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ABSTRACT
The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration
and aging. Its expression is implicated in compromised genome stability and increased levels of
DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic
effects. As the nuclear lamina is important for DNA replication we wanted to investigate the
relationship between prelamin A expression and DNA replication fork stability. In this study we
report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of
proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol h, two hallmarks of DNA
replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A
presented with high levels of colocalisation between PCNA and gH2AX, indicating collapse of
stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein
interaction assays showed prelamin A interacted with PCNA and that its presence mitigated
interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity
of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and
that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic
instability.
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Introduction

The nuclear lamina consists of type V intermediate
filament proteins that are concentrated on the nucleo-
plasmic surface of the inner nuclear membrane.1

Lamins A and C are both derived from the same gene
(LMNA), however lamin A is extensively post-
translationally modified to become mature lamin A.2,3

Defective processing can lead to the accumulation of
lamin A precursors such as progerin4 and prelamin A5

that are implicated in laminopathies Hutchinson-
Gilford progeria syndrome6 and restrictive dermop-
athy5 respectively. Despite inducing comparable effects
upon cells, progerin and prelamin A differ structurally
and biochemically, with progerin being a truncated
form of lamin A missing 50 internal amino acids
whereas prelamin A is the full transcript from the
LMNA gene.7 An important similarity is that both

retain a C-terminal farnesyl residue that is usually
removed during post-translational processing. Although
laminopathies are rare disorders, recent evidence has
suggested non-mature lamins also accumulate in cells
during normal aging in the general population. In par-
ticular, prelamin A has been found to accumulate in
vascular smooth muscle cells prior to senescence both
in vitro and in vivo8,9 and its expression is associated
with nuclear morphology defects,9 heterochromatin
alterations10 and elevated levels of DNA damage.11-13

Due to its cytotoxic effects, prelamin A has been
proposed to be a key factor in aging of the vasculature
and age-associated cardiovascular complications.14-17

How non-mature lamin A causes an increase in
levels of DNA damage remains to be fully established.
Evidence suggests they may directly impede DNA
repair by delaying recruitment of repair factors to
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DNA lesions.11,18,19 Additionally, the rate of formation
of DNA damage itself may be increased which would
exacerbate the toxicity of these proteins. In this
respect, it has been reported that accumulation of prel-
amin A or the depletion of lamins A/C increases levels
of reactive oxygen species that can go on to cause oxi-
dative damage to DNA.20 The loss of heterochromatin,
an event associated with expression of prelamin A,
may also be harmful as previously compacted DNA
will be more exposed to damaging agents.21,22

Problems with lamin-regulated DNA metabolism
may also lead to the introduction of endogenously
formed lesions. Indeed, lamins are recognized as
being fundamental to DNA replication. Not only
are they present at early S-phase replication sites23

but disruption of lamina organization using domi-
nant negative mutants induces elongation arrest24

and depletion of lamins A/C prevents restarting of
stalled replication forks.25 Furthermore, knockdown
of lamin A impedes DNA replication in mice and
this can be rescued via restoration of lamin A
expression.23 Evidence also suggests the nuclear
lamina controls the spatial and temporal arrange-
ment of DNA replication as initiation occurs in a
limited number of perinucleolar lamins A/C associ-
ated foci.26,27 Importantly, nuclear lamins have
been shown to interact directly with replication
machinery components such as DNA polymerases28

and the sliding-clamp proliferating cell nuclear
antigen (PCNA).29-31 PCNA forms a homotrimeric-
ring structure that provides a sliding clamp for
DNA polymerase d and is important for maintain-
ing its association between the polymerase and
DNA.32 Protein interactions with PCNA are highly
complex but are principally governed by post-trans-
lational modifications, accessory binding-factors
and differential binding properties of interacting
partners. The interactions that occur between lam-
ins and PCNA mediate positioning of PCNA on
chromatin30 and mutations within LMNA can com-
promise this interaction and dramatically reduce
binding affinity in vitro.30

