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Abstract

The major challenges for autonomous driving systems are the need for accurate
and real-time perception, tracking, and motion forecasting necessary to navigate
safely through complex and dynamic environments. These systems must be able
to intuitively make decisions within split seconds in an urban environment with
multiple agents interacting. This thesis proposes a comprehensive framework that
addresses the LiDAR-based segmentation challenges, multi-object tracking, and
trajectory forecasting with a focus on enhancing its accuracy, robustness, and effi-

ciency.

The contribution of this work is to develop a hybrid approach to the segmen-
tation of LiDAR, which would integrate synthetic data with real-world data sets.
Synthetic data, created through simulated environments, may allow the model
to experience different scenarios that could not be fully captured with real-world
data alone. This combination enhances the generalization capability of the seg-
mentation models, which can then handle difficult situations, occlusions, and vari-
ations in object density and wide light condition variations. Apart from that, the
incorporation of multi-scale feature extraction methods helps in processing fine-
grained details over various spatial resolution levels. This significantly improves
accuracy in segmentation without choking compromising efficiency. The hybrid
approach ensures that the model performance of segmentation is good enough to

work on various different urban driving environments.
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Besides these improvements, this thesis further exploits the efficacy of Vision
Transformers for segmenting LiDAR point clouds. An attention mechanism in-
troduced within the ViT captures both local and global geometric features much
better than traditional convolutional networks. Employing transformers make the
segmentation model understand much better the relationships between points.
This would also successfully improve accuracy in object detection and classifica-
tion, especially in complex sets of data. This significantly enhances the probability
that the segmentation model will find and classify various objectsin real-time . In
this respect, it is very effective in highly demanding situations where the need for
an accurate understanding of the environment is required, such as at busy street
intersections or on highways.

The thesis also addresses the need to have good object tracking in dynamic
surroundings by proposing a transformer-based multi-object tracking framework.
It leverages a joint 2D-3D sensor fusion framework that fuses LIDAR and camera
data so as to further enhance the accuracy in tracking of dynamic agents. Together,
exploiting these sensing modalities allows the tracker to appreciate depth and ge-
ometric information given by LiDAR and the rich visual details provided by camera
images. The system is designed to facilitate accurate tracking of multiple agents
in real-time, which is crucial for ensuring safety and effective decision-making in
autonomous driving systems.

Building on the improvements of segmentation and tracking, this thesis pro-
poses IRMTR, a conveniently novel approach to multi-agent motion forecasting.
IRMTR framework employs anchored goal queries and Gaussian Mixture Model
that serve to generate intention points representing the most likely positions an
agent is willing to take in the near future. These points of intentions are then
fine-tuned using a hybrid local-global query mechanism to improve the predictive

outcome of the model for future trajectories generated by dynamic agents in real-
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time. Considering that the IRMTR model updates its predictions by incorporating
both the local interaction among neighboring agents and the global context of the
driving environment, it boosts trajectory prediction accuracy quite significantly,
especially in complicated traffic conditions. In fact, this model turns out to be par-
ticularly effective in forecasts of behaviors that involve lane changes, merging, and
interaction at intersections where accurate trajectory forecast should be effective
to enable collision avoidance and proactive navigation.

Overall, this thesis contributes to the advancement of autonomous vehicle tech-
nologies by proposing novel methods for LIiDAR segmentation, multi-object track-
ing, and motion forecasting. By combining state-of-the-art deep learning tech-
niques, this research lays the groundwork for future developments in real-time
mapping and decision-making systems in autonomous vehicles.

Keywords— Autonomous driving, Scene understanding, Synthetic data, Li-
DAR segmentation, Transformers, Vision transformers, Object tracking, Motion

forecasting
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CHAPTER 1

Introduction

In this opening chapter, the reader is introduced to the current context
that gives rise to this work and is provided with a summary of how deep
learning methods, whether adopted or devised within this study, are inte-
grated with autonomous driving applications to tackle challenges in the

field.

1.1 Motivation

Fully autonomous vehicle technology is rapidly developing and promises a future
of transportation that is safer, less congested, and more mobile across wider sec-
tions of the population. At the very heart of the drive to create fully autonomous
vehicles—nowhere near to realization due to the subtlety of natural driving sce-
narios—lies an accurate perception of the surroundings and the prediction of the
future motion of surrounding objects.

To this end, perception and motion forecasting are two of the critical pieces
in the overall decision-making for an autonomous vehicle. Perception concerns

the processing of raw data streams from sensors like cameras, Light Detection and

1



1.1. MOTIVATION

Ranging (LiDAR), and radar for object detection and classification tasks, related to
pedestrians and cyclists, other cars, etc. The process of motion forecasting extends
into predicting the future trajectories of such dynamic agents, thereby allowing the
vehicle to act in anticipation against possible dangers.

Conventional methods of perception and motion forecasting involve hand-
crafted features coupled with rule-based systems. These do not generalize easily
to the large variations and unpredictability found on the road. In such compli-
cated scenarios, where variability is very high, for example, in an urban area with
very dense flow of traffic, highly changeable weather, and occlusions, these algo-
rithms can perform poorly. Limitations of traditional methods show that there is
a strong desire for more robust and adaptive solutions that will handle the much
finer details associated with dynamic driving environments.

Among these are deep learning, a subset of artificial intelligence, which uses
neural networks normally built with multiple layers. Deep learning models can
learn hierarchical representations of data. Such models become effective in ob-
ject detection and easily classify them, with good trajectory prediction in relation
to sensor inputs. Consider Convolutional Neural Networks (CNNs) in recogniz-
ing images; they have transformed these tasks into seamless and ideal tasks for
processing data obtained from cameras. Similar characteristics have also allowed
Recurrent Neural Networks (RNNs) and Long-short Term Memorys (LSTMs) to
handle sequential data with much ease and hence seem to be a fitting choice for
motion forecasting tasks.

Deep learning, integrated into perception systems, allows the autonomous ve-
hicle to better grasp richer and more complex scenes. For example, semantic
segmentation networks perform classification on a per-pixel basis in an image.
This gives a very high level of detail in environment understanding. Deep learning

models in motion forecasting have proven to learn from large trajectory data and
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1. INTRODUCTION

predict the future movement of dynamic agents with high accuracy. These func-
tionalities are some of the ones necessary to maintain safety and efficiency while
navigating through unpredictable environments.

However, deep learning models themselves face challenges when being used
in real-world self-driving car applications. First, real-time processing is indispens-
able, and the models have to be efficient enough to execute on an embedded
system with limited computational resources. Another challenge is the robust-
ness of models against changing sensor data due to changes in lighting conditions,
weather, and sensor noise. Ensuring safety and reliability, these models will need
rigorous testing and validation for operation in all sorts of driving scenarios.

Apart from this, deep learning models require a vast breach in the dataset for
training. Indeed, it is costly and time-consuming to acquire and annotate enough
real-world data that covers the huge variation in driving conditions. Therefore,
synthetic data from state-of-the-art driving simulators could complement real-
world data through offering several variations in scenarios against which training
and testing may take place. Synthetic data allows one to vary environmental con-
ditions and traffic situations in a controlled manner, hence giving an increase in
the generalization capability of the model to unseen situations.

This thesis will develop deep learning solutions to such challenges in accu-
racy, efficiency, and robustness in perception and motion forecasting within the
autonomous vehicle arena. We aim to improve environmental perception capabil-
ity and the vehicle’s action prediction of other agents through designing advanced
neural network architectures that could be executed in real time. Our approach
leverages better utilisation of multi-sensor data fusion by using cameras, LiDAR
together to enhance richness in input data itself, hence improving model perfor-
mance. We also develop methods to improve the generalization capabilities of our

models by incorporating synthetic data into more varied training datasets. Valida-
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1.2. PERCEPTION

tion of our models on both real-world and simulated data is a meaningful attempt
at ensuring that our models work on various environments and conditions.

With this work, we would like to make another step forward in autonomous ve-
hicle technology and provide an effective deep learning-based solution for percep-
tion and motion forecasting. Our work bridges the gap from theoretical research
to practical application, with the goal of establishing an accurate, efficient, and re-
liable system in realistic conditions. The motivation above forms the cornerstone
for exploring innovative deep learning approaches through which the autonomous

vehicle can safely and intelligently move, thus contributing to the big picture of

intelligent transportation systems.

Figure 1.1: 3D LiDAR semantic mapping of objects Behley et al. (2019).

1.2 Perception

Perception can be said to be one end of the autonomous vehicle systems; it needs
interpretation of sensor data to create an understanding of the real-time envi-
ronment of the vehicle. It basically encompasses object detection and classifi-
cation, estimation of its position and velocity, prediction of future movements,
thereby generating a comprehensive understanding of surroundings necessary for

safe navigation. Hence, proper perception enables an autonomous vehicle to de-
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termine its route, avoid obstacles, and deal with complex situations successfully
through proper response to dynamic changes from moving vehicles, pedestrians,
and other unexpected obstacles.

The major perception-related challenges with autonomous vehicles will pertain
to processing speed and computational load, data integration from multiple sen-
sors, accuracy and precision, handling of dynamic environments, scalability, and
robustness in adverse conditions. This will necessarily involve the processing of
huge amounts of sensor data in the shortest time possible so that the representa-
tion of the world around is kept accurate and updated. The autonomous car relies
on several sensors, including LiDAR, cameras, and radar, supplying data about the
environment. Integrating information from such diverse sources into one coher-
ent perception is complex and computationally intensive. The accuracy of such
a perception system has to be very high for safe navigation; minor errors may
lead to big issues such as collisions or failures in navigation. The environmental
setting of the vehicle keeps on changing, and perception systems are expected to
detect and predict the motion of dynamic objects in real time. Moreover, it needs
to be highly scalable in operation, from dense urban traffic to sparse rural roads,
and must operate reliably in those adverse conditions that can significantly impair
sensor performance and pose significant challenges for perception algorithms. A
point cloud with annotations can be seen in Figure 1.1.

Current perception techniques in autonomous vehicles include LiDAR-based,
camera-based, radar-based, and sensor fusion-based. LiDAR sensors provide high-
resolution 3D point clouds that allow for very accurate object detection and clas-
sification, along with very detailed mapping of the environment. LiDAR data pro-
cessing generally consists of methods such as voxel grid mapping, segmentation of
point clouds, and registration of point clouds. However, most of these methods are

computationally expensive and may not handle real-time processing and dynamic
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objects quite as well.

Cameras deliver substantial information in the form of visual perspectives and
are highly relevant for object detection and classification. Generally, CNNs are ap-
plied to image data processing and have a very high performance record in com-
puter vision tasks. Cameras are cheap compared to LiDAR sensors but offer color
information. However, their effectiveness may degrade due to variable lighting
conditions while lacking in depth information.

While radar sensors provide low resolution compared to LiDAR and cameras,
the advantage is that they usually work in bad weather conditions and give the
information about the position and velocity. Generation of data from multiple
sensors will enhance the accuracy and robustness of perception. Sensor fusion
can be realized with Kalman filtering and deep learning-based fusion techniques
by fusing data from LiDAR, cameras, and radar in such a way that the relative
strengths of each sensor type are harnessed while mitigating respective individ-
ual limitations. These, however, have elaborate algorithms and take up much
computational time. While there have been developments, the current perception
methods still lack the processing speed and dynamic environment handling and
much-needed accuracy for the safe envelope of navigation on the road in all con-
ditions. This calls for fresh perspectives that should take on these challenges and
others not mentioned with guaranteed perception under all scenarios. Deep learn-
ing and Artificial Intelligence (AI) techniques offer promising solutions to these
challenges. We will be able to create much more efficient and capable perception
systems by using neural networks and sophisticated algorithms. The Al-driven ap-
proaches allow high-speed and high-accuracy processing of huge volumes of data,
data integration across diverse sensors, and dynamic changes in the environment.
For instance, object detection and classification inside images and point clouds

can be handled by neural networks, and even predict future motions of dynamic
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objects. These are essential in helping achieve a strong perception system needed

for the safety and efficiency of an autonomous vehicle.

1.3 Object Tracking

Object tracking is one of the main technologies in intelligent vehicle environment
perception. Features and contextual information obtained in an initial frame help
this technology in continuously positioning an object across multiple frames. In
autonomous driving, the main traffic participants have to be tracked for safe navi-
gation, such as pedestrians, cars, buses, and bicycles. Accurate and efficient object-
tracking systems update the movement of surrounding objects in real time to pro-
vide the autonomous vehicle with an idea of behavioral intention that allows the

latter to predict future trajectories. A simple flow diagram of object tracking is

given in Figure 1.2.

Figure 1.2: Simple object tracking diagram.

Visual information represents about 90% of the environmental data on which
intelligent vehicles rely for making decisions and planning. Multiple Object Track-
ing (MOT) is thus one of those key concepts when multiple-object trajectories are
established and maintained all at once. In other words, under an optimal esti-
mation framework, MOT algorithms correlate objects detected in an initial frame
with their appearances in subsequent frames to create, in essence, a continuous
tracking path for each object. Unlike single-object tracking, in MOT multiple ob-
jects are tracked simultaneously by assigning an ID to each object and maintaining
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it during the sequence.

