivative matrices g—i; and g—é will be known exactly, and the products of these with
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Gy+1 can be done in O(dim(%)?2) operations, assuming dim(#) < dim(Z). In fact, these
derivative matrices are usually sparse, so the products are usually slightly faster than
this. By considering the number of weights necessary for a fully connected multilayer
perceptron (MLP) neural network G(Z, @) with dim(Z) inputs and dim(Z) outputs, we
usually have dim(%)? < dim(w0).

Alternatively if the model function f(Z,#) was not available analytically and had
to be learned, e.g. by a neural network with weight vector %, then the matrix-vector
products involving g—g and g—g could be calculated by backpropagation in O(dim(wy))
operations (Rumelhart et al., 1986; Werbos, 1974). If something different and more
complicated than a neural network was used to implement f(#, @), then assuming the
function is smooth enough to be differentiated (which is a necessary condition to be
using DHP anyway), it should still be possible to calculate the products involving the
derivatives of f(Z, @) efficiently using generalised backpropagation, which is also known
as automatic differentiation (Rall, 1981; Werbos, 1974, 2005). Automatic differentiation
is capable of doing static analysis on the computer code for f(¥, ), and producing from
it a “dual” subroutine dedicated to calculating the matrix-vector product that we seek.
Furthermore, the dual routine will run asymptotically just as fast as the running time
of the original function f(#, ). Let the asymptotic running time of the function f(&, )
be O(dim(wy)), as if it were a neural network with weight vector @;. So in any case,
the multiplications by g—i; and g—{; can be done in O(dim(w)) or O(dim(@y)).

The analysis for derivatives of U(Z, @) can be handled in a similar way as for the
derivatives of f(#,#), and they do not contribute significantly to the calculation time
of line 5.

The multiplications by % in line 5 can be done in O(dim(Z)) operations if backprop-
agation is used through the action network A(Z, €, Z). So considering this and the previ-
ous three paragraphs, the total operation count for line 5 is O(max(dim (@), dim(Z), dim(w@y))).

Line 6 contains a matrix-matrix-vector product. Since the matrix €); has dimension
dim(Z) x dim(&), its product with (G’; — Gy), can be calculated first in (dim(Z))?2
operations. Afterwards the product with ‘g—g can be calculated by backpropagation in
O(dim(w)) operations (using the techniques of Chapter 11 if a scalar critic was chosen).
So again assuming (dim(&))? < dim(w), the operation count for this line is O(dim(i7)).

Using similar backpropagation methods to those described above, line 7 can be

evaluated in O(max(dim(Z), dim(w@y))).
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The maximum asymptotic running time for the three lines of code analysed above is
therefore O(max(dim(w), dim(%), dim(w¢))). Therefore this is the asymptotic running
time for the whole DHP algorithm, per trajectory time step. Although this is the
same asymptotic running time as for the VL algorithms, the DHP code is likely to be
slower by a small constant factor, due to the fact that more passes of backpropagation
are required in the DHP code than in the VL algorithms. Experiments in Section
3.6.1 show this constant factor can be quite small. For example in those experiments,
value-gradient methods were only 7% slower per iteration than the corresponding VL

methods.

3.4.3 Omega Matrix’s Purposes and Origins

The Q; matrix of the DHP weight update (Eq. (3.6)) only appears in some descriptions
of DHP/GDHP in the ADP literature (for example see Werbos, 1998, eq. 32), and it
has never had the ¢ subscript prior to its use in value-gradient learning (Fairbank,
2008). In other cases it is omitted, which is equivalent to setting 2, = I, the identity
matrix. One reason for its usual omission from the ADP literature might be down to
the difficulty of deciding what value it should take, since €); is a free parameter for the
researcher to choose.

Q; is included in the weight update for generality, since the presence of any positive-
definite matrix here in Eq. (3.6) will force every component of G, to move towards the
corresponding component of G'; (in any basis). For example, if Q; was chosen to be a
diagonal matrix, as it was originally defined by Werbos (1987), then the relative values
of the diagonal elements could be chosen to specify how much priority the DHP weight
update should assign to learning the different components of the value gradient. This
kind of design decision for a diagonal €2; matrix can be achieved implicitly in VL by the
rescaling the state space axes, but the use of €); allows us to make this choice explicit.
There seems to be no VL equivalent method for simulating a non-diagonal {2, matrix.

The choice of a non-diagonal and time-step-dependent €2; matrix turns out to be

key in proving equivalence between VGL(A) and BPTT in Chapter 8.

3.4.4 The GDHP Algorithm

The algorithm Globalized Dual Heuristic Programming (GDHP) is a variant on DHP
created by Werbos (1987), and is another precursor algorithm to VGL(A). The GDHP
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algorithm is a critic-learning algorithm which is only defined for a scalar critic. It is
equivalent to a linear combination of DHP (Eq. (3.6)) and HDP (Eq. (2.1)). The
GDHP weight update can therefore be written as

t
oJ\ .., ~ 92T oJ
= E | == - E s | @ (R e
" t <8u_j>t(Jt Jt)+772 t <awaf>t t<Gt <8f)t>

where 171 > 0 and 72 > 0 are the relative learning rates between the HDP learning term
and the DHP learning term, respectively.

Two motivations for why GDHP was designed over DHP are given by Werbos
(2004). These are that using a scalar critic would enforce “strict adherence to the
requirement that the vectors G, are the gradient of a [scalar] function J”. This point
has already been discussed in the previous section (Section 3.4.1). Also, Werbos (2004)
writes, “GDHP allows one to train the critic to minimize a weighted sum of the DHP
second-order error measure and the usual HDP/TD first-order error measure; if some
state variables are continuous while others are discrete, one can use GDHP on the
entire J function simply by not using the (undefined) second-order terms for the discrete
state variables”. VGL methods were designed for continuous-valued state spaces. This
second statement by Werbos indicates that GDHP was designed to be a hybrid between
VL and VGL, such that the advantages of VGL could apply to the continuous-valued

state dimensions, and the advantages of VL could apply to the discrete dimensions.

3.5 The VGL()\) Algorithm

In this section the VGL(A) Algorithm is defined and its relation to its precursor algo-
rithms TD()A) and Dual Heuristic Programming is described.

The VGL(\) algorithm is an extension to DHP to include a A € [0,1] constant
analogous to that used in TD()). Hence the target value gradient defined for DHP
(Eq. (3.4)) is modified into:

o (%g)t +y (%ﬁ;)t <)\G/t+1 +(1- A)étH) , for @ ¢T
a oF ), for ;€T
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This is the only change needed to define VGL(\). The weight update is then the
same as the DHP weight update (Eq. (3.6)), i.e.

. oG ~
Ad=a) (aw) (G — Gy)
3 t

Equations (3.6), (3.7) and (3.5) define the VGL(A) algorithm. Section 3.5.1 gives
further implementation details and pseudocode. This completes the modification of
DHP into VGL()). As with DHP, there is a free choice as to whether G(&, ) should
be implemented by a vector critic or a scalar critic, as described in Section 3.4.1.

Like with TD(A), the recursion in Eq. (3.7) is forced to converge by requiring that
either v < 1, A < 1, or the environment is such that the agent is guaranteed to reach a
terminal state at some finite time (i.e. the environment is episodic). Since the VGL(\)
target (G't by Eq. (3.7)) is related to the DHP target (G'; by Eq. (3.4)) in the same
way that the TD(\) target (J'¢ by Eq. (2.3)) is related to the TD(0) target (J'; by Eq.
(2.2)), the modification of DHP to VGL(\) is represented by the right-hand vertical
arrow labelled “insert \” in Fig. 1.1.

The target value-gradients, G’, are so called because the VGL objective is to achieve
as closely as possible G, =E (G";) for all t along a trajectory. This objective, if attained
closely enough, ensures a locally extremal, and often locally optimal, trajectory (as
proven for the deterministic case in Chapter 7), when combined with a greedy policy.
It should be noted that this objective is not straightforward to achieve since the targets
G'; are moving ones and are highly dependent on @ (especially when a greedy policy is
being used, so that then the policy is also indirectly dependent on ). Hence we must
use the weight update to slowly move the approximated gradients towards their targets.
Also, due to the limitations of function approximation, it will not ever be possible to
attain the targets exactly, in general, but only arbitrarily close to this goal.

The ; matrix is the same as one defined for DHP, and discussed previously in
Section 3.4.3. For DHP and GDHP it has never been clear how to choose this matrix,

but for the special choice of

_ T ~ —1 _
) (&%), (8), , fort>o0
O = (a“ g o), o), Tt (3.8)
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the algorithm VGL(1) is proven in Chapter 8 to converge, under certain smoothness
assumptions, for a sufficiently small learning rate and when used in conjunction with

a policy that is greedy on the following model-based approximate Q-Value function:
Q@ 4, w) :=U(Z, @) +vJ(f(Z,1), D). (3.9)

Throughout this thesis, whenever this special £2; matrix is used in combination with
VGL(A), the algorithm will be referred to as “VGL§2(A)”. In absence of the specification
of Q, if an algorithm is referred just to as VGL(A) then it will be assumed that the €,
matrix was not used at all, or equivalently, it was set to the identity matrix. Variants
of VGL(A) other than VGL(1) are not proven to converge with a greedy policy, and
divergence examples do exist and are presented in Chapter 9.

In the following subsections, further details on aspects of VGL(\) are given. These
cover: Pseudocode for the algorithm in two forms (sec. 3.5.1); details of how the “on-
line” version of the pseudocode was derived (sec. 3.5.2); details on the motivations for
inserting a A parameter into DHP to make VGL(A) (sec. 3.5.3); and details of how
VGL(A) relates directly to TD(A) (sec. 3.5.4).

3.5.1 Implementation of VGL()\)

Pseudocode is now given for the VGL(A) algorithm. It would be possible to use the
DHP algorithm (Alg. 3.1) directly, with just a small tweak to use the recursive Eq. (3.7)
to define G';. But just like the target value J'; used by TD()) in the previous chapter,
there are two choices in how to unroll this recursion. It can be done either forwards
or backwards in time, therefore there are two possible versions of the pseudocode for
VGL(A); one is for on-line learning which can be continually applied as trajectories are
expanded (analogous to Alg. 2.2 for TD())), and one is a batch-mode implementation
which is slightly more efficient but is only applicable to completed trajectories.

Algorithm 3.2 makes a direct implementation of VGL()) for episodic environments.
It makes a forward pass through the trajectory, storing all states and actions, followed
by a backward pass through the trajectory accumulating G’; by the recursion in Eq.
(3.7).

All steps in this algorithm have similar complexity to their corresponding lines in the

DHP algorithm, therefore the running time is the same, i.e. O(dim(wf)) operations per
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Algorithm 3.2 VGL(A). Actor-Critic, Batch-Mode Implementation for Episodic
Environments.
Unroll full trajectory using Alg. 1.1, and retain variables Z, u; and T
G+ <%>T, A7+ 0
{Backwards pass...}
AW <%) QT (G,T — éT)
T

fort =T —1to 0 step —1 do

ﬁ(— AG/t_H + (1 — )\)Gt+1

au af\ =, (0A au of\ =
e (%), +7 (3), 7+ (3. (%), +7 (%) 7)

10: end for
11: W <+ W+ aAw
12: 2+ Z+ BAZ

trajectory time step (assuming the complexity of the model, action and critic networks
are all approximately equal to each other).

Algorithm 3.3 is the on-line version of VGL(A) that is suitable for non-episodic
environments. It accumulates the aggregate weight update for VGL()\) in a single
forward pass of the trajectory. Compared to the episodic version of the algorithm (Alg.
3.2) which must store a copy of the trajectory so it can later do a backwards pass along
it, this version is more memory efficient in that it does not require any storage of the
trajectory. On the other hand, the on-line algorithm requires more time to carry out
matrix multiplications. The derivation of this algorithm is given in Section 3.5.2.

This on-line version of the VGL(A) algorithm requires the full g—g: matrix which,
for a neural network, would take O(dim(Z) dim(w)) operations to evaluate. Hence the
slowest steps in the algorithm would be the matrix-matrix multiplications of lines 7 and
9, each taking O((dim(Z))? dim(«w)) operations. Hence the total time for the algorithm
to run is O((dim(&))? dim(«w)) operations per trajectory time step (i.e. slower by a
factor of (dim(Z))? than the episodic version of VGL()), and the TD()) algorithm, and
DHP).

In the case of A = 0, the algorithm can be optimised to remove the variable FE, and
then it becomes equivalent to the algorithm for DHP previously stated.

Both algorithms incorporate the action-network weight update used by DHP, with
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Algorithm 3.3 VGL()). Actor-Critic, On-Line Implementation.

1:
2:
3:
4:

5
6:

7

10:

11:
12:
13:

14:

15:

E « 0 {E e RI(@)xdim(@) j5 ap “eligibility trace” workspace matrix.}
1+ 0
while 7, ¢ T do

’LTt < A(ft, é%, 5)

Ti41 f(ft, U, 5t) B B

R (8U> + (%)t (g%)t 7 ((%)t * (%)t <%>t) G = G

t—t+1

end while

§ (g?) —- G,

EeE+(‘9G> O,

wew+aE5

a learning rate of 8 > 0. If a different actor weight-update scheme was needed then

these lines could be moved or replaced. Chapter 5 describes alternative action-network

weight-update schemes and the greedy policy.

3.5.2 Derivation of the On-line VGL(\) algorithm

To derive the on-line VGL(\) algorithm (Alg. 3.3), Eq. (3.7) was rewritten in the case

of ¥ ¢ T, as follows:

> )\Glt+1 + (1 - A)ét_t,_l)

> vy <D > Gt+1 + Ay (gi)t (G/t+1 - ét+1>
v ( 4) Gy — ét) + Ay <g£> (G/t+1 - étﬂ)
t

G 41 — ét-ﬁ-l) , (3.10)
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where we define
> DU Df\ =~ ~

= | = — | Gyr1 — Gy.

- (38), 2 (80) -t

Unrolling the recursion in (G'y — Gy) of Eq. (3.10) gives
~ - . (DF\ : DFY (DF\ <
Gi—Gr=0+M|=5]) 0 M=) (=3) ¢ 3.11

t t =0t + 7(D92’>t 1+ A oz A\bi),., t+2 + (3.11)

The above recursion was derived ignoring the possibility of a terminal state being
reached. If the trajectory does happen to reach a terminal state, at time step 7', then

by the definition of Eq. (3.7) we have G'p — éT = (%?)T — C~¥T. So to include this

possibility of a terminal state being reached, we can redefine 5;5 to be

5 (%g)t+7<%£)tét+l_ét o g T
t: - o~
% t_Gt if #; e T.

(3.12)

Using this new definition of d;, the recursion in Eq. (3.11) terminates with a final or

in the case that a terminal state is reached, and goes on infinitely if not.
Then substituting this recursion (Eq. (3.11)) into the VGL(A) weight update equa-

tion (Eq. (3.6)) and reordering the terms gives:

oG - DI\ = y2.(Df\ (Df\ &
— | U+ |==]) 0 A - - 0
< ) t<t+ ’Y<Df)t t+1 T A™Y pi),\Di),,, t4+2 T

D3

t

A ow
(3.13)

I
=)

(53)

I
-

-
i
o

where F; is a matrix defined to be
oG q (D 7 ) (D 7 )
a - —2 g =
s K Dr), ,\Dx),

_(2¢ e DL, T
Et_(aw>tﬂt+/\,y <aw>t—1ﬂt1 <Di")tl+)\fy (3117

oG Df\ (Df Df bf

t.t | 99 - — oy D7
et Ay (8117) flo <<Df)o(Df)1.”(Df>t2 (Df 1)

We see that E; can be defined more simply by a recursion:

oG Df
Ly = (M)tQt + M E; 4 (Di"’) L

(3.14)
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with F_; = 0. We call the matrix F; an “eligibility trace” matrix because it acts
similarly to the eligibility trace described for TD(\) (Sutton, 1988), appearing in Alg.
2.2. Algorithm 3.3 is then easily derived from Equations (3.12), (3.13) and (3.14).

3.5.3 Motivations for Introducing the A Parameter into DHP

The motivations for using the A parameter are very similar to those described for TD(\)
in Section 2.3.1, i.e. that choosing A carefully can increase the stability of learning and
sometimes increase learning speed, and can result in reduced variance of the stochastic
quantities being learned.

In the case of VGL(A) compared to TD(A), having a high value of A produces two
further benefits:

1. When A = 1, the algorithm VGLSQ(\) is proven to converge even with a greedy
policy and a non-linear critic function, under certain conditions, as described fully

in Chapter 8.

2. VGL methods work well in deterministic environments without stochastic value
exploration, whereas VL methods do not. Also VGL methods seem to work well
in stochastic environments with a high value of A, but VL methods do not. These
two reasons mean that one of the principal benefits of having a low value of A,
i.e. that of variance reduction of stochastic quantities, is not always relevant or
useful. Examples showing these differences are given in the experiments of this

chapter (e.g. specifically in Figs. 3.7 and 3.8).

The above two reasons define two further good motivations for extending the DHP

algorithm into VGL(A).

3.5.4 Relationship of VGL()) to TD()\)

Although VGL(A) has been defined in this thesis as a modification to DHP, it was
originally designed as a modification to TD(A). This was done to overcome the dif-
ficulties encountered in deterministic control problems, which resulted in suboptimal
trajectories such as that shown in Fig. 3.1.

VGL()\) was derived from TD(A) by differentiating each term in the TD()\) weight
update with respect to . Hence the route from TD(\) to VGL()) is indicated in Fig.

1.1 by the lower-most horizontal arrow labelled “C%”.
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To observe how this modification was made, first notice that the TD(\) and VGL(\)
weight update equations, Equations (2.1) and (3.6), respectively, have very similar form.
But the first one of these equations is designed to make approximated scalar values move
towards target scalar values, and the second one is designed to make approximated value
gradients move towards target value gradients.

Looking at how the individual terms in the TD()\) weight update were converted
into their corresponding value-gradient terms, we first note that G = g—i: by definition
when a scalar critic is used. Next, it will be proven that G’ = %—é’, either approximately
or exactly, depending on the circumstances. This will complete the demonstration of
how VGL(A) was derived from TD()) by differentiating each term in the TD(\) weight
update with respect to .

The target value gradient, G’; can be shown to be equivalent to %—‘g as follows. The

recursive definition for J'; was given by Eq. (2.3) for non-terminal states as,
Jg:wa+waHy+u—Aﬁ;Q.

Since J'; is defined for an arbitrary trajectory, which can be expanded using ;1 =

f (&, A(Zy, €, 2), €1), we can rewrite its recursive definition as

J/(ftaétaw7 g) ::U(ftaA(fh gta 2)7 gt) + V[Ajl(f(fta A(-fty gta 'g)v af)aét+171177 5)

+ (1 — )\)j(f(ft,A(fty et 2)7 gt)7w)] :

Differentiating this fully with respect to Z; (and applying the chain rule, @ =

A(Zy, €, 2), Try1 = f(&y, Uy, €;) and trajectory-shorthand notation) produces,
o1\ _ (U _ (04Y (U
o ), \oi), ox ), \ou),
d DA\ [0 a.J' aJ
() (.0 () oo 8
z), z),\ou/, T ) Z)
(DU Df .’ -
~(72),+7(58), (+(55),,, a1 -v6m)
DU Df aJ’ ~
A(22) o (2) (1) cuowo) v

This is the same recursion as the definition for G’y (Eq. (3.7)) for non-terminal states.
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For terminal states @; € T, we have J'; := ®; and therefore

().~ (&),
~ @f;)t (by Eq. (3.1))

=G (by Eq. (3.7), for & € T)

This proves that, for both terminal and non-terminal states,

oy

or’

G’ (3.15)
and completes the demonstration that VGL(A) is an approximate differentiated form
of TD(A). The approximation would become an exact equality if one of the three

conditions at the end of Section 3.2.1 were satisfied. For example, if the random noise’s

effect is additive, as defined by Eq. (3.2), then we would have,
G =-—. (3.16)

This relationship makes it clear that whereas TD()\) attempts to learn walues,
VGL(A) attempts to learn value gradients. This connection between VGL(A) and
TD(A) also shows in more detail how DHP is related to HDP(TD(0)), i.e. that if
you differentiate the target J’ for HDP with respect to Z, you obtain the target G’ for
DHP. This is justified because DHP and HDP(TD(0)) are just special cases of VGL(\)
and TD(\) with A = 0.

3.6 Case Study: Vertical-Lander, Revisited

The Vertical-Lander was described previously in Section 2.8, and the task was to control
a vertical-descent spacecraft to land gently. This caused difficulties for the VL methods
in that they converged to suboptimal trajectories in the absence of value exploration.
It is now shown how the VGL algorithms cope with this exact same task, without value
exploration.

The key result is shown in Fig. 3.6. In this figure, the trajectory (the blue

curve) matches the optimal trajectory (the green curve) because the approximate value-
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Key:

Blue line: Actual trajectory

Green line: Theoretical optimal trajectory
Magenta lines: Target gradients (G')
Cyan lines: Actual gradients (é)

Figure 3.6: Trajectory Optimality under a Greedy Policy, for Value-Gradient Learning.
This diagram shows the value gradients, (7, matching their targets, G, well (the lines
/ match the lines G’ closely in magnitude and direction). Consequently the trajectory
(the blue curve) matches the optimal trajectory (the green curve). This fact, that simply
learning the target value gradients exactly will produce a locally extremal or optimal tra-
jectory, is a key motivating theorem for VGL, and is proven in Chapter 7 for deterministic
environments. In this diagram, the grey-scale background indicates the magnitude of the
critic function at each point in state space. The grey scale has changed significantly from
the VIL-learned value-function shown in Fig. 3.1, since now the value-gradients have been
learned successfully. Note that the white bands are not discontinuities in this figure; it is
just that the graph plotter ran out of colours and wrapped around from white to black
again.

gradients (ét) match their targets (G';) exactly, while operating under a greedy policy.
This is a consequence of Pontryagin’s Minimum Principle (described in Chapter 4). It
happens for any value-gradient learning algorithm, e.g. DHP and VGL()), as proven
in Chapter 7 for deterministic environments. This figure illustrates the key motivation
for VGL methods: simply making the value-gradients match their targets, under a
greedy policy, will bend the trajectory into a locally extremal or optimal shape, and
hence locally solve the exploration-versus-exploitation dilemma (with respect to value

exploration).

3.6.1 Using VGL to Solve the Vertical-Lander Problem

More detailed results for VGL algorithms applied to the Vertical-Lander Problem are
now described, for the same set of experiments performed previously for TD(A), in
Section 2.8.2. The experimental details here are largely unchanged from before, except

for the following details: For the VGL(\) experiments, a vector critic was used. Hence
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3.6 Case Study: Vertical-Lander, Revisited

the critic network needed three nodes in the output layer. Also, the critic network’s
final-layer activation function had a linear slope of 20. Learning rates used were o =
1077 for the critic, and § = 0.001 for the actor.

Using these experimental parameters, the first experiment uses the stochastic-policy
method, from a fixed trajectory start point, as described previously in Section 2.8.2.
Fig. 3.7 shows results for VGL(1) and VGL(0) both with and without exploration
through the stochastic policy (with exploration level o). In comparison to the equivalent
experiment done for TD()), shown previously in Fig. 2.2, these results for VGL(\) show
success both with and without value exploration. This is consistent with the principal
motivation for VGL methods, in that local value exploration is automatic. Also the
VGL() results are many times faster in terms of number of iterations (i.e. by a factor
of approximately 50), and in time too (in the implementation used by this thesis, each
iteration of VGL took approximately 7% longer than the equivalent TD()) iteration).
The VGL(\) results achieve a consistently lower J value than the VL results. When
o =0, the VGL(\) results get the lowest J value of all, since then there is no stochastic

distortion of the optimal policy. These were two further motivations for VGL methods.

VGL(0) with 0 =0 and 0 = 0.1 VGL(1) with 0 =0 and 0 = 0.1

40 VGIL(0), o = 0.1 VGI(T), o =01
35 VGL(0), 0 = VGL(1),0 =0 —— -
30 TD(0), 0 = 0.1 TD(1), 0 = 0.1 weeeeeees |
25
20
15
10

5

0

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Iterations Iterations

Figure 3.7: Results for Using a Stochastic Policy to Solve the Vertical-Lander Problem
by VGL()). The results show five trials for each o value in each graph. For comparison,
the equivalent results for TD(A) taken from Fig. 2.2 are also shown in dotted.

These results also show that large values of A are less affected by variance in the
learning signal. For example, TD(1) failed to solve this problem variant, but the VGL(1)
results shown in Fig. 3.7 are just as good, or better, than the VGL(0) results in the
same figure. These good results for VGL(1) happen even when o > 0, which is the

cause of the supposedly-problematic variance, so it initially appears that A = 1 does

79



3. VALUE-GRADIENT LEARNING ALGORITHMS

not create problematic variance as much for VGL()) as it does for TD(A); although
this is an area for further research.

Fig. 3.8 shows the performance of VGL(\) in this fixed trajectory-start-point prob-
lem across a range of values of )\, and the results show robustness against changes in
the value of A for this problem. In addition, the search for learning rate parameters «

and [ proved a lot easier for VGL(A) than for TD(A).

Final result after 10° training iterations
1000 T T

VGL(A), 0 =0 —
VGL()), o = 0.01
100 VGL(A), 0 = 0.1 —4+
e ID(A), 2. = 0
£ 10} . TD(\), 0 = 0.01
; . TD(A), 6 =.0.1
0.1 F ]
0.01

0 01 02 03 04 05 06 07 08 09 1
A

Figure 3.8: Results of VGL(\) under various A and noise-levels, o, for solving the Vertical-
Lander Problem, from a fixed trajectory start point. All results are generated for critic
learning rate @ = 1075 and actor learning rate 8 = 1073. For each value of A, the
graph shows the value of J — J* after 105 training iterations. All results are gathered as
the median result of 10 trials (i.e. from 10 different initial randomizations of the neural
weights). TD(A) results from Fig. 2.3 are included as dotted curves, for comparison.

Fig. 3.9 shows results for VGL(A) applied to the exploring-starts experiments, pre-
viously done for TD(\) in Section 2.8.2. The results for VGL()) are more consistent,
faster and more stable than the equivalent results for TD(\) shown in Fig. 2.4. Al-
though more stable than the corresponding results for TD()), there is still a minor
stability issue present here, i.e. one of the VGL(1) trial curves jumps to a large J value
after 50,000 iterations; because as usual with a concurrently-learning actor and critic,
convergence is not assured. The methods presented in Chapters 5 and 8 can be used to
address this issue, i.e. the use of the algorithm VGLQ(1) with a greedy policy produces
stable proven convergence.

A final important experimental detail here was that clipping was used throughout
the experiments in this section, and in the corresponding VL experiments (Section
2.8.2). Clipping involves careful truncation of the final time step of the trajectory, so
that the agent stops exactly at z; = 0 and not z; < 0. Clipping is described fully
in Chapter 10. Without clipping, the VGL experiments would not give quite so good
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VGL(\) with Exploring Starts
60 T T

VGL(T)
50 L VGL(0) —— |
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£
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20
10
0 1 1
1 10 100 1000 10000 100000
Iterations

Figure 3.9: Results for Using Exploring Starts to Solve the Vertical-Lander Problem by
VGL()A). Each curve shows a different experimental trial (i.e. different weight initialisa-
tion); five different trials for VGL(1) and five trials for VGL(0). (For comparison to VL
methods, see also Fig. 2.4.)

results, as detailed in Chapter 10 (e.g. see Fig. 10.6), but the VL results would largely
be unaffected. This is a disadvantage of VGL methods compared to VL methods.

3.7 Quadratic-Optimisation Problem

The experiment in this section is designed to be simple and highly demonstrative of
the advantages of VGL methods over VL methods, i.e. with respect to learning speed
and automatic value exploration. Unlike the previous problem, this problem does not
involve any requirement for clipping, and thus is easier to program and replicate the
results. A short discussion on model-learning for this experiment is also given, in
Section 3.7.1.

An environment is defined with # := 2 € R and # := u € R, and model and cost

functions:

f(z,t,u):=x+u (3.17)
U(z,t,u) == (u)2 (3.18)

Each trajectory is defined to terminate on arriving at time step ¢ = 2, and on

termination a final instantaneous cost of

O(Z) := (x)? (3.19)
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is given. The only actions used in the trajectory are ug and u;; the total cost for this
trajectory is (ug)? + (u1)? + (xo + uo + u1)?, and the theoretical optimal total cost for

the whole trajectory is
J* = (x0)%/3. (3.20)

The action network was a MLP with two inputs, one output and one hidden layer
of 4 nodes, short-cut connections from the input layer to the output layer, and with
activation function g(z) = tanh(z) at all nodes. The weights Z' were initially randomised
uniformly from the range [—0.1,0.1]. The critic network J(Z, @) was a scalar critic, so
that in this implementation, VGL(0) is equivalent to GDHP. The critic was identically
dimensioned to the action network, with a weight vector w randomised initially in the
same way. The activation function used for the critic was g(x) = tanh(z) at all nodes
except for the output node, which used g(z) = z. The input vector to each neural
network was (x,t).

Each trajectory was made to start at xg = 0.8. Learning rates for the critic and
actor were both a = 0.1 and 8 = 0.1, respectively, with discount factor v = 1. To
provide the facility for exploration, Gaussian noise with zero mean and variance o2 was
added to the output of the action network to form the policy function, i.e. as given by
Eq. (2.16).

The critic-learning algorithms tested were TD(1), TD(0), VGL(1) and VGL(0)
(Algs. 2.2 and 3.2), all operating in batch mode. The experiments were repeated
with noise (¢ = 0.01) and without noise (¢ = 0). Results averaged from 40 trials
for each algorithm are shown in Fig. 3.10. The results show that the value-learning
method (TD())) could not cope without some random value exploration, but the VGL
based methods (GDHP and VGL(A)) work successfully for both o values used. Also,
in comparison to the VL methods, VGL methods are very fast (approximately 1,000
times faster to obtain an error J —J* < 0.1). On the other hand, VGL methods require
prior knowledge of the model functions (in order to use their derivatives), whereas VL
methods do not. But when the model functions are available, the increased speed and
automatic local value exploration provides a strong motivation to use VGL methods.

The following subsection makes a short discussion of how model-learning would

affect the results of this experiment, because otherwise it might not be considered a
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fair comparison between VGL and VL.

Results without Policy Noise (o = 0)
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Figure 3.10: Algorithm performances for the quadratic-optimisation problem of Section
3.7, both with and without policy noise. The y axis shows J — J*, where J* is the optimal
trajectory cost given by Eq. (3.20). Compared to the VL method (TD())), the VGL
method works well in the absence of stochastic exploration, and quickly attains J = J*.
The VL method fails without stochastic exploration here (i.e. it converges to a suboptimal
policy), but does learn slowly and successfully in the presence of policy noise.

3.7.1 Model-Learning Detalils

In this section, an examination is made into the extra cost which would be incurred if
model-learning was to be included into the above experiment.

Differentiating Eq. (3.17) gives % =1 and % = 1. These are the only
bits of model-knowledge that are required to implement VGL()\). Hence it makes sense
to train a model-network to output these derivatives directly instead of the underlying
function f(Z,«). Since these derivatives are constant, it can be assumed that they could
be learned extremely quickly by a neural network with a decent acceleration algorithm,

in maybe just a few iterations. For example, a line-search algorithm could be used to
of

fully train the model-network in just one iteration. Hence the time taken to learn %

and g—{; would not significantly worsen the performance of VGL compared to VL.

U(Z,@) OU(Z,d) 8% (7)
or o ox and 5

which for this problem are 0, 2u and 2z, respectively. These are a bit harder to learn

VGL methods also require knowledge of the functions

than the constant derivatives of f(Z, @), however it can be argued that either: a) These
are still not significantly demanding to learn; or b) These functions should be known
anyway, since it is the job of the experimenter to decide which behaviours to reward
or punish, and thus what cost functions to choose. In either case, model-learning does
not make a very significant impact into the performance of VGL compared to VL, and
therefore this problem is one in which VGL outperforms VL by a very large factor

whether model learning is included or not.
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The purpose of this section has been to address the fairness of comparing a model-
based VGL algorithm against a model-free VL algorithm. The key point of this
quadratic-optimisation experiment has been to show that local value exploration comes
automatically with VGL, and the speed-up factor can be several orders of magnitude,
compared to VL. Neither of these two conclusions is an automatic consequence of com-

paring a model-based algorithm to a model-free one.

