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SUMMARY

We introduce a new concept for forecasting future events based on marker information. The 20

model is developed in the nonparametric counting process setting under the assumptions that
the marker is of so-called high quality and with a time-homogeneous conditional distribution.
Despite the model having nonparametric parts it is established herein that it attains a parametric
rate of uniform consistency and uniform asymptotic normality. In usual nonparametric scenarios,
reaching such a fast convergence rate is not possible, so one can say that the proposed approach 25

is superefficient. These theoretical results are employed in the construction of simultaneous con-
fidence bands directly for the hazard rate. Extensive simulation studies validate and compare the
proposed methodology with the joint modeling approach and illustrate its robustness for mild
violations of the assumptions. Its use in practice is illustrated in the computation of individual
dynamic predictions in the context of primary biliary cirrhosis of the liver. 30

Some key words: Counting processes; Dynamic prediction; Kernel hazard estimation; Nonparametric smoothing;
Survival Analysis
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2 D. BAGKAVOS ET AL.

1. INTRODUCTION

This paper investigates a novel approach to understanding future survival when the hazard de-
pends on a developing marker process. Given some natural assumptions on the marker process35

and the marker dependent hazard, we establish herein that the proposed technique achieves para-
metric rates of convergence. That is so even though the specifications of the marker process and
the marker dependent hazard are fully nonparametric. Nonparametric estimators with this prop-
erty have been called superefficient, see e.g. Nielsen (1999). This should not be mixed up with the
notion of superefficiency used in asymptotic parametric statistics when discussing optimality of40

estimators. The estimator proposed here allows one to analyse and visualise survival forecasting
using methodology related to square-root-n consistent mathematical statistics. In particular, we
derive uniform confidence bands based on approximations by Gaussian processes, proceeding
similarly as in statistical inference based on cumulative distribution functions, Kaplan–Meier
estimators or Nelson–Aalen estimators. While most of the mathematics of this paper is new,45

interpretation of its results requires only conventional intuition. A key asymptotic requirement
of the proposed technique is that the nonparametric components involved are undersmoothed
with vanishing asymptotic bias. In this sense our approach is related to semiparametric statis-
tics. Implementation of the estimator in practice is facilitated via a fully automatic smoothing
methodology, also developed herein, based on an adapted version of cross-validation. Our final50

approach is therefore fully data driven. Additionally, the present research develops theory for
uniform confidence bands for future development of conditional hazards for individuals with a
certain present marker level, thus allowing its first practical implementation.

Development of the new methodology contained in this article requires two crucial assump-
tions. The first one is that conditional hazards depend on time only through the value of the55

marker process at this time point. We regard such markers as being of high quality, a notion that
goes back to Nielsen (1999), see also Nielsen (2000). Secondly, for the marker process we make
a Markov-type assumption that allows us to predict the further development of the marker. In
our model we take a purely nonparametric view. The main intuition behind our new approach
to modeling the full survival system was already given in Nielsen (2000) with some improved60

technical indications in Mammen & Nielsen (2007). However, the practicalities and full techni-
cal consequences of this new approach were never investigated and as a result this new approach
has never entered mainstream statistics nor it has ever been implemented on real data up to now.

The proposed methodology applies in many fields such as Data Mining or Asset-Liability
management, see Nielsen (2000). Below we will discuss a health research example which re-65

quires the forecast of the hazard rate function as a disease progresses. Specifically, in analysing
the primary biliary cirrhosis (PBC) data set of the Mayo Clinic (Therneau & Grambsch, 2000),
the objective is the prediction of clinical progression of patients diagnosed with PBC, based on
repeated measures of different biological markers and time to clinical progression. There exist
multiple examples in the Biostatistical literature with similar modeling objective, including e.g.70

prostate specific antigen and prostate cancer recurrence (Proust-Lima & Taylor, 2009) or CD4
counts and HIV infection (Fusaro et al., 1993; Cui et al., 2023).

For the analysis of such data, individual dynamic prediction techniques have been proposed,
e.g. landmarking (Anderson et al., 1983; Van Houwelingen, 2007) or joint modelling (Henderson
et al., 2000; Rizopoulos, 2012). The landmarking approach uses individuals alive at t and infor-75

mation on the biomarker up to t to fit a proportional hazards model and estimate the probability
of surviving up to t+ s (Ferrer et al., 2019); see Van Houwelingen (2007) for an implementation
where smoothing with respect to t has been included. The joint modeling methodology estimates
the distribution of the biomarker and the time-to-event and derive the conditional future event
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probability using past biomarker data (Rizopoulos, 2012; Proust-Lima & Taylor, 2009). In this 80

model, the marker process is usually described through a linear mixed model with a stochastic
component Wi for individual i, and the time-to-event is usually modelled via a mixed propor-
tional hazards model that includes the same stochastic component Wi. The two submodels for
marker and survival are linked by sharing the same stochastic component Wi, and the marker
process is thus conditionally independent of the survival times given Wi. Both approaches have 85

been shown as being powerful tools in statistical inference, especially for individual dynamic
prediction (Ferrer et al., 2019). However both methodologies do not fully capture the stochastic
structure of the data. This is so because in landmarking one has a separate model for each value
of the landmark time t with biomarker data only considered up to t so that the two processes are
not temporally and mutually linked for all times. This induces that predictions at landmark t are 90

not consistent (in the sense of Jewell & Nielsen 1993) with predictions at other landmark times
(Suresh et al., 2017; Ferrer et al., 2019). In contrast, the joint model approach relies on the joint
distribution of the two processes and is thus likely to provide consistent predictions. However,
in practice, joint models suffer from simplifying parametric assumptions that highly reduce the
flexibility and stochasticity of the model and association between the two processes (Ferrer et al., 95

2019). For instance, the shared stochastic component Wi is almost always limited to a vector of
time-independent random effects.

This paper contains a full asymptotic study for the case of one-dimensional marker processes.
We will show that under our two assumptions, the full survival system can be estimated with para-
metric rates. This has important technical consequences. For example, our resulting forecast of 100

the future hazard can be estimated uniformly consistently for any individual starting the forecast-
ing at any value of the marker process. Extended to this methodology, a wild bootstrap approach,
see Mammen (1992), is developed and provides both pointwise and uniform confidence bands
of the entire range of the future hazard. This is very powerful and yields a real alternative to the
commonly used parametric approach. Due to the mathematical challenges of our approach, we 105

have developed the full mathematical insight described above for the one-dimensional marker
case only. Possible extensions to higher dimensional markers are briefly discussed at the end of
the paper.

2. MODEL FORMULATION

Consider n individuals observed in the time interval [0, T ] with survival times T1, . . . , Tn. 110

The methodology proposed herein is developed under the same model formulation as in Nielsen
(2000). For i = 1, . . . , n let Ni be the counting process, which indicates the observed event for
the ith individual and Zi the exposure process taking values in {0, 1}, with 1 indicating that the
ith individual is at risk to encounter the event of interest. Furthermore, additional information for
every individual is available in the form of a one-dimensional predictable cadlag marker process 115

Xi(t), t ∈ [0, T ]. We assume that N (n) = (N1, . . . , Nn) is an n-dimensional counting process
with respect to the increasing, right continuous filtration Ft = σ(N (n)(s), X(n)(s), Z(n)(s); s ≤
t), t ∈ [0, T ], where Z(n) = (Z1, . . . , Zn) and X(n) = (X1, . . . , Xn). The observed data are
denoted by Xn = {X(n)(t), Z(n)(t), N (n)(t); t ∈ [0, T ]}. Note that when for each individual
i,Xi(t) = xi ∈ R for all t ∈ [0, T ], the present formulation defaults to the time-invariant co- 120

variates setting.
The following assumptions are used throughout the article. The main assumptions are the first

two. Assumption [A1] expresses the fact that the conditional hazard α(·) only depends on the
marker information and in particular not on time.
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[A1] (High-quality marker information) The stochastic processes (N1, X1, Z1), . . . , (Nn, Xn,125

Zn) are independent and identically distributed with predictable intensity

λi(t)dt = E{dNi(t) | Ft−} = α{Xi(t)}Zi(t)dt,

where the conditional hazard α(·) depends on time t only via the marker Xi(t).

Our second main assumption is a Markov-type condition and concerns the dynamics of the
marker processes Xi(t). In what follows, s can be seen as landmark time, i.e., the time at which130

the prediction is to be computed.

[A2] (Markov-type assumption on marker process) The conditional distribution of Xi(s+ t),
given Fs, Ti ≥ s+ t, Zi(s+ t) = Zi(s) = 1, depends only on Xi(s) and t and, in partic-
ular, not on s.

Assumptions [A1] and [A2] define a setting where it is possible to use previous data for future135

prediction based only on marker information. A situation, as stated in [A1], where α(·) only
depends on the marker is described in Yong et al. (1997) who argues that time since infection of
AIDS has little implication on its hazard. In this particular example, Assumption [A1] is covering
the fact that the count of CD-4 cells in the blood is way more important than just the time since
infection. Time is still part of the model through the time dependent covariates Xi, Ni and Zi.140

Time invariance of the marker process transition probabilities stated in Assumption [A2] allows
using already observed developments of patients in the past for future predictions. Methodology
for assessing the validity of [A1] and [A2] before applying the proposed approach in practice is
provided in Section B.2 of the supplementary material. The same section also contains numer-
ical evidence on the sensitivity of the approach when either assumption is violated; the results145

indicate that the method is robust to mild violations of both assumptions.
For x∗ in the interior of the support of Xi(t) we make the following additional assumptions

which are discussed in Section B.3 of the supplementary material.

[A3] The support A of Xi(t) is a finite closed interval that does not depend on t. The conditional
density f(s, s+ t, x, z) of {X(s), X(s+ t)} given (Z(s), Z(s+ t)) = (1, 1) exists and150

is twice continuously differentiable with respect to x and z for δT ≤ s ≤ s+ t ≤ T − δT ,
x, z ∈ A. The conditional density f(s, z) of X(s) given Z(s) = 1 and the functions∫

A
f(s, s+ t, x, z)dz,

∫
A
α(z)f(s, s+ t, x, z)dz

exist and are twice continuously differentiable with respect to x for 0 ≤ s ≤ s+ t ≤
T , x ∈ A. The conditional hazard α(x) is twice continuously differentiable for x ∈ A
and bounded away from 0. For some constant C > 0 we have that |f(s, s+ t1, x, z)−155

f(s, s+ t2, x, z)| ≤ C|t1 − t2| for s, t1, t2 ≥ 0, s+ t1, s+ t2 ≤ T , δT ≤ t1, t2 ≤ T −
δT , x, z ∈ A.

[A4] The expectations γ(s) = E{Zi(s)} and γ(t, s) = E{Zi(t+ s)Zi(s)} exist and are con-
tinuous. For some constant C > 0 we have that |γ(t1, s)− γ(t2, s)| ≤ C|t1 − t2| for
s, t1, t2 ≥ 0, s+ t1, s+ t2 ≤ T , δT ≤ t1, t2 ≤ T − δT . Furthermore, for δT ≤ t ≤ T −160

δt the term Γ(t, x∗) is bounded from below and for x ∈ A the function E(x) is bounded
from below, where

Γ(t, x∗) =

∫ T−t

0
γ(t, s)f(s, t+ s, x∗, z)dsdz, E(x) =

∫ T

0
γ(s)f(s, x)ds.
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[A5] The kernel K has bounded support, [−1, 1] say, and is continuously differentiable on
[−1, 1]. The bandwidths b1 and b2 are equal to cb,1n

−ρ1 or cb,2n−ρ2 for some cb,1, cb,2 > 0,
1/4 < ρ1, ρ2 < 1/3. 165

[A6] It holds that

pr{|Xi(s+ t)−Xi(s)| ≤ δ, Zi(s+ t) = 1 | Xi(s) = z, Zi(s) = 1} ≤ δκ(t)

for all z ∈ A, 0 ≤ s < s+ t ≤ T and δ > 0 small enough, where κ is a positive function
with

∫ T
0 κ(t)dt ≤ Cκ for a constant Cκ > 0.

[A7] For some constant C > 0 we have that E{|Xi(s+ t1)−Xi(s+ t2)|4} ≤ C|t1 − t2|2 for
s, t1, t2 ≥ 0, s+ t1, s+ t2 ≤ T , δT ≤ t1, t2 ≤ T − δT .

