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Abstract
This paper aims to bridge this gap between neuro-symbolic
learning (NSL) and graph neural networks (GNN) approaches
and provide a comparative study. We argue that the natural
evolution of NSL leads to GNNs, while the logic program-
ming foundations of NSL can bring powerful tools to improve
the way how information is represented and pre-processed
for the GNN. In order to make this comparison, we propose
HetSAGE, a GNN architecture that can efficiently deal with
the resulting heterogeneous graphs that represent typical NSL
learning problems. We show that on CORA, MUTA188 and
MovieLens our approach outperforms the state-of-the-art in
NSL.

1 Introduction
Many real world problems can be described by data that has
inherent structure with distinct objects, properties and re-
lationships. Learning and reasoning from data that has an
inherent structure has always been a major interest in ma-
chine learning research. It has been showed that algorithms
that can represent the structure of the data have a signifi-
cant advantage over the ones that treat input features com-
pletely independent (De Raedt and Kersting 2008). During
the early days of machine learning inductive logic program-
ming (ILP) emerged as a framework to derive a generic the-
ory that explains the observations while taking into account
the constrains posed by the knowledge base.

Neuro-symbolic learning (NSL) emerged as a field to
bridge the gap between symbolic (ILP) and neural network
(NN) based approaches to be able to efficiently identify pat-
terns in relational data (d’Avila Garcez et al. 2015). Propo-
sitionalisation based techniques rely on the transforming of
a complex relational database into an attribute-value form
that enables the use of NN models (Krogel et al. 2003).
CILP++ (França, Zaverucha, and d’Avila Garcez 2014) is
one of these that is considered state-of-the-art in the NSL
community. However, due to the way how the model en-
codes the relational data, it has major limitations in terms of
flexibility and scalability.

On the other hand, since NSL originates from logic
based systems, logic programming provides a very power-
ful framework to express complex relationships and include
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additional information in a database, which could be bene-
ficial for graph datasets as well. We provide a tool based on
Prolog to transform a logic program to a graph with great
flexibility.

Graph neural networks (GNN) has been an increasingly
popular field in the last decade, with models that provide a
way to identify patterns from graph structured data (Wu et al.
2019). Many relational databases (or logic programs) can be
formulated as a knowledge graph or can be transformed into
one without loss of information, which led to the realisation
that the benefits of GNNs could be utilised in the context of
relational learning. In this paper we argue that GNNs aim to
solve the same problem as NSL systems, but they are more
efficient as they fit the structure of the problem better, simi-
larly to convolutional neural networks (CNN) are more suit-
able for images then multi-layer perceptrons (MLP).

In order to deal with graphs that originate from the rela-
tional learning domain, the GNN has to deal with hetero-
geneous nodes with edge features, which has been explored
by (Zhang et al. 2019), but not in the context of relational
learning. We developed a model (HetSAGE) to address these
datasets efficiently and we provide experimental comparison
between a popular ILP technique (Aleph), CILP++ and Het-
SAGE.

We also show that including additional connections that
might not be part of the original database might benefit the
GNN since it can provide richer flow of information between
nodes. E.g. consider CORA (McCallum et al. 2000), which
consists of papers with a directed edge between p1 and p2
if p1 cites p2, but the inverse relationships (p2 cited by
p1) carries also relevant information, which is ignored by
usual message passing GNN models that propage informa-
tion along the edges.

Also, we include the target labels in the neighbouring
nodes. The reasoning behind this choice is because it’s typi-
cally important to know in an inductive learning setting what
the neighbours of a datapoint would classify into, which
is similar to the approach described in (Zhou et al. 2004).
E.g. consider CORA again, if a new paper is presented
to the model to predict which category it would fall into,
then besides the bag-of-words or word2vec encoding of the
content (Hamilton, Ying, and Leskovec 2017; Bojchevski
and Günnemann 2018), including directly the labels of the
neighbours as their features could be beneficial. However,



this requires additional care when propagating information
between the nodes to avoid leaking information about the
target node but still be able to utilise efficient batched train-
ing, which led to an extension of the neighbour sampling al-
gorithm described in (Hamilton, Ying, and Leskovec 2017).