3.8 Chapter Conclusions

The VGL()) algorithm has been defined and its relationship to its precursor algorithms
DHP and TD(A) has been explained. VGL(A) extends the DHP algorithm by introduc-
ing a bootstrapping parameter, A, which can affect learning speed and stability. Also,
VGL(A) can be viewed as a differentiated form of TD(A); whereas TD methods learn
values, VGL methods learn value-gradients.

The motivations for using VGL based methods (including DHP) in comparison to
VL methods have been emphasised. These are that local value exploration is auto-
matic; VGL methods can be many times faster than VL methods; and VGL methods
work naturally in continuous-valued state spaces. The experiments confirmed these
motivations, showing success for VGL in environments when no value exploration is
used and where VL methods fail, and showing the speed-ups obtained through VGL
methods. However, unlike VL. methods, VGL methods require that the model functions
are differentiable, and known or learnable.

The following chapters in the thesis will show how to speed up the VGL learning
process further and make the convergence process much more reliable. Once the greedy
policy is introduced (in Chapter 5), further experiments will be presented which show
the massive speed up in learning that can be obtained by a greedy policy and the special
; matrix (Eq. (3.8)) that was defined in this chapter. In Chapter 8 this combination,
of greedy policy plus €2; matrix, will be proven to modify the critic-learning process
into true gradient descent to become a very fast and reliable way to solve the ADPRL

problem.
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Chapter 4

Bellman’s and Pontryagin’s

Optimality Principles

This chapter serves as an introduction to Pontryagin’s optimality principle, and its
relationship to Bellman’s optimality principle. It also aims to illustrate the connection
between VGL methods and Pontryagin’s principle, and provide motivations for both.

The chapter starts with a review of Bellman’s optimality principle of dynamic pro-
gramming (Section 4.1), highlighting how the greedy policy can be interpreted as an
essential component of Bellman’s principle. Then the next section highlights how in
continuous-valued state spaces, the greedy policy depends upon the value-gradient (Sec-
tion 4.2), which therefore motivates the need to learn value gradients, if Bellman’s
principle is ever to be satisfied.

The importance of learning a value-gradient, in order to achieve optimality, acts
as an introduction to Pontryagin’s minimum principle, which is an optimality princi-
ple analogous to Bellman’s principle, but where the condition depends entirely upon a
value-gradient term being correct. Pontryagin’s minimum principle (PMP) is defined in
full, for deterministic discrete time environments, in Section 4.3. Section 4.4 attempts
to make a visual explanation of Pontryagin’s principle, spelling out its relationship to
Bellman’s principle. Section 4.5 describes how meeting the value-gradient condition all
over state space will lead to global optimality, as opposed to just the local optimal-
ity which is often only considered. Section 4.6 reviews the Hamilton-Jacobi-Bellman
Equation, which looks confusingly like a value-gradient learning equation, but actually

is not one. Finally, Section 4.7 gives chapter conclusions.

85



4. BELLMAN’S AND PONTRYAGIN’S OPTIMALITY PRINCIPLES

4.1 Review of Bellman’s Optimality Principle and Dy-

namic Programming

According to Bellman (1957), the principle of optimality is expressed as: “An optimal
policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.” This can be stated mathematically as Bellman’s optimality

condition (Eq. (2.9)), i.e. there exists an optimal value function J*(#) which satisfies:

| E(@(Z,@)) if # €T,

and if this optimal value function can be found, then optimal behaviour is determined
by following a greedy policy on J*, and we have therefore solved the ADPRL problem.

Dynamic Programming is the name of a systematic method that goes about finding
a function J*(¥) which solves Bellman’s equation (Eq. (2.9)) by doing full state-space
sweeps working backwards in time. However since dynamic programming requires full

exploration of the state space, it suffers from the curse of dimensionality.

4.1.1 Split Form for Bellman’s Optimality Condition

It was described in Section 2.4 that the training objectives for the critic network and

action network were to achieve, as closely as possible:

1. Jy,=E(J) forall & € S.

2. The action network is equivalent to the greedy policy.

It was also proven in Section 2.4 that if the above two goals could be met exactly,
then the action network would produce optimal actions and satisfy Bellman’s optimality
principle. It was also noted earlier that due to the limitations of function approximation,
and the nature of approximate dynamic programming, these two objectives may never
be met exactly, but they form the objective of the main VL algorithms presented in
Chapter 2.

The above two conditions are what we will call the split form of Bellman’s optimality

condition. This split form is more convenient to consider for the ADPRL problem
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formulation, for the reason that when an action network and a critic network are
present, these two statements form the necessary and sufficient conditions for Bellman’s
Condition to be satisfied exactly. In contrast, Bellman’s condition in the form of Eq.
(2.9) does not explicitly refer to any action network or critic network, and it contains
a min operator which does not appear in the main critic-learning algorithms described

in Chapters 2-3.

A conclusion is that when an action network is used for the policy function, its
training objective is to obey the greedy policy as closely as possible. This is because
obeying the greedy policy is a necessary condition for Bellman’s optimality principle.
This conclusion is relevant to this thesis because the greedy policy is used to motivate
value-gradients (in the next subsection), and it is also used in the theoretical result

concerning the optimality of the value-gradient learning objective (Chapter 7).

4.2 A First-Order Taylor-Series Expansion of the Greedy
Policy

As described in the previous subsection, the greedy policy needs satisfying if Bellman’s
optimality principle is to be satisfied (whether a greedy policy or an action network is
used in the ADP architecture). Here we examine what information the greedy policy
is basing its decisions on, and find that the value-gradient is what “drives” the greedy
policy. By doing this we can emphasise the motivation for developing VGL methods,
and also gain an intuition into how Pontryagin’s Minimum Principle works and relates

to Bellman’s condition.

In continuous-valued state spaces, the greedy policy can be understood more easily

by considering a first-order Taylor-series expansion of the greedy-policy function (Eq.

(1.8)):

87



4. BELLMAN’S AND PONTRYAGIN’S OPTIMALITY PRINCIPLES

(&, W) = arg IpilrgE (U(a?’, i,&) +~J(f(Z, 1, “),16)) (greedy policy)
ue
07\ "
~ arg rpiEE U(&, @, &) +~J (&, 0) + (8:3) (f(#,u,€) — &) | (Taylor expansion)
ue
AN
= argrpigE U(Z,u,€)+~ ((9_,> f(Z,u,€) (No dependency on )
e z

(4.1)

Hence we see the greedy policy at time step ¢ is dependent on (%) and not on .J;. We
t

can see from this that changing (%i:)t will immediately affect the greedy policy, but
changing just J; will not. This understanding forms a key motivation for developing

VGL algorithms, and understanding PMP.?

4.3 Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle (PMP), also known in its variant form Pontryagin’s
Maximum Principle, is one of the two fundamental ideas of optimal control. PMP was
formulated in 1956 by the Russian mathematician Lev Semenovich Pontryagin (1908-
1988) and is described by Pontryagin et al. (1962). The other fundamental idea of
optimal control is dynamic programming, developed in the United States by Bellman
(1957). The two methods complement each other in the same way that VGL and VL
complement each other.

PMP was originally defined for deterministic environments (Pontryagin et al., 1962),
although some works do extend it to certain stochastic environments (E.g. Jacobson and
Mayne, 1970, Sec. 5.4.7). In this thesis only the deterministic form will be considered,
hence the environment functions will omit the noise arguments € when referring to
PMP.

Unlike dynamic programming, PMP avoids the curse of dimensionality, as it is an
optimality condition that must apply along a single trajectory, as opposed to over the

whole state space. PMP is usually defined for continuous-time systems, but for this

8This analysis has just been a restatement of the argument given earlier in Fig. 3.1.
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thesis it is simpler to only consider its discrete-time version. This is stated concisely
by (Todorov, 2006, eq.18) as the following three equations which must be satisfied at

all time steps t of a trajectory for the trajectory to be optimal:

Try1 = f(Z, ), (4.2a)
ou 0 Y 2
N = (8w)t+7(6w)t w1 & ET (4.2b)
(%)t if 4 € T,
ﬂt = %’16111&3 (U(ft, ﬁt) + ’)/f(ft, ﬁt)TXt+1> . (420)

Here )\, is called the costate vector. This also goes under various different names
(adjoint vector, influence function, adjoint state, Lagrange multiplier). Equation (4.2b)
specifies how the costate vectors are calculated recursively, by working backwards from
the end of the trajectory. Eq. (4.2a) states how the state vector #; is calculated
recursively, by working forwards along the trajectory. If these forward and backwards
passes match up according to actions governed by Eq. (4.2¢), then PMP is satisfied.

PMP is a necessary condition for optimality. In other words, all optimal trajectories
must satisfy PMP. However it is not a sufficient condition. Satisfying PMP for a
trajectory only strictly ensures the trajectory is locally extremal. Extremal here means
a local minimum, maximum or saddle point.

The fact that only local extremity is guaranteed sounds like a major disadvantage
of PMP compared to Bellman’s principle, however the big advantage of PMP is com-
putational efficiency. PMP only needs satisfying along a single trajectory, whereas
Bellman’s principle needs to apply over the whole of the state space, and thus suffers
from the curse of dimensionality.

In referring to the efficiency in solving the continuous-time versions of Eqs. (4.2a)
to (4.2c), Todorov (2006) explains “The remarkable property of the mazimum principle
is that it is an ordinary differential equation (ODE), even though we derived it starting
from a partial differential equation (PDE). An ODE is a consistency condition which
singles out specific trajectories without reference to neighbouring trajectories (as would
be the case in a PDE) [...] The ODE is a system of 2dim(Z) scalar equations subject to
2dim(Z) scalar boundary conditions. Therefore we can solve this system with standard

boundary-value solvers (such as Matlab’s bupde function)”.
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The concern that PMP is only guaranteed to find locally extremal trajectories is
usually not a problem, as solution to the PMP equations usually results in a small
distinct set of candidate trajectories, and it is a simple matter to choose the best one
(Pontryagin et al., 1962, p.22). Furthermore, it is proven in Chapter 7 of this thesis
that if the actions in the candidate trajectory are all either fully on or fully off (a
situation known as bang-bang control) then that is a sufficient condition for PMP to
deliver locally optimal trajectories. Finally, it is shown this chapter, in Section 4.5,
that this limitation of only finding locally extremal trajectories does not apply to VGL
when the state space is fully explored.

PMP can be proven using Bellman’s equation as a start point (e.g. Todorov, 2006,
sec. 3.1) or in discrete-time using Lagrange multipliers (e.g. Todorov, 2006, sec. 3.2).
Chapter 7 of this thesis also delivers a discrete-time proof and produces the extra result
for bang-bang control guaranteeing local optimality. The proof by Pontryagin et al.
(1962) is the most thorough continuous-time analysis, and pays special attention to
edge cases where the optimal actions change discontinuously over time.

A difference between PMP and ADPRL is that with PMP you need to solve a new
ODE each time you want to find an optimal control from a new start point y € S.”
In contrast, a fully trained ADPRL action network can deliver approximate optimal
control from any start point Zg, without any further significant calculation.

Limitations of PMP compared to the method of dynamic programming are that
PMP is only applicable to deterministic trajectories, and also only where trajectories
can be written as differential equations. Therefore it is limited to the functions f(Z,#)
and U(Z, @) being smooth and differentiable. Dynamic programming is also applicable

to situations where these functions are stochastic and not smooth.

4.4 The Relationship between Pontryagin and Bellman’s
Principles

Bellman’s and Pontryagin’s principles are related by the fact that the costate vector X

in PMP satisfies (%) = X¢, where J*(Z) is Bellman’s optimal value function. The

9Except in certain rare circumstances where it is possible to find exact analytical solutions to the
value function and to the control function across the whole of S. For example, see (Pontryagin et al.,
1962, chap. 1, sec. 5).
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following subsection aims to illustrate an intuition for understanding this connection,

and understanding PMP from a Bellman perspective.

4.4.1 Pontryagin’s Minimum Principle: A Visual Guide

Consider an optimal value-function surface, and an optimal trajectory embedded within
it, such as is illustrated in the left diagram of Fig. 4.1. In trying to narrow down the
amount of value-function surface which we must learn in order to discover this optimal
trajectory, can we just learn the portion of the surface directly below the trajectory?
This would leave a roller-coaster shaped object, as illustrated in the right diagram of

Fig. 4.1.

Figure 4.1: The left image shows a critic-function surface and an optimal trajectory curve
embedded in it. The right-hand image illustrates that the slice of the critic function that
lies directly below the trajectory would take the shape of a roller-coaster track.

The answer to this question is that just learning the roller-coaster’s height profile
is not enough. The greedy policy needs gradient information too, as was illustrated in
Sec. 4.2. In the roller-coaster analogy, this requirement for gradient information would
mean that the coaster track must have the correct shear too, as is illustrated in Fig.
4.2. That then gives us the least possible portion of the value-function surface in order
to decide whether our trajectory is locally optimal or not.

In PMP, the costate vector, Xt, holds this “shear” information. The second PMP
condition (Eq. (4.2b)) enforces the correct shear of the roller-coaster. The trajectory
must simultaneously be found by a greedy policy (i.e. the third PMP condition, Eq.
(4.2¢)), and also the trajectory must be unrolled by the model function f(Z, @) (i.e. the
first PMP condition, Eq. (4.2a)). Hence these three conditions combine to give PMP.
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Figure 4.2: Roller-Coasters With and Without Track Shear. The left-hand image shows
what a roller coaster with shear would look like. The right-hand image shows a track
without shear, for comparison.

Note that in PMP, and likewise in VGL, it not sufficient to take a given fixed tra-
jectory found by the greedy policy and fully learn the costate vectors (value-gradients)
along it, in the hope of achieving optimality. By the time the costate vectors have
changed, the third condition of PMP will be violated. We need to learn the costate
vectors along the trajectory while simultaneously making the trajectory greedy with
respect to those costate vectors. Doing both of these things at once will force the tra-
jectory to bend around a lot. Only when this bending has settled down, and both of
last two PMP conditions are achieved at once, does PMP apply; and only then can the

trajectory be locally optimal.

4.5 The Connection of PMP to VGL and Global Control

VGL methods are very closely related to PMP in that both attempt to learn an optimal
value gradient. If the VGL objective is attained all along a trajectory found by a greedy
policy, i.e. if G, =E (G"}) for all ¢, then G, will become equal to X for all ¢ along that
trajectory. This can be understood initially by observing the similarity between the
recursion defining G’; in DHP (Eq. (3.4)) and the recursion defining X, (Eq. (4.2b)).
This equivalence is proven more rigorously in Chapter 7, where further details are given
too (see Section 7.3.3). This means VGL can gain the efficiency benefits of PMP if just
one trajectory is learned, i.e. meeting the VGL objective along one greedy trajectory is
a sufficient condition for the trajectory to be locally extremal (this was demonstrated

in Section 3.6, and is proven in more detail in Chapter 7).
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However, PMP and VGL differ in that VGL attempts to learn a global function
é(a‘:’ , W) over the whole state space S, but PMP deals with the X values along a single
trajectory. This means that if VGL learns the entire G(Z,) function for all £ € S
then it will have recovered Bellman’s optimality condition, and thus have achieved
global optimality, by the following reasoning. First we assume the environment is
deterministic, therefore the VGL learning objective (i.e. to get as close as possible to

achieving G, = E(G;) for all t) can omit the expectation symbol, and leads to the

following:
G(Z, W) = G'(Z,W,7) VT €S (4.3)
oJ(z,w) 8J(Z, W, 2)
S gy~ 97 VZ eSS (by Egs. (3.3), (3.15))
& J(Z,70) = J(F,%,2) +¢c VT €S (integrating the PDE) (4.4)

Solving the differential equation of the final line of Eq. (4.4) introduced an arbitrary
constant 4+c. This arbitrary constant, ¢, is not important as it does not affect the greedy
policy, which is invariant to constant increments of this kind. The approximation
symbol in Eq. (4.4) could be changed to an equality (via Eq. (3.16)) if one of the
three conditions for Eq. (3.16) were satisfied. Together with the greedy policy, this
completes the two conditions required for Bellman’s optimality condition to be satisfied
(Sec. 4.1.1), and therefore we have recovered global optimal control over the whole state
space (approximately or exactly; depending on the status of Eq. (3.15)).

The fact that the above conclusion is sometimes only an approximation is not a
significant limitation of this VGL global-control proof. For example, if the conditions
stated underneath Eq. (3.15) were satisfied (e.g. under conditions of additive noise, as
defined by Eq. (3.2)), then the above VGL global-control proof would become exact. In
other circumstances, when these conditions for exactness are not met, then Bellman’s
condition will only be approximately met. But it will be approximately met over the
whole of the state-space, so all trajectories would presumably be approximately globally
optimal as opposed to approximately locally optimal. So in either case, the conclusion
that trajectories will be (approximately) globally optimal, and not (approximately)
locally optimal, if the VGL condition is fully satisfied over all of S, still seems to be

valid.

93



4. BELLMAN’S AND PONTRYAGIN’S OPTIMALITY PRINCIPLES

This completes the analysis for deterministic environments. The situation for a
stochastic environment is proven in the chapter appendix (Section 4.A).

This section has shown that learning a value gradient over the whole state space
recovers Bellman’s optimality principle (approximately or exactly), and therefore it is a
sufficient condition for global optimality, i.e. it shows that VGL overcomes the “locally

extremal” caveat that is associated with PMP.

4.6 The HJB Equation

This section attempts to clear up a common misconception of the similarity between
the well-known HJB equation (described below) and the VGL method. Although the
HJB equation contains a VGL term, it is argued in this section that learning algorithms
based directly on the HJB equation will be doing VL and not VGL.

The Hamilton—Jacobi-Bellman (HJB) equation applies to a continuous-time ADPRL
problem. It will be described here in its deterministic form, hence the noise vector €,
and the expectation operator E (), will be omitted from all functions in this subsec-
tion. In a continuous-time environment the state evolution equation changes from the

discrete-time equation (Eq. (1.1)) into a differential equation:

OF()
R COR0)

and the total un-discounted trajectory-cost function changes from a discrete summation

(Eq. (1.4)) into an integral:

where f and U are function names given to the continuous-time counterparts to the
discrete-time functions f(Z,u) and U(Z, @).
In the continuous-time ADPRL problem, the HJB equation is:

* (7 * (7 T
a‘]a(t’t) + min ((W) FE@), ) +U(f(t),ﬁ)> —0

The reason the HJB equation is often confused for a VGL equation is that it contains

a value-gradient term, %&?J). However there are two reasons that the HJB equation
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is not a VGL equation:

1. The HJB equation is not a weight update at all. It is an optimality condition

that must be true over the whole state space to imply Bellman’s Condition.

2. If a variant on HJB was used as the basis for a weight update, then the vector
inner product with f(Z(t), ) results in a projection of the value-gradient along
the trajectory’s direction. This means that learning via a variant of the HJB
equation is not going to learn the value-gradient directions that are necessary for
obviating local value exploration. To use the roller-coaster analogy again from
Sec. 4.4.1, this projection exactly removes all of the track-shear information, and

retains only the track’s height profile.

4.7 Chapter Conclusions

This chapter has provided a review of Bellman’s and Pontryagin’s optimality princi-
ples, including details of how they relate to each other. By taking a starting point
of Bellman’s principle, which is the founding equation of much of RL, the chapter
has argued that in continuous-valued state spaces, Bellman’s principle depends upon a
greedy policy, and a greedy policy depends upon value gradients, and therefore learning
value-gradients is necessary for optimality.

PMP has been described as an optimality principle which specifies that correct
value-gradients are a necessary condition for trajectory optimality. The chapter has
described briefly how PMP relates to value-gradient learning algorithms, and how
learning value-gradients all over the state space will act as a sufficient condition for
global optimality.

Finally the HJB equation has been described, but only to point out that it is not a

true “value-gradient learning” equation.

4.A Chapter Appendix: Extension of VGL Global-Control

Proof to Stochastic Environments

This appendix forms an extension to Section 4.5. The derivation of Eq. (4.4) from Eq.

(4.3) made an assumption of a deterministic environment. This appendix shows how
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to make the same deduction for stochastic environments. Hence, the objective of this

appendix is to prove that

G(&,w) = E (G'(%,6,,7) Vies (4.5)

leads to

J(#,@) = E (J'(&,,7) + ¢ VieS. (4.6)

and hence satisfaction of the Bellman Condition for globally-optimal control.

In a stochastic environment, the trajectory depends on the unknown noise vector €,
which was defined in Section 1.2 to represent all of the random numbers used in gener-
ating the entire stochastic trajectory. This noise vector has a probability distribution
P, (€) and sample space E. Hence the expectation operator applied to any function f

of the noise vector € is defined by the following integral:

E(f(8)) = /E P. (&) (8)dé, (4.7)
with

/ Py (8)dé = 1. (4.8)
E

Using this notation, we can now show how Eq. (4.5) leads to Eq. (4.6), as follows.

G(#,w) =E (G'(#,8,,7)) VZeS (by Eq. (4.5))

= / P, (€)G'(Z,e,w,7)dé VT €S (by Eq. (4.7))
E
Integrating both sides with respect to Z, across the whole state space S, gives,
/ G(Z,w)dZ = / ( / P, (8) G'(&, 8,0, Z)dé) dZ VZe'S
S S E
= / </ P, (8) G'(Z, &, 1w, Z’)da_c'> dé V¥ €S (swap integration order)
E S

= / P, (&) < G'(Z,8,w, Z)df) dé V¥ €S (constant term extracted)
E S
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I .
:/&J(w:u))df%/];e(é») /W(ve’wz)dx dé Vi eS (by Egs. (3.3), (3.15))
S 0 E S 0

\
P
&
&
X
\
!
Q
™

o]

[0, 2) + ¢)dé VEES

/ P, (&) J'(Z,8&,w,7)de + c/ P, (€)dé VI e S (constant term extracted)
E

=E (J'(z,é )) +c VFES (by Eqs. (4.7) and (4.8))

The line which exchanges the order of integration needs further justification. For
this to be valid, by Fubini’s theorem from mathematical analysis, we require that
the integrand (i.e. P (€) G'(¥,€,u,7)) is finite and defined everywhere in S and E.
Since the initial assumption was that E (G') = G for all T € S, it is reasonable to

P, (€)G'(Z,€ ) to be finite everywhere, we require that Pe (€) is always finite. If
there were any infinite spikes in Pe (€), then the random variable € must have been a
discrete random variable instead of a continuous one. So assuming that € is a well-
behaved continuous random variable, then the proof that Eq. (4.6) is a consequence of
Eq. (4.5) is complete.

If € was a discrete random variable, then the proof could still be made by rewriting
the expectation equation (Eq. (4.7)) as E(f(€)) := > g Pe (€) f(€). The result would
then easily follow, since the ) and [ signs always commute.

Like in the equivalent deterministic proof given in Section 4.5, the effect of the ap-
proximation symbol is not that significant, and should not affect the global versus local

conclusion; only whether the Bellman equation is satisfied exactly or approximately.
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Chapter 5

Action-Network Weight-Update
Methods, and Efficient Greedy

Policies

In this chapter, various alternative action-network weight-update schemes are described
(in Sec. 5.1). However, in certain situations, the action network’s weight update can be
completely removed and the ADPRL architecture of two neural networks can be reduced
down to just one. In this case a greedy policy would replace the action network, as
described in Sec. 5.2. This simpler architecture can be beneficial since the learning
process for a single network can be accelerated more easily, as we no longer need worry
about the effects of two mutually interacting networks being trained simultaneously.
In this chapter, greedy-policy functions are derived which are applicable to continuous-
valued state spaces, with differentiable environment functions, and work under the
assumption that the model function, f(Z, i), is linear in . Most of these policies (with

one exception, in Section 5.2.1) require continuous-valued action spaces.

The greedy policies derived in this chapter are closed-form solutions for minimising

the model-based approximate Q function, defined earlier in Eq. (3.9), as:

Q(&,11,0) = U(%, @) +vJ (f(Z, ), 7). (5.1)
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Hence the closed-form greedy policies in this chapter are of the form:
(&, = arg min (@(:E, a, w)) . (5.2)

Here the functions f(Z,#) and U(Z,#) are the deterministic learned model and
cost functions, defined in Eq. (1.9). If these are learned perfectly then they would
equal the expectations of the true stochastic model and cost functions, E (f(Z,u, €))
and E (U(Z, 4, €)), respectively (as described by Eq. (1.10)). Hence the minimisation
in Eq. (5.2) is slightly different from the one required for the true ADPRL greedy
policy (Eq. (1.8)), since the true model and cost functions have been replaced by
f(#,%) and U(Z, @). This replacement is equivalent to moving the expectation operator
that appears in Eq. (1.8) to a different position. Therefore, in general stochastic
environments, Eq. (5.2) is only an approximation to the true ADPRL greedy policy. In
deterministic environments, however, it is exact, because then the expectation operators

have no effect.

To clarify the distinction between Eq. (5.2) and Eq. (1.8), the greedy policy given by
Eq. (5.2) will be referred to as being greedy on the model-based approzimate Q function,
or the “greedy—on—@” policy, for short. Note that since the model-based @ function
uses the learned f(&#,#) and U(Z, ) functions, which themselves are deterministic
(since they are independent of €), this C~2 function is therefore deterministic.

It is preferable to use the learned model and cost functions in Egs. (5.3) and (5.2)
over the stochastic ones, for the practical reason that their derivatives are known and
independent of € (which may not be observable). This is one reason why Eq. (5.2) is
used as the basis for the greedy policies presented in this chapter. The other reason is
that it sometimes has a simple closed-form solution, which makes it computationally
efficient to work with. However its use comes with the caveat that it will only be an
approximation to the true ADPRL greedy policy, in general stochastic environments.

Empirical results comparing performance with an action network to performance
with he above greedy policy are given in Sec. 5.3. These results show that a massive
speed-up of learning can take place with a greedy policy, and also make a demonstration

of the effectiveness of the special 2; matrix that was previously defined in Eq. (3.8).
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5.1 Action-Network Weight Updates

The ADPRL algorithms presented so far are for training a critic function. To make the
agent behave optimally, the action-network function A(Z, €, Z) also needs training. The
HDP, TD()A), DHP and VGL()) pseudocode presented in Chapters 2-3 were presented
in actor-critic form, i.e. including an action-network weight update (in addition to the
main critic weight update). The action-network weight update used was the following

standard ADP one:

> 0A OU 8f »
At (82’>t (<8ﬂ')t A (%)th“) ’ (5.3)

where $ > 0 is a learning rate. This action-network weight update appears in line 7 of
the DHP algorithm (Alg. 3.1), in line 9 of VGL(\) (Alg. 3.2), in line 7 of TD(0)/HDP
(Alg. 2.1); and also in (Prokhorov and Wunsch, 1997a, Eq. 10).

This action-network weight update is model based, because it uses the derivatives
of the learned model function f(&,#). This makes it potentially a very fast learning
algorithm. It is equivalent to Az = —f (%) . (%)t, which is direct gradient descent
on Q(y, A(Zy, €, 2),w) with respect to Z, where @ is the model-based approximate Q
function (Eq. (5.1)).

Consequently the objective of the above weight update is to make the action network

eventually satisfy, as closely as possible,

E (A(#,¢,7)) = argmin (@(f, a, w)) vz,
which is equivalent to the greedy-on-Q policy (Eq. (5.2)).

Many other weight updates for the action network are possible. Some important
ones are illustrated in Table 5.1. All of them try to make the action network eventually
satisfy the greedy policy as closely as possible, which as described in Sec. 4.1.1, is
necessary for Bellman’s Optimality Principle to apply. Some of these weight updates
are model based, and some are model free. The model-free ones all require that the
policy function A(Z,¢€, %) is stochastic, as detailed in Table 5.1. The two model-free
equations do not involve the learned deterministic functions f(&, %) and U(Z,), and
therefore are more accurate in stochastic environments than the model-based equations

presented in the table.
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Equation Model
Free?
DHP Standard Action-Network Weight Update (Prokhorov and Wunsch, | No
1997a, eq. 10):

a7=—8%, (5), (%), 7 (5), Genr).
Learn to copy the greedy policy (Ferrari and Stengel, 2004): No
AZ= B3, (D), (n(Z, &) — A&y, &, 2))
where 7(Z, W) denotes the greedy policy.
Stochastic real-valued (SRV) unit algorithm (Doya, 2000; Gullapalli, 1990) | Yes
AZ = —fny (%)t (U + ’Y:]Vt+1 — J~t), where actions are chosen by i; =
A(Zy, Z) + ny, where n; is a random variable with mean 0 and standard
deviation e.

A TD action-network weight update, modified from (Sutton and Barto, | Yes
1998, ch.6.6), where P,(u|Z,Z) denotes the probability density function

(parameterised by a weight vector Z) for choosing action @ from state .

> pOPu(E|Z,2) (Uit~yJes1—Tt)
AZ= =% P (@Z,7)

Table 5.1: Some Common ADPRL Action-Network Weight Updates

5.1.1 Organisation of Concurrent Critic / Action-Network Weight
Updates

The action-network weight update can be done concurrently with the critic weight
update, or by iteratively doing several critic weight updates followed by several action-
network weight updates. These schemes both come under the classification of gener-
alised policy iteration (Sec. 2.7.5).

One form of generalised policy iteration is to train the critic network to comple-
tion in between every single action-network weight update (henceforth referred to as
policy iteration with a perfectly trained critic). An opposite scheme to this is value
iteration, which means training the action network to completion in between every sin-
gle critic-network weight update. The pseudocode presented in this thesis (e.g. DHP
and VGL()\)) have had a separate learning rate for the critic network and the action
network, so represent a blending between these two opposite schemes. The pseudocode
would need modifying to implement either one of the opposite schemes exactly.

Policy iteration with a perfectly trained critic (PIPTC), or approximations to this

scheme, are popular in the RL literature, in order to take advantage of the convergence
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results described in Section 2.7.5. As already described in Section 2.7.5, two draw-
backs with these convergence results are the high computational expense of PIPTC,
and the requirement for the critic and action-network’s function approximators to be
“compatible”.

In value iteration, the innermost loop is to train the action network to completion.
Since the objective of action-network training is to make the action network emulate
a greedy policy (as proven in Section 4.1.1), in some circumstances we may as well
omit the action network altogether, and just use the greedy policy directly, via Eq.
(1.8). To use this equation, we need knowledge of the model and cost functions, so
this is a model-based approach. Furthermore, the greedy policy is only practical when
it is efficient to compute, which is possible in certain situations described in the next
section.

PIPTC and value iteration have relative pros and cons. From a model-based point
of view, value iteration seems more desirable, for two reasons. Firstly, to overcome the
slowness concerns about PIPTC. And secondly, to take advantage of the fact that value
iteration is equivalent, in some circumstances, to the efficient model-based greedy-policy
methods described in this chapter.

Using the greedy policy (and/or value iteration) can make convergence analysis
more difficult, since the critic-learning algorithm is now dealing with a changing policy
function. This is not the case with the PIPTC scheme, where the action network is
held fixed during the critic-training process. Consequently, a greedy policy can make
some critic-learning algorithms diverge, even though they were proven to converge
with a fixed action network (such as TD(1) and VGL(1); see Chapter 9 for examples).
On the other hand though, the greedy policy does behave very predictably, which
can sometimes benefit convergence analysis. Convergence analysis for a critic-learning
algorithm combined with a greedy policy is difficult, but an example is provided for
VGL(1) in Chapter 8.

This completes the summary of various action-network training methods, and the
description of the model-based benefits of using a greedy policy. The next section

describes some efficient implementations of a greedy policy.
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5.2 Closed-Form Greedy-Policy Solutions

In this section closed-form solutions to the greedy—on—@ equation (Eq. (5.2)) are de-
rived. Therefore for general stochastic environments, the greedy policies derived in
this chapter are only approximations to the true ADPRL greedy policy, defined by Eq.
(1.8). It is proven in Appendix 5.A that in one specific kind of stochastic environment,
where the effect of the noise is independent of the action chosen, the greedy—on—@ policy
becomes exactly equivalent to the true ADPRL greedy policy. Also in deterministic
environments, the greedy—on—@ policy is always equivalent to the true ADRPL greedy
policy.

