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Summary

The nuclear lamina is essential for the proper structure and

organization of the nucleus. Deregulation of A-type lamins can

compromise genomic stability, alter chromatin organization and

cause premature vascular aging. Here, we show that accumula-

tion of the lamin A precursor, prelamin A, inhibits 53BP1

recruitment to sites of DNA damage and increases basal levels

of DNA damage in aged vascular smooth muscle cells. We identify

that this genome instability arises through defective nuclear

import of 53BP1 as a consequence of abnormal topological

arrangement of nucleoporin NUP153. We show for the first time

that this nucleoporin is important for the nuclear localization of

Ran and that the deregulated Ran gradient is likely to be

compromising the nuclear import of 53BP1. Importantly, many

of the defects associated with prelamin A expression were

significantly reduced upon treatment with Remodelin, a small

molecule recently reported to reverse deficiencies associated

with abnormal nuclear lamina.

Key words: 53BP1; cytoplasmic–nuclear trafficking; NUP153;

prelamin A; Ran gradient; vascular disease.

Introduction

Lamins are intermediate filament proteins that assemble into structures

forming the nuclear lamina. This platform underlies the inner nuclear

membrane (INM) and provides mechanical stability to the nucleus

(Gruenbaum et al., 2005) as well as influencing several DNA metabolism

events including the organization of chromatin, transcription and DNA

repair (Dittmer & Misteli, 2011; Warren & Shanahan, 2011). The nuclear

lamina is comprised of A-type (A and C) and B-type (B1 and B2) lamins,

which exhibit specific differences in biochemical properties. Lamin A

requires several enzymatic processing events for maturation from its

precursor prelamin A to mature lamin A, with the final step being the

endoproteolytic removal of a C-terminal farnesylated cysteine residue by

Zmpste24/Face1 (Davies et al., 2011). It is hypothesized that the role of

the hydrophobic farnesyl and carboxymethyl moieties attached to

C-terminal cysteines of some lamin molecules is to anchor them to the

INM lipid bilayer (Barrowman et al., 2012), thereby influencing localiza-

tion and function.

At least 11 distinct human diseases have been associated with >300

mutations in the gene that codes for lamins A and C (LMNA) (Dechat

et al., 2008), including the premature aging disease Hutchinson–Gilford

progeria syndrome (HGPS) (Coutinho et al., 2009; Rodriguez et al.,

2009). Fibroblasts taken from individuals with HGPS exhibit defective

lamin A processing and accumulate a permanently farnesylated,

truncated form of prelamin A termed progerin that induces abnormal

nuclear morphologies and elevated levels of DNA damage (Liu et al.,

2005) that are thought to contribute to disease pathologies (McClintock

et al., 2006). The main pathological feature of HGPS is vascular smooth

muscle cell (VSMC) degeneration and calcification (Salamat et al., 2010).

Because VSMCs function as major components of the vessel wall and are

responsible for maintaining vascular tone and mediating vessel repair

(Warren & Shanahan, 2011), their ablation in HGPS leads to death by

accelerated arteriosclerosis, leading to myocardial infarction or stroke

(Denecke et al., 2006; Merideth et al., 2008).

Importantly, studies have shown that prelamin A may also contribute

to vascular degeneration in atherosclerotic patients and aged individuals

in the general population (Lattanzi et al., 2007; Ragnauth et al., 2010;

Warren & Shanahan, 2011; Mahen et al., 2013). VSMCs from normal

individuals naturally accumulate prelamin A in vitro and in vivo prior to

undergoing senescence, and therefore, prelamin A can be used as a

biomarker of vascular aging (Ragnauth et al., 2010; Zhang et al., 2011).

Its expression is linked to VSMC dysfunction, pathological changes in

gene expression that promote vascular calcification and elevated levels

of DNA damage (Liu et al., 2013).

The DNA damage response (DDR) is a tightly coordinated succession

of events that orchestrates the detection, signalling and removal of DNA

lesions. Studies have shown that increased DNA damage in HGPS cells is

due in part to delays in the formation of DNA damage foci (Liu et al.,

2005) and reduced stability of p53-binding protein 1 (53BP1) (Gonzalez-

Suarez et al., 2009). This protein is a key component in the repair of

double-strand breaks (DSBs) that are a highly toxic form of DNA lesion. In

mammalian cells, DSBs are detected by surveillance proteins that lead to

the phosphorylation of histone variant H2AX, forming a phosphorylated

species termed cH2AX within microscopically discernible foci (Rogakou

et al., 1998). This then leads to localized ubiquitination of cH2AX that

promotes recruitment of 53BP1, which dictates how the break is

repaired (Mailand et al., 2007; Goodarzi & Jeggo, 2013). 53BP1

recruitment depends upon its import into the nucleus and subsequent

targeting to DNA damage by recognizing histone modifications (Panier &

Boulton, 2014).