Our contributions are as follows: (i) we provide a com-
parison between CILP++ and HetSAGE to solve relational
learning tasks, (ii) we provide a tool that transforms a logic
program to a graph, (iii) we study the inclusion of the target
labels in the neighbouring nodes, which is similar to the ap-
proach described in (Zhou et al. 2004). Our study also shows
that the natural evolution of NSL leads to GNNs, providing
a significant boost to the performance of state-of-the-art in
NSL. Additionally, we show how logic programming can
be use alongside GNNs to formulate and enrich the graph
database for the GNN.

The source code of our model can be found is available
online1.

2 Related work
Neuro-symbolic learning Neural-symbolic systems pro-
vide an approach to deal with the probabilistic nature of data
by integrating symbolic knowledge with connectionist ap-
proaches.

The CILP++ system (França, Zaverucha, and d’Avila
Garcez 2014) is a neuro-symbolic learner that transforms
first the relational learning problem to an attribute-value
problem through propositionalization. For an overview on
propositionalization techniques see (Krogel et al. 2003).
CILP++ relies on the bottom clauses constructed by Aleph.

The generated propositional sentences are converted into
a one-hot encoding as the input for the neural network. Each
distinct clause in the body of the examples are tokenized
and set to 0 if it is not present and 1 if it is. It’s important
to note that this encoding is the same as the bag-of-words
approach from natural language processing (NLP). The only
difference between the two is the grammar of the underlying
sentence that the feature vector represent.

For example if a movie dataset had two exam-
ples, both directed by director1, but one with
actor1, the other actor2, then it would turn into
the feature vectors [1, 1, 0] and [1, 0, 1] with the
first element representing directed(director1),
the second has actor(actor1) and the third
has actor(actor2).

The fact that the input vector encodes all the possible bot-
tom clauses in a dataset creates limitations on the flexibility
of the model. In terms of flexibility, consider that if a new
movie comes out that has 2 directors that would not be pos-
sible to represent in this fixed encoding.

The scalability does not present a significant practical is-
sue because of the increasing computational requirements,
but it raises the issue that is commonly referred to as the
“curse of dimensionality”. The first description of the phe-
nomena comes from (Bellman 1957) and it is been stud-
ied extensively in the context of machine learning (for

1https://bit.ly/2FKzv05

more details see (Bishop 2007, Section 1.4)). For exam-
ple in (França, Zaverucha, and d’Avila Garcez 2014) the
MUTA188 dataset, that has 188 examples, has over a 1000
input features, which raises the question of how a model
could generalize when there are more dimensions than data
points in the input space.

The propositionalization and transformation to a numeri-
cal vector of the examples also strip away important infor-
mation from the data. As an analogy, image classification
reached decent performance when convolutional neural net-
works were introduced.

The main benefit of learning convolutional filters is to ex-
ploit the implicit bias in the images, i.e. that pixels close to
each other form features that can be applied across the whole
image (shift-invariance). On the contrary, previous methods
that relied on vectors of the flattened image passed to MLP
models did not have any of this structure preserved. A pixel
in the top left corner of the image had the same relevance to
the bottom left corner as a neighbouring pixel, meaning the
pixels could be shuffled and the model would perform the
same way (after retraining on the shuffled version), which
does not happen with CNNs. The same applies to bag-of-
worlds models, the sentences “A dog chasing a cat” and “A
cat chasing a dog” is equivalent, while for models exploit-
ing the inherent structure (i.e. the order of worlds) can make
better sense of them.

ILP provides a way to learn rules from relational
data where there are relationships between samples
and features. The learning system finds solutions that
obey the constraints posed by the background knowl-
edge and the provided mode declarations, i.e. it is im-
possible to find a theory that has contradictions in it,
like has car(A,B),long(B),short(B). However,
by turning the symbolic representation into a subsymbolic
one these constraints are not respected by the model, i.e.
soundness is not guaranteed. In simple terms, the reason-
ing process becomes a pattern recognition process where the
model (neural network) identifies patterns in the clauses that
correlate with the target label.

Graph neural networks Graph neural networks (GNN)
emerged as a natural method to deal with graph data. For a
thorough survey on the topic see (Wu et al. 2019).