There are several alternative possibilities for a closed-form greedy policy of this
kind. All of them rely on the value gradient; all of them are model-based; and all them
are only applicable when the function f(#,#) is linear in @, and when the effect of the
stochastic noise is independent of %. These preconditions allow the closed-form solutions
to be found. If the preconditions are not satisfied then the closed-form solutions would
not be valid, and numerical solution methods would have to be used instead; but these
are not described in this thesis.

The first two policies (Section 5.2.1 and Section 5.2.2) are first-order approximations
to the greedy policy, and become increasingly accurate approximations in continuous-
time system dynamics. The second of these two relies on a mathematical technique
proposed by Doya (2000) for generating sigmoidal control. The third policy, described
in Sec. 5.2.3, works well in discrete-time environments, but is only theoretically justified
when a vector critic (see Section 3.4.1) is used. This extends the method of Heydari
and Balakrishnan (2011) to be applicable to non-linear function approximators and
also to VGL(A). Finally, a quadratic-cost greedy policy which is commonly used in

deterministic control theory is described in Section 5.2.4.

5.2.1 First-Order Bang-Bang Greedy Policy

We saw in Section 4.2 that a first-order Taylor-series expansion of the greedy policy

gives Eq. (4.1), i.e.

T

L . oL oJ R,

(&g, W) ~ arggtlé%E U(&Zy, Uy, €;) + <c9f> f( &y, ty, €)
t
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When the learned model and cost functions are used, as is the case when minimising
the model-based approximate Q-function (which is the objective for this chapter, i.e.

to solve Eq. 5.2), then the expectation operator can be dropped. This gives,

N\ T
_ oJ _
(T, W) ~ arg min U(ft,ﬁt)‘i"Y( ) f(@, 1) | (5.4)
t

e oz

Although this is only an approximation to the true greedy—on—é policy, the approx-
imation becomes increasingly accurate as the sampling time of the underlying system
dynamics (A7) tends to zero. The approximation becomes exact in this continuous-
time limit (A7 — 0). So it is practical to work with this first-order approximation, and
for this reason we treat it as an equality for the basis of a closed-form greedy policy. In
Section 5.2.3 this approximation will be improved into a true equality even when AT
is finite.

If the functions U(Z, #) and f(¥, ) are both linear in # then the above minimum

can be written as:

Lo (00U afr\ (oJ
(T, W) =~ arg min (uT ((M)t + <%>t <%>t)) ) (5.5)

Due to the linearity in «, the derivatives g—é and %—g are constant in the above

expression. Similarly, (g—g.)t is constant with respect to u4;. Hence the choice of u;
which minimises the above expression will lie on the boundary of A. Furthermore, if
A = R"™ then there is no boundary to A, and the actions chosen by Eq. (5.5) will be
infinite, which is not realistic. Consequently, with this policy and the assumed linearity
in 4, we cannot have an unbounded action space. Therefore we require that either the
action space is bounded (and specifically we require that A # R™), or we require that
U(Z, ) is nonlinear in % (such that it keeps the action # finite).

First we consider imposing bounds on i via A. For simplicity we will define A such
that each component of 4 is in [—1,1], i.e. A is a unit hypercube. Then Eq. (5.5)

simplifies to

= N\ o .
(2, W) ~ sgn< D T g
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for each component u® of @, where sgn(-) € {—1,0,1} is the “sign” function from
computer languages, and g—g has been replaced by G. Here 7(Z, W) denotes the greedy-
policy function, i.e. this is a replacement for the action network A(Z, €, 2).

This has achieved the goal of forcing finite action components within A, however
this is “bang-bang” control, i.e. actions are always either fully on or fully off (ignoring
the remote possibility of the sgn function returning zero). Bang-bang control is not very
practical to work with because it can damage physical controllers. Algorithmically it is
not convenient either, because it can make convergence assurance difficult (since actions
change unpredictably and discontinuously), and furthermore it was an assumption of
the VGL algorithm definitions that the policy function would be differentiable (which
bang-bang control is not). One way to address the lack-of-differentiability problem,
and at the same time extend the VGL algorithms to be applicable to discrete-valued
action spaces, is to replace all the instances of % by zero in the VGL algorithm.
Successful applications using this modified VGL algorithm, with the above bang-bang
greedy policy, have been performed (e.g. Fairbank, 2001).

However it would be much more practical if the sgn function above could somehow
be changed into a smooth sigmoidal function g(z), e.g. ¢g(x) = tanh(z), but it is
challenging to see how to achieve this without breaking the rules of the greedy-policy
definition. Fortunately we can legitimately achieve this goal by following a method by

Doya (2000), which is described in the next section.

5.2.2 First-Order Greedy Policy with Sigmoidal Control, for Continuous-
Time Environments

Suppose we want the sgn function of the greedy—on—@ policy in Eq. (5.6) to be replaced
by a smooth sigmoid function g(z) : R — R, so that (7(%, %)) = g (— (35,) — (dajl) ét)
t t

for all components 1.

A common choice for g(z) is g(z) := tanh(z/c) which ensures that each component
of i is bound to [—1,1]. Here c is a real positive constant that defines how “sharp”
the sigmoidal shape is. As ¢ — 0, the sigmoidal shape becomes like a step shape,
i.e. g(z) — sgn(x). Common possible functions for g(z) are given in Table 5.2, with

associated useful details.
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g(x) tanh(x/c) ﬁ (Logistic Sigmoid)
o=1
€=0.1 e
6 -3 0 3 6 6 3 0 3 6
Range [—1,1] [0, 1]
g () cartanh(x) cln (ﬁ—x)
[ g7 (x)dz $In(1 — 2?) + cz artanh(z) c <ln(2 —2z)+xln <ﬁ>)
L 1 01 o L 1 607
05 05
0 0
-1 -05 0 05 1 0 0.5 1
Derivative, ¢/(z) || 1sech?(z/c) c(per;ii/:/ﬁ)?

Table 5.2: Common Choices for g(z) in the Closed-Form Greedy Policy

Following the method of Doya (2000), we can define an “action-cost function” of

dim(@) (’U,Z)
v = 3 [ o @, (5.7)
i=1
where (u',u?,...,u?™ @) are the components of #. The value k is an arbitrary real

constant, but it is neatest to set k to be the midpoint of the range of g(x).
Note that differentiating U¢(@) with respect to one of the components of @ gives

ovc(a) .y,

Then if we extend the function g(x) and its inverse g~! to be applicable to a vector
argument, such that each element of the vector is acted upon component-wise, then we

have

— g7\ (@). (5.8)

Adding the action-cost function on to the original linear-in-i cost function U (%, @),
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we obtain a new non-linear cost function Ut:
UtOt(:Z’,ﬁ) = U(a?, @)+ UC(0)AT. (5.9)

In this equation, A7 is the sampling time for the underlying system being simu-
lated /observed. AT is present here to make the U¢() term have comparable magnitude
to U(Z, i), because we assume that U (&, ) is proportional to A7. This assumption is
made because this greedy-policy method is designed for continuous-time systems and
therefore cost (or reward) is flowing into the system at a constant rate. If this assump-
tion is not true, then the A7 can be removed from the above equation, and from all of

the following equations.

Under this action-cost function, the greedy policy requires us to minimise Eq. (5.4),

i.e.

0= (0% @, i) + 4 ()G )
9 /- T
= = (U(f, @) + US@)Ar +~ (&, 7)C(Z, w)) (by Eq. (5.9))
= 8Ué;j 7 4 V(@) A 4 42T g“; ﬁ)é(f, ). (by Eq. (5.8))

p U@ED g 9F@Ed)

Solving for %, and using the fact that bot e 55— can be treated as

constants (due to their linearity in @), we obtain:

If we define
e 80(_’7,&:) o af(faﬁ)'v o -
(&, W) :== < 97 " on G(Z,w) | /AT, (5.10)
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then the greedy—on—@ policy can be written very concisely as
7(#,1) = g (@(F, ). (5.11)

This is the greedy-policy function 7 (#, @) with the sigmoid function as we required.
It is smoothly differentiable, and efficient to calculate. All it requires is linearity in @
of the functions f and U, the sampling time A7 to be sufficiently small to approximate
the continuous-time motion. Again, we use the function name 7(Z,w) to distinguish
the greedy policy from a general policy function (action network) A(Z, €, Z), and also
to emphasise that the greedy policy uses the same weight vector as the critic network.

Note that there is no @ argument in the definition of ¢(#, @) in Eq. (5.10), because

the assumed linearity in « implies that all of the terms in the right-hand side are

independent of .

5.2.2.1 Implementing VGL with a Sigmoidal Continuous-Time Closed-Form
Greedy Policy

The above subsection derived the efficient continuous-time sigmoidal closed-form greedy-

policy function 7(&,w). For this to be used in the VGL(A) algorithm, the derivative

% will be required, for example to implement the % which appears in the VGL al-

gorithm definition (via Eq. (3.5)). Also, to calculate the target value gradient G'; by

Eq. (3.7), the quantity Dg;m will need calculating. Also, although not used in the

VGL(A) algorithm, it is useful to have an exact equation for %. We calculate all of

these derivatives in this section.

The derivatives of the policy 7 (Z, @) can be found from the chain rule:

<?9;>t B (8%(§i)>t (by (5.11))

<>t (by chain rule)
(

_ (gg>t—v §£>té(ft,w)> /AT> (by Eq. (5.10))

02U PF\ =~ oG\ [of\"
(amm)f%amm)f””(%)t<auz‘>t ’
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where ¢'(z) is the first derivative of g(x), and again we define it to also accept a vector
argument by being applicable component-wise to each vector element. This expression

can be simplified if we define D, as a diagonal matrix with

Dy := diag(g'(q)), (5.12)
giving,
o U 25N (06 (oF\"
), ((29) -+ (28).5-(22) (@) or
Similarly,
or'\ _ (9g(q")
<8w>t‘< i ), (by (5.11))
N (94 .
/ —\1
=g (&) < _.> (by chain rule)
( ¢ ) 0w /,

~ (@) 55 (- (50), -7 (5%) @) sar) (o o (510)
-7 (AT ) (aw>t<§£>t

This final line used the fact that 8# and 2 84 are not functions of @ (so both of these

two terms were treated as constants in the differentiation process). Rewriting using

vector notation and the diagonal matrix Dy from Eq. (5.12) gives,
o oG\ [of\"
— | = — | D{/Ar. 14
<au7) 7(%) (aa)t /AT (5.14)

DDUiOt needs calculating too for a correct VGL(\) implementation (for

The quantity
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example it is needed by Eq. (3.7)). This derivative is found as follows:

(50,50, (3, () (5) ) o v
_ (g%') 4 (gg) << > (@M) (by Eq. (5.8))
_ @g_) N (gg) (( ) +a T> (by Bq. (5.11))
_ (ggg) + (ag)tq;m. (by Eq. (3.5))
(5.15)

Alg. 5.1 gives pseudocode for the VGL(\) algorithm, with all the necessary modifi-
cations to work with the above defined greedy-on-Q policy. Eqs. (5.10) and (5.11) are
implemented in lines 4 and 5 of the algorithm, respectively. The 2 5% term appearing in
line 14 would need implementing by Eqgs. (5.12) and (5.13).

Eq. (5.15) manifests itself as a modification to line 14 of the algorithm, which
now contains the extra ¢;A7 term, compared to the original version of the algorithm,
Alg. 3.2. This is quite a subtle modification to the algorithm, which is a consequence
of the original modification to the cost function U(#,#) to include the extra “action
cost” term, U¢(w). This modification reflects the fact that in demanding smoothly
bound actions, we have modified the ADPRL problem to optimise a different objective
function. This seems to be a necessary consequence for wanting to impose smooth
action constraints, while still following the rules of the ADPRL problem specification

(as defined in Section 1.2).

5.2.3 First-Order Greedy Policy with Sigmoidal Control, for Discrete-

Time Environments

The greedy—on—@ policy derived above, in Section 5.2.2, was designed for when A7 was
sufficiently small, so that continuous-time motion could be approximated. Only in the
limit A7 — 0 would the greedy—on—@ policy generated be “exact”. Consequently, for
any finite A7 > 0, the approximation used in the first-order Taylor-series expansion of
the greedy policy will have some amount of error in it, and so the trajectories generated

by that first-order policy will not be exactly correct.
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Algorithm 5.1 VGL(\) with a Sigmoidal Continuous-Time Greedy Policy. Batch-
Mode Implementation for Episodic Environments.
11: {Backwards pass...}

1: t+0 12: AW «— (g—g) Q; (ﬁ— ét>
. t

2: {Unroll tr;Jectorym} 13: for t =T — 1 to 0 step —1 do
3. while ft T do . ’ oU of

RN ey gy e G e (), (@)
4 G \—\az) —v\az) Gi) /AT _ .

e (), 1+ (3), 7+ 1)

5 U+ g(q) o)t \\ou ),
6:  Typ1 < [T, Uy, €) - =~ (oG ~
AT 15 AW A+ (W)tf)t (¢ - )
8: end while 16: P MG+ (1= NGy
9: T+t 17: end for
10: 7+ (2%), 18: W« W + o AW

While this approximation error can be made arbitrarily small by letting A7 become
small, doing so has the disadvantage of raising the computational expense of unrolling a
trajectory, since the number of steps in a trajectory is inversely proportional to A7. So
this is a small but noticeable problem of the greedy policy described in Section 5.2.2.
It is possible to solve this problem by moving to a fully continuous-time algorithm,
and then the equations of motion given by Egs. (1.1), (1.2) and (1.3) would turn
into continuous-time differential equations, and the VGL(A) weight update (Eq. (3.6))
would turn from a discrete-time summation into a continuous-time integral. Details of
this continuous-time version of VGL(\) are given by Fairbank (2008). Once differential
equations are used, advanced solvers (such as Runge-Kutta) could be used to avoid the
computational complexity issues, while still maintaining arbitrarily high accuracy.

However there is a more direct, discrete-time solution to this problem. In this
method we change the greedy policy’s dependency on ét+1 into a dependency on Gy.
This will let the greedy—on—é policy become exact instead of approximate.

We choose U (%, ) := U*Y(Z, i) by Eq. (5.9) and use Doya’s action-cost function
U¢(w) given by Eq. (5.7) again, and then the greedy—on—@ policy function changes from
Eq. (5.2) into:

(&, W) = arg mé% U2y, ;) + ’yJ(f(act,ut) )] .
Ut

Then to minimise this function, we differentiate with respect to @ and equate to
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0= o (0% ) + 2T (7 ). 1))

- (%), (G),(%). (by i rle)
()8, e

- (%) +oa )+7<84> G (by Ba. (58) (510

The final line of Eq. (5.16) can be solved in closed-form if we assume that the three
terms (%)t, (g—g)t and ét+1 are all constant with respect to iy, i.e. if we can assume
that they are linear in ;.

Unfortunately the term Gys1 = G(f(Z;, @), ) is not linear in @, since the function
é(a‘:’ , W) is implemented by the critic network which is generally non-linear. Therefore
Eq. (5.16) cannot be solved in closed form; a numerical solver would be required. There
are many possible solutions to this problem, of varying efficiency and accuracy, but they
nearly all have a major problem in that Eq. (5.16) can have multiple solutions. When
this happens, making an infinitesimal change to W or ¥ can make the solution in 4
change discontinuously, i.e. breaking the differentiability of the function (¥, @), and
thus making it not suitable for VGL methods.

The neatest solution to this problem is make the following two changes. Firstly,

change the ét+1 term in Eq. (5.16) to use Gy instead, and thus obtain

~ (oU L f\ ~
O_<8ﬁ>t+g (ut)+7<aﬁ>th. (5.17)

And secondly, change the VGL()\) weight update to use a target of G’ instead of the
usual G’;. This changes the VGL()) weight update from Eq. (3.6) into,

Ad = a; (gg) o, (G/t+1 - ét) : (5.18)
t

The modified Eq. (5.17) is now a linear equation, and hence it has a closed-form
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solution, which solves to give the greedy—on—@ policy as,

7(Zy, W) = g (- <‘;g>t — 5 (%)té(ft,w)> . (5.19)

This change, of replacing Eq. (5.16) by Eq. (5.17), follows the method used in the
“Single Network Adaptive Critic” by Heydari and Balakrishnan (2011). This approach
would at first appear to violate the construction of the greedy policy objective derived
in Eq. (5.16). But the accompanying change of the VGL(\) training algorithm to
Eq. (5.18) restores the greedy policy objective, in the case that the training target can
be met exactly. Since the training target cannot usually be met exactly, and anyway
would take many training iterations to be met approximately, this approach mixes
up the responsibilities of the greedy policy’s minimisation objective with the critic’s
training objective; but this is only a slight mix up, assuming Gy is fairly close in value
to ét+1, which will be true for a smooth é(f , W) function and for small Ar.

Eq. (5.19) is efficient, smooth and differentiable, making it suitable for VGL meth-
ods. Ignoring the At factor, it is identical to the continuous-time sigmoidal closed-form
greedy policy (Egs. (5.10)-(5.11)), but its usage is defined differently because it means
the training algorithm needs to make G (%, W) move towards G';41 instead of the usual
G';. Pseudocode for the VGL()) algorithm using this method and this greedy policy
is given in Alg. 5.2. This algorithm was generated by modifying all instances of G’y
in Alg. 5.1 to G’;y1. This solves the problem of the greedy—on—é policy only being an

approximation when A7 was large.

Algorithm 5.2 VGL()) with a Sigmoidal Discrete-Time Greedy Policy. Batch-
Mode Implementation for Episodic Environments.

11: {Backwards pass...}

1: t+ 0 12: A/u_f <_9
2: {Unroll trajectory...} 13: Gy < p
3: while #; ¢ T do 14: for t =T —1to Oa;tep —1 do .
-~ N , B
R e e o (@)
t t ~ ~
5: ﬁt<—g((j‘t) (%)t<(%)t+7(%>tﬁ+tﬁ)
6: 'ft-l-l <~ f('fta ﬁta é:f) . . aé -
7 tet+1 16: Aw<—Aw+<ﬁ)tQi(G/t+1—Gt>
8: end while 17: P )\G/t+1 + (1 - )\)Gt
9: T+t 18: end for
10: 5+ (22), 19: W < 0 + a AW
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Simply redefining the VGL(A) algorithm in this way (Eq. (5.18)) seems to have
been quite a radical move, and results in the VGL()\) algorithm attempting to move
the values <g—g)t towards (%—Jf/)tﬂ. This could involve some “stretching” of the critic
function’s surface, from the points at ¢ to the points at ¢ + 1, and means the learned
critic-gradient function G(Z, @) may not be the gradient of a true scalar field (for
example it may violate the zero-curl condition). Thus it might be necessary to use a

vector-critic implementation of é(iﬁ’, W), since as it was noted in Section 3.4.1, vector

critics obey fewer constraints than scalar critics.

5.2.4 Linear Model and Quadratic-Cost Functions

To complete the discussion of closed-form greedy policies, an efficient greedy-policy
function is now described which often appears in the deterministic ADP and control-
theory literature (for example, see Todorov, 2006; Wang et al., 2009), where a quadratic-

cost function of the following form is used:

1
U(Z, 1) = 5aTR(f)ﬁ + q(2),

where R(f) € RIm(@xdim(@) j5 3 matrix function of Z, and ¢(Z) € R is a scalar function
of Z.
With this cost function, the greedy policy (Eq. 1.7) can be written as:
., (o - Fpm N o
4= argmin  5a R(Z)u + q(Z) +~J (f(Z, @), ) | .
ue

Additionally, if the model function f(#,#) is linear in #, then this minimisation

simplifies down to a closed-form solution. Equating the derivative to zero gives:

S o (1, N R e N o
0= 90 <U?R($t)ut +q(Zy) +J (f (T, 1), w))
(7 2
o of\ [(oJ
— (a:t)ut + v <0ﬁ>t <%>
t+1
. o1 (OFN =
= Ut = —"}/R(I‘t) 1 <8{> Gt+1. (520)
U/

Even though this function for @; depends on a future quantity (ét+1), which would

therefore make Eq. (5.20) unsuitable for use in a policy function, the techniques pre-
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sented in Section 5.2.3 can be used to sidestep this problem. Therefore variants on Eq.
(5.20) are commonly used in the ADP theory literature.

When Eq. (5.20) is used in control theory, the terms ét+1 are often used as inde-
pendent learning parameters for 0 < ¢ < T'. This is called “open-loop” control. This
means the agent knows the value of ét.l,_l before it arrives at state Zyy1, and therefore
can easily use Eq. (5.20) to generate its action at state Z;.

Unlike the two sigmoidal closed-form greedy policies described earlier, the actions
produced by this equation are not in any way bound, therefore the sigmoidal greedy

policies of the previous two sections are preferable for most ADPRL environments.

5.3 Empirical Results for a Greedy Policy

The previous sections of this chapter derived closed-form approximate greedy-policy so-
lutions for linear-in-# learned model functions, which were efficient to calculate, bound
to a suitable range, and most importantly, always differentiable, making them ideal for
efficient and robust use in VGL. This section will show the effectiveness of the greedy
policy on the Vertical-Lander problem and the classic Cart-Pole ADPRL-benchmark
problem.

All of the experiments in this section are for deterministic environments, and hence
the greedy—on—@ function is the same as the true greedy policy; although it will still be
approximate since these experiments use the continuous-time greedy policy defined in
Sec. 5.2.2 with a finite A7 sampling time.

Initially, the performance of the sigmoidal greedy policy defined in Section 5.2.2 is

compared to a conventional actor-critic architecture, to show that the greedy policy

h Actor learning-rate

Critic learning-rate ratio.

behaves very similarly to an actor-critic architecture with a hig
Experiments then show how a learning accelerator like RPROP can be used with a
greedy policy, which is possible since there is only one neural network being optimised,
however this can lead to instability because critic-learning algorithms are not generally
true gradient descent. Then the effectiveness of the special {2; matrix described in Eq.
(3.8) is demonstrated, with respect to its ability to stabilise algorithm convergence,

in both the Vertical-Lander problem, and the Cart-Pole problem, and this solves the

previously encountered instability issues.
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5.3.1 Fixed-Duration Vertical-Lander Problem: Problem Specifica-

tion

This test problem is a modification of the Vertical-Lander problem defined in Section
2.8.1. The principal modification is that the termination condition is changed to being
when exactly 200 time steps have passed, i.e. trajectories have a fixed duration in
this version of the problem. The reason for this change is that it avoids the need for
clipping, which therefore simplifies the narrative. The original Vertical-Lander problem
terminated when the spacecraft hit the ground or ran out of fuel, which created the
need for clipping, as described in Chapter 10.

So in this modified version of the problem, in which trajectories terminate after a

certain number of time steps have passed, fuel is irrelevant, and the state vector is
T = (xh, Ty, 1) 7T,

where these three quantities refer to height, velocity and integer time step, respectively.
Another modification made in this version of the problem is the introduction of an
action-cost function, which allows the greedy-policy methods of this chapter to be
used.

The action @ := u, € [0,1] is one-dimensional and produces the upward accelera-

tions of the spacecraft. The model function f(Z,u,) is defined to be,
F(@n, 2o, )T ug) =(zn + 2o AT, 20 + (uq — kg) AT, t + 1)7.

for gravity constant k,; and time-sampling constant Ar7.
The state-transition cost function is an action-cost function [ ¢! (z)dx for a logistic-

sigmoid function, g(z). Following Table 5.2, this integral yields,

U (Z,uq) =c <ln(2 — 2uy) + ugIn < ta )> Ar (5.21)

1—u,

where ¢ = 0.01 is constant. This will force the greedy policy to only generate values in
the range of g(x), i.e. in [0, 1], and will allow the efficient greedy-policy methods from
this chapter to be used. Other than this action cost, there is no fuel-cost needed in this

experiment.
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The terminal-cost function is the same as before, i.e.
DN TP
O(Zp) = §m(xv) + m(kg)xp, (5.22)

where m is the spacecraft mass. To minimise this terminal-cost, the objective is for
the spacecraft to lose as much mechanical energy as possible in the fixed given time.
Although this is not literally simulating the spacecraft landing problem (since there is
no solid ground to land on), it is still simulating the challenging part of the descent,
i.e. to lose as much mechanical energy as possible by the time a certain end point is
reached. The optimal strategy for this task is the same as in the previous problem,
i.e. to leave the thruster switched off for as long as possible in the early stages of the
journey, and at the last possible minute produce a maximum continuous burst of thrust
to reduce the kinetic energy as much as possible.

Constants used in this version of the lander-problem were m = 0.02, k;, = 0.2,
A7 = 0.4. In all of the experiments, the trajectory start states were fixed at x; = 1600,
z, = —2 and ¢ = 0; and learning used a discount factor of v = 1.

A vector critic, G (&, @), was provided by a fully connected MLP with 3 input units,
two hidden layers of 6 units each, and 3 units in the output layer. Additional short-cut
connections were present fully connecting all pairs of layers. The weights were initially
randomised uniformly in the range [—.1,.1]. The activation functions were logistic
sigmoid functions in the hidden layers, and the identity function in the output layer.
The input to the MLP was (z,/1600, z,/40,t/200)” and the output gave G directly.

The action network was identical in design to the critic, except there was only one
output node, and this had a logistic sigmoid function as its activation function. The

output of the action network gave the spacecraft’s acceleration u, directly.

5.3.1.1 Results for Actor-Critic Versus Greedy-Policy Architectures

Experiments were performed using the greedy policy method, described in Section 5.2.2
and with pseudocode for VGL(\) in Alg. 5.1, using % defined by Eq. (5.13); and also
with a standard actor-critic architecture with pseudocode for VGL(\) in Alg. 3.2. The
results are presented in Fig. 5.1.

The actor-critic experiment used a high actor learning rate compared to the critic

learning rate (i.e. 0.01 3> 107%). This was to make the actor-critic results comparable to
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VGL(0) using Actor-Critic and Greedy Policy VGL(1) using Actor-Critic and Greedy Policy
‘ ‘ 20 ‘ ‘

Actor-Crific Actor-Critic

Greedy-Policy Greedy-Policy
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Figure 5.1: Greedy-Policy Versus Actor-Critic Performance on the Fixed-Duration
Vertical-Lander Problem. The left graph shows learning by VGL(0) and the right graph
shows learning by VGL(1). Both graphs show learning performance by an actor-critic ar-
chitecture (with learning rates a = 1075 and 3 = 0.01) compared to learning performance
by a greedy policy (with learning rate o = 107%). Each curve shows algorithm performance
averaged over 40 trials.

those of the greedy policy, since a greedy policy is approximately equivalent to having
B > «. The greedy-policy results show very similar performance to the actor-critic
results for both VGL(1) and VGL(0), which therefore constitutes a successful result for

the greedy-policy implementation.

The discrepancy in results between the actor-critic and greedy-policy curves for
the early iterations will be because the greedy-policy immediately acts like a very well-
trained action-network, but with the actor-critic architecture, the action-network starts
off with completely randomised weights.

The graphs also show that the VGL(1) algorithm produces a lower total cost J than
the VGL(0) algorithm does, and does it faster. It is thought that this is because in this
problem the major part of the total cost comes as a final impulse, so it is advantageous

to have a long look-ahead (i.e. a high A value) for fast and stable learning.

The similarity in results between actor-critic and greedy-policy shown in Fig. 5.1
indicates that in this experiment, the greedy policy can successfully replace the action
network. This can potentially raise efficiency, because with the greedy policy, the
learning rate for the critic could be raised significantly without worrying about the
action-network ever being “left behind”. In the next subsection, much higher learning

rates for the critic are used.
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5.3.1.2 Speeding up Learning with RPROP

Using a greedy policy, there are no longer two mutually interacting neural networks
whose training could be interfering with each other. With the simpler architecture of
just one neural network (the critic) to contend with, it is worth trying to speed up
learning using one of the many available neural-network fast optimisation algorithms.

One of the simplest of such algorithms is RPROP (Riedmiller and Braun, 1993).
Results for VGL(A) with a greedy policy, accelerated by RPROP, are shown in Fig.
5.2. The graphs show faster learning than attained in the previous subsection, but the
learning progress now is highly volatile. It seems the aggressive acceleration by RPROP
can cause large instability in the VGL(1) and DHP algorithms. This is because neither

of these two algorithms is true gradient descent when used with a greedy policy.

VGL(0) using RPROP and a Greedy Policy VGL(1) using RPROP and a Greedy Policy
20 \ \ \ \ \ \ 20 \ \ \ \ \
V L\M

15 4 15 R
. I, MWMJ%D(\N\/
5 RKAA\M A A i 5F ; 1

0 1 1 1 1 1 1 D 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Iterations Iterations

Figure 5.2: VGL(0) and VGL(1) performance on the Fixed-Duration Vertical-Lander,
with a Greedy Policy, using RPROP. Each graph shows the performance of a learning
algorithm for each of five different weight initialisations. Hence the ensemble of curves in
each graph gives some idea of an algorithm’s reliability and volatility.

However if the special ; matrix defined by Eq. (3.8) is used,

T ~\ -1 _

of 9%Q of
Q= (‘Tﬁ)t—l (877817)t—1 <%>t—1 for £ >0
0 for t =0,

—

where @(ZL‘, i, W) is the model-based approximate Q-function defined by Eq. (8.4), and
when A = 1, then the algorithm referred to as VGL2(1) is obtained. VGLS2(1) is true
gradient descent on the sampled trajectory cost J. , when combined with a greedy policy

of the kind defined in this chapter, as proven in Chapter 8. The performance of this
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algorithm is shown in Fig, 5.3, and this shows the minimum being reached stably and

many times quicker than in the actor-critic or non-RPROP case.

15

—~ 10

VGLQ(1) using RPROP and a Greedy Policy

-

200 400 600 800 1000 1200
Iterations

1400

Figure 5.3: VGLQ(1), with a Greedy Policy, using RPROP, on the Fixed-Duration
Vertical-Lander Problem. The graph shows the performance of VGL(1) for five different
weight initialisations. Since the ensemble of curves here are almost all on top of each other,
this shows that the algorithm is very consistent and stable. This is because VGL(1) is

true gradient descent on the sampled trajectory cost J. , when combined with a policy that
is greedy on the model-based approximate Q-function, which is the kind of greedy policy

defined in this chapter

This represents a significant breakthrough in making learning with a greedy policy

exhibit reliable and monotonic progress. The €); equation that achieves this is only

proven to work for VGL(1), and counterexamples exist for its use with DHP (as proven

in Chapter 9).

5.3.2 Cart-Pole Experiment

The VGL(A) and VGL(A) algorithms, with a greedy policy, are now applied to the well

known Cart-Pole benchmark problem described in Fig. 5.4. The equation of motion

for this system (Barto et al. (1983); Florian (2007); Lendaris and Paintz (1997)), in the

absence of friction, is:

_ gsind — cosd [%ﬁ;n@]
= 4 m cos? 6 (5.23)
: [5 - m}
F+ml [02 sin@ — écos&}
= (5.24)

Me+Mm
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where gravitational acceleration, g = 9.8ms~2; cart’s mass, m. = 1kg; pole’s mass,
m = 0.1kg; half pole length, | = 0.5m; F € [—10,10] is the force applied to the
cart, in Newtons. The motion was integrated using the Euler method with a time
constant A7 = 0.02, which, for a state vector ¥ = (z, 6, &, é)T, gives a model function

f(&,1,8) =%+ (4,0,i,0)TAr.

—---mo >

Figure 5.4: Cart-pole Benchmark Problem. A pole with a pivot at its base is balancing
on a cart. The objective is to apply a changing horizontal force F' to the cart which will
move the cart backwards and forwards so as to balance the pole vertically. State variables
are pole angle, 0, in radians, and cart position, x, plus their derivatives with respect to
time, 6 and i.

To achieve the objective of balancing the pole and keeping the cart close to the

origin, z = 0, the following cost function is defined:

U, t,u) =7 (5;1:2 +500% + ¢ (111(2 —2u) + uln <1 ﬁ u))) AT, (5.25)

to be applied at each time step, where 0 is in radians, and the term with coefficient
c is the action-cost term defined from Table 5.2 corresponding to [ ¢~ '(z)dz for a
sigmoidal-logistic function, g(x). This will ensure a greedy policy generates u € [0, 1].
To generate the control force F; from this, it is rescaled by F; := 20u; — 10, to achieve
the desired range F; € [—10, 10]. The choice of ¢ was here was ¢ = 10.