In the sequel it is shown that under these conditions, it is possible to estimate the marker condi- 170

tional future hazard with starting point s

hx,s(t) = pr {Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Zi(s+ t) = Zi(s) = 1} /dt, (1)

where Ti is the survival time of individual i. Assumption [A2] allows writting hx,s(t) = hx(t).
We will use hx,s(t) if we want to underline when the prediction is made but keep the notation
hx(t) most of the time. Our main results contain limiting distributions for estimators of the 175

process hx(t) for fixed value of x and for the consistency of uniform confidence bands based on
wild bootstrap. Trivially, we have

hx,s(t) = hx(t) = pr {Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Ti > s+ t} /dt,

under the additional assumption of non-informative censoring, i.e.

pr {Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Ti > s+ t} 180

= pr {Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Zi(s+ t) = Zi(s) = 1} .

Under this assumption, our approach yields an estimator of the conditional survival function,
defined by simply integrating the conditional hazard estimator appropriately.

Consequently the prediction of the future conditional hazard becomes an estimation problem.
Thus, our approach can be considered as an in-sample forecasting method. In-sample forecasting 185

has been introduced using structural models in Martı́nez-Miranda et al. (2013) and has been
majorly used in reserving. See also Hiabu et al. (2016); Mammen et al. (2021) and Bischofberger
et al. (2019). Our framework allows us to write the marker conditional future hazard as

hx(t) = E[α{Xi(s+ t)} | Xi(s) = x, Zi(s) = Zi(s+ t) = 1].

Let Kb(·) = b−1K(·/b) be a kernel with bandwidth b. By Assumption [A5] K is a continuously 190

differentiable function with bounded support. Estimators for α(z) and hx(t) have been proposed
in Nielsen (2000) and we will use them here as well. For bandwidths b1 and b2 define

α̂i,b1(z) =

∑
k ̸=i

∫ T
0 Kb1{z −Xk(s)}dNk(s)∑

k ̸=i

∫ T
0 Kb1{z −Xk(s)}Zk(s)ds

, (2)

and

ĥx,b1,b2(t) =

∑n
i=1

∫ T
0 α̂i,b1{Xi(t+ s)}Zi(t+ s)Zi(s)Kb2{x−Xi(s)}ds∑n

i=1

∫ T
0 Zi(t+ s)Zi(s)Kb2{x−Xi(s)}ds

. (3) 195

To simplify notation we also write α̂i and ĥx for α̂i,b1 and ĥx,b1,b2 if dependence on bandwidths
does not need to be highlighted. Estimator α̂i is a usual leave-one-out estimator for the hazard.
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Its use as an approximation of α(·) is intuitive since α̂i can be thought as the natural extension
to the present setting of Hjort (1994)’s local likelihood principle in modeling a constant hazard
rate function, see also Nielsen & Linton (1995). Also ĥx(t) arises from using a kernel estimator200

of the conditional density of Xi(s) and combining it with α̂i. For achieving parametric rates it is
important that the bias terms arising in the smoothing are of order o(n−1/2). This can be achieved
by choosing the bandwidths b1 and b2 such that b21, b

2
2 = o(n−1/2), see again Assumption [A5].

Notice that our estimators also work when some data are right censored. This is controlled via
the individual time dependent exposure measures Zi(·).205

3. ASYMPTOTIC THEORY

This section formulates the main result of the present research which states that the proposed
hazard estimator yields a parametric rate of uniform convergence and is asymptotically normal.
On first sight this fact seems very surprising since we estimate the hazard rate non-parametrically.
For the pointwise case, this has been already observed in Nielsen (2000); see also related mod-210

els studied in Castellana & Leadbetter (1986), Bosq (2012), Kutoyants (2004), and Aeckerle-
Willems & Strauch (2022), where parametric rates show up in nonparametric settings. Thus,
these models differ from other non-parametric models where estimators only allow a slower
convergence rate compared to parametric estimation problems. The main difference lies in the
fact that typically in nonparametric problems only local information can be used whereas in our215

model all individuals with markers Xi(·) having visited the neighbourhood of x at some time
point s ≤ T − t add information for the estimation of hx(t).

THEOREM 1. Suppose that Assumptions [A1]–[A7], apply for an x = x∗ in the interior of the
support of Xi(t). Then it holds for δT > 0 that

n−1/2(ĥx∗ − hx∗) → Gx∗

in distribution, weakly in ℓ∞([δT , T − δT ]), where Gx∗ is a tight Gaussian process taking values220

in ℓ∞([δT , T − δT ]) with mean 0 and covariance Σ(t1, t2) stated in Section B.7 of the supple-
mentary material.
For the proof of Theorem 1 see Sections B.4–B.6 in the supplementary material. There, we
also argue that the result of the theorem also holds for the boundary points x∗ of A if in the
smoothing step (3) the convolution kernel Kb2(x− u) is replaced by a boundary corrected kernel225

or if we use local linear estimation instead of local constant smoothing. We conjecture that the
result of Theorem 1 also holds if the interval [δT , T − δT ] is replaced by [0, T − δT ]. But this
would require additional detailed assumptions on the speed of convergence of the joint density
of {Xi(t1), Xi(t2)} to infinity for t1 − t2 → 0. Theorem 1 is used in the next Section as the
basis for constructing pointwise and uniform confidence bands. Implementation of the proposed230

estimator in practice requires the development of a data driven, consistent bandwidth selection
rule which is discussed in detail in Section A.2 of the supplementary material.

4. CONFIDENCE BANDS

We now introduce a bootstrap procedure for the construction of pointwise and uniform con-
fidence sets. For a critical discussion of confidence sets based on Gaussian approximations, see235

Bie et al. (1987). Our approach is a slight modification of wild bootstrap procedures recently
proposed in counting process models (Beyersmann et al., 2013; Bluhmki et al., 2019). Because
in our case the estimation error is not a martingale, we need to adapt this approach to our setting.
We will use the multiplier bootstrap, as presented in Chernozhukov et al. (2013). Fix x∗ in the
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interior of the support of Xi(t). Define 240

Wi(t) =

∫ T

0
α̂i,b1{Xi(t+ s)}Zi(t+ s)Zi(s)Kb2{x∗, Xi(s)}ds.

Then

n−1
n∑

i=1

Γ̂(t, x∗)
−1Wi(t) = ĥx∗(t), where

Γ̂(t, x) = n−1
n∑

i=1

∫ T−t

0
Zi(t+ s)Zi(s)Kb2{x,Xi(s)}ds.

In the proof of Theorem 1 it is shown that ĥx∗(t) = A(t) +B(t) + oP (n
−1/2), where 245

A(t) = n−1
n∑

i=1

∫ T

0
gt,x∗{Xi(s)}dMi(s),

B(t) = n−1
n∑

i=1

∫ T

0

[
α{Xi(t+ s)} − hXi(s)(t)

]
Zi(t+ s)Zi(s)Kb2{x∗, Xi(s)}ds

and

gt,x(z) =

∫ T−t
0 γ(t, s)f(s, t+ s, x, z)ds∫ T

0 γ(s)f(s, z)ds
. (4)

Our bootstrap estimator of the distribution of the process ĥx∗(·)− hx∗(·) is the conditional distri- 250

bution of h̄x,B(·) = AB(·) +BB(·) given all observations Xn = {Ni(t), Zi(t), Xi(t) : 1 ≤ i ≤
n, 0 ≤ t ≤ T with Zi(t) = 1}, where

AB(t) = n−1/2
n∑

i=1

∫ T

0
ĝi,t,x∗{Xi(s)}Vi[dNi(s)− α̂i{Xi(s)}Zi(s)ds],

BB(t) = n−1/2
n∑

i=1

Vi{Γ̂(t, x∗)−1Wi(t, x∗)− ĥx∗(t)},

with Vi i.i.d. normal random variables independent of (Ni, Xi, Zi) with expectation 0 and vari- 255

ance 1. Furthermore, we have used the following leave-one-out estimator of gt,x(z)

ĝi,t,x(z) =

n−1
n∑

j=1
j ̸=i

∫ T−t

0
Êj{Xj(t+ s)}−1Kb2{z,Xj(t+ s)}Zj(t+ s)Zj(s)Kb2{x,Xj(s)}ds. (5)

We apply the bootstrap to get an approximation for the quantiles of the distribution of the ran- 260

dom variables σ−1
Gx∗

(t){ĥx∗(t)− hx∗(t)} for fixed t and for the supt∈[δT ,T−δT ] σ
−1
Gx∗

(t)|ĥx∗(t)−
hx∗(t)|. Denote the asymptotic distributions of the random variable by prG

∗
x(t) and of the supre-

mum by prG
∗
x,M . Here, σ2

Gx∗
(t) is the variance of ĥx∗(t)− hx∗(t). The bootstrap estimators of

these quantities are given by the conditional distribution prh
∗
x∗,B(t) of

h∗x∗,B(t) = σ̂Gx∗ (t)
−1{AB(t) +BB(t)}, 265
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and of the conditional distribution prh
∗
x∗,B,M of supδT≤t≤T−δT |h∗x∗,B

(t)|. Here σ̂2
Gx∗

(t) is an es-

timator of the variance of ĥx∗(t) and is equal to E{h̄x∗,B(·)2 | Xn}. In the proof of Theorem 2
below, which is provided in Section B.8 of the supplementary material, we argue that σ̂2

Gx∗
(t)

converges to the variance σ2
Gx∗

(t) of the limiting Gaussian process. The consistency of the boot-
strap approach is established in the next theorem.270

THEOREM 2. Under the assumptions of Theorem 1, h∗x∗,B
(t) approximates the distribution of

G∗
x∗(t) pointwise and uniformly, i.e. in the pointwise case it holds that

dK

(
prh

∗
x∗,B(t), prG

∗
x∗ (t)

)
→ 0,

in probability, for all t ∈ (0, T ) and in the uniform case it holds that

dK

(
prh

∗
x∗,B,M , prG

∗
x∗,M

)
→ 0,275

in probability, where dK(·, ·) denotes the Kolmogorov distance.
Implementation details for the 1− α pointwise bootstrap confidence intervals and uniform boot-
strap confidence bands are provided in Section A.1 of the supplementary material.

5. NUMERICAL EXAMPLES

5.1. Simulation study280

The simulation study in this section assesses the performance of the proposed estimator
and the accuracy level of the associated confidence sets. We generated data according to the
High-Quality Marker (HQM) model described in Section 2 with a univariate marker. We con-
sidered 3 different functional shapes for the marker-only hazard α1(x) = exp (2x− 2)/15,
α2(x) = 4(x− 0.3)4 and α3(x) = 4[1 + exp {−4(x− 1)}]−1, displayed in Fig. 5 in the sup-285

plement. These hazards are only dependent on a marker measurement x and thus satisfy As-
sumption [A1]. The marker X is simulated in the following way: first, we simulate a Gaussian
random walk G(tg) with jump sizes that vary according to a normal distribution N(0, 0.072)
on the grid {td/10 : td = 0, . . . , 100} ∋ tg and with uniform randomly chosen starting points
G(0) = x0 = 0.1, 0.2, . . . , 0.9. The resulting continuous process, marker X(t) for all t ∈ [0, 10],290

was derived via linear interpolation between the values G(tg). To mimic cohort follow-ups, we
then considered that this marker was only observed at individual-specific discrete follow-up vis-
its t̃ = a+D, where a = 1, . . . , 9 and D ∼ N(0, 0.072). Note that since the Gaussian random
walk is a homogeneous Markov process, Assumption [A2] is also satisfied.

Given the hazard αj , j = 1, 2, 3 and the marker X , we then simulate n independent one-jump295

counting processes, each with intensity αj{X(t)} before a jump and 0 after. If a jump did not
happen before 10 the survival time T was right censored by 10.

We evaluated 6 settings based on samples of size n = 300, 600 and the 3 marker-only hazards.
In each setting we calculated 1000 realizations of the estimator ĥx(t) defined in (3) together with
local and uniform confidence bands, see also (A1) and (A2) in the supplementary material. This300

was done for marker values x equal to q0.1, q0.25, q0.5, q0.75, q0.9, where qz is the empirical z
quantile of all observed marker values. We compared ĥx(t) with the true hazard hx(t) defined in
(1). Since the true hazard hx(t) does not have a closed form, it was numerically approximated
using the relation hx(t) = ∂/∂t{− logSx(t)}, where Sx(t) was approximated by simulations.
The bandwidths were set to b1 = b2 = b with b chosen as minimizer of Mean Integrated Squared305
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Error (MISE)

MISE(hx, ĥx,b,b) = E
[ ∫ 10

0
{ĥx(t)− hx(t)}2dt

]
.

