

City, University of London Institutional Repository

Citation: Gandarela de Souza, J. P., Zaverucha, G. & d’Avila Garcez, A. S. (2024).

Hypergraph Neural Networks with Logic Clauses. 2024 International Joint Conference on
Neural Networks (IJCNN), 32, doi: 10.1109/ijcnn60899.2024.10650412 ISSN 2161-4393
doi: 10.1109/ijcnn60899.2024.10650412

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34418/

Link to published version: https://doi.org/10.1109/ijcnn60899.2024.10650412

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Hypergraph Neural Networks with Logic Clauses
João Pedro Gandarela de Souza

COPPE
Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil
joaosouza@cos.ufrj.br

Gerson Zaverucha
COPPE

Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

gerson@cos.ufrj.br

Artur S. d’Avila Garcez
Department of Computer Science

City University London
London, United Kingdom

a.garcez@city.ac.uk

Abstract—The analysis of structure in complex datasets has
become essential to solving difficult Machine Learning prob-
lems. Relational aspects of data, capturing relationships between
objects, play a crucial role in understanding the underlying
data structure. While traditional graph algorithms have been
widely used for binary relations, recent evidence suggests that
hypergraphs can provide a more effective approach for modeling
complex, non-binary relations. Hypergraph Neural Networks
(HGNN) have been shown to offer a small improvement in
performance when compared to Graph Neural Networks (GNN).
In this paper, a new approach is proposed for inserting relational
domain knowledge into HGNNs using a logic clause expressing
non-binary relations. We evaluate the performance of this new
hypergraph model, called Bottom-clause HGNN (BHGNN), in
comparison with well-known approaches. Results show that
BHGNN can achieve statistically significant improvement of
performance, based on the Wilcoxon signed-ranks test, in com-
parison with HGNN and GNNs.

Index Terms—Relational Learning, Neurosymbolic AI, Hyper-
graphs, Inductive Logic Programming, Graph Neural Networks.

I. INTRODUCTION

In various fields of Machine Learning (ML), the analysis
of relational knowledge has been important to help find
solutions to intricate problems [1]. A relational database can be
visualized as a graph, where the primary keys are represented
as nodes, and connections between nodes represent foreign
keys [2]. Then, Graph Neural Networks (GNNs) [3]–[5] can
be utilized to manipulate this graph structure [6], [7].

GNN algorithms have been widely used to solve relational
problems based on pairwise relationships. For example, a
recent approach called BotGNN [7] generates a bipartite graph
and uses a GNN to classify the graphs. However, pairwise
relationships are limited in their ability to represent rich
knowledge. Non-pairwise relationships are needed to represent
complex data [8], [9].

Recently, studies have shown that hypergraphs, which allow
hyper-edges to connect multiple vertices, can represent rich
knowledge, offering an effective approach to modelling com-
plex, non-pairwise relationships [10]. Additionally, there is a
natural correspondence between relational databases and hy-
pergraphs [11], and many applications already use hypergraphs
because of the limitations of pairwise relationships [12]–[14].

João Souza thanks the Brazilian funding agency CAPES and Gerson
Zaverucha thanks the Brazilian funding agency CNPq.

To handle hypergraphs, one can employ a Hypergraph
Neural Network (HGNN) [15], [16] which is a variant of
a neural network that extends the traditional Graph Neural
Network to process data represented by a hypergraph. The
main idea of a HGNN is to create an embedding from a
hypergraph which is then used to learn a given task.

Unfortunately, creating a hypergraph from relational data
relying solely on facts has its limitations. A fact in logic is
a statement of the form P (a) stating that property P holds
true for object a, where P represents a predicate or property
and a is an individual element or object within the domain
of discourse. For example, let the predicate P (X) denote that
variable X is a prime number. A corresponding fact would
be P (5) indicating that the property of being a prime number
holds true for the object 5. While utilizing facts provides a
structured approach to representing relationships, it may not
capture the dependencies and contextual intricacies present
in real-world data. Additionally, the sheer volume of factual
information required could become intractable when dealing
with large datasets. The risk of information overload and the
potential loss of relevant context poses a challenge to the
effectiveness of the hypergraph representation and learning.

In this paper, instead of using facts only, a new method is
proposed allowing the use of logic clauses, e.g. P (a)→ Q(b),
to construct the hypergraph. Furthermore, the clauses may con-
tain any number of n-ary predicates, e.g. R(a, b, c) with n = 3.
By using logic clauses in the construction of the hypergraph
we will infuse richer knowledge into the hypergraph neural
network. Our hypothesis is that hypergraph neural networks
can learn and represent intricate data relationships expressed
by logic clauses.

The proposed approach is expected to facilitate the creation
of elaborate hypergraphs. Changes made to the depth of a
clause representing data relationships will be shown to impact
the performance of the subsequent hypergraph learning. As an
example, take the concept of a lecture, which can be defined
as a ternary predicate L(t, s, r) with arguments representing a
teacher (t), a list of students (s), and a room (r). This ternary
predicate defines a lecture as a teacher and a group of students
in a room. Alternatively, using binary predicates only, one
would require a predicate for each teacher, Lt(s, r) where Lt

denotes lecture for teacher t, such that lecture is now defined
as the list of binary predicates for all the teachers. This process
is known as reification [17] in computational logic. When

combined with learning, the representation choices matter and
results may vary depending on the arity of predicates.