Replication forks that encounter lesions in DNA or
non-B DNA structures are liable to stalling.33 Ultravi-
olet (UV) light generates bulky photoproducts in
DNA such as pyrimidine dimers that efficiently halt
advancement of the replication fork.34,35 Stalling may
also occur if stable protein-DNA complexes are
encountered or if interactions that govern the integrity

and progression of the DNA replication complex are
compromised.36 Cytotoxic double-stand breaks
(DSBs) can arise in the DNA if replication cannot be
recovered and the stalled fork collapses. A hallmark of
arrested DNA replication is the mono-ubiquitination
at K164 of PCNA by Rad18,37,38 that is required for
the recruitment of specialized DNA polymerases such
as Polh that displace Pol d or Pol e.39,40 Stalled replica-
tion forks can be identified by colocalisation of PCNA
and Pol h, with these sites being markedly increased
following UV-irradiation.37 Importantly, this modifi-
cation is not restricted to DNA replication that has
encountered DNA lesions but can occur at all sites of
stalled replication.41

We wanted to assess whether the accumulation of
prelamin A affected the stability of DNA replication,
and if instability could give rise to increased levels of
DNA damage by replication fork collapse. Herein we
show that prelamin A induces stalling of DNA repli-
cation forks and leads to increased levels of PCNA at
sites of DNA damage, indicating collapse of DNA
replication forks. We went on to find no relationship
between prelamin A and levels of UV-specific DNA
damage that may have caused DNA replication to
fail, however we did find that prelamin A could
interact with PCNA and that interactions between
PCNA and lamins A/C were decreased in the pres-
ence of prelamin A despite no reductions in overall
DNA synthesis. These findings provide evidence that
prelamin A induces stalling of DNA replication forks
that could eventually collapse and produce toxic
DNA lesions.

Materials and methods

Cell culture / DNA damage treatments

Osteosarcoma cells (U2OS) were obtained from
American Tissue Culture Collection. Cells were pas-
saged after reaching 70% confluency and maintained
in DMEM complete media (Sigma) supplemented
with 10 units/mL penicillin, 10 mg/mL streptomy-
cin, 200 mM L-glutamine and 10% FBS (or 0.5%
FBS during serum starvation experiments). For DSB
DNA damage induction, cells were typically treated
for 3 h with 1 mM doxorubicin or etoposide. UV-
irradiation was performed using a UV Stratalinker�

1800 (Stratagene�) typically at 40 J/m2 unless stated.
For localized UV damage, 0.5 mm membrane filters
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(IsoporeTM) were used. For BrdU incorporation,
10 mM BrdU was added to media for 2 h at 37�C.

Adenoviral constructs and transfections

U2OS cells at 70% confluence were infected with
FLAG-tagged recombinant adenoviruses containing
either an uncleavable form of prelamin A mutated
within the Zmpste24 cleavage site (L647R) (UCLA),
or EGFP control (EGFP). Multiplicity of infection was
5 particles per cell, routinely achieving >80% trans-
duction efficiency as assessed by control EGFP.

Small interfering RNA–mediated interference

Dharmacon smart pool Face1 or control small inter-
fering RNA (siRNA) oligonucleotides were transfected
into U2OS cells with the use of HiPerfect transfection
reagent (Qiagen). Transfected cells were left for 72 h
prior to experiments.

Antibodies and immunofluorescence

Primary antibodies used were as follows: prelamin A
(SC-6214, C-20), lamin A/C (SC-6215, N-18), FLAG
(M2, F3165) (Sigma); g-H2AX (2577), PCNA (PC10)
(Cell Signaling Technology, Danvers, Mass); Emerin
(Novocastra); Kap1 (ab70369), g-Tubulin (ab11316),
Pol h (ab17725) and (ab180703), USP3 (ab82935),
Thymine dimer (ab10347), BrdU (ab6326), H2AX
(ab11175) (abcam); Ki-67 (VP-K452) (Vector
Laboratories).

For immunofluorescence, cells were cultured on
coverslips and were fixed in 4% paraformaldehyde in
PBS followed by 3 min permeabilisation with 0.5%
NP-40 in PBS or 100% methanol at ¡20�C for
10 min. For BrdU analysis, cells were incubated in 2M
HCl for 40 min at room temperature (RT) prior to
permeabilisation. Coverslips were then incubated
with blocking solution (3% BSA in PBS) for 1 h at
RT. Primary antibodies in blocking solution were
then applied for 12 h at 4�C, followed by 1 h RT
incubation with fluorescent dye conjugated secondary
antibodies (Invitrogen). Coverslips were washed with
PBS, mounted onto slides with medium containing
DAPI, and visualized using a Leica SP5 confocal
microscope.