The basic principle is similar to convolutional neural net-
works used for image processing, as 2D convolutions on
an image is a special case of graph convolutions (Niepert,
Ahmed, and Kutzkov 2016; Wu et al. 2019) where each
neighbouring pixel is connected to the central one and the
kernel size determines how far the filter aggregates the pix-
els or features. In the GNN case the connections can encode
arbitrary relationships, e.g. bond type for molecular data or
citations for publication databases.

Contrary to CILP++, GNNs preserve and exploit the
structure of the data similarly to CNNs for images. Further-
more, GNNs can handle arbitrary input sizes since they rely
on learned functions that are applied across the nodes of the
graph, so for example having a paper with more citations is
not a problem, while the propositionalization would pose a
limitation.



Learning from large graphs has been challenging, since
feeding the whole graph to a model might not be possible.
In (Hamilton, Ying, and Leskovec 2017) they introduce a
sampling technique that uniformly selects nodes from the
target node’s k-step neighbourhood and aggregates it to it.
However, this architecture assumes just a single edge type,
while our targeted datasets typically have several different
relationships. In (Gilmer et al. 2017) they introduce a mes-
sage passing architecture that takes into account edge types
(or features).

In (Zhang et al. 2019) they explored learning from hetero-
geneous graphs, but not in the context of relational learning.
In their work each type of information has its own neural
network and an LSTM is used to combine the output of all,
but we use a single neural network for each type of node
since our data does not contain more complex information
(image, time series, etc.) as node attributes.

3 Methodology
3.1 Knowledge representation
Graph Graphs are structures that are represented by a pair
G = (V,E) where V is a set of nodes (or vertices) and
E ⊆ V 2 is a set of pairs of nodes (called edges), which are
ordered when G is a directed graph, i.e. the pairs x, y and
y, x are two distinct elements in E. Each node and edge can
have associated labels or features.

In general, graphs can encode arbitrary information about
the nodes and edges using xv ∈ Rc node and xe ∈ Rd edge
feature vectors where c and d are the number of node and
edge features, respectively.

There are homogeneous graphs that only contain nodes of
the same type and heterogeneous graphs that contain differ-
ent types of nodes. E.g. CORA is a homogeneous graph that
represents a paper with a node and each edge represents that
a paper cites another one, while MovieLens is a heteroge-
neous graph that represents relationships between movies,
directors, actors and users. The main challenge in learning
from heterogeneous graphs is due to the fact that different
type of nodes can have different attributes, e.g. a movie has
title, year, genre and rank, while an actor has name and gen-
der.

Graphs can be used to represent databases similarly to
logic programs (e.g. Prolog). Specifically, knowledge graphs
are used to capture relational structures between entities. For
example search engines (such as Google) use graphs to store
knowledge gathered from the internet, or Wikidata captures
information about articles on Wikipedia and relationships
between them.

Logic programming Logic programming is a program-
ming paradigm that is based on formal logic. Aleph and
CILP++ relies on Prolog to handle the data and for our GNN
we use the same framework to pre-process the data and
transform the logic program to a graph. In this section we
introduce the foundations of Prolog and describe the trans-
formation algorithm.

In Prolog the domain of discourse D is represented as
relations defined by clauses. Each clause is in the form

of head:-body which translates to the logic formula
body =⇒ head.

The head of the clause can only contain a single predicate
while the body consists of a set of predicates (called goals)
joined by conjunction and disjunction. A predicate is a com-
pound term in the form of r(a1, a2, . . . , an) where r is a
relationship and ai is an atom, for example human(john),
mother(mary, john), etc. A predicate can be represented
as an ordered tuple in D. The number of arguments (or
length of the tuple) n is referred to as arity.

Clauses can be split into two distinct groups, facts and
rules. Facts are axioms that are assumed to be true and they
are the special case where the body of the clause is empty
(always true), i.e. head:-true, while rules are theorems
that allow new inferences.