With the rapid development of sensor technologies, cameras, LiDAR, radar,
and ultrasonic sensors are on-board an intelligent vehicle. This raw data is cap-
tured from heterogeneous sensors, which compensate for advantages and disad-
vantages to realize real-time three-dimensional environmental perception. Later,
multi-sensor fusion provides a much more faithful understanding of surroundings

and lays a robust basis for object tracking and safe autonomous navigation.

1.4 Motion Forecasting

One of the critical activities to be performed for safe and proactive navigation
by an autonomous vehicle is motion forecasting. It needs to predict the future
trajectories of the dynamic objects, such as, vehicles, pedestrians, and cyclists,
around the vehicle. Precise motion forecasting enables the autonomous vehicle
to anticipate the movement of such objects and, therefore, come to far better and
wiser decisions to prevent a potential collision. This capability is necessary to deal
safely and smoothly with complex environments.

The challenges in motion forecasting in an autonomous vehicle have included
prediction of dynamic behaviors, treatment with uncertainty, real-time process-
ing, complex scenarios, and integration with perception and guidance. This needs
to predict the various future movements of different objects with their respective
behavior patterns. This would need an understanding of the intents and actions
of other road users. By their very nature, the future motions of dynamic objects
are not certain. Uncertainty should be handled by motion forecasting systems
and lead to trustworthy predictions. For real-time performance, motion forecast-
ing has to be performed in time to allow immediate and precise responses to dy-

namic changes within the environment. The system should be perfected in offer-
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ing enough performances within diverse and challenging environments, such as
urban areas with thick traffic and intersections, where road users’ behavior cannot
be predicted. It needs to be combined with perception and guidance in a vehicle
for a coherent and complete view of the environment in which motion forecasting

is performed to enable safe navigation.

Perception Forecasting

Figure 1.3: Motion forecasting flow diagram.

The new methods for motion forecasting in autonomous driving are based on
a wide area: from purely kinematic models, to purely machine learning models,
and to the hybrid models. Kinematic models utilise physical equations in order
to tell what future states of objects are supposed to be regarding their current
state. Although simple and fast, they may not capture complex behaviors. Then
there are machine learning methods such as RNNs and LSTM networks that learn
from the data the evolving patterns for trajectory forecasting. While these will
easily model complex behavior, this involves huge amounts of data and significant
computational resources. A good prediction accuracy and robustness is generally
achieved by the combination of kinematic and machine learning models. These
approaches must be combined by using sophisticated algorithms and extensive
tuning. A simple flow diagram of motion forecasting steps is given in Figure 1.3.

While these have been huge steps forward, the presently published motion
forecasting techniques cannot deal with either the diversity or the complexity of
real environments, provide the level of accuracy necessary to guarantee safety, or

interface well with perception and guidance systems. It is expected that new ap-
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proaches are proposed that can show an ability to overcome such challenges in the
context of the provision of reliable motion forecasting for autonomous vehicles.
Deep learning and Al techniques offer promising solutions for these challenges. In
this regard, neural networks and complex algorithms can be developed into more
accurate and efficient motion forecasting systems. Al-driven techniques learn from
vast amounts of data, handle uncertainty, and process predictions in real time, that
will help us build trustworthy motion forecasting systems for the safe and efficient

operation of autonomous vehicles.

1.5 Research Objectives

Following the background set forth in this introductory chapter, this thesis focuses,
first and foremost, on the development and application of advanced Al-based tech-
niques towards improving perception and motion forecasting for an autonomous
vehicle. Having presented very realistic challenges for autonomous driving, this
research work employs deep learning and Al methodology to construct safe, reli-
able, and efficient approaches for developing autonomous vehicles.

A key goal of this thesis is to develop appropriate approaches for the accurate
segmentation of LiDAR point clouds in real-time using various neural network ar-
chitectures. First would be leveraging CNNs, and spherical projection techniques
with synthetically generated data from advanced autonomous driving simulators
like CARLA. The existing real-world data is limited in variety that this creates sev-
eral challenging scenarios. Synthetic dataset were generated to support training
and model performance improvement, since adequate and diverse real-world data
is not available. Merging it with real-world datasets, such as KITTI, will therefore
help in improving the training and validation of these models for better gener-

alization when applied across different environments and scenarios. The second

10



1. INTRODUCTION

approach employs Vision Transformerss (ViTs) on processing LiDAR data for the
segmentation. LiDAR segmentation should be as accurate as picking up surround-
ing information, such as understanding and identification of objects and obstacles,
including all kinds of road features. By utilising these approaches, involving CNNs
with synthetic data augmentation and ViTs, we aim to improve the segmentation
process in scenarios involving changing environmental conditions, such as varying
lighting, weather, or the presence of moving objects. The expected outcome in
this case is that the better performance of LiDAR segmentation, hence giving the
detailed and accurate view of the surroundings of the vehicle and performing well
under different conditions; therefore, reliable and safe driving under autonomy is
guaranteed.

An additional objective of this work is to further develop a novel multi-object
tracking framework that exploits transformer-based architectures together with
sensor fusion for enhanced accuracy in dynamic environments. This approach will
combine 2D and 3D object detection by data merging between LiDAR and cam-
eras for better comprehension of traffic agents’ movements. By fusing the sensor
data in real time, the system can accurately estimate the position and velocity
of moving agents. The incorporation of transformer networks into the tracking
framework allows both the local interactions and global context to be modeled
with sophisticated attention mechanisms. It should be effective in multi-object
tracking in complex scenarios, especially those taking place while driving in urban
environments.

The final objective of the thesis is, making an accurate estimate of the trajecto-
ries of dynamic objects around the vehicle. Motion forecasting plays an important
role here, where the idea is to forecast the subsequent motions of other traffic
agents so that the autonomous vehicle can take correct decisions toward collision

avoidance. This objective will be facilitated through transformer networks and
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other advanced forms of deep learning models through analysis for object motion
forecasting. These state-of-the-art Al techniques will, therefore, be instrumental
in enabling the motion forecasting system to manage such complexity and uncer-
tainty regarding dynamic environments. Consequently, this is expected to yield a
robust motion forecasting system capable of enabling an autonomous vehicle to
predict the behavior of other road users and safely react on time toward proactive
navigation.

In summary, the specific aims of this thesis are to:

* develop methods for real-time, accurate segmentation of LiDAR point cloud
with different neural network model variants to enhance the environmental

perception of the vehicle,

* integrate synthetic and real-world data to increase the reliability of the per-

ception system in autonomous vehicles,

* develop a multi-object tracking framework using transformer networks and
sensor fusion to enhance the accuracy of tracking in dynamic environments
to enhance vehicle’s understanding and the capability of traffic tracking,

* forecast, with high accuracy, trajectories of dynamic objects around the ve-
hicle using transformer networks and deep learning sophisticated models,

enhancing proactive navigation.

1.6 Outline and Contributions

This thesis is organized into several chapters that contribute to the overall goal
of autonomous driving technologies by proposing new approaches in perception,

tracking, and motion forecasting.
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Remark 1: Research Questions

1. Can synthetic data obtained from simulators be used as a supplement
for the real dataset in order to improve the generalization and robust-

ness of a deep learning model in a self-driving car?

2. Can techniques be developed to enhance the accuracy and speed of
LiDAR point cloud segmentation in real time utilising different neural
network architectures for improving the vehicle environmental per-

ception?

3. How can sensor fusion and transformer networks be adapted to en-

hance multi-object tracking in dynamic environments?

4. Can transformer networks and state-of-the-art deep learning models
be applied to predict with high accuracy the trajectory of dynamic

objects so navigation of an autonomous vehicle can also be proactive?

* Chapter 2 covers a summary of the necessaary background concepts for the
current research, including the topics of Al, Machine Learning (ML), LiDAR

segmentation, object tracking, and motion forecasting.

* Chapter 3 presents a case for the integration of synthetic data with real-
world data for LiDAR segmentation, showing how synthetic data improves

both the performance and generalization of models.

* Chapter 4 describes a novel approach in LiDAR segmentation by using the
Vision Transformer architecture and underlines benefits of this architecture

for enhancing the accuracy of segmentation.

* Chapter 5 introduces a sensor-fusion and transformer-based, object track-
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ing framework to shed light on concrete ways in which transformers can be

adapted for tracking in dynamical environments.

* Chapter 6 provides an overview of the development of Intention Refined
Motion Transformer for Motion Forecasting (IRMTR), hence effectively pre-

dicting multi-agent trajectories with high accuracy:.

* Chapter 7 summarizes the main contributions of the thesis and discusses
any implications from these findings; directions for future research are also

indicated.

All the chapters are arranged in logical order to ensure that the most relevant
aspects of autonomous driving, such as LiDAR segmentation, object tracking, and

motion forecasting, with their key challenges, can be covered.

1.7 Published and Submitted Manuscripts

Conferences

* Inan, B. A., Rondao, D., and Aouf, N. (2023a). Enhancing lidar point cloud
segmentation with synthetic data. In 2023 31st Mediterranean Conference on
Control and Automation (MED), pages 370-375. IEEE.

* Inan, B. A., Rondao, D., and Aouf, N. (2023b). Harnessing vision transform-
ers for lidar point cloud segmentation. In 2023 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pages 1-6. IEEE.

* Inan, B. A., Aouf, N. Transformers for Enhanced Multi-Object Tracking with
Sensor Fusion. In 2024 IEEE International Conference on Robotics and Biomimet-

ics (ROBIO).
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Journals

* Inan, B. A., Aouf, N. IRMTR: Intention Refined Motion Transformer for Mo-
tion Forecasting. Advanced Intelligent Systems — Wiley Online Library (under

review)
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CHAPTER 2

Theoretical Background and Tools

This chapter introduces concepts and techniques lying at the rear of re-
search into self-driving vehicles, based on deep learning methods for per-
ception, object tracking, and motion forecasting. Starting from covering
topics within the area of artificial intelligence, presenting an overview of
machine learning, deep learning, and the architectures of neural networks
that are the basis to enable advanced perception capabilities. k-means
Clustering and Gaussian Mixture Model (GMM) are also necessary math-
ematical models that will also be discussed in that chapter, where their
roles in data representation and segmentation are demonstrated. The
chapter also gives an overview of CNNs and transformers, pointing out
in detail their application in handling LiDAR point cloud data for scene
understanding and motion forecasting. The background presented in this
chapter forms a complete toolbox for the derivation of methods and sys-

tems that are presented in the subsequent chapters.
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2.1 Artificial Intelligence

Al basically refers to the intelligence of machines programmed to feel, think, and
learn like human beings. The term was coined for the very first time in 1956 by
John McCarthy during the Dartmouth Conference, and with that began Al as a
separate field of study. Al is a broad term appearing to describe a wide variety
of technologies and methodologies developed to enable machines to carry out
tasks which generally require human intelligence, including reasoning, learning,
problem-solving, perception, and language understanding.

While the concept of Al has long been established in the circles of science,
technology, engineering, and mathematics, it has truly only been of great media
concern as of late. Although Al is commonly used to refer, quite broadly and
sometimes imprecisely, to machines that think, the core objective of Al is to cre-
ate machines that can perform tasks as well as—or perhaps even better than—
humans. Probably the first, and best-known benchmark for Al, is the Turing Test
Turing (1950), proposed by Alan Turing in 1950. The test measures the extent
to which a machine can demonstrate intelligent behaviour indistinguishable from
that of a human. According to, Russell & Norvig (2016), the area of Al has devel-
oped to such an extent that there are considered to be some specific key areas in
which a computer should have capability; otherwise, it could not be considered as

intelligent. Such capabilities are:

* Natural Language Processing: To communicate fluently in human languages,

such as in English.

* Knowledge Representation: The way in which it would organize and store

the information that it gathered.
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* Automated Reasoning: The employment of stored knowledge to answer

questions and infer new facts.

* Machine Learning: In order to learn how to deal with situations completely

new, to recognize patterns, and predict.

These are key areas put together that allow a computer to emulate intelligent

behaviour. Al can be applied to a wide range of areas in diverse fields, including:

* Healthcare: Al is applied for diagnostics of diseases, creating treatment

plans, and even for drug discovery.

* Finance: Al algorithms are used for fraud detection, risk management, and

automated trading.

* Transportation: Al helps in developing autonomous vehicles, traffic manage-

ment systems, and route optimization.

* Manufacturing: Al optimizes supply chains, predictive maintenance, and

quality control.

2.1.1 Machine Learning

While Al in general is a broad area of science where desirable and often complex
actions of a machine can be performed without explicit programming, ML is a
more narrow sub-field of Al that concerns the development of algorithms which
allow computers to learn from, and make predictions or decisions based on, data.
Unlike traditional computer programming, in which the computer is given ex-
plicit instructions, the ML system learns and improves its performance over time

as it discovers patterns in the data. Big data have become the trend of time as
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large datasets are easily available. The more availability of information and abun-
dant than ever before requires the evolution of techniques to handle this bulk of
data. Basically, ML is divided into two types: supervised learning and unsupervised
learning Murphy (2012). Supervised learning is a type of learning that seeks to
perceive any pattern or relationship between inputs and outputs based on pairs
of data bounded by labels. In contrast, unsupervised learning aims to identify
important patterns in the input data of interest; without labeled data or correctly
targeted outputs are needed. Such ML, by its nature, is less structured. Problems
are more naturally framed in the context of supervised learning, despite unsuper-
vised learning being much broader in its applicability. For example, humans tend
to learn by observing their surroundings.