Each trajectory was defined to last exactly 300 time steps, i.e. 6 seconds of real
time, regardless of whether the pole swung below the horizontal or not, and with no
constraint on the magnitude of x. This choice of cost function and the use of fixed
duration trajectories is similar to that used by Lendaris and Paintz (1997) and Doya
(2000), but differs to the trajectory termination criterion commonly used by the RL

community (e.g. by Barto et al., 1983) which relies upon a non-differentiable step cost
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function, and hence is not appropriate for VGL based methods. This alternative, non-
differentiable, cost function can be tackled by VGL methods if clipping is used, and this
problem is addressed and solved separately in Chapter 10, but this current experiment
will use the differentiable cost function defined by Eq. (5.25).

The discount factor used was v = 0.96, in Eq. (5.25). This discount factor is placed
in the definition of U so that the sharp truncation of trajectories terminating after 6
seconds is replaced by a smooth decay. This is preferable to the way that Algorithm
5.1 implements discount factors, which effectively treats each time step as creating a
brand new cost-to-go function to minimise. Hence the value of v that was used in Alg.
5.1 was v = 1.

Training used a vector-critic MLP network, with 4 inputs, a single hidden layer of
12 units and 4 output nodes, with extra short-cut connections from the input layer
to the output layer. The activation functions used were hyperbolic tangent functions
at all nodes except for the output layer which used the identity function. Network
weights were initially randomised uniformly from the range [—0.1,0.1]. To ensure the
state vector was suitably scaled for input to the MLP, a rescaled state vector, Z’ :=
(0.16x,40 /7, &, 40)T, was used throughout the implementation. As noted by Lendaris
and Paintz (1997), choosing an appropriate state-space scaling was critical to success
with DHP on this problem.

In this experiment, a greedy policy was used, so there was no action network. Again,
learning took place by Alg. 5.1, using % defined by Eq. (5.13).

Learning took place on 10 trajectories with fixed start points randomly chosen with
lz| < 2.4, 0] < 7/15, |Z| < 5, |§] < 5, which are similar to the starting conditions
used by Barto et al. (1983). The exact derivatives of the model and cost functions
were made available to the algorithms. Four algorithms were tested and their results
are shown in Fig. 5.5. Both VGL(1) and VGL(0) showed quite volatile performance
when accelerated by RPROP. The results again show that VGL2(1) had less volatil-
ity and better performance than both VGL(1) and VGL(0), which demonstrates the
effectiveness of the {2; matrix used. For comparison, results for an actor-only architec-
ture (i.e. with no critic) trained entirely by BPTT and RPROP are given (the BPTT
algorithm is described by Werbos (1990a), and will be defined in full in Chapter 6).
This demonstrates that the minimum attained by the VGL algorithms is suitably low.

It was observed that when this minimum was reached, the pole was being balanced
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effectively with the cart remaining close to x = 0, which indicates the problem being

solved successfully.

VGL(1) : VGLQ(1) ~ BPTT
. 10° 10°
101 E 10*
- -
10% E 10%
0 500 1000 0 50 100 150 200 0 50 100 150 200
Iterations Iterations Iterations Iterations

Figure 5.5: Cart-Pole Solutions by VGL(0), VGL(1), VGL(1) and BPTT, with a Greedy
Policy. All algorithms were used in conjunction with RPROP. Each graph shows the
performance of a learning algorithm for each of ten different random weight initialisations;
hence each ensemble of curves gives some idea of an algorithm’s reliability and volatility.
The BPTT result is provided for comparison.

The results show the Cart-Pole problem being solved effectively. With the use of
the ; matrix and a greedy policy, fast learning and largely monotonic progress has
been obtained for a critic-learning algorithm (with the brief non-monotonicity down to
the aggressive acceleration of RPROP and/or discontinuities in the cost-to-go function
surface in weight space). The ADPRL critic architecture has replicated the performance

of BPTT, a proven gradient descent method.

5.4 Chapter Conclusions

Several action-network weight updates have been defined, but this chapter has argued
that when using a model-based approach in a continuous-valued state space, it is better
to omit the action network and just use a greedy policy. The equivalence of using a
greedy policy to an actor-critic architecture, under appropriate learning rate parame-
ters, was demonstrated empirically in Section 5.3.1.1. Later experiments demonstrated
speed-up methods which were applicable for a greedy policy, because then the actor-
critic architecture reduced down to just one neural network, which made acceleration
methods such as RPROP viable. This yielded a massive increase in learning speed,
under stable convergence when combined with VGLQ(1).

Several greedy-policy methods have been defined for linear-in-« models; bang-bang

control, sigmoidal control (continuous time), sigmoidal control (discrete time) and
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quadratic control. All of the methods minimised the model-based approximate Q func-
tion, according to Eq. (5.2), as opposed to the true ADPRL objective greedy policy
given by Eq. (1.8), which means the greedy policies presented in this chapter will
only be approximations in the most general stochastic case. In deterministic environ-
ments, the greedy policies derived here are exact. They can also be exact in the limited
stochastic case where the effect of the noise is additive and independent of the actions
chosen (as proven in the chapter appendix, Section 5.A).

Out of the various greedy policy approximations presented, the sigmoidal-control
methods seem to be the best for VGL algorithms, because action limits can be rigorously
enforced while maintaining differentiability of the policy (an essential requirement for
VGL methods). The greedy-policy method proposed here introduces an extra action-
cost term, which therefore changes the ADPRL problem to be solved, and which might
therefore be viewed as a contentious issue; but the choice of a low ¢ value can make this
action-cost term arbitrarily small, therefore changing the original problem definition
by an arbitrarily small amount. The benefits of using this method with respect to
efficiency and differentiability (a necessary requirement for use with VGL methods)

seem to outweigh the concerns about having to amend the problem’s cost function.

5.A Chapter Appendix: Equivalence of the Approximated
Greedy—on—@ Policy to the True ADPRL Greedy Pol-
icy under Noise that is Independent of the Action

It has been described in this chapter (particularly in Section 5.2) that when the envi-
ronment is stochastic, the greedy—on—@ policies derived are only approximations to the
true ADPRL greedy policy (Eq. (1.8)). The objective of this appendix is to show that
in some closed-form greedy-policy situations, when the effect of random noise is inde-
pendent of u, the greedy—on—@ policy becomes equivalent to the true ADPRL greedy
policy.
In general, the displacement the agent makes in one time step is given by (f (&, U, €;)—

Z¢). In a continuous-time system, when this displacement is calculated by the Euler

method with sampling time A7, the displacement in one time step could be decomposed
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into
(f(ft, ﬁt, é%) — ft) = i(ft, ﬁt)AT + Aff(ft, é}), (526)

where f is a deterministic function, and A{y (7, €;) is a pure-noise vector of dimension
dim(Z), which we are assuming here is independent of @. By defining the deterministic
function f(Z,u;) At = E (f(Z, Uy, €;) — 2¢), and taking expectations of both sides of

Eq. (5.26), we can therefore deduce that
E(A&)(F, &) = 0. (5.27)

In discrete time, the evolution of the noise part of Eq. (5.26) can be treated as a
random walk. For a random-walk, the expected distance-squared from the start point
is proportional to the number of time steps passed. Hence the variance of the position
in a random walk is proportional to ¢. Similarly, in the continuous-time limit (a Wiener
process), the noise vector (Ay)’s variance is proportional to A7. This variance will be

given by a dim(¥) x dim(Z) matrix v:
E ((A&)(ALp)T) = v(d, &) AT, (5.28)

which has also been assumed to be independent of #. Unlike with deterministic func-
tions, where Taylor-series expansions to first order were sufficient (e.g. as done in
Section 5.2.1), the fact that v in Eq. (5.28) has a magnitude proportional to A7 means
that Taylor-series expansions of the greedy-policy minimisation objective need to be
made to second-order.

We can also decompose the cost function, U(Z, i, €), into
U(Z,u,e) =U(Z,u)At + Ady (&, €), (5.29)
where
E (A&y(Z,€)) = 0. (5.30)

A second-order Taylor-series expansion of the greedy policy (Eq. (1.8)) proceeds as
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follows:

7T(fty U_;) ‘= arg glelg}E (U(ftv ﬁtv gt) + ’yj(f(fta ﬁta gt)v U_j)) (greedy pOhCY)
N T
. oL oJ oL -
~ arg min E | U(Z}, Uz, €;) + o7 (f (&4, Uy, €) — 2)

U EA
t
+ Y@ @y, &) — ) Kl (f(&e, @y, &) — &) (Taylor Series)
9 ty Uty €t t afa.’f t ty Uty Ct t)]- ylor

Substituting Eqs. (5.26) and (5.29) into this Taylor-series expansion, and omitting

t subscripts, gives:

If A7 is small enough so that we can ignore the higher-order terms (A7)? and
(AT)(A&f), then we obtain,

7(Z, W) ~argmin E [U(a}', W)AT + Aéy (%, €) +

UEA
- g [ 2T .
+ (A (#,9)) (M> <Aév<x’6>>]

. . ZANN
Nargglel‘glE[U(x,u)AT—i—’y <83?>t f@, w)AT
LIS wz, o) OJ \\ A (by Egs. (5.27), (5.30) & (5.28))
2 5 ’ 0z 0xI ’

Since the v term is independent of #, it cannot affect the min operator in the above

expression, and hence the v term can be omitted. Therefore the greedy policy simplifies
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to,

~ T
oJ
(2, 0) %argminE[U(_’,ﬂ’)AT—l—fY (_,) f(ft,ﬁt)AT]
GeA or | =

ue 8f

T
=arg Ipillg [U(f, U)AT 4+ <8J> f(Z, ﬁ)AT], (5.31)

where in this final line, the expectation symbol was dropped because all of its argument’s
terms are deterministic functions.

Substituting f(Z,@)Ar = (E(f(Z,4,€)) — &) = (f(Z,4) — ) and U(Z,0)AT =
E (U(Z,,€)) = U(Z, ), we see that the greedy policy described for Eq. (5.31) is
equivalent to the Taylor-series approximation derived for the greedy—on-@ function
(Eq. (5.4)).

The conclusion of this appendix is that when the variances of the noise terms &
and &y are independent of 4, the greedy—on—@ policy derived in Section 5.2.2 will be
equivalent to the true ADPRL greedy policy in stochastic environments (assuming A7

is sufficiently small).
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Chapter 6

Critic-free ADPRL

It is possible to do ADPRL without a critic. In this chapter two methods which do
this are described: Policy-Gradient Learning (PGL) and Backpropagation through time
(BPTT). Both of these methods perform a kind of stochastic gradient descent on the
sampled total trajectory cost, J (Z,€, %), with respect to the weight vector Z' of the
action network.

Although this thesis is primarily about critic-based algorithms, these two critic-free
algorithms are included because one of them, BPTT, becomes equivalent to VGLQ(1),
under certain conditions. This equivalence to VGL(1), and the circumstances under
which it arises, is proven in Chapter 8. The equivalence proof also provides the con-
vergence proof for VGL(1), therefore BPTT is a very important algorithm for this
thesis.

BPTT is a model-based method to calculate % for a given trajectory gener-
ated by a given differentiable policy function A(Z, €, 2), and a trajectory start point Zy.
When combined with a gradient-descent weight update, e.g. AZ = —f( <g—g>0, it can
be used to train the action network A(Z, €, Z) so as to produce optimal control. BPTT
is applicable to environments with continuous-valued state and action spaces, with dif-
ferentiable environment functions, and deterministic or stochastic, differentiable policy
functions. The algorithm is exact when the noise in the environment is non-existent

or additive, or if the conditions listed previously for VGL algorithms in Section 3.2.1
apply, but otherwise it only approximately calculates the derivative %.

PGL is a model-free stochastic method which, over a period of several weight up-

dates, accumulates a mean weight update which is gradient descent on the total tra-
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jectory cost. There are several PGL algorithms in the RL literature, but this chap-
ter will concentrate on one of the most important and representative ones, REINF-
ORCE, by Williams (1992). REINFORCE is applicable to environments with discrete
or continuous-valued state and action spaces, and stochastic policy functions.

Table 6.1 summarises the differences between the two approaches.

Equation Model

Free?
BPTT (Werbos, 1990a) No
Policy Gradient Learning (REINFORCE, Williams (1992)) Yes
E(Az) = —p2UE89)

Table 6.1: Common Policy-Gradient Action-Network Weight Updates

Note that PGL is a very different thing from VGL, even though both have the word
“gradient” in the title. Policy gradients are gradients with respect to Z, and value
gradients are gradients with respect to Z.

In this chapter, in Section 6.1 the BPTT method is described and the algorithm is
derived and its convergence properties are discussed. In Section 6.2, the REINFORCE
algorithm is described, and the mean of its weight update is proven to be equivalent
to gradient descent on the total trajectory cost. Section 6.3 demonstrates a closer
theoretical connection between PGL and BPTT than may have been known otherwise,
and the motivations for doing this are given. Finally chapter conclusions are given in

Section 6.4, summarising the key differences and pros and cons between BPTT and
PGL.

6.1 Backpropagation Through Time for Control Problems

BPTT can be used to calculate the derivatives of any differentiable scalar function
with respect to the weights of a neural network. BPTT may be misunderstood as
being limited to training recurrent neural networks to learn static time-series data, but
BPTT has much more flexible applications than this, as described by Werbos (1990a).
To apply BPTT in solving a control problem, it can be used to find the derivatives of

f(a_c'o, €, Z) with respect to Z, so as to enable gradient descent on j, via AZ = -0 (%) ,
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for some small positive learning rate 5. Fig. 6.1 summarises how BPTT can be used

to solve control problems.

BPTT for control is
Gradient descent on J(Z, €, 2)
with respect to 2
for some given action network, A(Z, €, 2).

Figure 6.1: Application of BPTT for Control Problems.

Gradient descent of this kind will naturally find local minima of J (Zo, €0, 2), and
has good convergence properties when the surface J (2o, €, Z) is smooth with respect
to Z. If the minimisation is extended to minimise J| (Zo, €0, 2) from many different
start points g € S, then BPTT can be used to find a general trained action-network
A(Z, €, Z) which solves the ADPRL problem very effectively, subject to the limitations
described in Section 6.1.2. The whole BPTT training process works without the use of

a critic at all.

6.1.1 BPTT for Control, Algorithm Derivation

To calculate the BPTT gradient-descent equation, we first rewrite the sampled trajec-

tory cost (Eq. (1.4)) recursively as

J(3,8,7) =
(&, 2) O(7, ;) if &, € T.

- B} {U(ft,A@,ez,z*),a) + T (f (&, @, €), 841, 7) i Ty ¢ T 61)

Using trajectory-shorthand notation (Section 2.1.2) and the vector-function differ-
entiation notation defined in Section 3.3, we calculate the gradient of Eq. (6.1) with
respect to Z by differentiation using the chain rule and substitution of Egs. (1.1) and

(1.3):

Q:‘Qa
SN

() {8000 (6,09, -, w2

0% 0 it 7, € T

Since it is often not practical to have access to the true derivatives %—g and %, for

example since the noise vector € is often not observable, or for other reasons highlighted

131



6. CRITIC-FREE ADPRL

in Section 3.2.1, it is more convenient to replace the above equation by,

(2) [ (0.0, mer
o
t

0 it 7y €T.

where f(#,%) and U(Z, ) are the deterministic, learned model and cost functions.

Since usually g—g 2 g—é and % o g—U (by Eq. (3.1)), the above equation uses an

U
approximation instead of an equality. Hence in this case the BPTT pseudocode derived
below will only approximately find the learning gradient %‘ZZ. However if it is the
case that € is perfectly observable and the true functions f(Z,,€) and U(Z,u,€) are
perfectly known, or one of the other three situations highlighted in Section 3.2.1 applies,
then the true environment functions could be used in the above equation instead of
the learned ones. In this case, Eq. (6.2) would become exact, and hence the BPTT

pseudocode derived below would be exact.

Expanding this recursion and substituting it into the gradient-descent equation

AZ=—-p <%§>0 gives,

DA oU of\ (oJ
AZ=-8> "+ (az) ((a&) +7(8£> <%> ) (6.3)
>0 t t t 11

This weight update is BPTT with gradient descent to minimise J| (Zo, €0, 2) with
respect to the weight vector z of an action network A(Z, €, 2). It refers to the quantity
% which can be found recursively by differentiating Eq. (6.1) and using the chain rule,

giving

(aj> - (%)t‘F’y(%)t (%;>t+1 itz ¢ T
t

85 (%)t it ¥y €T,
~ E;[))g))t +7 (%>t (%)t—i—l i Z i i (by Eq. (3.1)) 6.0
oz ‘ ,

where the notation l% is defined by Eq. (3.5), and again the learned model and cost

functions have used instead of the true ones.

<)

o)

Equation (6.4) can be understood to be propagating the quantity < ) , back-
t+

g
1l
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6.1 Backpropagation Through Time for Control Problems

wards through the action network, model and cost functions to obtain (g—i:)t, and
giving the BPTT algorithm its name. Pseudocode for the full BPTT algorithm is given
in Alg. 6.1. In the pseudocode, the variable name p; holds the quantity (d‘] ) . The
pseudocode involves the derivatives of the action network, i.e. %fl. and 8‘4, Whlcil both
would involve neural-network backpropagation, assuming A(Z, €, Z) was implemented
by a neural network. This neural-network backpropagation should be considered as a
sub-module necessary to implement Alg. 6.1, and should not be confused with BPTT

itself.

Algorithm 6.1 Backpropagation Through Time for Control.

1: Unroll full trajectory from start state Zp using Alg. 1.1, and retain the variables
mt, u; and T.

o]
: 62<—0

2
5 (),
4: fort—T—lto()step —1do
5 9L 9Ty (( ) 'Y(a£>tpt+1)

_ N 7 oF\ L
N ((%’i) + <a%) fon) + (), (), +7 () 7o)
7: end for
8 77— pIL

Algorithm 6.1 does a forwards pass along the trajectory (via Alg. 1.1) followed
by a backwards pass. This means it is only applicable to episodic trajectories, and is
not an on-line weight update. However using methods similar to the way the on-line
VGL() algorithm was calculated, it is possible to generate an on-line version of BPTT.
This has been done by Williams and Zipser (1989) and is called “Real Time Recurrent
Learning” (RTRL).

6.1.2 Convergence Properties of BPTT Algorithm

—

BPTT is gradient descent on the function J (Z,€, Z) with respect to Z. If the surface
of Ji (Z,€, %) is bounded below and smooth in 2z space, and if the learning rate £ is
sufficiently small, then convergence will be assured towards a local minimum of the
surface.

In certain stochastic environments, the BPTT gradient calculation is only approx-

imate, as detailed in Section 6.1.1. In these cases, it may be that the BPTT learning
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process is not true gradient descent, and this creates a small possibility of the conver-
gence guarantee failing.

A separate relevant detail for BPTT in stochastic environments is that the mean of
the BPTT gradient-descent equation will be E (A2) = —gE (%), and therefore
if convergence to a local minimum is attained, then that minimum will satisfy,

87(z,8,2)\ _ -
E <35> =0. (6.5)

The local minimum described by Eq. (6.5) is subtly different from the minimum

sought by the ADPRL objective which was to minimise E (J(a?’, €, 2’)) with respect to

Z, therefore resulting in,

OE (f(*, g 5))
o7

= 0. (6.6)

The fact that Eq. (6.5) # Eq. (6.6) implies that the minimum attained by BPTT
will not in general be exactly the same as the minimum sought by ADPRL, when the
environment is stochastic. Therefore BPTT is seeking a minimum that is only an ap-
proximation of the ADPRL objective. However the following theorem gives a significant

stochastic situation under which these two kinds of minima do become exactly equal.
Theorem 6.1. If j(:fo, €0, 2) is a smooth function with respect to both Z and &y, and if
the probability distribution of the noise vector €y is twice-differentiable and independent
of Z then,

8.J (%o, &, 7) IE (J (Zo, €, Z))
E — = — .
0% 0%

Proof. For a trajectory starting at state Zp, the noise vector for the whole trajectory was
defined in Section 1.2 to be €y. This noise vector has a sample space E and probability
distribution Pe (€p). Therefore any function f of the random variable €y will have an

expectation defined by,

E (f(0)) = /E P. (&) f(8)dé. (6.7)
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Therefore,

OF (f(fo, &, z))
o7

< /E P. (8) J(Zo, 8, Z)dé) (by Eq. (6.7))

0 &) (70,8, 7)) dé 0
7% (Pe (€) J(Zo, €, Z)) de (exchange order of /7 5')
- E Pe (€) %’ (A(f(” €, 5)) de (constant extracted)

—E (az (j@o, &, 5))) (by Eq. (6.7))

The above line that exchanges the order of the integral and differential is valid

~

according the Leibniz Integral Rule, only if the integrand (Pe (€) J(Z, €, Z)), and its
derivative with respect to Z, are continuous with respect to both € and z. Also for the
Leibniz Integral Rule to be valid, we require that the sample space E is not dependent
on z. All of these are preconditions of the theorem.

O

This theorem proves that under certain conditions, the BPTT stochastic local min-
imum attained will be the correct minimum sought by the ADPRL optimization prob-
lem. The theorem makes the requirement for J (Z,€,7) to be a smooth function of
Z, however this was already a necessary condition for assured convergence by gradient
descent, as already mentioned above. The theorem’s additional requirements for J to
be a smooth function of €, and for the probability distribution P (€) to be smooth,
are new necessary conditions placed on BPTT for true optimality. The requirement
for the probability distribution P (€) to be independent of Z'is easily satisfied without
placing any unnecessary constraints on the ADPRL problem definition, as described in
Section 1.2.1.

~

It should be noted that the function J(Z,€, %) is often not a smooth function of
Z, even if the environment functions f(#,w,¢€), U(Z,u,€) and ®(Z,€) are smooth. For
example, in the Vertical-Lander problem defined earlier, the line through state space
given by xp, = x, = 0 is a critical boundary between the spacecraft landing with a
perfect zero velocity, and between the spacecraft missing the landing altogether and
taking off again into a second ascent. As this critical boundary is crossed, the journey
duration changes discontinuously, and therefore there is a large cliff in the surface of

—

J (Z,€, %) in Z-space along this critical boundary.
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Certain other discontinuities in the J surface exist due to the discrete sampling of
the time step variable t. These discontinuities are described and solved in Chapter 10

using “clipping”.

6.2 The REINFORCE Algorithm

REINFORCE is a policy-gradient learning (PGL) algorithm by Williams (1992). It
does gradient descent on the total trajectory cost with respect to the weight vector of
the action network. It was initially defined for a reinforcement problem for episodic
trajectories with length of just one time step, and with no terminal trajectory cost
®(Z, €). In this case the total trajectory cost is equal to just j(:i’o, €o, 2) = U(%y, o, €p)-
It is possible to extend REINFORCE to multi-step trajectories (see Williams, 1992, for
details), but for simplicity, that is not considered in this thesis.

The algorithm is only defined for stochastic policies. It requires that the action wjy
is a random variable, sampled from a probability distribution P, (y|Zo, Z) for a given

weight vector 2z and state input Zy. Using this notation, the REINFORCE weight
update is defined as:

AZ= 5 ) (U (30, &, o) — b) (6.8)

where 5 > 0 is small constant, and b € R is an arbitrary constant “baseline” parameter.

For this weight update, Williams (1992) proves that it obeys

OE (U(Zo, €o, tp))
07

E(AZ) = —f (6.9)

which means that the average of this weight update equals gradient descent on the
average trajectory cost, with respect to Z. The expectation operator in the right-hand
side of this equation is operating on the random variables iy and €y. Williams’ proof
is summarised below, in Section 6.2.1.

The baseline parameter, b, does not appear in the above mean weight update (Eq.
(6.9)), and so choosing this parameter in Eq. (6.8) is a free choice. However choosing
an optimal value of b can make the variance of the stochastic weight update smaller,
and with a small variance the expectation in Eq. (6.9) will form faster (through its

accumulation through stochastic sampling). Hence the choice of b can affect learning
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6.2 The REINFORCE Algorithm

speed. In PGL methods, minimising the variance of the stochastic weight update is a
major research issue and goal, as described by Peters and Schaal (2006).

Since the weight update for REINFORCE satisfies Eq. (6.9), the minimum attained
by REINFORCE will naturally solve the ADPRL objective given by Eq. (6.6). The
expectation operator in the right-hand side of Eq. (6.9) has a smoothing effect so that,
when combined with the stochastic policy described by the distribution P, (uy|Zo, 2),
the surface of E <j) is smoother than the surface of J in Z-space. This creates a
benefit to REINFORCE in that it can cope with non-smooth surfaces of J in Z-space,

compared to BPTT which cannot easily cope with discontinuities in this surface.

6.2.1 Outline of Williams’ proof

This section gives a outline of the key sequence of ideas from Williams’ proof of how
the weight update given by Eq. (6.8) produces a mean given by Eq. (6.9). In this
section we will consider the environment to be deterministic. This choice is made to
simplify the equations, because then the only random variable is iy. Hence the cost
function U (Zy, tWp) will omit the noise argument, €.

Since the random variable iy is sampled from the probability distribution P, (ty|Zo, Z),

any function f of this random variable uy will have an expectation defined by:
B (@) = [ Pulio, f(@)di. (6.10)
A

Williams’ proof, when modified to apply to a continuous-valued action space A and

deterministic U(Zp, tp) function, is as follows:

B(89) = - (22PN gy, ) - ) (by Eq. (6.8)
= —BE <P (ﬁol\fo E 8Pu(1?;,fo’ ?) (U(Zo, to) — b)) (by chain rule)
= —ﬁAW(U(%,J) —b)dil (by Eq. (6.10))
= _ﬁ(‘fé’/A P, (t|Zy, 2)(U(Zo,w) — b)du (commutative)

OE (U(Z, tp) — b)
0z

=-p (by Eq. (6.10))
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(Since b is constant)

(6.11)

This proof has made the extension to continuous-valued action spaces A compared
to the original proof by Williams, and is a streamlined version of the original proof.'® In
the above sequence of algebra, the step labelled “commutative” is under the assumption
that the integrand P, (tp|Zo, 2)(U (%o, Wy) —b), and its derivatives with respect to Z, are
continuous with respect to both #y and Z, because integration and differentiation can
only ever be assured to commute under these circumstances (as noted in the proof of
Theorem 6.1). Williams’ version of this proof did not need this assumption because his

proof applied to discrete-valued action spaces A.

6.3 Proof of Equivalence under Certain Circumstances of
BPTT to PGL

Both BPTT and PGL work by gradient descent on the total trajectory cost with respect
to Z, the weight vector of the action network. However it is curious that the BPTT

weight update relies upon the terms 8’4(55’2) and 8U(g§7’€), but the PGL weight update

does not explicitly use them anywhere. It turns out that these two derivative terms are
key in proving equivalence between BPTT and VGL()), in Chapter 8, and hence we
now analyse whether the PGL weight update can ever produce these two terms. Apart
from mere curiosity, this analysis is potentially useful to try to create a theoretical
bridge between these two different policy-gradient methods, which may be useful one
day for transferring convergence proofs or model-free behaviour, or creating hybrid
algorithms, between different research areas of ADPRL.

For simplicity, this section will only consider a one-dimensional action vector, i.e.
iy = up € R, and A = (—00, 0), and also only consider the case where the cost function

U(#,w) is deterministic (and hence omits the € argument).

OFor correspondence between the two proofs, this proof is equivalent to (Williams, 1992, Lemma
1). The line commented “(commutative)” corresponds to Williams’ Fact 1, but this thesis’ version
is modified to a continuous-valued action space. The final line (“since b is constant”) corresponds to
Williams’ application of (Williams, 1992, “Fact 2”). Williams’ proof goes one step further and also
extends the expectation operator to apply to a random start state o too, which would also be a
straight-forward extension of this proof. Note that Williams’ notation uses g(-) in place of P,(-).
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6.3 Proof of Equivalence under Certain Circumstances of BPTT to PGL

First note that when the trajectory length is one time-step, the BPTT weight update

simplifies into,

07
8(](507 A(f(b éba Z))
—p 27
z

(2,62,

In this section, we want to show how the very different looking REINFORCE weight
update (Eq. (6.8)) can be made to look like Eq. (6.12).

To find this connection, a key difference that needs to be overcome is that the
BPTT policy function A(Z, €, Z) specifies the actual action value iy to be taken, by Eq.
(1.3), but the REINFORCE method explicitly specifies a full probability distribution
P, (up|Zo, Z) to choose its action. To bridge this difference between the two methods, we
can assume that the probability distribution P, (ug|Zo, Z) is some additive noise on top

=

of some deterministic single-valued function, A(Z, Z). In effect we are assuming the full
distribution P, (uo|Zo, Z) is parameterised by a single number A(Z, Z). This assumption
is not too restrictive and is not too dissimilar to probability distributions considered
by (Williams, 1992, sec. 7.2) which are parameterised by just one or two numbers (e.g.
a mean and a standard deviation).

To make this requirement on the probability distribution P, (ug|Zo, Z) more precise,

and also for the following equivalence proof to work, we need to assume that P, (ug|Zo, 2)

depends only on the relative values of ug and A(Zy, Z), i.e. it can be written
Py(uo|o, 2) = p(uo — A(Zo, 7)), (6.13)

for some real-valued probability distribution p(z). This assumption means we are as-
suming the whole probability distribution is clustered around the single value A(Zy, 2),
and if this single value shifts left or right, then so will the whole distribution curve.

Also, we assume that this probability distribution p(z) becomes zero as x becomes
infinitely large or small, i.e. we assume

lim p(z)=0; (6.14)

r—+o0
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and we also assume that the function U(Zy,u) is bounded, i.e.
|U(Zo,u)| <k, YueA (6.15)

for some fixed k > 0 € R.

We also need to make use of the following lemma:

Lemma 6.1. For any real-valued differentiable function f : R — R, we have

of(x —y) 0f(z —y)

Oz oy

Proof.

Of(x —y) Of(x—y)d(z —y)

(by chain rule)

ox Oz —y) ox
_ 9f(z—vy)
Oz —y)
= 8f(2y v) a(ﬁ ) (by chain rule)
__9fx—y)
oy

O]

We can now make the equivalence proof of the REINFORCE weight update to the
BPTT weight update, as follows: Starting from the third line of the proof leading to
Eq. (6.11) above, we have:

E(AZ) = —B/ OFu( “"”0’ (U(Fo, u) — b)du

_ _5/ Op(u f“’o’ D) (0 (50, u) — b)du (by Eq. (6.13))
_ / DA( xo, 8p(g;(f0(f?)7 7)) (U(&o, u) — b)du (chain rule)

BaA(l’O’ ) / ) 817(;;(;0(3’ ?) (U(Zo,u) —b)du  (constant extracted)
=0 aA(gg’ : /o; = _ai(fo’ (w30, u) - by (by Lemma 6.1)

_ /30A<8>< [p(u — Ao, 2))(U (&0, u) — H'=>,,
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— /O" p(u — A(Zp, 2)) 8(U(f(guu) —b) du> (integration by parts)
_ _gaf“(iﬂ’g) / ~ pu— A(EO,Z))a(U(fguu) “Y g (by Bas. (6.14)&(6.15))
- —BW / h Pu(ufo,Z)a(U(foa’u“) = (by Eq. (6.13))
— ﬁm(gy /_OO P, (u|Zo, ) 8U(§f’ w) du (since b is constant)
= —ﬁaAg;f’ g <8U§z’) u0)> : (by Eq. (6.10))

0A(Zp,2) OU (Zo,up)
o7 and

oue can be

This completes the demonstration of how the terms
found to appear from the REINFORCE weight update, under the assumptions given
by Egs. (6.13) to (6.15), and this demonstration strengthens the theoretical connection
between REINFORCE and BPTT. It is the integration-by-parts step in the above proof
that transfers the differential operator over from the probability distribution P, (u|Z, 2)
onto the cost function U(Z,u,¢€); and the % term arises from use of the chain
rule and the assumption that probability distribution P, (u|Zg, Z) can be parameterised

about the value A(Z, 2).

6.4 Chapter Conclusions

BPTT and REINFORCE are two methods which work by stochastic gradient descent
on the function J(Z, €, Z) with respect to Z. These two algorithms have been derived
and stated in this chapter, and a theoretical connection between them has been given
in Section 6.3.

Although these two methods go about achieving the same gradient-descent goal, the
two methods differ subtly, and their algorithmic implementations look very different.