Different values of b are selected for each combination of x, n, and α. We did not simulate the
cross-validation bandwidths as proposed in Section A.2 of the supplementary material because,
due to the large number of settings, such a calculation would be computational too complex. 310
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Fig. 1. Coverage rate of the pointwise (red) and uniform
(blue) confidence bands for the marker-only hazards αj ,
j = 1, 2, 3, for n = 300 individuals and marker values x
at the 0.1, 0.25, 0.50, 0.75, and 0.90 quantile of the em-
pirical marker distribution. The exact rates for the uniform
confidence band computed on the total time window (blue)
or computed while ignoring the first and last year (green)
are also reported. The confidence bands are based on 1000

realizations and a bootstrap with 1000 repetitions.
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Under the aforementioned settings we performed extensive simulations to quantify the relative
bias of ĥx(t) and the coverage rates of the associated pointwise and uniform confidence bands.
Due to space restrictions, graphical illustrations of the results are deferred to Section A.3 of the
supplementary material. In summary, the simulations indicate that the methodology generally
provides a very small bias, which decreases as the sample size increases. Furthermore, the stan-315

dard deviation is much larger compared to the bias, which aligns with the theoretical findings.
Nevertheless, for marker-only hazards with a very low value the relative bias is substantial. This
is not surprising, as a low marker-only hazard value leads to a smaller number of observed events
which do not allow for accurate estimations. Increased bias is also observed at boundary values
of time, e.g. at the first or last year which affect the coverage rates of the 95% pointwise and320

uniform confidence bands as can indicatively be seen in Fig.1. The figure suggests that boundary
effects in combination with small marker-only hazards values increase the coverage error of the
proposed technique. In Section A.3 of the supplementary material we argue that increasing the
sample size slightly improves the coverage error (see Fig.10 there); nevertheless effective treat-
ment of the issue necessitates the use of a local linear estimator, i.e., estimator h̃x(t) defined in325

Section B.1 of the supplement.
We note that additional simulations were performed for a smaller sample size of n = 50 pa-

tients. The estimator captured the key elements of the marker-only hazard and gave reasonable
predictions but the quality of inference was not perfect (results not shown). In the perspective of
proposing prediction tools, we encourage the use of large enough sample sizes as recommended330

in the literature (e.g., Riley et al. (2020)). Indeed, too small samples may provide inaccurate
individual predictions in particular in the case of complex relationships with the marker.

5.2. Comparison with the Joint Modeling methodology
In biomedical research, the JM methodology of the longitudinal marker and the time-to-event

have been proposed to compute dynamic individual predictions (Rizopoulos, 2012; Ferrer et al.,335

2019). Here we compare the HQM estimator and JM estimators when data are generated ac-
cording to the framework described in Section 5.1. The comparison is based on the values of the
model’s estimated MISE, Area Under the Curve (AUC) and Brier Score (BS) metrics. The future
conditional survival function (given the information Fs up to s) is estimated by

STRUE
⋆ (s+ t | Fs) = pr{T⋆ > s+ t | X⋆(s), T⋆ > s}, (6)340

where X⋆(s) is the marker history of an individual ⋆ before landmark time s.
The JM estimator consists of two parametric submodels which are linked by a shared latent

structure. We consider here the classical specification with a linear mixed model for the longitu-
dinal marker measurements and a proportional hazard model for the time-to-event:

Xi(t) = mi(t) + εi(t)

= Fi(t)
⊤β +Ri(t)

⊤Bi + εi(t)

λi(t) = λ0(t) exp{W T
i γ +mi(t)η},

(7)345

where Fi(t) and Ri(t) are covariate vectors including functions of time, that are associated with
the vector of fixed effects β ∈ Rp and the vector of individual random effects Bi ∼ N(0, D)
with unknown D, respectively. The measurement errors εi(t) ∼ N(0, σ2) and are independent
of Bi. The instantaneous risk of event is defined according to the baseline hazard λ0, and a
linear predictor that includes covariates Wi and a function of the marker trajectory, in this ex-350

ample mi(t) the underlying true current marker level of individual i. In this specific setting,
the baseline hazard λ0 is approximated by cubic splines with 5 internal knots, and considered
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a linear regression with time, i.e. Fi(t) = t, Ri(t) = t, and no adjustment for covariates, i.e.,
Wi = 0. The joint model is fitted on all the longitudinal and survival information within the
maximum joint likelihood framework using the JM R package (Rizopoulos, 2010). The numer- 355

ical integration involved in the log-likelihood computation is performed by a pseudo-adaptive
Gauss Hermite quadrature with 9 knots, and optimization of the log-likelihood was achieved by
an Expectation-Maximization algorithm. See Rizopoulos (2012), Ferrer et al. (2019) for further
details.

The two methodologies were trained on samples of n = 300, 600 individuals and the marker- 360

only hazards α1, α2, α3, corresponding to a total of 6 scenarios. Their predictive performance
was then compared on an external sample of 100 new individuals. Once the JM was fitted, the
future conditional survival function (6) was computed at different landmark times s and for
different horizons t, using the parametric fit described above. For the HQM estimator we used:

ŜHQM
⋆ (s+ t | Fs) = exp

{
−
∫ t

0
ĥx⋆(u)du

}
(8) 365

where x⋆ is the last marker measurement X⋆(s) of an individual ⋆ before landmark time s. Note
that since the marker is Markov and the marker-only hazards do not directly depend on time,
the future conditional hazard hx(t) is independent of the landmark time s. For comparing the
predictive performances of the two approaches, we considered 3 different landmark times 1.5,
3.5 and 5.5 leading to 18 cases. For each case, we computed 100 realizations of the conditional 370

survival estimate of each individual ⋆ based on their marker data up to the landmark time s.
Implementation details for all three metrics are provided in Section A.3 of the supplementary
material, along with graphical illustration of all simulation results.

In summary, in all cases of the MISE and the AUC simulations (36 instances in total) the HQM
model systematically outperformed the JM approach. This is probably due to the parametric 375

specification of the JM which assumes a log linear form for the hazard that is not compatible
with the α2 and α3 cases. For α1, although both approaches yield close MISEs, the HQM model
performs slightly better than JM in all instances. This might be due to the misspecification of
parametric model for the marker which was generated as a random walk rather than a individual-
specific linear trajectory. The HQM model is better than JM in the Brier score simulations too; 380

however, in this case, their BS metric values are very close to each other and especially for α2

they can be regarded as equivalent.

6. APPLICATION

The methodology developed in the previous Sections is applied for predicting the clinical
progression of patients diagnosed with primary biliary cirrhosis (PBC) of the liver, based on 385

the publicly available dataset pbc2 of the Mayo Clinic (Therneau & Grambsch, 2000). The data
set contains information on a randomized clinical trial of the D-penicillamine versus placebo
for a total of 312 patients who met certain eligibility criteria. The patients were followed-up
for a maximum of 13 years between 1974 and 1984. Repeated measures of different biological
markers were collected over time including albumin, bilirubin and alkaline phosphatase along 390

with time to clinical progression defined as the minimum date of death or transplantation.
We consider two high-quality markers for the prediction of clinical progression in PBC. These

are bilirubin (normal range 0.2 to 1.2 mg/dl) and albumin (normal range of 3.4 to 5.4 g/dl). Both
are produced by the liver and according to Lammers et al. (2015); Hirschfield et al. (2018) are
known to correlate with death. High concentration of bilirubin and low concentration of albumin 395

indicates a liver dysfunction. Under assumption [A1] the risk of clinical progression is indepen-
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dent of time given the current marker level. Assumption [A2] expresses the fact that the future
level of either marker depends on its current level and the time elapsed in between the patient’s
evaluations. For our methodology to be applicable, we need (a) to assume the markers are ob-
served without measurement error, and (b) to interpolate between the marker measurements and400

extrapolate linearly at the last measurement. This is necessary as we assume the marker X to be
continuous. More details are discussed in Fusaro et al. (1993) and Nielsen (1999). Furthermore,
we assume that the exposure Z for patient i is Zi(s) = I(s < ti), where ti is the time of clinical
progression of patient i and I(·) is the indicator function.

Our model prediction based on each marker is illustrated in Figs. 2 and 3 with 4 different405

marker values: 1 mg/dl, 4 mg/dl, 7 mg/dl, 10 mg/dl for bilirubin, and 2 g/dl, 3 g/dl, 4 g/dl, 5 g/dl
for albumin. The values are chosen evenly based on the range of around 90% of the respective
marker data, which is 0.1 mg/dl - 10 mg/dl for bilirubin and 1.5 g/dl - 5 g/dl for albumin. Both, the
future conditional hazard and the future conditional survival function are predicted for 10 years
with the 95% pointwise and uniform confidence bands. In each example, hx(t) is estimated by410

ĥx,b1,b2(t), given in (3) with bandwidths determined by cross-validation; full details on obtaining
the bandwidths for each example are provided at the end of Section A.2 in the supplementary
material. The predicted hazard of clinical progression and the progression-free survival does not
seem to change with the bilirubin level. For albumin though, we highlight a higher risk of clinical
progression in patients with lower concentrations of albumin. For instance, the predicted 5-year415

progression-free survival decreases from approximately 0.85 for an albumin concentration of 5
g/dL to 0.48 for an albumin concentration of 2 g/dL. Note, that because right censoring is present
the study is not completely run off and thus, the survival function does not go all the way to zero.

For the albumin marker, the first level considered, x = 2g/dl, corresponds to the first percentile
of the marker’s distribution and therefore lies in the boundary. Consequently, the confidence420

bands of the estimator are wider than those of the rest marker levels, due to the underperformance
of the local constant estimator in the boundary. This issue has also been demonstrated in the
coverage rate simulations of Section A.3 in the supplementary material where it is also exhibited
that boundary correction remedies this deficiency. Finally, see Section A.4 in the supplement for
a simultaneous application of the HQM and JM methodologies using the pbc2 dataset.425

7. CONCLUSION

This paper is a first piece of work of integrating the superefficient approach into mainstream
theory of mathematical statistics. The estimation procedure along with confidence bands and a
bandwidth selection rule is implemented in the R package HQM, Bagkavos et al. (2022) together
with an estimation example based on time-invariant covariates. We showed in an illustration and430

a comparative simulation study that our new method is already of practical use in some important
applied problems such as the dynamic individual prediction of health events. However, further
extensions are needed so that the method becomes fully operational in applied statistics.

First, an immediate and unproblematic extension would be to allow for categorical variables
driving either the marker process or the marker dependent hazard or both. Second, extension435

of the present methodology to multidimensional markers may help in some contexts achiev-
ing the high-quality property, i.e., the assumption that the hazard only depends on the marker
process. However this would require a quite different and much more complex mathematical
theory which needs a very careful modeling of the marker process. An interesting alternative
where a large part of the mathematical theory of this paper could be used would be based on440

one-dimensional marker indices. In such a approach one firstly reduces the markers into a one-
dimensional composite indicator defined as a weighted sum of the markers where weights are
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Fig. 2. HQM estimator (black) with pointwise (red) and
uniform (blue) confidence bands for the future, conditional
on bilirubin, (a) hazard and (b) survival function for the

next 10 years.

internally estimated, and secondly apply the superefficient methodology as described here to the
one-dimensional composite indicator. This would thus lead to a semi-parametric extension of
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Fig. 3. HQM estimator (black) with pointwise (red) and
uniform (blue) confidence bands for the future, conditional
on albumin, (a) hazard and (b) survival function for the

next 10 years.

the superefficient model for multidimensional marker. Another semiparametric extension mul-445

tiplies the fully nonparametric marker only hazard model by a parametric dependency on time.
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Extending our modelling framework to such a semiparametric marker dependent hazard would
still result in a parametric rate of convergence allowing uniform confidence bands based on trans-
formed Gaussian processes.

Finally, we assumed that the marker was measured without error and in continuous time, the 450

latter assumption being achieved by interpolation. Extending the methodology to handle noisy
and intermittently missing marker observations, as done in the parametric JM approach with an
underlying latent marker process (Rizopoulos, 2012), is also one direction of future research.

SUPPLEMENTARY MATERIAL

The supplementary material available at Biometrika online includes additional simulation re- 455

sults and illustrations, discussion on the assumptions, auxiliary lemmas and the proofs of Theo-
rems 1 and 2.
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SUPPLEMENTARY MATERIAL FOR “SUPEREFFICIENT ESTIMATION OF FUTURE
CONDITIONAL HAZARDS BASED ON TIME-HOMOGENEOUS HIGH-QUALITY 525

MARKER INFORMATION”
BY D. BAGKAVOS, A. ISAKSON, E. MAMMEN, J.P. NIELSEN AND C.