To explore the use of logic clauses with HGNNs, we intro-
duce Bottom-clause Hypergraph Neural Networks (BHGNN).
A bottom-clause is an artefact of Inductive Logic Program-
ming (ILP) [18], a sub-field of symbolic ML. A clause is built
from a single data point and it is used as the starting point
(the bottom element of a lattice) for a search in the symbolic
space of logic clauses. In [19], bottom clauses were first used
with neural networks. A clause was created for each data point
with the search being carried out in the vector space using a
feedforward neural network. Here, a clause is created for each
data point following [19], but the search uses a hypergraph
neural networks.

Subsequently, leveraging the power of HGNNs, we generate
an embedding derived from this hypergraph. This embedding
forms the basis for classification and reasoning within the
model. By integrating domain-specific knowledge into the
generation of the hypergraph and subsequent embedding, we
aim to allow the system to benefit from complex data relation-
ships that may be known in advance or that may need to be
imposed into the learning process. This follows the tradition
of neurosymbolic systems whereby symbolic and subsymbolic
components are combined [19]–[24].

Statistical analyses of the performance of BHGNN in com-
parison to traditional Graph Neural Networks (GNN) and Hy-
pergraph Neural Networks (HGNN) indicate that BHGNN can
consistently outperform both HGNN and GNN across multiple
datasets. Notably, BHGNN achieves statistically significant
improvements compared to HGNN and GNN.

The remainder of the paper is organized as follows: Section
2 formalizes the concepts from ILP and hypergraph neural
networks used in the paper. Section 3 discusses related work.
Section 4 describes the proposed method and algorithms. Sec-
tion 5 contains the experimental results. Section 6 concludes
the paper and discusses future work.

II. BACKGROUND

A. Inductive Logic Programming

Inductive Logic Programming (ILP) [18], [25], [26] is a
subfield of symbolic machine learning that aims to induce
logical programs from examples. ILP learns logic theories
consisting of Horn clauses in first-order logic from examples
and background knowledge. It combines knowledge represen-
tation using the language of logic programming with inductive
learning to search for logic rules that satisfy the examples.

In ILP, the input data is also represented in the form of logic
programs containing positive and negative examples. The goal
is to learn a logic clause that satisfies all positive examples but
do not satisfy any of the negative examples. The background
knowledge is crucial for the effectiveness of the search. It can
take the form of facts such as father(Lucas,Maria) or rules
such as grandfather(X,Y) :- father(X,Z), father(Z,Y), read “X is
a grandfather of Y if X is the father of Z and Z is the father of
Y”. This rule represents the clause ∀X,Y, Z(father(X,Z)∧
father(Z, Y) → grandfather(X,Y)). The conjunction of

the literals in {father(X,Z), father(Z,Y)} is called the body of
the rule, while grandfather(X,Y) is called the head of the rule.

Searching for a first-order logic clause in ILP is a com-
binatorial optimization problem. Because of that, the number
of combinations of potential hypotheses forming a clause can
become computationally intractable. To ameliorate this prob-
lem, ILP systems use mode declarations as language bias [27].
Modes provide a specification of the input and output of pred-
icates that are allowed in the clauses. Mode declarations also
provide information about the predicates that are required to
solve a search problem. These declarations indicate whether a
predicate can be used in the head (modeh) or body (modeb) of
a rule, and they also specify the determination statements that
declare the predicates that can be used to form a hypothesis.
Additionally, the first argument of a mode declaration is the
recall number, which establishes an upper limit on the number
of instantiations of a predicate. Given a predicate P (X), the
predicate P (5) is an instantiation of P (X) by substituting the
variable X with constant 5. As an example, consider a simple
ILP scenario aiming to learn a rule for a binary classification
task given a predicate friend with two arguments X and Y of
type person, denoting that output Y is a friend of input X.
The task is to learn a rule that predicts whether two persons
are friends or not. A mode declaration for predicate friend
could be: modeh(1,friend(+person, -person)), stating that with
recall 1, the predicate that appears in the head of the clause is
binary predicate friend(X,Y), expected to have an object of
type person as its first argument which is instantiated (denoted
by the “+” symbol), and to have an object of type person
as its second argument which is not instantiated (denoted by
the “-” symbol). With recall number 1, the predicate will
be instantiated only once, e.g. to denote friend(Lucas, Y).
An example of a rule to be learned based on the available
data, in this case examples of friend and non-friend instances
{friend(Mary, John),¬friend(Mary, Lucas), ...}, might
be transitivity of the relation: a friend of a friend is a friend
[28].

The process of searching for a logic clause in ILP involves
a saturation step to efficiently find all relationships implied by
data instances given the background knowledge. This set of
relationships is referred to as the most specific clause as it is
obtained from the data. To narrow down the search space, the
search is limited downward by the most specific clause, also
known as the bottom clause, and upward by the most general
clause. The head of the clause contains a single predicate
representing the target concept, while the body starts empty.
Consequently, the most general clause predicts any input as
positive, e.g. ∀X,Y friend(X,Y). As the search progresses,
the clause is refined and instantiated by adding predicates from
the Bottom Clause to the body based on observed positive and
negative examples along with any background knowledge or
constraints. The matching of modeh and modeb is structured
to maintain variable chaining, ensuring that each variable used
as an input in a body predicate is also an input variable in a
head predicate or an output variable in another body predicate.
In what follows, we will use the ILP process of constructing

a bottom clause, which incorporates all the ground logical
consequences from the background knowledge for a training
example, to build a hypergraph neural network.

