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The field of neurosymbolic AI aims to benefit from the combination of neural networks and 
symbolic systems. A cornerstone of the field is the translation or encoding of symbolic knowledge 
into neural networks. Although many neurosymbolic methods and approaches have been 
proposed, and with a large increase in recent years, no common definition of encoding exists that 
can enable a precise, theoretical comparison of neurosymbolic methods. This paper addresses this 
problem by introducing a semantic framework for neurosymbolic AI. We start by providing a 
formal definition of semantic encoding, specifying the components and conditions under which 
a knowledge-base can be encoded correctly by a neural network. We then show that many 
neurosymbolic approaches are accounted for by this definition. We provide a number of examples 
and correspondence proofs applying the proposed framework to the neural encoding of various 
forms of knowledge representation. Many, at first sight disparate, neurosymbolic methods, are 
shown to fall within the proposed formalization. This is expected to provide guidance to future 
neurosymbolic encodings by placing them in the broader context of semantic encodings of entire 
families of existing neurosymbolic systems. The paper hopes to help initiate a discussion around 
the provision of a theory for neurosymbolic AI and a semantics for deep learning.

1. Introduction

The separation of the AI community into two areas of research - connectionism versus symbolic AI - has resulted in two largely 
separate types of AI systems: deep neural networks and agent-based systems, respectively. Deep neural networks use massively par-

allel computational models known as artificial neural networks (ANNs). ANNs use very efficient message passing to model statistical 
regularities in large amounts of data. This makes them very effective at making predictions about unseen data, solving practical prob-

lems such as facial recognition and audio prediction involving high-dimensional, multi-modal and weakly-correlated data streams. 
By contrast, symbolic AI seeks to develop systems that reason explicitly about the world using a set of generally-applicable rules that 
serve to manipulate pre-defined symbols to reach a conclusion. Parallels have been drawn between the connectionist and symbolic 
paradigms of AI and Daniel Kahneman’s research on human reasoning and decision making and so-called AI system 1 and system 2 
[28].

Despite all the recent success of deep learning, it seems clear now that ANNs often struggle with learning and reasoning about 
abstract properties and concept hierarchies. A better approach should allow for what has been learned to be described in ways that 
humans can understand, to be efficiently re-used in a new related situation, and to be reasoned about and safely improved upon, as 
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argued in [8]. Even with headline results such as the super-human capability of deep neural networks, e.g. at playing games, small 
changes made to the game environment can cause the network to underperform or fail altogether [19]. In the case of large language 
models, it is known that certain changes made to the input prompt may cause the network to produce wrong outputs, which became 
known as hallucinations [22]. Such results suggest an inability of standard neural networks to learn the generally-applicable principles 
that could be applied robustly to different games or to extrapolate beyond the training data to learn the key abstract concept relations 
that may guard against hallucinations.

Specific neural network architectures are therefore designed to accomplish specific tasks related to specific properties of datasets, 
e.g. image translation invariance in the case of Convolutional Neural Networks (CNNs) [39]. Thus, a major research question persists: 
how might a neural network be designed to learn and describe a general principle? Suppose that a dataset satisfies a set of logical 
propositions 𝐿. One would expect that a network that has learned to represent, or encode 𝐿 should perform better on that dataset 
than a network that has not. But what does it mean for a network to encode a logical proposition? This is the question that we shall 
formalize in this paper. It is a pre-requisite to the answer of the earlier, bigger question. In this process, we make the assumption that 
the referred general principle can be formalized by computational logic.

The question of encoding knowledge in neural networks pertains to the domain of neurosymbolic AI [17,18]. Countless techniques 
for combining neural networks and symbolic AI have been developed. However, as we shall see, there does not exist one unifying 
framework for neural encoding. Not only does this make the development of a theory for neurosymbolic AI impossible, it also makes 
it difficult to compare the many different techniques in the literature as they may use different notions of encoding and logical 
equivalence.

The field of neurosymbolic AI has developed with the objective of combining the strengths of neural networks and symbolic sys-

tems, including the integration of learning and reasoning systems containing neural and symbolic components [18]. In neurosymbolic 
AI, most of the attention has been focused on the development and practical evaluation of such systems that might benefit from data 
and knowledge represented in various forms, and the extraction of symbolic knowledge from trained neural networks, this latter 
area having made fundamental contributions to the field of explainable AI [5]. That is to say, methodologies have been developed 
generally independently with a focus on practical concerns and empirical evaluation. By contrast, this paper is focused on making a 
contribution towards the provision of a unifying underlying foundation for neurosymbolic AI.

This paper introduces a framework for the encoding of the semantics of logic into neural networks. Through the formal definitions 
of semantic encoding introduced in the paper, we emphasise the need for neurosymbolic AI that is based on provably sound translations 
of knowledge into networks. The framework establishes correspondences between logical systems and classes of neural networks. It 
is expected to serve as a foundation for the future development of a theory for neurosymbolic AI by defining a general and yet precise 
set-theoretic notation required for the development of such a theory.

In a nutshell, this paper will offer a set of definitions of the components and conditions that must be satisfied for a knowledge-base 
to be encoded correctly by a neural network. The contribution of the paper is three-fold, offering:

• a unifying framework for semantic encoding upon which a theory of neurosymbolic AI can be developed in future;

• a tool for the systematic description of a large number of existing neurosymbolic approaches w.r.t. a choice of encoding and 
aggregation;

• a formalization capable of providing a certain guidance to future neurosymbolic encodings by placing them in the broader context 
of the semantic encoding of families of neurosymbolic systems.

While the differences in approach of a large number of loosely-coupled neurosymbolic systems may make the development of 
a all-encompassing framework unlikely, this paper shows that many of the more tightly-coupled neurosymbolic approaches can be 
formalized within the proposed framework. This is because, at a fundamental level, semantic encoding works by mapping the state of 
a neural network to semantic information. Despite the differences in network architecture, encoding technique, and the logic being 
encoded, our framework reveals that many neurosymbolic approaches form a semantic encoding according to three basic components: 
a choice of mapping, aggregation and encoding function. In broad strokes, we define a semantic encoding of a knowledge-base into a 
neural network as a mapping such that each state of the network corresponds to semantic information obtained from the knowledge-

base. By aggregating the information contained in the states that a neural network converges to, we are left with the models of the 
knowledge-base being encoded by the network.1 This will be shown to encompass a large number of the techniques found in the 
literature, as well as to be general enough to apply to under-explored avenues of semantic encoding such as using neural networks 
with more complicated dynamic systems.

The remainder of the paper is organized as follows. In Section 2, we cover the necessary background and specify the notation 
needed to define semantic encoding used throughout the paper. In Section 3, we provide the formal definitions and examples of 
semantic encoding. In Section 4, we show that many neurosymbolic approaches form a semantic encoding according to the unifying 
formal definitions. In Section 5, we conclude with a discussion of results and directions for future research. An Appendix contains 
the neurosymbolic correspondence proofs obtained with the use of the proposed framework and the details of auxiliary results.

1 The use of the term models here refers to the formal definition of a model in logic, that is, an assignment of truth-values (True or False) mapping a knowledge-base 
to True.
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Fig. 1. A simple feed-forward neural network encoding a knowledge-base containing rules C if A, written 𝐶←𝐴, C if B, written 𝐶 ←𝐵, and fact A, written 𝐴←. The 
parameters of the network (weights and biases) are shown next to the arrows in the diagram. With bias 1, neuron A will always produce output 1 (we say that A is 
activated in this case) for any input in {0,1}, given a step function as activation function. With bias −1, neuron B will output 0 for every input. Activating either A or 
B will always activate neuron h, since the weight (1) from either A or B to h is equal to (or larger than) the negative of the bias of h. Finally, activating h also activates 
C, for the same reason as above.

2. Notation and background

We start with a simple motivating example before introducing the more technical concepts and required notation.

Example 2.1. Consider the simplest feed-forward neural network with a single hidden neuron, two input neurons (𝐴 and 𝐵) and 
one output neuron (𝐶), shown in Fig. 1. Let us assume for now that all neurons in the network take binary values {0,1} and each 
neuron is a threshold perceptron (updated according to the output of a step function). Let each input and output neuron denote a 
propositional atom (𝐴,𝐵,𝐶) with values in {0,1} mapped to truth-values 𝐹𝑎𝑙𝑠𝑒 and 𝑇 𝑟𝑢𝑒 (this localist binary representation to be 
extended to a distributed vector representation and many-valued atoms later). Each state of this network represents an assignment 
of truth-values to the atoms. With its current weights and biases in {−1,1} as shown in Fig. 1 (also to be extended to real numbers 
later), the network encodes the knowledge-base (or program) 𝑃 = {𝐶 ← 𝐴;𝐶 ← 𝐵;𝐴←} meaning that C is 𝑇 𝑟𝑢𝑒 if A is 𝑇 𝑟𝑢𝑒, C is 
𝑇 𝑟𝑢𝑒 if B is 𝑇 𝑟𝑢𝑒, and A is 𝑇 𝑟𝑢𝑒 (in this case, we say that A is a fact). The first two rules can be combined and described as: if A or B 
holds then C also does. Given, for example, a network state (𝐴,𝐵,ℎ,𝐶) = (0,1,0,1), denoting that neuron A has activation value zero, 
neuron B has activation value 1 and so on, updating the state of the network in the usual way should produce state (1,0,1,0). The 
bias of 𝐴 shown in Fig. 1 as being equal to 1 makes the new state of 𝐴 equal to 1 given any input to 𝐴 in {0,1}. For the same reason, 
the state of 𝐵 becomes 0 with the bias of −1. The previous state of 𝐵 = 1 makes ℎ = 1, and the previous state of ℎ = 0 makes 𝐶 = 0. 
Updating a second time gives the state (1,0,1,1). This is because 𝐴 = 1 produces ℎ = 1, and the previous ℎ = 1 gives 𝐶 = 1. State 
(1,0,1,1) then produces state (1,0,1,1), that is a stable state equivalent to mapping (𝐴,𝐵,𝐶), starting from (𝐹𝑎𝑙𝑠𝑒, 𝑇 𝑟𝑢𝑒, 𝑇 𝑟𝑢𝑒) to 
(𝑇 𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒, 𝑇 𝑟𝑢𝑒), which is the same result as calculating the least fixed-point of 𝑃 [13]. This correspondence between the network 
states given a set of weights and the fixed-point semantics of a logic program, once proven, makes the neural network semantically 
equivalent to the logic program. Implementing the least fixed-point operator 𝑇𝑃 of a logic program in a neural network is a common 
method for encoding symbolic knowledge into neural networks [18,9,27], first introduced in [26].2

Another notion of equivalence that is not dependent on the fixed-point semantics of logic programming - and therefore applicable 
to other logic representations - can be found in the encoding of propositional and non-monotonic logic into the energy function 
of symmetric neural networks [40,53]. Again, each state of the neural network represents a propositional truth-assignment and the 
network encodes a knowledge-base in the sense that minima of the network’s energy function correspond to the models of a knowledge-

base. In probabilistic approaches such as [45,33], the models of a knowledge-base are encoded into the states of a distribution with 
non-zero probability. Although these might seem to be radically different notions of encoding, they all share commonalities which we 
shall be able to formalize using the framework introduced in this paper. For one, each state of the neural network represents semantic 
information. Furthermore, the models of the knowledge-base correspond to stationary points of the neural network. For example, 
for Horn clauses, the model of a logic program is the stationary-point of fixed-point operator 𝑇𝑃 , an energy-based network always 
converges to a minimum of its energy function [24], and probabilistic approach Markov Logic Networks (MLNs) are guaranteed to 
converge to their stationary distribution [45]. There are neurosymbolic techniques that do not use semantic information in neural 
encodings, e.g. [50]. However, semantic methods make up a large portion of neural encodings in the literature and, for this reason, 
will be the focus of this paper.

2 Differently from the example shown here, in [26] an auto-associative recurrent network is used: input neurons (A and B) are repeated in the output layer of the 
network and output neuron C is repeated in the input layer. Although the representation used here is more compact, the basic idea is the same.
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2.1. Artificial neural networks

The central object of study in neural computation is the artificial neural network (ANN), which we will refer to simply as a neural 
network. A neural network is a highly parallel model consisting of simple computational units called neurons which communicate via 
a set of weighted connections. Artificial neural networks were developed as a computational model meant to replicate the behaviour 
of the biological neural networks found in the nervous system [37]. It is interesting to note that already in their original paper, 
McCulloch and Pitts’ objective was to map such models to logical properties and operations. Although substantial differences exist 
between the neurons found in the nervous system and the idealized neurons used in artificial neural networks [23], the central idea 
is preserved: a neuron receives input from the neurons to which it is connected. If the total input is greater than a certain threshold 
the neuron will fire, sending the signal to all the other neurons that it is connected to. Hence, an ANN is a computational model. We 
can construct a graph from a neural network by adding nodes for each neuron and an edge between nodes if there is a connection 
between the corresponding neurons in the neural network. If the resulting graph contains no cycles then we say that the network is 
feed-forward, and if it contains cycles we say that the network is recurrent. Each neuron in a neural network is given a label 𝑖 ∈ ℕ
and its activation value is denoted with a variable, 𝑥𝑖. In the basic conception of ANNs, the input to 𝑥𝑖 is a weighted sum of the 
values of the neurons connected to 𝑖, in other words the input to a neuron 𝑖 is 

∑
𝑗

𝑤𝑗𝑖𝑥𝑗 + 𝑏𝑖, where 𝑤𝑗𝑖 ∈ℝ is the connection weight 

from neuron 𝑗 to 𝑖, and 𝑏𝑖 ∈ℝ is an additional parameter called the bias. The input to the neuron is then passed to the Heaviside step 
function, defined by 𝑓 (𝑥) = 1 if 𝑥 ≥ 0, and 𝑓 (𝑥) = 0 otherwise. Given values for each neuron, we can use this function to calculate an 
updated value, 𝑥′

𝑖
, for neuron 𝑖 as 𝑥′

𝑖
= 1 if 

∑
𝑗

𝑤𝑗𝑖𝑥𝑗 + 𝑏𝑖 ≥ 0, and 0 otherwise.

The basic neuron described above can be generalized in various ways by allowing it to take on arbitrary real values and to use 
various transfer functions (also called an activation function) other than the heavy-side step function. A transfer function is a function 
𝑔 ∶ℝ→ℝ that maps the weighted input of the neuron to its output. Popular transfer functions for neurons that take real numbers as 
activation values include 𝑡𝑎𝑛ℎ, the logistic function 𝜎(𝑥) = 1 

1+𝑒−𝑥 , and the rectified linear function:

𝑅𝑒𝑙𝑢(𝑥) =
{
𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0

The values of the neurons are then updated with the equation 𝑥′
𝑖
= 𝑔𝑖(

∑
𝑗

𝑤𝑗,𝑖𝑥𝑗 +𝑏𝑖), where 𝑔𝑖 is the transfer function of the 𝑖𝑡ℎ neuron. 

A state of a neural network with 𝑛 neurons is a vector (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ℝ𝑛 representing an assignment of values to each neuron. The 
state space, denoted by 𝑋 ⊆ℝ𝑛, is the set of all such vectors that are allowed. We often restrict the state space to a proper subset of 
ℝ𝑛 even if the update equations are defined on the entirety of ℝ𝑛 . A neural network, therefore, defines a dynamical system on its state 
space, as follows:

𝑥𝑡+1 = 𝑔(𝑊 𝑥𝑡 + 𝑏), (1)

where 𝑥𝑡 is the vector representing the state of each neuron at time 𝑡 ∈ ℕ, 𝑔 is the stack of transfer functions for each neuron, i.e. 
𝑔(𝑥1, ..., 𝑥𝑛) = (𝑔1(𝑥1), ..., 𝑔𝑛(𝑥𝑛)), 𝑊 is the weight matrix and 𝑏 is the vector of biases. This definition does not include some variants 
of neural networks. In particular, probabilistic neural networks, neural networks with delayed connections, and neural networks that 
operate in continuous time. We will cover probabilistic networks when we discuss probabilistic semantic encodings and for simplicity 
we will not discuss continuous time networks or networks with delayed connections, although our definition of semantic encoding 
can be applied to those cases too.

In neurosymbolic computing, the state of a network is meant to represent meaningful symbolic information. However, a neural 
network often has hidden neurons which increase the computational power but do not themselves represent relevant symbolic infor-

mation. In these networks, a semantic encoding provides a semantic interpretation to the visible neurons (typically input and output 
or bottleneck neurons). Furthermore, in some cases a network may require intermediate computational steps in order to implement a 
specific update function. To apply our definition of semantic encoding correctly in these cases, we will equip neural networks with an 
equivalence class on the state-space induced by its hidden neurons. This equivalence class defines the set of states of the network that 
are meaningfully distinct. We will also give a network an additional parameter called the computation time, 𝑡𝑐 ∈ ℕ, which indicates 
the number of times that Equation (1) should be applied for a single update of the network’s semantics. This leads to the following 
definition of a candidate network:

Definition 2.1. Let 𝑁 be a neural network with 𝑛 neurons and let 𝑋 ⊂ℝ𝑛 be its state space. Given a partition of {1,2, ..., 𝑛} into two 
sets named the visible units 𝑉 ≠ ∅, and the hidden units 𝐻 , a candidate network is a triple (𝑁,∼𝑁, 𝑡𝑐), where ∼𝑁 is the equivalence 
relation on 𝑋 defined by 𝑥 ∼𝑁 𝑥′ if and only if 𝑥𝑖 = 𝑥′𝑖 for all 𝑖 ∈ 𝑉 , and 𝑡𝑐 ∈ ℕ is a positive integer. We write 𝑁(𝑥) to denote the 
result of updating the state, 𝑥, 𝑡𝑐 times according to Equation (1), and 𝑁𝑘(𝑥) to denote the result of updating 𝑥 𝑡𝑐 ⋅ 𝑘 times.

If a neural network has no hidden units then all states of the network are semantically-relevant and each candidate network is 
(𝑁,=, 𝑡𝑐) for some 𝑡𝑐 .

In the following example and throughout the paper we will represent a neural network visually as in Fig. 2 by representing neurons 
with a labelled graph node, connections 𝑤𝑖𝑗 as a weighted edge from node 𝑖 to node 𝑗, and biases 𝑏𝑖 as a weighted edge with node 𝑖
as a target and no source. If a node does not have an edge for the bias then the neuron represented by the node has a bias of 0.
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Fig. 2. A simple recurrent neural network with 3 neurons. 

Example 2.2. Consider the network in Fig. 2. Assume that all neurons take binary values and have the Heaviside step function as their 
activation function. As shown in the figure, all nodes have biases of −0.5. The state space is {(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), 
(1,0,1), (1,1,0), (1,1,1)}. If neurons 𝑥2 and 𝑥3 are considered to be hidden then our equivalence relation is (𝑥1, 𝑥2, 𝑥3) ∼𝑁 (𝑥′1, 𝑥

′
2, 𝑥

′
3)

if and only if 𝑥1 = 𝑥′1. The equivalence classes are {(0), (1)} where (0) is the equivalence class containing all states in which 𝑥1 = 0, 
and (1) is the equivalence class containing all states in which 𝑥1 = 1. Consider three candidate networks: (𝑁,∼𝑁,1), (𝑁,∼𝑁,2) and 
(𝑁,∼𝑁,3). By simple calculation (i.e. propagation of activation through the network), in the first case 𝑁((𝑥1 , 𝑥2, 𝑥3)) = (𝑥3, 𝑥1, 𝑥2), 
in the second case 𝑁((𝑥1, 𝑥2, 𝑥3)) = (𝑥2, 𝑥3, 𝑥1), and in the third case 𝑁((𝑥1, 𝑥2, 𝑥3)) = (𝑥1, 𝑥2, 𝑥3). This shows that updating the third 
candidate network is equivalent to the identity function.

Candidate networks will be one of the two components being related by semantic encoding; the other being the knowledge-base 
of a logical system. From this point on, we will never have to work with a neural network that is not a candidate network. For 
brevity, we will often refer to a candidate network (𝑁,∼𝑁, 𝑡𝑐) simply as a neural network and we will specify the hidden units and 
computation time. When the hidden units and computation time are not specified, the corresponding candidate network should be 
taken to be (𝑁,=,1).

While the majority of neural networks that we discuss can be described as outlined above, not all the neural networks used in 
practice conform to the definitions. Feed-forward neural networks generally have their input state fixed rather than updated. Many 
recently developed models, such as graph neural networks are not updated via a simple summation of weights, etc. Despite this, our 
framework can be applied to these other networks too. All that is necessary for our definitions to apply is the existence of a state 
space, 𝑉 = 𝑉𝑣𝑖𝑠𝑖𝑏𝑙𝑒 × 𝑉ℎ𝑖𝑑𝑑𝑒𝑛 and a mapping 𝑁 ∶ 𝑉 → 𝑉 . All our illustrative examples will use neural networks as defined above. 
Examples from the literature that do not use neural networks as defined above will be explained in more detail.

Many neurosymbolic techniques make use of stable state semantics. In stable state semantics, the models of a logical system are 
represented by the fixed points of a function. In order to make use of stable state semantics with neural networks, we must guarantee 
that the neural network will always converge to a stable state. This motivates the following definition.

Definition 2.2. Given a neural network, 𝑁 , with state space 𝑋, a point 𝑥 ∈𝑋 is stable if there exists 𝑡 > 0 such that for all 𝑡′ ≥ 𝑡, 
𝑁𝑡′ (𝑥) =𝑁𝑡(𝑥).

For many of the networks we investigate, given any initial state, the state of the network will eventually converge to a fixed point. 
This is a useful property for creating semantic encodings. It means that we can build a semantic encoding by designing a network 
to have a specific set of fixed points. Note that all feed-forward networks have this property. In particular, a feed-forward network 
with 𝑘 layers will settle onto a fixed point after 𝑘 updates. To see this, first consider the values of the neurons in the input layer after 
the first time step. Without a change in the input, the state of the first layer is determined solely by the biases of the input neurons 
and is thus fixed after the first time step. Accordingly, the values of the neurons in the second layer do not change after the second 
time step, and so on until the values of the neurons in all layers are fixed. While this property of feed-forward networks is sometimes 
used in semantic encodings of logic programs, more often feed-forward networks are viewed as functions from the initial values of 
the input layer to the output layer. In these cases, we clamp the state of the first layer to the values of the input. We will make sure 
to distinguish between the two cases when they appear.