To summarise the key differences between the two methods, we have:
e BPTT is a model-based method but REINFORCE is a model-free method.

e BPTT does automatic local value exploration; REINFORCE needs explicit stochas-
tic value exploration. This is analogous to the difference in the value-exploration

needs between VGL(A) and TD(\) as explained in Section 3.1.
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e BPTT can work with either a stochastic or a deterministic policy function, but

REINFORCE is designed explicitly to work with a stochastic policy function only.

e The gradient calculation performed by BPTT will only be approximate, unless
one of the conditions highlighted at the end of Section 3.2.1 (e.g. additive noise
in the environment functions) applies. The REINFORCE gradient calculation
works with general noise distributions in the environment functions without any

approximation.

e BPTT gets an effective learning gradient in just one trajectory sample, but RE-
INFORCE must take multiple trajectory samples in order to accumulate the
mean gradient-descent weight update. Reducing the variance in the REINF-
ORCE weight update (and in related PGL algorithms) is a major research topic,
but it is not a concern for BPTT based algorithms.

e In a stochastic environment, after several trajectory samples from the same fixed

start point #, BPTT would accumulate the mean E (%ij)’ but the REINFORCE

weight update would accumulate the mean ai(fj). Although these look similar,

they are subtly different, because in general the mean of a derivative is different
from the derivative of a mean. This can result in BPTT attaining a different
minimum of J(Z, €, %) than is intended by the ADPRL optimization objective,
although the problem disappears under certain smoothness conditions, as detailed

in Section 6.1.2.

~

e BPTT requires smoothness of the function J(Z, €, Z) with respect to Z, but RE-
INFORCE does not.

The final point above gives an advantage for REINFORCE in that it does not need
to consider “clipping”, which is a technical issue that needs addressing for BPTT and
related methods (such as VGL()\)) to be implemented correctly. Clipping is described
fully in Chapter 10.
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Chapter 7

Trajectory Local Optimality

It has been described in earlier chapters that learning the value-gradients along a tra-
jectory can bend the trajectory into a locally extremal, and often locally optimal,
shape. This fact was described in Fig. 3.6, which is repeated here in Fig. 7.1. This
trajectory-optimality theorem is proven in this chapter. The theorem is only proven
for deterministic environments, and is only applicable for differentiable environment

functions and for continuous-valued state and action spaces.

Key:

Blue line: Actual trajectory

Green line: Theoretical optimal trajectory
Magenta lines: Target gradients (G')
Cyan lines: Actual gradients (é)

Figure 7.1: Trajectory Optimality Occurs when the Value-Gradients are Learned, under
a Greedy Policy. This picture, repeated from Fig. 3.6, shows the key fact motivating VGL
methods compared to VL methods: Merely learning the target value-gradients, under a
greedy policy, will necessarily bend the trajectory into a locally extremal or locally optimal
shape. Hence this picture concisely illustrates the trajectory-optimality principle of VGL,
which is proven for deterministic environments in this chapter.

This optimality result explains why learning the value-gradients will automatically

bend trajectories into locally optimal shapes, and thus explain the automatic local
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value-exploration exhibited by VGL methods. With VL methods, an optimality condi-
tion equivalent to this does not exist, but counterexamples do (e.g. Fig. 3.1).

Note that, as with the optimality target condition for TD()), i.e. J, = E(J)
for all & € S, it will not in general be possible to attain the VGL objective CNJt =
E (G';) for all t exactly, due to the limitations of function approximation. But under
the assumption of using a universal function approximator, it would thoeretically be
possible to get arbitrarily close to this objective. Also, assuming that the greedy policy
changes smoothly when the value-gradient changes (which is a reasonable assumption
made and justified in Lemma 8.4 of Chapter 8), and assuming that the total trajectory
cost J(Zp, Z) is a smooth function of the actions chosen (which is a necessary assumption
for assured convergence of BPTT, as discussed in Section 6.1.2), it follows that getting
arbitrarily close to the VGL objective will result in getting arbitrarily close to the
trajectory local-extremality /optimality result proven in this chapter.

Also note that this chapter does not describe how to ensure progress is made towards
the VGL objective ét = E (G'4); this is dealt with in the convergence proof chapter
(Chapter 8) only for the algorithm variant VGL§2(1). For other values of A\, empirical
results are available in Chapters 3 and 5 which show learning progress can be made,
however Chapter 9 gives a specific divergence example showing learning progress can
also fail.

The proof in this chapter will make some simplifying assumptions:

1. Only deterministic environments are considered. It would possibly require signif-

icant further work to extend the result to stochastic environments.

2. Tt is assumed environment functions are perfectly learned (consistent with Eq.

(1.10)).

3. It is assumed that the action space, A, is such that it ensures each component i of
the action vector @ is either unbound (i.e. (@)’ € R) or is bound to (@) € [-1,1].
It would be fairly straightforward to extend the analysis to include A being any

arbitrary cuboid or spheroid; but for clarity, this has been omitted.

By the first assumption (determinism), three simplifications to the ADPRL formu-

lation can be made:
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1. We can omit the € argument from the environment functions and policy function,

and hence just use f(Z, @), U(Z,@), (&) and A(Z, 2) instead.

2. We can omit the expectation operator from the expression, E (G’¢), since the
environment is not stochastic. Hence the VGL training objective simplifies down

to getting as close as possible to ét = G’ for all t along a greedy trajectory.

3. Similarly, since the environment is deterministic, and since we are also assuming
the environment functions are perfectly learned (i.e. we assume Eq. (1.10) holds),

we have,

I, ) (7.1)

In rest of this chapter, in Section 7.1, “greedy actions” and “saturated actions” are
defined. Saturated actions are actions which lie on the boundary of A, and the possi-
bility of their existence makes a significant complication to the proof in this chapter.
In Section 7.2, a more basic version of the cost-to-go function is defined, and this is
used to define exactly what is meant by an “optimal trajectory”. In Section 7.3 the
main optimality result of this chapter is proven. Several lemmas lead up to this result,
and the main result itself comes in Theorem 7.1. The close connection of this theorem
to Pontryagin’s Minimum Principle (PMP) is described in Section 7.3.3. The theo-
rem proven in this chapter gives an extra corollary which makes the optimality result
stronger than that provided by PMP alone. Finally, chapter conclusions are given in

Section 7.4.

7.1 Greedy and Saturated Actions

A greedy policy chooses actions dependent on J(Z,w) as defined by Eq. (1.7), which

ensures for any ¥ € S:

TRES argrpig UZ,0)+~J(f(Z,a),d)| . (7.2)
ue
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where A is the space of all possible action vectors #, and where the assumption of a
deterministic environment has been used (so that the expectation operator and noise
argument, €, have been omitted here, compared to Eq. (1.7)).

The model-based approximate @ function definition was defined in Eq. (3.9) as,
0,7, @) = 0(F, @) + I (F(@ 0, @). (7.3)

By using Eq. (7.1) to interchange the learned environment functions with the actual

environment functions, the greedy policy (Eq. (7.2)) can be rewritten as,

U = arg rpi}rg(@(f,ﬁ,vﬂ)), for any ¥ € S. (7.4)

ue
The é function used here is defined to be smooth, because all of its constituent
functions are smooth. For example, the functions f(#, ) and U(Z,#) were defined in
Section 3.2 to be smooth, as a prerequisite to using VGL methods. Also, the function

J(Z,4) is defined to be the output of a critic-network, i.e. a smooth function ap-

proximator. Therefore the function @(f , U, w) is differentiable, and its derivative with

0Q oU f\ ~
— | == — | Gy41. 7.5
(aa) <8ﬁ>t+7<8ﬁ>t ol (75)
t
This derivative was found by differentiating Eq. (7.3) using the chain rule, and substi-

tuting (%)tﬂ = Gy41, by Eq. (3.3).

The action space A can be used to impose bounds on some actions or action com-

respect to w is,

ponents. For example in some problems, some action components #* may be bound to
@* € [~1,1], or any other given range (but for simplification, only the range [—1, 1] will
be considered in this chapter).!!

A greedy action is any action 4 that satisfies Eq. (7.4). Therefore all actions chosen
by a greedy policy will be greedy actions, and any action chosen by an action network
which happens to satisfy Eq. (7.4) will also be classified as a greedy action.

A greedy trajectory is a trajectory in which all of the actions that parameterise it

are greedy actions. The optimality condition in this chapter is only relevant to greedy

trajectories.

" Throughout this chapter upper indices indicate vector component.
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7.1 Greedy and Saturated Actions

In preparation for the optimality proof of Section 7.3, the effects of bound actions
need to be fully accounted for, i.e. if the constraints %’ € [—1,1] are present for some
action components. Bound actions lead to what will be called saturated actions, which

are described in the following subsection.

7.1.1 Saturated Actions

When the constraints @’ € [—1,1] are present for some action component @', the action
0Q

ou’

met, or the constraints are not present, then the action component " is not saturated.

component is saturated if ’11”" =1 and # 0. If either of these two conditions is not
For example if an action component represents the steering wheel of a car, then that
action component is saturated when the steering wheel is rotated to its full limit in
either direction, with pressure being applied against that limit.

Some useful lemmas about saturated greedy actions are derived in this section.
These are closely related to the Karush-Kuhn-Tucker (KKT) conditions of constrained-
optimization theory. However in some cases the lemmas here derive strict inequalities,
whereas the KKT conditions would yield non-strict inequalities. These lemmas now

follow:

Lemma 7.1. For a greedy action i, if a component @' is saturated with @' = 1 then

gg < 0; and if a component @ is saturated with @' = —1 then ggz > 0.

Proof. The first of these two conditional statements has to be true since for a saturated
action 2% # 0 by definition, and if 99 - 0 at @ = 1 then the minimum of @ would not

ou’ oul

be at @' = 1, which contradicts the greedy-action condition. The second conditional

statement is true for the same reason with the situation reversed. O

Lemma 7.2. For a greedy action @, if action component @' is saturated, then, whenever

it exists, % =0.

Proof. Supposing, @' = 1, then 09 _ k, for some finite k < 0, by Lemma 7.1. Therefore

ou’
o

after any infinitesimal change to & of the smooth function @(a?’, u, ), it will still be

true that gg < 0at @' = 1, so we still have a minimum of @ at @' = 1. Therefore, for
a greedy policy, which is designed to choose a minimum of @, we must have %—‘g = 6,
when it exists.

The proof so far has only dealt with the situation where the greedy action under
consideration was generated by a greedy policy. However the greedy action may also

have come from an action network, so this possibility also needs dealing with.
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7. TRAJECTORY LOCAL OPTIMALITY

If we are using an action network instead of the greedy policy, then the func-
tion AY(Z,) is the output of a smooth neural network. Since the action component
is saturated, the bounds (@)’ € [~1,1] must be present, and therefore the function
A(Z, Z) must have been designed with an output range A*(%,w) € [—1,1]. Then, since
AY(Z,) = 1, this is the highest value that A*(Z, ) can attain, and therefore we are at
a maximum. Also, the action-network A(¥,?Z) was designed to be smooth. Therefore
%—‘g = 0, which is a property of all differentiable local maxima, from basic calculus.

This completes the proof for the case of @ = 1. A similar argument can be made
for the case of i’ = —1. O
29 _ .

ou’

Lemma 7.3. For a greedy action @, if @' is unsaturated, then

Proof. This is true because the greedy-action condition means 4" is at a local minimum

of the é function with respect to . O

Lemma 7.4. For any greedy action i, regardless of whether any components are sat-

0A : 0A Q) _ 7
urated or not, whenever 3 exists, we have (%) (%> =0.

Proof. The inner product is defined by (%) (%) = iaaéi gg{-. For each term of
this sum, the greedy-action condition implies either %—’g =0 (in the case that action
component ' is saturated and %%i exists, by Lemma 7.2), or % = 0 (in the case that

@' is not saturated, by Lemma 7.3). Hence each term of the sum is zero, hence the sum

is zero. O

7.2 Definitions Relating to Locally-Optimality Trajecto-

ries
In this section, locally optimal trajectories and their related functions are defined.

7.2.1 Total Trajectory-Cost Function, J

First the total cost for a given trajectory is defined, in a way that is irrespective of the
policy that was used to find it. For any trajectory starting at state Zp and following
actions (o, U1, . . .) under the given model, the total trajectory-cost encountered is given

by the function:
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7.2 Definitions Relating to Locally-Optimality Trajectories

where we require v < 1, or the problem to be episodic, for this sum to converge; and
where T is the time step at which the first terminal state is reached (which in general
will be dependent on Zy, @y, @1, ...). If the trajectory never reached a terminal state
then the ®(Z7) term would be omitted from the above definition, and T replaced by
0.

The above definition of .J is very similar looking to the definition of J (7,€,7) in
Eq. (1.4), but the key difference (apart from the fact that in this chapter we are
assuming determinism, but the .J| (%, €, 7) function is for stochastic trajectories) is that
J depends upon a full list of actions (o, i1, .. .), whereas j(f, €, Z) depends upon the
action network’s weight vector Z. The reason for making the separate definition of .J is
that whether a trajectory is optimal or not is irrespective of the action network used
to find it, but is dependent on which actions parameterise that trajectory; hence J is
a useful function for defining optimality, and making the trajectory-optimality proof of
this chapter.

The above definition of J can be defined recursively as

T ) - {U<ft7ﬁt) + Vj(f(a_ftv ﬁt)7ﬁt+17ﬁt+27 .- ) if 7 ¢ T (7 7)

J(Ty, Uy, U,
(t7 ty Wt41, @(l‘t) lfftET,

which is valid for both episodic and continuing (non-episodic) trajectories. Thus .J is

a function of an arbitrary state & and all of the actions from that time step onwards.

7.2.2 Trajectory-Shorthand Notation for J

The trajectory-shorthand notation defined in Section 2.1.2 is extended to include the
function J. For this extended trajectory-shorthand notation, for any given trajectory,
we define J; := J(&, iy, W11, - . .). This enables the partial derivatives to be defined as

I\ ._ 9J I\ ._ 9L
(8:7:)t = gz, and (aa)t = i,

7.2.3 Locally Optimal Trajectories

A trajectory parameterised by values (Zo, i, U1, Uz, ...) is defined to be locally op-
timal if J(%o, @, 1, d2,...) is at a local minimum with respect to the parameters
(i@, 11, Uz, - - .), subject to the constraints (if present) that (i;)* € [—1,1] for each

action component .
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7.2.4 Locally Extremal Trajectories

Now locally extremal trajectories (LETSs) are defined. Extremal means it could be at a
local maximum of .J, or a local minimum of .J, or a point of inflection or saddle point
of J. All of these three possibilities are stationary points, which means we can use
calculus to identify a LET. However the possibility of bound actions means that it is

not necessarily true that (%g) = 0 for all ¢; if an action is pushed right up against
t

its limit (i.e. when the action is saturated) then usually (g—g) # 0. Considering this
t

complication, we can define a LET as follows:

We define a trajectory parameterised by values (&, @, U1, Ua, . . .) to be locally ex-

tremal if, for all ¢t and all action components 1,

(%Z) =0 if ()" is not saturated
t

(g%-)t <0 if (ﬁt)i is saturated and (ﬂ’t)’ =1 (7.8)
(gﬂ{i)t >0 if ()" is saturated and (i;)* = —1.

In the case that all the actions are unbound, this criterion for a LET simplifies to
that of just requiring (g—g)t — ( for all ¢, which is a standard sufficient condition for a
stationary point. This justifies the first condition in the above definition of a LET.

The second and third conditions of Eq. (7.8) address the extra complication of
saturated actions. These two conditions are justified since they imply that J is locally
optimal with respect to any saturated action components (i;)*, since any small change
of (&;)" inwards from the boundary |(@)¢| = 1 will cause an immediate increment in J,
by the second and third conditions of Eq. (7.8).

A further consequence of this definition of a LET is that if all of the actions are
fully saturated (a situation known as bang-bang control), then this definition of a LET

provides a sufficient condition for a locally optimal trajectory. This can be formally

stated as the following Lemma:

Lemma 7.5. If a locally extremal trajectory is such that all of the actions are saturated

in every component, then the LET is locally optimal.

Proof. The definition of a LET by Eq. (7.8), when all the actions are saturated,
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7.3 The Local Optimality of the Value-Gradient Learning Objective

simplifies down to:

(22), <0 it (@) =1

(f‘”)t >0 if (@) = 1. e

ou’

Then, because the actions are saturated in every component, we have (u;)! = +1,
for all components i and every time step t. If (i;)’ = 1 and if that action component is
changed by any amount, then that change to (#;)* can only be a reduction (since —1 <
()" < 1). When this reduction happens, J will initially increase a bit, since ( ggi)t <0

by Eq. (7.9). The increase of J corresponds to an increase of total trajectory-cost.

Alternatively, if (7;)* = —1, then a similar argument can be applied; any modification
to (i;)* must be an increase, which again will lead to an increase in the total trajectory
cost, since (8‘]) > 0 by Eq. (7.9).

t

o

Therefore any change to any action component (i) at any time step ¢ will lead

to an increase in total trajectory cost, and therefore the current trajectory must have
been at a local minimum of total trajectory cost with respect to all action components

(;)*, at all time steps ¢; i.e. the trajectory was locally optimal. O

7.3 The Local Optimality of the Value-Gradient Learning
Objective

In this section, it is proven that if the VGL objective is achieved, which for deterministic
trajectories is ét = G’y for all t along a greedy trajectory, then that trajectory is
locally extremal, and in certain situations, locally optimal. Only problems that are
deterministic are considered, and which are either episodic or have v < 1.

First a lemma is proven, and then the main result of this section and chapter comes

in Theorem 7.1.

Lemma 7.6. For a deterministic greedy trajectory and any fized A € [0, 1], if the VGL

objective is met exactly in o deterministic environment, i.e. if G, =G, for all t, then

ét = (g—g)t for all t.

Proof. First note that since ét is defined to exist, then G’; must also exist (since
ét = G/t for all t).
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7. TRAJECTORY LOCAL OPTIMALITY

The target value gradient was defined for non-terminal states by Eq. (3.7) to be,

DU Df ~
Gy = (_,> + <_,> MG+ (1= NG ),
Dz J, Dz ), ( )

where the % notation was defined by Eq. (3.5).
Substituting G’; = G} into the above definition for G'; gives,

~ DU Df\ =~
G = (w)ﬁ” (Df)f“l

_ @3) ry (‘;{{)& n (gf) (aaf) (by Eas. (3.5) & (7.5))

oU Of\ =~
= <3f)t + <&£;>th+1 (by Lemma 7.4)
oUu 0 ~
- (&;) Ty (a£>th+1 (by Eq. (7.1)) (7.10)

where in the application of Lemma 7.4, it was known that (%) exists since G'; exists.

t
Also, differentiating Eq. (7.7), for non-terminal states, with respect to & gives

aJ\ _ [oU af\ (oJ
(52),~ (52), 7 (52), (52)...- i

So by comparing Egs. (7.10) and (7.11), we see that <g—§> and G; have the same
t
recursive definition for non-terminal states. For terminal states, Zp € T, we have
<%>T = Gr = (%)T’ by Egs. (3.7) and (7.7). Therefore, for episodic trajectories,
G, = (%) for all ¢, since they have the same recursive formula at both terminal and
t
non-terminal states.

Alternatively, if the problem is non-episodic then the recursive formula for ét can

be expanded as follows:

Gy = (gg)t + <g§>tét+l (by Eq. (7.10))
(o), (32), (3e),., 7 (20), ()., (@2)...
+ 92 <g£, t <g£,> " <g£,>t+2 (gg)tH +... (expanding recursion)
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7.3 The Local Optimality of the Value-Gradient Learning Objective

given by Eq. (7.11), can be expanded into the same infinite series. Therefore (% =
- t
Gy for all ¢.
This proves that in either the case of episodic or non-episodic trajectories, ét =
(%) for all t. O
T/t

S’\
U<

This infinite series should converge because v < 1. The identical recursion for (

The main theorem of this chapter is now given:

Theorem 7.1. Any deterministic greedy trajectory satisfying the deterministic VGL

objective exactly, i.e. satisfying Gy =G, for all t, must be locally extremal.

Proof. Since a greedy trajectory minimises Q(mt, Uy, W) with respect to ; at each time-

step t, we know at each t and for each action component ¢,

<g§i>t =0 if (@) is not saturated

(gg-)t <0 if ()" is saturated and (i;)" = 1 (7.12)

(gg)t >0 if (_’t)i is saturated and (ﬁt)i - 1.

These follow from Lemmas 7.1 and 7.3. Therefore since,

(gi) (8?) + <g£> (gé)t (by differentiating Eq. (7.7))
= > <£> Gt (by Lemma 7.6)

) (i)a (by Eq. (7.1))

(a3
(3
g

QI Q
m‘@z ﬁl‘q

) (by Eq. (7.5))

we have (g—g) = (%) for all ¢t. Therefore the consequences of a greedy trajectory
t

(Eq. (7.12)) become equivalent to the sufficient conditions for a LET (Eq. (7.8)), which
implies the trajectory is a LET. O

7.3.1 Bang-Bang Controls

When the greedy-trajectory is generated entirely from saturated actions, then some

stronger optimality results apply, as demonstrated by the following corollary:
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Corollary 7.1. If, in addition to the conditions of Theorem 7.1, all of the actions are

saturated (bang-bang control), then the trajectory is locally optimal.

Proof. This follows from Lemma 7.5. O

According to the Bang-Bang Principle (Sonneborn and Vleck, 1965), bang-bang
control often arises in situations where the model functions are linear with respect
to bounded action vectors, or when the problem being solved is a time minimisation
problem. Hence it is often the case that all LETs found by this method are locally

optimal.

7.3.2 Discussion of Theorem 7.1

The optimality result proven in Theorem 7.1 is valid for any A € [0,1]. It only needs
satisfying over a single trajectory, whereas for VL the corresponding optimality condi-
tion (i.e. Bellman’s) needs satisfying over the whole of state space. This implies that
VGL methods have a much lesser requirement for value exploration than VL methods
do, and can lead to greater efficiency.

A separate efficiency issue is the algorithmic complexity of VL and VGL, and these
are both the same (O(dim(w)) per time step), provided the batch-mode version of
VGL(A) is used (Alg. 3.2). If the on-line implementation of VGL(A) is used then the
algorithmic complexity of VGL() is higher than that for VL methods, as described in
Section 3.5.1.

7.3.3 The Relationship to Pontryagin’s Minimum Principle

The proof of Theorem 7.1 is highly related to Pontryagin’s minimum principle (PMP;
Section 4.3), since Eq. (7.10) is identical to the PMP equation for a costate vector
defined by Eq. (4.2b). Therefore G, is acting as a costate vector of PMP. Similarly,
the greedy policy Eq. (7.4) forms the minimum condition of PMP (Eq. (4.2¢)). And
the state transition function @11 = f(Z4, i) is common to both PMP and ADPRL (in
Eqgs. (1.1) and (4.2a)). This completes Pontryagin’s conditions to be a LET.

However PMP still needs supplementing with Lemma 7.6 for it to be applicable for
any A € [0,1]. Hence the proof of this chapter does add something beyond PMP. Also a
major bonus of the proof of this chapter is the corollary providing the extra conclusion

for bang-bang control producing locally optimal trajectories (in Corollary 7.1). This
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corollary came as a consequence of carefully considering saturated actions, and what it

means to define a locally optimal or extremal trajectory.

7.4 Chapter Conclusions

The result that learning the value gradients exactly in a deterministic environment, i.e.
achieving ét = @, for all ¢, under a greedy policy, ensures a locally extremal, and often
locally optimal, trajectory has been proven. This result provides a key motivation for
value-gradient methods, i.e. it is what provides the automatic local value exploration
and high speed of learning for VGL methods. This theorem is what sets VGL methods
apart from VL methods, which do not have an equivalent trajectory optimality result;
and counterexamples to the VL equivalent of perfectly learning values along a trajectory
have been given in this thesis (for example, in Fig. 3.1).

The result proven in this chapter shows that provided the VGL algorithms make
progress in moving the gradients ét towards their targets G'¢, the trajectories will make
progress in automatically bending into locally optimal shapes.

The result of Theorem 7.1 is also relevant to VL methods, because it shows what
they need to learn to achieve optimality in continued-valued state space. Even if VL
methods go about learning the value-gradients by different means (i.e. stochastic value
exploration), the value-gradients will still need learning, eventually.

The chapter has also shown the relationship to Pontryagin’s minimum principle,
and how this theorem extends PMP to apply to VGL()) for any A € [0,1]. Also the
corollary showing that saturated actions are sufficient to imply local optimality, as
opposed to local extremity, has been given, which seems to be an original extension of
PMP.

In further work it would be good to be able to extend the optimality proof of this

problem to stochastic environments.
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Chapter 8

Convergence Proof of VGL(2(1)
and its Equivalence to BPTT

In this chapter it is shown that the VGLQ(1) weight update, i.e. VGL(1) with an €
matrix given by Eq. (3.8), when combined with the greedy—on—@ policy, is identical
to the application of backpropagation through time (BPTT) to a greedy policy. This
means that VGLQ(1) is identical to gradient descent on the total trajectory cost with
respect to the weight vector w of the critic function used by the greedy policy. It also
makes a theoretical connection between two seemingly different learning paradigms of
ADPRL, i.e. the paradigm of using a critic function, and the PGL/BPTT paradigm
described in Chapter 6. This proof of equivalence acts as a convergence proof for
VGL(1), since it means that VGL(1) will adopt the same convergence properties
that BPTT has. A summary of the convergence proof of this chapter is shown in Fig.
8.1.

Gradient descent on J with respect to w
for a greedy-on-Q policy function, 7 (Z,w) | = VGLQ(l), with that greedy pohcy

on some critic-network, J(&, W)

. VGLQ(1) with a greedy policy, will converge, under smoothness assumptions.

Figure 8.1: The Equivalence of VGLQ(1) to BPTT, and the Implied Convergence Proof.

The convergence properties for BPTT were described previously in Section 6.1.2,
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and are limited to continuous-valued action and state spaces. Also the BPTT algorithm
is best suited to the noise in the environment being additive, otherwise the BPTT al-
gorithm may only find an approximation to the true gradient descent direction (for
reasons previously described in Section 6.1.1). These limitations of the BPTT conver-
gence assurance will therefore carry over to the VGLQ(1) algorithm.

The equivalence proof of this chapter is valid for both stochastic and deterministic
environments. The convergence implication is valid with a general smooth function
approximator (i.e. a neural network) for the critic, and with the greedy—on—@ policy
defined in Chapter 5. The greedy—on—@ policy was defined in Chapter 5 as a model-
based deterministic version of the greedy policy, that is often more practical to work
with and is a sometimes-exact approximation to the true ADPRL greedy policy, as
described in Chapter 5’s introduction.

In the rest of this chapter, in Section 8.1, a short summary of key convergence proofs
from the ADP literature is made, and how they differ from the proof of this chapter
is described. Section 8.2 contains the main equivalence-proof of this chapter. Chapter
conclusions are given in Section 8.3.

Empirical results demonstrating the advantages of using the algorithm VGLQ(1)
compared to VGL(\) have already been given, in Chapter 5.

8.1 Convergence Proofs in the ADP Literature

Proving convergence of ADPRL algorithms is a challenging problem. Convergence
proofs from the RL literature were described previously in Section 2.7. This section
concentrates on similar results from the ADP literature.

Ferrari and Stengel (2004), Howard (1960b) and Al-Tamimi et al. (2008) show the
ADP process will converge to optimal behaviour if the critic could be perfectly learned
all over the state space at each iteration. However in reality it is necessary to work
with a function approximator for the critic with finite capabilities, so this assumption
is not valid.

A variant of DHP is proven to converge by Heydari and Balakrishnan (2011) for
a critic which is linear in w. This DHP-variant assumes the critic can update all the
ét values towards their targets, G’;, for all ¢, in a single critic weight update. This

large critic weight update is possible using a least-squares solution from linear algebra,
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involving a matrix inversion operation to achieve this goal in one weight update, so
it is not appropriate for the general non-linear neural critics considered in this thesis.
The process still works iteratively though, because every time the critic is updated,
the target gradients G’; will change (since the targets are functions of ét; they are
moving targets). The significant achievement of Heydari and Balakrishnan (2011) is
to prove that this process converges, while operating under the limitations of linear
function approximation, and under a greedy policy (which is a major challenge for
ADPRL critic-convergence algorithms). It is a convergence proof for a A = 0 algorithm,
whereas the proof in this chapter is for A = 1 and for a non-linear critic, so their method
complements the proof in this chapter nicely.

Another variant of DHP is proven to converge by Prokhorov and Wunsch (1997b).
This proof is for the Galerkin-based form of DHP (Werbos, 1998), which is a “residual
gradients” version of DHP (Baird, 1995), i.e. true gradient descent on an error function
of the form E = Y, (G’ — ét)2. Unfortunately, as it is well known, Galerkin-based
methods almost always converge to suboptimal solutions in stochastic environments
(as described in Section 2.7.3). Furthermore, and this fact is less well known than the
previous one, Galerkin versions of DHP and VGL will often converge to suboptimal
solutions in deterministic environments too, when a greedy policy is used (Fairbank,
2008, sec 2.3). Therefore Galerkin-based methods are not considered in this thesis.

One reason that it is difficult in general to make convergence proofs for ADPRL
methods is that in the Bellman condition, there is an interdependence between J(Z, €, %),
A(Z, €, Z) and J (Z,). This chapter makes an insight into this difficulty by showing (in
Lemma 8.4) that the dependency of a greedy policy on the critic is primarily through

the value-gradient.

8.2 The Relationship of VGL to BPTT

This section contains the main proof that the VGL(1) weight update, when combined
with a greedy—on—@ policy, is equivalent to backpropagation through time (BPTT) on
that greedy policy. First a reminder of the equations for BPTT are given (in Section
8.2.1), then some important lemmas about a greedy policy are derived (in Section 8.2.2).

Then it is demonstrated in Section 8.2.3 that when BPTT is applied to a greedy-on-Q
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policy, the weight update obtained is identical to VGLQ(1). Finally, in Section 8.2.4,

the consequences of the results and the convergence properties are discussed.

8.2.1 Backpropagation Through Time for Control Problems

As described in Chapter 6, BPTT can be used to perform gradient descent on the
sampled cost-to-go function J (Z, €, %), and hence optimise the ADPRL problem, as was
summarized in Fig. 6.1. Gradient descent of this kind will naturally find local minima
of Ji (Zo, €0, Z), and has good convergence properties when the surface J (Zo, €0, 2) is
smooth with respect to 2.

The BPTT derivation was given in Section 6.1. The main BPTT weight update

was given by Eq. (6.3), which was:

A oU of\ (oJ
AZ=—-B) o (az) ((a&) +7<a£> (a:z) ) (8.1)
t>0 t t t t+1

Full pseudocode for the BPTT algorithm was given in Alg. 6.1.
In the BPTT derivation of Section 6.1, it is useful to note that, by comparing Eq.
(6.4), i.e.

(w) BICORSICINCOE LT o)
o7 | (g%)t if 7, €T,
with Eq. (3.7), i.e.,
o {0, 43 (80), 66 0 0). e
(%)t, for Z, € T
it can be seen that
, _ (o] -
G = (853’)t , for all ¢, when A = 1. (8.3)

Note that Eq. (8.2) uses an exact equality as opposed to the approximation seen
in Eq. (6.4), because in this chapter we are considering the BPTT algorithm exactly

as implemented by Alg. 6.1. However as noted previously in Section 6.1.1, if the
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conditions for g—é = g—é (which were stated in Section 3.2.1) do not hold, then BPTT

will only generate approximations to the quantity %.

8.2.2 Lemmas about the Greedy-on-@ Policy and Greedy Actions

To prepare for the later analysis of BPTT applied to the greedy-on-@ policy, first we
prove some lemmas about this greedy policy. These lemmas apply only when the action
space, A, is equal to RIM(@)  which we will denote as A*.

A greedy—on—@ policy 7(Z, W) is a policy which always selects actions # that are the

minimum of the smooth function Q(Z, @, @) defined by Eq. (3.9):
Q@ 4,w) :=U(Z, @) + vJ(f(Z,1), ). (8.4)

These minimising actions are what we call greedy actions. In this case, since the min-
imum of a smooth function is found from an unbound domain, A*, the following two
consequences hold:

Lemma 8.1. For a greedy action u chosen from A*, we have g—g =0.

. — 20) . . . .
Lemma 8.2. For a greedy action @ chosen from A*, % is a positive semi-definite

matriz.