B. Graph Neural Networks

GNN is a type of neural network that is specifically designed
to deal with graph-structured data [3]–[5]. Unlike traditional
neural networks that operate on vectors or sequential data,
GNNs seek to model relationships between entities in a graph.

The main idea in GNN algorithms is the message passing
process, in which each node in the graph aggregates infor-
mation from its neighboring nodes. A node is updated using
information passed by its neighbors. Thus, the neighborhood
function is crucial and in this paper it will be defined following
the process for constructing a bottom clause, as discussed
earlier. The typical steps involved in the use of a GNN are:

1) Initialization: The first step in a GNN is to initialize the
node features. Each node in the graph is assigned an
initial feature vector, which represents its initial state.

2) Message Passing: The core operation in a GNN is mes-
sage passing, where information is exchanged between
nodes in the graph. During message passing, each node
aggregates information from its neighboring nodes.

3) Node Update: After aggregating information from neigh-
boring nodes, each node updates its representation based
on information gathered from the neighboring nodes.

4) Iteration: Steps 2 and 3 (message passing and node
update) are performed repeatedly for a fixed number of
iterations or until convergence. Each iteration allows the
GNN to propagate information through the graph.

5) Readout/Pooling: After iteration, a readout or pooling
operation is performed to aggregate information from
all the nodes into a fixed-sized graph-level representa-
tion. This operation is expected to capture the overall
characteristics or a summary of the graph.

6) Output: Finally, the graph-level representation obtained
from the readout/pooling step is used to make predic-
tions or perform a specific task. For instance, in node
classification, the graph-level representation can be fed
into a classifier to predict the label of each node. In
graph classification, the graph-level representation is
used to predict a label for an entire graph.

C. Hypergraph Neural Networks

While traditional GNNs operate on graphs consisting of
nodes and edges, hypergraph neural networks (HGNNs) in-
troduce hyper-edges that can connect multiple nodes. In hy-
pergraphs [29], a hyper-edge is a higher-order structure that
connects any number of nodes simultaneously. It permits the
representation of n-ary predicate relationships compared to
traditional graphs which encode binary predicates. HGNNs
leverage this additional structure to capture complex and
higher-order interactions in data.

The key idea behind HGNN is to generalize the concept
of neighborhood aggregation used in GNNs. While node
neighborhoods in graphs are just the immediate neighboring

nodes, in a hypergraph the neighborhood of a node is defined
by the nodes that share the same hyper-edges. This flexibility
enables the propagation of information from a hyper-edge
to all the nodes that it connects, incorporating higher-order
dependencies which are especially relevant to model when
multiple hyper-edges overlap partially, as discussed below.

One common approach in HGNN is to decompose hyper-
edges into pairwise connections in order to adopt GNN meth-
ods. This decomposition allows the application of existing
GNN architectures, such as Graph Convolutional Networks
(GCNs), by treating the hypergraph as a bipartite graph. This
method, known as hyper-edge decomposition, transforms the
hypergraph into an auxiliary bipartite graph where hyper-edges
are represented as edges between hyper-nodes and regular
nodes. However, as our experiments indicate, this approach
can lead to information loss and increased computational com-
plexity due to the potential explosion in number of pairwise
connections.

The algorithm for training HGNN is similar to that of
GNN. The key difference is that with the data represented
as a hypergraph, neighbors are not pair-wise anymore but are
defined by the hyper-edges. The message passing follows the
same idea as in GNNs, only now using the hyper-edges.

In [15], the GCN framework is extended to hypergraphs by
introducing a hypergraph adjacency matrix and a hypergraph
Laplacian matrix. The authors propose a hypergraph-based
technique to adapt the traditional GCN operations to hyper-
graph data. [16] proposes a hypergraph convolutional neural
network (HGCN) that generalizes the concept of graph convo-
lutions to hypergraphs. The HGCN can employ a hypergraph
attention mechanism to weigh the importance of hyper-edges
during the convolution operation. In this paper, we choose to
adopt a standard approach so as to simplify the comparative
evaluation of results; we use the graph convolutional network
of [30] and the HGNN defined in [16]. The adoption of
other convolutional approaches is seen, however, as a natural
extension of this work towards pursuing further increases in
performance. The HGNN model used here is the following:

X′ = D−1HWB−1H⊤XΘ

where the incidence matrix H, representing connections, is
multiplied by the diagonal hyper-edge weight matrix W.1

The resulting product is then multiplied by D−1 and B−1,
which represent the corresponding degree matrices. Finally,
this multiplication is applied to the transpose of H, the input
matrix X, and the parameter matrix Θ, yielding the updated
matrix X′ [16].

In summary, HGNNs extend the GNN framework to handle
hypergraphs, allowing the modeling of higher-order dependen-
cies among nodes. Moreover, by capturing complex interac-
tions through hyper-edges, HGNN offers a richer representa-
tion of data. As the experimental results introduced in this

1https://pytorch-geometric.readthedocs.io/en/latest/generated/torch geometric.nn.c
onv.HypergraphConv.html

paper indicate, this richer representation can improve perfor-
mance on various learning tasks that involve hypergraphs.