Whatever the machine learning approach, for computers that learn by observa-
tion, computer vision plays the role of impacting perception about an object, just
like in humans. Combined with robotics, and the above-mentioned four areas, it
represents one of the six fundamental areas making up most of Al Russell & Norvig
(2016). The capability of capturing detailed information about the environment
in a clear-cut manner, together with small and inexpensive off-the-shelf cameras,
makes computer vision one of the most preferred ways of input data acquisition
for robotics applications. Besides, computer vision is also the nearest machine
equivalent of human object perception, while the field of robotics is among the
key disciplines which extensively applies Al effectively. The versatility of robotics
platforms, combined with the accessibility of small, compact, and cost-effective
cameras, makes them the preferred choice for computer vision applications. Their
ease of capturing raw, detailed information about the environment makes the cam-
eras an invaluable input channel for robotics applications.

In general, ML consists of two main stages: First comes the feature extrac-

tion stage, where discriminative and informative subsets are derived from the raw
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data. LiDAR segmentation and motion forecasting depend on the data for the
establishment of multi-level associations between the data points and their associ-
ated contexts in meaningful ways by considerable feature extraction from the raw
input data. For instance, LiDAR segmentation is supposed to utilise key features
out of the point cloud data for perceiving the vehicle environment. For the motion
forecasting task, features are extracted from dynamic object data to forecast fur-
ther trajectories. In the second step, a proper model is selected that can process
the extracted features into desired results. These models usually undergo some
optimization processes, which converge at minimum prediction errors by granting

assurance of accuracy and reliability in the results.

2.1.2 k-means Clustering

The term "k-means"was coined by Macqueen (1967). The k-means clustering is an
unsupervised ML algorithm that segments unlabelled data into non-hierarchical
distinct clusters. As earlier discussed, an unsupervised machine learning is a
type of machine learning where one trains a computer to analyze unclassified,
unlabelled data without any interference from a human being. In this case, the
machine sorts out the data in classes, according to similarities, patterns and dif-
ferences without being previously trained. The k-means algorithm is primarily a
method of unsupervised learning that groups the data under consideration into
a predefined number of clusters in such a way that within-cluster items resemble
most to each other than objects in other clusters. In principle, it is one of the
methods of grouping items considering their similarities and differences.

The k-means algorithm assigns each data point to one of the k clusters depen-
dent on the distance from the centroid of each cluster. The process initiates with

the random selection of initial centroids. Then, each data point gets allocated to
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the closest centroid of a cluster. Subsequently, after making the assignment of all
points, the centroids get recomputed with a view on the points contained in each
cluster. This iterative process keeps running until the clusters stabilize and fur-
ther changes become insignificant. In our analysis, we assume that the number of
clusters, k, is predetermined, and each point is assigned to one of these clusters.
In some situations, the optimal number of clusters, k, is not clearly defined and
it needs to be inferred. The algorithm works best when the data is well-separated;
if there is a considerable overlap between points of different classes, it performs
terribly. the k-means clustering, though widely used due to its fast speed and
good performance on the grouping of data points compared with other clustering
methods, does not return explicit information about the quality of the clusters. The
cluster results will be different for different subjective initial centroid placements.

Besides, k-means is sensitive to noise and may get stuck in local minima.

2.1.3 Gaussian Mixture Model (GMM) Clustering

A Gaussian Mixture Model is a machine learning model used for predicting the
probability of a certain data point being associated with some cluster. GMM
finds its application in unsupervised learning as a soft clustering method that de-
termines the likelihood of data points to be from different clusters. A GMM is
composed of several Gaussian distributions, each represented by k € {1,..., K},
where K represents the number of clusters in the dataset. Each Gaussian distribu-

tion k within the mixture is therefore parameterized by:

* The mean, p, for the center of each Gaussian component, around which the

highest point density of the data points is situated.

* The variance, ¥, is a concept showing dispersion of data with respect to the

mean. A small variance implies that there are clusters of data packed close
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to the mean while a large variance enforces large clusters.

* The weights, m, play an important role in a GMM, with weights telling us
something about the number of data points actually belonging to each Gaus-

sian component.

The weights here indicate the relative importance or prominence of each clus-
ter in the overall mixture. Higher weights reflect the fact that, for the given Gaus-
sian, a larger portion of the data corresponds to that particular type of distribution,
making this part of the model more important. This combination of parameters,
such as mean, variance, and weight, equips GMMs with great flexibility for mod-
eling data. By changing this set of parameters, a GMM is able to approximate the
distribution of a broad range of data-from compact to large-scale, even overlap-
ping.

In fact, one of the most powerful abilities of a GMM, indeed maybe its core is
determining the probability that each point comes from each cluster.

It does this through a process known as ’soft clustering’, as opposed to other
hard clustering methods such as k-means. Instead of assigning each data point
definitely to one cluster as it did in soft clustering, GMM returns the probabilities
that express the likelihood of a certain data example belonging to each Gaussian

component.

2.1.4 Deep Learning

Deep learning is one of the sub-fields of ML where a model learns directly from
raw data inputs, without necessarily going through the conventional manual fea-
ture extraction. It is interchangeably used with the term Artificial Neural Net-

works (ANNs), as the first models were inspired by functions of the human brain
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Goodfellow et al. (2016). The fundamental ANN model is the multi-layer percep-
tron (MLP; Bishop & Nasrabadi (2006). This model produces a vector of outputs
¥ = [y1 ... yx]" from an input vector x = [z, ...zp|T, by computing M linear com-
binations of the input elements and passing them through a nonlinear activation

function h:

n
a; =Y Wz +b", j=1,..M 2.1)

i=1

2, = h(a;), 2.2)

where W;; and b; are the learnable parameters of the network, weights, and
biases respectively. The superscript (1) indicates the first layer of the MLP. For the
simplest case of an ANN with only a single hidden layer, the output activations are

directly obtained from 2; through another linear combination:

M
=3 Wz +b2, k=1,...,K, (2.3)

=1

Depending on the type of response, the output activations can be either fed
through another nonlinear activation function or taken as identity as y, = a;. (see
Figure 2.1). The advancement of optimisation techniques and improvement with
high computing capability have allowed the training of deeper models that contain
more hidden layers in reasonable time frames using consumer-grade Graphics Pro-
cessing Unit (GPU). This progress spurred a second wave of research in the area in
the late 2000s, and somewhat promoted the term "deep" learning—often referred
to as Deep Neural Networks (DNNs), as synonymous with state-of-the-art neural
networks.

Similar to traditional ML, the training of a DNN typically performed by mini-

mizing a scalar loss function f(x,y, 8), where 8 is the set of learnable parameters
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Figure 2.1: Diagram depicts a two-layer artificial neural network ANN. The open
nodes indicate input (x), hidden (z), and output (y) units, with connections be-

tween these units representing weights (W). Biases (b) are shown as connections

from additional closed nodes (g, 20).

of the network, and dependency on the inputs and outputs is explicitly indicated.
Owing to DNN being inherently nonlinear (as pointed out by Eq. 2.2), the optimi-
sation problem of the optimal @ requires iterative methods that search for critical
points in f using gradient information. The simplest method is to take a small step
in the #-space in the direction of the negative gradient,which is termed as gradient

descent Bishop & Nasrabadi (2006):

OFH) — 9K) — 0, Vof, (2.4)

where . is the learning rate at time step 7 = 7. One of the main merits of
Equation (2.4) is that it does not require the computation of the Hessian.

A single forward pass through the DNN provides the necessary conditions to
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calculate the gradient of the loss with respect to the output, i.e. V, f. The gradient
of f with respect to the weights in each layer, which is essential for gradient de-
scent optimization as described in Equation (2.4), can be obtained by successively
chaining the local gradients of each layer in reverse order until the target layer is
reached. This process is known as backpropagation Rumelhart et al. (1986). When

a unit j in one layer feeds into k units in the next, the local gradient at j is given

by:

Bf < Of duy
T Yt (2.5)

Once the gradient values of the output units are calculated via a forward pass,
recursive back-propagation can efficiently calculate the gradients for all hidden
layers for any DNN model.

Since the gradient-based parameter optimisation of the cost for large datasets
is usually bound by memory, a minibatch B = {z'V,... z{™} of m inputs may
be sampled from the training data set at each step and utilised instead. This
approach transforms the process into a Stochastic Gradient Descent (SGD), where

the gradient is approximated as:

1 = i i
Vof = — Z; Vof(z®,y,0). (2.6)

An epoch is said to be complete when the SGD algorithm processes all the mini-
batches that together comprise the complete dataset of inputs. Once this iterative
process is done, it ensures that every single input in the dataset has played its
role in contributing to the model’s learning process. Practically, DNN training
normally requires more than one epoch to adequately converge the parameters in
a network to optimal performance. Each epoch gives an opportunity for the DNN

to incrementally refine the inner representations, by which its accuracy improves

25



2.1. ARTIFICTAL INTELLIGENCE

and generalizes with time.

Such a linear output as in Equation (2.3) allows a neural network to learn
regression problems. However, the appeal of deep learning today has been large,
mostly because of outstanding performance for classification tasks where outputs
are discrete and usually mutually exclusive, and selections come out of a large set
of choices. While the sigmoid function (Figure 2.2, top right) is applied to model
outputs that have a Bernoulli distribution (e.g., coin toss, dog vs. cat classification,

or pedestrian vs. vehicle classification), the softmax function defined as

exp(ay)
Z; exp(a;)’

is used to model categorical, or generalized Bernoulli, distributions. This be-

softmax(a); := (2.7)

comes handy for things like distinguishing different types of vehicles, or distin-

guishing between different environmental contexts in autonomous driving.

2.1.5 Activation Functions

Early ANN used sigmoid or hyperbolic tangent activation functions (Figure 2.2, top
right and top left, respectively) Goodfellow et al. (2016). The sigmoid functions
have a tendency to saturate across most of their range, being sensitive only in an
area close to zero. This complicates the process of learning because of vanishing
gradients during backpropagation. Although they once enjoyed widespread usage
in early networks, their use in practice is now generally not recommended except
in special cases (§ 2.1.9). Hyperbolic tangent functions are easier to train but still
suffer from the lack of large gradient when activation inputs are even close to zero.

It has one special property: it returns zero for negative inputs and it linearly
responds to non-negative inputs, (Figure 2.2, bottom left). This makes it very easy

to optimize. Its advantages include: it does sparse activation, where about 50%
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of the hidden units in a randomly initialized ANN produce non-zero output. This
sparsity prevents overfitting and hence improves the generalization capabilities of
the model for unseen data (see § 2.1.13). Moreover, ReLU allows better gradient
propagation than sigmoid and hyperbolic tangent; in fact, it is not suffering from

the problem of saturation for both small and big input values.
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Figure 2.2: Nonlinear activation functions for artificial neural network ANN. Top
Left: h(z) = tanh(z). Top Right: h(x) = sigm(z). Bottom Left: h(z) = relu(z).
Bottom Right: Gaussian Error Linear Unit h(z) = gelu(z).

A extremely popular and modern choice of activation function is the Rectified
Linear Unit (RelLU), which is defined as:

relu(x) := maz(0, ). (2.8)
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Remark 2.7: ReLU and Leaky ReLU comparison.
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Figure 2.3: Comparison between the rectified linear unit (ReLU) activation
function and the leaky ReLU activation function. The latter is plotted for two
distinct values of 7, the parameter defining the slope of the response when

T < (0.

Despite its advantages, the ReLU activation can run into specific problems
during backpropagation, ReLU units can become inactive regardless of the
input, a phenomenon known as the dying ReLU problem. This occurs when
the network learns a large negative bias, the activation outputs zero (see
Figure 2.2, bottom left), effectively halting the backward gradient flow. To
tackle this issue, several generalisations of the ReLU function have been
proposed. For example, the leaky ReLU function (Maas et al. (2013)) allows

a small gradient when the unit is not active:

28



2. THEORETICAL BACKGROUND AND TOOLS

Remark 2.7: Dying ReLU Problem

r ifzx=0,
leakyrelu(z,n) := (2.9)

nz otherwise.
The function is illustrated in Figure 2.4. Other variations, such as the para-

metric ReLU, treat 7 as a learnable parameter (He et al. (2015)).

Apart from the above-mentioned activation functions, the Gaussian Error Lin-
ear Unit or GELU really gained momentum in the last few years in transformer

models and other sophisticated neural architectures. The GELU may be defined

mathematically by the following function:

GELU(z) = 0.5z (1 +erf (%)) (2.10)
The GELU activation function in Equation (2.10) combines the best of both
worlds without compromising between linear and nonlinear activation functions;
it offers smoother transitions and better performance in many situations. This
special property of making learning much effective whereby the model may grasp
interesting patterns in data much better, finds wide application in state of the art
models such as BERT and, GPT due to these properties which greatly impact the
overall efficacy and efficiency of such networks.