PROUST–LIMA

SUMMARY

The supplementary material in Section A includes description of the bootstrap construction of the point- 530

wise and uniform confidence intervals in Section A.1 and description of the Cross-Validation bandwidth
selector in Section A.2. Section A.3 contains additional graphical illustrations and simulation results. A
comparison of the HQM and Joint Modeling approaches for the pbc2 dataset in contained in Section A.4.
Section B of the supplementary material includes basic definitions in Section B.1, a discussion on the
validity of Assumptions [A1] and [A2] in Section B.2 and a discussion on assumptions [A4]–[A7] in 535

Section B.3. The proof of Theorem 1 starts with an outline of the proof in Section B.4 and proceeds with
auxiliary results, definitions and the actual proof in Sections B.5–B.7. Finally, the proof of Theorem 2 is
provided in Section B.8.

A. CONFIDENCE BANDS AND BANDWIDTH SELECTION

A.1. Confidence bands 540

The development and implementation of the pointwise bootstrap confidence intervals and the uniform
bootstrap confidence bands of Section 4, relies on the fact that we can replace the quantiles of the distri-
bution of G∗

x∗
with the ones of the conditional distribution of h∗

x∗,B,M . The pointwise confidence band
is a confidence interval for a given t ∈ (0, T ), while the uniform one requires that the true value h(t)
lies in the band for all t ∈ [δT , T − δT ]. For the construction of the latter, the supremum is usually used. 545

This is also the reason why uniform confidence bands tend to be a little bit wider than their pointwise
counterparts. An outline of the bootstrap construction for both cases is as follows:

(a) Pointwise: for a given t ∈ (0, T ) generate h∗(1)
x∗,B

(t), . . . , h∗(N)
x∗,B

(t) for N = 1000 and order it

h∗[1]
x∗,B

(t) ≤ · · · ≤ h∗[N ]
x∗,B

(t). Then

Î1n,N =
[
ĥx∗(t)− σ̂Gx∗

(t)n−1/2h∗[N(1−α
2 )]

x∗,B
(t), ĥx∗(t)− σ̂Gx

(t)n−1/2h∗[N α
2 ]

x∗,B
(t)
]

(A1)

is a 1− α pointwise confidence band for hx∗(t). 550

(b) Uniform: generate h̄
(1)
x∗,B

(t), . . . , h̄
(N)
x∗,B

(t) for N = 1000 for all t ∈ [δT , T − δT ] and define

W (i) = supt∈[0,T ]

∣∣h̄(i)
x∗,B

(t)| for i = 1, . . . , N . Order W [1] ≤ · · · ≤ W [N ]. Then

Î2n,N =
[
ĥx∗(t)± σ̂Gx∗

(t)n−1/2W [N(1−α)]
]

(A2)

is a 1− α uniform confidence band for hx∗(t).

A.2. Bandwidth Selection
Bandwidth selection is based on cross-validation (CV) throughout. For the classical approach, see 555

Härdle & Marron (1985) and for a bandwidth selection for hazards, see Gámiz et al. (2016). We use a
similar idea here. Let

Q(b1, b2) =

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)
{
ĥXi(s),b1,b2(t− s)− hXi(s)(t− s)

}2

dtds

1
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be our measure of deviation. Let Q = Q1 +Q2 +Q3, where

Q1(b1, b2) =

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)ĥ
2
Xi(s),b1,b2

(t− s)dtds,560

Q2(b1, b2) = −2R(b1, b2),

with

R(b1, b2) =

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)ĥXi(s),b1,b2(t− s)hXi(s)(t− s)dtds,

and Q3 is

Q3 =

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)h
2
Xi(s)

(t− s)dtds.565

Note that Q3 does not depend on the bandwidths and thus, can be ignored, while Q1 is known. To estimate
R, we rewrite it using

hXi(s)(t− s)Zi(t)dt = dΛi(t).

We get

R(b1, b2) =

N∑
i=1

∫ T

0

∫ T

s

Zi(s)ĥXi(s),b1,b2(t− s)dΛi(t)ds

=

N∑
i=1

∫ T

0

∫ t

0

Zi(s)ĥXi(s),b1,b2(t− s)dsdΛi(t) =

N∑
i=1

∫ T

0

ĝi,b1,b2(t)dΛi(t),570

where

ĝi,b1,b2(t) =

∫ t

0

Zi(s)ĥXi(s),b1,b2(t− s)ds.

This motivates to estimate R by

R̂(b1, b2) =

N∑
i=1

∫ T

0

ĝ−i
i,b1,b2

(t)dNi(t), ĝ−i
i,b1,b2

(t) =

∫ t

0

Zi(s)ĥ
−i
Xi(s),b1,b2

(t− s)ds,

and ĥ−i is estimated without information from the ith counting process.

An alternative is K-fold cross-validation where Ij are sets of indices with ∪K
j=1Ij = {1, . . . , n}, Ik ∩575

Ij = ∅ and |Ij | ≈ |Ik| for all j, k = 1, . . . ,K. We use the estimator

R̂K(b1, b2) =

K∑
j=1

∑
i∈Ij

∫ T

0

g
−Ij
i,b1,b2

i(t)dNi(t), ĝ
−Ij
i (t) =

∫ t

0

Zi(s)ĥ
−Ij
Xi(s)

(t− s)ds,

and ĥ−Ij is estimated without information from all counting processes i with i ∈ Ij .
The proposed bandwidth selection rule implies that the bandwidths b1 and b2 required for calculating

the hazard rate estimator ĥx,b1,b2(t) via (3) (and subsequently α̂i,b1(z) via (2)) are determined by solving

(b1, b2) = arg min
b1,b2

CV (b1, b2),580

where CV (b1, b2) = Q1(b1, b2)− 2R̃(b1, b2) with R̃ ∈ {R̂, R̂K}. In the examples presented in Figs. 2
and 3, implementation of the CV score function was performed with the K-fold cross-validation procedure
with K = 12. Even though K-fold cross-validation is implemented with K = 10 as the default value, the
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Fig. 4. Bandwidths scores CV (b) based on the bandwidth
b for albumin and bilirubin. The minimum is attained at

b = 15 for bilirubin and b = 1.1 for albumin.

specific value is selected because the dataset contains 312 unique individuals, hence K = 12 corresponds
to 312/12 = 26 unique individuals (indices) in each fold with Ik ∩ Ij = ∅ and |Ij | = |Ik| for all j, k = 585

1, . . . , 12. Because minimisation over a two-dimensional smoothing parameter may be unstable, we used
b1 = b2 = b with b determined by

b = argmin
b

CV (b, b).

The CV (b, b) scores for bilirubin and albumin are illustrated in Fig. 4 and suggest b = 15 for bilirubin
and b = 1.1 for albumin. These are also the bandwidths employed in calculating the corresponding hazard 590

rate (and hence survival function) estimators depicted in Figs. 2 and 3.

A.3. Additional graphical illustrations and simulation results
This section discusses in detail and illustrates graphically the simulation results that were outlined in

Section 5.
Figs. 6–7 display the relative bias of our methodology. The boxplots are implemented with the default 595

R options, i.e., the boxes are determined by the first and the third quartiles while the whiskers are imple-
mented with range=1.5. Consequently they extend to the most extreme data point which is no more
than 1.5 times the interquartile range from the box. As also noted in Section 5.1, the plots suggest that
the methodology generally provides small amounts of bias which decreases as the sample size increases.
Furthermore, the standard deviation is much larger compared to the bias, which aligns with the theory. 600

However, the simulation results for (α1, q0.1), (α1, q0.25), (α2, q0.5), (α3, q0.1) and (α3, q0.25) reveal a
substantial relative bias. This is a consequence of the small marker-only hazards value for these cases,
which results to a smaller number of observed events and hence to absence of enough information for
accurate estimations. Larger bias values can also be seen at the boundaries of the time domain, i.e. for the
first or last year in Figs. 6 and 7. 605



4 D. BAGKAVOS ET AL.

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Marker Value

H
az

ar
d 

α 1

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Marker Value

H
az

ar
d 

α 2

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Marker Value

H
az

ar
d 

α 3

Fig. 5. True marker-only hazards generated in the simula-
tion studies: α1(x) = exp (2x− 2)/15, α2(x) = 4(x−

0.3)4 and α3(x) = 4[1 + exp {−4(x− 1)}]−1.

Both findings are also reflected in the visualisation of the estimation of the future conditional hazard
function based by the HQM estimator in Figs. 8 and 9 as well as in Figs. 1 and 10 which illustrate the cov-
erage rates of the 95% pointwise and uniform confidence bands. The figures suggest that the unmodified
implementation of (A2), in combination with small marker-only hazards values, increases the coverage
error of the proposed technique across time and result to low coverage rates as it is evident particularly for610

(α2, q0.1), (α2, q0.25), (α2, q0.5), (α1, q0.75) for n = 300. This behaviour slightly improves as the sample
sizes increases to n = 600 but the biggest improvement comes after excluding the first and last years in
the calculation of the pointwise confidence bands. The resulting coverage level (green dashes) is constant
across time and closer to the nominal 95% than the level based on the full time range (red dashes) as can
be seen in Figs. 1 and 10. A more effective approach is the implementation of (A2) after replacing ĥx∗(t)615

with a local linear estimator such as estimator h̃x(t) defined in Section B.1 below and implemented in
the HQM package. Indeed, even though not reported here, replicating the coverage rate simulations after
this change resulted in pointwise confidence bands that achieve a coverage rate of the same level or even
closer to the nominal level than the green lines of Figs. 1 and 10 and which is constant across time. Thus
we conclude that the automatic treatment of edge effects by h̃x(t) largely improves the coverage rates in620

comparison to the local constant estimator ĥx.
Regarding the simulations of Section 5.2, for each combination of marker only hazard α1, α2, α3 and

landmark time s = 1.5, 3.5, 5.5, and for each sample size n = 300, 600, Figs. 11–12 summarize as box-
plots the results of the MISE comparison between the HQM and JM approaches. Similarly Figs. 13–14
contain the corresponding AUC results and Figs.15–16 report the corresponding Brier score boxplots for625

each method.
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Fig. 6. Relative errors of ĥx(t) based on 1000 realizations
of {ĥx(t)− hx(t)}/hx(t) at year t = 0, 0.5, . . . , 8.5, 9
for the three different marker-only hazards αj , j = 1, 2, 3,
for n = 300 individuals and marker values x at the 0.1,
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distribution.
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Fig. 7. Relative errors of ĥx(t) based on 1000 realizations
of {ĥx(t)− hx(t)}/hx(t) at year t = 0, 0.5, . . . , 8.5, 9
for the three different marker-only hazards αj , j = 1, 2, 3,
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distribution.
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Fig. 8. Estimates of the future conditional hazard function
based on 100 realizations of ĥx(t) (red) together with the
true future conditional hazard hx(t) (black) for the three
different marker-only hazards αj , j = 1, 2, 3, for n = 300
individuals and marker values x at the 0.1, 0.25, 0.50, 0.75,

and 0.90 quantile of the empirical marker distribution.
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Fig. 9. Estimates of the future conditional hazard function
based on 100 realizations of ĥx(t) (red) together with the
true future conditional hazard hx(t) (black) for the three
different marker-only hazards αj , j = 1, 2, 3, for n = 600
individuals and marker values x at the 0.1, 0.25, 0.50, 0.75,

and 0.90 quantile of the empirical marker distribution.
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Fig. 11. Mean integrated squared error of the conditional
survival estimate in a sample of 100 new simulated indi-
viduals. Conditional survival estimates ŜJM

⋆ derived from
the joint model and ŜHQM

⋆ derived from the high-quality
marker model are compared based on 100 realizations for
3 different marker-only hazards αj , j = 1, 2, 3, a sam-
ple of n = 300 individuals and 3 landmark times s =

1.5, 3.5, 5.5.
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Fig. 12. Mean integrated squared error of the conditional
survival estimate in a sample of 100 new simulated indi-
viduals. Conditional survival estimates ŜJM

⋆ derived from
the joint model and ŜHQM

⋆ derived from the high-quality
marker model are compared based on 100 realizations for
3 different marker-only hazards αj , j = 1, 2, 3, a sam-
ple of n = 300 individuals and 3 landmark times s =

1.5, 3.5, 5.5.
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Fig. 13. AUC of the conditional survival estimate in a sam-
ple of 100 new simulated individuals. Conditional survival
estimates ŜJM