As we will see in the following section, if a network settles to a fixed-point, then the states which carry the relevant semantic 
information are the stable ones. Otherwise, we will look to the states that satisfy weaker conditions, such as infinite recurrence, as 
defined below.
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Definition 2.3. Given a neural network 𝑁 with state space 𝑋, we say that 𝑥 ∈𝑋 is infinitely recurring if there exists 𝑥0 ∈𝑋 such 
that for all 𝑡 > 0, ∃𝑡′ > 𝑡 such that 𝑁𝑡′ (𝑥0) = 𝑥.

Notice that all stable states are infinitely recurring. If the state space of a neural network is finite, then after enough time, the state 
of the neural network will always be an infinitely recurring state. However, we also want our framework to accommodate networks 
with continuous state spaces and so there is one more case to consider, as follows.

Definition 2.4. Given a neural network, 𝑁 , with state space 𝑋, we say that 𝑥 ∈𝑋 is a limit point of 𝑁 if there exists a sequence 
{𝑁𝑡𝑖 (𝑥0)}∞𝑖=1, 𝑡𝑖 < 𝑡𝑖+1, with lim 

𝑖→∞
𝑁𝑡𝑖 (𝑥0) = 𝑥. Call the set of limit points 𝑋inf.

It is easy to see that if 𝑥 is infinitely recurring then 𝑥 ∈𝑋inf. Furthermore, if 𝑋 is finite then 𝑋inf is exactly the set of infinitely 
recurring points. It will be the semantic interpretation of 𝑋inf that determines whether or not a neural network encodes a knowledge-

base. Our final requirement for neural networks is that they are stable in the sense that they always converge to 𝑋𝑖𝑛𝑓 .

Definition 2.5. A neural network, 𝑁 , is stable if lim 
𝑡→∞

𝑑(𝑁𝑡(𝑥),𝑋𝑖𝑛𝑓 ) = 0 where 𝑑(𝑥,𝑋0) is the distance between a point and a set 
defined by 𝑑(𝑥,𝑋0) = inf

𝑥0∈𝑋0
|𝑥− 𝑥0|.

Generally speaking, most of the networks we examine will always settle on a fixed point. However, we also include the cases where 
the network converges to a cycle or a general limit point. Generalizing our definitions to networks that do not have this property (for 
example, networks which exhibit chaotic behaviour) will be left as future work.

2.2. Logical systems

Logical systems are expected to capture the fundamental properties of logic by abstracting away the meaning of sentences. This 
allows logical deduction to be seen as a relationship between sentences determined by their structural properties. A logical system 
is thus comprised of a language and some notion of entailment which determines whether one sentence follows logically from a 
knowledge-base, which we define as a set of sentences. In order to keep our definitions sufficiently general, we define a logical system 
as a pair  = (,⊢ ) where  is a computable language and ⊢ is a computable relation on 2. Usually, ⊢ is defined either as a 
deductive system, in which a set of predefined rules and axioms are used to compute, given 𝐿,𝐿′ ⊆, whether or not 𝐿⊢ 𝐿

′, or ⊢

is defined semantically by a set of interpretations which determine a truth-value for every 𝐿 ⊆ . Because we are looking at semantic 
encodings of logical systems into neural networks, we will use the following as our formal definition of a logical system.

Definition 2.6. Given a language , and a set  ⊆ {𝑓 |𝑓 ∶ 2 → {0,1}}, a logical system is a pair  = (,⊢ ), where ⊢ is the 
relation defined by 𝐿⊢ 𝐿

′ if and only if for all 𝑀 ∈, if 𝑀(𝐿) = 1 then 𝑀(𝐿′) = 1.

The functions 𝑀 ∈ are intended to interpret the abstract sentences in  in such a way that the truth of each knowledge-base 
𝐿 can be determined. If 𝑀(𝐿) = 1 then 𝐿 is true in 𝑀 and if 𝑀(𝐿) = 0 then 𝐿 is false in 𝑀 . 𝑀 is thus referred to as an interpretation

of the logical system. If 𝑀(𝐿) = 1 we say that 𝑀 is a model of 𝐿. We use 𝐿 to denote the set of models of 𝐿. When we refer to a 
logical system, we will assume that ⊢ is defined by some set of interpretations . Because we are only looking at entailment from 
a semantic point of view, we will use the symbol ⊨ in place of ⊢ which is more commonly reserved for entailment defined by 
deductive rules. Because ⊨ is completely defined by , we will refer to a logical system as  = (,).

In many logical systems used in AI, sentences are often augmented with additional information in the form of a label. A label 
is meant to confer additional information about a sentence that is not conveyed in the language itself. Examples of labels include 
confidence levels, target truth-values or timestamps. A formal framework to define labelled deductive systems can be found in [15]. 
For simplicity, we stick with the standard previously established definition of a logical system, but our definition of semantic encoding 
could also be applied to the logic framework of Labelled Deductive Systems (LDS). We conclude this section with an example using 
a propositional fuzzy logic, later to be encoded into a neural network using Logic Tensor Networks (LTN) [48].

Example 2.3. Let 𝑝 be the language of propositional logic constructed from the set of variables  = {𝑋1,𝑋2, ...} and the logical 
symbols {¬,∨}. Define 𝑓 as the set of sentences of the form [𝑎, 𝑏] ∶ 𝑙, where 𝑎, 𝑏 ∈ [0,1], 𝑎 ≤ 𝑏 and 𝑙 ∈ 𝑝. Given a function 
𝑀𝑡 ∶  → [0,1], we define a function �̂�𝑡 ∶𝑝 → [0,1] recursively:

�̂�𝑡(𝑋𝑖) =𝑀𝑡(𝑋𝑖)

�̂�𝑡(¬𝑙) = 1 − �̂�𝑡(𝑙)

�̂�𝑡(𝑙 ∨ 𝑙′) = max(�̂�𝑡(𝑙), �̂�𝑡(𝑙′))

Given a sentence [𝑎, 𝑏] ∶ 𝑙 ∈𝑓 , if �̂�𝑡(𝑙) is in the interval [𝑎, 𝑏] then we say that �̂�𝑡 satisfies the sentence. We construct an interpreta-

tion, 𝑀 , from �̂�𝑡 by defining 𝑀(𝐿) = 1 if and only if �̂�𝑡 satisfies all sentences in 𝐿. The set of interpretations is in a one-to-one corre-

spondence with the set of mappings �̂�𝑡. To demonstrate entailment, consider the knowledge-base 𝐿 = {[0,0.1] ∶𝐴, [0.4,0.5] ∶𝐴∨𝐵}. 
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Because all models of 𝐿 must satisfy �̂�𝑡(𝐴) ∈ [0,0,1], and �̂�𝑡(𝐴 ∨ 𝐵) ∈ [0,4,0.5], they must also satisfy �̂�𝑡(𝐵) ∈ [0.4,0.5] and so 
𝐿⊨ {[0.4,0.5] ∶ 𝐵}.

With the above definitions of neural networks and logical systems we can formally define what we mean by a semantic encoding 
between the two. To give a preview, the idea will be to represent a neural network with a knowledge-base in a logical system. This 
is done by mapping each state of the neural network to interpretations of the logical system. By aggregating the interpretations 
represented by the limit points of the network, we associate the network with a set of interpretations for the logical system. If every 
element of this set is a model of a knowledge-base then we call the neural network a neural model of the knowledge-base. If this set of 
interpretations fully determines ⊨ for the knowledge-base then we call the neural network a semantic encoding of the knowledge-

base. We formalize this in the next section. First, we take a brief look at the various approaches to neurosymbolic computation that 
will be unified within the same framework of semantic encoding.

2.3. Neurosymbolic integration

Approaches to neurosymbolic integration generally fall into three categories: neural encoding, rule extraction and hybrid systems. 
While the latter two are interesting in their own right, it is neural encoding that is the topic of this paper. Neural encoding is the process 
of representing a symbolic system by a neural network either through its architecture and weights or through a loss function. The 
neural network is then free to be trained on additional examples with the hope that the symbolic background knowledge representation 
will guide the network to find solutions adhering to the conditions written into the network by the knowledge.

The overall challenge for neural encoding is how to map the many forms of knowledge representation that have been proven to 
be useful in symbolic AI into a neural network. These include temporal, nonmonotonic, epistemic, ontological knowledge as well 
as normative reasoning and argumentation systems [17]. It requires answering the question of how expressive neural networks are 
[10,36]. In practice, it implies striking a balance between encoding rich forms of knowledge representation such as first-order, many-

valued and higher-order logics, yet maintaining the ability of neural networks to perform efficiently as a model for learning and 
computation.

A prerequisite for neurosymbolic computing, before the above challenges can be addressed, is to answer the question: what does 
it mean for a symbolic system to be encoded correctly in a neural network? Many competing answers have been given for this 
question, generally within the context of introducing a new encoding algorithm. The first methods to address this question were the 
core methods [1,9], which showed that a neural network can implement the least fixed point operator of a logic program.3 As a result, 
a knowledge-base that can be described as a logic program can be encoded in a neural network directly by setting the weights so that 
the network can be shown to implement the semantics of that knowledge-base. Other methods at the time used energy based models 
and claimed that a neural network was equivalent to a logical system when the minima of the network’s energy function corresponded 
to the models of a knowledge-base [40,54]. More contemporary methods tend to be approximate, some use fuzzy logic operators to 
regularize the loss function while others use probabilistic measures [48,33]. In these cases, the claim is that a neural network encodes 
a knowledge-base when this loss tends to zero. Other results have claimed logical equivalence between graph neural networks and 
fragments of first order logic, or that transformers are equivalent to first order logic extended with majority quantifiers [38,4]. All of 
these approaches are obviously related in the sense that they connect neural networks with logical systems, but comparing them is 
difficult as the logic and networks vary, in some case being vastly different, and the manner in which they are related (fixed-points, 
energy valleys, marginal probabilities, etc) may appear to be incompatible with one another.

We will show that all the methods mentioned above and variations thereof have the same underlying components and implicit 
definition of equivalence. Our definition of semantic encoding will make this equivalence explicit. In practice, semantic encoding will 
offer a set of definitions of the components and conditions that must be satisfied in order to claim that a knowledge-base is encoded 
correctly by a neural network. There are numerous advantages to having a unifying framework. The most immediate benefit is that it 
allows us to compare existing methods in a systematic way. It is not immediately obvious how, e.g. LTN relates to the CORE method, 
but our framework will show that the primary difference is in the choice of aggregation and encoding functions, as defined in the 
next section. As a result, future encoding methods will be more easily situated within the context of the existing work by identifying 
explicitly their choice of components (mapping, aggregation and encoding, as illustrated in Table 1). While almost all encodings used 
today rely on stable-state semantics, that is, they assume that the neural network converges to a stable state, our framework generalizes 
this notion by allowing for recurrent networks with more complex dynamics to qualify as a semantic encoding. This will be shown 
to offer a straightforward method for extending existing techniques to new classes of encoding that will retain many of their original 
properties.

The final advantage of a unifying framework is that it opens up the possibility of developing a general theory of semantic encoding. 
The potential long-term benefit of this is to offer the tools that can help organize the research around the properties, constraints and 
results of entire sets of semantic encodings, rather than the properties, constraints and results that apply only to a single method or 
small family of methods. We will discuss this in more detail at the end of the next section.

3 The least fixed point operator, 𝑇𝑃 , of a logic program, 𝑃 , is a mapping between interpretations of the language of 𝑃 defined as 𝑇𝑃 (𝑀) = {𝐴|∃(𝐴←𝑋1 ∧𝑋2 ∧ ...∧
𝑋𝑘) ∈ 𝑃 ,𝑋1,𝑋2, ...,𝑋𝑘 ∈𝑀}.
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3. The semantic encoding framework

We now formalize the concept of semantic encoding. In a semantic encoding, each state of a neural network represents information 
about a set of interpretations of a logical system. For example, in the common neurons-as-atoms paradigm, each neuron represents a 
logical atom and the value of the neuron determines the truth-value of the atom. Each state of the neural network thus represents an 
assignment of truth-values to a set of atoms, and thus represents an interpretation or a set of interpretations of a logical system. In a 
distributed setting, the situation is similar but with each atom represented by a set of neurons and the corresponding interpretations 
represented by the neurons’ activation values. In most semantic encodings in the literature, the state of the neural network is sufficient 
to determine whether or not the corresponding interpretations are models of the knowledge-base. This is the case when the state 
of the neural network determines the truth-value of every atom contained in the knowledge-base. In some more recent semantic 
encodings, however, the state of the neural network only represents some of the information required to determine whether or not 
the interpretations are models of a target knowledge-base. For example, in Logic Tensor Networks [48], the state only determines the 
truth-value of some of the atoms in the target knowledge-base.

For either case, the central component is a mapping 𝑖 ∶𝑋 → 2, where 𝑋 is the state space of a neural network and 2 is the 
set of interpretations of a logical system. Because we assume that the semantic information is encoded in the state of the visible units 
of the network, if 𝑥1 and 𝑥2 have an identical visible configuration then their corresponding sets of interpretations should also be 
identical. Furthermore, we would like 𝑖 to represent a ‘natural’ mapping, that is, 𝑖 should not be an arbitrary association of neural 
states and interpretations, but should instead satisfy certain commonsense constraints that arise from the particular networks and 
logical systems being considered. An example of this might be a notion of continuity of 𝑖. That is, small changes in the state of the 
network should represent correspondingly small changes in the interpretations. Because the exact constraints on 𝑖 may depend on 
the context, we impose no hard requirements in our definition. We simply assume that 𝑖 belongs to a set of functions that we call 
candidate maps that will satisfy certain constraints. A good example of a set of candidate maps are the previously discussed neurons-

as-atoms mapping, which we denote by 𝐼𝑁𝐴𝑇 . As mentioned, these are mappings which associate states of the neural network to 
interpretations by identifying atoms with single neurons. More on the set of candidate maps will be discussed in the next section. 
For now, we merely assume that there is some set of candidate maps and we use them to define a relationship between states of the 
neural network and interpretations of a logical system. We formalize this with the following definition.

Definition 3.1. Given a logical system  = (,) and a neural network 𝑁 with state space 𝑋, 𝐼 ⊂ {𝑖|𝑖 ∶ 𝑋 → 2} is a set of 
candidate maps if for all 𝑖 ∈ 𝐼 , we have that 𝑥1 ∼𝑁 𝑥2 implies that 𝑖(𝑥1) = 𝑖(𝑥2). We call 𝑖 an encoding function.

Our ultimate goal is to be able to encode a knowledge-base into a neural network in a way that makes the two equivalent. The 
mapping 𝑖 gives us a way of associating states of a neural network with interpretations of a logical system, but we are yet to define 
how the network encodes a knowledge-base. The most common approach is to design a neural network in which the interpretations 
represented by the stable states are models of the knowledge-base. The neural network is expected, therefore, to always converge to 
a model of the knowledge-base. Intuitively, we can think of this as revising the beliefs about the true state of the world until they 
satisfy a set of constraints which are assumed to be true. If every model of the knowledge-base is represented by the network in this 
way, or at least enough models to determine the semantics of the knowledge-base, then we call the network a semantic encoding of 
that knowledge-base.

How do we generalize this to networks which may exhibit periodic or other, more complicated, dynamical behaviour? To answer 
this, consider the case of the Necker Cube. The Necker Cube is an optical illusion in which there are two equally valid interpretations 
of an image; one in which the cube is extending outward and one in which the cube is extending inward. After looking at the Necker 
cube for long enough, it is common for our interpretations to switch back and forth between the two valid interpretations. With this 
in mind, we will define a neural encoding of a knowledge-base 𝐿 as a network that converges to states corresponding to the (possibly 
many) models of 𝐿. In the Necker cube example, this would mean that the network converges to one of the two interpretations before 
switching between them in a cycle.

The final thing we need to define is a method of aggregating the models represented by different states of the network. Each state 
of the network represents a set of interpretations, and a set of states represents a set of sets of interpretations. In order to define a 
set of interpretations corresponding to a network, we must have some way of combining the sets of interpretations given by different 
states of the network. For this reason, in addition to 𝑖, we assume that we are given an aggregation function, 𝐴𝑔𝑔. In all examples to 
follow, this will either be set union or intersection, but we keep 𝐴𝑔𝑔 generic in the definition below.

Definition 3.2. Let  = (,) be a logical system, 𝑁 a neural network with state space 𝑋, and let 𝐿 be a knowledge-base of  . 
Given an encoding function 𝑖 ∈ 𝐼 , 𝑖 ∶𝑋→ 2, and an aggregation function, 𝐴𝑔𝑔 ∶ 22 → 2, we define:

• Let 𝑁 =𝐴𝑔𝑔({𝑖(𝑥)|𝑥 ∈𝑋inf}). 𝑁 is called a neural model of 𝐿 under 𝐼 and 𝐴𝑔𝑔 if ∅ ⊂𝑁 ⊆𝐿.

• 𝑁 is called a semantic encoding of 𝐿 under 𝐼 and 𝐴𝑔𝑔 if it is a neural model of 𝐿 under 𝐼 and 𝐴𝑔𝑔 and 𝐿 ⊨ 𝐿
′ if and only if 

𝑁 ⊆𝐿′ .

• A set of neural networks,  , and the logical system,  , are semantically equivalent under 𝐼 and 𝐴𝑔𝑔 if every knowledge-base of 
 has a semantic encoding under 𝐼 and 𝐴𝑔𝑔 to a neural network in  and all neural networks in  are semantic encodings 
under 𝐼 and 𝐴𝑔𝑔 of some knowledge-base 𝐿.
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Fig. 3. A block diagram of a semantic encoding. The stable states of a neural network are mapped to sets of interpretations which are aggregated into a single set 
of interpretations, 𝑁 . If these interpretations are models of a knowledge-base then the neural network is said to be a neural model of the knowledge-base. If these 
interpretations represent all models of the knowledge-base (or a sufficient number of them to determine the logical entailment relation) then the neural network is 
said to be a semantic encoding.

We say that a neural network is a neural model of 𝐿 if, for any initial state, given enough time, the state of the neural network 
encodes information about models of 𝐿. How we combine this information to determine which specific models of 𝐿 the network 
represents depends on the aggregation function. In all the examples to follow, 𝐴𝑔𝑔 will be a union if 𝑖 maps each state in 𝑋inf to a 
set of models of 𝐿, and 𝐴𝑔𝑔 will be an intersection otherwise. However, as mentioned, we leave open the possibility of alternative 
aggregations. In a semantic encoding, the models of 𝐿 represented by 𝑁 are sufficient to fully determine the semantics of 𝐿. 𝐿 may 
have models not contained in 𝑁 , but the validity of 𝐿 ⊨ 𝐿

′ only depends on the models represented by the network 𝑁 . This is 
visualized in Fig. 3. It may be useful to view the states of the network as representing beliefs about the world with 𝑖 mapping to 
interpretations which satisfy those beliefs. The beliefs of a neural network are encoded in states that it converges to over time. A 
neural model of 𝐿 is therefore a neural network whose beliefs satisfy 𝐿. Note that if 𝑁 = ∅ then the network trivially satisfies the 
condition for any knowledge-base. This can happen if the beliefs held by the relevant stable states are contradictory and 𝐴𝑔𝑔 = ∩. 
We can thus interpret a neural model of 𝐿 as a neural network that represents some set of beliefs satisfying 𝐿.

A semantic encoding is a neural model that can be used to perform logical inference. In a semantic encoding, the beliefs of a 
network, represented by 𝑁 , not only satisfy 𝐿, but if they satisfy 𝐿′ then 𝐿 ⊨ 𝐿

′. This can be most easily shown by proving 
that 𝑁 =𝐿, which is how we generally prove that a neural network is a semantic encoding throughout this paper. However, in 
certain cases, this condition would be impossible to satisfy for any neural network, encoding function and aggregation function. In 
particular, in first-order logic, the Lowenheim-Skolem theorem states that a knowledge-base that admits a model of infinite cardinality 
has models of arbitrary cardinality [41]. This means that the collection of all models for many knowledge-bases in first-order logic is 
not a set, but a proper class, whereas by definition 𝑀𝑁 must be a set.

Next, we illustrate the above definitions with several examples.

Example 3.1. Consider the propositional knowledge-base 𝐿 = {(𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ ¬𝐵)}. The models are all propositional variable 
assignments with either 𝐴 =𝐵 = 𝑇 𝑟𝑢𝑒 or 𝐴 = 𝐵 = 𝐹𝑎𝑙𝑠𝑒. We will give a semantic encoding for this knowledge-base under 𝐼𝑁𝐴𝑇 with 
𝐴𝑔𝑔 = ∪. Take a network with two neurons, each with a bias of 2, self connections of −1, and a symmetric connection between them 
of −1.5 (see Fig. 4). This network has no hidden neurons and an update time of 1, i.e. the candidate network is (𝑁,=,1), and the 
transfer function for each neuron is the heavyside step function. There are 4 states of this network, (0,0), (0,1), (1,0), (1,1). We map 
these states to propositional truth assignments by identifying the first neuron with the variable 𝐴 and the second with 𝐵. Given a 
state, if a neuron has activation value 1 (respectively 0), the corresponding variable gets assigned 𝑇 𝑟𝑢𝑒 (respectively 𝐹𝑎𝑙𝑠𝑒) as usual. 
For example, (0,1) maps to the set of propositional truth assignments with 𝐴 = 𝐹𝑎𝑙𝑠𝑒 and 𝐵 = 𝑇 𝑟𝑢𝑒. Note that this mapping is an 
example of a neurons-as-atoms mapping, which we will define in the next section, and thus we have 𝑖 ∈ 𝐼𝑁𝐴𝑇 . Under this mapping, the 
states corresponding to the models of the knowledge-base are (0,0) and (1,1). Calculating each state transition of the neural network 
reveals that for any initial state, the network will converge to the cycle (0,0) → (1,1) → (0,0) meaning that 𝑋𝑖𝑛𝑓 = {(0,0), (1,1)}. 
We have 𝑖((0,0)) = {𝑀|𝑀(𝐴) = 𝐹𝑎𝑙𝑠𝑒,𝑀(𝐵) = 𝐹𝑎𝑙𝑠𝑒,𝑀 ∈} and 𝑖((1,1)) = {𝑀|𝑀(𝐴) = 𝑇 𝑟𝑢𝑒,𝑀(𝐵) = 𝑇 𝑟𝑢𝑒,𝑀 ∈}, so 𝑁 =
𝐴𝑔𝑔(𝑖((0,0)), 𝑖((1,1))) = 𝑖((1,1)) ∪ 𝑖((0,0)) =𝐿. Because 𝑁 ⊆𝐿, 𝑁 is a neural model of 𝐿 under 𝐼𝑁𝐴𝑇 . Furthermore, because 
𝑁 =𝐿, 𝐿⊨ 𝐿

′ if and only if 𝑁 ⊆𝐿 and 𝑁 is a semantic encoding of 𝐿 under 𝐼𝑁𝐴𝑇 and ∪. This is illustrated in Fig. 4(b) 
in which the state transition diagram is shown on the left with states in 𝑋𝑖𝑛𝑓 shown in yellow. Each state is mapped to a set of 
interpretations on the right with the images of 𝑋𝑖𝑛𝑓 again highlighted in yellow. These interpretations are passed to the aggregation 
function, in this case union, to arrive at the final set of interpretations, which are the models of the knowledge-base.