2.1.6 Optimisation

Section 2.1.4 introduced SGD as the "default" learning algorithm for deep neural
networks. While simple, the learning process using SGD is often slow Goodfellow
et al. (2016). To accelerate the optimisation, it is possible to inject some momen-
tum into SGD. The impact of using momentum in gradient descent adds a friction

term for two purposes: first velocity decides the direction of movement through
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the parameter space, and second velocity combines with the gradient to decide
the speed. The parameter update approach is defined as follows (see Equations
2.4 and 2.6):

1 — L

(1) _ i) _ (&) 4,01
v+ = ) — oV, (E;:;f(z e .,e)), (2.11)
A L (2.12)

Equation 2.11shows that the SGD momentum retains the influence of past up-
dates because the moving average does not forget them, where v € [0, 1] decides
the speed at which the influence of older gradients decays. Momentum helps in
overcoming non-essential valleys where the Hessian matrix is badly conditioned,
such as when the objective function’s topology varies greatly in directions orthogo-
nal to the gradient path toward a minimum. This variability would impact regular
SGD much more.

However, momentum does not solve the problem of selecting the most critical
hyperparameter. On the opposite, it actually introduces an additional parameter.
Another approach has been developing optimization methods that adapt learn-
ing rates of model parameters. The RMSProp algorithm, introduced by Geoffrey
Hinton in 2012', where each parameter in # is updated by scaling their learning
rates inversely proportional to the accumulated squared gradients over past steps.
The accumulation is an exponentially decaying average: the exacerbation of the
distant past values is minimal so that convergence can be fast when the algorithm
finds a convex bowl Goodfellow et al. (2016). The update is given by:

) = ygle) + (1 — 7)g"™ D @ g+, (2.13)

 http://www.cs.toronto.edu/"tijmen/csc321/slides/lecture_slides_lect.pdf.
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AP — & D) (2.14)
Vol e
O = g 4 Agl=+l) (2.15)

where @ denotes the element-wise product, ¢ is a small constant to stabilize
division by potentially small numbers, and g is the gradient.

The Adam algorithm Kingma (2014) extends this by adding a term resembling
momentum based on the non-squared gradient. It also adds bias correction es-
timations to both gradient-dependent terms. The full update is summarized as

follows:

g = mole + (1 — 7)™+, 2.16)
Gong ) = a0y + (1 — 7)™V @ g+, (2.17)
(s+1)
almtl g
o) = I_IL,TEH, (2.18)
1
=+
g =2, (2.19)
L=
A1)
L s | S (2.20)
ong |+ €

where the divisions and square roots are applied element-wise and the param-
eter update is identical to Equation 2.15. Note that in the bias update steps, the
decay parameters 7; and 7, are exponentiated by the current iteration value .
With this way, Adam features increased robustness to the choice of hyperparame-

ters relative to SGD with momentum or RMSProp.
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2.1.7 Convolutional Neural Networks

Traditional ML techniques often require a pre-processing stage in order to feed an
input into the training algorithm. These inputs are rarely raw data but rather the
outcome of some feature detection and extraction algorithm that produces a set of
observations X = {z'Y,... ™)}, This step is important because it ensures that
selected features represent the observed reality properly, and this adequacy can
vary significantly depending on the application. For example, once an algorithm
becomes specialized in detecting features in LiDAR point clouds, then it should
be robust to various variabilities that it might actually encounter in real-world
autonomous driving, such as changing weather and different road surfaces.

On the other hand, deep neural network systems have advantages in image-
based applications due to their end-to-end training capability, optimal feature de-
scription can be learned directly from data in an unsupervised manner, bypassing
the need for handcrafting the features. This is very helpful in segmenting LiDAR
and thus allows DNNs to be trained in various driving environments. For example,
to capture the intrinsic nonlinearities between sensor data and segmented objects
in the environment, segmenting methods based on DNN can be very useful for a
self-driving car. The hidden layer structure,as highlighted earlier, inherent to the
Multi-layer Perceptron (MLP) is the linear combination between every possible in-
put and output; each layer is thus called a Fully Connected (FC) layer. Training an
FC layer on image data would incur a high computational cost due to the number
of pixels involved. Convolutional neural networks are better suited for such data
representation, as suggested by Le Cun et al. (1989).

A convolution operation slides a 2D kernel K (often a small square matrix
with odd dimensions) across a 2D input image I™ to produce a 2D output, I°",

according to the operation:
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="Ky =Y > I, Kus, (2.21)
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Figure 2.4: Example of a two-dimensional convolution operation. A single-
channel input image I'" is processed using a 2 x 2 kernel K to generate a single-
channel output image I°**. This illustration is only limited to the top-left 3 x 3
sub-matrix of I, with each input pixel labeled as {i;,...,is}. Correspondingly,
the kernel elements are indicated by {k, ..., k4}.

where index notation has been used. The immediate advantage of convolu-
tional layers is the sparsity of learnable parameters, which reduces significantly
compared with FC layers, reducing the memory requirements. This is inherently
owing to a parameter-sharing trait, meaning the single set of parameters is learned
regardless of the input location. This kernel slides over the entire image, detecting
features in a localised manner, while creating a feature map representative of the
location and intensity of these detected features. CNNs often come in the form of
feature extraction front-ends, successively reducing spatial information while gen-

erating additional feature maps. These feature maps can be interpreted as images
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having multiple channels or, in other words, spatial dimensions.
The convolution can be extended from a 2D kernel to a 4D tensor, K, with

dimensions given by:

dimK = Cj, x F x F x Cyy, (2.22)

where Cy, is the number of input channels, C,,, is the desired number of output
channels, and it is assumed that the kernel is spatially square with dimensions
F x F. Spatial reduction can be done by applying a pooling operation after the
convolution, where the feature map of spatial dimensions W, is subdivided into

bins to generate an output of dimension:

| Wa-0Q
Wm.t—{ 0 J+1, (2.23)

where (@ is the size of the pooling window. Common pooling operations are
the maximum or average value of each bin. In practice, most recent DNNs have
abandoned the pooling layers in favor of increasing the stride, S, of the convo-
lution, i.e., the number of rows and columns of the input that are skipped while

sliding the kernel. In such cases,the size of the spatial output can be controlled by:

(2.24)

Wy, {Wm—F-I—ZPJ +1,

S
where P is the spatial padding applied to the input.

2.1.8 Transfer Learning

DNNs that form complex models usually require very long training times and large
datasets. An alternative is the technique of transfer learning based on the assump-

tion that some of the causes underlying the output of a task are also underlying the
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output of another task. On CNNs, it may be assumed that most of the learned ker-
nels converge to recognize generalised visual features. In practical applications, it
has been empirically observed concerning the field of application that first layers’
kernels of CNNs are optimized for broad features that are wide across the domain,
such as corners and edges, while the different kernels in the final layers will fo-
cus on more task-specific shapes Zeiler & Fergus (2014). This mostly consists of
taking a pre-trained CNN architecture-whose initial layers have gained expertise
from a large, generalized dataset-and fine-tuning those final layers, or even adding
additional new ones, on small-sized domain-specific datasets.

Pre-training on the vision-related task typically makes use of the ImageNet
dataset, containing over 14 million labelled images across more than 20,000 cate-
gories, thanks to crowdsourcing. Major developments in CNN architecture design
have been spurred by participation in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), targeted at developing an ML pipeline for correctly classify-
ing images into 1,000 distinct ImageNet categories. The important breakthrough
for DNN came when Krizhevsky et al. (2012) won the ILSVRC 2012 with a top-
5 classification error of 15.3%, more than 11 percentage points better than the
runner-up, using a variant of Le Cun et al. (1989) CNN trained on a GPU, which
hugely reduced computation time.Some of the new CNN designs have annually
competed in this challenge, and as a result, there have been substantial advances
every year, but also there has been an introduction of innovative breakthroughs.
For instance, VGG Simonyan & Zisserman (2014) is notable for its use of very small
(3x3) convolution filters and its depth, which significantly improved the accuracy
over the earlier models. GoogleNet Szegedy et al. (2015) was also distinguished
by its deep architecture but with parallel layers, where multi-scale features could
be extracted. Similarly, ResNet He et al. (2016) took it even further by introduc-

ing residual connections that allowed training of networks even deeper. Many of
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these modern DNN architectures have been released open-source, with publicly
available pre-trained ImageNet weights, an arrangement that has substantially ac-
celerated the pace in this field and allowed for the wide adoption of these models
as CNN front-ends on many applications.

2.1.9 Recurrent Neural Networks

y'E

®
@ = @
o

=

Figure 2.5: Depiction of a basic two-layer RNN and the unfolding architecture.
In this type of network, parameter training at time-step 7 = 7;. is influenced not
only by the current input z*) but also by the previous output s*~!). The un-
folded/unrolled representation forms a chain-like structure, with gradient com-
putation occurring via forward propagation along a temporal axis. This simple
diagram suggests the repetition of the same network architecture. Network ele-

ments are illustrated using vector notation with individual nodes.

The architectures introduced so far treat each input separately at each forward
pass. RNNs, on the other hand, are designed capture temporal dependencies be-
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tween inputs across a series of time steps. These networks contain loops, that
allow information to be conveyed from one step to the next, and hence have a re-
cursive or chain-like structure when unfolded in time (see Figure 2.5). The basic
RNN architecture includes an additional set of parameters to weigh the influence

of prior outputs Rumelhart et al. (1986):

D M
) = Z Wz, + Z Wsk, i=1,....M (2.25)

(k+l] _h ( {k+1}) ’ (2.26)

where the bias term has been omitted for simplicity (cf. Eq. 2.1). Such a
network architecture is quite powerful in modelling sequential data, e.g., image
captioning, Natural Language Processing (NLP) and time-series data such as ve-
hicle trajectories. The recurrent weights W) are optimized by Backpropagation
Through Time (BPTT), an algorithm similar to standard back-propagation of ac-
quiring W®) | yet with errors accumulated at each time step due to shared param-
eters temporally. The gradient w.r.t the recurrent weights of the model presented

in Figure 2.5 is computed by the following equation:

Ny (17 O | s,
aﬁf(a) ZZ&!}& sy, ( !_l Osp_y | OWE" (2.27)

where T denotes the total number of time steps and fi. depicts the cost function
value at time 7 = T}..

The key issue in traditional RNNs is due to the term HLJ. 1 08/0s;_1 in Equa-
tion 2.27, as repeated matrix multiplications that may lead to vanishing or explod-
ing gradients. For the vanishing gradients, it results in the cessation of learning by
the network, whereas for the exploding gradients, there is numerical instability.
The other problem of RNN involves learning long-term dependencies Goodfellow

et al. (2016). To alleviate these problems, several improvements have been done,
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the most noticeable being the long short-terrn memory unit Hochreiter & Schmid-
huber (1997). These LSTM units consist of an input gate to regulate the effective
running and regulation of the cell state; thus, it acts like an "information high-
way", letting only the selected information flow through and therefore alleviating
the problems within traditional RNNs.

2.1.10 Attention Mechanism

Attention mechanisms in neural networks are inspired by cognitive attention.These
mechanisms aim at improving model performance through dynamic focus on the
most relevant parts of the input data. Attention mechanism was first introduced
to improve encoder-decoder models applied in machine translation. It enables the
decoder to utilise those parts of the input sequence that are most relevant by tak-
ing a weighted combination of all encoded input vectors, giving higher weights to
the vectors that are most relevant.

Attention was introduced by Bahdanau et al. (2014) to tackle the bottleneck
of the fixed-length encoding vectors problem. However, this fixed-length context
vector, in some traditional encoder-decoder models, resiricts the decoder from
accessing input information, especially when the sequences are long or complex.
These sequences, although they are more complex, are forced to be represented in
the same dimensionality as shorter or simpler sequences, restrict the performance
of the model. Readers are encouraged to refer to Bahdanau et al. (2014) for more
detailed information on the attention mechanism.

In a typical encoder-decoder architecture, the fixed-length context vector be-
comes a bottleneck for sequence-to-sequence learning since it overemphasizes the
latter part of the sequence. Since tokens or words are fed into the model one after

another, the context vector ends up focusing much on the last parts of the input
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sequence. he typical encoder-decoder model works well only when sequences are
short, often less than 20 tokens.

Attention mechanisms overcome this limitation by introducing attention vec-
tors, serving as new context vectors at each decoder time step, considering all to-
kens of the input sequence and selectively focusing on the important ones unlike
standard models. Each context vector is computed as a weighted sum of "anno-
tations." These annotations carry information about each input token in relation
to its surrounding tokens, while the weights are determined by the alignment be-
tween the current annotation and the previous decoder hidden state. The weights
over the annotations serve to select which of the input tokens should be given
more priority in computing each of the context vectors.