Note that the above two lemmas are multi-dimensional analogues of the familiar
minimum conditions for a one-dimensional function ¢(u) : R — R with an unbound
domain, which are ¢’(u) = 0 and ¢”(u) > 0, respectively.

We now prove too less obvious lemmas about the greedy—on—@ policy:
Lemma 8.3. The greedy—on—@ policy on A* implies (g—g) =— (g—g) ét+1.
t t

Proof. First, note that differentiating the definition of @(f, i, W) given in Eq. (8.4)

gives,
oQ oUu of\ ~
— | == — | Git1. 8.5
(811’) <6ﬁ>t+7<aﬁ>t t+1 (8.5)
t
Substituting this into Lemma 8.1 and solving for %g completes the proof. O
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-1 ~
Lemma 8.4. When (8771%)15 and (;;{%) exist, the greedy-on-Q policy on A* implies
t

~ T ~ —1
om\ __[9C of\" ( 2°Q
o), ~ '\ ow oi ), \ ouoi

t+1 t

Proof. We use implicit differentiation. The dependency of iy = m(Z;, W) on & must be

such that Lemma 8.1 is always satisfied, since the policy is greedy on @ This means

that (%) = 0, both before and after any infinitesimal change to @. Therefore the

t
greedy-policy function 7 (¥, w) must be such that,

(a@@t,w(@,w),w))

Oty

OQ(&y, iy, W) or\ 9 (0Q(&, i, @)

o, +<aw)taﬁt o,

oU Of\ ~ on 9%Q
((5e), = (52), &)+ (55, (aaaa)t

oU oNN\ ~ o 9%Q
((aa)ﬁ@( o )fGt*”)* (%), (aa)
_ ()" 9(Ges)' or 92Q
_72<aa’ >t o +<aw>t(aaaﬁ>t
B aé) <8f 0)
'\ ow i

t+1

T+ 8l aQQ
, \oa ), \ oo | -
t

In the above six lines of algebra, the sum of the two partial derivatives in line 2 follows

by the chain rule from the total derivative in line 1, since @ appears twice in line 1.

This step has also made use of @; = (%, w). Also note that the first term in line 2 is

not zero, despite the greedy—on—é policy’s requirement for %—g = 0, since in this term

the @ and W are now treated as independent variables. Then in the remaining lines,
line 3 is by Eq. (8.5); line 4 just expands an inner product; line 5 follows since % and

% are not functions of ; and line 6 just forms an inner product.
on

Then solving the final line for (%) , proves the lemma. O

8.2.3 The Equivalence of VGL()(1) to BPTT

~

In Section 8.2.1, the equation for gradient descent on J(Z,€, %) was described for a
Y

general action network, A(Z,€,Z2), using BPTT. But BPTT can be applied to any
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differentiable policy function, and so we now consider what would happen if BPTT is
applied to the greedy—on—@ policy 7(Z, W), with actions chosen from A*. The parameter
vector for the greedy policy is w. Hence we can do gradient descent with respect to
instead of Z' (assuming the derivatives % and g—g exist). It is first worth emphasising
that with the greedy policy, it is the same weight vector that appears in the critic, w,
as appears in the greedy policy 7 (&, ).

Consequently, for the gradient-descent equation in BPTT for control (Eq. (8.1)),

we now change all instances of A and 7 to m and W, respectively, giving the new weight

update:
o oU af\ (0T
= t - bl —J i
Ad=—a) 5 (M)t((@ﬁ)tﬂ(@ﬁ)t(@f) ) (By Eq. (8.1))
[2dY t+1
or\ [OFf o] -
_ t+1 [ 9T agr gJ B
= O‘Z’V (01[5>t <8ﬁ)t ((8.%’) Gt+1> (By Lemma 8.3)
[2dY t+1
or of ~ .
_ t+1 ( Y7 “YJ / _ —
= a;fy (0i)’>t <07§)t (G 1 Gt+1) (by Eq. (8.3), with A =1)
e of\" ([ °Q\ " [oF
_ t+2 [ Y “J ZL / -G By L 4
2 (aw) (a&)t (aa*aa) (aa)t (G'e41 = Grer)  (By Lemma 8.4)
t>0 t4+1 t
dG -~
_ t+1 | 7 o
t>0 t
where €, is the special form given previously by Eq. (3.8), i.e.,
(40" (28)7 (3)  toreso
Q= O Jy 1 \Ou0UJy 1 \Ou )y 4
0 for t =0,

and is positive semi-definite, by the greedy policy (Lemma 8.2).
Equation (8.6) is identical to the VGLS2(1) weight update equation (Eq. (3.6) with

. -1 .
Eq. (3.8) and A = 1), with 7 = 1, provided (33), and (%) ~ exist for all £. If (33),
t

does not exist, then % is not defined either.

This completes the demonstration of the equivalence of a critic-learning algorithm
(VGLQ(1)) to BPTT (with a greedy-on-Q policy with actions chosen from A*, and
when 27 exists).

Furthermore, the presence of the 4! factor in Eq. (8.6) could be removed if we
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changed the BPTT gradient-descent equation by removing the 4 factor from Eq. (6.3).
This would make the BPTT weight update more accurately follow the spirit and in-
tention of the on-line critic weight update; and then the equivalence of VGLQ(1) to
BPTT would hold for any ~ too.

For a fuller discussion of the §); matrix defined by Eq. (3.8), including methods
for its computation and a discussion of its purpose and effectiveness, see reference

(Fairbank et al., 2012b, Sections 7.3.4 and 7.4.3).

8.2.4 Discussion

If the ADP problem is such that % always exists for a greedy policy (specifically, the
greedy—on—@ policy), then the relatively-good convergence guarantees of BPTT will
apply to VGLQ(1). In this case, this particular VGL algorithm will achieve monotonic
progress with respect to J. , and so will have guaranteed convergence, provided it is
operating within a smooth region of the surface of the function J. , and the step size is
sufficiently small. Also the conditions for assured convergence of BPTT, which were
discussed in Section 6.1.2, must be satisfied.

A key possible source of lack of smoothness could come from the min operator in the
greedy policy, as this could cause % to not exist. But significantly, when a sigmoidal
greedy-policy of the type defined in Chapter 5 is used, the greedy-policy function is
always smooth and differentiable.

The equivalence result of this chapter was surprising to discover, because it was
thought that the VGL weight updates (Eq. (3.6), and DHP and GDHP) were approxi-
mations to gradient descent on an error function E = >, (G’; — G (G —G,). But
the VGL(\) weight update is not true gradient descent on E (unless both the policy
is fixed and A = 1). The equivalence-proof of this chapter shows that when a greedy
policy is used, VGL(1) is an approximation to true gradient descent on J rather than
on E; and this approximation becomes exact if VGL(1) is used.

It was also surprising to learn that BPTT and critic weight updates, i.e. the two
opposite paradigms of ADPRL, are not as fundamentally different to each other as first
thought. In fact, this equivalence proof makes one question whether there really is a
big advantage of using a value function at all, in contradiction to the importance placed
on the value-function in the introduction of this thesis. A fairly speculative discussion

of this issue follows:
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e [f a value-function method is going to be used, and if a VGL method is chosen
(which would be done for example if the arguments given in Sec. 3.1 are con-
sidered convincing), then it does seem like a good idea to use VGL2(1), because
this variant has proven convergence with a greedy policy and non-linear function
approximation. Divergence examples exist for other VGL variants, such as those

described in Chapter 9.

e If someone is using the VGL(1) algorithm with a greedy policy, then they may
as well use the equivalent algorithm, BPTT. However to implement BPTT with
a greedy policy, it is necessary to use the expression for % given by Lemma 8.4.
Therefore the implementation of BPTT will be identical to VGL(1). Before this
equivalence proof was made, it was not realised that the two methods were the

same.

e Arguments can be given to motivate the use of value-function methods because
they learn something useful (i.e. the values) about every intermediate state that
the trajectory passes through, whereas PGL methods and BPTT do not as obvi-
ously have this benefit. This equivalence proof shows that BPTT with a greedy

policy is just as good in this respect.

e Value-function methods still introduce the possibilities of using A < 1 and model-
free learning (through VL methods), both of which have benefits (as discussed in
Sections 2.3.1 and 1.4, respectively). Although the benefits of noise-tolerance by
A < 1 may not be as important for VGL methods as they are for VL methods (as

discussed in Section 3.5.3).

e A value-function allows more computationally efficient on-line learning than is

done by critic-free methods such as the RTRL algorithm.

e Even despite the equivalence of BPTT and VGLQ(1) proven in this chapter,
it might be beneficial to use a greedy policy as opposed to an action network,
because a greedy policy might just happen to be more stable for training by
gradient descent. For example, using a greedy policy may go some way towards
solving the problem of “exploding gradients” (Fairbank et al., 2014a) compared

to an action network; but this is a speculative and separate issue to explore.
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8.3 Chapter Conclusions

A strong theoretical equivalence has been given between BPTT and VGL{)(1), which
are two algorithms that on first sight appeared to be operating totally differently.
This provides a convergence proof for this VGL algorithm under the conditions stated
in section 8.2.4. This analysis has been successful for a VGL learning system where a
greedy policy is used (specifically the greedy—on—@ policy), and using non-linear function
approximation.

The convergence proof is only valid for A = 1, but it is for the situation of a
concurrently changing greedy-policy function, which usually makes convergence much
harder to assure. For example, in the next chapter, various other algorithms will all be
made to diverge with A = 1.

In the experiments in Chapter 5, the effectiveness of using the €2y matrix was shown
at stabilising learning and producing approximate monotonic learning progress for a
neural-network based critic with a greedy policy, even when combined with an aggres-

sive learning accelerator such as RPROP.
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Chapter 9

Divergence Examples

This chapter investigates which of the major ADPRL algorithms considered in this
thesis can be made to diverge with a greedy policy. Divergence results are derived for
VGL(1), VGL(0), VGLQ(0), TD(0) and TD(1). Consequently the divergence results
also apply to DHP and HDP, which are instances of VGL(0) and TD(0), respectively.
All divergences are derived for a smooth and differentiable critic function, and smooth
and differentiable model and cost functions.

The purpose of this chapter is to prove that although TD(1) and VGL(1) are true
gradient descent when the policy function is fixed, and therefore will converge, they
are not true gradient descent, and convergence is not assured, when a changing policy
function is used. The “changing policy function” considered in this chapter is the
greedy policy, but any form of value-iteration with an actor-critic architecture could
also be used. It was previously an open question of whether these A = 1 algorithms
can ever be made to diverge, and this chapter shows the answer to be that they can.

The results may be surprising, because TD(1) is considered to be one of the most
reliably convergent ADPRL algorithms. TD() is proven to converge when A = 1 since
it is then (and only then) true gradient descent on an error function (Sutton, 1988).
Also for 0 < A < 1, TD()) is proven to converge by Tsitsiklis and Van Roy (1996a)
when the approximate value function is linear in its weight vector and learning is on-
policy. Recent advancements in the RL literature have extended convergence conditions
of variants of TD(\) to an off-policy setting (Sutton et al., 2009), and with non-linear

function approximation of the value function (Maei et al., 2009). However, all these
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proofs apply when the agent is following a fixed policy instead of the greedy-policy
situation we consider here.

Ferrari and Stengel (2004) show that ADP processes will converge to optimal be-
haviour if the value function could be perfectly learned all over the state space at each
iteration. However in reality, the critic will be implemented by a function approxima-
tor with limited flexibility, so this assumption is not valid. Working with a general
quadratic function approximator, (Werbos, 1998, sec.7.7-7.8) proves the general insta-
bility of DHP and GDHP. This analysis was for a fixed policy, so with a greedy policy
convergence would presumably seem even less likely. This chapter confirms this.

A key insight into the difficulty of understanding convergence with a greedy policy
is shown in Lemma 8.4, i.e. the expression for % derived in the previous chapter, which
proves that the dependency of a greedy action on the approximated value function is
primarily through the value-gradient. Hence a value-gradient analysis is used in this
chapter to understand the divergence of all of the algorithms being tested, including
the value-learning ones.

These divergence examples contrast to VGL{(1), which was proven to converge
with a greedy policy, under certain smoothness conditions, in the previous chapter.

The approach of this chapter to achieve divergence is to define a problem which is
simple enough to analyse algebraically, but flexible enough to provide divergence. It
takes several sections to obtain an analytical expression for the VGL()\) weight update
purely in terms of the critic weights, i.e. to find a weight-update expression of the
form A& = h(w), for some function h. This can then be used to find which learning
parameters could make this function h divergent. To achieve both of these things, it is

necessary to perform the following steps:

1. Define an environment (i.e. model and cost functions, f(#, ) and U(Z, «@)) which

is suitably flexible to create a divergence example (Section 9.1.1).

2. Define a critic function, J(&#,w) which is suitably flexible to allow divergence in

the defined environment (Section 9.1.2).

3. Find an analytical expression for the greedy policy, and expressions for the greedy-

trajectory’s states and actions (Section 9.1.3), purely in terms of .

4. Find analytical expressions for Gy and G’; (Sections 9.1.4 to 9.1.5).
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5. Find the final analytical expression for the VGL(A) weight update (Section 9.1.6).

6. Try to find a set of learning parameters that cause divergence for the VGL(A)
weight update (Section 9.2).

Going through this long chain of derivations allows the analytical expression for the
whole weight update, and hence the divergence examples, to be found. This analysis was
done for the VGL(\) weight update because it is easier to analyse than the TD()\) one,
since as mentioned above the greedy policy depends on the value-gradient. However
the divergences found for VGL(A) also cause divergence for TD(\), as demonstrated
empirically in Section 9.3.

The divergence results of this chapter apply specifically to a greedy policy. But since
a greedy policy can be understood as a form of value-iteration, it is also possible to
use an actor-critic architecture with a value-iteration weight-update scheme to achieve
the same results. A specific action-network that can also achieve these divergences
under value iteration is described by Fairbank and Alonso (2012b). That reference also
extends the divergence results of this chapter to include divergence for the Sarsa(\)
algorithm (Rummery and Niranjan, 1994).

Finally, in Section 9.4, chapter conclusions are given.

9.1 Example Analytical Problem

In this section, an ADPRL problem is defined which is simple enough to analyse al-
gebraically. This problem is defined, and the VGL(\) weight update is derived alge-
braically for it, in Sections 9.1.1 to 9.1.6. These results will then be used in the next

main section (Section 9.2) to derive the main divergence results of this chapter.

9.1.1 Environment Definition

A deterministic environment is defined with state x € R and action v € R, and with

model and cost functions:

flme, tug) == f(xe,t,up) i= o4 + uy for t € {0,1} (9.1a)
Ulxe,tyug) i= Uy, t,ug) = k(ug)? for t € {0,1} (9.1b)
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where k > 0 is a constant. Each trajectory is defined to terminate immediately on

arriving at time step ¢ = 2, when a final terminal cost of
O(xy) == D(xy) := (2y)? (9.2)

is given, so that exactly three costs are received by the agent over the full trajectory
duration. The termination condition is dependent on ¢, so strictly speaking ¢ should
be included in the state vector, but instead ¢ is included as an extra argument to the
functions U (zy, t,ut), f(x¢,t,uy) and j(xt,t,u_)').

A whole trajectory is completely parameterised by g, ug and u1, and the total cost
is

J = k(uo)2 + k(u1)2 + (zo +uo + u1)2. (9.3)

The examples derived below consider a trajectory which starts at zg = 0. From

this start point, the optimal actions are those that minimise J, i.e. ug = uq = 0.

9.1.2 Critic Definition

A critic function is defined using a weight vector with just two weights, 0 = (w1, ws)”:
0 ift=0
J(xt, t, 117) =435C (1,‘1)2 — Ww1T1 ift=1 (94)

02(.262)2 — WaT2 ift=2

where c¢; and co are positive constants. These two constants are not to be treated as
weights. They were included so that a greater range of function approximators could be
considered for the critic, to allow a fuller search for a divergence example, as described
in Section 9.2.1. Also to ease the finding of that divergence example, this simplified
critic structure was chosen (as opposed to a neural network) since it is linear in @, and
its weight vector has just two components.

Hence the critic-gradient function, é(mt, t, ), is given by:

~ ., OJ (g, t, W
G(xy, t,0) := ((91;3)

0 ift=0
- by Eq. (9.4 95
{QCtﬂﬁt—wt if t € {1,2}. (by Eq. (9.4)) (9.5)

(by Eq. (3.3))
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Note that this implies

(aé) :{—1 ifte{.l,Q}andt:k 96)

owy, 0 otherwise.

9.1.3 Unrolling a Greedy Trajectory

A greedy trajectory is a trajectory that is found by following greedy actions only. In a
deterministic environment, greedy actions are 4 values that minimise @(a‘:’ , U, w) defined
by Eq. (3.9).

Substituting the model functions (Eq. (9.1)) and the critic definition (Eq. (9.4))
into the @ function definition (Eq. (3.9)) gives, with v =1,

Q(zt, T, up, W) = (9Ut,t ur) + I (f (20, t,w), t + 1,15) (by Eq. (3.9))
24 J(zy +ug, t + 1,40), fort e {0,1} (by Eq. (9.1))

U
k(u
{ +Cl x0—|—U0) —wl(xo+u0) ift=20
k(u

by Eq. (9.4
+CQ$1+U1) —wy(z1+uy) ift=1 (by (94))

o + ) — wepa (@ + ug), for t € {0,1}.
In order to minimise this with respect to u; and get greedy actions, we first differentiate

to get,

8~
(;3) = 2ku; + 20,5.:,.1(1‘,5 + ut) — Wi41 for t € {0, 1}
t

=2ui(cry1 + k) — wip1 + 2¢i417y for t € {0,1} (9.7)

and then solve (‘3—2) = 0 to obtain,
t

w1 — 201.%'0
= — 9.8
W= (9.8)
w9 — 2621’1
= —. 9.9
= 1 k) (9:9)

These two equations define the greedy-policy function, 7 (&, ), for this environment
and critic function.
Since the optimal actions are ug = u; = 0 from a start state of zg = 0, the optimal

weights are w1 = wy = 0.
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Following the greedy actions along a trajectory starting at x¢ = 0, and using the

recursion 411 = f(x,t, u;) with the model functions (Eq. (9.1)) gives

and

T1 = X + ug
S
2(01 + k)

To =T + Ul
B wQ(Cl + k‘) + k:w1
2(62 + k‘)(Cl + k‘) '

(by Eq. (9.1a))

(by Eq. (9.8) & 29 =0) (9.10)

(by Eq. (9.1a))

(by Egs. (9.9) & (9.10)) (9.11)

Substituting xz; (Eq. (9.10)) back into the equation for u; (Eq. (9.9)) gives uy

purely in terms of the weights and constants:

_ 'U)Q(Cl + k) — CoW1

Uy =

2(02 + k)(q + k) ’

(9.12)

9.1.4 Evaluation of Value-Gradients Along the Greedy Trajectory

We can now evaluate the G values by substituting the greedy trajectory’s state vectors

(Egs. (9.10)-(9.11)) into Eq. (9.5), giving:

and

C~¥1 = 2c1x1 — W1
C1w1
T (a+k)
—wlkz

" (et k)

Gg = 202.7}2 — W2
wa(c1 + k)eg + kwico

= —w2

(c2+k)(c1 + k)
. k:wlcg — wgk(cl + k})
(e + k)1 + k)
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(by Eq. (9.10))

(9.13)

(by Eq. (9.5))

(by Eq. (9.11))
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The greedy actions of Egs. (9.8) and (9.9) both satisfy

or\  —c4
(8x>t ok for t € {0,1}. (9.15)

Substituting Eq. (9.15) and Eq. (9.1) into the definition for (g—i)t given by Eq. (3.5),

gives,
(5e), = (3),+ (), (50), by B (35)
- <8x8;“>t 4 @:ﬁ)t (axaj;“)t, fort € {0,1}  (by Eq. (9.1a))
—1- thtﬁ o, forte {0,1} (by Eq. (9.15))
- ct+1k+ o for e {0,1). (9.16)
Similarly, the expression for <%g)t is found by:
(5e),= (), (50), (50, (b B (35)
_ (aka(;‘)2>t + (Z)t <akgz)2>t, fort € {0,1}  (by Eq. (9.1b))
—0- C:ﬁ -(2ku), for t € {0,1) (by Eq. (9.15))
- m for t € {0,1}. (9.17)

9.1.5 Backwards Pass along Trajectory

We do a backwards pass along the trajectory calculating the target gradients using Eq.
(3.7) with v = 1:

P
Gy = (8> (by Eq. (3.7) with zo € T)
ox /,
=219 (by Eq. (9.2))

~wa(cr + k) + kwy
(CQ + k‘)(cl + k) '

(by Eq. (9.11)) (9.18)
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Similarly,

Gy = <DU)1 + <Df)1 ()\G'Q +(1- A)c?g) (by Eq. (3.7) with = 1)

Dz Dx
_ —2kcouy + k ()\G/ +(1— )\)(N; ) (by Egs. (9.17) & (9.16))
— o n k o n k» 2 2 y LS. . .

_ —kCQ('LUQ(Cl + k) — Cle)

(c1 + k) (ca + k)? (by Eq. (9.12))

k wg(cl + k) + kwq
otk ( (c2+k)(c1 + k) (by Fa. (9:15)

k:wlcg — w2]€(01 + k)
+(1-2) TSIy ) (by Eq. (9.14))

~wik(kX + (c2)? 4 k(1 — N)e2) _ wak(ca — A+ k(1= N))
B (c1 + k) (c2 + k)? (c2 + k)2

(9.19)

The VGL()\) weight update relies upon the differences G’y — G,. These differences

can now be evaluated as follows:

~ _’U)ﬂﬁ(k‘)\ + (62)2 + ki(l — )\)62) B ’LUQI{Z(CQ — A+ k‘(l — )\)) —w1k

G O = b 1 B2 @ihE @tk
(by Egs. (9.19) & (9.13))
B (k(k)\-i-(CQ)Q-i—k(l—/\)Cg) k ) k(e + k= Ak+1))
a (c1 + k) (ca + k)2 (citk)) " (ca + k)2 w2
(9.20)
and
, ~  waler +k)+kwy  kwico —wok(cr + k)
G'9—Go = @tk @ikt h (by Egs. (9.18) & (9.14))
k(1 — c2) 1+k

T ot et k) T i) (9.21)

9.1.6 Analysis of Weight-Update Equation

We now have the whole trajectory, and the terms G’y — ét written algebraically, so that
we can next analyse the VGL(\) weight update algebraically.
The VGL()) weight update (Eq. (3.6)) is comprised of

Z (g’li;)tﬂt(G/t - ét), for ¢ € {1,2},
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= -G — Gy), forie{l1,2}, (by Eq. (9.6)).

Switching to vector notation for «j, this is
oG ~ 0 (G — Gy)
Sl o] G -Gy=—|_" <
. (aw)t (G =Gr) (QQ(G'2 ~Gs)

__<Ql 0) G -G
N 0 Q2 G/2—G2

— DB (9.22)
where
(0
D:= (0 92> (9.23)
and
k(kx+(cQ)2+k(1—2A)CQ)+ k —h(co+h-A(k-+1))
B~——< (athlethy ) @tk (2t k) ) (by Egs. (9.20) & (9.21)).
(c2+k)(c1+k) (c2+k)
(9.24)

By Egs. (3.6) and (9.22), Aw = aDBW is the VGL(\) weight update written as a
single dynamic system of .

To add further complexity to the system, in order to achieve the desired divergence,
we next define @ to be a linear function of two other weights, 7 = (p1,p2)?, such that
W = Fp, where F is a 2 X 2 constant real matrix. The VGL(\) weight-update equation

can now be recalculated for these new weights, as follows:

B} oG ~
Ap = O‘Z (8}7) Q(G't — Gy) (by Eq. (3.6))
t t
0w [ 0G ~ .
=« Zt: o (8117) t (G — Gy) (by chain rule)
ow oG ~ o
= aa—ﬁ zt: (W)t WU (G — Gy) (since independent of t)
ow
= a—DBW Eq. (9.22
@ o5 DB (by Eq. (9.22))
= a(FTDBF)p. (by @ = Fp and % = 8(5 ?) =FT) (9.25)
p p
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Eq. (9.25) represents the whole learning system, described as a dynamical system

of the weight vector p.

9.2 Divergence Results

Now that the difficult work of finding the analytical expression for the VGL(A) weight
update has been completed, it is relatively straightforward to find the divergence results
sought. The following subsections give the divergence results for VGL(0), VGL(1),
VGLQ(0), TD(0) and TD(1). Plus, to demonstrate that the divergence results do not
contradict the convergence proof of Chapter 8, the algorithm VGLQ(1) is shown to

converge under the same learning parameters which caused divergence for VGL(1).

9.2.1 Divergence Examples for DHP and VGL(1)

It is now shown that the algorithms VGL(0) (i.e. DHP) and VGL(1) can both be made
to diverge with a greedy policy in this problem domain.

We consider the VGL(0) and VGL(1) algorithms with the ; matrix equal to the
identity matrix, which implies that the D matrix (defined by Eq. (9.23)) satisfies
D =1, the 2 x 2 identity matrix, and hence we can ignore D from Eq. (9.25).

The optimal actions ug = u; = 0 would be achieved by p’ = 0. To produce a
divergence example, we want to ensure that § does not converge to 0.

Taking o > 0 to be sufficiently small, then the weight vector p evolves according
to a continuous-time linear dynamic system (Eq. (9.25), with D ignored), and this
system is stable if and only if the matrix product FT BF is “stable” (i.e. if the real
part of every eigenvalue of this matrix product is negative). The logic here is that if it
is proven to diverge for a continuous-time system, i.e. in the limit of an infinitesimal
learning rate, then it would also diverge for any small finite learning rate too.

Choosing A = 0, with ¢; = ¢ = k = 0.01 gives B = ( ;% %5.) (by Eq. (9.24)).
Choosing F' = ( L ) makes FTBF = ( %ég:g 13287?05) which has eigenvalues 45+45.221.
Since the real parts of these eigenvalues are positive, Eq. (9.25) will diverge for VGL(0)
(i.e. DHP).

Also, perhaps surprisingly, it is possible to get instability with VGL(1). Choosing

co =k = 0.01, ¢ = 0.99 gives B = —0.2625 —24.75) Choosing F = (= =1) makes
0.495 —50.5 2 .02
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9.2 Divergence Results

FTBF = (37865 0.1295) which has two positive real eigenvalues. Therefore this VGL(1)
system diverges.

Fig. 9.1 shows the divergences obtained for VGL(0) and VGL(1) with a greedy

policy.
10000
100 -
1 L
= 0.01 +
e-06
VGL(1
1le-08 | VGLOQ(1) eoeeveeene
1C‘10 1 1 \[ 1 ‘.,
10° 100 102 10 10* 10° 10° 107
Iterations

Figure 9.1: Diverging behaviour for VGL(0) (i.e. DHP) and VGL(1), using the learning
parameters described in Section 9.2.1 and a learning rate of & = 107°%; and converging
behaviour on the same problem for VGLQ(1), as described in Section 9.2.2, with o = 1073.

9.2.2 Convergence Results for VGLQ(1)

To show that the above divergence result for VGL(1) does not contradict the conver-
gence proof of Chapter 8, the algorithm VGL(1) is now shown to converge under the
same conditions that caused divergence for VGL(1).

VGLQ(A) is defined to be VGL(\) with the Q; matrix defined by Eq. (3.8).

To construct the ; matrix of Eq. (3.8), we differentiate Eq. (9.7) to get

\~
<6au§i>t = e +F) for t € {0, 1}, (9.26)

and then substitute Eq. (9.26) and (g—{;) =1 (by Eq. (9.1a)) into Eq. (3.8), to get
t

o — {1/(2(@ +k)) forte{1,2} 027)

0 for t = 0.

This Q; matrix can be used directly in the original VGL(\) weight-update equation
(Eq. (3.6)), or alternatively it can be used in the matrix for D given by Eq. (9.23) and
the weight update given by Eq. (9.25). In either case, as predicted by the convergence
proof of Chapter 8, it was not possible to make the VGL{(1) weight update diverge.
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9. DIVERGENCE EXAMPLES

An example of VGL(1) converging, under the same conditions that caused VGL(1)

to diverge, is given in Fig. 9.1.

9.2.3 Divergence Result for VGLQ(0)

Divergence for VGL2(0) was derived as follows: Substituting the above €; matrix from

Eq. (9.27) into the D matrix of Eq. (9.23) gives

1 0
D= (2(810““) . ) : (9.28)

2(62+k)

This D matrix can be used in the analytical expression found for the VGL(A)
weight update applied to the environment defined in this chapter, by substituting D
into Eq. (9.25). Then, substituting the same parameters that made VGL(0) diverge,
ie. ¢ = ¢y =k = 0.01, into Eq. (9.28) gives D = (% {.). Since D is a positive
multiple of the identity matrix, its presence in Eq. (9.25) will not affect the stability
of the product FTDBF, so the system for 7 will still be unstable, and diverge, just as
it did for VGL(0) (where D was taken to be the identity matrix). So unfortunately,
using the Q; matrix of Eq. (3.8) does not force reliable convergence for VGL(0) (i.e.
DHP) with a greedy policy.

9.3 Divergence Results for TD()\) and HDP

To satisfy the requirement for value exploration in TD(\)-based algorithms, it is nec-
essary to supplement the greedy policies (Egs. (9.8) and (9.9)) with a small amount of
stochastic Gaussian noise with zero mean and variance 0.0001. This Gaussian noise is
necessary, since these algorithms can converge to severely sub-optimal solutions without
value exploration (e.g. see Fig. 3.1).

To achieve divergence of these algorithms with the noisy greedy policy, the same
learning and environment constants as used for the VGL(0) and VGL(1) divergence
experiments were used again. These choices of parameters, with the stochastic noise
added to the greedy policy, made TD(0) and TD(1) diverge respectively, as shown in
Fig. 9.2 and Fig. 9.3. Hence HDP diverges too, since this is equivalent to TD(0) with
the given policy.
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9.3 Divergence Results for TD()\) and HDP

Learning Progress Phase Space for the Weight Vector
0.01 ‘ ‘ ‘ 0.01 ‘ ‘ ‘
0.008 0.005 L |
150.006 0
Y g - 1
~0.004 =
0.002 -0.005 i
0 ! ! ! ! ! ~0.01 ! ! !
5 10 15 20 25 30 —0.002  —0.001 0 0.001 0.002
Tterations (x107) p1

Figure 9.2: Divergence for TD(0) generated with the diverging parameters described in
Section 9.3, and a learning rate of a = 1075. The left-hand graph shows progress of |p]
versus iterations. The oscillation shown in this left graph occurs because the weight vector
goes into a limit cycle after divergence. This limit cycle is shown fully in the right-hand
graph, which shows the evolution of the weight vector (p1,p2) in phase space. The phase
curve starts close to the origin (at the ‘X’), then moves in the direction of the arrow,
and finally finishes off in a limit cycle. The weight vector initially moves in the opposite
direction from the origin, i.e. away from the target fixed point; confirming divergence.

1k i

0.01 | ]

= 0.0001 .

1le-06 | E

1e-08 | TD(l? — . . . e
10° 102 10* 108 108 1010

Iterations

Figure 9.3: Divergence for TD(1) generated with the diverging parameters described in
Section 9.3, and a learning rate of o = 1076.

Although these divergence results for the TD(\) based algorithms were only found
empirically, as opposed to the results for the previous sections which were first found
analytically, these results do still have value. Firstly, the empirical results are easily
replicable (source code for the empirical experiments available by (Fairbank and Alonso,
2011a, in ancillary files)). Secondly, an insight into why the divergence parameters for
VGL were sufficient to make the TD(\) based algorithms diverge too is because TD(\)
with stochastic exploration can be understood to be an approximation to a stochastic
version of VGL(A). Since TD(\) eventually has to learn the value gradients if it is ever
to achieve an optimal trajectory, so it would be expected that a divergence example for

VGL(A) will cause divergence for TD(A) too.
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Without the stochastic noise added to the greedy policy, these examples would not
diverge, but instead converge to a sub-optimal policy, which is also considered a failure.
Fig. 9.4 shows results for this situation.