III. RELATED WORK

BotGNN [7] is a method that creates a Bottom Graph from
the Bottom Clause using bipartite graph structures. It works
by representing predicates from the Bottom Clause on one
side of the graph and their terms on the other side. This data
can then be classified using a GNN. Our work is similar to
the approach presented in [7], but instead of using graphs, we
represent the logic programs as hypergraphs and process them
using HGNN.

HetSAGE [6] is a GNN architecture designed to deal with
heterogenous graphs. It applies a uniform sampling similar to
that of GraphSAGE [31]. Additionally, it uses a node-centric
sampling method to create sub-graphs from the entire graph.
The method creates sub-graphs beginning from the target
node that will be classified and retrieving n-hop neighbors.
For example, with 1-hop it will create a sub-graph with
the immediate neighbors, with 2-hops it will create a sub-
graph with immediate neighbors and the neighbors of those
neighbors. Then, instead of using the entire graph to classify
the target node, it uses the sub-graph to classify the node.

As discussed before, ILP uses the power of First-order Logic
(FOL) that enables the representation of complex relationships
and quantification of variables. Nevertheless, the most efficient
and effective machine learning algorithms of late have been
based on neural networks which operate at a propositional
level, not handling variable quantification. Propositionalization
techniques have been used in ML to convert (finite) first-
order logic into propositional logic. This process involves
transforming a set of FOL clauses, typically represented by
definite clauses, into propositional logic statements ready to
be used by neural network learning algorithms.

A propositionalization technique called Bottom Clause
Propositionalization (BCP) was introduced in [19] to allow
the use of neural networks in the solution of ILP problems.
BCP generates a Bottom Clause from each training example to
generate features for each predicate from the Bottom Clause.
Each predicate in the Bottom Clause is assigned a position
in a vector. For example, a set with two clauses associated
with target predicate motherInLaw: {motherInLaw(A, B) :−
parent(A, C), wife(C, B); ¬motherInLaw(A, B) :− wife(A,
C)}, will produce a 3-dimensional vector for parent(A, C),
wife(C, B) and wife(A, C) in this order. The first clause maps
to vector (1,1,0) with target output 1, the second clause maps to
vector (0,0,1) with target output -1. A neural network classifier
for the target predicate is then trained in the usual way. BCP
will be used next with HGNNs.

IV. HYPERGRAPH WITH LOGIC CLAUSE METHOD

Neural-symbolic computation seeks to merge neural compu-
tation with symbolic reasoning. Our method involves integrat-
ing symbolic knowledge into hypergraphs extending the idea
of Bottom Clause Propositionalization, and training a classifier
from data and background knowledge using hypergraph nets.

We introduce the concept of a Bottom-HyperGraph, where
from the predicates of the bottom clause, terms are mapped
onto nodes and hyper-edges are used to connect the terms
of any n-ary predicate. The process of creating the Bottom-
HyperGraph follows a series of steps outlined below and
detailed in the pseudo-code provided in the Appendix and the
implementation available from GitHub:2

1) For each example in the training set:
a) Generate a Bottom Clause;
b) Delete the head of the Bottom Clause (the entire

hypergraph will represent the target predicate);
c) Generate a Bottom-HyperGraph from the body of

the Bottom Clause:
i) For each predicate of the form P(t1,t2,...,tn),

create a node in the hypergraph labelled ti, 1 ≤
i ≤ n, and create a hyper-edge connecting the
terms ti labelled P.

ii) Create a feature vector for each node ti encod-
ing the arguments and data types of ti;

iii) Create a feature vector for each hyper-edge P
encoding the terms in P.

The above process for creating a Bottom-HyperGraph pro-
duces a hypergraph in a format that a HGNN can handle.
Each node has its respective feature vector, hyper-edges that
contain the information of which nodes are in the relation, and
the hyper-edge type encoded as a feature vector.

To exemplify the entire process, we use the trains dataset
[32], a widely known dataset in the ILP community. The goal
is to classify trains as being eastbound or otherwise based on
characteristics of the cars of the trains such as car length (short
or long), whether the car is open-top or not, the shape of the
load, the type of content, number of wheels, etc. There are
only ten train in the data, although the relational descriptions
may become quite complicated. Examples of the logic clauses
used in the solution of the problem are shown below and
include predicates to state for example that train A has a car
B which is closed-top with 3 circle-shaped loads and a car C
with 1 triangle-shaped load. Crucially, the simple trains dataset
includes ternary predicates such as load(C, triangle, 1). The
mode declarations are listed in the Appendix.

We work with four types of data in this mode of oper-
ation: ‘#int’, ‘#shape’, ‘car’ and ‘train’. Additionally, there
are eleven predicates, namely ‘closed’, ‘double’, ‘eastbound’,
‘has car’, ‘jagged’, ‘load’, ‘long’, ‘open car’, ‘shape’, ‘short’
and ‘wheels’. While processing the data, we focus on the
‘#’ symbol, which acts as a constant in the bottom clause.
Seven constants are non-numeric, namely ‘circle’, ‘ellipse’,
‘hexagon’, ‘nil’, ‘rectangle’, ‘triangle’, and ‘u shape’.