In this study, we present evidence that in aged VSMCs, prelamin A

interrupts the nuclear import of 53BP1 leading to its cytoplasmic

accumulation by causing spatial deregulation of the nucleoporin NUP153

and subsequent interference of the Ran gradient. We also show that

unlike farnesyltransferase inhibitors (FTIs), which showed little effect on

reversing NUP153 deregulation, the small molecule Remodelin appeared

to alleviate 53BP1 cytoplasmic accumulation, reduce genomic instability,

restore nuclear circularity and delay senescence in aged VSMCs.
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Results

Prelamin A inhibits 53BP1 recruitment to DNA damage in

aged VSMCs by inducing cytoplasmic accumulation

Human VSMCs accrue prelamin A during aging (Ragnauth et al.,

2010), and this can be replicated in vitro by serial passaging (Fig. 1A

and Fig. S1). To determine whether aged VSMCs display defects in the

DDR, we examined their response to DNA damage. Late passage (p14)

VSMCs with acquired prelamin A accumulation exhibited higher basal

levels of cH2AX and 53BP1 foci than proliferating early passage (p8)

VSMCs. Etoposide treatment increased cH2AX staining in both cell

populations; however, there were significantly less 53BP1 foci in p14

compared to p8 VSMCs (Fig. 1B). To explore the basis for attenuated

53BP1 recruitment, we assessed H2AX and 53BP1 foci formation at

sites of DNA damage induced by laser microirradiation in early and

late passage VSMCs. We found that 3 h after irradiation, despite

unaffected cH2AX formation, the late passage VSMCs displayed

reduced 53BP1 accumulation at laser lines (Fig. 1C,D). No differences

in 53BP1 were seen 0.5 h after damage induction implying that

immediately after DNA damage induction, initial recruitment of 53BP1

is normal in these cells. To establish whether the decrease in 53BP1

foci formation was directly caused by prelamin A, we expressed an

uncleavable form of lamin A (UCLA) in passage 8 VSMCs, induced

DNA damage, then compared cH2AX and 53BP1 foci formation to

controls expressing EGFP (Fig. 1E). Again, despite an increase in

cH2AX, 53BP1 was significantly reduced by prelamin A expression. To

test whether overexpression of wild-type lamin A also affected 53BP1

recruitment to DNA damage, we expressed EGFP, wild-type lamin A

and UCLA in VSMCs and only found prelamin A-expressing cells

exhibited reduced 53BP1 at DNA lesions (Fig. S2). In parallel

experiments to the above, we observed similar defects in U2OS cells

expressing prelamin A, including nuclear blebbing and attenuated

53BP1 recruitment (Fig. S3).

Next, we investigated how prelamin A might affect 53BP1 recruit-

ment to DNA damage sites. Firstly, we assessed whether 53BP1 protein

stability was affected as deregulated nuclear lamin has been previously

implicated in reducing stability of this protein (Gonzalez-Suarez et al.,

2011). Western blots detected no changes in cellular levels of 53BP1

either in VSMCs expressing prelamin A through Zmpste24/Face1

depletion, or in the presence of DSBs induced with doxorubicin (Fig. 1F).

We also examined whether methylation of histones H3K79 and H4K20,

which are known to contribute to 53BP1 recruitment, was affected.

Analysis of protein levels by Western blot and also spatial organization by

immunofluorescence of both species showed no differences between

cells with or without prelamin A expression, or upon DNA damage

induction (Fig. S4).

Analysis of the subcellular localization of 53BP1 in VSMCs using

Western blot of cytoplasmic and nuclear fractions (Fig. 1G,H) established

that cytoplasmic 53BP1 was more abundant in late passage VSMCs than

in early passage VSMCs, with a statistically significant shift of 53BP1 to

the cytoplasm from the nucleus during passaging that was independent

of DNA damage. These changes were also observable by immunoflu-

orescence microscopy, either in aged or in young VSMCs depleted of

Face1 to accumulate prelamin A (Fig. 1I,J). To verify that prelamin

A-induced cytoplasmic accumulation of 53BP1 was not cell type specific,

we also analysed U2OS cells that were expressing UCLA by biochemical

cell fractionation and noted similar accumulation of 53BP1 in the

cytoplasm (Fig. S5).

NUP153 mislocalization by prelamin A restricts 53BP1 nuclear

entry

Nuclear import of 53BP1 is in part mediated by nucleoporin NUP153

(Lemaitre et al., 2012; Moudry et al., 2012). The nuclear lamina is

essential for the positioning of nuclear pore complexes (NPCs), and

NUP153 has been shown to bind directly to both A- and B-type lamins

(Al-Haboubi et al., 2011). Importantly, prelamin A has previously been

implicated in the disorganization of NUP153 (Goulbourne et al., 2011)

and immunofluorescence revealed a reduction of NUP153 on the nuclear

surface and an increase in intranuclear clustering in late passage VSMCs

(Fig. 2A). Furthermore, we found that depletion of Face1 in early

passage VSMCs (that previously displayed normal NUP153 localization)

induced defects even more marked than those observed in late passage

cells. In both instances, the characteristic nuclear envelope (NE) staining

of NUP153 appeared diminished with the appearance of intranuclear

aggregations that consistently colocalized with prelamin A (Fig. 2B).