Learning P ;
Carmng rrogress Phase Space for the Weight Vector

0.0001 8.54e-05 F ‘ ‘ ‘ w .
8e-05 | . 8.52e-05 | — i
6e-05 1 & 85e05 | TD(0)
3222 TD(0) —— 7 S A4S0 T StartTyggrln): x |
0 T‘D(l)‘ e L 8.46e-05 - ‘ ‘ Enq point X 1
10 20 30 40 50 60 70 80 90 100 4.8¢-05 4.9¢-05 5e-05 5.1e-05 5.2¢-05 5.3¢-05

Iterations x10 p1

Figure 9.4: The performance of TD(0) and TD(1) in the divergence problem in the
absence of stochastic value exploration. Under these circumstances, the weight vector p’
does not move much at all before hitting a fixed point, as shown in the left-hand figure. The
right-hand figure shows in a phase-space view that both TD(0) and TD(1) reach the same
fixed point, which is indicated by the asterisk in the figure. This fixed point is just 1.9%
closer to the optimal weights (7 = (0,0)) than the initial weights were. This is another
example of VL failing in the absence of value exploration.

9.4 Chapter Conclusions

It has been shown that under a greedy policy, all but one of the ADPRL algorithms
have been made to diverge. The algorithm that didn’t diverge was VGLS(1), which
was proven to converge in Chapter 8.

These are new divergence results for TD(\), in that previous examples of divergence
have only been for TD(0) and for non-greedy policies (Baird, 1995; Tsitsiklis and Van
Roy, 1996a,b). The divergences achieved for TD(1) and VGL(1) were only possible
because of the use of a greedy policy (or equivalently, value-iteration).

A conclusion of this chapter is that the diverging algorithms considered cannot
currently be reliably used for a greedy policy, or equivalently, under value-iteration,
and instead can only be used under the form of policy iteration described in Section
2.7.5 if provable convergence is required. However, as noted in Section 5.1.1, there are
clear efficiency advantages of using value-iteration over this form of policy iteration.
The algorithm VGLS(1) solves all of these problems by being proven to converge with
a greedy policy.
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9.4 Chapter Conclusions

The divergence results of this chapter were derived for linear-quadratic critic func-
tions, as this was the situation that allowed for easiest analysis to derive concrete
divergence examples. It is assumed that similar divergence results will exist for neural-
network based critic functions, since neural networks are more complex structures that
should allow for more possibilities for divergence situations similar to the simple ex-
ample here. In practical experience, divergence often does occur when using a greedy
policy with a neural-network critic, but these situations are harder to analyse and make
replicable. In this neural-divergence situation, it seems reasonable to speculate that a
second-order Taylor-series expansion of the neural network could be made about the
fixed point of the learning process, and locally this approximation could be behaving
very similarly to the quadratic functions used in this chapter.

This chapter also demonstrates how a value-gradient analysis can be useful to value-
learning research. Since value-learning must eventually learn value-gradients in order
to produce optimal trajectories, the value-gradient divergence example was sufficient
to also cause divergence for the value-learning algorithms. The theoretical analysis is
much easier coming from a value-gradient approach though, since a VGL weight update

has a very predictable and direct effect on the greedy policy (as shown in Lemma 8.4).
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Chapter 10

Implementing Clipping correctly

In ADPRL, the agent moves along a trajectory which terminates only when (and if) a
terminal state is reached. As shown in Fig. 10.1, clipping is the concept of calculating
the exact fraction in the final time step at which a boundary of terminal states is
reached, and stopping the agent exactly at this boundary. The name clipping is taken
by analogy to the concept in computer graphics. Without clipping, the discretization
of time would cause the agent to penetrate slightly beyond the terminal boundary, as

shown in the figure.

Unclipped end state
To
Start state

Terminal Boundary

Figure 10.1: A Trajectory Reaching a Terminal State, without Clipping. The thick
curved line indicates a boundary of terminal states. In this diagram, clipping does not
take place, and the trajectory penetrates beyond the terminal boundary. When clipping
is used correctly, the intention is to stop the agent exactly at the point of intersection
between the trajectory and the terminal boundary.

In this chapter, it is shown that when a large final impulse of cost ®(Z, €) is given at a
terminal state & € T, then failure to do clipping in the final time step of the trajectory
can very significantly distort the direction of the learning gradient used by certain
ADP algorithms, and thus prevent successful solution of the ADP problem. It is also

shown that this problem is not lessened by sampling the time steps of the underlying
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10. IMPLEMENTING CLIPPING CORRECTLY

continuous-time process at a higher rate. This problem affects commonly used ADP
algorithms such as DHP (Alg. 3.1), BPTT (Alg. 6.1), and the main algorithm of this
thesis, VGL(A) (Algs. 3.2 and 3.3). These algorithms are all very closely related to
each other, and for purposes of explaining clipping as clearly as possible, BPTT will
be used as the example.

As described in Chapter 6, BPTT works by calculating the quantity % directly
and very efficiently for each trajectory sampled, enabling gradient descent to be per-
formed on J with respect to z. However if clipping is omitted then the gradient that
BPTT calculates can be distorted enough to prevent learning. Fig. 10.2 illustrates the

problems that arise without clipping.

=T

R

Figure 10.2: An Example of the Problems that Can Occur when Clipping is Not Used.
The left figure shows that spurious zigzag boundary penetrations can occur when clipping
is not used. The right figure shows a corresponding graph of R, the trajectory length,
versus 6, and this yields no useful local gradient information. Hence minimising R with
respect to 0 using only dR/df would be impossible.

In Fig. 10.2 (left) the agent starts at O and travels in a straight line at a constant
speed, along a fixed chosen initial angle, §. The straight line AB is a terminal boundary
(i.e. a continuous line of states in T). The dotted arcs represent the integer time steps
that the agent passes through. If clipping is not used then the agent will stop on the
first integer time step (i.e. on the first dotted arc) after passing the terminal boundary.
This means the agent will finally stop at a point somewhere on the bold zigzag path
from A to B. Fig. 10.2 (right) shows how the distance the agent travelled before
stopping (R) varies with 6. If the cost-to-go function J was defined to be the total
distance travelled before termination (i.e. if J := R), and the parameter vector of .J
was defined to be 0, then the ADP objective would be to minimise R with respect to
6. But Fig. 10.2 (right) shows that there is no useful gradient information for learning,
since % = %—g = 0, whenever it exists, and hence gradient descent on J with respect

to 6 would fail without clipping.
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Situations can get even worse than this: In Fig. 10.3, a pathological example
is shown, where the gradient of the graph is always in the opposite direction of the
global minimum of R. This could occur for example if we were trying to minimise the
function J := R + y with respect to 6, for the situation in Fig. 10.2, where y is the
final y-coordinate of the agent, and R is the distance travelled before stopping.

R+y

i

0

Figure 10.3: A Pathological Example: Local gradient is Opposite to Global Gradient.

In general, increasing the sampling rate of the discretization of time will not solve
the problem, since that would simply make the dotted arcs in Fig. 10.2 squeeze closer
together, and will make the teeth of the saw-tooth blade shape in Fig. 10.3 finer. The
gradients in Figs. 10.2 and 10.3 would still not be helpful for learning.

This chapter shows how to solve the problem by incorporating clipping into the
model and cost functions, f(Z,,€) and U(Z,u,€), when terminal states are reached.
BPTT, VGL(A) and DHP make intensive use of the derivatives of these two functions,
and hence it is necessary to differentiate carefully through the clipped versions of these
functions. This is the important step derived in this chapter, and this step corrects the
gradient % to make it suitable for learning, and solves the problems explained by Fig.
10.2 and Fig. 10.3.

The necessity for clipping affects any algorithm which calculates the derivatives of
the model function, i.e. % directly, and when terminal states that deliver impulses of
cost are present. For example the RL method of Munos (2006), which implements a
continuous-time numerical differentiation to evaluate %, will also be affected by this
clipping problem. Likewise, the ADP methods of BPTT, DHP, GDHP and Value-
Gradient Learning are also affected by the requirement for clipping.

Clipping is not necessary for any problem where the termination condition is simply
when a fixed integer number of time steps is reached, as discussed further in Section

10.2.1. Also the experiments in this chapter show that TD(0)/HDP do not need clip-

ping, since these algorithms do not make significant use of the derivatives of the model
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10. IMPLEMENTING CLIPPING CORRECTLY

function. For the same reasons, the policy-gradient learning methods of Chapter 6 (Pe-
ters and Schaal, 2006; Williams, 1992) do not require clipping either. Policy-gradient
methods are discussed further in Section 10.4.

In this chapter, only episodic environments will be considered; that is environments
where all trajectories are guaranteed to meet a terminal state eventually. Hence the
sampled cost-to-go function to be minimised is the episodic version defined by Eq.
(1.4), which is:

T—1
J(%0,80,2) :=E (Z VU, +~T 0 (27, gﬂ) (10.1)
t=0
subject to the usual equations for @1 = f(&4, Uy, ), Uy = U(Zy, Uy, €) and @ =
A(Zy, €, 2Z) (Egs. (1.1), (1.2) and (1.3), respectively).

In the rest of this chapter, in Section 10.1, formulae for the clipped model and cost
functions are described, and it is shown how these can be used to evaluate a single
trajectory with clipping. Then in Section 10.2, details of the solution to the clipping
problem is described, by correctly differentiating through the clipped model functions,
as is required for effective gradient descent. These details are used to generate pseu-
docode for BPTT and VGL(\) with clipping, in Alg. 10.2 and Alg. 10.3 respectively. In
Section 10.3 experimental details are given for neural-network control problems, both
with and without clipping. One of these problems is the classic Cart-Pole benchmark
problem which is formulated in a way which would be impossible for VGL methods to
solve without clipping, and it is shown that the clipping methods enable this problem
to be solved efficiently. In Section 10.4, policy-gradient learning methods are described,
and details of why they don’t require clipping are given, despite the methods’ similarity

to BPTT. Finally, in Section 10.5, chapter conclusions are given.

10.1 Using Clipping in Trajectory Evaluation

The formulae for the clipped model and cost functions are now derived. The clipped
versions of the original functions will be denoted with a superscripted C, so that f¢,
UC and JC will be the function names for the clipped versions of the model, cost and
sampled cost-to-go functions, respectively. The functions f€ and UC are only defined
for any state Z; that occurs immediately before a terminal state is reached, i.e. for

which #; ¢ T and for which f(&, 4, é;) € T.
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10.1 Using Clipping in Trajectory Evaluation

These three clipped functions, f€¢, U® and jc, are key concepts in this chapter,
because defining them clearly allows them to be differentiated carefully (in Section

10.2), and hence used to calculate the learning gradients correctly.

10.1.1 Calculation of the Clipped Model and Cost Functions

Suppose the agent is transitioning between states Z; and f(Zy, uy, €;), and the state
f (&, 1y, €;) would be beyond the terminal boundary unless clipping was applied. To
calculate the clipping correctly, we imagine this state transition as occurring along the
straight line segment from Z; to f (&, uy, €;), i.e. the straight line given parametrically

by position vector
¥ = &t + sv, (10.2)

where

U= f(Zy, U, €) — Ty, (10.3)

and s € [0, 1] is a real parameter. This is illustrated in Fig. 10.4.

This straight line must intersect a boundary of terminal states. At the point of
intersection, the tangent plane of the terminal boundary is given by (7— 13) =10 (ie.
where 77 is the plane’s normal vector, P is a fixed point on the plane, 7is a general point
on the plane, and where - denotes the inner product between two vectors), as illustrated
in Fig. 10.4. The constants P and 7 should be available from either the physical

environment or from the collision-detection routine of the simulated environment.

At the intersection of the line and the plane, we have

(Z+s7—P)-7=0
p’__, —
L= _ i) n
v-n

This value of s is a real number between 0 and 1 which indicates the fraction
along the transition line from Z; to f(Zy, s, €;) at which the terminal boundary was
encountered. The value s will be referred to as the “clipping fraction”, and since it

depends on Ty, iy, P and i, it is defined by the function:

; (P—&y)-ii

s = S(Zy, 0y, &, P, i) == (10.4)
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Terminal Boundary

\

Figure 10.4: The Final State Transition of a Trajectory Crossing the Tangent Plane of
a Terminal Boundary. The unclipped line goes from #; to f(&,d;, € ). The line intersects
the plane at a point given by the new clipped model function f€(Z,y, €, P, ).

Hence the clipped value of the final state is ;41 = Z+S(Zy, Uy, €}, ﬁ, ) (f(Zy, Uy, €)—
Zt), which is found by combining Egs. (10.2), (10.3) and (10.4). This gives the function

for the clipped model function as
fO(#,i1,& P,ii) = & + S(Z,i,& P, i) (f(Z,i,¢) - ). (10.5)

Assuming that “cost” is delivered at a uniform rate during the final state transition,

the total clipped cost would be proportional to the clipping fraction, giving:
UC(z,a,¢ P,it) := S(&,4,é P, i) U(Z,,¢). (10.6)

Since the final clipped time step has duration s € [0, 1], the terminal cost ® (&, er)
should only receive a discount of v instead of the full discount . Hence, at the

penultimate time step, Zp_1, the total cost-to-go is
(= m o ._pC(m. e m BN sein 2
JY(Zr-1,€r-1,%2) == U (¥r_1,Ur—1, €71, P, 1) + v* (L, €T). (10.7)

Deciding to use v° in place of v might seem like a trivial detail, but when differen-

tiated, it provides useful information for the correct learning gradient, with clipping.
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10.1 Using Clipping in Trajectory Evaluation

This detail allows solution of a version of the Cart-Pole benchmark problem, in Section

10.3.2, which would otherwise be impossible for VGL methods.

Alg. 10.1 illustrates how Eqs. (1.1)-(1.3) and Egs. (10.4)-(10.7) would be used to
evaluate a trajectory with clipping. This algorithm is an updated version of the original

trajectory-unroll algorithm (Alg. 1.1) which did not include clipping.

Algorithm 10.1 Unrolling a Trajectory with Clipping.

1: <0, jC 0
2: while Z; ¢ T do
3: Uy — A(ft,é%,g)

4 T — f(Zy, U, €))

5. if 441 € T then

6: Identify Pand it by inspection of the intersection with the terminal boundary,
T.
s < S(&y, iy, &, P, i) {using Eq. (10.4)}
T+t+1

: §T<—x2—|—s(fT—ft)

10: JC < JC + (1) (sU (%, v, €,) + v*@(Zr, ér))

11:  else

12: JC  JC + (W) U(&y, @1, &)

13:  end if

14: t+—t+1
15: end while
16: T <t

Note that P and i are required by Egs. (10.4)-(10.6). These would be found during
the collision-detection routine (i.e. line 6 of Alg. 10.1), from knowledge of the terminal-
boundary orientation, together with knowledge of Z7_1 and f(Zp_1,dr—1,€r—1). Knowl-
edge of the orientation of the terminal boundary could come from a model of the
physical environment’s boundary; or if this model was not available, then a physical
inspection of the actual boundary would need to take place. Examples of how these
two vectors were found in this chapter’s experiments are given in Sections 10.3.1 and

10.3.2.
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10.2 Calculation of the Derivatives of the Clipped Model
and Cost Functions

The ADP algorithms BPTT, DHP and VGL(A) require the derivatives of the model
function, and hence they will require the derivatives of the clipped model function
ez, a,e, ]3,175) too. Fig. 10.5 shows how different the derivative of f¢ can be from
the derivative of f, and hence how important it is to get this correct in ADPRL. This

figure clarifies why algorithms that are dependent on ag; are critically affected by the

need for clipping, and also that just reducing the duration of each time step tracking
or simulating the motion will not solve the problem at all.

This section describes how to calculate the derivatives of f¢(&,, €, ﬁ,ﬁ) and
Uc(z,1i,é, ]3,77) This is what allows the clipping problem to be solved. Hence this
section is the key part of this chapter, in terms of providing implementation details
for solving the clipping problem. Pseudocode is given for the modified version of the
algorithms BPTT and VGL(\).

Differentiating the formula for S(&, @ ¢, P, ) in Eq. (10.4) gives:

8S(#,u,€, P,ii) 0 (P—2)-ii
oz - oF ((f(f,ﬁ, &) —7)- ) (by Eq. (10.4))
it (P—%)-70(f(&,d,€) )7 '
T-n (- 17)2 B (using Eq. (10.3))
_ it _(Po@)di (0F )\
Cod (@R \or

where [ is the identity matrix, and the matrix notation is as defined in Section 3.3.

Similarly,

0S(&, i, e, P,it) 9
ou

a; ;P — )7 : > (by Eq. (10.4))

(using Eq. (10.3))

For the reasons highlighted previously in Section 3.2.1, it is often more practical

to work with derivatives of the learned environment functions instead of the true envi-
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Functions

fc(fB7ﬁBa€Bvﬁ,ﬁ)

AfC (&g, B, ep, P,ii)

Terminal Boundary

Figure 10.5: The Discontinuous Change in Derivatives of the Model Function f(Z,, €)
at a Terminal Boundary. The straight line segment from 4 to f(Za,@a,€4) represents
a state transition that is not intersecting the terminal boundary. If the start of this line
segment is perturbed in the direction of the arrow Az 4 then its other end will move in the
direction indicated by the arrow Af(Za,@a,€4). The line segment below, however, which
starts at g, does reach the terminal boundary. If the start of this line segment is moved
in the direction of AZp, then its end will move in a perpendicular direction, as indicated

by the arrow AJ"C(JE'B,1]]13,@}3,ﬁ7 7). This indicates that (6g§)A is very different from

(%) 5 and hence this needs treating carefully in the ADP algorithms.

ronment functions; and these are usually only approximations to the true derivatives

(except in circumstances highlighted in Section 3.2.1). In this case, the above two

equations would be modified into:

08(z,a,e,P,i) —it (P—2)-7 (Of .

( 9% ) N ( (U'ﬁ))Q ((‘3:? - )n (by Eq. (3.1)) (10.8)
0S(z, i, ¢, P, i (P—@ -7 (Of\ .,

( = ) ~ —W (aa‘) i (by Eq. (3.1))  (10.9)

Similarly, under this assumption, in all of the following equations (Egs. (10.10)-
(10.15)), derivatives of the functions f(Z,w,€), U(Z,u,€) or ®(Z,€), are replaced by
approximate derivatives of the corresponding learned functions. However if this as-

sumption is not required, then these approximations can be replaced by their corre-
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sponding exact equalities.
Using the derivatives of S(Z, @, €, P, ) in Egs. (10.8)-(10.9), we can now differen-

tiate the clipped model and cost functions, giving:

8fc(f’g;’ P.7) =1+ g;ﬁT + 5 <g£ - I) (by Eqgs. (10.3)-(10.5))

~ T+ (;;UT + s (gj; — I> (by Eq. (3.1))  (10.10)
afc(f’gf’ P,7) = %ﬁT + sgj_; (by Eqgs. (10.3)-(10.5))

~ g‘;ﬁT -+ sg;}; (by Eq. (3.1))  (10.11)
U ’gj’P 1) _ %U(:ﬁ,a’, &) + sgg (by Eq. (10.6))

~ g; (Z,1,¢) +sgg (by Eq. (3.1))  (10.12)
aUC(f,géé, P.ii) _ gZU(f,ﬁ, &) + sgg (by Eq. (10.6))

~ %U(f,ﬁ, &) +ng (by Bq. (3.1))  (10.13)

The cost-to-go function for the penultimate time step, Eq. (10.7), can be rewritten

as a Q-function of both # and 1, to give

Q(Fr_1,tp_1) :=UC(Fr_1,dr—1,8r_1, P,R) + v*O(fC(Fr_1, Ur_1,8r_1, P, 7).
(10.14)

Differentiating this with respect to wr_1 or Zp_1 gives:

(?96;2 - aU.c e af.c B 3%1; tGm gf . g?:T,éT)>

(), (), (32), e (), ) v
(10.15)

where e represents either @ or T.
This equation, which relies upon the derivatives of f¢(Z,, &, P, @) and U (%, @, €, P, 7i)

(as defined in Eqgs. (10.8) to (10.13)), can be used to modify BPTT from Alg. 6.1 into

196



10.2 Calculation of the Derivatives of the Clipped Model and Cost
Functions

its corresponding “with clipping” version given in Alg. 10.2. Eq. (10.15) appears in
the algorithm directly in lines 9-10. This completes the description of the corrections
to BPTT to include clipping. It would be possible (and advisable) to verify any imple-

mentation of BPTT to check that it is calculating

87T (#0,80,Z, :
% correctly by numerical

differentiation (using Alg. 10.1).

Algorithm 10.2 Backpropagation Through Time for Control, with Clipping.

1: Unroll full trajectory from start state Zp using Alg. 10.1, and retain the variables
ft, ﬁt, T S, P and 7.
aJ

2: 97 & 0 i
3: pr +— (?93 -
4: fort =T — 1 to 0 step —1 do
5: if ft+l € T then
6: Calculate (—f) (a—g)t by Egs. (10.8) and (10.9).
o C
7. Caleulate (% )t and (%) by Eqs. (10.10) and (10.11).
C C
8: Calculate (%Uf )t and 88Ua )t by Egs. (10.12) and (10.13).
e} ofC N
9: Qz < (%)t + (( gf ) Pi+1 + (In7y) (%)tq’(ﬁT,eT))
e} ofC N
10: Qu <~ (aa%)t +7 (( fﬁ ) D1 + (Iny) (%)t ‘1’($T7€T)>
11:  else B
. ou of —
s (), 00 () e
. ou o\ =
13: Qu <+ (%)t + (%’)t t+1
14:  end if _
aJ aJ 0
15 gz < 9z T VQA(%)t Qu
16: Py Qo+ (52),Qu
17: end for
> > aJ
18: 74 77— P35

The VGL(\) algorithm needs similar modifications to convert it to include clipping.
Alg. 10.3 gives pseudocode for the “with clipping” version of VGL()\). Since DHP is
a special case of VGL()), i.e. DHP is the same as VGL(0), this pseudocode covers
DHP too. The modifications used are essentially the same as were made for BPTT.
However, one extra difference was applied in the clipped VGL()) algorithm compared
to its unclipped version (Alg. 3.2). That is that the clipped version is modified so

that it does not learn (or need to learn) the value-gradient at the terminal state. The

reason for this change is because the value-gradient can change discontinuously at the
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terminal boundary, as shown in Fig. 10.5, and therefore it would not be easy for a
smooth function approximator to have to learn a discontinuous change like this.

Even though this chapter argues that clipping is not really necessary for VL meth-
ods, for the purposes of empirical comparison, it is worth describing which modifica-
tions the VL algorithms would need, to incorporate clipping. For the HDP algorithm,
clipping needs applying to the final time step of the trajectory unroll, which can be
implemented by replacing the line “Zy11 < f(&, Uy, €;)” (i.e. line 4 of Alg. 2.1) by lines
4-13 of Alg. 10.1. Also, the expression for (%)t + <%£:)t (g—g) e’ which appears in
line 7 of Alg. 2.1, should be replaced by @, which needs calculating by lines 5-14 of
Alg. 10.2. When these changes are made, clipping is fully included into HDP.

Algorithm 10.3 VGL(\), with Clipping; Actor-Critic, Batch-Mode Implementa-
tion.

1: Unroll full trajectory from start state Zp using Alg. 10.1, and retain the variables
Ty, Uy, T, s, P and 7.

L, (08 R S VR
2: a=

P (89”)T’ AZ+ 0, AW« 0
3: {Backwards pass...}
4: fort =T —1to 0 step —1 do
5. Calculate @, and @, by lines 5-14 of Alg. 10.2
6: G,t — Q:v + (%)J Qu
T AT AT+ (95) (6 -G

t
> > 0A

8: AzeAz—(g)tQNu

9: P+ NG+ (1 - NGy
10: end for

11: W+ W+ aAw

12: 2+ Z+ BAZ

10.2.1 Clipping with Trajectories of Fixed or Variable Finite Length

In situations where trajectories are of fixed finite length (commonly referred to as a
fixed-length finite-horizon problem), clipping is not necessary. This is in contrast to
the problems considered in the chapter introduction, which were variable finite-length
problems, since the trajectory lengths were determined by the environment (e.g. a
trajectory terminates only when the agent crashes into a wall). In this section, these

two situations will be distinguished from each other by referring to them as “fixed finite-
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length” and “variable finite-length” problems, respectively. Only in variable finite-
length problems is clipping necessary.

In the fixed finite-length problem, the clipping fraction defined by Eq. (10.4) is
always s = 1, and therefore % = 6, % = 0 and ~v® = ~. Hence the clipped model
and cost functions are identical to their unclipped counterparts, and therefore it is not
necessary to implement any program code specifically to handle clipping. This might be
one reason why the need for clipping has not previously been noted in the DHP /BPTT
research literature, since most finite-horizon problems considered have been fixed-finite
length.

However the fixed finite-length problem does have one minor different complication,
in that it is often necessary to include the time step into the state vector. This is because

the optimal actions and cost-to-go function will often be dependent upon the number

of incomplete steps in a trajectory.

10.3 Experimental Results

This section describes two neural-network based ADPRL experiments which require
clipping to be solved well.

In all experiments the action and critic networks used were MLPs. Each MLP had
dim(Z) input nodes, 2 hidden layers of 6 nodes each, and one output layer, with short-
cut connections connecting all pairs of layers. The output layers were dimensioned
as follows: Each action network had dim(#) output nodes; each HDP critic network
had 1 output node; and each DHP critic had dim(Z) output nodes. All network nodes
had bias weights, as is usual in MLP architectures. The activation functions used
were hyperbolic tangent functions, except for the critic network’s output layer which
was always a linear activation function (with linear slope as specified in the individual
experiments, below). At the start of each experimental trial, neural weights were

initialised randomly in the range [—.1,.1], with uniform probability distribution.

10.3.1 Vertical-Lander Problem

This is a repeat of the Vertical-Lander problem defined in Section 2.8.1. Previously
when this experiment was described, the description of clipping was omitted, but now

the full details are given.
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Trajectories terminate as soon as the spacecraft hits the ground (x5 = 0) or runs out
of fuel (zy = 0). These two conditions define T. On termination, the algorithms need
to choose values for P and 77, which describe the orientation of the terminal-boundary
tangent plane. These choices are given for this experiment in Table 10.1. In the case
that the final unclipped state transition crosses both terminal planes, then the one that
is crossed first (i.e the one that produces a smaller clipping fraction by Eq. (10.4)) is

to be used.

Normal Vector
T

Position vector
of Plane, PT

Termination

Condition Breached to Plane, 7

xp, < 0 (hits ground) | (0,0,0) (1,0,
x5 <0 (no fuel) (0,0,0) (0,0,1)

Table 10.1: Terminal Boundary Planes used in Vertical-Lander Experiment. The state
vector used here is & = (zp, 2y, 7).

Physical environment constants used were the same as before (k; = 0.2; ky = 4;
k, = 1; At = 1; v = 1). The input vector to the action and critic networks was
7 = (z1,/100, x,,/10, :z:f/5O)T, and the model and cost functions were redefined to act
on this rescaled input vector directly. The action network’s output y was rescaled to
give the action by A(Z, €, 2) := (y + 1)/2 directly. Each algorithm was tested in batch
mode, operating on five trajectories simultaneously. Those five trajectories had fixed
start points, which had been randomly chosen in the region z;, € (0,100), z, € (—10,10)
and xy = 30.

Fig. 10.6 shows learning performance of the BPTT, VGL(0), VGL(1) and HDP
algorithms, both with and without clipping. Each graph shows five curves, and each
curve shows the learning performance from a different random weight initialisation.
The learning rates for the four algorithms were: BPTT (5 = 0.01); VGL(0) (8 =
0.001, = 0.00001); VGL(1) (8 = 0.001, = 0.000001); and HDP (8 = 0.00001,
a = 0.00001). The critic-network’s output layer’s activation function had a linear slope
of 20 in the VGL()) experiments and 10 in the HDP experiment.

To supply stochastic exploration for the HDP experiment, random noise was added
according to Eq. (2.16), for HDP only, with noise standard-deviation equal to o = 0.1.

These graphs show the clear stability and performance advantages of using clipping

correctly for the BPTT and DHP algorithms. The graphs also confirm that the HDP
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algorithm is not significantly affected by the need for clipping.
Fig. 10.7 shows that the need for clipping is not made arbitrarily small just by
using a smaller At value.

BPTT with clipping BPTT without clipping

30 30
29.5 B 29.5 1
- 29 r 4= 29
28.5 . 28.5 + B
28 1 1 1 1 28 1 1 1 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations
100 V‘GL(O)‘ with ‘Clippil‘lg 100 VG‘L(O) v‘vithou‘t clipRin
90 | B 90 B
80 | B 80 H B
70 B 70 B
= 60 4 7 60 R
50 B 50 v
40 Eh 1 40 1
30 30 s ‘ ‘ L]
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations
100 V‘GL(I)‘ with ‘(:hppil‘lg 100 VGL(1) v‘\fithou‘t clipping
90 | B 90 B
80 | B 80 B
70 B 70 B
= 60 | 1 7 60 b
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40 | B 40 B N
30 30 B
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations
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45
— 40
35
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0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations

Figure 10.6: Vertical-Lander Solutions by BPTT, VGL(0), VGL(1) and HDP using
AT =1.

30 BPTT with clipping At = 0.01 363PTT without clipping At = 0.01

29.5

- 29
28.5

28

29.5 1
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28
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
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Figure 10.7: Vertical Lander with AT = 0.01.

10.3.2 Cart-Pole Experiment

The Cart-Pole benchmark problem was described in Section 5.3.2. This experiment
is now repeated but with a different trajectory termination condition, and a modified

cost function. This version of the cost function is the one used most commonly in the
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RL community (e.g. Barto et al., 1983), and would not work well with VGL methods,
without clipping.

In this version of the problem, terminal states (T) are defined to be any state with
|z| > 2.4, or |f] > {& (i.e. 12 degrees), or t > 300. Hence the pole motion continues
until it reaches a terminal state or until the pole is successfully balanced for 300 time

steps, i.e. 6 seconds of real time. Termination plane constants are given in Table 10.2.

Termination Position vector | Normal Vector
Condition Breached | of Plane, PT to Plane, i’
0>m/15 (0,0,7/15,0,0) (0,0,—1,0,0)

0 < —7/15 (0,0,—7/15,0,0) (0,0,1,0,0)
r>24 (2.4,0,0,0,0) (—1,0,0,0,0)

r< —-24 (—2.4,0,0,0,0) (1,0,0,0,0)

t > 300 (0,0,0,0,300) (0,0,0,0,1)

Table 10.2: Terminal Boundary Planes used in Cart-Pole Experiment. The state vector
used here is ¥ = (z,,0,0,t)T.

The duration-based cost function of Barto et al. (1983) is equivalent to

U(Z,u) =0, (10.16)
for non-terminal states, and,
1 if T < 300
o(7,e) =4 s (10.17)
0 otherwise,

for terminal states £ € T. When the above two cost functions are used in conjunction
with a discount factor 7 < 1, and when the pole eventually falls over (i.e. when
T < 300), the total trajectory cost is J(Zo, €y, Z) = 77, where T is the time at which
the trajectory terminated. Since this function decreases with 7', minimising it will
increase T, i.e. lead to successful pole balancing. However, unless clipping is used
properly, the duration will be an integer number of time steps, and since this is not
smooth and differentiable, it will cause problems (become impossible) for VGL(A),
DHP and BPTT. Hence traditionally when DHP or BPTT are used for the Cart-Pole

problem, the differentiable cost function used in the experiment of Section 5.3.2 would
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be used. In this section clipping is used to solve the problem with the cost functions of
Egs. (10.16)-(10.17).

Four algorithms, BPTT, VGL(0), VGL(1) and HDP, were applied to this problem,
with a discount factor v = 0.97. To ensure the state vector was suitably scaled for input
to the MLPs, rescaled state vectors Z were used, defined by & := (0.16x, 1560 /7, &, 46, t/300) 7,
with € in radians, throughout the implementation. Note that time was an input to the
neural network, as the environment’s behaviour does depend on ¢ through the termi-
nation condition.

The output of the action network, y, was multiplied by 10 to give the control force
F = A(Z,é,7) := 10y. The learning rates for the algorithms were: BPTT (5 = 0.1);
VGL(0) ( = 0.01, 8 = 0.0001); VGL(1) (o = 0.001, g = 0.0001); HDP (8 = 0.001,
a =0.01). The VGL()A) and HDP critics used a final-layer activation-function slope of
0.1. HDP used a policy exploration rate of ¢ = 0.15, and the other algorithms used
oc=0.