Thymine dimer dot blot assay

Cells were washed with ice old PBS, then scrapped
into 500 ml ice old PBS and centrifuged at 1500 rcf for
5 min. Cells were then resuspended in 400 ml ice cold
PBS and sonicated for 10 s. Genomic DNA was
extracted using chloroform/phenol extraction and
purified and concentrated by ethanol precipitation.
1000 ng of DNA was pipetted directly onto Biodyne B
Nylon membrane (Pierce) and baked at 80�C for
2 h. The membrane was then blocked with 5% milk
in TBST and probed with anti-thymine dimer
antibody.

Fluorescence-activated cell sorting (FACS)

Cells were trypsinised, washed once in ice-cold PBS,
then resuspended in 300 ml PBS and 700 ml 100%
ethanol and kept at 4�C overnight. Cells were then
centrifuged and the resulting pellet resuspended in
Propidium iodide stain (50ug/ml PI in PBS containing
5 units/ml RNAse A) for at least 3 h in the dark. Cell-
cycle status was measured on a Flow cytometer with a
minimum of 20,000 events measured per sample ana-
lyzed. FlowJo software (FlowJo, LLC) was used for
analysis.

Two step cell cycle analysis

Cell cycle analysis was performed using a
Nucleocounter NC-3000 (Chemometec). Program
‘Two-step cell cycle assay’ was used according to the
manufacturers instructions.

GST precipitation

GST Pull-down assays were performed as previously
described.42

Flag-tag precipitation assays

U2OS cells were transduced with EGFP or UCLA as
described above. Cell lysates were obtained by sonicat-
ing cells in IP buffer (10 mM Tris pH 7.5, 150 mM
NaCl, 1 mM EDTA, 1% Triton X-100, protease inhibi-
tors) and collecting supernatant after centrifugation.
ANTI-Flag� M2 Affinity Gel slurry (Sigma) was
added to 400 mg of protein and IP buffer was added to
a final volume of 500 ml. Samples were incubated at
4�C, rotating for 2 h. Bead-protein complexes were
washed 3x in IP buffer and finally the pellet was
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resuspended in 4x sample buffer, heated at 100�C for
10 min and analyzed by western blot.

Co-immunoprecipitation

Cells were scrapped into ice cold PBS and centrifuged
at 1500 rcf at 4�C for 5 min. Supernatant was removed
and pellets resuspended in IP buffer and sonicated for
10 s prior to centrifugation and collection of superna-
tant. 50 ml of Protein G beads (Sigma) were washed
3x in ice cold PBS and then added to 200 mg of cell
extract for pre-clearing (50 mg of non-cleared extract
was kept as ‘start lysate’). Samples were centrifuged
then 1 mg of anti-PCNA, anti-Lamin A/C or non-spe-
cific antibody was added to cleared extracts which
were incubated at 4�C for 12 h with gentle agitation.
100 ml of washed Protein G bead slurry was then
added to extracts and were incubated at 4�C for 2 h
with gentle agitation. Samples were centrifuged and
washed 3x in ice cold PBS. Pellets were then resus-
pended in 4x sample buffer and boiled for 10 min to
release captured proteins. Samples were analyzed by
western blot.

Statistical analysis

Cell and foci counts for statistical analysis were per-
formed on >100 cells in triplicate for each control
and experimental group, and results were verified in
at least 3 independent experiments. Data are shown as
mean and with standard errors. Statistical analysis was
performed with GraphPad software, and comparisons
were made with the Student unpaired t test.

Results

Prelamin A expression induces mono-ubiquitination
of PCNA and recruitment of Pol h

Mono-ubiquitination of K164 on PCNA by Rad18 is a
primary response to replication fork stalling and can
be seen following DNA bulky adduct formation. Using
western blot, we were able to detect this protein modi-
fication in U2OS cells that had been treated with UV
and left for 1 h (Fig. 1A). The transient nature of this
response was evident as by 3 h this signal was
markedly decreased. We next assessed this modifica-
tion in U2OS cells that were expressing an uncleavable
form of prelamin A (UCLA) against controls express-
ing EGFP (Fig. 1B, C and Supplementary Fig. 1). Fol-
lowing UV-irradiation, both cell types contained

expected PCNA mono-ubiquitination, however only
UCLA-expressing cells exhibited mono-ubiquitination
following DMSO (vehicle control) or doxorubicin
(DSB inducer) exposure, indicating prelamin A was
causing DNA replication forks to stall and this was
independent of UV-irradiation.