These foci have been reported to be invaginations caused by folding of

either the INM or both the INM and outer nuclear membrane

(Goulbourne et al., 2011). However, not all nucleoporins displayed such

perturbed positioning upon prelamin A expression as evident by NUP62

localization (Fig. 2C), suggesting that prelamin A expression does not

impair overt NPC assembly and localization. Western blot analysis of a

range of nucleoporins including NUP153 following UCLA expression or

treatment with doxorubicin revealed prelamin A in early passage VSMCs

had no discernible effect on the levels of these proteins (Fig. 2D),

Fig. 1 Prelamin A in aged VSMCs prevents 53BP1 recruitment to DNA damage by inducing cytoplasmic accumulation. (A) (Left) WB showing increased prelamin A in aged

(p14) VSMCs compared to early (p8) VSMCs that occurs concomitantly with a decrease in Face1. Levels of mature lamin AC and p21 are not markedly different, whereas

cH2AX is increased. The data shown are from 35F VSMC isolate, but we also detect prelamin A accumulation and increased cH2AX in two other VSMC isolates (Fig. S1). All

experiments were repeated a minimum of 3 times. (Right) IF image of a proliferative early passage (p10) VSMC and a nonproliferative late passage (p18) VSMC stained for

prelamin A (red) and DAPI (blue). (B) Enumeration of cH2AX (left) and 53BP1 (right) foci in p8 and p14 VSMCs treated with DMSO or etoposide. n > 200 cells per treatment

taken from 3 independent experiments. Standard errors are shown. (C) IF showing cH2AX (red) and 53BP1 (green) in p7 and p18 VSMCs treated with microirradiation and

left to recover for 0.5 or 3 h. About 84% of p18 VSMCs were positive for prelamin A, and no prelamin A was detected in p7 VSMCs (data not shown). (D) Quantification of

C. n > 100 cells per treatment taken from 3 independent experiments. (E) IF analysis of cH2AX and 53BP1 foci in p8 control (EGFP) or expressing prelamin A (UCLA) VSMCs

treated with etoposide for 3 h. n = 200 cells per treatment taken from 3 independent experiments. (F) Whole cell lysate WB taken from early passage VSMCs treated with

control or Face1 siRNA and �/+ doxorubicin treatment. Levels of prelamin A were increased, but total 53BP1 protein level did not change. (G) WB of cell fractionation

analysis showing cytoplasmic 53BP1 accumulates in p19 VSMCs and that this coincides with prelamin A expression (not seen in p11 VSMCs). a-tubulin and nucleophosmin

are shown as controls for cytoplasmic (C) and nuclear (N) fractions, respectively. Doxorubicin did not affect this accumulation. (H) Quantification of G. Data were taken from

a minimum of 3 separate experiments. (I) IF of 53BP1 (green) cytoplasmic accumulation in VSMCs that have accumulated prelamin A (red). p6 and p11 VSMCs had

undetectable levels of prelamin A, but induced expression of Prelamin A with Face1 siRNA (third panel) caused an increase in levels of cytoplasmic 53BP1 and reduced

nuclear levels. This change is also evident in p17 VSMCs that have naturally accumulated prelamin A. White arrows indicate cytoplasmic 53BP1. Nuclei have been stained

with DAPI. (J) Quantification of fluorescence measurements of cytoplasmic and nuclear 53BP1 in p10 and p20 VSMCs. n > 100 cells from 3 separate experiments.
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implying that the observed decrease in NUP153 at the NE was caused by

changes in its localization and not loss of protein.

To elucidate whether prelamin A affected positioning of NUP153 via

direct interactions, we performed co-immunoprecipitation experiments

in U2OS cells expressing flag-epitope-tagged prelamin A (UCLA), wild-

type mature lamin A (WTLA) or EGFP control. Analysis of coprecipitated

proteins revealed that NUP153 interacted with both mature lamin A and

prelamin A (Fig. 2E), indicating prelamin A may act as a binding

competitor against mature lamin A for NUP153 and thereby alter

NUP153 spatial arrangement. The confirmation that mature lamin A

interacted with NUP153 led us to question whether its depletion would

cause similar phenotypes to that of prelamin A accumulation. In

contrast, siRNAs against LMNA did not induce trapping of NUP153 into

NR or reduce its localization at the ER (Fig 2F).

To further understand the impact of reduced import of 53BP1 into

the nucleus following NUP153 mislocalization, we inhibited importin-b-
mediated import in VSMCs using Importazole, induced DNA damage

and determined 53BP1 foci formation by immunofluorescence. As

shown in Fig. 2G, cells exhibiting restricted nuclear entry of 53BP1

following Importazole treatment (white arrows) had attenuated foci

formation at DSBs 3 h after etoposide treatment. This result highlights

the importance of unimpeded trafficking of 53BP1 between nucleus and

cytoplasm for it to function during DNA repair.

Disruption of NUP153 deregulates Ran localization

Previous studies (Kelley et al., 2011; Snow et al., 2013) highlighted a

role for progerin in the abrogation of the Ran protein gradient.