Learning took place on five trajectories simultaneously, with fixed start points ran-
domly chosen from the region |z| < 2.4, |0] < {5, & = 0, 0 = 0. The exact derivatives
of the model and cost functions were made available to the algorithms.

The performance of the four tested algorithms, both with and without clipping,
are shown in Fig. 10.8. Each graph shows the average balancing duration over all
five trajectories, versus the training iteration. Each graph shows an ensemble of five
different curves, with each curve representing a training run from a different random
weight initialisation.

The results show that using clipping correctly enables both the VGL(A) and BPTT
algorithms to solve this problem consistently, and without clipping it is impossible for

both algorithms. Also the results show that HDP is largely unaffected by the need for
clipping.

10.4 A Note on Policy-Gradient Methods

As described in Chapter 6, both BPTT and policy-gradient learning (PGL) methods

work by doing gradient descent on the total cost-to-go function J(Z, €, ) with respect

to Z. PGL methods are stochastic algorithms which accumulate a mean weight update
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BPTT with clipping BPTT without clipping
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Figure 10.8: Cart-Pole Solutions by BPTT, VGL(0), VGL(1) and HDP

of the form

E(AZ) = —5%;9. (10.18)

Although these weight updates superficially look similar to the BPTT design, they
do not use any explicit derivatives of the model or cost functions, and thus are not
affected by the need for clipping. For example, the REINFORCE weight update, defined
in Chapter 6, does not include any derivatives of f(Z,, €) in its weight update.

The implementation of the BPTT algorithm, in Alg. 6.1 or Alg. 10.2, does require
derivatives of f(&,,¢€), and hence does require clipping. In stochastic environments,
the BPTT weight update would average to

a7
E(AZ)=—-PE| =—= ). 10.19
(a2) = —pE o= (10.19)
So how can it be reconciled that for two such similar algorithms, BPTT requires

clipping, but PGL does not? The answer lies in the subtle difference between Egs.
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(10.18) and (10.19), i.e. the fact that in general, the derivative of a mean is different
from the mean of a derivative. In the PGL case, the E <j ) term has a blurring effect
which first smoothes out all of the jagged bumps in the J versus graph (for example
as shown in Fig. 10.2), and then PGL performs gradient descent on this blurred-out
graph. In contrast, BPTT first calculates the gradient of various randomly chosen
points of this graph, and then averages out the answer, and clearly in the case of Fig.
10.2, this approach will not work (unless clipping is done).

This shows that PGL methods have an advantage over BPTT methods in avoiding
the need for clipping. This advantage of PGL methods over BPTT methods is part of
quite a long list of pros and cons between the two methods, which was given in Section

6.4.

10.5 Chapter Conclusions

The problem of clipping for ADPRL algorithms has been demonstrated and moti-
vated. Without clipping, algorithms which rely on the derivatives of the model and
cost functions can fail to work. The solution is to apply clipping, and then to correctly
differentiate the model and cost functions in the final time step. This solution has been
given in the form of the equations, plus in the form of clear pseudocode for the major
affected ADP algorithms: VGL(A) and BPTT.

Two neural-network experiments have confirmed the importance of applying clip-
ping correctly. These included a Cart-Pole experiment, where clipping was found to be
essential, and in the Vertical-Lander experiment, where clipping produced a significant
improvement of performance.

The situations in which clipping is needed have been made clear, and those situa-

tions where it can be ignored have also been specified.
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Chapter 11

Second-Order Gradient

Calculations in Neural Networks

As described in Chapter 3, VGL algorithms such as dual heuristic programming (DHP)
and VGL(\) can use either a scalar critic or a vector critic. A scalar critic would be
represented by a neural-network with one output node, and a vector-critic would be
represented by a neural network with dim(Z) output nodes. If the vector critic was
chosen, then its output would form the critic-gradient function, é(a‘c’, w) directly. If

the scalar critic was used, J(&,w), say, then the gradient of its output with respect

to Z would form the critic-gradient function, i.e. G(Z,w) := %. The differences

between vector and scalar critics are described further in Section 3.4.1.

If a scalar critic is used, then the usual VGL(X) weight update (Eq. (3.6)),

AW = az (gg) Q (G/t — ét) )
t

t

would implicitly transform into,
02T a.J
AW = Q | =5 11.1
’ “;(amf)t t<Gt <6f>t) 7 ( )

This chapter describes how to efficiently program the second-order backpropagation

. ~ 8
since G = 5

necessary to implement the above weight update (Eq. (11.1)), particularly with regards

to the second-derivative term %gf. Here, and throughout this chapter, the matrix %gf
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92T
owroTI *

Globalized DHP (GDHP) is a variant on DHP that is a hybrid between DHP and

HDP, i.e. it is a linear combination of a value-learning weight update plus a value-

is defined to have 7, 7 component equal to

gradient learning weight update, as defined in Section 3.4.4. Hence for GDHP, it is
mandatory to use a scalar critic, since there is a value-learning component.

In the field of ADP, the algorithm DHP is used far more commonly than GDHP. For
example DHP has been used in control problems (Lendaris and Paintz, 1997; Prokhorov
and Wunsch, 1997a), power grid control (Venayagamoorthy and Wunsch, 2003; Ve-
nayagamoorthy et al., 2002), and many other applications (Wang et al., 2009). One of
the reasons for the comparatively low take-up of GDHP is that GDHP is more chal-
lenging to implement than DHP. The difficult step of implementation is to correctly
and efficiently calculate the above described second-order derivative, %gf Hence this
chapter seeks to address this problem.

This second-order derivative matrix is related to, but slightly different to, the usual
Hessian matrix, %, for a neural network with output y, described in the neural-
network literature (e.g. sec. 4.10 of Bishop, 1995). The difference is that the second-
order derivative matrix required by Eq. (11.1) is a mixed derivative matrix, i.e. it is
a derivative with respect to both w and &; but the Hessian matrix is a derivative with
respect to w twice.

In VGL algorithms, the mixed second-order derivative matrix, %gf, is only ever
required as an inner product %E, where k is a column-vector constant of dimension

dim(&). For example, in the weight update given by Eq. (11.1), k would be given by

. ) aJ
(e (2)) o

To form this inner product by matrix-vector multiplication would take time O(dim (i) dim(Z)?).
This chapter describes a very clear and straightforward algorithm to calculate this inner
product directly and exactly in an asymptotically faster time of O(dim(w)).

Existing literature does briefly outline an equally efficient method to calculate the
required inner product for GDHP, but this outline is only in the form of schematic
diagrams (Prokhorov and Wunsch, 1997a), or a high level description of generic back-
propagation (Werbos, 1987; Werbos et al., 1992). Simple pseudocode applicable for a

generic feed-forward neural network is not available there.
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These existing descriptions calculate the required second derivatives by applying the
mathematical technique of backpropagation twice to the neural network’s feed-forward
equations (Werbos, 1974). Using the terminology of “automatic differentiation” (Rall,
1981; Werbos, 2005), this is called a reverse accumulation of the derivatives. But it is
not a trivial task to create a correct implementation of this for the given error function.
In fact this difficulty is thought to be one of the reasons that the equations for the
required second-order derivatives have not been published before for a generic neural
network.

The method presented here is to do a forward accumulation of the derivatives. This
is much easier to derive and implement, and equally efficient. The method follows the
technique and terminology of Pearlmutter (1994), which is used to calculate an inner
product of the Hessian matrix of a neural network in a fast and exact manner, without
explicitly finding the full Hessian matrix itself.

The difference in simplicity in derivation between the forwards and backwards accu-
mulation methods is very significant, as is illustrated by the way the two techniques were
used to find fast products with the Hessian matrix, in the neural-network literature.
Here, the backward accumulation is described by Moller (1993), and the derivation
takes several pages (dense with lemmas and equations). The forward accumulation
is described by Pearlmutter (1994), and the derivation takes just one page to define a
differential operator (“R”), which then is used to produce the five lines of the algorithm
instantly. Despite the technically demanding accomplishment of Moller (1993), it is the
vastly simpler technique of Pearlmutter (1994) that receives nearly all of the citations
in the literature.

After making some necessary modifications to the technique of Pearlmutter (1994),
an algorithm is obtained that is almost trivial to derive, and easy to state in pseudocode.
By stating this forward accumulation method for GDHP/VGL(\) clearly, and giving
pseudocode for the resulting algorithm, it is hoped that using a scalar critic for VGL
would be just as simple to implement as a vector critic.

Besides being useful for VGL, the quantity %E is also useful in the general
circumstance of trying to adjust the weights of a neural network with output y so as to
force the gradient g—% to equal a given target value at a given Z. This could be achieved

by doing gradient descent on an error function F = % g—% — ﬂQ, where ¢ is the “target”

209



11. SECOND-ORDER GRADIENT CALCULATIONS IN NEURAL
NETWORKS

gradient. In this case we would choose the constant vector k by

. 0B oy .

An example of an application like this is given in Section 11.2.2.

A further requirement by VGL algorithms is an expression for , where

DA(Z,E,7)
or
A(Z, €, Z) is the output of the action-network. When a greedy-policy function is used,
this derivative can require inner-products of the form %—%E, for example as is required
by Eq. (5.13). When a scalar critic is used, this translates into %E, which is another
second derivative of the scalar-critic network. This inner product is also calculated

efficiently by the algorithm presented in this chapter.
In the rest of this chapter, in Section 11.1, the neural network and gradient finding

algorithms are defined. In Section 11.2, experimental results are given. Finally, in

Section 11.3, chapter conclusions are given.

11.1 The Algorithms

In this section, an algorithm is derived to find the required second-order gradients. A
general feed-forward neural-network architecture is defined in Section 11.1.1, and the
second derivatives are derived for it in Section 11.1.2. Details of how the method can
be extended to find the full second-derivative matrices are given in Section 11.1.3.
The method for finding the second-derivative matrices for this neural network is a
general technique that could be applied to any existing feed-forward network structure
(or even a recurrent neural network that has been unrolled using backpropagation
through time). Verification techniques for the algorithm’s correctness are described in

Section 11.2.1.

11.1.1 Feed-Forward Neural-Network Architecture and Backpropaga-
tion

Lines 2 to 8 of Alg. 11.1 implement a general neural network y(Z, @), which has a
single input layer, and is fully connected with all short-cut connections (Prechelt et al.,
1994, sec; 2.7). The algorithm takes an input vector Z and weight vector ), and, for

the purposes of this chapter, produces a scalar output y. Pruned or layered network
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architectures are possible by fixing specific weights to zero. Fig. 11.1 illustrates an

example network attainable by the algorithm.

Figure 11.1: An example neural-network architecture obtainable by Alg. 11.1, with
three input nodes and one output node. When all graph edges are included, we have a
fully connected feed-forward neural network, with all short-cut connections. If the dotted
edges are removed (for example by clamping those weights to zero) then a more traditional
layered network is obtained, containing a single hidden layer of two nodes. For the purpose
of this chapter, only a single output node is required, which in this example is node 6.

Algorithm 11.1 Feed-Forward Dynamics of a Neural Network, Followed by First-
Order Error Backpropagation to Calculate g—%

: {Feed-forward input vector & through network...}
. a® «+ 1 {Bias node}
:Vj:1<j<dim(¥), o/ < 27 {Input vector, 7'}
for j = dim(Z) + 1 to n do
S S mign
a  g(s)
end for
: y < a” {Network Output}
: {Backpropagation loop...}
: for j =nto 1 step —1 do

—_
=]

ifj=n
ZZ:jJrl(wj’m)(ésm) otherwise
12 057 «+ (8a?)g'(s7)
13 Ym:0<m<j, % — (ds7)a™
14: end for

15: V5 : 1 < j < dim(Z), % + 6a’ {Output Vector}

Sal

—_
—_

In the algorithm, superscripts on variable names indicate the node number, for j =
0,...,n, where n is the final node in the network. The variables a’ represent the firing
activations of node j, and the final node’s activation, a”, gives the network’s output, y.
Node 0 is a dedicated “bias” node, with a fixed value of a° = 1. & = (ml z .. :cm)

is the external input vector to the whole network, with dimension m = dim(Z). The
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kJ is used to indicate the weight within @ that connects node k to node j.

notation w
s/, 6a’ and 0s’ are workspace scalars for each node.

g(z) : R — R is the “activation function”, which is often taken to be g(z) =
tanh(x), or the logistic function, g(z) = H% ¢'(z) and ¢"(x) are its first and second
derivatives.

Lines 10 to 15 of Alg. 11.1 do a backpropagation calculation, which calculates
the gradients % and %. This is the standard backpropagation algorithm for neural
networks (Rumelhart et al., 1986; Werbos, 1974) but modified, following Kindermann
and Linden (1990), so that the “error function” used is actually the network output y,
and also so that the backward pass continues until it has fully generated the quantity

g—g, as required.

11.1.2 Finding Second Derivatives using the R Operator

To find the second-order derivatives that this chapter is aiming to produce, first we note
that we can swap the order of differentiation. Hence our desired second derivatives can
be written as ET(% (%) and ET% (%) respectively. This trick makes it easy to

define a differential operator, R, analogous to that used by Pearlmutter (1994).

Hence we define R(.) as the differential operator

;0
R:Zk o (11.4)

where k? is the ith component of k.
Using this operator, the two second derivatives that we seek can now be written as
R(%) and R(%), respectively.

Also, applying this R operator to & gives:

;0
R(%) = kE'—7
() ZZ: 895’:6
= k. (11.5)
As detailed by Pearlmutter (1994), R obeys the usual rules for a differential oper-
ator, i.e. it obeys the product rule, the chain rule, the sum rule for derivatives, and

differentiating a constant gives zero. For example, the weight vector w is a constant

with respect to the R operator, thus R(wW) = 0. Using these rules, and Eq. (11.5),
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the R operator is applied to each side of each line of Alg. 11.1, to obtain each line
of Alg. 11.2, respectively. It should be emphasised that applying the R operator to
each line of the algorithm, while obeying the correct rules for differential operators,
is calculating the exact derivatives that we are seeking. See section 3 of Pearlmutter

(1994) for further explanation of the exactness of the R method.

Hence Alg. 11.2 exactly calculates the quantities R(%) and R(g—%), which are the

two second-derivative inner-products that were sought.

Algorithm 11.2 Calculation of the Second-Order Derivatives.

Require: s/, a/, 6s7 and da’ values calculated according to Alg. 11.1 for all nodes j,
and vector k calculated by an appropriate equation (e.g. Eq. (11.2) or Eq. (11.3)).

1. {Forward pass...}

2: R(a%) + 0

3 Vj:1<j<dim(Z), R(a’) «+ K

4: for j = dim(Z) + 1 to n do

5. R(s7) < S0 w™IR(a™)

6:  R(a’) « ¢ (s))R(s%)

7: end for

8: {Backward pass...}

9: for j =n to 1 step —1 do

10:  R(6a’) + . ifj _7?
> om=jr1 (W™ R(ds™)  otherwise

11:  R(§s7) < R(da?)g'(s7) + (da?)g" (s7)R(s7)
122 Vm : 0 < m < j, RZ-) « R(6s7)(a™) + (6s’)R(a™) {Output vector 1:

52 OwmJ

T

k 858%

13: end for ,
14: Vj: 1< j <dim(Z), R((%y]) + R(6a?) {Output vector 2: I{:Taagwyf

When implementing the algorithm, R(a’), R(s’), R(6a’) and R(ds’) are workspace
scalars for each node j.

Since both algorithms involve two nested loops that count up to the value of n, the
number of nodes in the network, the asymptotic complexity of each algorithm is O(n?).
Since for a fully connected network, we have dim(w) ~ n?, therefore the asymptotic

complexity of each algorithm is O(dim(w)).
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11.1.3 Generating the Full Second-Derivative Matrices

The above algorithm generates the inner products of two second-order derivative ma-
trices with a constant vector. If instead of this inner product, the full second-order
derivative matrices are required, then these can be constructed one column at a time.
Execution of the above algorithms with k equal to the jth Euclidean standard basis
vector of dimension dim(Z), will calculate the jth column of each matrix. Thus accumu-
lating the full second-order matrices, column by column, would take O(dim (&) dim(&))
time.

An alternative algorithm to find the full matrix % is given for a neural net-
work with just one hidden layer by equations 14 and 15 of Prokhorov and Wunsch
(1997a), and for a general network by appendix A.4 of Coulom (2002). These also have
asymptotic timings of O(dim (@) dim(Z)).

11.2 Experimental Results

In Section 11.2.1, details are given of how to verify the algorithm’s correctness, and
in Section 11.2.2; a simple experiment is described that shows how a neural network
9y

can be forced to learn a target quantity 5%. In Section 11.2.3, a VGL experiment is

described, comparing the use of a scalar critic to a vector critic.

11.2.1 Numerical Verification of the Algorithm

Numerical differentiation was used to validate the algorithm was calculating the correct
second-order gradients. This method provides a flexible and powerful check of the
correctness of the program. Since the R method could be applied to other neural-
network architectures, it would be advisable to verify any other implementation in a
similar manner.

To do the numerical confirmation, first the formation of % and % taking place in
lines 10 to 15 of Alg. 11.1 was verified, by differentiating y numerically with respect to
both ¥ and W, respectively. For example, to verify the first of these, a central-differences
numerical derivative was used:

Oy y(Z+ e€;, W) — y(T — €€y, W)
oxt 2¢

+0(e%),
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where € is a small positive constant, and €; is the ith Euclidean standard basis vector.
Next the second derivatives found by Alg. 11.2 were checked against a first-order
numerical differentiation of the (already tested) first-order analytical derivatives found

by Alg. 11.1. For example,

9y

=T 0 8y w (f—i—sE w) i (f—eE )
- — > > 2
k < w) + O(€%), (11.6)

where % is calculated by Alg. 11.1 each time it is required in the right hand side of

this equation. This check was used to successfully confirm the correctness of Alg. 11.2.
For example, using a layered neural network with 4 inputs, three hidden layers of 4
units each, one output layer with 1 unit, hyperbolic tangent activation functions at all
nodes, and all components of @, k and # randomised uniformly in [—1, 1], the average

magnitude of the vector kT 8%28% was found to be 1.4, and the average magnitude of the

error in this vector (between its value calculated by Alg. 11.2 and its value calculated

by Eq. (11.6)) was 6.4 x 10710, when e = 107°.

11.2.2 Wave-Learning Experiment

This experiment provides an example of how the algorithms of this chapter can be used
to adjust the weights of a neural network so as to force the gradient g—% to equal a given
target value at a given Z.

The objective here is to make a neural network with one input and one output
learn the training data given in Table 11.1. In this training data, each row of the
table is a different “pattern”, p. Each pattern consists of an input value for the neural
network (z,), and target output value (s,) and a target for the gradient g—% (tp). This
experiment is aiming to make a neural network learn two complete periods of a sine
wave from just 5 training patterns positioned along the x-axis.

Learning took place by minimising the error function given in Eq. (11.7).

2
- t,,) (11.7)
(zp,w)

71 and no are real constants to weight the relative significance of the two terms in

5
1 2 dy
EZQ;; m (y(xp, w) — sp)° +n2 (83?

this equation. The first term is an ordinary sum-of-squares error for making the network
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xp (Network input) | s, (Target for y) | t, (Target for %)
0.0 0 20
0.25 0 -20
0.5 0 20
0.75 0 -20
1.0 0 20

Table 11.1: Training Data for Wave-Learning Experiment.

output y(z,w) match the target output for each pattern. The gradient of this part of
the error function (with respect to @) would be found by ordinary backpropagation.
The second term of F is a sum-of-squares error term for making the gradient g—% match
the target gradient ¢, for each pattern p. Hence this second term would form the vector
k described in Eq. (11.3) by
T (2ps0) "

for each pattern p, and then the required gradient for learning can be found by Alg.
11.2.

The neural network used was a multilayer perceptron, with two hidden layers of
8 nodes each, and all short-cut connections present between all pairs of non-adjacent
layers. The activation function used for all nodes was g(z) = 1/(1 + ™), except for
the output node which used g(z) = z. Training used gradient descent on Eq. (11.7),
with 1 = 2 = 1, i.e. with the same significance attached to each component of the
error function. Initial network weights were randomised uniformly from [-0.1,0.1].

When training was accelerated through conjugate gradients, with a full line search,
learning produced a 100% convergence rate over 100 trials, where convergence was
defined as E going below 10~° within 20000 iterations. The output of five typical
neural networks trained in this way are shown in Fig. 11.2.

The results show that the problem has been solved correctly, and that it has been
possible to make a neural network learn specified target gradients g—% at given values of Z.
However when experimental parameters were changed, it was observed that the success
rate could drop significantly. For example if RPROP was used, and the activation

functions used were swapped to g(z) = tanh(x), then the success rate dropped from

100% to 65%. It seems that it is harder to train a neural network to learn target
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gradients, g—%, than target values. By analogy, we can imagine that in trying to make
the flexible curves of Fig. 11.2 bend into the shape of a sine wave, it is harder to do so
by just twisting the curve at certain points along the x-axis than it is by stretching the

curve to pass through given target points.

Neural-network output

Target Gradient
Network output ---------

y (output)

0.4 0.6 0.8 1
x (input)

Figure 11.2: Outputs from a sample of five neural networks created to learn the shape
of a sinusoidal wave, as detailed in Section 11.2.2. Each dotted curve shows the output
from a neural network produced in a different trial. The solid thick lines on the x-axis are
designed to give a visual indication of the training point and target gradient. The objective
of training is to make the dotted lines run parallel and through the thick lines, which has
been achieved well in all of the five network outputs in this figure.

11.2.3 Scalar-Critic VGL Experiment

A VGL experiment, using a scalar critic, is now described, for a variation on the simple
quadratic-optimisation experiment previously described in Section 3.7.
The environment is defined with £ = 2 € R and @ = u € R, and model and cost

functions:

flztiu):==x+u
Uz, t,u):=0.

Each trajectory is defined to terminate after exactly one time step. A terminal cost
defined by ®(x) := (z)? is received at the end of the trajectory. The whole trajectory
is parameterised by just zo and ug. The total cost for this trajectory is (zg + ug)?, so
the optimal action to choose is ug = —xy.

The action network A(Z,Z) was a layered neural network with two inputs, one

output and one hidden layer of 4 nodes, short-cut connections from the input layer to
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the output layer, and with activation function g(z) = tanh(z) on all nodes. The weights
Z were initially randomly chosen from [—0.1,0.1] uniformly. The critic network J (Z, W)
was identically dimensioned to the action network, with a weight vector « randomised
initially in the same way. The activation function used for the critic was g(z) = tanh(x)
on all nodes except for the output node, which used g(x) = x. The input vector to
each neural network was (z,t), since in this problem the optimal cost-to-go function
depends on both of these inputs.

The VGL(\) algorithm was used (Alg. 3.2), using learning rate constants o = 0.1
and 8 = 0.1, and discount factor v = 1. Each trajectory started from z = 0.8.
Experimental results, for both a vector-critic and a scalar critic, averaged over 10 trials
are shown in Fig. 11.3. The graph shows that both variants can solve this problem in

similar time. The vector-critic’s results are slightly faster, but with this being such a

simple test problem the slight difference between the two critic-types is not significant.

0.7 .

0.6 = Scalar critic |
- Vector critic ---------
80'5 - .
004 .
0.3 -
0.2 b ]

0.1} i

0 Citieot
1 10 100
Tterations

Figure 11.3: Results for Using a Scalar Critic and a Vector Critic to Solve the Problem
Described in Section 11.2.3. Both critic types manage to reduce the total cost to almost
zero within 100 iterations.

11.3 Chapter Conclusions

A very clear and straightforward algorithm to find the product a%igfg exactly, in time
O(dim(w)), has been presented. It has been shown that using a forward accumulation
of the derivatives leads to an extremely easy way to derive the algorithm, in comparison
to a backward accumulation that the GDHP literature generally advocates.
Appropriate modifications to the R method of Pearlmutter (1994) have been made,

which enable the algorithm to be derived quickly. Empirical demonstrations have been
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provided for the problem of learning target gradients in a neural network, and in a
simple scalar-critic versus vector-critic VGL comparison. It is the intention of this
chapter that implementing VGL with a scalar-critic should be straightforward, and in

an efficient (O(dim(«w))) running time too.
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Chapter 12

Thesis Conclusions

This thesis has presented a body of work on value-gradient learning. Motivations for
using value-gradient learning have been given, in terms of demonstrations of the de-
ficiencies in value-learning. VGL algorithms have been designed to overcome these
limitations, and the VGL(A) and DHP algorithms have been stated in both equation
form, and in clear pseudocode form, and empirical results have been provided, in Chap-
ters 3, 5 and 10.

A number of technical issues have been addressed relating to making a complete
VGL implementation. These included the efficient computation of a differentiable
greedy policy, described in Chapter 5. Another is the problem of clipping, which was
described and solved in Chapter 10. And finally, for VGL methods, it is useful to be
able to calculate the neural-network second-derivative matrix term, ag%f), easily and

efficiently. This has been addressed in Chapter 11.

A reflection on the purpose and motivations for this thesis are given in the following
subsection (Section 12.1), followed by a high-level description of what the theoretical
contributions of this thesis have achieved, in Section 12.2. Finally, pointers for possible

future work are given in Section 12.3.

12.1 Purpose and Motivation for Thesis

The purpose of this thesis has been to investigate and develop solutions that effec-
tively solve the ADPRL problem, while following the paradigm of using approxima-

tions to Bellman’s value function, i.e. approximate dynamic programming (ADP).
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The value-function methodology provides a satisfying mathematical structure to the
ADPRL problem which other methods such as policy-gradient learning, or genetic
algorithms, or exhaustive search in the policy space, do not seem to offer. The in-
tuitive motivation for value-functions is that one can just observe the total or partial
trajectory-cost that arrives, and simply by observing (and remembering) those values,
one can deduce optimal future behaviour; assuming the learning algorithm eventually
converges.

The desire to develop value-gradient learning came from attempting to use TD(A)
to solve an extremely simple control problem, the Vertical Lander, and finding that it
could not solve that problem without what seemed like the unreasonable requirement to
introduce randomness into the algorithm, to satisfy the need for value exploration. Even
when value exploration was successfully introduced, the learning process’ convergence
was very unreliable and slow, when using a neural-critic.

The thesis gives concrete examples of VL methods converging to suboptimal tra-
jectories in the absence of value exploration (e.g. see Fig. 3.1), and of VL methods
diverging (e.g. see Fig. 9.2).

After these experiences, it seemed worthwhile to rethink the approach. The cause of
the problem was identified to be that Bellman’s principle requires the policy to become
greedy, and the greedy policy requires value gradients to be learned. Value-learning
methods, without value exploration, were simply not learning the value-gradients; and
when value exploration was used to address this problem, value-learning suffered greatly
from inefficiency and from stochastic noise corrupting the learning signal.

The most obvious and fastest way to fix this problem was to directly learn the value
gradients instead of the values themselves. This produced immediate successful results,
by obviating the need for stochastic value exploration (e.g. as shown in Section 3.6),
and producing large speed-ups of learning (e.g. as shown in Section 3.7).

It must be acknowledged, again, that Werbos has pioneered all of the main ideas
for VGL methods way back since the late 1970s. He understood the motivations for
using value-gradients (in the form of DHP/GDHP) to avoid the need for value explo-
ration, and for speeding up learning. Interestingly, he had the foresight to include an
“Omega” matrix into the GDHP weight update, although it was slightly troubling as
it was previously unknown how to decide what value to assign to it. Happily this has

been largely resolved, at least when A = 1, by Eq. (3.8) of this thesis. Like Werbos’
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pioneering work of backpropagation (Werbos, 1974) preceding the neural-network com-
munity’s general discovery of backpropagation (Rumelhart et al.; 1986), from the point
of view of myself, his dual-heuristic programming algorithms were very much ahead of
their time in ADPRL.

Learning value-gradients requires obtaining an equation for the “target” value gradi-
ent, and this comes with the expense of needing to know the model functions, thus losing
the model-free aspects of value-learning methodologies. But the requirement to know or
learn the model functions does seem like a worthwhile price, as value-gradient methods
deliver several potential benefits, including much faster convergence, automatic local
value exploration, analytical understanding on what the greedy policy depends upon;
and they have ultimately led to a robust, proven-convergent, critic-learning algorithm
(VGLQ(1)), for control problems.

12.2 Theoretical Accomplishments

This discussion gives a very high-level overview of the theoretical achievements of this
thesis. Questions are answered relating to “what” a critic needs to learn for optimality,
“how” it can do it and “whether” it is guaranteed to work.

The question of “what” a critic needs to know for trajectory optimality has been ad-
dressed in Chapter 7, for deterministic environments. This showed that in continuous-
valued state spaces, the value-gradient is a necessary artefact that must be learned for
trajectory optimality. This proof affects all ADPRL methods that work with a critic in
continuous-valued state spaces. In continuous-valued state spaces, it affects VL just as
much as it affects VGL. It also shows how VGL methods differ from VL methods. VGL
methods are trying to learn a quantity along the sampled trajectory which will make
the sampled trajectory locally optimal or extremal. This quantity is the value-gradient.
VL methods do not attempt to learn the value-gradient, directly. VL methods will only
achieve trajectory optimality by learning the values along many adjacent trajectories,
as illustrated in Fig. 3.2. This is required since learning values along multiple adja-
cent trajectories implicitly learns the value gradients which are necessary for trajectory
optimality.

The next question addressed was “how” can a critic function be trained reliably,

when function approximation creates difficulties in that bending the critic in one place
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will inadvertently bend it in other places too; and that learning the critic changes the
greedy policy, while changing the policy changes the critic; so how can this process
ever be assured to converge? This thesis has given a convergent algorithm for this
problem, in Chapter 8. It was quite a shock to discover that, a) the progress measure
that displayed monotonic progress was not some sum-of-squares error function on the
value-function estimation error, but instead it was J itself; and b) the best convergence
result of this thesis comes by proving equivalence to BPTT, a non-critic based ADPRL
solution method. The implications of this were discussed further in Section 8.2.4.

The issue of how the critic can be trained reliably also raised the question of
“whether” existing algorithms can also do it reliably. The answer to this question
was found to be “no” for the algorithms examined, when used in conjunction with a
greedy policy. This was proven in Chapter 9, where divergence examples were given for
TD(0), TD(1), DHP and VGL(1). Convergence proofs do exist for some critic learning
algorithms in the ADPRL literature, but these are limited in that most do not apply

to a greedy policy and/or non-linear function approximation.

12.3 Further Future Work

For further work to extend this thesis, a convergent critic-learning algorithm that works
with a greedy policy and A < 1 is sought. It is likely that the methods of Heydari and
Balakrishnan (2011) or Maei et al. (2009) could provide pointers for this.

Another area would be to investigate further how stochastic environments affect
VGL(A) compared to TD(A). It was interesting that VGL(1) could learn the stochastic
task shown in Fig. 3.7, but TD(1) could not learn the corresponding stochastic task
shown in Fig. 2.4. Since one of the key motivations for using A < 1 in VL methods
is to cope with stochastic variance in the learning signal better, it would be worth
investigating whether this benefit of low X carries over to VGL(\) methods at all. If
so, then it motivates the need to find a convergent algorithm for VGL(A) for A < 1; if
not, then it strengthens the value of the existing convergence proof for VGL(1).

There was a missing stochastic analysis for the optimality-trajectory proof given
Chapter 7. The empirical results in this thesis do show that VGL(A) works well in
stochastic environments, in the absence of value-exploration, but the theoretical case

for automatic local value-exploration in stochastic environments needs making properly.
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Equivalences have been proven between PGL and BPTT (in Chapter 6,) and also
between VGLQ(1) and BPTT (in Chapter 8). It would be worth investigating if any
model-free stochastic algorithms could form a mean weight update equal to any VGL
algorithm; and then the convergence results of VGL2(1) might be able to be transferred
over to that model-free algorithm.

Finally, the formula for the €, matrix given in Eq. (3.8) is proven to ensure con-
vergence in the algorithm VGLS(1). It would be interesting to investigate empirically
whether this choice of 2; can make learning more stable for VGLQ(\) for other values
of A\ < 1. Preliminary experiments have produced promising results in this direction,

but only in the situation where the €; matrix is full rank.
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Afterword

Thank you for reading this thesis. The thesis is based upon research that
was started in the year 2001 as a solitary research project, and finally com-
pleted in 2014, as a Ph.D. thesis. I would be grateful to receive any email
to say that the thesis has found some readers other than those related to

the examination process.

Michael Fairbank.

February 2014.
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