In the above example, the models of 𝐿 were fully determined by the truth assignments of 𝐴 and 𝐵. Because each state of the 
neural network fully determined 𝐴 and 𝐵, each individual state of 𝑋𝑖𝑛𝑓 represented a set of models of 𝐿 and the complete set of 
models represented by 𝑁 was the union of the sets of models represented by each state in 𝑋𝑖𝑛𝑓 . Now we look at an example in which 
each state of the network represents a truth assignment to a subset of the atoms in the knowledge-base. In this case and others like it, 
set intersection is used to combine the information represented in 𝑋𝑖𝑛𝑓 . Furthermore, we introduce the set of candidate maps 𝐼𝐷𝐴𝑇 , 
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Fig. 4. A recurrent neural network that semantically encodes the propositional knowledge-base {(𝐴∧𝐵)∨(¬𝐴∧¬𝐵)}. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

which are maps, 𝑖, that represent atoms using distributed patterns of activity. 𝐼𝐷𝐴𝑇 will be formally defined alongside 𝐼𝑁𝐴𝑇 in the 
next section.

Example 3.2. Take a first order language, , consisting of a countably infinite number of variables, constant symbols 𝑎, 𝑏, 𝑐, 𝑑, binary 
relations 𝑅1,𝑅2, and no function symbols. Define a logical system  = (,) where the interpretations are first-order structures 
over the Herbrand Universe of  (assignments of truth values to all atoms of the form 𝑅(𝜉) where 𝑅 ∈ {𝑅1,𝑅2} and 𝜉 ∈ {𝑎, 𝑏, 𝑐, 𝑑}). 
Take the knowledge-base:

𝐿 = {∀𝑥.(𝑅1(𝑥)↔𝑅2(𝑥)),𝑅1(𝑎),𝑅1(𝑏),𝑅1(𝑐),¬𝑅1(𝑑)}.

We give a semantic encoding of 𝐿 under 𝐼𝐷𝐴𝑇 with 𝐴𝑔𝑔 = ∩. Take a neural network, 𝑁 , with four binary neurons, 𝑥1, 𝑥2, 𝑦1, 𝑦2. 
Define the encoding function, 𝑖, by mapping 𝑖(𝑥1, 𝑥2, 𝑦1, 𝑦2) to the set of interpretations of  satisfying 𝑅1(𝜉(𝑥1, 𝑥2)) = 𝑔(𝑦1) and 
𝑅2(𝜉(𝑥1, 𝑥2)) = 𝑔(𝑦2) where 𝑔(0) = 𝐹𝑎𝑙𝑠𝑒, 𝑔(1) = 𝑇 𝑟𝑢𝑒 and 𝜉(𝑥1, 𝑥2) is defined by:

𝜉(𝑥1, 𝑥2) =
⎧⎪⎨⎪⎩
𝑎 ∶ 𝑥1 = 𝑥2 = 1
𝑏 ∶ 𝑥1 = 1, 𝑥2 = 0
𝑐 ∶ 𝑥1 = 0, 𝑥2 = 1
𝑑 ∶ 𝑥1 = 0, 𝑥2 = 0

Referring back to the desired knowledge-base, we can see that the network should implement 𝑦1 = 𝑦2 = 𝑥1 ∨ 𝑥2. This is achieved 
by the following network: 𝑥1 and 𝑥2 have 0 bias, self-connections of 1, and a linear activation function; the weights are all 1
(𝑤𝑥1 ,𝑦1 = 𝑤𝑥1 ,𝑦2 = 𝑤𝑥2 ,𝑦1 = 𝑤𝑥2 ,𝑦2 = 1), and 𝑦1 and 𝑦2 have bias −0.5 and a step activation function (see Fig. 5). It is not dif-

ficult to calculate that 𝑋𝑖𝑛𝑓 = {(0,0,0,0), (0,1,1,1), (1,0,1,1), (1,1,1,1)} and that ∩𝑥∈𝑋𝑖𝑛𝑓 𝑖(𝑥) consists of a single interpretation 
𝑀 = {𝑅1(𝑎) = 𝑇 𝑟𝑢𝑒,𝑅1(𝑏) = 𝑇 𝑟𝑢𝑒,𝑅1(𝑐) = 𝑇 𝑟𝑢𝑒,𝑅1(𝑑) = 𝐹𝑎𝑙𝑠𝑒,𝑅2(𝑎) = 𝑇 𝑟𝑢𝑒,𝑅2(𝑏) = 𝑇 𝑟𝑢𝑒,𝑅2(𝑐) = 𝑇 𝑟𝑢𝑒,𝑅2(𝑑) = 𝐹𝑎𝑙𝑠𝑒} which is 
the unique model of 𝐿. Because 𝑁𝑡(𝑥) ∈𝑋𝑖𝑛𝑓 for all 𝑡 > 1, 𝑁 is a neural model of 𝐿 under 𝐼𝐷𝐴𝑇 and 𝐴𝑔𝑔 = ∩. Because 𝑁 =𝐿, 
the network is a semantic encoding of 𝐿 under 𝐼𝐷𝐴𝑇 and 𝐴𝑔𝑔 = ∩. We illustrate this in Fig. 5(b) in the same manner as the previous 
example. Notice the differences: the aggregation function is 𝐴𝑔𝑔 = ∩, meaning that the final set of interpretations of the network is 
the intersection of the four sets of models mapped to by the stable states of the network, resulting in a unique model.

The ability to encode a knowledge-base into a neural network depends mostly on the particular set of candidate maps. With no 
restrictions on the candidate maps the existence of a semantic encoding is trivial, but with strong restrictions, such as 𝐼𝑁𝐴𝑇 , there are 
important logical systems which cannot be represented by neural networks. Next, we address the question of this mapping in more 
detail.
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Fig. 5. A neural network that semantically encodes the first-order knowledge-base 𝐿= {∀𝑥.(𝑅1(𝑥)↔𝑅2(𝑥)),𝑅1(𝑎),𝑅1(𝑏),𝑅1(𝑐),¬𝑅1(𝑑)} under 𝐼𝐷𝐴𝑇 and 𝐴𝑔𝑔 = ∩. 

3.1. The set of candidate maps: practical considerations

As we have seen, the most important component of a semantic encoding is the mapping from the state space of a neural network 
to interpretations of logical systems. This mapping determines how semantic information is encoded in the neural network and as 
such we expect it to make some amount of intuitive sense. In addition, developing neurosymbolic encodings should not only be a 
theoretical exercise, but also provide methods for advancing the capabilities of AI systems. An arbitrary mapping may be impractical 
or not make intuitive sense. What constitutes a practical and intuitive candidate mapping depends on the network, the logical system, 
and the intended purpose of the semantic encoding. Next, we discuss several sets of candidate mappings and their limitations. The 
most common set is 𝐼𝑁𝐴𝑇 , in which the truth-value of each atom only depends on a single neuron. This can be generalized to 𝐼𝐷𝐴𝑇 , in 
which each atom is given a distributed representation. These are formally defined next, but before we do that, let us consider semantic 
encodings with unrestricted mappings. In the most general case, which we will refer to simply as 𝐼𝑡𝑜𝑡𝑎𝑙 , the only requirement on 𝑖 is that 
𝑥 ∼𝑁 𝑥′ implies 𝑖(𝑥) = 𝑖(𝑥′). This means that there are no strong restrictions on the association of neural states with interpretations. 
Under this condition, we can map states to interpretations in an arbitrary way and thus the existence of a semantic encoding of a 
knowledge-base 𝐿 under 𝐼𝑡𝑜𝑡𝑎𝑙 depends only on the cardinality of the set of models of 𝐿 and the set of states 𝑋inf. For example, any 
knowledge-base can be semantically encoded into a neural network with a single stable state under 𝐼𝑡𝑜𝑡𝑎𝑙 by choosing 𝑖 to map the 
stable state to the set of models of the knowledge-base and mapping every other state to an arbitrary set of interpretations of the 
language.

Semantic encodings under 𝐼𝑡𝑜𝑡𝑎𝑙 are of little practical use as they do not say anything about how interpretations can be encoded 
into the state space of a neural network. The potential for arbitrary associations between interpretations and neural states leaves 
open the possibility of neural networks having too large a representation capacity. This is a problem that has been brought up in 
cognitive science. Putnam famously showed that, given any physical system, one can find a way to identify the states of the physical 
system with the states of an arbitrary automaton in such a way as to make the two equivalent in the sense that the physical system 
implements the automaton. This means that, mathematically, every physical system is an implementation of every automaton, making 
the identification meaningless [42]. To avoid this problem, we assume that the identification of neural states with interpretations 
preserves some kind of structure between the logical system and neural network. Exactly what this entails depends on the structure 
of the logical system being encoded. Because of this, we have not given any strict requirements for 𝑖 in our definition of semantic 
encoding.
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Let us now go over the restrictions that have been most commonly used for semantic encodings, 𝐼𝑁𝐴𝑇 and its generalization 𝐼𝐷𝐴𝑇 . 
Although we gave an abstract definition of a logical system, in practice, interpretations determine the truth-value of a sentence based 
on an assignment of truth-values to a set of atoms. An atom is the smallest unit to which an interpretation can assign a truth-value. 
Whether or not a knowledge-base is satisfied by a model depends solely on how a model assigns truth-values to the atoms. 𝐼𝑁𝐴𝑇
is a set of candidate mappings in which the truth-value of an atom is determined by a single corresponding neuron. Because atoms 
are left undefined in our definition of a logical system, we give an abstract characterization of them in the following definitions by 
associating the interpretations of a logical system with maps from a set of atoms to truth values.

Definition 3.3. Let  = (,) be a logical system. Let 0 be a subset of interpretations that are defined by assignments of truth-

values to atoms (i.e. there exist sets 𝐴 and 𝕋 , referred to as a set of atoms and truth-values, respectively, and a bijection 𝑓 ∶0 → 𝕋𝐴). 
Let 𝑖 ∶𝑋→ 20 be an encoding function of a neural network 𝑁 with 𝑛 visible neurons and state space 𝑋 ⊆ℝ𝑛. We say that 𝑖 ∈ 𝐼𝑁𝐴𝑇
if there exist mappings 𝑟 ∶ 𝐴′ → {1,2, ..., 𝑛} with 𝐴′ ⊆ 𝐴 and 𝑔 ∶ ℝ → 𝕋 that satisfy the following properties: 𝑟 is bijective and if 
𝑀 ∈ 𝑖(𝑥) and 𝑟(𝑄) = 𝑗 then 𝑓 (𝑀)(𝑄) = 𝑔(𝑥𝑗 ) where 𝑥𝑗 is the value of the 𝑗𝑡ℎ visible neuron.

Under 𝐼𝑁𝐴𝑇 , a neuron represents an atom and the value of the neuron determines the truth-value of the corresponding atom. 
We have already seen multiple examples of encodings under 𝐼𝑁𝐴𝑇 . Most of the semantic encodings of logic programming have been 
done under 𝐼𝑁𝐴𝑇 . Unfortunately, 𝐼𝑁𝐴𝑇 is far too restrictive for a network to encode all interesting knowledge-bases, in particular in 
first-order logic, as has been discussed in [30]. Under 𝐼𝑁𝐴𝑇 , a knowledge-base that references 𝑛 atoms will require a network to have 
at least 𝑛 neurons to encode that model. If there are an unbounded number of atoms in the models of 𝐿, such as is the case when an 
interpretation in a first-order language has an infinite domain, no neural network can semantically encode 𝐿 under 𝐼𝑁𝐴𝑇 .

It has been argued that symbolic information should not be encoded in single neurons but rather as distributed patterns of activity 
occurring across many neurons [49]. Because of this, the realization of fully-distributed logical reasoning within a neural network 
has been a central aim of neurosymbolic computing [3,21]. Taking inspiration from such work, we provide a generalization of 𝐼𝑁𝐴𝑇
that allows for atoms to be represented by distributed patterns of activity across the neural network. We call this set of candidate 
maps 𝐼𝐷𝐴𝑇 .

Definition 3.4. Let  = (,) be a logical system with a subset of interpretations, 0 , that are defined by 𝑓 ∶ 0 → 𝕋𝐴. Let 
𝑁 denote a neural network with 𝑛 visible neurons with labels {1, ..., 𝑛} and state space 𝑋 ⊆ ℝ𝑛. Let 𝑖 ∶ 𝑋 → 2⨗ be an encoding 
function. We say that 𝑖 ∈ 𝐼𝐷𝐴𝑇 if, for some 𝐴′ ⊆𝐴, there exist mappings 𝑔 ∶ℝ→ 𝕋 , 𝑜1, ..., 𝑜𝑙 ∶𝐴′ → 2{1,...,𝑘}, ℎ1, ..., ℎ𝑙 with ℎ𝑗 ∶𝐴′ →⋃
𝑄∈𝐴′

𝑋[𝑜𝑗 (𝑄)], and 𝑟1, ..., 𝑟𝑙 ∶𝐴′ → {𝑘+ 1, ..., 𝑛} with the following properties:

• for every 𝑚 ∈ {𝑘+ 1, ..., 𝑛} there exist 𝑗 and 𝑄 ∈𝐴′ with 𝑟𝑗 (𝑄) =𝑚;

• If 𝑄,𝑄′ ∈𝐴′ and 𝑄≠𝑄′ then for all 𝑗, ℎ𝑗 (𝑄) ≠ ℎ𝑗 (𝑄′) or 𝑟𝑗 (𝑄) ≠ 𝑟𝑗 (𝑄′);
• if 𝑀 ∈ 𝑖(𝑥) and (𝑥𝑜𝑗 (𝑄)1 , 𝑥𝑜𝑗 (𝑄)2 , ..., 𝑥𝑜𝑗 (𝑄)𝑙 ) = ℎ𝑗 (𝑄) then 𝑓 (𝑀)(𝑄) = 𝑔(𝑟𝑗 (𝑄)).

In the above definition, 𝑜 associates a set of neurons from the first 𝑘 neurons to each atom and 𝑋[𝑜𝑙 (𝑄)] represents the subspace of 
𝑋 given by those neurons; 𝑜𝑙(𝑄)𝑖 represents the 𝑖𝑡ℎ label from smallest to largest in 𝑜𝑙(𝑄). For a mapping in 𝐼𝐷𝐴𝑇 , the first 𝑘 neurons 
determine the set of atoms being represented by the state of the network. The truth value of each atom in this set is then given by 
the remaining neurons. The second condition ensures that although atoms may share the same values for ℎ𝑙 or 𝑟𝑙 , they cannot share 
the same values for ℎ𝑙 and 𝑟𝑙 ; the pair of them specify a unique atom. The need for possibly many mappings ℎ1, ..., ℎ𝑙 comes from 
the case where atoms might have multiple representations in the network. As we will see, the neurons {𝑘 + 1, ..., 𝑛} each represent a 
predicate with a specific sequence of terms. If a predicate appears multiple times in a knowledge-base (with different terms) then a 
neuron is added for each of these. Depending on the assignment of values to the terms, there could be multiple states representing 
the same atom. In this case, we need multiple pairs ℎ𝑗 , 𝑟𝑗 to capture the multiple possible ways that a single atom can be represented 
in the network. In the following examples, though, only a single function triple (𝑜,ℎ, 𝑟) will be required. 
In Example 3.2, 𝑥1 and 𝑥2 define sets of atoms by mapping to a particular grounding of the atoms, and 𝑦1 and 𝑦2 determine the 
truth assignment for each atom specified by the state of 𝑥1 and 𝑥2. Let 𝑜(𝑄) be the labels for 𝑥1 and 𝑥2 for all atoms 𝑄. For 
𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, let ℎ(𝑅1(𝑧)) = ℎ(𝑅2(𝑧)) = 𝜉−1(𝑧), and let 𝑟(𝑅1(𝑧)) be the label of 𝑦1, 𝑟(𝑅2(𝑧)) be the label of 𝑦2, and 𝑔 map 0 to 
𝐹𝑎𝑙𝑠𝑒 and 1 to 𝑇 𝑟𝑢𝑒. To see that this satisfies Definition 3.4, consider the state (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (1,1,0,0). Because ℎ(𝑅1(𝑎)) = (1,1) =
(𝑥1, 𝑥2) = (𝑥𝑜(𝑅1(𝑎))1 , 𝑥𝑜(𝑅1(𝑎))2 ) and 𝑟(𝑅1(𝑎)) maps to the third neuron (𝑦1), we have 𝑅1(𝑎) = 𝑔(𝑦1) = 𝑔(0) = 𝐹𝑎𝑙𝑠𝑒; similarly, we have 
𝑅2(𝑎) = 𝑔(𝑦2) = 𝐹𝑎𝑙𝑠𝑒.

Notice that, by setting 𝑘 = 0, the second condition ensures injectivity of 𝑟. Because 𝑟 is also surjective, it is invertible. The definition 
then reduces to that of 𝐼𝑁𝐴𝑇 , making 𝐼𝑁𝐴𝑇 a special case of 𝐼𝐷𝐴𝑇 . As we will see in Section 4.3, this method of encoding has become 
a popular way to encode first-order logic knowledge-bases with a variety of methods including those which can broadly be described 
as fuzzy differentiable logic operators [55]. To see how this works in practice, let us look at an example.

Example 3.3. Consider a first-order language with two binary predicates  = {𝑅1,𝑅2}, variables 𝑦1, 𝑦2, and a function symbol 𝑓 . 
Assume that the domain of the interpretations of this language is ℝ2 . Atoms in the interpretations of this language are of the form 
𝑅𝑖(𝑎1, 𝑎2) where 𝑎𝑖 ∈ℝ2. Given the knowledge-base {∀𝑦1, 𝑦2.𝑅1(𝑦1, 𝑦2)⇒𝑅2(𝜃1, 𝑦2)}, where 𝜃1 = 𝑓 (𝑦1), we construct a feed-forward 
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neural network in which the input layer consists of six neurons labelled 𝑥𝑦1 ,1, 𝑥𝑦1 ,2, 𝑥𝑦2 ,1, 𝑥𝑦2 ,2, representing the groundings of 𝑦1 and 
𝑦2, and 𝑥𝜃1 ,1, 𝑥𝜃1 ,2, representing groundings of the term 𝜃1, as well as two neurons representing 𝑅1(𝑦1, 𝑦2) and 𝑅2(𝜃1, 𝑦2), labelled 
respectively 𝑥𝑅1𝑦1 ,𝑦2

and 𝑥𝑅2𝜃1 ,𝑦2
. For convenience, assume that the neurons are given in this order, i.e. neuron 1 is 𝑥𝑦1 ,1, neuron 2 

is 𝑥𝑦1 ,2, etc. Let the transfer function for the final two neurons be the step-function and the transfer function for the other neurons 
be the identity function. Let 𝑖 be the encoding function which maps a state (𝑥𝑦1 ,1, 𝑥𝑦1 ,2, 𝑥𝑦2 ,1, 𝑥𝑦2 ,2, 𝑥𝜃1 ,1, 𝑥𝜃1 ,2, 𝑥𝑅𝑦1 ,𝑦2 , 𝑥𝑅𝜃1 ,𝑦2 ) to the 
set of interpretations in which the atoms 𝑅1(𝑎1 = (𝑥𝑦1 ,1, 𝑥𝑦1 ,2), 𝑎2 = (𝑥𝑦1 ,2, 𝑥𝑦2 ,1) and 𝑅2(𝑎3 = (𝑥𝜃1 ,1, 𝑥𝜃1 ,2), 𝑎4 = (𝑥𝑦2 ,1, 𝑥𝑦2 ,2)) are 𝑇 𝑟𝑢𝑒
if their respective neurons have a value of 1, and 𝐹𝑎𝑙𝑠𝑒 otherwise. We can see this is in 𝐼𝐷𝐴𝑇 by specifying the functions 𝑜,ℎ, 𝑟
and 𝑔: the set of atoms 𝐴′ is the set of all atoms of the form 𝑅𝑗 (𝑎1, 𝑎2), where 𝑎1, 𝑎2 ∈ ℝ2 and 𝑗 ∈ {1,2}; 𝑜 maps atoms with 𝑗 = 1
onto {1,2,3,4} and atoms with 𝑗 = 2 onto {3,4,5,6} (i.e. it associates atoms with the neurons corresponding to the arguments of 
their predicate); ℎ maps the atom onto the 4-dimensional vector 𝑎1, 𝑎2; 𝑟 maps the atom onto the neuron 𝑥𝑅𝑦1 ,𝑦2 if 𝑅𝑗 = 𝑅1, and 
𝑥𝑅𝑦1 ,𝑦2

if 𝑅𝑗 =𝑅2; 𝑔 maps 1 to 𝑇 𝑟𝑢𝑒 and 0 to 𝐹𝑎𝑙𝑠𝑒. We check the conditions of Definition 3.4: the first is obvious; for the second, if 
𝑅𝑗 (𝑎1, 𝑎2) ≠ 𝑅′

𝑗
(𝑎′1, 𝑎

′
2) then either 𝑅𝑗 ≠ 𝑅′

𝑗
or (𝑎1, 𝑎2) ≠ (𝑎′1, 𝑎

′
2), meaning their values are different for either 𝑟 or ℎ; finally, given a 

state of the neural network, if ℎ(𝑅𝑗 (𝑎1, 𝑎2)) = (𝑥1, 𝑥2, 𝑥3, 𝑥4) for some values 𝑥1, 𝑥2, 𝑥3, 𝑥4 which are equal to the values of the neurons 
in 𝑜(𝑅𝑗 (𝑎1, 𝑎2)) in a given state, then if 𝑅𝑗 =𝑅1, by definition, 𝑅𝑗 (𝑎1, 𝑎2) has truth value 𝑇 𝑟𝑢𝑒 if the value of 𝑥𝑅1𝑦1𝑦2

is 1, and 𝐹𝑎𝑙𝑠𝑒
otherwise. If 𝑅𝑗 =𝑅2 then the truth value is determined by 𝑥𝑅2𝜃1 ,𝑦2

. In other words, 𝑅𝑗 (𝑎1, 𝑎2) = 𝑔(𝑟(𝑅𝑗 (𝑎1, 𝑎2))).