Therefore, we tested whether prelamin A caused a similar phenotype

and whether this was caused by mislocalization of NUP153. We

expressed UCLA in low passage VSMCs to ‘age’ them and then

performed nuclear fractionations of these and EGFP-transduced control

cells. Western blot and densitometry (Fig. 3A) showed that prelamin A

did decrease nuclear Ran and this was corroborated by immunofluores-

cence showing VSMCs positive for prelamin A displayed lower nuclear

Ran and higher cytoplasmic Ran (Fig. 3B). Our next aim was to establish

whether mislocalization of NUP153 was influencing this defect; there-

fore, we used siRNA to deplete NUP153 in early passage VSMCs and

used nuclear fractionation (Fig. 3C) and immunofluorescence (Fig. 3D)

to analyse Ran localization. As before, we detected reduced nuclear

levels and increased cytoplasmic levels, suggesting that mislocalization of

NUP153 by prelamin A is disrupting the Ran protein gradient preventing

import of 53BP1. To further support the finding that NUP153 mislocal-

ization was affecting protein import by changes to the Ran gradient, we

used cell fractionation to test the importin-b-mediated nuclear import of

a large cargo (TPR) and a relatively smaller cargo (PCNA) in cells depleted

in NUP153 (Fig. 3E). We observed increased cytoplasmic levels of TPR

but not PCNA, indicating that larger cargos are most affected by defects

in the Ran gradient as previously described (Snow et al., 2013). As

NUP153 mislocalization affects nuclear import of larger cargo, we

hypothesized that TPR would also show impeded nuclear entry in VSMCs

expressing prelamin A. We used Western blot to analyse cell fractions

from control p10 VSMCs or p10 VSMCs depleted of Face1 to determine

cellular localization of TPR and the smaller PCNA. We found TPR

cytoplasmic accumulation, but not PCNA cytoplasmic accumulation

(Fig. 3E), thus supporting our hypothesis that large cargo nuclear import

is affected in VSMCs expressing prelamin A.

Farnesyltransferase inhibitors only modestly restore NUP153

positioning and do not alleviate prelamin A toxicity in aged

VSMCs

The retention of the hydrophobic farnesyl moiety on prelamin A has

been proposed to be a primary factor in its deleterious effects,

potentially by enhanced anchoring to the NE (Wang et al., 2012). Using

specific antibodies, farnesylated prelamin A was detected in aged

VSMCs and in U2OS cells expressing UCLA (Fig. 4A left and right,

respectively). Biochemical fractionation showed that prelamin A was

mainly in the nuclear insoluble fraction, while mature lamins A and C

were present in the chromatin-associated fraction (Fig. 4B) consistent

with the notion that interactions between mature lamins A and C and

the NE are weaker than those of prelamin A. Furthermore, treating cells

with the farnesyl transferase inhibitor FTI-276 caused prelamin A to elute

in the chromatin fraction, reinforcing a model in which the farnesyl

group plays a key role in anchoring prelamin A to the NE.

FTIs restore nuclear shape in progerin- or prelamin A-positive cells, so

our next aim was to determine whether NUP153 localization could be

normalized by FTI exposure. Notably, although treatment of prelamin

A-positive cells with FTI-276 was able to restore normal nuclear shape,

there was only limited restoration in NUP153 positioning around the NE

(Fig. 4C and D). As previously found (Liu et al., 2006; Larrieu et al.,

2014), FTI treatment had no effect on basal DNA damage levels (Fig. 4E),

indicating that the farnesyl group of prelamin A is not wholly responsible

for the toxicity of this protein, or that once farnesylated prelamin A has

been present in cells, the subsequent removal of the farnesyl group is

insufficient to restore nuclear homeostasis.

Remodelin treatment alleviates defects associated with

prelamin A accumulation

The recent discovery that an inhibitor of the N-acetyl-transferase NAT10,

termed Remodelin (Larrieu et al., 2014), was able to reverse cellular

deficiencies in both HGPS fibroblasts and lamin A/C depleted cells led us

to test whether prelamin A-induced aberrations in aged VSMCs could be

Fig. 2 Prelamin A accumulation in aged VSMCs induces NUP153 mislocalization. (A) (Left) IF of NUP153 (green) and prelamin A (red) in passages 6, 11, 11 + Face1 siRNA

and 17. DNA is stained with DAPI. Prelamin A results in nucleoplasmic aggregation of NUP153 and its loss at the NE. (Right) Quantification of incidence of abnormal NUP153.