The main benefit of using rules comes with the use
of variables as arguments which can stand for arbitrary
terms. The variables that appear in the head are implic-
itly universally quantified while variables that appear only
in the body are implicitly existentially quantified (Clocksin
and Mellish 2003). For example this means that the rule
p2(X,Y):-p1(X,Z),p1(Z,Y) translates to the first or-
der logic statement:

∀X,Y ∃Z, p1(X,Z) ∧ p1(Z, Y ) =⇒ p2(X,Y ) (1)

Prolog relies on the closed world assumption, meaning
a statement is only true if it is in the domain of discourse,
and false otherwise, i.e. if it is a fact or it is provable
through the rules. Given a query to prove, i.e. to assert if
the statement is a consequence of D, Prolog uses backward-
chaining to recursively prove the goals in the body of the
statement. During the proof search all free variables are
instantiated, i.e. replaced by constants, and the instantia-
tions that prove the query are enumerated. For example
the above example with facts p1(a1,a2), p1(a2,a3),
p1(a2,a4), p1(a1,a5) and query p2(X,Y) would re-
turn {X=a1,Y=a3} and {X=a1,Y=a4}. We utilise this
mechanism to transform the logic program to its grounded
form Dg that only contains variable free terms but still en-
tails the same consequences. In practice this means that the
same answers are returned for a given query in D and in Dg ,
i.e. D |= S ⇐⇒ Dg |= S where S is a statement.

Logic programs provide a way to represent informa-
tion, which can be transformed to a graph without loss
of information (and vice-versa), i.e. they are interchange-
able (isomorphic) with a few constraints. A typical trans-
lation would map arity 0 terms (i.e. atoms, e.g. a1,a2)
to nodes, arity 1 (e.g. prop(a1)) to node attributes and
arity 2 (e.g. rel(a1,a2)) to labelled edges. Note, that
properties can also be represented as relationships, e.g. the
type of an entity (cat or dog) can be represented in 2 dif-
ferent ways, i.e. cat(a1),dog(a2 versus is a(a1,
cat),is a(a2, dog). This is typically a design choice,
that can depend on which representation matches better the
given problem.

Following the grounding, the logic program Dg is trans-
formed into a graph based on the principles highlighted
above. The graph transformation consists of 3 steps:



Figure 1: Our neighbourhood sampling: the initial graph in
the circle with 3 node types (e.g. movie, actor, director)
and blue nodes as targets. The 3 sampled neighbourhoods
show the 2-step walk sampled around each target node. Tar-
get nodes in the sampled neighbourhood (gray) do not have
the target label included (e.g. genre), while the surrounding
movie nodes have them.

1. get all nodes and their types, e.g. in a movie database
(MovieLens) node types are movie, actor, director
and userwith their corresponding unique identifier, such
as movie 1, actor 1, etc.

2. get all node attributes, e.g. year for movies or gender for
actors, etc.

3. get all relationships (edges), e.g. director 1-
directed-movie 1, user 1-rated 5-movie 1,
etc.

Relational database A relational database can be defined
as a set of relations (referred to as tables) with each row
representing a tuple. This shows the trivial connection be-
tween a grounded logic program and a relational database.
A key difference is that arguments of a predicate in a logic
program is identified by their position, while in a relational
database they are identified with attribute names. This con-
nection was utilised by (Motl and Schulte 2015) that led to
the Relational Dataset Repository2 that is being used in our
study as the source of data.

3.2 HetSAGE
Neighbourhood sampling Our method uses a uniform
sampling technique similar to GraphSAGE (Hamilton, Ying,
and Leskovec 2017) with the difference that it creates non-
overlapping subgraphs for each target node. This is done to
enable efficient batching while including labels of the non-
target neighbours. The sampled set of neighbours Ns(v)
consists of n neighbours for each node v from N (v) =
{u|(v, u) ∈ E}. For a visual explanation see Figure 1.

Heterogeneous embedding The first step in our model is
to embed each node’s feature vector in a shared embedding
space. The embedding h for node v is calculated according
to:

hv = fh
t (x

v) (2)

where fe is the embedding neural network, t is the type of
the node and xv is the feature vector of node v. Note, that for
each type t the learnable parameters of the neural network is
shared for each node of type t.