Notice that in the above example there were no duplicate representations of terms. In other words, 𝑅𝑗 (𝑎1, 𝑎2) had a unique 
representation in the network. In general, this will not be the case as there may be multiple uses of the same predicate in a knowledge-

base which might mean that there are multiple variable assignments that result in the same grounding of the predicate. When this 
happens, we require the additional mappings 𝑜𝑗 , ℎ𝑗 , 𝑟𝑗 for as many duplicate predicates that appear in the knowledge-base. These 
mappings are identical for each predicate which is not a duplicate, but if a predicate is a duplicate then the values of these functions 
are defined as before but are applied to each new predicate-term representation.

Common mappings 𝐼𝑁𝐴𝑇 and 𝐼𝐷𝐴𝑇 both deal with how atoms should be encoded in a neural network. But there are other 
conditions that we might require for a set of candidate mappings. When dealing with logical systems that assign real-values to atoms 
or sentences, we may want to require 𝑖 to be continuous with respect to appropriate topologies. The relationship between 𝑖 and the 
updates of the neurons in 𝑁 gives additional potential restrictions on the set of candidate mappings. An example of this could be a 
monotonicity condition. We might say that an encoding function is monotonic if, given an ordering of the truth values, the function 
satisfies 𝑓 (𝑖(𝑥))(𝑞) ≤ 𝑓 (𝑖(𝑁(𝑥))(𝑞) for all 𝑥. There is at least one encoding in the literature with this property [29] but we will not 
cover it in detail. It may also be possible to impose more general constraints on sets of candidate mappings by adding structure to 
logical systems such as in Labelled Deductive Systems [15]. No matter which set of candidate mappings is being considered, the 
formal definitions of semantic encoding provided earlier remain the same. The framework should apply to the breadth of logical 
systems that one may desire to encode semantically in a neural network, with future work looking to define new sets of candidate 
mappings as the need arises.

3.2. Probabilistic encodings

So far we have discussed encodings relating deterministic neural networks to logical systems. This leaves out a large number of 
neural networks and logical systems of relevance to AI, namely, probabilistic models. Luckily, we can generalize the definition of 
semantic encoding to accommodate these cases. In this sub-section, we cover such a generalization to probabilistic neural networks. 
As in the deterministic case, we assume that there is a mapping between states of the neural network and interpretations of a logical 
system as well as an aggregation function. The main difference is that a network now defines a stochastic process with the random 
variable 𝑋(𝑡) representing the state of the network at time 𝑡. In all examples of probabilistic neural networks that we examine, the 
state space will be finite. This greatly simplifies the definition of a probabilistic encoding and for this reason we assume that the state 
space of a probabilistic neural network is finite. We say that 𝑥 is a limit point if there exists 𝜖 > 0 such that for all 𝑡 > 0, there exists 
𝑡′ > 𝑡 with 𝑃 (𝑋(𝑡′) = 𝑥) > 𝜖. Call the set of such points 𝑋𝑃,𝑖𝑛𝑓 .

Definition 3.5. Let 𝑁 be a neural network with state space 𝑋 and a corresponding stochastic process {𝑋(𝑡)}∞
𝑡=0. Let  = (,) be a 

logical system and 𝐿 a knowledge-base of  . Given a mapping 𝑖 ∶𝑋→ 2 and an aggregation function 𝐴𝑔𝑔 ∶ 22 → 2, we define 
the following:

• Let 𝑁 =𝐴𝑔𝑔({𝑖(𝑥)|𝑥 ∈𝑋𝑃,𝑖𝑛𝑓 }). 𝑁 is a probabilistic neural model of 𝐿 under 𝐼 and 𝐴𝑔𝑔 if ∅ ⊂𝑁 ⊆𝐿.

• 𝑁 is a probabilistic semantic encoding of 𝐿 under 𝐼 and 𝐴𝑔𝑔 if 𝑁 is a probabilistic neural model of 𝐿 under 𝑖 ∈ 𝐼 and 𝐴𝑔𝑔, and 
𝑁 ⊆ 𝐿

′ if and only if 𝐿⊨ 𝐿
′.

In a probabilistic neural model, the probability that the state of the neural network represents information about models of 𝐿
converges to 1. We know this because, for a finite state-space, lim 

𝑡→∞
𝑃 (𝑋(𝑡) ∉𝑋𝑃,𝑖𝑛𝑓 ) = 0. For neural networks without a finite state 

space, this definition, along with that of 𝑋𝑃,𝑖𝑛𝑓 would have to be generalized as it could be the case that 𝑃 (𝑋(𝑡) ∉𝑋𝑃,𝑖𝑛𝑓 ) > 0 for all 
𝑡 > 0.

Notice that we can define a stochastic process that is equivalent to the underlying deterministic network by setting 𝑃 (𝑋(𝑡) =
𝑁𝑡(𝑥0)|𝑋(0) = 𝑥0) = 1, with 𝑃 (𝑋(0)) being the uniform distribution. In this process, the state of the network updates according to 𝑁
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with probability 1 and all other possible states have probability 0. Consider the set of limit points, 𝑋𝑃,𝑖𝑛𝑓 , in this process. These are 
the set of points, 𝑥, such that there exists a sequence of time points 𝑡′1, 𝑡

′
2, ... with the property that there exists 𝑡′

𝑖
with 𝑃 (𝑋(𝑡′

𝑖
) = 𝑥) > 𝜖

for some 𝜖, but this is only true if there exists 𝑥0 ∈ 𝑋 with 𝑁𝑡′
𝑖 (𝑥0) = 𝑥. This means that 𝑥 is infinitely recurring. Conversely, if 𝑥

is infinitely recurring then there exists a sequence 𝑡′1, 𝑡
′
2, ... and some 𝑥0 such that 𝑁 (𝑡′

𝑖
)(𝑥0) = 𝑥, that is, 𝑥 ∈𝑋𝑃,𝑖𝑛𝑓 . This means that 

𝑋inf = 𝑋𝑃,inf and that 𝑁 is a probabilistic semantic encoding under 𝐼 and 𝐴𝑔𝑔 if and only if it is a semantic encoding according 
to Definition 3.2. This shows that, when the state-space is finite, the probabilistic definition is a generalization of the deterministic 
definition of semantic encoding.

The stochastic property corresponding to the deterministic property of stability is the existence of a stationary distribution. Let 
𝑃 be a distribution on 𝑋. We say that 𝑃 is stationary with respect to the stochastic process if whenever the initial distribution, 
𝑋(0), is equal to 𝑃 then the distribution 𝑋(𝑡) is also equal to 𝑃 for all 𝑡 > 0. In some cases, a stationary distribution is also a 
limiting distribution, that is, lim 

𝑡→∞
𝑃 (𝑋(𝑡) = 𝑥) = 𝑃 (𝑥). In the case that we have a single stationary distribution which is also a limiting 

distribution, 𝑋𝑃,𝑖𝑛𝑓 = {𝑥|𝑥 ∈𝑋,𝑃 (𝑥) > 0)}, it becomes easy to prove that a network is a semantic encoding by examining the states 
with non-zero probability in the limiting distribution (as done in [45] for example).

3.3. Approximate encodings

The notion of semantic encoding defines when a neural network implements a knowledge-base (as if the knowledge-base were the 
specification of the network). This is useful when we know that the data must satisfy some prior constraints. However, in practice, 
requiring background knowledge to be a hard constraint can be too restrictive. In many cases, observed data may contradict our 
background knowledge, in which case we must decide whether to trust more our knowledge about the world or our observations of 
the world. To this end, many recent neurosymbolic methods have taken an approximate approach to neural encoding. Rather than 
selecting architecture and weights that directly encode a knowledge-base, such methods define a function that measures how far a 
neural network is from being a semantic encoding of a given knowledge-base. This function is then added to the loss function of the 
network as a regularization. We will explore these methods in more detail in Section 4.3 but for now, we introduce the notion of a 
fidelity measure, upon which these methods rely. A fidelity measure is a function that measures how far a neural network with given 
encoding and aggregation functions is from being a neural model of a particular knowledge-base. As in the previous sections, we 
refrain from imposing hard requirements on the definition of a fidelity measure as there are different measures used in the literature 
and we do not wish to make choices at this point regarding exactly what properties a fidelity measure should have. With this in mind, 
we define a fidelity measure as follows.

Definition 3.6. Let  be a set of neural networks and  = (,) a logical system. Define the set  ×𝐼 ×𝐴𝐺𝐺 as the set of all triples 
(𝑁, 𝑖,𝐴𝑔𝑔), where 𝑖 ∶𝑋→ 2, 𝑖 ∈ 𝐼 , 𝑋 is the state space of 𝑁 , and 𝐴𝑔𝑔 ∶ 22 → 2. We say that 𝐹 𝑖𝑑 ∶ ( ×𝐼 ×𝐴𝐺𝐺)×2 → [0,1]
is a fidelity measure when 𝐹 𝑖𝑑((𝑁, 𝑖,𝐴𝑔𝑔),𝐿) = 1 if and only if 𝑁 is a neural model of 𝐿 under 𝑖 and 𝐴𝑔𝑔.

Despite the general definition, the examples that we will examine in Section 4.3 will all use one of two ways of measuring fidelity. 
We introduce these two ways next.

Logic Tensor Networks and many similar methods encode knowledge-bases using variants of first-order multi-valued logic. When 
this is the case, each interpretation and formula pair is assigned a value in [0,1] representing the degree to which the interpretation 
satisfies the formula. This can be used to define a fidelity measure, as follows.

Let  = (,) be a fuzzy logic where  consists of sentences of the form [𝑎, 𝑏] ∶ 𝜙 where 𝜙 is a sentence of propositional or 
first-order logic and 0 ≤ 𝑎 ≤ 𝑏 ≤ 1 (we can recover the unlabelled case by setting 𝑎 = 𝑏 = 1 for every sentence). Each 𝑀 ∈ defines 
a function 𝑀(𝜙) ∈ [0,1] where 𝜙 is the unlabelled part of a sentence in . 𝑀 is a model of 𝐿 if and only if for all [𝑎, 𝑏] ∶ 𝜙 ∈ 𝐿, 
𝑀(𝜙) ∈ [𝑎, 𝑏]. The function 𝑀 is generally defined by interpreting logical symbols and quantifiers as fuzzy connectives but the 
following definition will work for any system in which every interpretation has a corresponding function of this form.

Definition 3.7. Define 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦 ∶ ( × 𝐼 × 𝐴𝐺𝐺) × 2 → [0,∞) by 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,𝐴𝑔𝑔),𝐿) = inf
𝑀∈𝑁

SatAgg[𝑎,𝑏]∶𝜙∈𝐿{1 − 𝑑(𝑀(𝜙), 

[𝑎, 𝑏])}

𝑁 is defined via 𝑁 , 𝑖 and 𝐴𝑔𝑔, SatAgg is a function aggregating the satisfiability scores for each sentence in 𝐿, and 
𝑑(𝑀(𝜙), [𝑎, 𝑏])) is the distance from the real number 𝑀(𝜙) to the interval [𝑎, 𝑏]. In most practical cases, 𝐿 is finite, in which case 
SatAgg can be chosen to be the mean or the minimum, but some papers keep the formulation general. All that is required for this to 
be a fidelity measure is that SatAgg{𝑥1, 𝑥2, 𝑥3, ...} ≤ 1 and also that SatAgg{𝑥1, 𝑥2, 𝑥3, ...} = 1 if and only if 𝑥1 = 𝑥2 = 𝑥3 = ... = 1.

Lemma 3.1. If SatAgg{𝑥1, 𝑥2, 𝑥3, ...} ≤ 1 and also SatAgg{𝑥1, 𝑥2, 𝑥3, ...} = 1 if and only if 𝑥1 = 𝑥2 = 𝑥3 = ... = 1 then 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦 is a fidelity 
measure.

Proof. To see this, consider 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦 with SatAgg satisfying the stated conditions. First note that SatAgg ≤ 1 means that 
𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,𝐴𝑔𝑔),𝐿) ∈ [0,1]. Now assume that 𝑁 is a neural model of 𝐿 under 𝑖 and 𝐴𝑔𝑔, that is, for all 𝑀 ∈ 𝑁 and 
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[𝑎, 𝑏] ∶ 𝜙 ∈ 𝐿, 𝑀(𝜙) ∈ [𝑎, 𝑏] and thus 𝑑(𝑀(𝜙), [𝑎, 𝑏]) = 0, meaning that for all 𝑀 ∈ , SatAgg[𝑎,𝑏]∶𝜙∈𝐿{1 − 𝑑(𝑀(𝜙), [𝑎, 𝑏])} =
SatAgg({1 − 0,1 − 0,1 − 0, ...}). Hence, 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,𝐴𝑔𝑔),𝐿) = 1.

Conversely, assume that 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,𝐴𝑔𝑔),𝐿) = 1, that is, inf
𝑀∈𝑁

SatAgg[𝑎,𝑏]∶𝜙∈𝐿{1− 𝑑(𝑀(𝜙), [𝑎, 𝑏]} = 1. Because SatAgg ≤ 1, 

the only way that this can be true is if SatAgg[𝑎,𝑏]∶𝜙∈𝐿{1 − 𝑑(𝑀(𝜙), [𝑎, 𝑏]} = 1 for all 𝑀 ∈𝑁 , but by assumption this means that 
for all 𝑀 and all [𝑎, 𝑏] ∶ 𝜙 ∈ 𝐿, 𝑑(𝑀(𝜙, ), [𝑎, 𝑏]) = 0, which implies that 𝑀 is a model of 𝐿. Hence, 𝑁 ⊂𝐿 and 𝑁 is a neural 
model of 𝐿 under 𝑖 and 𝐴𝑔𝑔. □

We illustrate the use of this fidelity measure with an example.

Example 3.4. Recall Example 3.1 in which we defined a simple recurrent neural network to be a semantic encoding of the knowledge-

base {(𝐴∧𝐵)∨ (¬𝐴∧¬𝐵)}. Consider the fuzzy knowledge-base 𝐿= {[0.75,1] ∶𝐴∨𝐵, [0.5,1] ∶ ¬𝐴∨¬𝐵}. Using the same aggregation 
and encoding function as in Example 3.1 and SatAgg = min, we have that 𝑁 = {𝑀|𝑀(𝐴) =𝑀(𝐵) = 1} ∪ {𝑀|𝑀(𝐴) =𝑀(𝐵) =
0}. In the first case, 𝑀(𝐴 ∨ 𝐵) = 1 and 𝑀(¬𝐴 ∨ ¬𝐵) = 0 so SatAgg[𝑎,𝑏]∶𝜙∈𝐿{1 − 𝑑(𝑀(𝜙), [𝑎, 𝑏])} = SatAgg{1 − 𝑑(1, [0.75,1]),1 −
𝑑(0, [0.5,1])} = SatAgg{1,0.5} = 0.5. In the second case, 𝑀(𝐴∨𝐵) = 0 and 𝑀(¬𝐴∨¬𝐵) = 1 so SatAgg[𝑎,𝑏]∶𝜙∈𝐿{1−𝑑(𝑀(𝜙), [𝑎, 𝑏])} =
SatAgg{1 − 𝑑(0, [0.75,1]),1 − 𝑑(1, [0.5,1])} = SatAgg{0.25,1} = 0.25. Thus, for each 𝑀 ∈𝑁 , SatAgg is either 0.25 or 0.5 meaning 
that 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,∪),𝐿) = inf{0.5,0.5, ...,0.25,0.25, ...} = 0.25.

The other main fidelity measure used is a probabilistic fidelity measure. This measure looks at the probability that the network is 
in a state that represents a model of the knowledge-base. Note that this measure is only appropriate for encodings using 𝐴𝑔𝑔 = ∪. 
When this is the case, 𝑁 = ∪𝑥∈𝑋𝑃,𝑖𝑛𝑓 𝑖(𝑥) and we can check whether or not 𝑁 ⊂𝐿 by checking whether 𝑖(𝑥) ⊆𝐿 for all 
𝑥 ∈𝑋𝑃,𝑖𝑛𝑓 .

Definition 3.8. Given a set of probabilistic neural networks,  , each with a finite state space and a unique limiting distribution, 
define 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏 ∶ ( ×  × 𝐴𝐺𝐺) × 2, where 𝐴𝐺𝐺 = {∪}, to be 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏 ∶ ((𝑁, 𝑖,∪),𝐿) = 𝑃 (𝑖(𝑥) ⊆𝐿), where 𝑃 is the limiting 
distribution of 𝑁 .

Lemma 3.2. 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏 as defined above is a fidelity measure.

Proof. To see that this is a fidelity measure, first note that its value is always contained in [0,1]. Next, assume that (𝑁, 𝑖,∪) is a 
neural model of 𝐿, then ∪𝑥∈𝑋𝑃,𝑖𝑛𝑓 𝑖(𝑥) =𝑁 ⊆𝐿, so 𝑖(𝑥) ⊆𝐿 for all 𝑥 ∈𝑋𝑃,𝑖𝑛𝑓 . Because 𝑁 has a unique limiting distribution, 
as discussed in Section 3.2, 𝑋𝑃,𝑖𝑛𝑓 = {𝑥|𝑥 ∈𝑋,𝑃 (𝑥) > 0}. Thus, by definition 𝑃 (𝑥 ∈𝑋𝑃,𝑖𝑛𝑓 ) = 1, and 𝑃 (𝑖(𝑥) ⊆𝐿) = 1. Conversely, 
if 𝑃 (𝑖(𝑥) ⊆𝐿) = 1, then because 𝑥 ∈ 𝑋𝑃,𝑖𝑛𝑓 if and only if 𝑃 (𝑥) > 0, we have that 𝑥 ∈ 𝑋𝑃,𝑖𝑛𝑓 if and only if 𝑖(𝑥) ⊆𝐿. Thus, 
𝑁 = ∪𝑥∈𝑋𝑃,𝑖𝑛𝑓 𝑖(𝑥) ⊆𝐿 making this a fidelity measure. □

In line with the methods that we will describe in Section 4.3, we will illustrate 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏 with an example using a feed-forward 
network in which the final layer is stochastically determined by the previous layers, as follows. Notice that such a network settles to 
a unique stationary distribution given an initial distribution over the input layer.

Example 3.5. Consider a feed-forward network, 𝑁 , with a single binary input, 𝑥 and two binary output neurons, 𝑦1, 𝑦2. Let 𝑁 define a 
stochastic process over the neurons 𝑥, 𝑦2, 𝑦2 in the following way, 𝑦1 and 𝑦2 are conditionally independent given 𝑥, 𝑃 (𝑦(𝑡+1)1 = 1|𝑥(𝑡) =
1) = 0.4, 𝑃 (𝑦(𝑡+1)2 = 1|𝑥(𝑡) = 1) = 0.3, 𝑃 (𝑦(𝑡+1)1 = 1|𝑥(𝑡) = 0) = 1, 𝑃 (𝑦(𝑡+1)2 = 1|𝑥(𝑡) = 0) = 0.2, and 𝑃 (𝑥(𝑡) = 1) = 0.5 for all 𝑡 ≥ 0. Consider 
an encoding function 𝑖 ∈ 𝐼𝑁𝐴𝑇 , mapping the neurons 𝑥, 𝑦1, 𝑦2 to propositional variables 𝑋,𝑌1, 𝑌2 in propositional logic. Consider 
the knowledge-base {𝑌1 ∨ 𝑌2,¬(𝑌1 ∧ 𝑌2)}. The states of the network which satisfy this knowledge-base are those with 𝑦1 = 1, 𝑦2 = 0
or 𝑦1 = 0, 𝑦2 = 1. The probability of these states in the limiting distribution is 𝑃 (𝑦1 = 𝑦2 = 1) = (0.4 ⋅ 0.3) ⋅ 0.5 + (1 ⋅ 0.2) ⋅ 0.5 = 0.16, 
𝑃 (𝑦1 = 0, 𝑦2 = 0) = (0.6 ⋅ 0.7) ⋅ 0.5 + (0 ⋅ 0.8) ⋅ 0.5 = 0.21, making the total probability for the network to be in one of these states 0.37, 
i.e. 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏((𝑁, 𝑖,∪),𝐿) = 0.37.

There are many other possible choices for fidelity measure. A generic choice, that can be used for any logical system in which 
there is a metric defined on the set of interpretations, is 𝑑(𝑛,𝐿) where 𝑑(⋅, ⋅) is the Hausdorff distance between sets. In most of 
the examples in the literature, however, 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦 and 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏 are the ones used.