n > 300 cells from 3 separate experiments, standard errors are shown. (B) IF of a p11 VSMC nuclei that was induced to express Flag-tagged prelamin A. NUP153 (green) and

prelamin A (red) colocalization is shown by white arrows. DNA is stained with DAPI. (C) (Left) IF analysis of NUP62 (green) in p7 and p21 VSMCs. Despite prelamin A-induced

deformation of the nuclei, most NUP62 is retained at the NE. DAPI is shown. (Right) Quantitative analysis of cells displaying abnormal NUP153, n > 200 cells from 3

independent experiments. (D) WB of nucleoporin protein levels in early passage VSMCs expressing EGFP or prelamin A (UCLA). No marked differences were observed. (E) WB

showing example from Flag precipitation experiments used to assess NUP153 interactions with mature wild-type lamin A (WTLA) and prelamin A (UCLA). EGFP was used as a

negative control. Assays revealed NUP153 was precipitated when either WTLA or UCLA were used as bait. (F) IF showing depletion of lamin AC (red) using siLMNA induces

changes in nuclear morphology but does not cause loss of NUP153 (green) from the NE. DNA is stained with DAPI (blue). (G) (Left) IF of cells treated with Importazole for

24 h to block importin-b-mediated import of 53BP1 (green). Cells exhibited attenuation of nuclear 53BP1 foci after etoposide treatment, reinforcing the importance of

nuclear import of 53BP1 for its activity. (Right) Quantification of cells treated with etoposide and Importazole. Foci formation of 53BP1 was compared in cells that displayed

no cytoplasmic 53BP1 accumulation (normal cells) and those showing increased cytoplasmic 53BP1 (blocked import). Cells with >5 53BP1 foci were considered to have

unaffected 53BP1 recruitment. n > 150 cells from 3 separate experiments, standard errors are shown.

Prelamin A disrupts 53BP1 import, A. M. Cobb et al. 1043
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alleviated by Remodelin. Immunofluorescence analysis showed late

passage VSMCs treated with Remodelin had significantly less cH2AX
compared to untreated cells (Fig. 5A,B), although it did not return to

levels observed in early passage VSMCs. It was also evident that NUP153

localization at the NE was markedly improved alongside restored nuclear

circularity (Fig. 5C) and reduced cytoplasmic 53BP1 (Fig. 5A,D). Nuclear

(A)

(E)

(C)

(D)

(B)

Fig. 3 The Ran gradient is disrupted by prelamin A expression or depletion of NUP153. (A) (Left) WB of p10 VSMC cytoplasmic (C) and nuclear (N) fractions following EGFP

or UCLA expression. a-tubulin (cytoplasmic) and nucleophosmin (nuclear) are shown as loading controls. Quantification of Ran from 3 independent experiments (standard

errors are shown) (Right). (B) IF image of Ran (green) in p10 VSMCs expressing EGFP or UCLA. Prelamin A (red) and DAPI (blue) are shown. (C) (Left) WB of p10 VSMC

cytoplasmic (C) and nuclear (N) fractions following control or NUP153 siRNA treatment and ensuing cytoplasmic accumulation of 53BP1. a-tubulin (cytoplasmic) and

nucleophosmin (nuclear) are shown as loading controls. (Right) Quantification of Ran from 3 independent experiments. (D) IF of Ran (green) in p10 VSMCs treated with

control or NUP153 siRNA. DAPI is shown in blue. (E) (Left) WB showing NUP153 depletion can affect nuclear localization of TPR but not PCNA in p9 VSMCs. (Right) WB

showing Face1 depletion in p10 VSMCs induces similar cytoplasmic accumulation of TPR.
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(B)

(C)

(E)

(D)

Fig. 4 FTIs improve prelamin A-induced dysmorphic nuclei but do not recover NUP153 localization or genome stability. (A) (Left) WB showing prelamin A that accumulates

naturally in aged VSMCs (p18) is farnesylated using an antibody specific for farnesylated prelamin A. Cells were fractionated into cytoplasmic (C) and nuclear (N)

compartments to concentrate proteins. FTIs significantly increase levels of total prelamin A, but this increase is not detected with the farnesylated prelamin A-specific

antibody. (Right) WB of U2OS cells expressing UCLA. Cells had been treated with or without FTI-276 for 48 h prior to harvesting. Protein was probed using antibodies

against total prelamin A or specific for farnesylated prelamin A. (B) WB of biochemical fractionated U2OS cells treated with control or Face1 siRNA and �/+ FTIs. C –
cytoplasmic, NS – nuclear soluble, Ch – chromatin and NI – nuclear insoluble. Prelamin A is tightly associated with the NE and remains in the nuclear fraction unlike the more

soluble lamin A/C. FTIs release prelamin A from the insoluble fraction. (C) IF of NUP153 (green) localization in p10 and p22 VSMCs �/+ FTIs. Prelamin A (red) and DNA (blue)

are also shown. (D) IF showing NUP153 (green) and prelamin A (red) in U2OS cells expressing either EGFP or UCLA �/+ FTIs. DAPI (blue) is also shown. (E) Enumeration of

cH2AX in VSMCs expressing EGFP, UCLA alone or UCLA + FTI treatment. n > 200 cells were analysed from 3 independent experiments, and average number of cH2AX foci

per cell was calculated. Standard errors are shown.
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fractionation also showed decreased levels of cytoplasmic 53BP1 and

reduced cH2AX levels (Fig. 5E–G) despite no observable changes in

prelamin A or NAT10 levels. In addition, we found Remodelin was able

to improve nuclear morphology, improve genomic stability and restore

53BP1 nuclear compartmentalization in U2OS cells expressing prelamin

A (Fig. S6).