To induce a logical theory using ILP, positive and negative
examples are necessary, as well as background knowledge
and mode declarations. There are five positive examples of
the form eastbound(eastn), 1 ≤ n ≤ 5, and five negative
examples eastbound(westn), 6 ≤ n ≤ 10.

2https://github.com/JoaoPedroD/Bottom-HyperGraph

With the background knowledge, mode declarations, and
positive and negative examples, we generate a bottom clause.
Below, we show the bottom clause for the first negative
example, which is eastbound(west6).

eastbound(A) : −
closed(B), has car(A,B), has car(A,C),
load(B, circle, 3), load(C, triangle, 1), long(B),
open car(C), shape(B, rectangle), shape(C, rectangle),
short(C), wheels(B, 2), wheels(C, 2).3

In the trains example, with hypergraphs not being restricted
to pairwise relations between objects, ‘load’ is a hyper-edge
connecting three nodes. Similarly, ‘closed’ can be represented
by a unary relation, and therefore a hyper-edge for a single
node. This changes the message passing: in a bipartite graph, it
takes two hops for a predicate node to reach another predicate
node or for a term node to reach another term node. By
contrast, in a hypergraph, only one hop is required because
each hyper-edge directly connects multiple nodes, allowing
for more efficient communication and information transfer
between nodes. This streamlined connectivity in hypergraphs
reduces the complexity of traversing the graph compared
to bipartite graphs. For instance, Figure 1a and Figure 1b
represent the same set of relations, illustrating a shared un-
derlying structure. Figure 1a displays a bipartite graph, while
Figure 1b adopts a hypergraph representation. Despite the
clear difference in representation, both figures are equivalent
in terms of the relationships that they model. It can be seen
that a single hop in the hypergraph may require multiple hops
in the bipartite graph.

(a) bipartite graph (b) hypergraph

Fig. 1: Figures 1a and 1b depict equivalent sets of relations.
While Figure 1a displays a bipartite graph, Figure 1b repre-
sents the same relationships using a hypergraph.

To process the hypergraph for HGNN training, feature
vectors representing the hypergraph need to be created. Next,
we illustrate this process using the trains example. We use the
first eleven positions to encode the predicates: [eastbound,
closed, double, has car, jagged, load, long, open car,
shape, short, wheels]. We set the value to 1 for the predicates

3This clause states that train A is eastbound if it has two cars, one closed
(B) and one open (C). The closed car (B) carries a load with 3 circles, is
long, has a rectangular shape, and two wheels. The open car (C) carries a
load with one triangle, is short, has a rectangular shape, and two wheels.

that hold true in the bottom clause, and 0 otherwise. Next, we
encode the data types: [#int,#shape, car, train], and reserve
seven positions for constants: [circle, ellipse, hexagon, nil,
rectangle, triangle, u shape]. Again, a 1 denotes true, and
0 denotes false. We allocate the last position to represent nu-
meric values from the load and number of wheels predicates.

As an example, the feature vector for the predicate ‘closed’
would be a one-hot encoding with a 1 in the second position
of a vector of size 23. Constant 2 is represented by feature
vector [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2], with a 1 indicating the type #int and a 2 in the last
position. For the variable ‘A’, the feature vector is again a one-
hot encoding with a 1 in the fifteenth position, representing
that ‘A’ is of type ‘train’. For constant ‘circle’, the feature
vector would be [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0], indicating that ‘circle’ is of type ‘#shape’ and
has a value of ‘circle’. The feature vectors for the hypergraph
for eastbound(west6) are shown in the Appendix.

Fig. 2: Bottom Clause Hypergraph Neural Network. Back-
ground knowledge and mode declarations are shown here
for the example eastbound(east6) of the trains classi-
fication problem) (a). A bottom clause is generated for
eastbound(east6) (b). The corresponding hypergraph is cre-
ated, disregarding the head of the bottom clause, with color
green denoting type train, yellow denoting type car, red
denoting shape, and blue denoting int (c). The hypergraph
is converted into feature vectors for training the HGNN (d).

The algorithm in the Appendix is used to create the hy-
pergraph from the Bottom Clause. We expect that domain
knowledge will be incorporated into the HGNN using the
Bottom Clause to improve performance. Next, we report the
experimental results indicating that this is indeed the case.

To summarize, the process begins with the bottom clause
of eastbound(east6), as illustrated in Figure 2. This clause
is then transformed into a hypergraph, creating the Bottom-

HyperGraph. Finally, we utilize the Bottom-HyperGraph to
train a HGNN, as detailed below.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method using
a hypergraph neural network, we conducted a ten-fold cross-
validation on multiple datasets. We implement the HGNN with
Pythorch4. We conduct an analysis of the proposed approach
(BGHNN) in direct comparison with its most closely related
approaches, HGNN and GNN. We then evaluate BHGNN
against BotGNN, CILP++, and other related work. We pro-
cessed graphs using GNN with Convolutional ARMA Filters
[30]. We optimized both HGNN and GNN using Adam [33].
The architectures of both models have three layers and were
trained for 500 epochs with early stopping set to 50 and a
learning rate of 0.0001. Additionally, we report the results
obtained by Aleph [34], a purely-symbolic ILP system.