3.4. Towards a theory of neurosymbolic computation

In neurosymbolic AI, domain knowledge is either learned from data and made explicit with the use of explainable AI methods, 
or it is available in the form of partial background knowledge about the underlying task that can be revised from data. Allowing 
any such explicit knowledge to benefit the training of a neural network is the main goal of an encoding. Standard neural networks 
can only learn from data. Neurosymbolic networks learn from data and knowledge. An adequate encoding is therefore expected to 
make it easier for the network to learn the task correctly, either to make it faster, use fewer resources, or to make the network satisfy 
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Fig. 6. Relationship between a neural network trained on a data set and a knowledge-base representing relations among the concepts of a given task. 

certain constraints that are not necessarily present in the data. Consider the goal of making learning converge faster by enabling the 
use of background knowledge alongside training from data. Here, the goal is to reduce the search-space by excluding possible worlds 
which are known a priori to violate a certain property of the task at hand. The majority of the efforts in this area have adopted a 
practical approach: taking various methods of neural encoding and comparing their performance to techniques that do not encode any 
prior knowledge. Much less attention has been paid to theoretical results that, we argue, should guide the development of effective 
encoding, such as the provision of soundness proofs, as advocated in [9]. A theory of effective encoding would allow the field to start 
asking fundamental questions such as: What properties does the learning algorithm need to have to guarantee effective encoding? 
Does adding background knowledge improve the generalization ability of networks on every dataset or is it limited in certain cases? 
These questions have come into sharper focus with recent results about reasoning shortcuts in neural networks [34], which show that 
certain encoding methods will inevitably, under some circumstances, achieve high accuracy by leveraging concepts in the wrong 
way. That is to say, abstract concepts from background knowledge can be assigned an unintended meaning and still improve training 
performance. An unsound encoding, therefore, may exacerbate the well-known effect of neural network training that provides the right 
answer for the wrong reason. Hence, semantics matter. If concepts are learned by association with confounding factors, it compromises 
generalizability and interpretability. This highlights the need for a much more robust general theory of neural encoding to identify 
the properties required for neural networks to learn how to reason about a dataset. The development of such a theory is hamstrung 
by a lack of standardization in the field. The fact that different encoding methods use different definitions means that results can 
only be developed for very narrow families of neural encoding, despite the likelihood that similar results apply to a whole host of 
encoding methods. Fig. 6 illustrates the relationships at play that will need to be formalized by a general theory.

We argue that the framework presented here has the potential to be the foundation for a unified theory of neurosymbolic com-

putation. Two things need to be true for this to be the case. First, the definitions must capture a sufficient number of the encodings 
used in the literature. If none of the encodings used in practice are semantic encodings according to our definition, then any theory 
developed for semantic encodings will not apply to the existing techniques in the field and will have no utility. In the following 
sections we show that a substantial portion of the existing encoding techniques satisfy the definition of semantic encoding; this is the 
primary claim of this paper. The second thing that must be true is that the definitions must be robust enough to generate meaningful 
insights into the properties of the methods that they describe. This will only become clear in the course of developing a theory, 
something which is out of the scope of a single paper. In fact, it may be the case that future research reveals alternative definitions 
and frameworks that are better able to produce theoretical insight. In this light, our framework can be seen as a jumping-off point 
from which the beginnings of a theory can take shape. We will, however, outline some properties of semantic encoding that make our 
definitions promising candidates for a theoretical foundation. To start with, we note the following transitive properties of encodings.

Theorem 3.3. Given two neural networks, 𝑁1,𝑁2, and a bijection, 𝑓 , between their state spaces, 𝑋,𝑌 , satisfying 𝑓 (𝑁1(𝑥)) =𝑁2(𝑓 (𝑥)), 
then if 𝑁2 is a semantic encoding of a knowledge-base 𝐿 in a logical system,  , under 𝑖∈ 𝐼 and 𝑖 ◦ 𝑓 ∈ 𝐼 then 𝑁1 is a semantic encoding of 
𝐿 under 𝑖 ◦ 𝑓 .

Theorem 3.4. Let 1 = (1,1) and 2 = (2,2) be logical systems with maps 𝑔 ∶2 →1, and 𝑓 ∶ 2 → 1 with the following 
properties:

• 𝑔 is bijective

• 𝑚 ∈2 is a model of 𝑙 ∈2 if and only if 𝑔(𝑚) is a model of 𝑓 (𝑙)
• for 𝐿1,𝐿2 ∈ 2, 𝐿1 ⊨2

𝐿2 if and only if 𝑓 (𝐿1) ⊨1
𝑓 (𝐿2)

then if a network 𝑁 is a semantic encoding of 𝑓 (𝐿) under 𝑖 ∈ 𝐼 and 𝑔−1 ◦ 𝑖 ∈ 𝐼 then 𝑁 is a semantic encoding of 𝐿 under 𝑔−1 ◦ 𝑖 ∈ 𝐼 .

Corollary 3.5. if the conditions of Theorem 3.4 hold for 1 and 2, and 1 is semantically equivalent to a set of networks  under 𝐼 and 
𝑔−1 ◦ 𝑖 ∈ 𝐼 for each encoding function, 𝑖, then there exists a subset  ′ ⊂ that is semantically equivalent to 2 under 𝐼 .
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The proof of each of these is relatively straightforward and can be found in Appendix A. This solves the problem of when a neural 
encoding of a logical system can be extended to another, equivalent logical system. As an example, in the next section, we will look 
at the encoding of Penalty Logic into Hopfield networks. Propositional Logic can be expressed in Penalty Logic in such a way that 
the conditions of Theorem 3.4 are satisfied. This means that we know that the encoding for Penalty Logic can also be used as an 
encoding for Propositional Logic. 

The other property we wish to highlight is that the standard supervised learning classification task in Machine Learning can itself be 
framed as a type of semantic encoding. Given the task of training a neural network classifier, i.e. to learn a mapping 𝑓 ∶𝑋𝑖𝑛𝑝𝑢𝑡 → 𝑌 , 
where 𝑋𝑖𝑛𝑝𝑢𝑡 ⊂ ℝ𝑛 is the set of inputs and 𝑌 = {1,2,3, ..., 𝑛} is a set of labels, we can translate the problem into the equivalent 
problem of training a neural network to be a semantic encoding of a specific knowledge-base. To do this we create a first-order 
language by defining a predicate for each label, i.e. for each 𝑗 ∈ 𝑦 there is a predicate 𝑅𝑗 in . Given a finite training and test set, 
𝑋𝑡𝑟𝑎𝑖𝑛,𝑋𝑡𝑒𝑠𝑡 ⊂ 𝑋𝑖𝑛𝑝𝑢𝑡, define a constant symbol, 𝑐𝑥, for each 𝑥 ∈𝑋𝑡𝑟𝑎𝑖𝑛∪𝑋𝑡𝑒𝑠𝑡. Now, we define a set of first-order interpretations for this 
language by setting the domain to be 𝑋𝑖𝑛𝑝𝑢𝑡 and requiring each constant 𝑐𝑥 to be mapped to the corresponding input, 𝑥∈𝑋𝑡𝑟𝑎𝑖𝑛∪𝑋𝑡𝑒𝑠𝑡. 
With this simple logical system, the training set can be defined as a knowledge-base, 𝐿𝑡𝑟𝑎𝑖𝑛 consisting of all statements of the form 
𝑅𝑚(𝑐𝑥) where 𝑥 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑓 (𝑥) = 𝑚. Likewise, we define 𝐿𝑡𝑒𝑠𝑡. A standard feed-forward neural network trained on this dataset 
can now be seen as encoding interpretations of this language with an encoding function under 𝐼𝐷𝐴𝑇 and 𝐴𝑔𝑔 = ∩. Furthermore, 
measuring the accuracy of the network satisfies our definition of a fidelity function. The process of training a neural network is then 
equivalent to maximizing 𝐹 𝑖𝑑((𝑁, 𝑖,∩),𝐿𝑡𝑟𝑎𝑖𝑛) with the goal of maximizing 𝐹 𝑖𝑑((𝑁, 𝑖,∩),𝐿𝑡𝑒𝑠𝑡). By translating the standard learning 
process into the language of semantic encoding, we should be able to start asking general questions about different semantic encoding 
techniques, such as which encoding of knowledge-base 𝐿 results in the highest fidelity, thus relating the different learning algorithms 
with a formal semantics.

A theory of semantic encoding could act as a bridge between neurosymbolic methods and the development and analysis of learning 
algorithms. Take some learning algorithm , such as gradient descent. It uses the loss on the training set to update the parameters of 
the network with the goal of minimizing the loss on the test set. Using our formulation this can be expressed as  being a mapping with 
(𝐹 𝑖𝑑((𝑁, 𝑖,∩),𝐿𝑡𝑟𝑎𝑖𝑛),𝑁) =𝑁 ′, where 𝑁 ′ is the network with updated weights. The goal is to maximize 𝐹 𝑖𝑑((𝑘(𝑁0), 𝑖,∩),𝐿𝑡𝑒𝑠𝑡), 
where 𝑘(𝑁0) is the result of applying algorithm  𝑘 times to an initial network 𝑁0 . The question of how beneficial knowledge 𝐿
is to the learning process can be defined as the effect of applying  to 𝑁 with fidelity term 𝐹 𝑖𝑑((𝑁, 𝑖,∩),𝐿𝑡𝑟𝑎𝑖𝑛 ∪𝐿). Alternatively, if 
 is a set of networks that are all models of 𝐿 then the question is: would restricting  to  give better results? The first question 
has to do with adding a soft constraint to the loss function, while the second corresponds to fixing the architecture of the network so 
that it must satisfy the constraints regardless of its weights. This indicates several avenues for investigation: what properties would 𝐿
need to have for it to be beneficial? If the number of models of 𝐿𝑡𝑟𝑎𝑖𝑛 ∪𝐿 is less than that of 𝐿𝑡𝑟𝑎𝑖𝑛 then will  produce a better result 
on 𝐿𝑡𝑒𝑠𝑡? We can use these questions to examine the validity of properties of  such as: if 𝑥 ∈𝑋𝑡𝑟𝑎𝑖𝑛 satisfies background knowledge 
𝐿 then  trained on 𝑥 should not decrease the fidelity of 𝑁 with respect to 𝐿.

How much insight can be gained from this line of inquiry is the task of future work. For the time being, in the next section, we 
focus on showing that many, if not most, existing encoding techniques satisfy our definition of a semantic encoding.

4. Many neurosymbolic approaches are semantic encodings

In this section, we demonstrate that a large number of neurosymbolic approaches, old and new, satisfy our definition of a semantic 
encoding. Showing this requires: (a) identifying the encoding function used by each approach and, if necessary, showing that the 
encoding belongs to the set of candidate maps from Section 3; (b) defining the aggregation function, and (c) showing that under 
these functions the neurosymbolic approach specifies a semantic encoding. This may become intuitively clear by illustrating the 
state transition diagram that corresponds to the neural network and identifying the stable states with their corresponding sets of 
interpretations (as done in Figs. 4 and 5). However, the details can become convoluted. With the vast number of encoding techniques, 
going through each example and showing that they are a semantic encoding is not feasible. Instead, we shall look at larger families 
of related encoding techniques and provide theorems which can be used to quickly identify any encoding technique in the family 
as a semantic encoding. We also provide detailed proofs for neurosymbolic approaches that can be seen as representative of a large 
class of encoding techniques, such as LTN. The proofs are provided in the Appendix for those who are interested in the technical 
details of relating their approach to a semantic encoding. Our main goal with this section is to provide evidence that a large number 
of methods in the literature satisfy our semantic framework’s definitions. We do not claim that our list is exhaustive. At the end of 
the section, we briefly overview some encoding techniques that were left out, some of which do not fit into our framework.

4.1. Logic programming semantics

We begin our analysis with neurosymbolic systems based on logic programming. Logic programming has played a central role in 
the development of neurosymbolic computing. One of the oldest neurosymbolic reasoning techniques has been a semantic encoding 
of logic programs [26]. Because of this semantic encoding, various kinds of logic programming-based neurosymbolic approaches exist 
today, from temporal and epistemic logic programming to answer-set programming in neural networks [18]. This will allow us to 
broadly cover various logic programming approaches and extensions.

We start by considering logic programs using our definition of a logical system. Let a logic programming language contain sentences 
which consist of clauses of the form 𝐴← 𝐵1 ∧ 𝐵2 ∧ ... ∧ 𝐵𝑛, where 𝐴 is called the head of the clause and 𝐵1 ∧ 𝐵2 ∧ ... ∧ 𝐵𝑛 is the 
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(possibly empty) body.4 The components of the head and body are literals which are either ground atoms or their negation. When we 
refer to first-order logic programming then every variable appearing in each literal of a clause is assumed to be universally quantified. 
A clause with variables is therefore considered shorthand for the collection of clauses resulting from all groundings of that clause 
with constants of the language. For example, if the constants of the language are 𝑐 and 𝑑 then the clause 𝐴(𝑥)← 𝐵1(𝑥), meaning 
∀𝑥(𝐴(𝑥)← 𝐵1(𝑥)), represents the clauses 𝐴(𝑐)← 𝐵1(𝑐) and 𝐴(𝑑)← 𝐵1(𝑑). A knowledge-base in logic programming, referred to as a 
logic program, is a set of clauses. A clause in which none of the literals is negated is called a Horn Clause. The interpretations of a 
logic program are truth-assignments to the ground atoms. For our purposes, the set of truth-values will be 𝕋 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, although 
systems of logic programming with many-valued and probabilistic semantics exist [43]. A model, 𝑀 , of a logic program, 𝑃 , is a 
truth-assignment that satisfies 𝑀(𝐴) = 1 if and only if there exists a clause in 𝑃 with 𝐴 as head and 𝑀(𝐵𝑖) = 1 for each 𝐵𝑖 in the 
body of the clause. It is customary to represent interpretations of logic programming as sets containing all atoms which are true in 
the interpretation. So, rather than writing 𝑀(𝐴) = 1 as we have been, we write 𝐴 ∈𝑀 .

The basic method of semantic encoding for logic programming is known as the CORE method [1,9]. The CORE method is a way 
of creating a semantic encoding by using a neural network to implement the least fixed point operator of a logic program. The least 
fixed point operator, 𝑇𝑃 , of a logic program, 𝑃 , is a mapping from interpretations to interpretations of the language of 𝑃 defined 
as 𝑇𝑃 (𝑀) = {𝐴|∃(𝐴←𝑋1 ∧𝑋2 ∧ ... ∧𝑋𝑘) ∈ 𝑃 ,𝑋1,𝑋2, ...,𝑋𝑘 ∈𝑀}. In other words, 𝐴 is true, 𝐴 ∈ 𝑇𝑃 (𝑀), if and only if there exists 
a clause in 𝑃 with 𝐴 in the head and with all literals in the body being true, i.e. belonging to 𝑀 . What makes 𝑇𝑃 useful is that 
for many classes of logic programs, 𝑇𝑃 will always converge to a fixed point that is minimal with respect to the partial ordering of 
interpretations defined by 𝑀 ≤𝑀 ′ if and only if 𝐴 ∈𝑀 ⇒ 𝐴 ∈𝑀 ′. Furthermore, in these cases, the models of 𝑃 are exactly these 
fixed points [13]. The CORE method implements logical reasoning in neural networks by translating this fixed point operator into 
the network. The basic methodology is to represent each atom that appears in 𝑃 as a neuron (although other, more complicated 
representations have been used) such that for each clause (𝐴← 𝑋1 ∧𝑋2 ∧ ... ∧𝑋𝑘) ∈ 𝑃 , a connection is added from each neuron 
representing 𝑋1,𝑋2, ...,𝑋𝑘 to the neuron representing 𝐴 in such a way that if a network state, 𝑥, maps 𝑋1 ∧𝑋2 ∧ ... ∧𝑋𝑘 to true

then 𝑁(𝑥) will map 𝐴 to true. We will elaborate on the details of this procedure in the examples to follow, but for now we give the 
formalization of the CORE method in our framework of semantic encoding.

First, we note a slight abuse of notation: an encoding function, 𝑖 ∈ 𝐼 , is defined as a mapping to a set of interpretations, but in the 
examples to follow, 𝑖 will map to a single interpretation as all atoms that do not appear in the computation will be assigned a truth-

value 𝑓𝑎𝑙𝑠𝑒. Because we are assuming that 𝑖 maps to a unique interpretation, for convenience of notation, we treat 𝑖 as a mapping 
𝑖 ∶ 𝑋 → rather than 𝑖 ∶ 𝑋 → 2. Thus, if we write, for example, 𝐴 ∈ 𝑖(𝑥), we mean that 𝐴 is true in the unique interpretation 
mapped to by 𝑖. The theorem below still holds if we allow 𝑖 to map to sets of interpretations, but in all examples derived from the 
CORE method, 𝑖(𝑥) will consist of a single interpretation and the assumption simplifies the proof.

Theorem 4.1. Let  be a logic programming system. Let 𝑃 be a logic program of  with models 𝑃 , 𝑇𝑃 be the least-fixed point operator 
of 𝑃 , and 𝑁 be a neural network with state space 𝑋 and an encoding 𝑖 ∈ 𝐼 , with 𝑖(𝑥) mapping to a single interpretation. 𝑁 is a semantic 
encoding of 𝑃 under 𝐼 with 𝐴𝑔𝑔 = ∪ if the following hold:

• 𝑃 ⊆ 𝑟𝑎𝑛𝑔𝑒(𝑖);
• 𝑇𝑃 and 𝑁 always converge to a fixed-point; and

• 𝑖(𝑁(𝑥)) = 𝑇𝑃 (𝑖(𝑥)).

Proof. We know from logic programming that the models of 𝑃 are exactly the fixed points of 𝑇𝑃 [13]. Thus, if 𝑀 is a model of 𝑃
then 𝑇𝑃 (𝑀) =𝑀 . By assumption, 𝑃 ⊆ 𝑟𝑎𝑛𝑔𝑒(𝑖) so 𝑀 = 𝑖(𝑥) for some neural configuration 𝑥. We have that 𝑖(𝑥) =𝑀 = 𝑇𝑃 (𝑀) =
𝑇𝑃 (𝑖(𝑥)) = 𝑖(𝑁(𝑥)). By assumption, there is 𝑡 > 0 such that 𝑁𝑡(𝑥) is a fixed point of the network. Thus, 𝑁𝑡(𝑥) ∈𝑋𝑖𝑛𝑓 and applying the 
previous identity 𝑡 times yields 𝑖(𝑁𝑡(𝑥)) = 𝑇 𝑡

𝑃
(𝑖(𝑥)) =𝑀 . Because 𝐴𝑔𝑔 = ∪, we have that 𝑀 ∈𝑁 . Conversely, if 𝑀 ∈𝑁 , because 

𝐴𝑔𝑔 = ∪, 𝑀 = 𝑖(𝑥) for some fixed point 𝑥. Furthermore, 𝑖(𝑥) must be a stationary point of 𝑇𝑃 because 𝑖(𝑥) = 𝑖(𝑁(𝑥)) = 𝑇𝑃 (𝑖(𝑥)). 
Therefore, 𝑀 ∈𝑃 . This gives us that 𝑁 =𝑃 , making 𝑁 a semantic encoding of 𝑃 under 𝐼 and 𝐴𝑔𝑔 = ∪. □

We can now survey some of the rule-based encodings and, with the help of the previous theorem, show how they fit into our 
framework for semantic encoding. We begin our survey with neurosymbolic learning system KBANN [52], for which, differently 
from the CORE method, no proof of soundness existed up to now. We consider the simplified case without negation where KBANN 
encodes acyclic Horn clauses into binarized feed-forward neural networks.5 Differently from the CORE method, KBANN is end-to-

end differentiable, using a sigmoid activation function instead of a step function. With our framework, we will provide a semantic 
equivalence between acyclic Horn clauses and binarized feed-forward networks with positive weights under 𝐼𝑁𝐴𝑇 .

Proposition 4.2. Binarized feed-forward networks with positive weights are semantically equivalent to acyclic Horn clauses under 𝐼𝑁𝐴𝑇 .

4 The body of a logic program is often written as 𝐵1 ,𝐵2, ...,𝐵𝑛 with the use of commas to denote logical conjunction. Instead, we use ∧ to denote conjunction in 
order to avoid any confusion with a collection of literals.

5 A logic program is called acyclic when there are no cycles through the atoms in the heads of the clauses. This can be formally defined by using a logic program to 
construct a graph such that each atom in the logic program is a node in the graph and there is a connection from node 𝐴 to node 𝐵 if there is a clause in the logic 
program with 𝐴 in the body and 𝐵 in the head. If the graph contains no cycles then the logic program is said to be acyclic.
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Fig. 7. State transition diagram for CORE techniques. The stable state is highlighted in yellow and the corresponding models are given by the stable states. 

Proof. See Appendix B. □

Acyclic logic programs are very restrictive as a knowledge representation language. Building on KBANN and the CORE method, 
CILP is arguably the first neurosymbolic system for both learning and reasoning [9]. Like KBANN, CILP is end-to-end differentiable. 
Like CORE, CILP is based on recurrent neural networks encoding logic programs. Instead of introducing multiple hidden layers as 
KBANN, CILP and CORE use a single-hidden layer neural network in which both the input and output layers represent atoms contained 
in the logic program. The number of neurons in the hidden layer is equal to the number of clauses in the program. The idea is that the 
input layer represents an initial (partial) assignment of truth-values to the atoms in the program, while the output layer represents 
the assignment of truth-values to the atoms that result from applying 𝑇𝑃 , given the initial assignment. The values of the output layer 
are then fed back into the corresponding input-layer via recurrent connections, allowing the process to repeat until convergence, that 
is, allowing the computation of 𝑇𝑃 to iterate until a stable state is found. We refer to a network of this type as a cyclic feed-forward 
network. As mentioned, encodings using CILP are not restricted to Horn clauses and the atoms in the body of a clause may be negated. 
It is known that for such (general or extended) logic programs, 𝑇𝑃 might not converge. When it does, however, CILP can be used to 
define a semantic encoding. In such cases, CILP encodings extend the results from the CORE method to differentiable neural networks; 
see [18] for details.