As prelamin A is associated with decreased cell pro-
liferation, and as non-proliferating cells exhibit
reduced levels of PCNA, we wondered if expression of
prelamin A was having a direct influence on PCNA
protein levels. We analyzed PCNA in U2OS cells
expressing UCLA but saw no decrease (Fig. 1D). How-
ever, we were able to detect a decrease in KAP1, a pro-
tein associated with heterochromatin formation,
supporting the surmise that prelamin A can cause a
loss of heterochromatin.43

Following PCNA mono-ubiquitination is the
recruitment of Pol h, a polymerase that is able to
bypass regions of DNA that cause Pol d to stall. We
wanted to test whether prelamin A induced mono-
ubiquitination of PCNA also caused this downstream
event. Using immunofluorescence (Fig. 1E and F) we
found that cells positive for UCLA had significantly
more Pol h foci compared to controls in the absence
of UV-irradiation. However, upon UV treatment, foci
increased dramatically in both cell types to a similar
extent.

As studies have shown UV treatment can cause
expression of progerin in fibroblasts,44 and that pro-
gerin can inhibit repair of stalled DNA replication
forks,45 we wanted to know if progerin could be
detected in our cells before or after UV-irradiation.
We were unable to detect any progerin either in non-
treated U2OS cells or cells treated with UV and left
from 1–24 h after irradiation prior to lysate collection
(Fig. 1G), meaning the stalled DNA replication forks
observed in our study were unaffected by progerin.

gH2AX foci in cells expressing prelamin A colocalise
with PCNA and Pol h

Cells positive for prelamin A commonly present with
elevated levels of DNA damage and we hypothesized
that if this DNA damage is caused by collapse of
stalled DNA replication forks then there would be evi-
dence of PCNA at DNA lesions. Initially, we ascer-
tained by immunofluorescence microscopy that
UV-irradiation caused stalling of PCNA and initiation
of the DNA damage response at these sites in both
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Figure 1. The accumulation of prelamin A (UCLA) induces mono-ubiquitination of PCNA and recruitment of polymerase h. (A) U2OS
cells were subject to 40 J/m2 UV-irradiation and then left to recover for 1 or 3 (�) h or doxorubicin for 3 h. Nuclear fractions were then
collected and analyzed by WB for analysis of nuclear PCNA. The top panel shows a blot after normal exposure and the lower panel
shows a higher exposure (O/E) whereby mono-ubiquitinated species of PCNA can be seen in lysates from UV treated cells. (B) WB analy-
sis showing U2OS cells with accumulated prelamin A contain higher endogenous levels of mono-ubiquitinated PCNA. Cells were treated
with either control EGFP or UCLA (uncleavable lamin A) prior to treatment with DMSO (control), UV-irradiation or doxorubicin. Intensity
of gH2AX bands reflects levels of DNA damage. The mono-ubiquitinated bands in this image were taken from the same blot as total
PCNA but following a longer exposure (Supplementary information Fig. 1). Coomassie staining is shown to demonstrate equal loading.
(C) Quantification of PCNA mono-ubiquitination taken from 3 experiments represented in (B) Standard errors are shown. (D) WB of
U2OS whole cell lysates showing expression of prelamin A (UCLA) does not directly cause loss of PCNA but reductions in heterochroma-
tin marker KAP1 is apparent. (E) IF showing U2OS cells expressing prelamin A (red) exhibit higher levels of Pol h (green) foci formation
than EGFP controls in the absence of UV-irradiation (top 2 panel rows). Following UV-irradiation, both EGFP and UCLA expressing cells
demonstrate robust Pol h foci formation (lower 2 panel rows). DAPI (blue) shows nuclear regions of cells. Cells with 3 or more Pol h foci
were considered to be positive for a response. (F) Quantification of IF shown in (E) Standard errors are shown. n > 100 cells from 3 inde-
pendent experiments. (G) WB of lysates taken from U2OS cells that had been treated with 40 J/m2 UV-irradiation. Lysates were collected
0, 1, 3 and 24 h post treatment. No accumulation of prelamin A or progerin was observed.
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control and prelamin A positive U2OS cells as evident
by phosphorylation of H2AX (gH2AX) (Fig. 2A). Our
next aim was to determine if regions of DNA damage

observed in prelamin A positive cells independent of
UV-irradiation also contained PCNA. Using immuno-
fluorescence, we found evidence that many of the