In case of time series data, a Gaussian is used to re-weight the data, giving
greater weight to time steps closer in time. This has the effect of dampening the
noise levels appreciably, which is suitable for time series data. However, in other
kinds of data, such as images or text, proximity alone cannot be the only criterion
for weighting. For example, in text, words a few words apart from each other in
a sentence are not necessarily more alike than words that are far apart from each
other. Instead, another weighting scheme that carries more context is desirable.

Self-attention mechanisms can be used to obtain similarity measures between
embeddings without any bias toward proximity. This makes usage of the dot prod-
uct between embeddings to decide about their similarities, enabling the model
to attend to the most relevant parts regardless of their positional distance in the
input data. This technique, known as self-attention, was popularized by Vaswani
et al. (2017).
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Figure 2.6: Left: Scaled Dot-Product Attention diagram. Right: Multi-Head Atten-

tion comprises multiple attention mechanisms working in parallel Vaswani et al.

(2017).

Scaled Dot-Product Attention

The transformer architecture takes advantage of a mechanism called self-attention,
more precisely scaled dot-product attention, to process its inputs Vaswani et al.
(2017), can be seen in Figure 2.6. This mechanism takes as input queries and
keys of dimension d, and values of dimension d,. The dot products of the query
with all keys are computed, scaled by /dy, and then passed through a softmax
function to determine the weights on the values. This will allow the model to
focus on different parts of the input sequence when generating an output.

The self-attention function is computed on a set of queries simultaneously;
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these are packed together into a matrix (). Keys and values are packed similarly

into matrices K and V, respectively. The output matrix is computed as:

Attention (@, K, V') = softmax (?/E_j) vV (2.28)

Two prevailing functions that are used as attention are additive attention and
dot-product attention, which has the theoretical same complexity as dot-product
attention, but dot-product attention is more efficient in practice since it has been
implemented through highly optimized matrix multiplication code.

Smaller values of d;, give similar results between additive and dot-product
attention mechanisms. However, for larger values of d, the dot-product attention
without scaling can have large magnitude values that make the softmax function
produce very small gradients. In order to avoid this problem, the dot products

are scaled by ﬁ,helpi_ng reduce the vanishing gradient problem Vaswani et al.
(2017).

exp(z:)
> p exp(z;)

Here, i is the current element and the summation over index j acts as a nor-

SoftMax(z;) = (2.29)

malization term. In this formula, () is the set of queries, K is the set of keys, and
V is for a set of values. Those matrices can be considered as abstractions extracted
from an input vector multiplied by a learned matrix during training. The scaling
factor 1/d}. is applied for mitigating the vanishing gradient problem. So when the
dimensionality d,, is large, the dot products grow really large and applying the
softmax on these large values may lead to extremely small gradients, which are
undesirable. Finally, the result is a matrix of associations of the words or image

patches, supplying some context to each embedding.
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Multi-Head Self-Attention

Vaswani et al. (2017) demonstrated that instead of using one attention mecha-
nism with dp,4e-dimensional queries, keys and values, it is beneficial to linearly
project queries, keys and values h times with different learned linear projections
to d,, d, and d, dimensions, respectively. The attention function for these pro-
jected versions of queries, keys and values is computed in parallel, resulting in
d,-dimensional output values. These outputs are then concatenated and projected
once again, which provides the final values given as shown in Figure 2.6.
Multi-head attention allows the model to attend information regarding differ-
ent representation subspaces across multiple positions, which a single attention

head would not allow because of constraints enforced by averaging.

MultiHead(Q, K, V') = Concat(head,, ..., head, )W (2.30)

where head; = Attention(QWZ, KWX VW) (2.31)

In this context, the projections are parameter matrices W € Rémosa*de WK ¢

Bdmadal XEI}.-J W:‘.V € Rdmudulxliu, and W2 € Bhde ¥ dmadal

2.1.11 Transformers

The transformer is a deep neural network component to capture informative rep-
resentations of sequences or sets of data points Vaswani et al. (2017). It has an
autoregressive model, and has driven rapid progress during recent years in nat-
ural language processing Devlin et al. (2018), computer vision Dosovitskiy et al.
(2020), and spatio-temporal modeling Bi et al. (2022). The architecture of the

transformer can be seen in Figure 2.7 in detail.
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Figure 2.7: The transformer model architecture, On the left is a single encoder
block, stacked N times. On the right is a single decoder block, stacked N times,
Vaswani et al. (2017).

From Seq2Seq to Transformers: A Paradigm Shift

Before delving into the transformer architecture, the Sequence to Sequence (Seq2Seq)
model in Sutskever et al. (2014) must be mentioned. Seq2Seq, using a two multi-
layered LSTM-based encoder and decoder, maps the source input sequence into
a fixed-dimensional hidden representation first and decodes it into an output se-

quence. This model’s both input and output structure is similar to the transformer.
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Seq25eq model in machine translation processes an input sentence to develop
a hidden representation that would be utilised by a decoder for the generation
of an output sentence. The decoder dynamically creates the sentence, in which a
token is fed into the decoder in order to get the first word, that would afterwards
be fed into the decoder until the generation of the end sentence token. This idea
can already be generalized for motion forecasting where the encoder operates on
the past motion data and a decoder predicts future trajectories.

One critical problem with Seq2Seq is the bottleneck from condensing all the
information into a single hidden representation vector, h. This is particularly dis-
astrous for long or complex sequences. Previous approaches attempted to address
this using the vanilla mechanism of attention. And the idea was pretty much simi-
lar to having the decoder access all input tokens at each time step. This featured an
improved model performance and resolved some issues related to the loss of gra-
dients, but it still maintained the sequential nature of RNN architectures; hence,
the models could not be scaled well. Eventually, these very limitations contributed
to the emergence of the development of the transformer Vaswani et al. (2017), a
purely feed-forward architecture, which has been an evident way out of scalability

issues associated with RNNs.

Embeddings

The very first thing one needs to do, before going deep into the specifics of the
transformer architecture, is to introduce some basic concepts, starting with em-
bedding. In ML generally, an embedding is a way to represent data in vector form
of any dimensions. That is because a neural network cannot process it if there is
a raw sequence of characters. We embed information into a numeric vector using
embeddings, which then becomes apt for use by deep learning models. This sec-
tion introduces embedding and lays the basic understanding that will be helpful
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in further understanding the transformer architecture.

In order to make use of a transformer, data needs first to be transformed into
a set or sequence of N tokens, each of dimension D. These tokens are gathered
together into a matrix X'°) of dimensions D x N. Two concrete examples are as

follows:

* A representation for a text can be performed as a sequence of words or sub-

words, where each word/sub-word has a unique vector associated with it.

* For a given image, it can be segmented into multiple patches; each is subse-

quently mapped to a vector.

The embeddings may either be fixed or learned together with the model pa-
rameters. For instance, vectors for words may be optimised; image patches may
be embedded using a learned linear transform.

A sequence of tokens is a generic representation for input data. Different kinds
of data can be "tokenized," so that transformers apply universally and without re-
quiring specialized architectures for each type of data, such as CNNs for images or
RNNs for sequences. That flexibility means transformers can mix different modal-
ities of data simply by tokenizing them into one set of tokens.

Like other sequence processing models, this model utilises learned embeddings
to convert both the input tokens and output tokens to vectors of dimension d,;adei-
It also uses a standard linear transformation followed by a softmax function to
convert the output of the decoder into probabilities of next token. Similar to Press
& Wolf (2016), in this model, the weight matrix is shared between these two
embedding layers and pre-softmax linear transformation. Also, embedding layers
multiply these weights by \/d,,,.4.; for proper scaling.

The transformer takes the input data X°) and outputs a representation of the

sequence in the form of another matrix X ™), with dimensions D x N. Each slice
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2iM) is the representation of the sequence at the position of token n. These rep-
resentations are being used in a variety of applications: predicting the next token
given all the previous ones, global classification of the whole sequence, sequence-
to-sequence learning, image-to-image prediction problems, among others. Here,
M denotes the number of layers in a transformer.

In summary, embeddings are a preparatory step that allows transformers through
the process to have various types of data inputted into them since they would all
have been transformed into vectors of equal dimensions. This transformation thus
easily allows transformers to apply deep learning methods on sequences of data

points by making it yet another versatile tool in ML.

Positional Encoding

i
| il

Figure 2.8: Sinusoidal positional encoding with L. = 32 and d = 128 where the

L L] 100 120

values range from -1 (black) to 1 (white), with O represented in gray:

In order to realize the full potential of transformers in sequence-based tasks,
positional information about the token being processed should be introduced one
way or another. Traditional architectures innately capture such orders of se-
quences, which is crucial in most tasks where the order of elements matters. What-

ever permutation operation one performs on the input provided to the transformer




2. THEORETICAL BACKGROUND AND TOOLS

architecture, the model itself will not know or care; hence, necessitating the de-
velopment of positional embeddings to retain sequential information.

To handle this problem, positional encodings are added to the input embed-
dings at the bottoms of the encoder and decoder stacks. These encodings have
the same dimension, dye4q, as the embeddings, allowing their summation. While
there are many positional encoding strategies, sinusoidal positional encodings cre-
ated by Vaswani et al. (2017) are particularly effective. This is illustrated in Figure
2.8.

This technique embeds positions through a look-up of sine and cosine functions

of different frequencies. The positional encoding for a position pos and dimension

i is defined as:

S 1 S
PE 4y02:) = sin (—1 5 D; ':‘_ ; ,.) (2.32)
_ pPos
PE(pos2is1) = coS (muuwm-) (2.33)

Here, pos represents the position, and i denotes the dimension. Each dimen-
sion of the positional encoding corresponds to a sinusoid. The wavelengths form a
geometric progression from 27 to 10000 - 2m. This design choice allows the model
to easily learn to attend to relative positions, thus aiding in easy learning process
for sequences of variable lengths.

Another popular strategy is to utilise learned the positional encodings. Instead
of being fixed, it is initialized at the start and learned with the rest of the model
parameters. Both fixed and learned positional encodings work well, as several
experiments show performance that is quite close to one another.

The most important advantage of the sinusoidal encodings is that they allow
the model to extrapolate to sequence lengths not seen during training. This is

very desirable in models which should generalize well across different sequence
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lengths.

However, in various applications, this positional information has to be infused
differently. For example, in vision transformers Dosovitskiy et al. (2020) adds the
positional embedding to patch embeddings so it may have proper processing over
image patches.

In the transformer model, since positional encodings have been added, it is
capable of capturing the order of sequences for its processing, hence stronger in

handling many of these tasks which are sequence-based.

Encoder and Decoder Stacks

The transformer encoder consists of multiple identical layers, with the original
model having six such layers, each of which changes input sequences into con-
tinuous representations that are abstract, capturing learned information from the

whole sequence. This is facilitated by two main constituent sub-modules:
1. A multi-head attention mechanism.
2. A fully connected feed-forward network.

Each of these sub-layers is wrapped with a residual connection He et al. (2016),
followed by layer normalization Ba et al. (2016). Specifically, the output of each
sub-layer is computed as LayerNorm(z + Sublayer(z)), where Sublayer(z) repre-

sents the function executed by the sub-layer itself.

Feed-Forward Neural Network

The output from the normalized residual connections is further processed via a
point-wise Feed Forward Network (FEN) that is important for further refinement.
It is structured in a way that it is made up of two linear layers separated by a ReLU

activation, mathematically represented as follows:
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FEN(r) = max(0, zW; + b1 )Ws + bo (2.34)

While the linear transformations are consistent for different positions, the pa-
rameters differfor different layers. This architecture can also be interpreted as two
convolutions with a kernel size of 1. The dimensionality of input and output is
model = 512, while the inner-layer dimensionality is dg = 2048.

After it has been processed, the output is once again combined with the point-
wise FFN input, following up with another normalization step to fit and prepare

the output adequately for the next stages.

Output of the Encoder

The last encoder layer outputs a sequence of vectors, each vector rich in their
respective contextual information from the input. The vectors will go as input into
the transformer decoder.

This elaborate encoding process informs the decoder to pay attention to certain
parts of the input while decoding. Think of it as building a tower, whereby more
encoder layers can be added on top. Each layer in this stack looks at, and learns
in various ways, the different aspects of attention to add up to the knowledge
base. This commencement not only begins to diversify the understanding but also

increases the predictive capabilities of the transformer network.

2.1.12 The Transformer Decoder

The decoder is mainly used for generating the text sequence. Similar to the en-
coder, the decoder is also stacked with sub-layers, such as two multi-headed at-
tention layers and one point-wise feed-forward layer; residual connections are

added to these, followed by layer normalization after each sub-layer. These work
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similarly to the layers in the encoder but perform somewhat different functions.
The last layer in the decoder is a linear layer for classification, then the softmax
function figures out the probabilities of different words.

The decoder was designed to decode information step by step to create an
output. It operates in a fully autoregressive manner, starting with a given start
token. It takes as input the previously generated outputs, along with the encoder’s
outputs, which are rich in attention information stemming from the initial input.
It keeps decoding until it predicts such a token that signals the end of the creation
of the output.