The datasets and background knowledge are written in Pro-
log and described in Aleph, including the mode declarations to
create the bottom clause. We investigate diverse datasets such
as Mutagenesis [35], Carcinogenesis [36] and four Alzheimer’s
datasets [37] - Choline, Scopolamine, Toxic, Amine - each
with different characteristics and features. The Aleph system
[34] was used to generate the bottom clauses with variable
depth set to five.

The experiments were performed as follows:
1. Data preparation: we pre-processed each dataset to ensure

a smooth transition from Prolog to Python libraries.
2. Cross-validation iterations: for each dataset, we produced

10 variations for cross-validation. In each, 1/10 of the data was
held out as the validation set, while the remaining data was
used for training.

3. Model training and evaluation: we created a Bottom-
HyperGraph and trained a HGNN for each fold, with the graph
embedding as initialization, recording training and validation
set classification performance (accuracy) for each fold.

4. Result aggregation: after completing the ten-fold cross-
validation for each dataset, we aggregated the results by
calculating the average and standard deviation of accuracy
across all folds for each dataset.

The results of the experiments are presented in Table II, dis-
playing the average accuracy and standard deviation for each
dataset. After applying the Wilcoxon signed-rank test [38] to
compare the performance of BHGNN with HGNN and GNN
on the same folds, we found that BHGNN outperforms both.
Therefore, we found evidence to reject the null hypothesis,
indicating significant differences in their performance.

Next, we compared our method (BHGNN) with BotGNN.
We found that BHGNN exhibits in general a lower standard
deviation than BotGNN and a better average accuracy in
four out of seven data sets. However, applying the Wilcoxon
statistical test revealed no substantial differences between the
two models.

4https://pytorch-geometric.readthedocs.io/en/latest/

TABLE I: Average accuracy results of the proposed approach
(BHGNN) in comparison with directly related approaches
HGNN and GNN on seven data sets. BHGNN outperforms
HGNN and GNN on all data sets with statistically significant
results; HGNN does not use bottom clauses in the hypergraph
and GNN uses a bipartite graph.

BHGNN HGNN GNN
Muta42 75± 13.475± 13.475± 13.4 70± 9.3 68± 13.8
Muta188 90± 8.990± 8.990± 8.9 83± 6.1 79± 6.3

Carcinogenesis 64± 7.964± 7.964± 7.9 54± 6.3 54± 5.2
Scopolamine 54± 9.954± 9.954± 9.9 51± 6.6 49± 5.6

Amine 53± 8.253± 8.253± 8.2 52± 6.6 49± 4.4
Toxic 55± 8.655± 8.655± 8.6 53± 5.9 54± 4.9

Choline 54± 7.954± 7.954± 7.9 52± 5.6 50± 4.8

TABLE II: Average accuracy results of the proposed ap-
proach (BHGNN) in comparison with related work BotGNN,
HetSAGE, CILP++ and Aleph. Among the graph-based ap-
proaches (BHGNN, BotGNN, HetSAGE), BHGNN achieves
the best results in three out of seven data sets. In two
cases, the use of a vector instead of a graph representation
(CILP++) produces the best results. In three cases, a purely
symbolic approach wins (Aleph). These data sets have been all
studied extensively in ILP with the use of Aleph optimizations.
The results indicate the need for further investigation and
optimization of the graph-based approaches.

BHGNN BotGNN HetSAGE CILP++ Aleph
Muta42 75± 13.4 73± 16.4 70± 14.6 73± 18.3 76± 14.576± 14.576± 14.5
Muta188 90± 8.990± 8.990± 8.9 88± 9.9 86± 10.9 87± 7.8 85± 9.1

Carcinogenesis 64± 7.964± 7.964± 7.9 62± 8.9 62± 11.9 58± 8.9 61± 8.7
Scopolamine 54± 9.9 53± 10.4 52± 12.9 52± 5.5 60± 4.760± 4.760± 4.7

Amine 53± 8.2 55± 8.7 52± 8.6 68± 6.768± 6.768± 6.7 62± 7.9
Toxic 55± 8.6 62± 8.3 54± 9.6 72± 6.172± 6.172± 6.1 65± 8.2

Choline 54± 7.9 58± 9.2 53± 10.2 53± 4.3 59± 7.759± 7.759± 7.7

Finally, the results obtained by Aleph and CILP++ were
competitive, showcasing their robustness and efficacy in ad-
dressing relational learning cases. The differences between
BHGNN and Aleph and CILP++ were also found to be not
statistically significant.

VI. CONCLUSION AND FUTURE WORK

The main objective of this paper was to investigate different
forms of graph representation and their impact on the effec-
tiveness of graph-based learning. In particular, graph neural
networks as a richer form of representation than standard
neural networks are expected to handle relational data well. We
introduced a method allowing graph neural networks to benefit
from a symbolic relational learning setting via the use of
hypergraphs. We evaluated learning results on datasets that are
not restricted to binary relations, comparing performance with
hypergraph neural networks, graph neural networks and other
neurosymbolic and purely-symbolic approaches for relational
learning. The paper defined a systematic method for inte-
grating domain expertise into hypergraph networks using the
concept of saturating examples to create a most-specific clause

as an initial embedding for training. The approach is novel in
that it is the first to instil relational knowledge of arbitrary arity
into hypergraph networks. Experimental results have indicated
the promise of the approach. The results obtained warrant
further evaluations on extensive data sets to consider also
variations and the latest optimizations of the graph learning
methods and algorithms.