Figure 2. (For figure legend, see page 504.)
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microscopically discernable foci of gH2AX present in
cells expressing prelamin A colocalised with PCNA
(Fig. 2B and C). Quantification of foci revealed
increased gH2AX foci per cell overall (Fig. 2D), as
well as a significant increase in the incidence of
gH2AX and PCNA colocalisation compared to con-
trols (Fig. 2E). Importantly, the percentage of gH2AX
that colocalised with PCNA was significantly higher in
cells expressing prelamin A (Fig. 2F). Analysis of cells
treated with BrdU showed that cells in S-phase con-
tained high levels of this colocalisation event (Supple-
mentary Fig. 2), supporting that it occurs during DNA
synthesis. These findings suggest that DNA damage
caused by prelamin A occurs due to DNA replication
stalling and eventual collapse of the fork. Moreover,
we found gH2AX and PCNA colocalisation to be spe-
cific for DNA damage resulting from stalled DNA rep-
lication, as the introduction of double-strand breaks
using topoisomerase inhibitors caused increases in
gH2AX foci exhibiting only modest PCNA colocalisa-
tion (Supplementary Fig. S3). As further evidence that
prelamin A was causing collapse of stalled DNA repli-
cation forks, we detected that the translesion synthesis
polymerase Pol h was also present at sites of DNA
damage (Fig. 2G).

Prelamin A expression does not increase the
incidence of thymine dimer formation

The finding that prelamin A expression leads to both
mono-ubiquitination of PCNA and Pol h recruitment
encouraged us to determine if stalling of DNA replica-
tion was occurring because more UV-induced DNA
lesions were present. As prelamin A can cause a loss
of heterochromatin,10,46 this could make DNA more
susceptible to damage as heterochromatin has been
proposed to act as a barrier to toxic stimuli such as
UV-irradiation.47,48 To test this, we compared levels
of thymine dimers in U2OS cells expressing prelamin

A with control cells. Initially we utilised a dot-blot
approach whereby purified genomic DNA was probed
with an anti-thymine dimer antibody. As demon-
strated in Fig. 3A, no thymine dimer lesions were
detected in unstressed U2OS cells or cells irradiated
with 1 J/m2 UV. However, we were able to detect
lesions in cells treated with 5–40 J/m2. We next ana-
lyzed U2OS cells expressing EGFP or UCLA (Fig. 3B
and C) that were treated with 0, 10 or 40 J/m2 UV. No
differences at any treatments were detectable, suggest-
ing prelamin A does not increase basal levels of thy-
mine dimers, nor make cells more sensitive to UV
light. In addition, we analyzed thymine dimers in the
same cells using immunofluorescence (Fig. 3D and E)
and again found that prelamin A was not causing thy-
mine dimer formation. Taken together this data
implied an alternative mechanism other than
increased sensitivity to UV light was responsible for
replication fork stalling in prelamin A positive cells.

Destabilisation of mature lamina-PCNA interactions
by prelamin A causes DNA damage during DNA
synthesis

Photoproducts are a central inducer of PCNA mono-
ubiquitination and Pol h recruitment, however other
causes of DNA replication stalling can also stimulate
these responses.41 It is recognized that the nuclear
lamina is critical for DNA replication and previous
studies have shown PCNA can be sequestered away
from DNA replication sites by the introduction of
truncated lamin proteins,49 however no studies have
shown what impact prelamin A has upon PCNA func-
tion. We anticipated that the presence of prelamin A
may adversely affect normal lamin-PCNA interactions
and this may contribute to destabilisation of the DNA
replication fork. As prelamin A is associated with
reduced cell proliferation, we first tested whether its
expression had any influence on U2OS cell growth.