(A) (B)

(D)

(F) (G)

(H)

(E)

(C)
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As we had shown prelamin A could interact with NUP153 (Fig. 2E)

and this was likely to be a key factor in its mislocalization and reduced

functionality, we wondered if the improvements identified by Remodelin

treatment had affected these interactions. We used NUP153 as bait

protein and assessed co-immunoprecipitation of lamin AC and prelamin

A (Fig. 5H). As predicted, both mature lamins A and C were found to

interact with NUP153 and upon expression of UCLA, this was decreased,

with prelamin A being precipitated instead. FTI treatment had minimal

effect upon this; however, Remodelin did improve NUP153 interactions

with mature lamins despite not preventing prelamin A-NUP153 interac-

tions. It is unclear how NUP153 was able to accommodate binding to

both prelamin A and lamins AC, but the improved interaction with the

mature lamina following Remodelin treatment may explain NUP153

localization improvements.

Remodelin improves cell health and genomic instability of

aged VSMCs

Reduced cH2AX in Remodelin-treated aged VSMCs suggested genomic

stability had been improved. To directly measure whether DNA damage

was reduced, we used alkaline comet assays and found lower levels of

DNA damage in treated late passage VSMCs (Fig. 6A), although these

cells still exhibited significantly more DNA damage than low passage

VSMCs.

We hypothesized that VSMCs treated with Remodelin might have

extended proliferative lifespan in vitro. We therefore performed cell

population doubling experiments alongside senescence b-galactosidase
assays to monitor proliferation and levels of senescence in mid-to-late

passage VSMCs treated with DMSO control, or with 1 or 0.1 lM
Remodelin. We found treatment with 1 lM Remodelin maintained low

population doubling times compared to both DMSO and 0.1 lM
Remodelin (Fig. 6B); however, treatment with 10 lM Remodelin proved

to be cytotoxic over a few passages (data not shown). Analysis of

senescence at passage 23 (Fig. 6C) confirmed the beneficial effect of

Remodelin as there was a strong decrease in senescent VSMCs at this

passage when treated with 1 lM Remodelin.

Next, we employed a cell vitality assay that measures reduced thiols to

determine cell health. We expressed UCLA in young VSMCs and treated

these with either DMSO or Remodelin. When compared to VSMCs

expressing EGFP, UCLA expression significantly reduced cell health and

many cells appeared to be at early stages of apoptosis (Fig. 6D).

However, Remodelin dramatically improved cell health to similar levels as

EGFP-treated cells. To confirm that the observed improvements in cell

health were related to restored 53BP1 functionality, we analysed the

effect of Remodelin upon 53BP1 foci formation and found recruitment

to sites was significantly improved in passage 14 VSMCs following

Remodelin treatment (Fig. 6E and Fig. S7). As defects in 53BP1

recruitment had been shown to be a consequence of NUP153-mediated

disruption of the Ran gradient, we next wanted to establish whether

Remodelin had restored nuclear levels of Ran in VSMCs expressing

prelamin A. As shown in Fig. 6F,G, Ran nuclear compartmentalization

had been restored to levels observed in controls.

Discussion

Prelamin A inhibits 53BP1 recruitment in aged VSMCs by

deregulation of NUP153

In this present study, we demonstrated defective accumulation of 53BP1

at sites of DNA damage in aged human VSMCs that express prelamin A,

despite normal phosphorylation of H2AX. Aged VSMCs also displayed an

increased level of cytoplasmic 53BP1 despite no changes in overall

protein level, suggesting its transport into the nucleus had been reduced.

Further investigations identified that nucleoporin NUP153, a key

regulator of 53BP1 nuclear import, was disorganized upon prelamin A

expression in VSMCs, suggesting these alterations would impede import

of 53BP1 and compromise its recruitment to DNA damage. This would

explain why later 53BP1 accruement to DNA damage was more affected

than early recruitment as the existing pool of nuclear 53BP1 in these cells

would initially be able to respond but essential further aggregation of

53BP1 would be hindered by reduced nuclear 53BP1 levels due to

decreased nuclear import. As similar observations were seen in U2OS

cells, we speculate that prelamin A will impair genome stability through

comparable mechanisms in different cell types including HGPS fibrob-

lasts and other models of prelamin A accumulation where impaired

recruitment of 53BP1 has been documented (Liu et al., 2005). It is worth

noting that our data are different from previous studies that have shown

depletion of A-type lamins affects 53BP1 stability by accelerated

degradation (Gonzalez-Suarez et al., 2011). Despite also compromising

nuclear lamina integrity, the accumulation of prelamin A is a distinctly

different event to loss of lamin A protein as the mature lamina is still

intact but instead, a nonmature lamin A is present. As shown by pull-

down assays, prelamin A is likely to compete against the mature lamina

for NUP153 binding and alter its function due to its different biochemical

properties.