Fitting CILP into our framework is straightforward with the help of Theorem 4.1. First, we define our candidate network: the 
atoms in the body of clauses are mapped to neurons in the input layer, the atoms in the head of clauses are mapped to neurons in 
the output layer, a hidden neuron is added for each clause. We set 𝑡𝑐 = 3. This means that 𝑁(𝑥) will update the values of the neurons 
three times. The visible units are the input and output neurons (if an atom appears in both the input and output layers then the 
corresponding output neuron is made hidden and the input neuron is visible; at the stable state both values will agree). We define 
our encoding function 𝑖 ∈ 𝐼𝑁𝐴𝑇 by mapping the value of each visible neuron to a truth-assignment of the corresponding atom. The 
iterative application of 𝑇𝑃 requires the definition of an interval for the calculation of threshold value 𝑇 , 0 < 𝑇 < 1, such that for each 
neuron 𝑘, the activation value 𝐴𝑐𝑡𝑘, −1 < 𝐴𝑐𝑡𝑘 < 1, maps to 1 denoting 𝑡𝑟𝑢𝑒 if 𝐴𝑐𝑡𝑘 > 𝑇 , and it maps to −1 (𝑓𝑎𝑙𝑠𝑒) if 𝐴𝑐𝑡𝑘 < −𝑇 ; 
otherwise, the truth-value of the atom associated with neuron 𝑘 is said to be unknown, a third truth value (see [9] for examples of 
the translation algorithm from logic programs to neural networks and the computation of 𝑇𝑃 ). Finally, setting 𝐴𝑔𝑔 = ∪ allows us to 
state the following proposition for general logic programs, that is, programs with cycles and negation by failure.

Proposition 4.3. Given a general logic programming language  with 𝑃 a general logic program, if 𝑇𝑃 converges to a fixed-point then there 
exists a cyclic feed-forward network, 𝑁 , that is a semantic encoding of 𝑃 under 𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪.

Proof. CILP defines the network architecture for a neural network 𝑁 and proves that 𝑖(𝑁(𝑥)) = 𝑇𝑃 (𝑖(𝑥)) in Theorem 8 of [17] 
using the visible-hidden partition, 𝑡𝑐 , and 𝑖 as mentioned above. Because every atom in 𝑃 has a corresponding neuron in 𝑁 , every 
truth-assignment of the atoms in 𝑃 is mapped to by a state of the network. Furthermore, by assumption, 𝑇𝑃 always converges to a 
fixed-point. Thus, by Theorem 4.1, 𝑁 is a semantic encoding of 𝑃 under 𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪. □

The basic construction of CILP has been used to prove similar results for many variants of logic programming, including extended 
logic programming and answer-set programming (allowing negation and disjunctions in the head of clauses), modal, temporal, epis-
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Fig. 8. State transition diagram and corresponding models for a Hopfield network encoding Penalty Logic. Stable states are shown in yellow. 

temic and intuitionistic logic programs [17]. In all cases, like CILP, neural networks are defined that implement a logical consequence 
operator with an encoding in 𝐼𝑁𝐴𝑇 . It is a straightforward exercise to duplicate Proposition 4.3 for all of these cases making them 
all semantic encodings according to our framework.

Other CORE-like neural encodings exist, e.g. [2,31]. Theorem 4.1 gives a natural way to translate existing results of this type 
into our framework, with the details in each case being the set of candidate maps and the underlying candidate network (i.e. the 
partition of neurons into visible-hidden and the computation time 𝑡𝑐 ). Fig. 7 shows a general schematic for CORE methods. No matter 
which initial state, eventually the network converges to a unique stable state which maps to the model of the logic program, given 
a well-founded logic program, that is, a logic program that admits a single model. Before continuing, we note that not all encodings 
with logic programs follow the same general formulation used here. In [27], an approximate encoding for first-order logic programs 
is proposed. The programs are acyclic with respect to a given injective level mapping onto feed-forward neural networks, mapping 
truth assignments to real numbers. Based on [25] and using the Banach contraction theorem, a neural network is constructed which 
implements an approximation of the least-fixed point operator of the logic program. The main theorem of [27] shows that the distance 
between the network computation and the least-fixed point operator can be made arbitrarily small. It is straightforward to define an 
appropriate fidelity measure to show that this is an approximate semantic encoding in our framework, although one with an encoding 
function that is uncommon, namely the association of interpretations to real numbers. Other more recent approaches and extensions 
of CILP to first-order logic programs include [14] and [16]. The provision of semantic encoding proofs for these systems is left as 
future work, although the majority of the recent systems rely on grounding every predicate into network embeddings, which should 
reduce the proofs to a variation of Proposition 4.3.

4.2. Penalty logic

When a class of neural networks is semantically equivalent to a logical system, every neural network in that class can be represented 
by a knowledge-base of the logical system and vice-versa. Next, we investigate a classic example of semantic equivalence, Penalty 
Logic [40], before discussing recent work based on graph neural networks and transformers.

Penalty Logic is a non-monotonic logical system designed to resemble the type of reasoning found in neural networks. In classical 
propositional logic, if a knowledge-base contains a contradiction then the entire knowledge-base maps to False. Penalty Logic eases this 
restriction by considering sentences in a knowledge-base as evidence instead of facts. To do this, it assigns a confidence value to each 
sentence in the knowledge-base. It then uses the confidence values to weigh the evidence and come to a conclusion corresponding 
to the highest confidence out of all possibilities. Formally, the language of Penalty Logic consists of sentences of the form 𝑐 ∶ 𝑙, 
where 𝑐 ∈ ℕ ∪ {∞} is a confidence value and 𝑙 is a sentence in propositional logic. The confidence represents the strength of the 
evidence for the sentence. It can also be seen as the cost you pay for contradicting 𝑙. The interpretations of Penalty Logic are defined 
from the interpretations of propositional logic. Given a knowledge-base 𝐿 and an interpretation of propositional logic, 𝑀 , we can 
calculate a penalty, 𝑝𝐿(𝑀), defined as the sum of the confidence values of sentences contradicted by 𝑀 , that is 

∑
𝑙∈𝐿,𝑀(𝑙)=𝑓𝑎𝑙𝑠𝑒 𝑙(𝑐)

where 𝑙(𝑐) is the confidence value of the sentence 𝑙. The models of a knowledge-base are the interpretations with the minimum 
penalty. For example, given the sentences 𝐴 ∨𝐵 with confidence 𝑐1 and ¬𝐵 with confidence 𝑐2, the interpretation (¬𝐴,¬𝐵) will be 
assigned penalty 𝑐1, interpretation (¬𝐴,𝐵) will be assigned penalty 𝑐2, interpretation (𝐴,¬𝐵) will be assigned a penalty of 0, and 
interpretation (𝐴,𝐵) will be assigned penalty 𝑐2. Therefore, (𝐴,¬𝐵) is the model of the knowledge-base, which is written in Penalty 
Logic as {𝑐1 ∶𝐴∨𝐵; 𝑐2 ∶ ¬𝐵}. Penalty Logic was designed specifically to model the behaviour of a class of recurrent neural networks 
known as symmetrically-connected network (SCNs), and in particular, Hopfield networks [44]. SCNs are those in which 𝑤𝑖,𝑗 =𝑤𝑗,𝑖
for all neurons 𝑖, 𝑗. Hopfield networks are binary-valued SCNs in which all transfer functions are the step function and for all neurons 
𝑖, 𝑤𝑖,𝑖 = 0. The dynamics of Hopfield networks can be shown to be governed by an energy function, i.e. a function 𝑓 ∶𝑋→ [0,∞) with 
the property that for all 𝑥 ∈ 𝑋, 𝑓 (𝑁(𝑥)) ≤ 𝑓 (𝑥). It can be shown using this energy function that Hopfield networks are stable and 
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𝑋inf consists of the set of states which are local minima of the energy function [24].6 In [40], equivalence is shown between Hopfield 
networks and knowledge-bases in Penalty Logic by showing that, with an encoding function 𝑖 ∈ 𝐼𝑁𝐴𝑇 , the energy function of every 
Hopfield network corresponds to a penalty function 𝑝𝐿 of a knowledge-base 𝐿, and vice-versa. We use this to prove the following 
proposition.

Proposition 4.4. If a Hopfield network, 𝑁 , always converges to a global minimum of its energy function then it is a semantic encoding of a 
knowledge-base of Penalty Logic 𝐿, under 𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪.

Proof. In [40], a propositional atom is associated with each neuron in 𝑁 . Each state of the neural network is associated with an 
assignment of truth-values to these atoms, 𝑖0 , in the usual way with 𝑖0(𝑥) mapping each atom to true if and only if the corresponding 
neuron has a value of 1. A knowledge-base, 𝐿, is constructed with the set of atoms corresponding to the neurons of 𝑁 and Theorem 
4.10 in [40] shows that 𝐸(𝑥) <𝐸(𝑥′) if and only if 𝑝𝐿(𝑖0(𝑥)) < 𝑝𝐿(𝑖0(𝑥′)). In particular, the global minima of 𝐸 correspond to models 
of 𝐿. We define our encoding function 𝑖 ∈ 𝐼𝑁𝐴𝑇 by mapping each state, 𝑥, to the set of models in which the truth-values of the atoms 
contained in 𝐿 agree with those given by 𝑖0(𝑥). It is easily shown that for all 𝑀 ∈, there exists 𝑥 ∈𝑋 with 𝑀 ∈ 𝑖(𝑥) by taking a 
state, 𝑥, in which 𝑖0(𝑥) agrees with 𝑀 for all atoms in 𝐿. This state must also be unique as every other state must assign at least one 
atom in 𝐿 to a different truth-value.

If 𝑀,𝑀 ′ ∈ 𝑖(𝑥) then, because they must agree on all atoms in 𝐿, 𝑝𝐿(𝑀) = 𝑝𝐿(𝑀 ′) = 𝑝𝐿(𝑖0(𝑥)). By assumption, if 𝑥 ∈𝑋inf then 
𝐸(𝑥) ≤ 𝐸(𝑥′) for all 𝑥′ and thus if 𝑀 ∈ 𝑖(𝑥), we have that 𝑝𝐿(𝑀) = 𝑝𝐿(𝑖0(𝑥)) ≤ 𝑝𝐿(𝑀 ′) for all 𝑀 ′ ∈. Thus, 𝑀 is a model of 𝐿. 
Conversely, let 𝑀 be a model of 𝐿 and 𝑥 ∈𝑋 be the state with 𝑀 ∈ 𝑖(𝑥). For all 𝑥′ ∈𝑋 with 𝑀 ′ ∈ 𝑖(𝑥′), because 𝑀 is a model of 
𝐿, 𝑝𝐿(𝑀) ≤ 𝑝𝐿(𝑀 ′), which implies that 𝐸(𝑥) ≤ 𝐸(𝑥′). Thus, 𝑥 ∈𝑋inf meaning 

⋃
𝑥∈𝑋𝑖𝑛𝑓

𝑖(𝑥) = {𝑀|𝑀 ∈ 𝑖(𝑥), 𝑥 ∈𝑋𝑖𝑛𝑓 } =𝐿. Hence, 

𝑁 =𝐿 and 𝑁 is a semantic encoding of 𝐿 under 𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪. □

Theorem 4.10 in [40] also proves that for every knowledge-base 𝐿, there exists a Hopfield network (possibly with hidden units) 
with �̄�(𝑥) ≤ �̄�(𝑥′) if and only if 𝑝𝐿(𝑖0(𝑥)) ≤ 𝑝𝐿(𝑖0(𝑥′)), where �̄�(𝑥) is defined as the minimum energy of all states in which the state 
of the visible units is identical to 𝑥. What keeps us from using this to prove semantic equivalence between Hopfield networks and 
Penalty Logic is the existence of local minima in the general case. If 𝑥 ∈𝑋inf in a Hopfield network, it is not always true that 𝑥 is a 
global minimum of 𝐸 and thus it is not always true that 𝑖(𝑥) ⊂𝐿. The existence of local minima is seen as undesirable and there are 
methods for addressing this such as simulated annealing which, applied to Boltzmann Machines (a stochastic version of the Hopfield 
network), can guarantee convergence to global minima (although in practice it is intractable). In the case that the Hopfield network 
corresponding to 𝐿 does not have local minima then the previous proof can be used to show that the network is a semantic encoding 
of 𝐿 under 𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪. Fig. 8 shows this relationship visually. Here, we can see that each starting state eventually converges 
to a stable state, each of which mapping to a set of models of a penalty logic knowledge-base. Aggregating these sets with a union 
operator results in the entire set of models for the knowledge-base.

4.3. Logical classifiers

Recent work has also been interested in finding equivalence between modern feed-forward networks such as transformers and 
functions expressed using logic. Here, the neural network is seen as a function mapping an input vector to an output label, and the 
desire is to find a logical expression that corresponds to this function. We show in this section that such network representations 
as logical expressions can also be viewed as examples of semantic encoding. We start by looking at a case involving Graph Neural 
Networks (GNNs).

The computational power of GNNs has been the subject of much inquiry. In [4], it is shown that Boolean classifiers, i.e. functions 
classifying nodes in graphs as true or false, expressible as formulas in the fragment of first-order logic with two-variables and with 
counting quantifiers can be learned by GNNs. A counting quantifier, ∃≥𝑁𝑥(𝑃 (𝑥)), allows one to express that a formula, 𝑃 (𝑥), holds 
true for at least 𝑁 instances of the variable, 𝑥. The fragment of first-order logic with two variables and counting quantifiers is known 
as the FOC2 fragment.

First let us define the GNNs investigated in [4]. GNNs are a generalization of classical neural networks that operate over graph 
embeddings in ℝ𝑛. A graph, , in this case, is a finite set of nodes 𝑉 with a symmetric relation, 𝐸 ⊆ 𝑉 × 𝑉 . A labelled graph is a 
graph  in which each node, 𝑣, is associated with a vector 𝑥𝑣 ∈ℝ𝑘 for some 𝑘 ≥ 1. An Aggregate-Combine GNN (AC-GNN) transforms 
a labelled input graph into a sequence of labelled latent graphs according to the following formula:

𝑥(𝑖)
𝑣

= 𝐶𝑂𝑀 (𝑖) (𝑥(𝑖−1)
𝑣

,𝐴𝐺𝐺(𝑖)({𝑥(𝑖−1)
𝑢

|(𝑢, 𝑣) ∈𝐸})) (2)

where 𝑖 is the 𝑖𝑡ℎ layer, 𝐴𝐺𝐺(𝑖) is the 𝑖𝑡ℎ aggregation function which takes as input a set of vectors of neighbouring nodes and returns 
an output vector, and 𝐶𝑂𝑀 (𝑖) is the 𝑖𝑡ℎ combination function which combines the aggregated features in the previous layer of the 
neighbouring nodes with the node features from the previous layer of the target node to output a new feature vector for the target 

6 Note that convergence of the Hopfield network to a stable state depends on the asynchronous updating of neurons, that is, updating the values of neurons one at 
a time. To accommodate this, we can either directly allow for asynchronous updating of neurons in our framework, or define a probability distribution which selects, 
with a certain probability, which neuron to update at each time step. In the latter case, the encoding in Proposition 4.4 will become a probabilistic semantic encoding.
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node. The final layer assigns a label to each node. Given an input graph, a state of a GNN is an assignment of vector values to each 
node in each layer of the GNN. Notice that the dimension of the vector for each layer is fixed, so if an input graph has 𝑛 nodes and the 
GNN maps the 𝑚𝑡ℎ layer to vectors in ℝ𝑘 then the state of the nodes in the 𝑚𝑡ℎ layer is given by a vector of length ℝ𝑛𝑘. Given a logical 
system,  = (,), for a given input graph, an encoding function 𝑖𝑉 ,𝐸 ∈ 𝐼 is a function from the state space of the GNN with input 
graph (𝑉 ,𝐸) to 2. For each input graph, (𝑉 ,𝐸), let 𝑋(𝑉 ,𝐸) be the state space of the GNN with input graph 𝑉 ,𝐸. Define 𝑋𝑖𝑛𝑓,𝑉 𝐸
to be {𝑥 ∈𝑋(𝑉 ,𝐸)|∃𝑥0 ∈𝑋(𝑉 ,𝐸), lim 

𝑡→∞
𝐺𝑁𝑁

(𝑡)
𝑉 ,𝐸

(𝑥0) = 𝑥}, where 𝐺𝑁𝑁 (𝑡)
𝑉 ,𝐸

(𝑥0) is the result of updating the state according to Eq. (2) 

𝑡 times. Finally, given an aggregation function 𝐴𝑔𝑔 ∶ 22 → 2, let 𝐺𝑁𝑁 = 𝐴𝑔𝑔({𝑖𝑉 ,𝐸 (𝑥)|𝑥 ∈ 𝑋𝑖𝑛𝑓,(𝑉 ,𝐸), (𝑉 ,𝐸) ∈ }. Then, the 
definitions of a neural model and semantic encoding for a GNN are identical to the ones found in Definition 3.2. In [4], it is proved 
that AC-GNNs can learn functions on graphs expressed using a fragment of first-order logic known as graded modal logic, where all 
sub-formulas are guarded by the edge predicate 𝐸(𝑥, 𝑦). Instead of writing ∃𝑥(𝑃 (𝑥)) to denote that some node 𝑥 in the graph has 
property 𝑃 , such as e.g. the colour of the node, the guarded version ∃𝑥(𝐸(𝑦,𝑥) ∧ 𝑃 (𝑥)) has to be used, denoting that 𝑃 holds for a 
node within a neighbourhood defined by the edges that exist between node 𝑦 and other nodes. Also, an extension of AC-GNNs called 
ACR-GNNs, standing for Aggregate-Combine-Readout, in which in each layer a feature vector for the entire graph is calculated and 
combined with local aggregations, is shown to be capable of representing FOC2 [4], in the sense that for a given input graph and 
initial state, the output label of each node calculated by the GNN can be expressed by a formula of the form 𝛼(𝑥)↔ 𝜙(𝑥), where 𝛼 is 
a unary predicate representing the label of a node and 𝜙 is a sentence in FOC2. The domain of these predicates are sets of nodes in 
a graph. The truth values of the predicates in 𝜙 are determined by the graph structure and additional input labellings. For example, 
𝐸(𝑥, 𝑦) is true if and only if there is an edge between x and y, whereas an additional predicate 𝐵(𝑥) representing for example that 
the colour of a node is blue is true only if it is given in the input labelling. This means that given a graph with a set of input labellings 
for the node, the final layer of the GNN will assign an output label 𝛼 to the node 𝑥 if and only if the input graph satisfies 𝜙(𝑥).

The correspondence between GNNs and first-order logic fragments proved in [4] can be shown to be semantic encodings as 
outlined next.

Proposition 4.5. Given a logical system whose interpretations consist of graphs and whose predicates consist of node labellings plus the edge 
relation, for each sentence of the form 𝐿= ∀𝑥(𝛼(𝑥)↔ 𝜙(𝑥)), if 𝜙(𝑥) is expressed in graded modal logic then there exists an AC-GNN that is 
equivalent to 𝐿. If 𝜙(𝑥) is expressed in FOC2 then there exists an ACR-GNN that is equivalent to 𝐿.

Proof. For a given 𝐺𝑁𝑁 , let 𝑖𝑉 ,𝐸 (𝑥) denote the set of interpretations in which 𝐸(𝑥, 𝑦) is true if and only if 𝑥 is connected to 𝑦, 
𝛼(𝑥) is true if and only if the output layer for node 𝑥 has label 𝛼, and for any remaining predicate, 𝑃 (𝑥) is true if the input layer 
of node 𝑥 has label 𝑃 . Let 𝐴𝑔𝑔 = ∪. Then, for a given labelled input graph, the stationary state is the one in which the GNN has 
propagated the input labelling through each layer up to the output. If a GNN can be equivalently described by a Boolean classifier 
then in the stationary state, for each node 𝑥, 𝑖𝑉 ,𝐸 maps 𝛼(𝑥) to true if and only if it maps 𝜙(𝑥) to true. Hence, the set of stationary 
points for a GNN is the set of points that are models of 𝛼(𝑥) ↔ 𝜙(𝑥) and vice-versa, making the GNN a semantic encoding of the 
knowledge-base. □

This type of equivalence involves mapping a Boolean classifier defined by a logical formula 𝜙 onto a neural network by mapping 
assignments of truth values and predicates to patterns of input and output neurons. In these equivalences, a neural network maps a 
pattern of input neurons to a truth assignment of ground predicates, and output neurons to an output label. The network is said to 
be equivalent to the Boolean classifier if the output label is 1 if and only if the truth assignment of the input pattern satisfies 𝜙. This 
type of correspondence can in fact be shown to always represent a semantic encoding. Next, we formalize this for the case without 
free variables; a proof of the general case should remain valid but would contain a lot more bookkeeping.

First, we formally define a logical classifier over a language,  = (,), as a function 𝑓 ∶→ {0,1} with 𝑓 (𝑀) = 1 if and only 
if 𝑀 is a model of some sentence 𝜙. We say that a neural network encodes this classifier if the following holds

Definition 4.1. Let 𝑁 be a feed-forward neural network with 𝑋𝑖𝑛 the state space of the input neurons, 𝑋𝑜𝑢𝑡 the state space of the 
output neurons, and let 𝑔𝑖𝑛 ∶𝑋𝑖𝑛 →, 𝑔𝑜𝑢𝑡 ∶𝑋𝑜𝑢𝑡 → {0,1}. If 𝑓 is a logical classifier over  = (,), we say that 𝑁 implements 
𝑓 if 𝑔𝑖𝑛 is surjective and 𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛)) = 1 if and only if 𝑓 (𝑔𝑖𝑛(𝑥𝑖𝑛)) = 1, where 𝑁(𝑥𝑖𝑛) ∈𝑋𝑜𝑢𝑡 is the state of the output neurons after 
propagating the input pattern 𝑥𝑖𝑛 through all intermediate hidden layers.

This definition is intuitively simple: a feed-forward neural network acts as a function from its input state to its output state. If the 
input state represents interpretations of a logical system and the output state represents the outcome of a classifier then the neural 
network implements a logical classifier if the function computed by the network is the function 𝑓 that defines the classifier. For the 
case in which  is a first-order logic system and the classifier has free-variables, the situation is more or less identical except that the 
output of the network must represent a mapping from the grounding of the formula containing free-variables to truth values. This is 
the case we just examined with AC(R)-GNNs, but to keep the following proof straightforward, we stick to the no-free variable case.