Figure 2. (see previous page) gH2AX foci present in cells expressing prelamin A colocalise with PCNA. (A) IF showing PCNA (red) and
gH2AX (green) colocalise at sites of UV induced DNA damage. Expression of prelamin A (lower panel) did not affect this colocalisation.
DAPI (blue) shows nuclear regions of cells. (B) IF showing gH2AX foci (green) that are present in U2OS cells expressing prelamin A
(UCLA) colocalise with PCNA (red) (white arrows). (C) Increased magnification of a single U2OS cell from B, showing colocalisation of
PCNA (red) and gH2AX (green). White arrows show examples of colocalisation. (D) Quantification of gH2AX foci enumeration of immu-
nofluorescence shown in (B). n > 100 cells from 3 independent experiments, standard errors are shown. (E) Enumeration of gH2AX and
PCNA foci colocalisation in immunofluorescence shown in (B). n > 100 cells from 3 experiments, standard errors are shown. (F) Quantifi-
cation of percentage of gH2AX foci that colocalised with PCNA in immunofluorescence shown in (B). n > 100 cells from 3 independent
experiments, standard errors are shown. (G) (Left) IF showing gH2AX (red) colocalises with Pol h (green) in cells expressing prelamin A
(demonstrated by white arrows). DAPI is shown in blue. (Right) Quantification of gH2AX and Pol h colocalisation in cells expressing
EGFP and UCLA, n > 100 cells from 3 independent experiments, standard errors are shown.

504 A. M. COBB ET AL.



Fluorescence-activated cell sorting of U2OS cells
expressing EGFP or UCLA revealed that after 48 h of
recombinant protein expression, cell cycle profiles
remained unchanged with no changes in DNA synthe-
sis evident (Fig. 4A and Supplementary Fig. 4). We
also found no differences in staining of the cell prolif-
eration marker Ki-67 (Supplementary Fig. 5).

Our next aim was to confirm that prelamin A asso-
ciated DNA damage was arising during DNA synthesis
or if it was independent of proliferation status. For this,
we analyzed U2OS cells expressing EGFP or UCLA

that were cultured with 10% serum (proliferating)
or 0.5% serum (reduced cells in S-phase (Supple-
mentary Fig. 6)). Western blots showed a significant
reduction in levels of gH2AX in prelamin A cells
when proliferation was decreased under serum
starved conditions (Fig. 4B and C), supporting the
hypothesis that a significant proportion of DNA
damage is occurring during DNA synthesis. To sup-
port this idea, we used BrdU incorporation and
immunofluoresence to see if cells in S-phase con-
tained more DNA damage. Staining of BrdU and

Figure 3. Prelamin A expression does not increase cell sensitivity to UV-irradiation. (A) Dot blot analysis of thymine dimer incidence in
U2OS cells treated 0–40 J/m2 UV-irradiation. DNA was extracted from cells, transferred onto nylon membrane and probed with an anti-
thymine dimer antibody. (B) The same technique was used to compare DNA of U2OS cells expressing EGFP or UCLA. These cells were
also treated with UV to understand if UCLA influenced susceptibility to this type of DNA damage. (C) Quantification of dot intensities
from assays represented in (B). Data was from 3 independent experiments, standard errors are shown. (D) IF analysis of U2OS cells
expressing either EGFP (control) or UCLA (prelamin A) with or without 40 J/m2 UV-irradiation. Levels of thymine dimers (green) were
determined in cells using an anti-thymine dimer antibody. Prelamin A (red) and DAPI (blue) are also shown. (E) Quantification of fluores-
cence intensity of thymine dimers in U2OS cells expressing EGFP or UCLA shown in (D). No significant differences between cells express-
ing EGFP or UCLA were detected. n > 100 cells from 3 independent experiments, standard errors are shown.
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gH2AX revealed that cells expressing prelamin A
had more S-phase cells that exhibited DNA damage
(Fig. 4D and Supplementary Fig. 7). In EGFP
treated cells approximately 70% more non-BrdU
positive cells had a gH2AX response than BrdU

positive cells, however this had reversed in UCLA
treated cells as more BrdU positive cells had a
gH2AX response than BrdU negative cells. This
data reinforces the hypothesis that prelamin A
causes DNA damage in S-phase cells.