While symbolic Machine Learning induces a logic theory
as a result of learning, graph neural networks do not. A logic
theory is in principle interpretable and explainable, capable
of providing a justification for the answers obtained in the
form of a logic proof. Therefore, explainability of hypergraph
networks is a natural area for further research. A hypergraph
network to which prior knowledge has been added should
be easier to interpret via querying than one that starts from
a random initialization. The goal will be to post-process
the hypergraph learned to revert to logic form. We plan to
investigate variations of HGNN such as [39], expand the graph
optimization efforts which were not the focus of this paper, and
evaluate explainability of the decision-making process. Given
the results obtained here, one should also consider adapting
approaches such as [40] to work with hypergraphs.

REFERENCES

[1] A. K. Wong, P.-Y. Zhou, and Z. A. Butt, “Pattern discovery and
disentanglement on relational datasets,” Scientific Reports, vol. 11, no. 1,
p. 5688, 2021.

[2] M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robin-
son, R. Ying, J. You, and J. Leskovec, “Relational deep learning:
Graph representation learning on relational databases,” arXiv preprint
arXiv:2312.04615, 2023.

[3] W. L. Hamilton, Graph representation learning. Morgan & Claypool
Publishers, 2020.

[4] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., vol. 2. IEEE, 2005, pp. 729–
734.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] V. Jankovics, M. G. Ortiz, and E. Alonso, “Hetsage: Heterogenous graph
neural network for relational learning (student abstract),” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 18, 2021,
pp. 15 803–15 804.

[7] T. Dash, A. Srinivasan, and A. Baskar, “Inclusion of domain-knowledge
into gnns using mode-directed inverse entailment,” Machine Learning,
pp. 1–49, 2022.

[8] P. Bonacich, A. C. Holdren, and M. Johnston, “Hyper-edges and
multidimensional centrality,” Social networks, vol. 26, no. 3, pp. 189–
203, 2004.

[9] S. Klamt, U.-U. Haus, and F. Theis, “Hypergraphs and cellular net-
works,” PLoS computational biology, vol. 5, no. 5, p. e1000385, 2009.

[10] M. M. Wolf, A. M. Klinvex, and D. M. Dunlavy, “Advantages to
modeling relational data using hypergraphs versus graphs,” in 2016 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2016, pp. 1–7.

[11] R. Fagin, “Degrees of acyclicity for hypergraphs and relational database
schemes,” Journal of the ACM (JACM), vol. 30, no. 3, pp. 514–550,
1983.

[12] H. Shi, Y. Zhang, Z. Zhang, N. Ma, X. Zhao, Y. Gao, and J. Sun,
“Hypergraph-induced convolutional networks for visual classification,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 10, pp. 2963–2972, 2019.

[13] S. Feng, E. Heath, B. Jefferson, C. Joslyn, H. Kvinge, H. D. Mitchell,
B. Praggastis, A. J. Eisfeld, A. C. Sims, L. B. Thackray et al.,
“Hypergraph models of biological networks to identify genes critical
to pathogenic viral response,” BMC bioinformatics, vol. 22, no. 1, pp.
1–21, 2021.

[14] M. Contisciani, F. Battiston, and C. De Bacco, “Inference of hyperedges
and overlapping communities in hypergraphs,” Nature communications,
vol. 13, no. 1, p. 7229, 2022.

[15] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar,
“Hypergcn: A new method for training graph convolutional networks
on hypergraphs,” Advances in neural information processing systems,
vol. 32, 2019.

[16] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and hyper-
graph attention,” Pattern Recognition, vol. 110, p. 107637, 2021.

[17] N. Grewe, “A generic reification strategy for n-ary relations in dl,” in
OBML 2010 Workshop Proceedings, 2010.

[18] S.-H. Nienhuys-Cheng and R. de Wolf, What is inductive logic program-
ming? Springer, 1997.

[19] M. V. França, G. Zaverucha, and A. S. d’Avila Garcez, “Fast relational
learning using bottom clause propositionalization with artificial neural
networks,” Machine learning, vol. 94, pp. 81–104, 2014.

[20] A. S. Avila Garcez and G. Zaverucha, “The connectionist inductive
learning and logic programming system,” Applied Intelligence, vol. 11,
pp. 59–77, 1999.

[21] A. d’Avila Garcez and L. C. Lamb, “Neurosymbolic AI: the 3rd wave,”
Artif. Intell. Rev., vol. 56, no. 11, pp. 12 387–12 406, 2023.

[22] L. C. Lamb, A. S. d’Avila Garcez, M. Gori, M. O. R. Prates, P. H. C.
Avelar, and M. Y. Vardi, “Graph neural networks meet neural-symbolic
computing: A survey and perspective,” in Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020, C. Bessiere, Ed. ijcai.org, 2020, pp. 4877–4884.

[23] T. R. Besold, A. S. d’Avila Garcez, S. Bader, H. Bowman, P. M.
Domingos, P. Hitzler, K. Kühnberger, L. C. Lamb, P. M. V. Lima,
L. de Penning, G. Pinkas, H. Poon, and G. Zaverucha, “Neural-symbolic
learning and reasoning: A survey and interpretation,” in Neuro-Symbolic
Artificial Intelligence: The State of the Art, ser. Frontiers in Artificial
Intelligence and Applications, P. Hitzler and M. K. Sarker, Eds. IOS
Press, 2021, vol. 342, pp. 1–51.