⋆ derived from the joint model and ŜHQM
⋆ de-

rived from the high-quality marker model are compared
based on 100 realizations for 3 different marker-only haz-
ards αj , j = 1, 2, 3, a sample of n = 300 individuals and

3 landmark times s = 1.5, 3.5, 5.5.
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Fig. 14. AUC of the conditional survival estimate in a sam-
ple of 100 new simulated individuals. Conditional survival
estimates ŜJM

⋆ derived from the joint model and ŜHQM
⋆ de-

rived from the high-quality marker model are compared
based on 100 realizations for 3 different marker-only haz-
ards αj , j = 1, 2, 3, a sample of n = 600 individuals and

3 landmark times s = 1.5, 3.5, 5.5.
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Fig. 15. Brier score of the conditional survival estimate in a
sample of 100 new simulated individuals. Conditional sur-
vival estimates ŜJM

⋆ derived from the joint model and ŜHQM
⋆

derived from the high-quality marker model are compared
based on 100 realizations for 3 different marker-only haz-
ards αj , j = 1, 2, 3, a sample of n = 300 individuals and

3 landmark times s = 1.5, 3.5, 5.5.
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Fig. 16. Brier score of the conditional survival estimate in a
sample of 100 new simulated individuals. Conditional sur-
vival estimates ŜJM

⋆ derived from the joint model and ŜHQM
⋆

derived from the high-quality marker model are compared
based on 100 realizations for 3 different marker-only haz-
ards αj , j = 1, 2, 3, a sample of n = 300 individuals and

3 landmark times s = 1.5, 3.5, 5.5.
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The AUC and Brier score simulations are implemented as replications of the MISE simulations, using
exactly the same data (which were generated in all examples as described in Section 5.1) and simulation
parameters (discussed in detail in Section 5.2). The obvious and only difference is that the AUC and Brier
score measures are used instead of the MISE. Following Blanche et al. (2015), the AUC is defined by630

AUC(s, t) = pr {πi(s, t) > πj(s, t) | Di(s, t) = 1, Dj(s, t) = 0, Ti > s, Tj > s}

where Di(s, t) = I(s < Ti ≤ s+ t, δi = 1); that is, for any subject i at risk at time s,Di(s, t) = 1 when
the individual i experiences the event of interest in the time interval (s, s+ t] and Di(s, t) = 0 otherwise.
Further, for 0 ≤ s < Ti,

πi(s, t) = pr {s < Ti ≤ s+ t, δi = 1 | Ti > s,Xi(s)} .

The Brier score is defined as

BS(s, t) = E
[
{D(s, t)− π(s, t)}2 | T > s

]
,

i.e. it is a mean squared error.635

Throughout the simulation study, the AUC(s, t) is approximated by

ˆAUC(s, t) =

∑n
i=1

∑n
j=1 I{πi(s, t) > πj(s, t)}D̂i(s, t){1− D̂i(s, t)}Ŵi(s, t)Ŵj(s, t)∑n

i=1

∑n
j=1 D̂i(s, t){1− D̂i(s, t)}Ŵi(s, t)Ŵj(s, t)

. (A3)

The weights Ŵ· are defined by

Ŵi(s, t) =
I(Ti > s+ t)

Ĝ(s+ t|s)
+

I(s < Ti < s+ t)δi

Ĝ(Ti|s)
,

where Ĝ(u) denotes the Kaplan-Meier estimator of the survival function of the censoring distribution at
u and for each u > s, Ĝ(u|s) = Ĝ(u)/Ĝ(s) estimates the conditional probability of not being censored
at time u conditionally on being uncensored at time s.640

Note that implementation of (A3) for the JM method is readily provided in the JM package via the
aucJM routine.

The Brier score is approximated by

B̂S(s, t) =
1

nST

n∑
i=1

Ŵi(s, t)
{
D̂i(s, t)− πi(s, t)

}2

.

For the JM method, this calculation is readily implemented via the routine pec in package pec.

A.4. Comparison of the HQM and Joint Modeling approaches for the pbc2 dataset645

In addition to the illustration of the proposed HQM methodology in Figs. 2 and 3 of Section 6, here
we expand the analysis of the PBC dataset by comparing the survival probabilities of patients diagnosed
with primary biliary cirrhosis obtained by the HQM, the JM and the Kaplan–Meier estimator. Two sets of
examples are presented, one based on the Bilirubin marker and one based on the Albumin marker using
exactly the same marker values as in Section 6: 1 mg/dl, 4 mg/dl, 7 mg/dl, 10 mg/dl for Bilirubin, and 2650

g/dl, 3 g/dl, 4 g/dl, 5 g/dl for Albumin.
As the JM methodology does not accommodate conditioning based on the values of a marker at a certain

level, with purpose to produce comparable results across all three methodologies, here we compare the
future mean survival probabilities from landmark times. That is, for each given landmark time value, we
select from the dataset all the information before the given landmark time and compute the survival at655

different times after the landmark predicted from the JM approach. The resulting subset of the dataset is
used to predict the survival function. For example, for Bilirubin=1 mg/dl, for landmark time s = 1, we use
the full PBC dataset to simultaneously model the marker’s evolution over time via a linear mixed effects
model, and the instantaneous risk of death as a function of the underlying marker level. The performance
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of the fitted JM model is then computed on the subset for which X∗(s) < 1 and X∗(s) > 1. In the present 660

setting the JM model formulation given in (7) is written as{
Xi(t) = mi(t) + εi(t) ≡ Yi(t)(β +Bi) + εi(t)

λi(t) = λ0(t) exp{mi(t)η},
(A4)

with β,Bi and εi(t) being exactly as in (7). In our case Xi(t) is either the Bilirubin or Albumin markers
and Yi(t) is the years variable, which is parameterized linearly, i.e. as (1, t); this is in accordance to the
typical JM applications. After the JM is fitted on all the data, posterior probability of the event for a new 665

subject ⋆ from a landmark time s and up to an horizon t based on the history of the biomarker up to s,
X⋆(s), is computed as:

ŜJM
⋆ (s+ t) = P

{
T⋆ > s+ t | X⋆(s), T⋆ > s; θ̂

}
, (A5)

where θ̂ is the vector of parameters of the joint model previously estimated in an independent sample
using all the available information during the follow-up. Exactly the same methodology, with obvious 670

adjustments, is employed for both markers and across all marker levels used for conditioning. A shorter
range of landmark times, s = (2, 3, 4, 5), is employed for albumin and a wider range, s = (1, 4, 7, 10),
for bilirubin. This is because in the context of PBC progression, reduced albumin levels (which indicate
liver dysfunction) typically occur earlier than increased bilirubin levels, which are usually observed at
advanced stages of the disease. 675

Implementation of (A4) and (A5) is readily available in the JM package in R, see also Rizopoulos
(2012). In the examples implemented in this section, the joint model is implemented as a time-dependent
relative risk model with a piecewise constant baseline risk function. It is fitted via the jointModel
function using as input the two submodels fitted in (A4), setting timeVar=year (i.e. the time variable in
the linear mixed model is the year variable) and specifying as fitting method the piecewise-PH-aGH 680

option. Implementation of (A5) is performed via the function survfitJM of the JM package using as
input the fitted joint model, specifying as the newdata argument the resulting subset (i.e. the longitudinal
and covariate information for the subjects for which prediction of survival probabilities is required) and as
the survTimes argument the equidistant, with step 0.5, gridpoints t ∈ (s, 14]. As this implementation
produces separate survival curves for each individual in the subset, the survival curve reported in each 685

example is obtained by averaging the survival probabilities of all individuals across each gridpoint t.
As in Section 6, estimation of the survival function with the HQM methodology is performed, using

the same subset as in the JM estimator, via (8) using in each example K-fold CV bandwidth (determined
as described in Section A.2). Finally, estimation of the survival function with the Kaplan–Meier estimator
is performed via the survfit routine in R. 690

The results are contained in Fig. 17 where it is seen that all three approaches produce probabilities
which are generally close to each other, with the HQM and Kaplan–Meier curves being slightly closer
than the JM estimator. Additionally a comparison of the AUC and Brier score metrics for the HQM and
JM estimators reported in Table 1, suggests that for the examples presented in Fig. 17, HQM dominates the
JM method in the context of the PBC dataset. The only exception is landmark time s = 10 in the Bilirubin 695

example, where while strictly speaking HQM performs worse than JM, nevertheless both metrics indicate
that both estimators perform rather equivalently.
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Fig. 17. Comparison of HQM (black solid line) and JM
(blue dashed line) estimators based on landmarking using
as reference the Kaplan–Meier (red stairstep line), for fu-
ture conditional on (a) Bilirubin and (b) Albumin survival

functions.

Table 1. AUCs and Brier scores (BS) for the HQM and JM estimators of Fig.17.

Bilirubin Albumin

AUC BS AUC BS

Landmark HQM JM HQM JM Landmark HQM JM HQM JM

1 0.910 0.820 0.065 0.072 2 0.921 0.776 0.078 0.092
4 0.889 0.832 0.062 0.071 3 0.862 0.728 0.065 0.072
7 0.812 0.749 0.083 0.093 4 0.846 0.803 0.053 0.067
10 0.882 0.904 0.161 0.159 5 0.874 0.803 0.055 0.064

B. DISCUSSION ON ASSUMPTIONS, AUXILIARY LEMMAS AND PROOFS OF THEOREMS 1 AND 2
B.1. Basic definitions and local linear estimation

We will develop our theory for the case that the marker takes values in a fixed interval A ⊂ R. This700

could be always achieved by transforming the marker values monotonically into this interval. Typically,
the density of the marker will decrease to zero at the boundaries of A. We will deviate from this assumption
by assuming that the density is bounded away from 0 on the whole interval. Our theory could be extended
to a more general setting but at the cost of additional technical difficulties in the proofs. Notice that in
the boundary points of A, ĥx does not achieve square-root consistent estimation of the underlying hazard705
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rate hx as its bias there is of order b2. To take care of boundary effects we will assume that the kernel
is appropriately modified at the boundary to avoid large bias terms at the boundary. Clearly, boundary
corrections may be superfluous in case of densities that vanish at the boundaries fast enough. To define
the boundary corrected kernel, set b = b1, b2 and for a density function K∗, let K∗

b (u) = b−1K∗(b−1u).
For u, v ∈ A set 710

Kb(u, v) =
c2,u − c1,u(u− v)

c0,uc2,u − c21,u
K∗

b (u− v), ck,u =

∫
A

(u− w)kK∗
b (u− w)dw.

Note that for the modified kernel we have that∫
A

Kb(u,w)dw = 1,

∫
A

(u− w)Kb(u,w)dw = 0.

Other boundary corrected kernels with these properties will also work in our asymptotic approach.
Replacing the convolution kernel Kb2(x− u) in the definition of ĥx(t) in (3) by the boundary corrected

kernel Kb2(x, u) yields a local linear estimator, denoted by h̃x(t) and defined by

h̃x(t) =

∑n
i=1

∫ T

0
α̃i,b1{Xi(t+ s)}Zi(t+ s)Zi(s)Kb2{x,Xi(s)}ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb2{x,Xi(s)}ds

,

where 715

α̃i,b1(z) =

∑
k ̸=i

∫ T

0
Kb1{z,Xk(s)}dNk(s)∑

k ̸=i

∫ T

0
Kb1{z,Xk(s)}Zk(s)ds

.

Similarly to h̃x(t), α̃i,b1(z) results by replacing the convolution kernel in (2) with the boundary corrected
kernel Kb2(x, u).

In contrast to ĥx, h̃x is a square-root consistent estimator of hx as its bias is of order b1b2 + b22 for all
points of A (including boundary points) which under our assumptions is o(n−1/2). It should be noted here
that the use of the boundary corrected estimator of α̃i,b1 in h̃x(t) is not necessary for achieving square- 720

root consistent estimation of hx. Another approach for obtaining a local linear estimator is to replace the
smoothing step in (3) by local linear smoothing. That is, estimate hx by µ where (µ, µ⋆) minimizes

n∑
i=1

∫ T

0

[α̂i,b1{Xi(t+ s)} − µ− µ⋆{Xi(s)− x}]2 Zi(t+ s)Zi(s)Kb2{x−Xi(s)}ds.