Figure 4. (For figure legend, see page 507.)
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To determine if prelamin A expression affected
PCNA interactions with the mature nuclear lamina
we employed a GST pull-down assay to confirm
PCNA interacted with mature lamin A and we suc-
cessfully detected an interaction that was not
affected by UV-irradiation (Fig. 4E). Following this
we wanted to see if PCNA also interacted with prel-
amin A. For this we over-expressed EGFP and flag-
tagged prelamin A in U2OS cells and precipitated
these proteins using anti-flag antibodies. Analysis of
precipitated proteins revealed the presence of PCNA
when prelamin A was used as bait (Fig. 4F), indicat-
ing PCNA also interacts with prelamin A and thus
gives rise to the possibility that prelamin A may act
as a binding competitor against the mature nuclear
lamina in cells with accumulated prelamin A. To
further test this possibility, we used co-immunopre-
cipitation assays to identify if lamins A/C co-precip-
itation with PCNA was affected in cells treated with
Face1 siRNA to accumulate prelamin A in compari-
son to control siRNA treated cells (Fig. 4G,H and
Supplementary Fig. 8A). Depletion of Face1 signifi-
cantly reduced the amount of lamins A/C precipi-
tated by approximately 25% and this was
independent of DNA damage as lamin A-PCNA
interactions were not affected in cells treated with
doxorubicin. The reverse IP using lamins A/C as
bait also showed prelamin A was detrimental to this
interaction, with less PCNA pulled-down when lam-
ins were used as bait (Supplementary Fig. 8) These
data provide evidence toward a model whereby prel-
amin A destabilises lamins A/C-PCNA interactions

potentially via direct competition, and this is likely
to compromise DNA replication fork stability and
progression.

Discussion

Prelamin A induces DNA replication fork stalling

The expression of prelamin A in U2OS cells
induced both mono-ubiquitination of PCNA and
increased formation of Pol h foci, two events that
are associated with DNA replication fork stalling
and which usually occur following DNA damage by
UV-irradiation. Importantly, the expression of prel-
amin A alone was sufficient to cause both
responses, implicating prelamin A in the stalling of
DNA replication. Further analysis revealed that the
sliding-clamp PCNA and translesion synthesis
polymerase h colocalised with gH2AX; clear indica-
tions that stalled DNA replication forks had col-
lapsed into DSBs and had stimulated the DNA
damage response. This is the first time prelamin A
has been shown to directly induce DNA damage
via perturbing DNA replication and provides a
likely model for how prelamin A induces genomic
stability.

Prelamin A induced DNA replication fork stalling is
not due to increased DNA photoproducts but is
caused by destabilised mature lamina-PCNA
interactions

Prelamin A is recognized as altering chromatin orga-
nization, often with cells losing heterochromatic

Figure 4. (see previous page) Prelamin A dependent DNA damage occurs in proliferating cells and arises concomitantly with destabili-
sation of PCNA interactions with mature lamin A. (A) FACS analysis of U2OS cells expressing EGFP (black) or UCLA (red). No changes in
cell-cycle profiles were seen with either treatment (Supplementary Fig. 2). Treatment with etoposide (right panel) shows a significant
shift to G2 arrest, but again no differences between EGFP or UCLA expression were detected. (B) WB analysis of U2OS cells expressing
EGFP or UCLA that were or were not serum starved. Growing UCLA expressing U2OS cells under restricted growth conditions reduced
levels of DNA damage. (C) Quantification of experiment shown in (B). Band intensities of gH2AX were taken from 4 separate experi-
ments and normalized to EGFP control. Standard errors are shown. (D) IF showing prelamin A induces DNA damage in U2OS cells in syn-
thesis phase. Cells were treated with EGFP or UCLA then stained for BrdU (green) and gH2AX (red). High levels of DNA damage were
detected in BrdU positive cells when prelamin A was expressed (quantification shown in Fig. S5). (E) WB results of GST-pull down experi-
ments using GST-lamin A as bait were performed to ascertain interactions with PCNA in the presence of UV-induced DNA lesions or
without. GST alone was used as control. We detected Lamin A interactions with both PCNA and Emerin and both appeared to be inde-
pendent of DNA damage. No interactions were seen with negative control USP3. (F) Representative WB from Flag immunoprecipitation
assays investigating if PCNA interacts with prelamin A (UCLA). Following expression of EGFP (control) or UCLA in U2OS cells, recombi-
nant proteins were immunoprecipitated using anti-Flag antibodies. (G) WB showing immunoprecipitation assays investigating if prela-
min A affects PCNA interactions with lamin A/C. U2OS cells were treated with control or Face1 siRNA (prelamin A accumulation) and
anti-PCNA antibody was used to precipitate PCNA and any interacting proteins. We also analyzed if DNA damage affected interactions
by treating cells with doxorubicin prior to immunoprecipitation. (H) Quantification of PCNA-lamins A/C immunoprecipitation assays.
Band intensities of interacting lamins were measured (Supplementary Fig. 8A) and percentages of each were calculated. It was found
that prelamin A significantly reduced the amount of mature lamins A/C pulled-down with PCNA by about 25% and this was indepen-
dent of DNA damage. n D 3, standard errors are shown, � D p < 0.05.
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DNA. The observed loss of KAP1 upon prelamin A
expression in this study supports this notion, and pro-
vided a plausible mechanism for how prelamin A
could make cells more susceptible to UV induced
pyrimidine dimers, as relaxed chromatin is more sen-
sitive to photoproduct formation. However, our data
showed no indication that prelamin A caused thymine
dimer formation or made cells more sensitive to
UV-irradiation.