The intranuclear aggregation of NUP153 we observed occurred

concomitantly with a loss of this nucleoporin at the NE. Previous studies

in mouse embryonic fibroblasts have shown that these aggregates are

concentrated in intranuclear invaginations collectively termed the

nuclear reticulum (NR) (Goulbourne et al., 2011). Previously, the

trapping of NUP153 in NR was proposed to arise as an adaptive

response to the build-up of toxic prelamin A to facilitate mRNA export by

shortening the distance between intranuclear expressing genes and the

cytoplasm (Goulbourne et al., 2011). Instead, we propose that it is the

prelamin A-mediated formation of the NR and subsequent trapping of

this key nucleoporin that is the toxic event, as cytoplasmic–nuclear

Fig. 5 Remodelin reverses prelamin A-dependent defects in aged VSMCs. (A) IF of p11, p30 and p30 +Remodelin VSMCs. Cells were stained for cH2AX, NUP153 and

53BP1 (all green) in addition to prelamin A (red) and DAPI (blue). Panels showing 53BP1 staining show cells at a reduced magnification to allow visualization of staining in cell

cytoplasmic regions. (B) Quantification of average number of cH2AX in p11, p30 and p30 + Remodelin VSMCs. n > 100 cells were counted per cell group from 3

independent experiments. Standard errors are shown. (C) Nuclear circularity of p11, p30 and p30 + Remodelin VSMCs. Values closer to 1 indicate nuclei that are more

circular. n > 100 cells from more than 3 independent experiments. (D) Fluorescence intensity measurements of cytoplasmic 53BP1 in p30 and p30 + Remodelin VSMCs.

Readings for nuclear and cytoplasmic were obtained, and percentage cytoplasmic values were calculated. n > 100 cells from 3 independent experiments. (E) WB of whole

cell and cell fractions (cytoplasmic – C, nuclear – N) of p30 VSMCs �/+ Remodelin (R). (F) Quantification of 53BP1 bands shown in D. Data are from 3 separate experiments.

(G) Quantification of cH2AX bands shown in D. Data are from 3 separate experiments (H) (Left) Co-immunoprecipitation WB using NUP153 as bait with lamin AC and

prelamin A as target interactors. Assays were performed in U2OS cells expressing UCLA �/+FTIs and �/+ Remodelin. Prelamin A acted as a competitor against lamin AC to

bind to NUP153, but this was alleviated to an extent by addition of Remodelin. (Right) Quantification of lamin A and C precipitation. Band intensities of precipitated lamin AC

were measured and normalized to total input lamin AC. Fold changes of precipitated lamin AC in UCLA, UCLA + FTI and UCLA + Remodelin were then calculated relative to

EGFP control cells. n = 4, standard errors are shown.
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trafficking is compromised. We did not detect changes in positioning of

all nucleoporins; notably, NUP62 was retained at the NE. The position of

NUP153 close to the INM where prelamin A localizes may explain why

this nucleoporin is particularly affected. How mislocalized NUP153

reduces nuclear Ran levels remains to be understood; however,

disruption of the nuclear basket may be a key factor.

The accumulation of prelamin A is not the only change that can occur

to the nuclear lamina of aging cells and it is possible that other factors

(A)

(C)

(E)
(F)

(G)

(D)

(B)
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could contribute to NUP153 mislocalization in late passage VSMCs.

However, as we observed identical results by expressing prelamin A in

U2OS cells that would otherwise have normal nuclear lamina, our

hypothesis that prelamin A is the key determinant in NUP153 mislocal-

ization in aged VSMCs is strengthened.

Prelamin A-induced mislocalization of NUP153 deregulates

the Ran gradient

NUP153 has been shown to be directly involved in 53BP1 nuclear import

(Lemaitre et al., 2012), but the precise mechanisms responsible for this

remain unknown. We hypothesized that mislocalization of NUP153 may

affect the Ran gradient by interfering with its import into the nucleus,

potentially by interrupting interactions between its key nuclear import

regulator NTF2 (nuclear transport factor 2) and the NPC (Ribbeck et al.,

1998). As production of the RanGTP gradient relies heavily on

establishment of a Ran protein gradient (approximately 3 times more

nuclear Ran than cytoplasmic), this would in turn compromise the

RanGTP gradient and thereby reduce nuclear import of large proteins

such as 53BP1 in cells containing prelamin A. We confirmed prelamin A

expression compromised nuclear import of Ran in VSMCs, and this

impaired import was recapitulated in cells depleted of NUP153. These

data link for the first time NUP153 in this process and shed light on the

underlying mechanism for why nonmature lamin A affects the Ran

gradient. These results are also consistent with studies implicating

progerin in the abrogation of the Ran gradient and subsequent decrease

of large cargo nuclear import (Kelley et al., 2011; Snow et al., 2013).

How NUP153 impedes import of Ran protein remains unclear and merits

further investigation; however, a link between deficient Ubc9-mediated

SUMOylation and Ran protein nuclear import has been proposed (Kelley

et al., 2011; Datta et al., 2014).

Remodelin alleviates defects associated with prelamin A and

improves cell health

We have shown that prelamin A found in aged VSMCs is farnesylated.