[24] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay, Neural-symbolic
learning systems - foundations and applications, ser. Perspectives in
neural computing. Springer, 2002.

[25] S. Muggleton, “Inductive logic programming,” New generation comput-
ing, vol. 8, pp. 295–318, 1991.

[26] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory
and methods,” The Journal of Logic Programming, vol. 19, pp. 629–679,
1994.

[27] S. Muggleton, “Inverse entailment and progol,” New generation com-
puting, vol. 13, pp. 245–286, 1995.

[28] A. L. d. C. L. Duboc, “Utilizando a cláusula mais especı́fica e declaração
de modos na revisão de teorias de primeira-ordem a partir de exemplos,”
Master’s thesis, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO,
2008.

[29] A. Bretto, “Hypergraph theory,” An introduction. Mathematical Engi-
neering. Cham: Springer, vol. 1, 2013.

[30] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural
networks with convolutional arma filters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, p. 1–1, 2021.

[31] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[32] D. Michie, S. Muggleton, D. Page, and A. Srinivasan, “To the in-
ternational computing community: A new east-west challenge,” Dis-
tributed email document available from http://www. doc. ic. ac. uk/˜
shm/Papers/ml-chall. pdf, 1994.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:6628106

[34] A. Srinivasan, “The aleph manual,” 2001.
[35] A. Srinivasan, S. Muggleton, R. D. King, and M. J. Sternberg, “Mu-

tagenesis: Ilp experiments in a non-determinate biological domain,”
in Proceedings of the 4th international workshop on inductive logic
programming, vol. 237. Citeseer, 1994, pp. 217–232.

[36] A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. Sternberg,
“Carcinogenesis predictions using ilp,” in International Conference on
Inductive Logic Programming. Springer, 1997, pp. 273–287.

[37] R. D. King, M. J. Sternberg, and A. Srinivasan, “Relating chemical
activity to structure: an examination of ilp successes,” New Generation
Computing, vol. 13, pp. 411–433, 1995.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[39] Y. Gao, Y. Feng, S. Ji, and R. Ji, “Hgnn+: General hypergraph neural
networks,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 45, no. 3, pp. 3181–3199, 2023.

[40] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnex-
plainer: Generating explanations for graph neural networks,” Advances
in neural information processing systems, vol. 32, 2019.

APPENDIX A
TRAINS DATASET

Mode Declarations:

: −modeh(1, eastbound(+train)).
: −modeb(1, short(+car)).
: −modeb(1, closed(+car)).
: −modeb(1, long(+car)).
: −modeb(1, open car(+car)).
: −modeb(1, double(+car)).
: −modeb(1, jagged(+car)).
: −modeb(1, shape(+car,#shape)).
: −modeb(1, load(+car,#shape,#int)).
: −modeb(1, wheels(+car,#int)).
: −modeb(∗, has car(+train,−car)).
: −determination(eastbound/1, short/1).
: −determination(eastbound/1, closed/1).
: −determination(eastbound/1, long/1).
: −determination(eastbound/1, open car/1).
: −determination(eastbound/1, double/1).
: −determination(eastbound/1, jagged/1).
: −determination(eastbound/1, shape/2).
: −determination(eastbound/1, wheels/2).
: −determination(eastbound/1, has car/2).
: −determination(eastbound/1, load/3).

Feature vectors:
closed : [0, 1, 0.]
has car : [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
load : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
long : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
open car : [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
shape : [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
short : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
wheels : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
A : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0.]
B : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
C : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]
circle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0.]
triangle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0.]
rectangle : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0.]
1 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.]
2 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.]
3 : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.]

Algorithm for creating the Bottom hypergraph:

Require: generate hypergraph(bottom clause: a bottom
clause from a single example)

Remove head of the bottom clause
nodes← ∅, hyperedges← ∅
for each atom in bottom clause do

hyperedge← ∅, hyperedge type← ∅
extract terms into terms and extract predicate into
predicate
for each t in terms do

if t not in nodes then
add t into nodes

end if
t index ← index of t in nodes # get the index of
the node t in the nodes
add t index to hyperedge

end for
Create node of type predicate and add to hyperedge
Add hyperedge to hyperedges and add predicate to
hyperedges type

end for
return nodes, hyperedges, hyperedge type

Require: bottom clauses: Bottom clause for all examples;
preds: list of all predicates; modes: modes; consts:
constants that appear in the bottom clause; node types:
type of each term of each predicate
for each bottom clause in bottom clause do
hypergraph← generate hypergraph(bottom clause)
for each node in hypergraph do
feat← array of zeros of length preds
if node type is predicate then

feat← oneHot(predicate, preds)
end if
feat concatenate into feats
feat = array of zeros of length node types
if node type is node type then

feat = oneHot(node type, node types)
end if
feat concatenate into feats
feat = array of zeros of length consts
if node type is constant then
feat = oneHot(constant, consts)

end if
feat concatenate into feats
feat = array of zero of length 1
if node type is numeric then
feat = number

end if
feat concatenate into feats
hypergraph[node] = feats

end for
add hypergraph in hypergraphs

end for
return hypergraphs