Other potential causes of stalled DNA replication
include unmovable DNA binding proteins,33 unusual
DNA secondary structures50 and even transcription
complexes on the same strand,51 but it is not obvious
how prelamin A could influence the occurrence of
these events. It is poorly understood what determines
the fate of DNA replication forks at these alternative
barriers to progression but evidence suggests that
PCNA will still be mono-ubiquitinated at K164 as this
occurs independently of pyrimidine dimers, and
instead requires ssDNA and forked DNA structures
that will be present at all stalled DNA replication
forks.41 As an intact nuclear lamina is important for
DNA replication, and lamin-PCNA interactions are
key to replication fork progression, we investigated if
prelamin A expression affected binding of PCNA to
the mature nuclear lamina. Our results showed that
prelamin A was able to bind to PCNA and reduce
PCNA interactions with mature lamins. As prelamin
A has a different nuclear localization and distribution
compared to lamins A/C, this is likely to impact on
DNA replication. Despite inducing genomic instabil-
ity, prelamin A had no effect on proliferation of U2OS
cells, probably as these cells lack p16 and therefore
will not initiate cell cycle arrest.52 However, the forma-
tion of DSBs following stalled DNA replication will
likely have severe consequences upon cell function of
many different cell types that have normal functioning
responses to DNA damage. Unrepaired or inappropri-
ately repaired DSBs generated during S-phase can lead
to chromosome aberrations that in turn cause cell
death or accelerated senescence as demonstrated in
vascular smooth muscle cells.53 As vascular smooth
muscle cell proliferation is essential for vessel repair,
loss of these cells would be detrimental to vascular
structure and would give rise to cardiovascular
complications.

The concept that prelamin A interferes with DNA
replication by destabilisation of PCNA bears similari-
ties with experiments that found the addition of

truncated lamin proteins caused the induction of
intranuclear lamina aggregates that sequestered
PCNA away from replication sites and as a result
decreased DNA synthesis.49 Together, these findings
highlight that non-mature lamin A proteins have a
significant influence on this essential DNA replication
factor. Additionally, progerin was shown to interfere
with collapsed DNA replication forks through incor-
rect recruitment of DNA repair factors,54 but there is
no evidence that progerin itself causes failure of DNA
replication. Indeed, a recent study reported that pro-
gerin exhibited a reduced binding affinity toward
PCNA than lamin A,31 seemingly counteracting our
evidence that non-mature lamin A would out-com-
pete the mature lamina for PCNA binding. It should
be noted however, that prelamin A is larger than pro-
gerin and is more similar in amino acid composition
to mature lamin A, thus will retain elements missing
in progerin that may allow its interaction with PCNA
to persist.

Concluding remarks

We have provided evidence that prelamin A interferes
with DNA replication fork stability and that sequester-
ing of PCNA away from its orthodox interactions with
the lamina cause replication stalling and eventual fork
collapse that will introduce DSBs into the genome.
This occurrence, alongside known defects in the DNA
damage response associated with prelamin A accumu-
lation would hinder the ability for cells to maintain
homeostasis and eventually accelerate tissue degenera-
tion. In this respect, it may be that prelamin A accu-
mulation that occurs in vascular smooth muscle cells
during natural aging12,16 also induces genomic insta-
bility by obstructing DNA replication and that this
could be a contributing factor to cardiovascular aging.
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