The entire process starts on the input line of the decoder, where the input ini-
tially flows through an embedding Layer in the same way as the encoder. This
goes through the positional encoding layer right after the embedding layer. These
positional embeddings are input to the first multi-head attention layer of the de-
coder; this is where the attention scores specific to the input of the decoder are
calculated.

It consists of a stack of identical layers, six in the original transformer model.
Each layer has three major subcomponents.

The mechanism of masked self-attention is rather similar to the self-attention
mechanism used in the encoder; but has a significant difference in preventing the
positions from attending to subsequent positions. This is to be sure that each
word in the sequence is not influenced by future tokens. For example, it shouldn’t
take the "you" token into account when calculating the attention scores for "are",
because "you" is a later position in the sequence. This masking function allows
the model to depend only on known outputs at previously considered positions to
make a prediction for a particular position.

The encoder and decoder parts interact in the second multi-headed attention

layer of the decoder, where queries and keys come from the encoder outputs, while
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values are from the first multi-headed attention layer of the decoder. The reason
for this is to allow the decoder to align with the input of the encoder, underlining
the most relevant parts. Further refinement of the output from this attention layer
is done through a point-wise feed-forward layer. In this sublayer, the queries come
from the previous decoder layer, whereas keys and values come from the output of
the encoder. This way, every position in the decoder can attend to all positions in
the input sequence, incorporating information from the encoder with that of the
decoder.

Similar to the encoder, each decoder layer is also followed by a fully connected
feed-forward network applied identically and independently at every position. The
transformer model finishes processing the data in passing through a final linear
layer acting as a classifier. It is as large as the number of total classes; the classes
being the words that make the vocabulary. For instance, with the number of 1000
classes; then the classifier would give the output as an array of 1000 elements.
This feeds into a softmax layer, which converts this output into probability scores
ranging between 0 and 1. The highest probability score determines the most likely
next word of the sequence.

Each sub-layer (masked self-attention, encoder-decoder attention, feed-forward
network) is followed by normalization and includes a residual connection around
it. The output of the final layer is transformed into a predicted sequence, usually
via a linear layer plus softmax to produce probabilities over the vocabulary. This
decoder output then becomes the new input in the growing list of inputs fed into
the decoder as it continues decoding. This is done continuously until the model
outputs a special token that signifies the completion of the process. It predicts
the token with the highest probability and that will be labeled as the final class,
normally determined by the end token.

To recall, the decoder is not limited to a single layer. It can be structured with
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multiple layers, where every subsequent layer builds from an input of the encoder
and previous layers. This layered architecture now allows the model to diversify
its attention and extract variable attention patterns across its attention heads. The
multi-layer approach enhances the model’s predictive ability by building a much

finer understanding of various combinations of attention.

2.1.13 Regularisation

The model capacity in an ordinary sense means the number of learnable parame-
ters in deep neural networks, thus implicitly becoming a hyperparameter. While
it is a fact that increasing the model capacity enhances the ability of a model to
make correct predictions, high capacity can also cause overfitting: instead of learn-
ing from the train data, the network may memorize it, and generalizing to new,
unseen test data will be poor. Overfitting generally happens if the number of the
network’s parameters is too large.

It is quite standard to test the performance of a model on a validation set from
time to time during training in order to get an idea of the model generalization
capability. Unlike the training sets, whatever data is being used for validation sets
should not be used for training purposes. Instead, it is used to check how well the
model is generalizing. If the training error is radically smaller than the validation
error, that is a good indicator of overfitting. On the other hand, if there are a few
parameters, high training and validation errors can also result in underfitting.

In order to handle overfitting, one can decrease the number of parameters or
use early stopping, then halt the training process when the validation error starts
to increase with respect to the training error. Besides that, one could make use of
regularization techniques that introduce some type of noise in the learning pro-

cess, in order to avoid overfitting. The regularization is an important procedure
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unless the training dataset comprises millions of examples because it reduces the
risk of overfitting and enhances the model’s ability to generalize examples Good-
fellow et al. (2016). This subsection gives a summary of some common regular-

ization techniques for DNNs.

Dropout

Dropout is a technique in which a neural network randomly excludes the units by
setting its output to zero Hinton et al. (2012). One can realize that this technique
tries to emulate the ML scenario of bagging where K models are trained on K dis-
tinct subsets of the training data. For each mini-batch, a binary mask is randomly
generated and applied to the hidden units of every layer with a given probability
p. This fixed probability is used as a hyperparameter for the layer. Common values

for p are 0.5 for FC layers, and between 0.1 and 0.2 for convolutional layers.

Weight Decay

Weight decay is actually a traditional and fundamental regularisation technique
developed within ML, even before ANNs. This method involves including a term to
the loss function that is proportional to the weight of each layer. A very common
form of regularisation through weight decay is called L? regularisation, which
incorporates the squared sum of all the weights, excluding, typically, the biases.
This results in the following modification to the gradient of the i-th layer:

Vi f (WO, 2,y) ¢ Vi, f(W, 2, y) + AW, (2.35)

where ) is a hyperparameter typically chosen on a logarithmic scale, for exam-
ple A € {107%,1075,.. ., 1072},

Despite its long-standing history in ML, its alternative strategies are often utilised
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jointly or as a replacement for weight decay, especially in modern CNNs.

Batch Normalisation

Batch normalization (Batchnorm), as introduced by loffe & Szegedy (2015), nor-
malizes the inputs of a layer by calculating the mean uy and variance o% for each

mini-batch m as follows:
) — ppm
VOB, +E

Here, ¢ is a small constant for numerical stability. The outputs are then modified

'@ (2.36)

by a learnable scale and offset:
a"” < Ypna"® + B (2.37)

During training, the mean and variance of the whole dataset are estimated by
taking the moving average of each mini-batch’s statistics {jipm, 0%, }. These values
are then used to normalize the inputs at inference time. Batchnorm was originally
proposed to improve DNN optimization, but it also introduces noise which can

have a regularizing effect.

2.1.14 Image Augmentation

Image augmentation is one of the most powerful regularizations generating aug-
mented additional data and guiding a DNN indirectly so that it pays its attention
to essential features. In the case of a CNN, for example, its classifier can be in-
structed implicitly by rotating randomly an input image to make it invariant in
terms of rotation—the object at a rotated location in LiDAR is the same object.
This is achieved in a standard approach by randomly sampling a probability of

applying various transformations on the input image at every iteration of training.

54



2. THEORETICAL BACKGROUND AND TOOLS

2.2 Semantic Segmentation of LiDAR Point Clouds

2.2.1 Point-Based Methods

LiDAR data are naturally represented in a 3D point cloud. Therefore, many ap-
proaches developed for 3D point cloud processing can be applied directly. An early
work byQi, Su, Mo & Guibas (2017) presented a very powerful network named
PointNet, which processes point clouds with raw data from a point cloud as input.
It uses a symmetric function to sums the features of each point and extracts the
most prominent feature for each dimension. While processing the features of in-
dividual points independently by a multi-layer perceptron, all point features are
aggregated through max-pooling layers to generate a global representation. Point-
Net tackles the challenges brought about with permutation and rotation invariance
of point clouds while providing a unified architecture applicable for various tasks
such as object classification, part segmentation, and scene semantic parsing. The
limitation of PointNet, however, is that the deeper features do not span wider
spatial regions and thus fail to capture the local context and interaction among
neighboring points. This issue was solved by Qi, Yi, Su & Guibas (2017), in which
an enhanced version, known as PointNet+ +, was proposed; it consisted of a deep
hierarchical network with sampling, grouping, and the core element of the Point-
Net backbone network. In particular, the improved scheme applies the farthest
point sampling algorithm to select the most spatially distant points as the centers
of local regions so that dimensionality reduction of the data does not lose the key
geometric structures. Then, the grouping module builds the local regions, and the
backbone network recursively learns the features of these regions.

KPConv Thomas et al. (2019) was a pioneering point convolution that acts

directly on point clouds without requiring any intermediate representations. KP-
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Conv’s convolution weights are positioned in Euclidean space by kernel points and
applied to the neighboring input points. It can also be extended to deformable con-
volutions, allowing the kernel points to adapt to the local geometry. Another ap-
proach, Tangent Convolutions Tatarchenko et al. (2018), which proposed another
way for convolutional networks on 3D data operating directly on surface geometry
and unstructured point clouds. In contrast, other methods do not operate in 3D
space directly, projecting 3D coordinates into higher dimensional spaces first. For
instance, LatticeNet Rosu et al. (2019) uses a sparse permutohedral lattice, Point-
Net is leveraged to describe the local geometry of point clouds and embedding
them into the lattice for fast convolutions. LatticeNet is also proposing Deform-
Slice, a learned data-dependent interpolation projecting lattice features back onto
the point cloud.

These techniques were, however, not specifically designed for the unique char-
acteristics of LiDAR point clouds, which are typically sparse but contain a huge
number of points. More recently, a paradigm of point-based techniques has popped
up that adress the semantic segmentation of LiDAR point clouds. One such ap-
proach, Landrieu & Simonovsky (2018), which presented a deep learning-based
framework that enabled semantic segmentation of large-scale point clouds, made
up of millions of points, using superpoint graphs (SPGs). SPGs provide a compact
yet informative representations of contextual relationships between object parts,
that would be further processed by a graph convolutional network. Another work,
Hu et al. (2020) proposed a simple and lightweight neural architecture for seman-
tic segmentation of large-scale 3D point clouds. The proposed approach avoids
complex point selection techniques and uses a random point-sampling approach.
It also introduces a novel local feature aggregation module to expand the recep-

tive field for each point. LiDAR segmentation methods are shown in Figure 2.10.
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Figure 2.9: Nonuniformity of the point clouds. The visual is obtained from Zhang
et al. (2023)

2.2.2 Voxel-Based Segmentation

While the results provided by point-based methods are not bad, most of them
perform poorly, especially when utilised in LiDAR point clouds that have some
special features like large-scale and sparsity. Most of these algorithms have not
been optimized regarding those attributes; hence, they turn out very suboptimal.
Most LiDAR point clouds are extremely sparse, with most of the space filled with
'nothing’. Voxelization is one of these ways of considering this unstructured data,
where point clouds are mapped to a structured format. In the process of vox-
elization, objects are represented by voxels that are nearest to the points in the
cloud. VoxNet Maturana & Scherer (2015) was the first attempt to perform vox-
elization, which transforms unstructured point clouds into forms of regular voxel

grids and utilising 3D CNNs predict semantic labels for the occupied voxels by
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use of standard convolutional operations. Although this approach overcomes the
problem with unstructured point clouds, it still suffers from inefficiencies due to
the sparsity of the voxel grid and high computational complexity associated with
3D CNNs. Non-uniformity of the point clouds illustrated in Figure 2.9

To further improve the efficiency in processing sparse voxels, Su et al. (2018)
introduced SPLATNet, whose main interpolation is executed on the original point
cloud so as to obtain a sparse voxel grid through a splat operation. It then ap-
plies convolution over the occupied voxels and, at the end, interpolates the output
features using a slice operation back to the original point cloud. This approach
is much more efficient since the indexing structure eliminates unnecessary com-
putation for unoccupied voxels only to convolve the occupied voxels. The first
work to tackle large-scale point clouds was that of Rosu et al. (2019) by propos-
ing LatticeNet, which made use of PointNet as backbone. It is designed for fast
convolution of sparse voxels with low computation overhead; it projects the fea-
tures back onto the point cloud through a DeformSlice module. This has been very
effective in handling very large-scale point clouds.

Tchapmi et al. (2017) introduced SEGCloud, an end-to-end semantic segmen-
tation network that combines a 3D fully convolutional network with voxelization.
The point cloud is first voxelized, and then 3D CNNs are applied to generate down-
sampled voxel labels. These voxel labels are transformed back into point labels us-
ing a trilinear interpolation layer. Interpolated scores are combined with point fea-
tures through a 3D fully connected conditional random field and post-processing
to acquire fine-grained semantic information.

However, even after the voxelization process, the LiDAR point cloud has in-
herent sparsity, which leads to sparse and discrete voxelized units. In this way,
it introduces unnecessary computation cost. Moreover, segmenting point clouds

into cubic regions is totally opposite to how a LiDAR sensor captures information.
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PolarNet Zhang, Zhou, David, Yue, Xi, Gong & Foroosh (2020) addresses this is-
sue by introducing a more effective grid representation in the online LiDAR point
cloud semantic segmentation work. It proposes a new LiDAR-specific, nearest-
neighbor-free segmentation method. Rather than using conventional spherical or
bird’s-eye-view projections, PolarNet adopts a polar bird’s-eye-view representation
that evenly distributes points across grid cells in a polar coordinate system.

Building on this, Cylinder3D Zhu et al. (2021) proposes a new framework for
outdoor LiDAR segmentation that uses cylindrical partitioning and asymmetrical
3D convolution networks to explore 3D geometric patterns while preserving the
intrinsic properties of outdoor point clouds. This model provides a backbone for
other downstream tasks like point cloud semantic and panoptic segmentation or
3D detection. The next noticeable approach, Cheng et al. (2021), proposes an
end-to-end encoder-decoder CNN for 3D LiDAR semantic segmentation. The con-
tribution of this work is a new multi-branch attentive feature fusion module in
the encoder and an adaptive feature selection module with re-weighting of the
feature map in the decoder. It focuses on the existence of a number of challenges
that almost all the current methods face, such as high computational complexity
and loss of fine details in smaller instances.