2https://relational.fit.cvut.cz/

Message passing and readout layer After the embedding
stage, the information between the nodes are propagated
along the edges by the message passing module and a read-
out layer maps the hidden states of the target nodes to the
predicted labels, similarly to (Gilmer et al. 2017). The graph
convolutional layers aggregate the information from the sur-
rounding of each node through N layers and aggregate the
features from the last layer to produce a prediction y accord-
ing to:

mv
i+1 =

∑
u∈Ns(v)

fm(evu)hu
i (3)

hv
i+1 = fa

i (h
v
i ,m

v
i+1) (4)

yv = fr(hv
N ) (5)

where mv
i is the sum of the messages passed to node v in

layer i, and fm, fa
i , fr are neural networks. Note, that the

final node labels yv are only calculated for v ∈ Vt, i.e. the
set of target nodes from V .

We also included 1D batch normalisation applied to hv
i+1

after each message passing unit and also layer normalisation
for hv

i and mv
i+1 individually before they are passed to fa

i .
During the experiments we found this to be beneficial to bal-
ance the information carried forward from the node and the
aggregated information from its neighbourhood.

4 Experiments
We conducted experiments on MovieLens, CORA and
MUTA188 from the Relational Dataset Repository. The re-
sults are shown in Table 1. MovieLens is a heterogeneous
graph learning problem with nodes representing movies,
actors, directors and users and edges representing
relationships such as directed, rated, etc. In CORA
each node is a publication with the relationship cited
between them. MUTA188 consists of 188 graphs, which are
molecules with atoms and bonds between them and each
graph has it’s own label. In this work we represent the data
as a single graph, with an additional node type drug that
has the target labels assigned, and they are connected with
the has atom relationship to their corresponding atoms.
This representation of the MUTA188 dataset matches how
the other problems are defined, so it provides a proper com-
parison.

It is important to note that CILP++ performance on
CORA was reported in (França, d’Avila Garcez, and Za-
verucha 2015), but they don’t mention how they turned the
labels from multi-class to binary values. Our model is ca-
pable of dealing with the original problem with 7 classes,
but CILP++ can only act as binary classifier (hence the N/A
in the table). For comparison purposes we run the experi-
ments with binary labels as well, assigning 1 to every paper
that has the label neural networks and 0 otherwise (shown
as CORA-binary). For the CILP++ experiments we used the
architecture and hyperparameters from (França, Zaverucha,
and d’Avila Garcez 2014). We present a comparison be-
tween three different versions of CORA, one with the bag-
of-words encoding of the content of each paper and the paper
labels, one without the content (no words) and one without



Dataset CILP++ (%) GNN (%)
MUTA188 89.74 (±5.32) 92.11 (±4.40)
CORA-binary no words 70.34 (±0.00) 93.68 (±2.15)
CORA-binary no labels 70.34 (±0.00) 92.92 (±0.98)
CORA-binary 69.70 (±0.07) 91.98 (±2.91)
CORA-multi no words N/A 88.17 (±0.86)
CORA-multi no labels N/A 81.85 (±0.58)
CORA-multi N/A 83.38 (±1.44)
MovieLens 80.12 (±0.76) 80.22 (±0.80)

Table 1: Accuracies averaged over 10 random train/test split.
HetSAGE outperforms CILP++ on each benchmark. CORA
without the contents of the papers outperforms the experi-
ments that include them, which could be because the prop-
agated labels carry more information than the contents, and
the model does not need to distinguish between the noise and
the more relevant information. Including the labels seem to
improve the performance. model.

the labels (no labels) to evaluate the benefit of label propa-
gation.

For the CILP++ experiments we used the architecture
and hyperparameters from (França, Zaverucha, and d’Avila
Garcez 2014), our implementation can be found online3. We
present a comparison between three different versions of
CORA, one with the bag-of-words encoding of the content
of each paper and the paper labels, one without the content
(no words) and one without the labels (no labels) to evaluate
the benefit of label propagation.

5 Conclusion
We demonstrated that HetSAGE is capable of handling
problems defined as a logic program and that our model
outperforms CILP++. We argue that GNNs in general are
more suitable for addressing structured data than NSL. We
additionally implemented a transformation that takes a logic
program and generates a graph from it. This can also pro-
vide a powerful tool to include additional information (or
common sense) in the data. Future work comprises conduct-
ing a larger scale comparison on what additional informa-
tion helps the model and a more thorough hyperparameter
and architecture search on HetSAGE.
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