The set of logical classifiers over a language  = (,) defines a new logical system 𝐶 = (𝐶 ,𝐶 ) in which 𝐶 consists of 
sets containing a single sentence of the form 𝛼↔ 𝜙, where 𝜙∈ and 𝛼 is a new nullary predicate. Interpretations 𝐶 consist of an 
interpretation 𝑀 ∈ that additionally assigns a truth value to 𝛼. For simplicity, we denote 𝑀𝐶 by a pair (𝑀, �̂�) where 𝑀 ∈
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and �̂� ∈ {0,1} represents the truth assignment to 𝛼 (1 for 𝛼 = 𝑇 𝑟𝑢𝑒, 0 for 𝛼 = 𝐹𝑎𝑙𝑠𝑒). 𝑀𝐶 ∈ 𝐶 is a model of 𝛼 ↔ 𝜙 if either 
the corresponding 𝑀 ∈ is not a model of 𝜙 and 𝑀𝐶 assigns 𝛼 to false, or 𝑀 ∈ is a model of 𝜙 and 𝑀𝐶 assigns 𝛼 to true. 
Clearly, there is a one-to-one correspondence between logical classifiers and 𝐶 in which each classifier, 𝑓 , is associated with the 
knowledge-base 𝐿𝑓 = {𝛼↔ 𝜙𝑓 } and the models of 𝐿𝑓 are all pairs (𝑀, �̂�), where �̂� = 1 if 𝑓 (𝑀) = 1; �̂� = 0 if 𝑓 (𝑀) = 0. This leads to 
the following theorem.

Theorem 4.6. 𝑁 implements a logical classifier 𝑓 if and only if 𝑁 is a semantic encoding of the corresponding knowledge-base 𝐿𝑓 = {𝛼↔
𝜙𝑓 } under 𝑖(𝑥) = (𝑔𝑖𝑛(𝑥𝑖𝑛), 𝑔𝑜𝑢𝑡(𝑥𝑜𝑢𝑡)) and 𝐴𝑔𝑔 = ∪.

Proof. By assumption 𝑁 is feed-forward and all neurons that are not in the input or output layers are hidden. This means that 
for each input pattern 𝑥𝑖𝑛 ∈ 𝑋𝑖𝑛, 𝑁 has a unique fixed point at (𝑥𝑖𝑛,𝑁(𝑥𝑖𝑛)). This fixed point corresponds to the interpretation 
𝑖(𝑥) = 𝑖((𝑥𝑖𝑛,𝑁(𝑥𝑖𝑛))) = (𝑔𝑖𝑛(𝑥𝑖𝑛), 𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛))) = (𝑀,𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛))). If 𝑁 implements a logical classifier then 𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛)) = 1 if and 
only if 𝑓 (𝑀) = 1. Thus, (𝑀,𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛))) is a model of 𝐿𝑓 . Conversely, if (𝑀, �̂�) is a model of 𝐿𝑓 then 𝑓 (𝑀) = �̂� and since 𝑁
implements 𝑓 , 𝑔𝑖𝑛 is surjective. Thus, 𝑀 = 𝑔𝑖𝑛 for some 𝑥𝑖𝑛 and because 𝑁 implements 𝑓 , 𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛)) = �̂�. Hence, the fixed-points 
of 𝑁 correspond exactly to the models of 𝐿𝑓 meaning that 𝑁 is a semantic encoding of 𝐿𝑓 under 𝑖 and ∪. 
Now, suppose that 𝑁 is a semantic encoding of 𝐿𝑓 under 𝑖 and ∪. For each fixed point, (𝑥𝑖𝑛,𝑁(𝑥𝑖𝑛)), 𝑖(𝑥𝑖𝑛,𝑁(𝑥𝑖𝑛)) = (𝑔𝑖𝑛(𝑥𝑖𝑛), 
𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛))) is a model of 𝐿𝑓 and all models of 𝐿𝑓 are of this form. Because all models of 𝐿𝑓 are of this form, 𝑔𝑖𝑛 must be surjective. 
Furthermore, because this must be a model of 𝐿𝑓 , 𝑔𝑜𝑢𝑡(𝑁(𝑥𝑖𝑛)) = 1 if and only if 𝑓 (𝑔𝑖𝑛(𝑥𝑖𝑛)) = 1 and therefore 𝑁 implements 𝑓 . □

In the case that a logical classifier contains free-variables, an analogous proof exists. The main difference is that the output layer of 
the feed-forward network should now represent a mapping from variable assignments to truth values rather than a single truth value. 
As discussed, we provided an example of this case earlier in which the value of each node in the output graph represents the truth 
assignment for a predicate that is grounded by that node. Theorem 4.6 allows us to substantially simplify the proof of correspondence 
with logical classifiers to semantic equivalences, as we illustrate with the next proposition.

Proposition 4.7. A transformer is a semantic encoding of a knowledge-base in first-order logic extended with majority quantifiers.

Proof. In [38], it is shown that transformers implement logical classifiers that can be described using first-order logic extended with 
the majority quantifier, M𝑖. A formula M𝑖𝜙𝑖 is true if 𝜙𝑖 is true for more than half of the possible values of variable 𝑖. Interpretations 
consist of strings with a finite number of characters (or tokens).7 From Theorem 4.6 it follows directly that transformers are semantic 
encodings of such logical classifiers. □

Propositions 4.5 and 4.7 show that results obtained independently about the correspondence between a given logical formalism 
and a class of neural networks can be unified, represented uniformly and subsumed by the framework of semantic encoding.

Many modern approaches do not aim for an exact representation (e.g. showing that a transformer can be equivalently represented 
by sentences in first-order majority logic), but instead use the loss function to train a network to approximate a knowledge-base. We 
now turn our attention to these cases.

4.4. Semantic regularization

As we have seen, traditional approaches to neurosymbolic computation generally attempt to encode a knowledge-base into a 
neural network exactly. However, as discussed in Section 3.3, many recent methods have sought to encode a knowledge-base into the 
loss function, which is to be minimized via learning. In the language of our framework, these loss functions are fidelity measures. In 
other words, they measure how far a neural network is from being a semantic encoding of a given knowledge-base. These techniques 
may broadly be called semantic regularization techniques, in that the knowledge-base acts as a regularizer term in the loss function. 
In this section, we review some prominent semantic regularization techniques.

We begin with a family of encodings in 𝐼𝐷𝐴𝑇 that maximize 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦. In these methods, a neural network is used to implement for 
each predicate 𝑃 , a function 𝐹𝑃 ∶𝑂𝑘 → [0,1], where 𝑂 is a set of objects and 𝑘 is the arity of 𝑃 , and for each function symbol, 𝑓 , a 
function 𝐹𝑓 ∶𝑂𝑘 →𝑂, where 𝑘 is the arity of 𝑓 . The network then defines a fuzzy interpretation of the language in which the domain 
of discourse is 𝑂, a predicate 𝑃 (𝑜1, ..., 𝑜𝑘) is given the truth value assigned to it by 𝐹𝑃 (𝑜1, ..., 𝑜𝑘), and the truth value of a sentence, 
𝜙, is determined recursively using chosen fuzzy connectives, quantifiers and the neural interpretations of the function symbols and 
constants. Given a knowledge-base, 𝐿, the network is trained to maximise satisfiability of 𝐿. We show that this process is equivalent 
to maximizing 𝐹𝐼𝐷𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,∩),𝐿) where 𝑖 ∈ 𝐼𝐷𝐴𝑇 . A general account of semantic regularization methods can be found in [55]. 
In what follows, we will use Logic Tensor Networks [48] as our prototypical example.

LTN modifies first-order logic so as to align the operations used by an interpretation closely to those used by neural networks. 
The result is Real Logic, a many-valued logic whose sentences are sentences in a first-order logic with semantics defined by a domain 

7 In a language consisting of tokens 𝑎 and 𝑏, for example, M𝑖𝑏(𝑖) denotes the strings with more 𝑏’s than 𝑎’s. We say that token 𝑖 is 𝑏. In the case of strings with three 
tokens, the models of M𝑖𝑏(𝑖) are 𝑎𝑏𝑏, 𝑏𝑎𝑏, 𝑏𝑏𝑎 and 𝑏𝑏𝑏.
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𝑂 ⊂ℝ𝑛, fuzzy operators, and groundings of first-order sentences. A grounding interprets the constants, 𝑐, functions, 𝑓 , and relations, 
𝑅, of a first-order language to define an embedding in the following way:

• 𝐺(𝑐) ∈𝑂 for every constant symbol 𝑐;
• 𝐺(𝑓 ) ∈𝑂𝛼𝑓 →𝑂 for every function symbol with airity 𝛼𝑓 ;

• 𝐺(𝑅) ∈𝑂𝛼𝑅 → [0,1] for every predicate 𝑅 with airity 𝛼𝑅.

We can combine these to define a mapping, 𝐺, of terms into tensors, which can be used along with the chosen fuzzy operators to 
define a mapping from sentences to truth values in the interval [0,1].

• 𝐺(𝑓 (𝑡1, ..., 𝑡𝑚)) =𝐺(𝑓 )(𝐺(𝑡1), ...,𝐺(𝑡𝑚));
• 𝐺(𝑅(𝑡1, ..., 𝑡𝑚)) =𝐺(𝑅)(𝐺(𝑡1), ...,𝐺(𝑡𝑚));
• 𝐺(¬𝑙) = 1 −𝐺(𝑙);
• 𝐺(𝑙1 ∨ ... ∨ 𝑙𝑘) = 𝜇(𝐺(𝑙1), ...,𝐺(𝑙𝑘)), where 𝜇 is a t-conorm (e.g. max);

• 𝐺(∀𝑥𝑙(𝑥)) =𝐴(𝑥0∈𝑂)𝑙(𝑥0), where 𝐴 is a fuzzy universal quantifier.

Notice that when 𝑂 is finite, we can use functions such as 
∑

or min as quantifier 𝐴; otherwise, in practice, 𝐴 will be an approximation 
of a fuzzy universal quantifier.

Groundings define the interpretations of Real Logic. The groundings and interpretations of Real Logic are in a one-to-one corre-

spondence and as such we will not distinguish between them from this point on. Intuitively, a constant is a feature vector grounding 
an object onto its properties, such as colour represented by its RGB values. It is helpful to define a notion of a partial grounding, �̂�, 
which is a grounding that is only defined for some terms in the signature. Given a knowledge-base, if a partial grounding is defined 
on all terms and predicates that appear in the knowledge-base then we can determine whether or not the partial grounding satisfies 
the knowledge-base. A partial grounding can be seen as an equivalence class of groundings that agree on the terms and predicates 
on which the partial grounding is defined. A Logic Tensor Network is simply an implementation of a partial grounding in a neural 
network. Given a knowledge-base, 𝐿, the goal is to have the neural network learn a partial grounding that satisfies 𝐿. One can see 
that if an LTN is trained successfully then it defines a neural model of 𝐿. The neural network represents a partial grounding that 
satisfies 𝐿, which in turn represents a set of groundings that satisfy 𝐿, which in turn represents a set of interpretations that satisfy 
𝐿. Next, we show how an LTN successfully trained on a knowledge-base 𝐿 is represented in our framework as a neural model of the 
training set under 𝐼𝐷𝐴𝑇 and 𝐴𝑔𝑔 = ∩. (See Fig. 9.)

Proposition 4.8. Minimizing the loss function of an LTN, 𝑁 , on a knowledge-base, 𝐿, is equivalent to maximizing 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,∩),𝐿)
with 𝑖 ∈ 𝐼𝐷𝐴𝑇 .

Proof. See Appendix C. □

LTNs are a prominent representative of a family of semantic regularization techniques. The techniques differ in the choice of fuzzy 
connectives and the restrictions imposed on the type of sentences in the language [11,55]. In our framework, all of these techniques 
can be summed up as encodings under 𝐼𝐷𝐴𝑇 which are trained to maximize 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦. This opens the door for a general formalization 
of these techniques without committing to a single method. Our framework also extends to semantic regularization methods that do 
not use multi-valued logic but use probability theory, as we show next.

In [56], a generic semantic loss function for deep neural networks is proposed whose output labels represent propositional vari-

ables. Each labelling predicted by the neural network represents an assignment of truth values to the propositional variables. Each 
neuron in the output layer is assumed to represent the probability that the variable corresponding to that neuron is true. Then, the 
semantic loss is defined by:

𝐿𝑜𝑠𝑠(𝐿,𝑝) = − log
∑

𝑀∶𝑀(𝐿)=𝑇 𝑟𝑢𝑒

∏
𝑗∶𝑀(𝑋𝑗 )=𝑇 𝑟𝑢𝑒

𝑝𝑗

∏
𝑗∶𝑀(𝑋𝑗 )=𝐹𝑎𝑙𝑠𝑒

(1 − 𝑝𝑗 ) (3)

where 𝐿 is a propositional knowledge-base, 𝑝 is the vector with the probabilities that each variable represented by the output layer is 
assigned to true, and 𝑀 is an assignment of the propositional variables represented by the output neurons. We show that minimizing 
this loss is equivalent to maximizing 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏.

Proposition 4.9. Minimizing the semantic loss of a feed-forward network, 𝑁 , to a propositional knowledge-base 𝐿 is equivalent to maximizing 
𝐹 𝑖𝑑𝑝𝑟𝑜𝑏((𝑁, 𝑖,∪),𝐿) with 𝑖 ∈ 𝐼𝑁𝐴𝑇 .

Proof. See Appendix D. □

By formalizing semantic regularization techniques in the language of semantic encodings, we are able to quickly identify the 
similarities and differences between such techniques. While we looked at approximate encodings in 𝐼𝑁𝐴𝑇 with 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏, other methods 
combine the distributed encoding of LTN with probabilistic optimization, e.g. [35], creating an approach that seeks to maximizes 
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Fig. 9. (a) The general structure of LTN, where the neural network can be any architecture, a GNN, transformer, feedforward or recurrent network; (b) The state 
transition diagram for the LTN. Note that the state-space is uncountable. We show the input states as a sequence merely for visualization purposes.

the expected satisfiability of a knowledge-base. This is an encoding in 𝐼𝐷𝐴𝑇 with 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏. As with all of the methods discussed in 
this section, this approach weighs the information coming from the observations in the data with a measure of the distance of a 
neural network from being a model of a knowledge-base. Finally, one could expect to design a neurosymbolic technique using 𝐼𝑁𝐴𝑇
and 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦, or even create a new fidelity measure based on the existing ones and a new set of candidate maps. By systematizing 
semantic regularization techniques using the language of semantic encodings, we are able to show that, despite offering very different 
formalizations, they are approximate versions of the classic neurosymbolic encoding techniques.

4.5. Other neurosymbolic encodings

While the techniques that we have discussed represent a significant portion of the literature on neurosymbolic encoding, there 
are many techniques that we have not included. Recent interest in neurosymbolic computing has led to a proliferation of techniques 
making it impossible to cover them all here. Crucially, not all techniques can be described as semantic encodings. In particular, many 
methods map states of a neural network directly onto sentences of a logical system rather than interpretations and models (see [51] 
and [46] for examples). To differentiate, we call these syntactic approaches, outside of the semantic framework proposed here. In the 
closely-related area of neurosymbolic programming [7], for example, it is worth also distinguishing between syntactic approaches 
and the semantics of program synthesis. Notably, however, [32] define an encoding in which each sentence in the language is mapped 
to a state of the network. A method is described that associates to each of these states a mapping from neurons to interpretations. It 
should be possible to extend this idea to encoding functions, suggesting a relationship between syntax based encodings of this kind 
and the type of semantic encoding described by our framework.

The semantic framework, therefore, covers those methods in which states of a neural network are mapped onto interpretations 
of a logical system. We have seen that the proposed definitions capture a large number of neurosymbolic techniques. Although the 
formalization in the framework of other techniques not investigated here is left as future work, in some cases the relationship should 
be obvious. For example, Proposition 4.3 in [45] shows that, as the weights of an MLN go to infinity, the probability that a state of 
the MLN is a model of the desired knowledge-base converges to 1. This is clearly an approximate encoding under 𝐹 𝑖𝑑𝑝𝑟𝑜𝑏 according 
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Table 1
Summary of the semantic encoding classes investigated in this paper with their main 
characteristics: candidate mapping (𝑖), aggregation approach (𝐴𝑔𝑔) and neurosym-

bolic encoding.

Encoding Method 𝑖 𝐴𝑔𝑔 Encoding Technique 
CORE Methods 𝐼𝑁𝐴𝑇 Union Direct Encoding 
Penalty Logic 𝐼𝑁𝐴𝑇 Union Equivalence 
Graph Neural Networks Unique Union Direct Encoding 
LTN 𝐼𝐷𝐴𝑇 Intersection Approximate (𝐹𝐼𝐷𝑓𝑢𝑧𝑧𝑦) 
Semantic Loss 𝐼𝑁𝐴𝑇 Union Approximate (𝐹𝐼𝐷𝑝𝑟𝑜𝑏) 

to our definitions. Another recent approach that has become common is to use Inductive Logic Programming with a differentiable 
structure [47,12]. In these approaches, a vector space is used to represent truth assignments to ground atoms and the weights between 
atoms are learned from examples. The resulting structure then implements a logic program as analyzed in Section 4.1. Other examples 
modify a network to satisfy hard constraints [20]. These methods can be seen as a combination of semantic encoding and semantic 
regularization.

Another line of work suggests possible extensions of the proposed semantic framework, for example, [29] use neural networks to 
model a modal logic based on Hebbian learning. Similarly, [54] use Contrastive Divergence, although the approach in [54] is squarely 
a semantic approach. Taking inspiration from such work and possible-worlds semantics, our framework could be extended to sets of 
neural networks whereby each network represents a possible world and the relationships between the networks are either induced by 
learning or pre-defined, as done in [17]. Table 1 summarises the methods that have been studied in this paper. The encoding function 
class refers to the set of candidate maps that the encoding function belongs to. It is labelled as unique if the encoding function does 
not belong to a set of candidate maps that we have pre-defined. The aggregation function is in all cases either union or intersection. 
The encoding technique is how the network is modified to become a semantic encoding: either the weights are directly calculated to 
make the network a semantic encoding (direct encoding), the network is trained to approximate a semantic encoding (approximate 
encoding), or every network in the class is represented by a knowledge-base and every knowledge-base is represented by a network 
(equivalence).

It can be seen from the table that the existing paradigms of semantic mapping (i.e. directly encoding knowledge-bases into the 
weights of a network) and semantic regularization (using the loss function to steer the network towards the models of a background 
knowledge) fit comfortably into our framework. In the first case, one begins with a network that is a model of a knowledge-base 
and trains it with additional data. In the second case, one begins by training a network with data while regularizing the loss based 
on given knowledge. The result is that semantic mappings start out as neural model pre-training and may diverge as inconsistent 
data is presented, while with semantic regularization the network starts out randomly and moves closer and closer to being a neural 
model of the knowledge-base as training progresses. Semantic mapping prioritizes the semantic relevance of background knowledge 
and operates under the assumption that potential contradictions with the training data are minor and will not result in the network 
deviating too much from the set of neural models. Semantic regularization emphasizes the flexibility of learning from data, assuming 
that much of the relevant information required to learn a concept can be provided in this way. The choice of approach likely depends 
on the application area, availability, and level of confidence in the background knowledge. Finally, equivalences are a matter of 
representation, they show that a class of neural networks can be described precisely by a logical system and vice-versa, implying 
that the tools available for the analysis of one can also be applied to the other. Having the language of semantic encoding allows to 
compare these techniques directly. It is expected to help organize the discussion around the common components and properties of 
a large class of neurosymbolic approaches.

5. Conclusion and future work

For a long time, it has been recognized by some that rule-based symbolic systems and artificial neural networks have complemen-

tary strengths. This has led to the development of a field of AI looking to address its main challenges through what was known at the 
time as neural-symbolic integration. The object of neurosymbolic integration is to find translation algorithms to and from symbols and 
networks, showing correspondence and equivalence results, and to develop a learning and reasoning system based on deep learning 
with symbolic interpretation. The promise of neurosymbolic AI is to produce, as a result of the combination of data-driven learning 
and knowledge, more robust (adaptable to new tasks), efficient (learning from fewer examples), and transparent (explainable) AI 
systems via symbolic computation.

What has been lacking in neurosymbolic AI is a theory that can be leveraged for the design of new AI systems. In this paper, we 
have made some first steps towards such a theory by formalizing a framework for an important class of neurosymbolic techniques 
that we call semantic encodings. This is far from the final word on a theory of neurosymbolic AI and should be looked at instead as a 
starting point for work in this area. We hope that this paper can serve both as a formal introduction to neurosymbolic AI for those 
who are new to the field and as a guide to help organize with a common context and notation the many different approaches to 
neurosymbolic computation. We conclude by outlining various directions for future work which are derived from the contributions 
of this paper.
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The most obvious direction for future work is to continue to expand on the definitions provided here so that they can be used to 
describe more neurosymbolic approaches. Within the context of semantic encoding, task-specific definitions of fidelity and descrip-

tions for other useful sets of candidate mappings are desirable. We have also not discussed a number of neurosymbolic techniques 
which are not semantic in nature, that we called syntactic techniques, e.g. [33]; the definition of a framework capable of capturing 
these and other hybrid systems should also be a priority of future work. Finally, developing a theory stemming from Section 3.4 could 
provide insight into the effectiveness of neural encodings in practice, in both the exact and approximate cases.

A very important direction for neurosymbolic AI is to use theoretical properties of semantic encoding to inform the development of 
new encoding techniques. Rather than developing ad-hoc methods that simply combine previous techniques, a systematic analysis of 
contemporary neurosymbolic approaches would clarify the role of components such as the encoding function, the fidelity measure and 
background knowledge at producing methods that can deliver on the promise of neurosymbolic integration [6]. Using the framework 
proposed here to analyse results such as those found in [34] is expected to offer insight into the limitations and possibilities of 
current techniques, and allow the development of new semantic encoding that is not reliant on the results of specific experimentation 
alone. In other words, the goal here is to characterize the properties of an encoding function relevant to learning with respect to sound 
reasoning and not the ability of the network to perform on a benchmark. The development of a theory of neurosymbolic computation, 
especially one focusing on the relationship between encoding and learning, as hinted at in Section 3.4, would form the basis for such 
new directions of inquiry.