Finally, Spherical Transformer Lai et al. (2023) proposes a method of spherical
partitioning combined with a spherical transformer module to model the global
and local geometric patterns of point clouds for an insightful understanding of

data.

2.2.3 Projection-based Segmentation

Efficiency plays a great role in an autonomous driving context where real-time

LiDAR point cloud processing is needed. While sparse convolution on 3D voxels
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Figure 2.10: LiDAR segmentation methods Camuffo et al. (2022).

reduces the computational overhead to some extent, it is mostly too expensive
for practical applications because of the demanding nature of 3D operations. A
more efficient process would involve projecting the LiDAR point cloud onto a 2D
projection map and carrying out semantic segmentation in this 2D representation.
It can then be projected back in 3D.

RangeNet++ Milioto et al. (2019) leverages range images as an intermediate
representation, integrating a CNN considering the rotating LiDAR sensor model.
A new post-processing algorithm is introduced to reduce discretization errors and
blurry outputs from CNNs, enhancing accuracy further. This work provided full
semantic segmentation of LiDAR point clouds at sensor frame rate and showed,
in practice, suitability for real-time applications quite effectively. Another notable
approach, SalsaNext Cortinhal et al. (2020), builds upon SalsaNet Aksoy et al.
(2020) with a new context module, residual dilated convolution stacks, and a
pixel-shuffle layer while utilising Lovasz-Softmax loss for optimization. SalsaNext

further enhances uncertainty estimation by using a Bayesian approach to compute
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Figure 2.11: Process of the range image generation from a point cloud. The image

is an adaptation from Fan et al. (2021)

the epistemic and aleatoric uncertainties for each point in the cloud, thus allowing
for more robust semantic segmentation in real time. Another end-to-end pipeline,
SqueezeSeg Wu et al. (2018), based on CNNs, generates point-wise label maps
directly from transformed LiDAR point clouds. Next, this segmentation is further
enhanced by using a Conditional Random Field (CRF) implemented as a recur-
rent layer. SqueezeSegV2 Wu et al. (2019) improves the robustness and accu-
racy of SqueezeSeg by modifying the model structure, training loss, and adding
batch normalization, as well as additional input channels. This version also in-
troduces a domain-adaptation training pipeline, enhancing performance on real-

world data. Building on this, SqueezeSegV3 Xu, Wu, Wang, Zhan, Vajda, Keutzer
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& Tomizuka (2020) proposes Spatially-Adaptive Convolution (SAC), which uses
location-specific filters for different neighborhood regions in the projected images,
allowing the network to effectively utilise the spatial features of point clouds. SAC
is efficient and can generalize well, subsuming several prior methods as special
cases. 3D-MiniNet Alonso et al. (2020) offers a fast and efficient approach for
semantic segmentation of LIDAR point clouds by first learning a 2D representation
through a novel projection that captures both local and global information from
3D data.

Then, this representation is used as input for a fully convolutional neural
network to perform 2D semantic segmentation. Meanwhile, FPS-Net Xiao et al.
(2021) leverages the uniqueness of projected image channels to improve the per-
formance on segmentation. It uses an encoder-decoder architecture with an en-
coder that contains a residual dense block of multiple receptive fields, thus pre-
serving detailed modality-specific information and learning the hierarchical fea-
tures of the fused data effectively. KPRNet Kochanov et al. (2020) exploits image
and point cloud segmentation techniques to improve LiDAR segmentation perfor-
mance. It refines the CNN architecture in 2D projection-based methods and em-
ploys KPConv instead of classic post-processing for efficient and accurate genera-
tion of 3D labels. This approach has demonstrated better performance by incorpo-
rating learnable point-wise components. Finally, Rangeformer Kong et al. (2023)
proposes the transformer architecture Vaswani et al. (2017) for LiDAR segmenta-
tion tasks, exploring the challenges and limitations of range view projections for
semantic and panoptic segmentation. It points out three essentials affecting the
performance of range view models: many-to-one mapping, semantic incoherence,
and shape deformation that may provide guidelines for further studies on how to

overcome such challenges.
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2.3 Motion Forecasting

The capability to predict future motion concerning surrounding agents such as
other vehicles, cyclists, and pedestrians is crucial in enabling autonomous vehi-
cles to ensure safe and efficient navigation. It can be expected that proper fore-
casts of motion will keep the vehicle knowledgeable about traffic changes and
correct its behavior accordingly. Coupled with spatial and temporal modeling
techniques, motion forecasting facilitates an informed decision by a vehicle in
real time through route optimization and the understanding of intents from other
agents. This capability is particularly essential when passing through complicated
urban environments where interactions between multiple agents are frequent and

somewhat unpredictable.
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Figure 2.12: Rasterized grid representation (left) and vectorized method (right)

for encoding high-definition maps and agent trajectories Gao et al. (2020).
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2.3.1 Incorporating Map Information for Motion Forecasting

High Definition (HD) maps play a vital role in inferring driving context for motion
forecasting. They are often adapted into specific formats, given the requirements
of prediction models. Mainly, two types of maps are utilised: grid maps represent-
ing the environment and lane maps, providing information about lanes. These can

be seen in Figure 2.12.

Grid Map Approach

The grid map approach, also termed as rasterized representation, divides the envi-
ronment into a grid structure in which each cell includes full details about the sur-
roundings. These are representative of the static road features such as boundaries,
crosswalks, and intersections, plus dynamic objects like pedestrians and moving
vehicles. It gives the machine learning models the input data in a structured,
consistent way efficiently. The combination of real-time sensor data and HD map
information conveys an effective snapshot of the current environment.

However, grid resolution is a trade-off between the level of detail and computa-
tional complexity. High-resolution grids capture finer details but, in return, require
increased processing, while low-resolution grids are easier to use within compu-
tations since many details can be ignored, probably at the cost of losing critical
features about the environment. Despite these challenges, the grid map format
sees extensive use due to its scalability and ease to which prediction algorithms

can be applied to provide a clear spatial overview of the driving scenario.

Lane Map Approach

In contrast, a lane map deals with just plain road lanes, their properties, and fea-

tures a vectorized view of the road network. Lane maps capture some important
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information such as the lane boundary, width, type (e.g., roundabouts, turning,
or merging lanes), and the traffic flow direction while providing more structured
notions of road layout to the autonomous systems. It is highly useful in complex
driving scenarios, like crossroads or multi-lane roads, where lane relationships
and the positioning of a vehicle are critical for accurate trajectory prediction.
Lane maps are created to be able to represent the hierarchical structure in the
road; therefore, they can be useful in navigating complicated networks of roads.
Since an autonomous system has already been trained with this detailed infor-
mation, it could anticipate how vehicles will interact with the road infrastructure
for more accurate trajectory predictions. This representation is particularly well-
suited to those environments where strict lane adherence is required and often

complements the broader view from grid maps.

2.4 Datasets

Datasets plays a central role in the evaluation of an algorithm. These are not
simply pools of random, unrelated information elements but are a coherent set of
ingredients which accurately represent the reality in which the method is to be
validated and tested. Ideally, a dataset should sample information directly from
the same reality, provided the circumstances allow it. Well-structured datasets en-
able the programmatic assessment of an algorithm’s performance in comparison
to others under identical conditions (benchmarking). With the widespread adop-
tion of machine learning techniques, especially deep learning networks that feed
directly on raw data as part of the training procedure, the importance of having
access to meaningful and ample datasets has become increasingly crucial. More-
over, datasets should ideally be labeled, providing the ground truth from which

the algorithm can simultaneously learn to classify or regress and be evaluated.
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Figure 2.13: Visualisation for the SemanticKitti dataset. The visual is obtained
from Behley et al. (2019)

In the context of this thesis, datasets are essential for the development and
evaluation of autonomous driving systems. This work used open-sourced and our
creation of synthetic datasets for model training and performance evaluation. For
instance, segmentation and motion forecasting are critical tasks in autonomous
driving, and the availability of labeled datasets for these purposes is varied. Al-
though driving scenarios can differ from one region to another, the goal is to
demonstrate the general efficiency and performance of the models. The use of
simulation data offers several advantages, such as the ability to generate diverse
and controlled scenarios, augment data efficiently, and safely test edge cases that
might be rare or dangerous in real-world settings. Throughout this thesis, the
datasets used for the experiments are elaborated upon. Some visuals from the

SemanticKitti dataset are shown in Figure 2.13.




CHAPTER 3

Integrating Synthetic Data with Real-World Data for

LiDAR Segmentation

This chapter presents a hybrid LiDAR segmentation methodology that ef-
fectively combines synthetic and real-world datasets. The motivation to-
ward this work was based on enhancing robustness and generalization
of the segmentation models. In this work, synthetic data was created in
a controlled autonomous driving simulation environment to complement
real-world data from urban driving scenarios. It will be shown in this
chapter by utilising spherical projection of the LiDAR point clouds and the
incorporation of synthetic data and advanced deep neural network ar-
chitectures boost the performance considerably. The experimental results

underline the advantages of this hybrid

3.1 Motivation

Full autonomy in self-driving requires comprehensive scene understanding. Se-
mantic segmentation-a task that assigns a relevant class label to each sensory data

point-plays an important role in retrieving detailed situational awareness. For ex-
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ample, the drivable area together with the position of preceding vehicles allow
safe maneuver planning and decisions, strongly facilitating autonomous driving.

This would imply that autonomous vehicles should make valid and robust pre-
dictions, complemented by reliable estimates of uncertainty. For this, there is a
need for numerous sensors capturing broad knowledge of the scene. The most ab-
solute significance of redundancy in sensory data cannot be emphasized enough
because the failure of one without a backup might lead to really catastrophic or
financially significant outcomes. Furthermore, training and testing of ML models
require much diverse fully labeled data Geiger et al. (2012).

During the last decade, DNNs have improved real-time semantic segmentation
substantially both in accuracy and reliability. Even though most algorithms fo-
cus their efforts on processing camera images Poudel et al. (2019), Kendall et al.
(2015), there is a growth of interest for the semantic segmentation of 3D LiDAR
data Wu et al. (2018), Milioto et al. (2019). Unlike the camera images that are
densely constituted with a grid structure, point clouds resulting from LiDAR are
conventionally sparse, unstructured, and non-uniformly sampled. In spite of these
challenges, LiDAR has greater field of view while measuring accurate distances,
hence making it a crucial sensor in autonomous driving.

LiDAR scanners are one of the most deployed types of sensors in most au-
tonomous driving systems; it performs very well regardless of changes in illumi-
nation. This is one of the major reasons for its soaring popularity in perception
applications. These LiDAR scanners provide a point-cloud representation of the
environment, and such representation is useful for high-level tasks in autonomous
driving.

These point clouds can be utilised for a wide variety of tasks including but not
limited to: point cloud segmentation Geiger et al. (2012), Qi, Su, Mo & Guibas
(2017), 2D or 3D object detection Zhou & Tuzel (2018), Chen, Ma, Wan, Li &
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Xia (2017), Qi et al. (2018), multi-modal fusion Zhou, Sun, Zhang, Angueloy,
Gao, Ouyang, Guo, Ngiam & Vasudevan (2020), Jaritz et al. (2020), simultaneous
localization and mapping (SLAM) Chen et al. (2019), Wu et al. (2018). This work
focuses on the point cloud segmentation and attempts to label each point with its
object type from the LiDAR scanner output. Effective segmentation of the point
cloud is necessary for identifying road objects, such as pedestrians, vehicles, and
lanes, which in turn are needed to accomplish tasks like autonomous driving. This
chapter particularly targets identifying cars, cyclists, and pedestrians to enhance
semantic understanding for the safe and efficient operation of an autonomous

vehicle.

3.2 Related Work

Fully autonomous vehicle development has gained significant momentum over
the past decade. Such an ambitious task requires overcoming a number of sub-
stantial challenges: small mistakes may have disastrous results. Large-scale and
thoroughly annotated datasets play an important role in training and fine-tuning
self-driving systems. Such big datasets have been proven to be very important
in the learning of high-level image representations, especially with the popular-
ity of deep learning methods. In the last years, several large datasets have been
published targeting various aspects: lane tracking, semantic and instance segmen-
tation, object tracking, and trajectory prediction. These datasets try to solve differ-
ent complexities that computer vision systems face in the context of autonomous
driving.