This would again result in a square-root consistent estimator of the underlying hazard for all x ∈ A,
irrespectively of whether the marker-only hazard is estimated as in (2), by a boundary corrected kernel or
by local linear smoothing as in Nielsen (1998). 725

B.2. Discussion on the validity of Assumptions [A1] and [A2]
This Section demonstrates the validity of Assumptions [A1] and [A2] in the context of the pbc2 dataset

and discusses the sensitivity of the method when the assumptions are violated. First note that Assumption
[A2] consists of two parts:

(i) The first part is the Markov property, that is, 730

L{Xi(s+ t)|Fs, Ti ≥ s+ t, Zi(s+ t) = Zi(s) = 1}

depends only on Xi(s) and Ti ≥ s+ t, Zi(s+ t) = Zi(s) = 1 and s.
(ii) The second part is time homogeneity, i.e.

L{Xi(s+ t)|Xi(s), Ti ≥ s+ t, Zi(s+ t) = Zi(s) = 1}

depends only on Xi(s) and Ti ≥ s+ t, Zi(s+ t) = Zi(s) = 1 (and not on s).
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Fig. 18. αT (z) (solid black line) and 95% confidence in-

tervals (shaded red area) for Bilirubin and Albumin.

Condition (i) is rather redundant as we estimate

hx,s(t) = P {Ti ∈ (s+ t, s+ t+ dt)|Xi(s) = x, Zi(s+ t) = Zi(s) = 1} / dt

and not735

P {Ti ∈ (s+ t, s+ t+ dt)|Xi(s) = x,Fs, Ti ≥ s+ t, Zi(s+ t) = Zi(s) = 1} / dt.

That is, we estimate the conditional hazard given Xi(s) and forgetting the past values Xi(u), u < s.
Consequently the whole theory developed herein would hold without condition (i) but it is more natural
to estimate what is the conditional hazard for individual i given all information up today (= s). As such
we proceed with testing [A1] and [A2](ii).

Testing [A1] in the context of the pbc2 dataset amounts to calculating and constructing point-wise con-740

fidence intervals for the quantity αT (z) = α1,T (z)− α2,T (z) for both the bilirubin and albumin markers,
where

α1,T (z) =

∑n
i=1

∫ T/2

0
Kb1 {z −Xk(s)} dNk(s)∑n

i=1

∫ T/2

0
Kb1 {z −Xk(s)}Zk(s) d(s)

,

α2,T (z) =

∑n
i=1

∫ T

T/2
Kb1 {z −Xk(s)} dNk(s)∑n

i=1

∫ T

T/2
Kb1 {z −Xk(s)}Zk(s) d(s)

.

As α1,T (z) and α2,T (z) are asymptotically independent it is expected that when [A1] holds αT (z)745

will be equal to zero. For significance level α = 5%, each confidence interval is calculated as (ᾱ(z)−
αb
1−α/2(z), ᾱ(z)− αb

α/2(z)) where αb
1−α/2(z), α

b
α/2(z) are the empirical quantiles of the distribution of

αT (z), obtained after 100 bootstrap replications and ᾱ(z) is the expectation of αT (z) calculated as the
sample average of αT (z) across the same 100 bootstrap replications. In Fig.18 we see that 0 is contained
in the bootstrap confidence intervals for αT (z) for both markers and for all values of z. Thus, [A1] is not750

rejected for all pointwise tests.
For testing [A2](ii), consider the test statistic

Sg(t, x) = n−1
n∑

i=1

W1,i(t, x)/Γ1(t, x)− n−1
n∑

i=1

W2,i(t, x)/Γ2(t, x)

where

W1,i(t, x) =

∫ (T−t)/2

0

g {Xi(t+ s)}Zi(t+ s)Zi(s)Kb {x,Xi(s)} ds
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Γ1(t, x) = n−1
n∑

i=1

∫ (T−t)/2

0

Zi(t+ s)Zi(s)Kb {x,Xi(s)} ds 755

W2,i(t, x) =

∫ T−t

(T−t)/2

g {Xi(t+ s)}Zi(t+ s)Zi(s)Kb {x,Xi(s)} ds

Γ2(t, x) = n−1
n∑

i=1

∫ T−t

(T−t)/2

Zi(t+ s)Zi(s)Kb {x,Xi(s)} ds.

Here g(z) = 1 for z ≤ z∗ and 0 otherwise. Under assumption [A2](ii), it is expected that Sg(t, x) will be
close to zero across both time (t) and the marker values (x). For each combination of t and x (i.e. for each
implementation) the critical values of Sg(t, x) are calculated by wild bootstrap as follows 760

(i) Generate V1, . . . , Vn ∼ N(0, 1).
(ii) Calculate

S∗
g (t, x) = n−1

n∑
i=1

ViW1,i(t, x)/Γ1(t, x)− n−1
n∑

i=1

ViW2,i(t, x)/Γ2(t, x).

(iii) Repeat (i) and (ii) for 100 times to obtain S∗
1,g(t, x), . . . , S

∗
100,g(t, x).

(iv) The critical value for fixed t is then obtained as the empirical 95th quantile of
S∗
1,g(t, x), . . . , S

∗
100,g(t, x). 765

The above bootstrap procedure is employed in testing [A2](ii) in the context of the pbc2 dataset. For both
the bilirubin and albumin markers we consider the same conditioning values (x) as those depicted in Figs.
2 and 3. Then, for each combination of x and t = 0, 1, 2, . . . , 10 we calculate Sg(t, x) (depicted as +)
and apply steps (i)–(iv) above to calculate the corresponding critical values (depicted as red triangles) in
Figs. 19(a) and (b). In both plots the test statistic values are always smaller than the corresponding critical 770

values across all years and marker value combinations. Thus [A2](ii) is not rejected for all pointwise tests.

Next we present a simulation study which investigates the sensitivity of the proposed methodology
when either of the assumptions [A1] or [A2] is violated. We first consider the scenario where assump-
tion [A1] does not hold. Let g1(s) = s/2, g2(s) = s, g3(s) = s2, g4(s) = s3 and define the corresponding 775

marker only hazard functions

α1{x, gr(s)} = exp{2x+ gr(s)− 2}/15, α2{x, gr(s)} = 4{x+ gr(s)− 0.3}4,
α3{x, gr(s)} = 4[−4{x+ gr(s)− 1}]−1, r = 1, . . . , 4.

Then, an indication on the accuracy of the HQM estimator when the marker only hazard depends 780

on s is obtained by replicating the MISE simulation of Section 5.1 with αj(x) there replaced by
αj{x, gr(s)}, j = 1, 2, 3, r = 1, 2, 3, 4 respectively. All other settings are identical to the settings de-
scribed in Section 5.1 with the only difference that for each combination of n, s and αj(x; ·), instead
of boxplots, the simulation results reported on Table 2 contain the average MISEs of ĥx,b,b, calculated
across 100 realizations of the process. For comparison purposes the average MISEs of the HQM estimator 785

under assumption [A1], for each combination of n, s and αj(x), j = 1, 2, 3 are also provided on Table
2. The simulation results suggest that mild departures from Assumption [A1] do not significantly affect
the MISE of the HQM estimator. This can be seen by the fact that, in comparison to the MISE of ĥx,b,b

under [A1], for g1(s) = s/2 there is an average MISE increase of approximately 10-14% across both the
sample size and all landmark levels. For g2(s) = s the corresponding increase is between 25-32%; we feel 790

that the corresponding MISE figures are still acceptable as estimates of the underlying survival function.
However for g3(s) = s2 the MISE of ĥx,b,b is more than double (approximately 2.1-2.3 times more) than
the corresponding MISE figures under [A1]. Finally, the effect is even more visible for g4(s) = s3 where
the MISE figures are tripled compared to the MISE of ĥx,b,b under assumption [A1].
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Fig. 19. Test statistic Sg(t, x) values (+) and corresponding
95% cut-off points (red triangles) by year (horizontal axis),

conditional on selected marker values (x panels).

Finally we examine the performance of the HQM estimator when assumption [A2] does not hold. This795

is achieved by replicating the MISE simulation of Section 5.1 with the difference that the marker values are
now generated as follows: for each individual i the initial marker value, Xi(s) is drawn from N(0, 0.072).
Then for each subsequent time point t > s the value of the marker will be Xi(t) = Xi(t− 1) + εi(t)
with εi(t) ∼ N{µ(t, s), σ2(t, s)}. As a result the distribution of Xi(t+ s)|Xi(s) is Normal and depends
on t, s and Xi(s), i.e. it is a time-inhomogeneous Gaussian process. The process is implemented on the800

same grid values, tg , as those used in the simulation of Section 5.1 and using the same (random, uniformly
distributed) starting points, for all Ti ≥ t+ s. The magnitude of departure from the validity of assumption
[A2] is controlled via the µ(t, s) and σ2(t, s) functions, while all other simulation settings are identical to
those of Section 5.1. In total we repeat the simulation across all sample sizes, landmark times and marker-
only hazards four times. Each repetition returns the average MISE of ĥx,b,b, across 100 replications of805

the process, using different a functional form for µ(t, s). Specifically, in place of µ(t, s), we consider the
following four different functional forms, denoted by µj(t, s), j = 1, . . . , 4 and given by

µ1(t, s) = (s+ t)/500, µ2(t, s) = (s+ t)/100, µ3(t, s) = (s+ t)/50, µ4(t, s) = (s+ t)/20,

while in all cases the variance function is σ2(t, s) = (s+ t)/20. The results are reported on Table 3. For
comparison purposes the average MISEs of the HQM estimator under assumption [A2], for each com-
bination of n, s and αj(x), j = 1, 2, 3 are also provided, under the column titled (µ0, σ0). These figures810

correspond to the average MISE values reported on Tables 11 and 12, i.e. they represent the estimator’s
MISEs for a homogeneous process based on N(0, 0.072). The average MISE figures for each of the four
scenarios examined here are provided in columns (µ1, σ), . . . , µ4, σ). As in the simulation for assump-
tion [A1], here the results also suggest that mild departures from Assumption [A2], as these correspond
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Table 2. MISEs of HQM estimator when Assumption [A1] is violated

sample size s α1(x) α1(x, 2s) α1(x, s
2) α1(x, 2s

2) α1(x, s
3)

n = 300

1.5 0.00243 0.00246 0.00292 0.00704 0.01982
3.5 0.00181 0.00206 0.00258 0.00553 0.01739
5.5 0.00133 0.00154 0.00198 0.00510 0.01522

s α2(x) α2(x, 2s) α2(x, s
2) α2(x, 2s

2) α2(x, s
3)

1.5 0.00173 0.00189 0.00242 0.00531 0.01926
3.5 0.00141 0.00147 0.00222 0.00479 0.01575
5.5 0.00142 0.00164 0.00184 0.00442 0.01473

s α3(x) α3(x, 2s) α3(x, s
2) α3(x, 2s

2) α3(x, s
3)

1.5 0.00247 0.00304 0.00452 0.01052 0.03614
3.5 0.00178 0.0022 0.00333 0.00803 0.02764
5.5 0.00136 0.00138 0.00218 0.00499 0.01569

n = 600

1.5 0.00153 0.00182 0.0027 0.00684 0.01982
3.5 0.00138 0.00161 0.00238 0.00547 0.01739
5.5 0.00112 0.00138 0.00192 0.00451 0.01522

s α2(x) α2(x, 2s) α2(x, s
2) α2(x, 2s

2) α2(x, s
3)

1.5 0.00128 0.00146 0.00216 0.00549 0.01731
3.5 0.00131 0.00148 0.0023 0.00535 0.01792
5.5 0.00117 0.00130 0.00206 0.00511 0.01677

s α3(x) α3(x, 2s) α3(x, s
2) α3(x, 2s

2) α3(x, s
3)

1.5 0.00143 0.00178 0.00197 0.00428 0.01235
3.5 0.00136 0.00169 0.00223 0.00576 0.01559
5.5 0.00108 0.00128 0.00171 0.00434 0.01481

to the first two inhomogeneous Gaussian processes based on µ1(t, s) and µ2(t, s), do not significantly 815

affect the MISE of the HQM estimator. This can be seen by a simple comparison with the corresponding
homogeneous process MISEs. For µ1(t, s) the MISE increase is on average approximately 13% across
all n, s and αj combinations; the corresponding figure for µ2(t, s) is approximately 35%. We feel that
the actual MISE figures are still acceptable as estimates of the underlying survival function. However, the
difference becomes substantial for µ3(t, s) where the MISE of ĥx,b,b is on average 5.4 times larger than 820

the estimate’s MISE under assumption [A2]; this corresponds to an average 81% increase in MISE across
all n, s and αj’s. The effect is even more visible for µ4(t, s) where the MISE figures are on average 26
times larger than the homogeneous process MISEs, or in other words an to an approximate 96% MISE
increase.