As inhibitors of farnesyltransferases have long been seen as a potential

therapy to alleviate defects of prelamin A or progerin expression, we

tested the effects of FTIs on aged VSMCs. Despite successfully reducing

farnesylated species of prelamin A and subsequently releasing its tight

association with the NE and improving nuclear circularity, genomic

stability was not improved. In contrast, we found that a newly reported

inhibitor of NAT10 acetyltransferase, termed Remodelin, was able to

delay senescence and maintain low cell population times at later

passages alongside improving many prelamin A-induced abnormalities,

including nuclear blebbing, NUP153 disorganization, genomic instability

and 53BP1 cytoplasmic accumulation. These findings highlight the utility

of this compound as a tool to restore cellular homeostasis in affected

cells and also demonstrate the potential use of this or other NAT10

inhibitors as therapeutic agents. Whilst the precise mechanisms that

underlie the benefits of NAT10 inhibition remain unclear, changes to

microtubule anchorage that occur following reduced NAT10 activity may

allay additional forces that have been put upon the nucleus following

alterations to the nuclear lamina (Larrieu et al., 2014). In the model we

are proposing, this relaxing of external forces upon the nucleus would

cause a reduction in NR formation, release of trapped NUP153,

restoration of the Ran gradient and improved trafficking between the

nucleus and cytoplasm. For this, an intact and functional microtubule

network is likely to be essential for Remodelin to effectuate its benefits

and allow for unfavourable changes in the NE to be reversed.

Conclusions

We have shown that aged VSMCs with accumulated prelamin A display

aberrant NUP153 localization, and provide evidence that this, in turn,

impedes 53BP1 entry into the nucleus and restricts its access to sites of

DNA damage. This effect is likely to prevent efficient DSB repair and may

be responsible for the elevated levels of unrepaired DNA damage

observed in aged VSMCs. We also show that NUP153 mislocalization

impedes the Ran protein gradient and that this may explain how defects

in NUP153 affect import of 53BP1. Additionally, we have shown

Remodelin is able to reverse many prelamin A-dependent abnormalities

in VSMCs and thus may have therapeutic potential in the context of

cardiovascular disease.

Experimental procedures

Experimental procedures are described in detail in the supplements.
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Fig. 6 Remodelin improves cell fitness of late passage VSMCs and improves Ran gradient defects associated with prelamin A expression. (A) Comet assay of p12, p30 and

p30 + Remodelin VSMCs. n > 100 cells per group were analysed from 4 independent experiments. Standard errors are shown. (B) Cell population doubling time (PDT)

analysis of mid–late passage VSMCs treated with DMSO, 1 or 0.1 lM Remodelin. No differences were detected between DMSO and 0.1 lM Remodelin-treated cells, but

1 lM Remodelin-treated cells retained low PDTs for longer and grew significantly faster at passages 19, 21 and 23 (*P < 0.05, **P < 0.01). Data were from 3 independent

experiments. (C) (Left) Representative image of senescence-associated b-galactosidase assay of p23 VSMCs treated with DMSO or 1 lM Remodelin from PDT experiment

shown in B. Senescent cells are indicated by blue staining. (Right) Quantification of senescent cells. A minimum of 200 cells were counted from 3 experiments. (D) Cell vitality

analysis of p11 VSMCs expressing EGFP, UCLA or UCLA+Remodelin. As a positive control for apoptosis initiation, cells were treated with Staurosporine. (Left) Representative

plots from assay. (Right) Quantification of healthy cells from 3 independent experiments. (E) Enumeration of cH2AX and 53BP1 foci in p8 and p14 VSMCs treated with

etoposide and �/+ FTI or Remodelin. Counts were from >200 cells from 3 independent experiments. (F) Representative WB of cytoplasmic (C) and nuclear (N) fractions from

p10 VSMCs expressing EGFP or UCLA and treated with DMSO, FTIs or Remodelin. Prelamin A expression reduces levels of nuclear Ran, and this can be recovered to an extent

by Remodelin. (G) Quantification of Ran band intensities shown in G. Measurements were taken from 3 separate experiments. Standard errors are shown. Bars in red

indicate additional data added to data presented in Fig. 3A.
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Supporting Information

Additional Supporting Information may be found online in the supporting

information tab for this article:

Fig. S1 Late passage VSMCs accumulate prelamin A in culture.

Fig. S2 Overexpression of prelamin A but not wild-type lamin A attenuates

53BP1 recruitment to DNA damage.

Fig. S3 Expression of prelamin A in U2OS cells induces similar defects as aged

VSMCs.

Fig. S4 Histone marks associated with 53BP1 recruitment are not affected by

prelamin A expression.

Fig. S5 Prelamin A induces cytoplasmic accumulation in U2OS cells.

Fig. S6 Remodelin reverses prelamin A-dependent defects in U2OS cells.

Fig. S7 Representative image of cH2AX and 53BP1 foci formation in VSMCs

treated with FTIs and Remodelin.

Appendix S1 Materials and methods.
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