Neurosymbolic AI has potential to overcome many of the limitations of a purely data-driven approach to AI. As the practical work 
in this respect progresses and expands, a robust theory of the semantics of neurosymbolic computation will be needed. With this 
paper we have aimed to provide the first steps in this direction.
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Appendix A. Proof of properties from Section 3.4

Proof of Theorem 3.3:

Proof. Take any 𝑥0 ∈𝑋, let 𝑦0 = 𝑓 (𝑥0). Because 𝑁2 is a semantic encoding of 𝐿 under 𝑖, there exists 𝑡0 such that ∀𝑡 > 𝑡0, 𝑁𝑡
2(𝑦0) =

𝑁𝑡
2(𝑓 (𝑥0)) is a model of 𝐿. By assumption and induction on 𝑡 we have 𝑁𝑡

2(𝑓 (𝑥0)) = 𝑓 (𝑁
𝑡
1(𝑥0)) so 𝑁𝑡

1(𝑥0) is a model of 𝐿 under 
𝑖 ◦ 𝑓 . Therefore, for all 𝑥0, there exists 𝑡0 such that ∀𝑡 > 𝑡0, 𝑁𝑡

1(𝑥0) is a model for 𝐿 under 𝑖 ◦ 𝑓 ∈ 𝐼 and thus 𝑁1 is a model for 𝐿
under 𝑖 ◦ 𝑓 ∈ 𝐼 . Now we must show that 𝐿 ⊨𝑁1

𝐿′ ⟹ 𝐿 ⊨ 𝐿
′. Because 𝑁2 is a semantic encoding of 𝐿, we have by definition 

𝐿⊨𝑁2
𝐿′ ⟹ 𝐿⊨ 𝐿

′, so we will show 𝐿 ⊨𝑁1
𝐿′ ⟹ 𝐿⊨𝑁2

𝐿′ and that will complete the proof. Let 𝑋𝑚 be the set of 𝐿-models of 
𝑁1 and 𝑌𝑚 be the set of 𝐿-models of 𝑁2. 𝐿 ⊨𝑁1

𝐿′ means that 𝐿′ is true in every 𝐿-model of 𝑁1, in other words, every element of 
𝑖◦𝑓 (𝑋𝑚) is a model of 𝐿′. If we can show that 𝑌𝑚 = 𝑓 (𝑋𝑚) then the 𝐿-models of 𝑁2 map to 𝑖◦𝑓 (𝑋𝑚) which we just showed consists 
entirely of models for 𝐿′ and thus we have 𝐿 ⊨𝑁2

𝐿′. Thus, to complete the proof we show that 𝑌𝑚 = 𝑓 (𝑋𝑚). Let 𝑥 be an 𝐿-model of 
𝑁1 and 𝑦 = 𝑓 (𝑥). This means that 𝑖 ◦ 𝑓 (𝑥) = 𝑖(𝑦) is a model of 𝐿 and thus 𝑦 is a model of 𝐿 under 𝑖. Because 𝑥 is an 𝐿-model, there 
exists 𝑥0 such that for all 𝑡 > 0, ∃𝑡′ > 𝑡 with 𝑁𝑡′

1 (𝑥0) = 𝑥, this gives us 𝑓 (𝑁𝑡′

1 (𝑥0)) = 𝑓 (𝑥) and by assumption 𝑓 (𝑁𝑡′

1 (𝑥0)) =𝑁
𝑡′

2 (𝑓 (𝑥0)). 
Thus for all 𝑡 > 0, ∃𝑡′ > 𝑡 and 𝑦0 = 𝑓 (𝑥0) ∈ 𝑌 such that 𝑦 =𝑁𝑡′

2 (𝑦0) and thus 𝑦 is an 𝐿-model of 𝑁2. Now let 𝑦 be an 𝐿-model of 𝑁2, 
because 𝑓 is bijective, we can repeat the same argument above to show that 𝑥0 = 𝑓−1(𝑦0) is an 𝐿-model of 𝑁1 and thus 𝑌𝑚 = 𝑓 (𝑋𝑚)
which completes the proof. □

Proof of Theorem 3.4:

Proof. Let 𝐿 be a knowledge-base in 2 with models 𝐿. Suppose 𝑁 encodes 𝑓 (𝐿) under 𝑖, then 𝑁 are models of 𝑓 (𝐿). Because 
𝑔(𝑔−1(𝑁 )=𝑁 are models of 𝑓 (𝐿), by assumption, 𝑔−1(𝑁 ) are models of 𝐿 and thus 𝑁 is a neural model of 𝐿 under 𝑔−1 ◦ 𝑖. 
Now take another knowledge-base 𝐿′ ∈ 2 and suppose 𝑔−1(𝑁 ) ⊆𝐿′ , then by the same assumption as previously 𝑁 ⊆𝑓 (𝐿′), 
because 𝑁 is a semantic encoding of 𝐿 this implies that 𝑓 (𝐿) ⊨1

𝑓 (𝐿′) which, by assumption, implies 𝐿 ⊨2
𝐿′ meaning 𝑁 is a 

semantic encoding of 𝐿 under 𝑔−1 ◦ 𝑖 □

The proof of Corollary 3.5 is immediate.

Appendix B. Proof that KBANN is semantically equivalent to Horn clauses

Proof. KBANN provides the neural encoding method which we now outline. Given a set of acyclic Horn clauses, 𝑃 , translate 𝑃 into a 
feed-forward network, 𝑁 , with an encoding in 𝐼𝑁𝐴𝑇 by adding a neuron to the network for each atom 𝐴𝑖 that appears in 𝑃 , mapping 
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a state of the network 𝑥 to the interpretation {𝐴𝑖|𝑥𝐴𝑖 = 1}. Each Horn clause is encoded into the network by connecting each neuron 
representing atoms in the body to a neuron representing the atom in the head, setting the weights to implement a logical AND-gate. 
If an atom is in the head of multiple clauses then introduce a hidden neuron for each clause and connect the neurons representing 
the atoms in the body to that hidden neuron, and that hidden neuron to the neuron representing the atom in the head, setting the 
weights to implement a logical OR-gate.8 If an atom is in the head of a clause with an empty body (i.e. it is a fact) then it is given a 
bias that will always activate the corresponding neuron with no connections (i.e. zero-weight connections) from other neurons. We 
know that 𝑇𝑃 always converges to a unique fixed point for acyclic Horn clauses. The unique model of 𝑃 is the single fixed point of 
𝑇𝑃 which is encoded by the network in state �̂�, where �̂�𝐴 = 1 if and only if there exists a clause 𝐴← 𝐵1 ∧𝐵2 ∧ ... ∧𝐵𝑘 with �̂�𝐵𝑖 = 1
for 𝑖 ∈ {1, .., 𝑘}, �̂�𝐴 being the value of the neuron corresponding to atom 𝐴, and �̂�𝐵𝑖 the value of the neuron corresponding to atom 
𝐵𝑖. Because 𝑃 is acyclic, 𝑁 is feed-forward and has a unique fixed point, which is �̂�, and thus 𝑁 is a semantic encoding of 𝑃 under 
𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪.

We have seen that every set of acyclic Horn clauses can be semantically encoded into a feed-forward neural network with positive 
weights under 𝐼𝑁𝐴𝑇 . Now we prove the converse. Take a feed-forward network, 𝑁 , with positive weights and a state space 𝑋 = {0,1}𝑛. 
We will construct a set of acyclic Horn clauses, 𝑃 , that encodes 𝑁 under 𝐼𝑁𝐴𝑇 and 𝐴𝑔𝑔 = ∪. First, we define an encoding function in 
𝐼𝑁𝐴𝑇 by associating a propositional atom, 𝑋𝑗 , to each neuron 𝑗 using the same encoding, 𝑖(𝑥) = {𝑋𝑗 |𝑥𝑗 = 1}. Given a state 𝑥 ∈𝑋, for 
each neuron, 𝑙, if 𝑥𝑙 = 1 in 𝑁(𝑥) then we add the following clause to 𝑃 : 𝑋𝑙 ←𝑋𝑗1

∧𝑋𝑗2 ∧ ...∧𝑋𝑗𝑘 , where neurons 𝑗1, 𝑗2, ..., 𝑗𝑘 are the 
input neurons to 𝑙 with 𝑥𝑗𝑖 = 1 in 𝑥. We repeat this process for each state 𝑥 ∈𝑋. Because all the weights are positive, if 𝑁(𝑥)𝑙 = 1 for 
a state 𝑥 then 𝑁(𝑥′)𝑙 = 1 if 𝑥𝑖 = 1 implies that 𝑥′

𝑖
= 1. This guarantees the consistency of 𝑃 as it means that every state that satisfies 

the body of the clause added to 𝑃 will activate neuron 𝑙 in the next time step, meaning that every clause added is valid over the 
entire state space.

We can see that 𝑃 is a set of acyclic Horn clauses because 𝑁 is feed-forward. This means that 𝑇𝑃 always converges to a unique fixed 
point and clearly 𝑃 ⊆ 𝑟𝑎𝑛𝑔𝑒(𝑖), so in order to satisfy the conditions in Theorem 4.1, all that is left to prove is 𝑇𝑃 (𝑖(𝑥)) = 𝑖(𝑁(𝑥)). 
Take any state, 𝑥, and consider 𝑇𝑃 (𝑖(𝑥)) = {𝑋𝑙|∃(𝑋𝑙 ←𝑋𝑗1

∧ ...∧𝑋𝑗𝑘 ) ∈ 𝑃 ,𝑋𝑗𝑖 ∈ 𝑖(𝑥)}. Because 𝑋𝑗𝑖 ∈ 𝑖(𝑥), 𝑥𝑗𝑖 = 1, and by definition, 
if 𝑋𝑙 ←𝑋𝑗1

∧ ... ∧𝑋𝑗𝑘 ∈ 𝑃 then 𝑥𝑗1 , 𝑥𝑗2 , ..., 𝑥𝑗𝑘 = 1 implies that 𝑁(𝑥)𝑙 = 1, which implies that 𝑋𝑙 ∈ 𝑖(𝑁(𝑥)). Hence, if 𝑋𝑙 ∈ 𝑇𝑃 (𝑖(𝑥))
then 𝑋𝑙 ∈ 𝑖(𝑁(𝑥)). Conversely, if 𝑋𝑙 ∈ 𝑖(𝑁(𝑥)) then 𝑁(𝑥)𝑙 = 1 and by definition there is a clause in 𝑃 , 𝑋𝑙 ← 𝑋𝑗1

∧ ... ∧𝑋𝑗𝑘 ) with 
𝑥𝑗𝑖

= 1, meaning that 𝑋𝑗𝑖 ∈ 𝑖(𝑥) and thus 𝑋𝑙 ∈ 𝑇𝑃 (𝑖(𝑥)). Therefore, 𝑇𝑃 (𝑖(𝑥)) = 𝑖(𝑁(𝑥)). □

Appendix C. Proof that LTN is an approximate encoding under 𝑰𝑫𝑨𝑻 , ∩, and fuzzy logic fidelity

Proof. First we show how an LTN is constructed. Given a Real Logic knowledge-base that we wish to model, 𝐿, an LTN is constructed 
by adding 𝑛 visible units to the network for each variable that appears in L. The neurons representing variables are considered input 
neurons and, given an initial state, stay fixed over time. We add 𝑛 neurons representing each complex term, 𝜃, that appears in 𝐿
recursively in the following way: if 𝜃 is of the form 𝑓 (𝜃1, ..., 𝜃𝑘) then we add 𝑛 neurons for 𝜃 with connections to the 𝑛 × 𝑘 neurons 
representing 𝜃1, ..., 𝜃𝑘. These weights are determined solely by 𝑓 . If 𝜃′ = 𝑓 (𝜃′1, ..., 𝜃

′
𝑘
) is another term in 𝐿 then the weights connecting 

𝜃′ to 𝜃′1, ..., 𝜃
′
𝑘

are identical to those connecting 𝜃 to 𝜃1, ..., 𝜃𝑘. Each constant term 𝑐 is assigned a fixed vector 𝑐. Finally, we add a 
single visible unit for each predicate and argument combination appearing in the knowledge-base, 𝑅(𝜃1, 𝜃2, ..., 𝜃𝑘), where 𝜃𝑘 is the 
term that is the 𝑘𝑡ℎ argument for this instance of 𝑅. Each of these neurons is connected to the neurons representing its input terms. 
As with the function symbols, the weights are completely determined by 𝑅. Let �̂� be the set of variables in 𝐿, and 𝑐 be the set of 
constants.

The visible units are the neurons representing variables and predicates. The hidden neurons are all the other terms, i.e. those 
built by variables, functions and constants. Define our encoding function, 𝑖, by mapping each state to the set of groundings, 𝐺, which 
satisfy the following:

• Let 𝑥𝑅𝜃1 ,...,𝜃𝑘 be the value of the neuron representing 𝑅(𝜃1, 𝜃2, ..., 𝜃𝑘);
• Let �̄�𝑗 be the vector of 𝑛 neurons representing �̂�𝑗 ;
• A state of 𝑁 maps to the set of groundings, 𝐺, that satisfy the following: 𝐺(𝑐) = 𝑐 for all constants 𝑐 that appear in 𝐿, 𝐺(𝑓 ) is the 

function defined by the weights associated with 𝑓 , and if 𝑄 is an atom of the form 𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐)) with 𝑅(𝜃1, ...𝜃𝑘) ∈ 𝐿, 
then 𝐺(𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐))) = 𝑥𝑅𝜃1 ,...,𝜃𝑘 ,

where 𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐)) is the ground atom obtained by substituting the free variables in 𝜃 with �̄�, assigning the constants the 
value 𝑐, and computing the value of 𝜃 with 𝐺(𝑓 ). 

First, we show that 𝑖 ∈ 𝐼𝐷𝐴𝑇 . The interpretations we consider are groundings, 𝐺, for which the network parameters define 𝐺(𝑓 )
and 𝐺(𝑐) for each function and constant symbol. Because each grounding is fully defined by its interpretation of function sym-

bols, constant symbols and predicates, these groundings are in one-to-one correspondence with the set of truth assignments to the 

8 This is because it can be proved that, without adding a hidden neuron, it is impossible to distinguish the valid combinations of the atoms in the bodies of the 
clauses. For example, given 𝐴← (𝐵 ∧𝐶) and 𝐴← (𝐷∧𝐸), it is impossible to connect neurons labelled as 𝐵,𝐶,𝐷,𝐸 directly to a neuron labelled as 𝐴 such that firing 
𝐵 and 𝐶 will fire 𝐴, firing 𝐷 and 𝐸 will fire 𝐴, but firing 𝐵 and 𝐷 or any other combination of 𝐵,𝐶,𝐷,𝐸 does not fire 𝐴. Therefore, in this case, neurons 𝐵 and 𝐶
are first connected to a hidden neuron that is connected to 𝐴, and neurons 𝐷 and 𝐸 are connected to another hidden neuron that is connected to 𝐴.
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ground atoms of the form 𝑅(𝑡1, ..., 𝑡𝑘) where 𝑡𝑖 ∈ 𝑂. We choose a subset of atoms, 𝐴′, to consist of all grounded atoms, 𝑅(𝑡1, ..., 𝑡𝑘), 
for which 𝑅(𝜃1, ..., 𝜃𝑘) appears in 𝐿 and 𝑡𝑖 = 𝜃𝑖(�̄�, 𝑐) for some variable assignment �̄� and the network’s constant assignment 𝑐. 
For simplicity, we assume that this set contains no duplicates. In other words, each atom has at most one representation of this 
form.9 We explicitly define the mappings, 𝑜, 𝑔ℎ, 𝑟, required in Definition 3.4 to prove that 𝑖 ∈ 𝐼𝐷𝐴𝑇 : ℎ and 𝑜 specify, for an atom 
in 𝐴′, which variable assignment will represent it, in particular, 𝑜 maps an atom 𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐)) onto the neurons corre-

sponding to the variables that appear in 𝜃1, ..., 𝑡ℎ𝑒𝑡𝑎𝑘, ℎ maps an atom 𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐)) to the vector consisting of the values 
of each variable, �̄�𝑖 that appear in 𝜃1, ...𝜃𝑘 (so if there are 𝑗 variables each of which has a value in ℝ𝑛 then ℎ maps to the 𝑗 ⋅ 𝑛
dimensional vector of their values); 𝑟 maps 𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐)) to the label of neuron 𝑥𝑅𝜃1 ,...,𝜃𝑘 ; 𝑔 is the identity function on ℝ. 
Surjectivity of 𝑟 is immediate from the definition and the assumption of no duplicates. Furthermore, if 𝑄,𝑄′ ∈𝐴′ with 𝑄 ≠𝑄′ then 
𝑅(𝜃1(�̂� = 𝑡), ..., 𝜃𝑘(�̂� = 𝑡)) ≠ 𝑅′(𝜃′1(�̂� = 𝑡

′), ..., 𝜃′
𝑘
(�̂� = 𝑡′)). If 𝑡 ≠ 𝑡′ then ℎ(𝑄) ≠ ℎ(𝑄′); otherwise, if 𝑅 ≠ 𝑅′ or 𝜃′

𝑖
≠ 𝜃𝑖 then 𝑟(𝑄) ≠ 𝑟(𝑄′). 

This proves the second condition. The final condition is satisfied by definition of 𝑖, in particular, if a grounding is in 𝑖(𝑥) then for an 
atom 𝑄 =𝑅(𝜃1(�̂� = �̄�, 𝑐), ..., 𝜃𝑘(�̂� = �̄�, 𝑐)), if ℎ(𝑄) = 𝑥𝑜(𝑄)1 ,...,𝑜(𝑄)𝑚 then 𝑥𝑗 = �̄�𝑗 for each variable �̂�𝑗 that appears in 𝜃1, ..., 𝜃𝑘 and by defi-

nition 𝐺(𝑅(𝜃1(�̂� = �̄�, 𝑐), ..., 𝜃𝑘(�̂� = �̄�, 𝑐))) = 𝑥𝑅𝜃1 ,...,𝜃𝑘 , but 𝑥𝑅𝜃1 ,...,𝜃𝑘 = 𝑔(𝑥𝑟(𝑅(𝜃1(�̂�=�̄�,𝑐),...,𝜃𝑘(�̂�=�̄�,𝑐)))) so the conditions for 𝐼𝐷𝐴𝑇 are satisfied. 

With our encoding in 𝐼𝐷𝐴𝑇 , we now must look at 𝑋𝑖𝑛𝑓 . Define the computation time 𝑡𝑐 to be the integer corresponding to the 
maximum depth of the graph associated with the network. Because the LTN is feedforward, it will converge to a fixed point in which 
�̄� is equal to its initial state, each hidden unit representing a term 𝜃 will be updated to 𝜃(�̄�, 𝑐) and 𝑥𝑅𝜃1 ,...,𝜃𝑘 will be equal to the truth 
value obtained by computing 𝑅(𝜃1(�̄� = 𝑡, 𝑐), ..., 𝜃𝑘(�̄� = 𝑡, 𝑐)) using the network parameters for 𝑅. With 𝐴𝑔𝑔 = ∩, 𝑁 represents the 
partial grounding in which every atom that can be represented by 𝑅(𝜃1(�̄�, 𝑐), ..., 𝜃𝑘(�̄�, 𝑐)) for some �̄� and 𝑅(𝜃1, ..., 𝜃𝑘) ∈ 𝐿 has truth 
value equal to 𝑥𝑅𝜃1 ,...,𝜃𝑘 in the stable state with input variables �̄�.

This shows that an LTN defines a partial grounding, �̂�, on a knowledge-base, 𝐿. The loss function used to train the LTN is given in 
[3] as SatAgg𝜙∈𝐿 �̂�(𝜙) where �̂�(𝜙) is the fuzzy truth value assigned to 𝜙 by �̂� using the chosen fuzzy connectives. This is equivalent 
to SatAgg𝜙∈𝐿 1− 1− �̂�(𝜙) = SatAgg𝜙∈𝐿 1− 𝑑(�̂�(𝜙), [1,1]). Recalling that �̂� represents a set of interpretations, each of which has the 
same value of 𝑀(𝜙), we can write �̂� as 𝑁 giving us inf

𝑀∈𝑁

SatAgg𝜙∈𝐿 1− 𝑑(𝑀(𝜙), [1,1]), which is just 𝐹 𝑖𝑑𝑓𝑢𝑧𝑧𝑦((𝑁, 𝑖,∩),𝐿). □

Appendix D. Proof that semantic loss is an approximate encoding under 𝑰𝑵𝑨𝑻 , ∪, and probabilistic fidelity

Proof. First we describe the networks under consideration and their encoding functions. Assume that we have a deep feed-forward 
neural network with 𝑘 layers whose first 𝑘−1 layers are deterministic and whose final layer consists of 𝑛 binary-valued neurons whose 
state is updated probabilistically according to a vector of probabilities 𝑝 = [𝑝1, ..., 𝑝𝑛] computed from the state of the previous layer. 
Assume as before that the input layer is fixed for a given initial state, 𝑥0 . Denote by 𝑝(𝑥0) the vector of probabilities of the output layer 
after 𝑘 − 1 time steps. Let the output neurons be visible and the rest hidden. Define 𝑖 ∈ 𝐼𝑁𝐴𝑇 by 𝑖(𝑥) = {𝑀|𝑀(𝑄𝑗 ) = 𝑇 𝑟𝑢𝑒 if 𝑥𝑗 = 1
and 𝑀(𝑄𝑗 ) = 𝐹𝑎𝑙𝑠𝑒 if 𝑥𝑗 = 0} where 𝑄𝑗 is a propositional atom corresponding to the 𝑗𝑡ℎ output neuron. 𝐿𝑜𝑠𝑠(𝐿,𝑝(𝑥0)) is simply 
the negative log probability that 𝑖(𝑋(𝑘)) is a model of 𝐿. Minimizing this for all input states 𝑥0 is thus equivalent to maximizing the 
probability that the state of the output neurons after 𝑘− 1 time steps represents is a model of 𝐿 given any input 𝑥0. Given a uniform 
initial distribution, this is equivalent to maximizing the probability that 𝑥 ∈𝑋𝑃,𝑖𝑛𝑓 is a model of 𝐿 which is exactly the definition of 
𝐹 𝑖𝑑𝑝𝑟𝑜𝑏((𝑁, 𝑖,∪),𝐿). □

Data availability

No data was used for the research described in the article.
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