24 D. BAGKAVOS ET AL.

Table 3. MISEs of HQM estimator when Assumption [A2] is violated

sample size s (µ0, σ0) (µ1, σ) (µ2, σ) (µ3, σ) (µ3, σ)

n = 300

1.5 0.00257 0.00261 0.00315 0.01126 0.04554
3.5 0.00194 0.00213 0.00275 0.00829 0.03999
5.5 0.00135 0.00156 0.00203 0.00781 0.03568

1.5 0.00189 0.00206 0.00244 0.00819 0.04248
3.5 0.00141 0.00148 0.00237 0.00775 0.03476
5.5 0.00146 0.00173 0.00189 0.00663 0.03465

1.5 0.00251 0.00312 0.00462 0.01647 0.08676
3.5 0.00192 0.00231 0.00345 0.01291 0.06611
5.5 0.00142 0.00143 0.00226 0.00756 0.03748

n = 600

1.5 0.00162 0.00192 0.00296 0.01090 0.04369
3.5 0.00151 0.00176 0.00243 0.00846 0.03949
5.5 0.00116 0.00145 0.00212 0.00688 0.03623

1.5 0.00131 0.00162 0.00222 0.00844 0.03993
3.5 0.00136 0.00157 0.00244 0.00842 0.03977
5.5 0.00122 0.00143 0.00213 0.00784 0.03944

1.5 0.00155 0.00185 0.00197 0.00646 0.02985
3.5 0.00146 0.00175 0.00235 0.00898 0.03440
5.5 0.00113 0.00132 0.00172 0.00682 0.03517

B.3. Discussion on assumptions [A3]–[A7]825

Assumption [A3] contains standard smoothness conditions of several functions. It also implies that
hx(s) is twice continuously differentiable with respect to x ∈ A for 0 ≤ s ≤ T and bounded away from
0. We conjecture that partially the assumptions of a second derivative in [A3] can be replaced by only
requiring a continuous first order derivative but do not follow this line for getting simplifications in the
proof. Assumption [A4] is a weak smoothness assumption on γ and the first part of [A5] is a standard830

assumption on the smoothing kernel. Furthermore, the assumption that ρ1, ρ2 < 1/3 is only made for
technical reasons to allow for some bounds in the proofs. On the other side the assumption that ρ1, ρ2 >
1/4 is essential for getting that the bias terms of both smoothing steps are of order o(n−1/2). Note that
this is implied because under our smoothness assumptions we have that the bias terms are of order b21 and
b22. One gets that with choices of bandwidths that fulfill ρ1, ρ2 > 1/4 we have that the limiting distribution835

of our hazard estimator does not depend on the bandwidths. The choice of bandwidths only affects second
order terms. Finally, [A6] will be used in the proof of Lemma B1 below. It is fulfilled if κ(t)−1{Xi(s+
t)−Xi(s)} has a bounded density for a function κ with

∫ T

0

κ(t)dt ≤ Cκ.

This is for example the case if Xi(s) is a Brownian motion. Then one gets the assumption with a choice
of κ that is proportional to t−1/2. Assumption [A7] will be used in the proof of tightness of the process840

ĥx∗(t), see the proof of (B14). It can be checked that this assumption is in particular fulfilled if Xi(s) is
a Brownian motion.

For simplification of notation from now on we assume that b1 = b2 and denote the bandwidth by b with
b = cbn

−ρ for some cb > 0, 1/4 < ρ < 1/3.
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B.4. Outline of the proof of Theorem 1. Basic decomposition of the estimation error 845

We will show now the validity of the statement of Theorem 1 for an estimator of the marker conditional
future hazard where the convolution kernels in steps (2) and (3) are replaced by boundary corrected kernels
as described in Section B.1. For simplicity we assume that x∗ lies in the interior of the support of Xi(t).
The latter assumption is not needed as argued in Section B.1 but it essentially simplifies the proofs by
avoiding additional discussions of arguments near the boundary. 850

First we will state an expansion of ĥx∗(t)− hx∗(t). For this expansion we have to introduce some
additional notation. We define

gt,x(z) =

∫ T−t

0
γ(t, s)f(s, t+ s, x, z)ds∫ T

0
γ(s)f(s, z)ds

,

ĝi,t,x(z) = n−1
n∑

j=1
j ̸=i

∫ T−t

0

Êj{Xj(t+ s)}−1Kb{Xj(t+ s), z}Zj(t+ s)Zj(s)Kb{x,Xj(s)}ds,

Êi(x) = n−1
n∑

j=1
j ̸=i

∫ T

0

Kb{x,Xj(s)}Zj(s)ds. 855

We write for the denominator of ĥx(t)

Γ̂(t, x) = n−1
n∑

i=1

∫ T−t

0

Zi(t+ s)Zi(s)Kb{x,Xi(s)}ds,

respectively. We also define the compensator α∗
i (t) of α̂i(t) as

α∗
i (z) = Êi(z)

−1n−1
∑
k ̸=i

∫
Kb{z,Xk(s)}Zk(s)α{Xk(s)}ds.

We arrive at the following expansion of ĥx∗(t)− hx∗(t) which can be verified by straight forward but 860

lengthy calculations.

ĥx∗(t)− hx∗(t) = Γ̂(t, x∗)
−1{A(t) +B(t) +R1(t) +R2(t) +R3(t)},

where

A(t) = n−1
n∑

i=1

∫ T

0

gt,x∗{Xi(s)}dMi(s),

B(t) = n−1
n∑

i=1

∫ T

0

[α{Xi(t+ s)} − hXi(s)(t)]Zi(t+ s)Zi(s)Kb{x∗, Xi(s)}ds, 865

R1(t) = n−1
n∑

i=1

∫ T

0

[ĝi,t,x∗{Xi(s)} − gt,x∗{Xi(s)}] dMi(s),

R2(t) = n−1
n∑

i=1

∫ T

0

[α∗
i {Xi(t+ s)} − αi{Xi(t+ s)}]Zi(t+ s)Zi(s)Kb{x∗, Xi(s)}ds,

R3(t) = n−1
n∑

i=1

∫ T

0

{hXi(s)(t)− hx∗(t)}Zi(t+ s)Zi(s)Kb{x∗, Xi(s)}ds.

The function gt,x(z) and its estimator ĝi,t,x(z) were introduced in (4) and (5).
This decomposition allows us to outline the critical terms: the sum of the components A(·) and B(·) 870

will converge weakly to a Gaussian process while the terms Ri(·), i = 1, 2, 3 are error terms of lower
order. Here, the first error term R1(x, ·) needs special attention, since the function ĝi,t,x∗(Xi(s)) is not
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predictable with respect to Fs
i . In particular, for this reason, R1(x, ·) is not a sum of martingales. This

problem has also been called the predictability issue. For the pointwise case a solution can be found in
Mammen & Nielsen (2007). Their approach used in this paper cannot be applied in our settings which875

require a uniform approximation. We will make use of methods from empirical process theory to treat our
case.

B.5. Some preliminary results for the proof of Theorem 1
First, in this and all subsequent sections C denotes always a strictly positive constant with meaning

changing at each occurrence, even also in the same formula. We start with some results on the convergence880

of the quantities Êi(x), Γ̂(t, x), α∗
i (z) and ĝi,t,x∗(z). We first compare these quantities with the following

random variables.

Ê(x) = n−1
n∑

j=1

∫ T

0

Kb{x,Xj(s)}Zj(s)ds,

α∗(z) = Ê(z)−1n−1
n∑

k=1

∫
Kb{z,Xk(s)}Zk(s)α{Xk(s)}ds.

By using bounds for the integrands one can easily verify that uniformly for 1 ≤ i ≤ n, x, z ∈ A885

Êi(x) = Ê(x) + oP (n
−1/2/ log n), (B1)

α∗
i (z) = α∗(z) + oP (n

−1/2/ log n). (B2)

Note that n1/2b/ log n converges to infinity. We now define

ĝt,x∗(z) = n−1
n∑

j=1

∫ T−t

0

Ê{Xj(t+ s)}−1Kb{z,Xj(t+ s)}Zj(t+ s)Zj(s)Kb{x∗, Xj(s)}ds.

We now argue that uniformly for δT ≤ t ≤ T − δT , z ∈ A890

ĝt,x∗(z) = ĝi,t,x∗(z) + oP (n
−1/2/ log n). (B3)

This claim does not follow as easily as (B1) and (B2) because now the integrands in the definition of
ĝi,t,x∗(z) cannot be bounded by a term that is of order oP (n−1/2) using the crude methods leading to
(B1) and (B2). The bound now follows by application of the following lemma.

LEMMA B1. For all z ∈ A, 1 ≤ i ≤ n the variable

ηi(z) =

∫ T

0

Zi(s)|Kb{z,Xi(s)}|ds

fulfills895

E{|ηi(z)|k} ≤ (k)!ckV , (B4)

with cV = 2CKCκ and CK = sup{hKh(x, z) : h > 0, x, z ∈ A}. Furthermore, we have that

E[exp{λ|ηi(z)|}] ≤ C < ∞ (B5)

for λ < c−1
V .

Proof. For the proof of the lemma note that

E{|ηi(z)|k} = E

∫
[0,T ]k

k∏
j=1

[Zi(sj)|Kb{z,Xi(sj)}|dsj ]


= k!E

∫
0<s1<···<sk<T

k∏
j=1

{Zi(sj)|Kb{z,Xi(sj)}|dsj}

900
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≤ k!E

(∫
0<s1<···<sk<T

k−1∏
j=1

(Zi(sj) |Kb{z,Xi(sj)}|)CKb−1pr
{
|Xi(sk)− z| ≤ b,

Zi(sk) = 1 | Xi(sk−1), Zi(sk−1) = 1

} k∏
j=1

dsj

)

≤ k!E

(∫
0<s1<···<sk<T

k−1∏
j=1

[Zi(sj)|Kb{z,Xi(sj)}|]CKb−1pr
{
|Xi(sk)−Xi(sk−1)| ≤ 2b,

Zi(sk) = 1 | Xi(sk−1), Zi(sk−1) = 1

} k∏
j=1

dsj

)

≤ k!E

(∫
0<s1<···<sk<T

k−1∏
j=1

[Zi(sj)Kb{z,Xi(sj)}]CKb−12bκ(sk − sk−1)

k∏
j=1

dsj

)
905

≤ k!E

(∫
0<s1<···<sk−1<T

k−1∏
j=1

[Zi(sj)|Kb{z,Xi(sj)}|dsj ]
)
2CKCκ

= 2CKCκkE{|ηi(z)|k−1},

where [A6] has been used in the last two inequalities. Equation (B4) now follows by an iterative applica-
tion of this inequality. For a proof of (B5) note that

E[exp{λ|ηi(z)|}] = 1 +

∞∑
j=1

λkE{|ηi(z)|k}
k!

.

From (B5) we get that uniformly for 1 ≤ i ≤ n, z ∈ A 910

ηi(z) = OP (log n). (B6)

This shows that uniformly for 1 ≤ i ≤ n, z ∈ A, δT ≤ t ≤ T − δT

n−1

∫ T−t

0

Ê{Xi(t+ s)}−1Kb{z,Xi(t+ s)}Zi(t+ s)Zi(s)Kb{x∗, Xi(s)}ds

= OP

(
log n

nb

)
= oP (n

−1/2),

which implies (B3). 915

The following lemma results by standard properties of one and two dimensional kernel density estima-
tors.

LEMMA B2. It holds that

sup
x∈A,δT≤t≤T−δT

∣∣∣Γ̂(t, x)− E{Γ̂(t, x)}
∣∣∣ = Op

{(
log n

nb

) 1
2
}
,

sup
x∈A

∣∣∣Ê(x)− E{Ê(x)}
∣∣∣ = Op

{(
log n

nb

) 1
2
}
. 920

Furthermore, the expectations E{Ê(x)} and E{Γ̂(t, x)} differ from E(x) or Γ(t, x), respectively, uni-
formly over x ∈ A, δT ≤ t ≤ T − δT by a term of order O(b2). For ĝt,x∗(z) we have that for ∆g,t(z) =
ĝt,x∗(z)− gt,x∗(z) uniformly for δT ≤ t ≤ T − δT and z ∈ A

sup
z∈A,δT≤t≤T−δT

|∆g,t(z)| = Op

{(
log n

nb2

) 1
2
}
,
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sup
z,x∈A,|z−x|≤δ,δT≤t≤T−δT

|∆g,t(z)−∆g,t(x)|
|z − x|κ

= Op

{(
log n

nb2+2κ

) 1
2
}

925

for 0 < κ < 1.
LEMMA B3. It holds that

sup
z∈A

|α∗(z)− α(z)| = oP (n
−1/2/ log n).

Proof. Note that

Ê(z){α∗(z)− α(z)} = n−1
n∑

k=1

∫
Kb{z,Xk(s)}Zk(s)[α{Xk(s)} − α(z)]ds930

= n−1
n∑

k=1

W 1
k (z) +W 2

k (z),

with

W 1
k (z) =

∫
Kb{z,Xk(s)}Zk(s)α

′(z){Xk(s)− z}ds,

W 2
k (z) = 2−1

∫
Kb{z,Xk(s)}Zk(s)α

′′{X∗
k(s, z)}{Xk(s)− z}2ds,

where X∗
k(s, z) lies between z and Xk(s). Note that |W 2

k (z)| ≤ CVk(z)b
2. Because of (B6) this shows

n−1
n∑

k=1

W 2
k (z) = Op(log nb

2) = oP (n
−1/2/ log n).

Furthermore we have that |b−1W 1
k (z)| ≤ CVk(z) for some other constant C. Thus we get the moment935

bounds of Lemma B1 which hold uniformly for 1 ≤ k ≤ n, z ∈ A. By application of Bernstein‘s inequal-
ity, see Lemma 5.7 in van de Geer (2000), we get that

pr

(
n−1

∣∣∣∣∣
n∑

k=1

b−1
[
W 1

k (z)− E{W 1
k (z)}

]∣∣∣∣∣ ≥ ξ

)
≤ 2 exp

(
− nξ2

C1n−1/2ξ + C2

)
, (B7)

for all ξ > 0 with some constants C1 and C2 not depending on z. We conclude that

sup
z∈A

∣∣∣∣∣n−1
n∑

k=1

W 1
k (z)− E{W 1

k (z)}

∣∣∣∣∣ = Op{(log n/n)1/2b} = oP (n
−1/2/ log n).

It remains to check the order of n−1
∑n

k=1 E{W 1
k (z)}. It can be easily checked that this sum is of order940

O(b2) = o(n−1/2/ log n), uniformly for z ∈ A. □

B.6. Proof of Theorem 1
For simplicity, we only give the proof of Theorem 1 for the case where x∗ lies in the interior of A and

boundary corrected kernels are used in both smoothing steps. The proof is divided into two parts. Lemma
B4 implies bounds for the error terms R1(t), . . . , R3(t) and Lemma B5 shows weak convergence of the945

leading terms.
LEMMA B4. For k = 1, 2, 3 it holds that

sup
t∈[δT ,T−δT ]

|R∗
k(t)| = op(n

−1/2), (B8)

where

R∗
1(t) =

∣∣∣∣∣n−1
n∑

i=1

∫ T

0

[ĝt,x∗{Xi(s)} − gt,x{Xi(s)}] dMi(s)

∣∣∣∣∣ ,950
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R∗
2(t) = sup

t∈[0,T ]

∣∣∣∣∣n−1
n∑

i=1

∫ T

0

[α∗{Xi(t+ s)} − α{Xi(t+ s)}]Zi(t+ s)Zi(t)Kb{x∗, Xi(s)}ds

∣∣∣∣∣ ,
R∗

3(t) = sup
t∈[0,T ]

∣∣∣∣∣n−1
n∑

i=1

∫ T

0

{
hXi(s)(t)− hx∗(t)

}
Zi(t+ s)Zi(t)Kb{x∗, Xi(s)}ds

∣∣∣∣∣ .
Proof. We start by studying R∗

1(t). Choose κ > 1/2 such that ρ(2 + 2κ) < 1. Note that

R∗
1(t) =

∣∣∣∣∣n−1
n∑

i=1

∫ T

0

∆g,t{Xi(s)}dMi(s)

∣∣∣∣∣ ,
where for δT ≤ t ≤ T − δT the ∆g,t are functions that, with probability tending to one, all lie in the class
Gn of functions that are Holder continuous with exponent κ and a constant C and that are absolutely 955

uniformly bounded by Cn−1/6, see Lemma B2. For the proof of (B8) for k = 1 it remains to show that

sup
h∈Gn

∣∣∣∣∣n−1
n∑

i=1

∫ T

0

h{Xi(s)}dMi(s)

∣∣∣∣∣ = op(n
−1/2). (B9)

We now remark that∫ T

0

h{Xi(s)}dMi(s) = h{Xi(Ti)}Zi(Ti)− E[h{Xi(Ti)}Zi(Ti)] 960

−
∫ T

0

h{Xi(s)}α{Xi(s)}Zi(s)ds+

∫ T

0

E[h{Xi(s)}α{Xi(s)}Zi(s)]ds,

where Ti are the jumps of Ni. We now get (B9) from Lemma 5.2 in van de Geer (2000). Note that the
δ-entropy of Gn with respect to the sup norm can be bounded by Cδ−1/κ with κ > 1/2 and that the
functions in Gn are bounded by Cn−1/6.

Proof for R∗
2(t): With the help of Lemma B3 and (B6) we get that 965

sup
δT≤t≤T−δT

|R∗
2(t)| = sup

δT≤t≤T−δT

∣∣∣∣∣n−1
n∑

i=1

∫ T−t

0

[α∗{Xi(t+ s)} − α{Xi(t+ s)}]

× Zi(t+ s)Zi(t)Kb{x,Xi(s)}ds

∣∣∣∣∣
≤ sup

x∈A
|α∗(x)− α(x)| sup

0≤t≤T−δT

∣∣∣∣∣n−1
n∑

i=1

∫ T

0

Zi(s)Kb{x,Xi(s)}ds

∣∣∣∣∣
= op(n

−1/2/ log n)OP (log n) = op(n
−1/2),

which shows the claim of Lemma B4 for k = 2. 970

Proof for R∗
3(t): For the proof of the claim of Lemma B4 for k = 3 one uses a second order Taylor

expansion of hx∗(t) with respect to x and proceeds then as in the proof of the lemma for k = 2. □
Note that the lemma implies that uniformly for δT ≤ t ≤ T − δT

ĥx∗(t)− hx∗(t) = Γ̂(t, x∗)
−1{A(t) +B(t)}+ op(n

−1/2).

This follows by application of (B2), (B3) and (B6).
LEMMA B5. Under the assumptions of Theorem 1 it holds that

n−1/2Γ(t, x∗)
−1{A(·) +B(·)} → Gx

in distribution in ℓ∞([0, T ]), where Gx∗ is the Gaussian process as described in Theorem 1. 975

Proof. Let C[δT , T − δT ] = {f : [δT , T − δT ] → R | f continuous}. As A(·) and B(·) are continu-
ous functions on [δT , T − δT ] a.s., we view them as elements of C[δT , T − δT ]. Weak convergence then
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follows from an application of a uniform central limit theorem for C[δT , T − δT ], see Theorem 7.5 of
Billinglsey (1968). Specifically, we have to show that for all t1, . . . , tk

n−1/2
(
Γ(t1, x∗)

−1 {A(t1) +B(t1)} , . . . ,Γ(tk, x∗)
−1 {A(tk) +B(tk)}

)
→ (Gx∗(t1), . . . ,Gx∗(tk))

in distribution. This can be easily established by application of the Lindeberg–Feller Central Limit Theo-980

rem, see Proposition 2.27 of van der Vaart (1998). Further we have to show that

lim
δ→0

lim sup
n→∞

pr

[
sup

|t−s|≤δ

n−1/2 |A(t) +B(t)− {A(s) +B(s)}| ≥ ε

]
= 0, (B10)

for each ε > 0. The transition to the space ℓ∞([δT , T − δT ]) then follows as in van der Vaart (1998),
Lemma 18.13. In order to prove (B10), note that this is the definition that our process is equicontinuous
in t which implies the tightness of the process. We use a handy tool to prove equicontinuity in this case,
see (12.51) after Theorem 12.3 in Billinglsey (1968). Define:985

Ai(t) =

∫ T

0

gt,x∗{Xi(s)}dMi(s), (B11)

Bi(t, x) =

∫ T−t

0

[α{Xi(s+ t)} − hXi(s)(t)]Zi(s+ t)Zi(s)Kb{x∗ −Xi(s)}ds. (B12)

We will show that:

E

[n−1/2
n∑

i=1

{Ai(t1)−Ai(t2)}

]2 ≤ C(t2 − t1)
2, (B13)

E

[n−1/2
n∑

i=1

{Bi(t1)−Bi(t2)}

]4 ≤ C(t2 − t1)
2, (B14)990

for δT ≤ t1, t2 ≤ T − δT . Claim (B13) can be verified by showing that

sup
x∈A,δT≤t1,t2≤T−δT

|gt1,x∗(x)− gt2,x∗(x)| ≤ C|t1 − t2|,

which can be easily done by making use of Assumptions [A3] and [A4]. For the proof of (B14) one shows
that

E
[
{Bi(t1)−Bi(t2)}2

]
≤ C|t2 − t1|,

E
[
{Bi(t1)−Bi(t2)}4

]
≤ C|t2 − t1|2,

which can be proved by applying [A3] and [A7]. This concludes the proof of the lemma. □995

Combining Lemmas B4 and B5 completes the proof of Theorem 1.

B.7. Asymptotic covariance operator
In this section we will define the covariance operator of the limiting Gaussian process in Theorem 1.
First of all it can be checked that n−1/2A(·) and n−1/2B(·) are asymptotically independent. This can be

seen by showing that E{n−1/2A(t1)n
−1/2B(t2)} converges to 0 for δT ≤ t1, t2 ≤ T − δT . Furthermore1000

we have that E{n−1/2A(t1)n
−1/2A(t2)} converges to

S1(t1, t2) = E

[∫ T

0

gt1,x∗{Xi(v)}gt2,x∗{Xi(v)}α{Xi(v)}Zi(v)dv

]
.

Then, we have that E{n−1/2B(t1)n
−1/2B(t2)} converges to

S2(t1, t2) =

∫ T−t2

0

∫ T−t1

0

E
(
[α{Xi(t1 + s1)} − hx∗(t1)] [α{Xi(t2 + s2)} − hx∗(t2)]
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× Zi(t1 + s1)Zi(t2 + s2) | Xi(s1) = Xi(s2) = x∗, Zi(s1) = Zi(s2) = 1
)

× pr{Zi(s1) = Zi(s2) = 1}ds1ds2. 1005

Thus we get for the covariance operator of the limiting Gaussian process

Σ(t1, t2) = Γ(t1, x∗)
−1Γ(t2, x∗)

−1{S1(t1, t2) + S2(t1, t2)}.

B.8. Proof of Theorem 2
Note first that given the sample Xn, h̄x∗,B(t) is a mean zero Gaussian process. First we argue that the

(conditional) covariance of this process converges to the covariance Σ of the limiting Gaussian process 1010

Gx∗ . We start by noting that

h̄x∗,B(t) = h̃x∗,B(t) + op(1),

where

h̃x∗,B(t) = Γ̂(t, x∗)
−1n−1/2

n∑
i=1

Vi{Ai(t) +Bi(t)},

with Ai and Bi as defined in (B11) and (B12). For a proof of this claim one makes use of arguments 1015

similar to the ones used in the proof of Lemma B4 to bound the remainder terms R∗
k(t) for k = 1, 2, 3.

Now one can show that

Γ̂(t1, x∗)
−1Γ̂(t2, x∗)

−1n−1
n∑

i=1

{Ai(t1) +Bi(t1)}{Ai(t2) +Bi(t2)} → Σ(t1, t2), (B15)

in probability, uniformly for 0 ≤ t1, t2 ≤ T − δT . We conclude that for all δ > 0 on an event with proba-
bility greater equal 1− δ the conditional distribution of the Gaussian process h̄x∗,B(·) converges weakly 1020

to the distribution of Gx∗ .
Then, using slightly stronger arguments one can show that

E
[
{h̃x,B(t)− h̄x∗,B(t)}2 | Xn

]
converges in probability to 0, uniformly for 0 ≤ t ≤ T − δT . With (B15) we conclude that

σ̂2
Gx∗

(t) = E{h̄x∗,B(·)2 | Xn}

converges in probability to σ2
Gx∗

(t) = Σ(t, t). Using this convergence and the convergence of the boot-
strap Gaussian process to Gx∗ we get the statements of the theorem. Note that taking the maximum of 1025

function and the pointwise evaluation of a function is a continuous operation.
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