Cityscapes Cordts et al. (2016) provides a comprehensive benchmark suite
to enhance semantic urban scene understanding, focusing on semantic and in-

stance segmentation challenges. This dataset includes pixel-level fine annotations
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and instance-level labels for vehicles and pedestrians, derived from diverse stereo
video sequences collected across 50 cities. Neuhold et al. (2017) proposed the
Mapillary Vistas dataset, which is larger and more diverse set of labeled data
compared to Cityscapes. Ros et al. (2016) offers a means of obtaining real-
istic synthetic images with pixel-level annotations using a virtual environment.
They generated the SYNTHIA dataset, including a vast collection of synthetic im-
ages for urban scene semantic segmentation, paired with automatically generated
class annotations. Their experiments with deep convolutional neural networks
demonstrated that incorporating SYNTHIA into the training process significantly
enhances semantic segmentation performance on real-world images. The Robot-
Car dataset Maddern et al. (2017) includes data from six cameras, LiDAR, Global
Positioning System (GPS), and an Inertial Navigation System (INS), collected over
more than a year in central Oxford, aiming to create a benchmark suite akin to
KITTL

The KITTI dataset Geiger et al. (2013) includes the measurements of several
sensors; among them are LiDAR and cameras. Since its creation, many different
tasks and data were added to KITTI, and it became the ground for many exper-
imental comparisons under various settings. Works like Wu et al. (2018), Aksoy
et al. (2020) use KITTI for 3D LiDAR-point cloud segmentation. For the most part,
there are RGB-D-based datasets that merge depth sensing with RGB data, which
have driven a significant advance in the interpretation of point clouds, including
semantic segmentation. ShapeNet Chang et al. (2015) stands out for point clouds
of single objects, but this data may not transfer directly to other domains.

The KITTI dataset Geiger et al. (2013) includes data from several different sen-
sors, such as LiDAR and cameras.Since its creation, many different tasks and data
were added to LiDAR, and it became the ground for many experimental compar-

isons under various settings. Some studies, such as Wu et al. (2018), Aksoy et al.
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(2020), use KITTI for 3D LiDAR point cloud segmentation. ShapeNet Chang et al.
(2015) stands out for point clouds of single objects, but this data may not transfer
directly to other domains. The Paris-Lille-3D dataset Roynard et al. (2018) pro-
vides aggregated scans with point-by-point annotations for 50 classes, 9 of which
are used for evaluation. Behley et al. (2019) created the SemanticKITTI, which is
the largest dataset focuses on 3D LiDAR point cloud segmentation, offering point-
wise semantic and instance annotations for the KITTI point cloud sequences.

Recent advances in semantic segmentation of 3D LiDAR point clouds have
leveraged deep neural network architectures Wu et al. (2018), Milioto et al. (2019),
Qi, Su, Mo & Guibas (2017). These sophisticated methods differ not only in net-
work architecture but also in the encoding of point cloud data. High-performance
segmentation techniques typically employ fully convolutional networks Long et al.
(2015), encoder-decoder architectures , or multi-branch models Poudel et al. (2019)
in terms of network design. The main distinction among these architectures lies
in how features are encoded at various depths and subsequently integrated to
reconstruct spatial information.

There are two prevalent methods for representing irregular and unordered 3D
LiDAR data: point-wise representation and projection-based rendering.

Point-wise approaches Pointnet Qi, Su, Mo & Guibas (2017), and Qi, Yi, Su
& Guibas (2017) process LiDAR points without additional modifications or pre-
processing. While effective for small point clouds, these techniques struggle with
large LiDAR datasets without supplemental information from other sensors due
to limited processing capacity. To facilitate point-wise processing, complementary
cues such as camera image data have been successfully introduced Aksoy et al.
(2020).

On the contrary, projection-based methods convert 3D point clouds into several

different representations, such as voxel cells Zhou & Tuzel (2018) and multi-view
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projections. Multi-view representation projects a 3D point cloud onto multiple 2D
surfaces from different virtual camera perspectives, with each view processed by a
multi-stream network. Voxel representation approaches convert a point cloud into
a 3-dimensional volumetric form and assign each point to the relevant voxel Jaritz
et al. (2020). But, the sparsity and irregularity of point clouds usually lead to
repetitive calculations with voxelized data, as many voxel cells can remain empty.
For efficiency, projecting 3D point clouds onto a 2D image plane and transforming
point-cloud segmentation into conventional image segmentation has been sug-
gested Wu et al. (2018). Subsequent refinements to the projection-based method
have made it a preferred solution for large-scale point cloud segmentation Qi, Su,
Mo & Guibas (2017), Milioto et al. (2019).

Unlike other projection-based and point-wise approaches, the 2D projection
is more compact and dense, making it convenient for real-time computation and
processing by typical 2D convolutional layers. Therefore, we project our 3D point

cloud onto a 2D sphere prior to feeding it into the CNN.

3.3 Methodology

3.3.1 Dataset Creation

Creating a large dataset akin to ImageNet has significant challenges and is usually
time-consuming. Therefore, synthetic data and simulation data become essen-
tial components in this endeavor. To produce our synthetic data for this study,
an autonomous ego vehicle was equipped in the CARLA simulator with RGB, se-
mantic, and depth cameras, as well as a semantic LiDAR scanner, all operating
synchronously to generate matching data. The semantic LiDAR scanner, although

lacking intensity information, provides point-wise instance and semantic ground-
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truth data. The data collection occurred in Town-3, the largest and most complex
city within the simulator. A top-down view of Town-3 is illustrated in Figure 3.1.
Additionally, the city included other vehicles that drive autonomously and adhere
to the Highway Code. Various sensors in the simulator were utilised to gather
information on cars, cyclists, and pedestrians, enabling a wide range of research
applications, including sensor fusion. The consistency between points and images

also facilitates sanity checks on the collected data.

Figure 3.1: Top-down view of Town-3 in the CARLA simulator.

The rotation of the semantic LiDAR’s laser rays was simulated using ray cast-
ing, with 64 vertical channels producing raw data that includes the point’s coor-
dinates, angle of incidence, surface normal, instance, and semantic ground-truth.
The sensor’s horizontal rotation was calculated, and ray casting was performed to

generate a 3D point cloud at each step. With a rotation frequency of 10 Hz and a
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vertical field of view of 26.9 degrees (+2 degrees for the upper and -24.9 degrees
for the lower), the sensor emits over 1.3 million points per second, covering a
range of up to 100 meters, similar to the capabilities of the Velodyne HDL-64E.
The CARLA simulator was used to generate a synthetic dataset comprising over
8000 samples. This dataset includes a number of point clouds comparable to the

8545 point clouds in the KITTI training set, as well as RGB images, semantically

segmented images, depth images, and their associated 3D LiDAR point clouds.

Figure 3.2: CARLA Town3 Topology.

The Town-3 topology map can be seen in Figure 3.2, providing an overview
of the simulation environment used for data collection. Figure 3.3 shows Town-3
recorded from different angles, offering additional perspectives of the simulated
city.

Figure 3.4 illustrates the vehicles detected with bounding boxes, demonstrating
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Figure 3.4: Vehicles detected with bounding boxes in Town-3.

the capability of the detection system within the simulated environment.

Figure 3.5 shows several different image types recorded during the dataset
generation process. The first two columns display the screens captured by the RGB
camera. The two columns in the middle depict the semantic segmentation images
corresponding to the RGB ones, depth images captured by the depth camera are
given in the final two columns.

A point cloud generated by the LiDAR scanner in the virtual environment is

given in Figure 3.6, illustrating the detailed information captured by the sensor.
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Figure 3.5: Some images recorded during the dataset creation process with dif-

ferent sensors. The first 2 columns show the screens captured by the RGB camera
mounted on the vehicle. The middle columns show the semantic segmentation
images corresponding to the RGB images. The last 2 columns display the depth
images corresponding to the RGB images collected by the depth camera.

Figure 3.6: Example point cloud obtained from the simulation environment.
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Table 3.1: LiDAR parameters.

Parameters Values
Channels 64
Range 100 m
Points per second 1.35m
Rotation Frequency 10 Hz
UpperFovLimit 2.0°
LowerFovLimit —24.9°

Figure 3.7 shows an RGB image captured during the dataset creation process,
and also displays its corresponding semantic LiDAR point cloud. These figures
highlight the multi-sensor data collection and the alignment between different

sensor modalities.

(a) RGB Image (b) LiDAR Point Cloud
Figure 3.7: RGB camera image and the corresponding LiDAR point cloud captured

from the simulator.

The LiDAR parameters, as applied within the simulation environment, are

given in Table 3.1. These include, but are not limited to the number of chan-
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nels, range, points per second, rotation frequency, and the field of view limits. The
setup below presents accurate and reliable data collation for the synthetic dataset.

Classifications for cyclists were one of the more noticeable challenges while
creating this dataset. In the simulation system, due to a lack of a separate class
for cyclists, they fall under the category of a vehicle. Fundamentally, this can-
not be said to be a limitation in the simulation software, as it reflects the in-
adequateness present in the classification system itself. To overcome this, we de-
veloped a method to distinguish cyclists from cars within the simulation. This will
enable us to separate data belonging to the cyclists and carry out an analysis of
them in greater detail, with respect to their behavior and movements in this virtual

environment.

3.3.2 Spherical Projection of the LiDAR Point Cloud

Conventional convolutional neural network architectures work with images that
can be represented as a three-dimensional tensor with dimensions H x W x C.
Here, H and W represent the height and width, respectively, while C' represents
the number of encoded features, such as RGB values when C' = 3. LiDAR point
clouds comprise of cartesian coordinates z, y, > and can also include features such
as intensity and RGB values. But, the distribution of LiDAR point clouds differs
from typical RGB image pixels, as it is typically sparse and irregular. Some re-
search approaches handle this by discretising the data into voxels and engineering
features like disparity, mean, and saturation. One of the challenges with directly
manipulating point cloud data is the absence of a proper ordering, which compli-
cates the learning of order-invariant feature extractors. As a result, one can infer
that naively discretising a 3D point cloud into voxels results in many empty voxels,

resulting in inefficient processing and redundant computation.
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Figure 3.8: Steps followed during the work can be summarized as the diagram
above. We have used CARLA autonomous driving simulator to collect our synthetic

data.

In order to achieve a more compact representation and tackle the aforemen-
tioned problem, Kendall et al. (2015) projects LiDAR point cloud data onto a
sphere. This operation converts the sparse, irregular data into a dense, grid-like
format. The LiDAR scanner’s rotating shape resembles a hollow sphere, with a

projection equation as follows:

, z . f
H:Mﬁ]ﬂ(m), Q—l&HJ (3.1)

, y 7 @
=arcsin | — |, ¢=|-— 3.2
¢ (-,,f:r.?—l—yﬂ) ? Lﬁf?’J 52
In these equations, # and ¢ are the azimuth and zenith angles, respectively,

as illustrated in Figure 3.8. The Af and A¢ discretization resolutions and (4, ¢)
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are the coordinates of a point on a two-dimensional spherical grid. This approach
creates a 3D tensor with dimensions H x W x C by applying this projection to
each point in the LiDAR data.

In our study, data is collected from a semantic LiDAR using CARLA simulator,
which has 64 channels. We consider a 90-degree field of view and divide it into
512 grids, with W = 512. C denotes the number of features associated with each
point. Each LiDAR point includes four features: (z,v,2) coordinates and point
intensity, with a range r = /22 + 12 + 22. By processing the data in this manner,
point cloud segmentation can be treated as a traditional image segmentation task

handled using standard convolutional neural networks.

3.3.3 Network Architecture

4

Figure 3.9: Adopted from Wu et al. (2018) convolutional encoder-decoder neural

network architecture with a CRF at the end is given in this figure.

SqueezeSeg, a derivative of SqueezeNet landola et al. (2016), is a lightweight
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CNN that achieves accuracy comparable to AlexNet Krizhevsky et al. (2012) with
significantly fewer parameters, approximately 50 times less. It offers a reliable,
fast, and comprehensive end-to-end approach for accurately segmenting road ob-
jects from LiDAR point clouds.

SqueezeSeg processes an input tensor of dimensions 64 x 512 x 5. The layers
of SqueezeNet, ranging from convla to fire9, are adapted for feature extraction
purposes. Fire module is shown in Figure 3.10. SqueezeNet uses max-pooling lay-
ers to downsample intermediate activation maps in both width and height dimen-
sions. But, since the height of the input tensor is notably smaller than its width in
a projected point cloud, downsampling is limited to the width dimension only. The
fire9 layer outputs a downsampled feature map that encapsulates the semantics of

the point cloud. In order to upsample the activation maps in the width dimension

"1 x 1 n:.t:lmuluuuu Flli.ra ""‘\

frnf nf nf
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= filters
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Figure 3.10: Fire module Iandola et al. (2016).

and generate label predictions with full resolution for each point, deconvolution
modules (more accurately termed "transposed convolutions") are employed. As it

is shown in Figure 3.9, skip-connections are utilised to merge upsampled feature
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maps with lower-level feature maps of identical size. The final output probabil-
ity map is produced by a convolutional layer (conv14) equipped with a softmax
function. A recurrent Conditional Random Field (CRF) layer further refines this
probability map.

During image segmentation process, CNN models tend to lose low-level infor-
mation in the process of downsampling, which ends up with label maps lacking
clear boundaries. This behavior is also observed in the proposed network, ne-
cessitating the integration of both high-level semantics and low-level features to

achieve accurate point-wise label predictions.

3.3.4 Conditional Random Field

Capturing both the high-level context and low-level details of an object and scene
are necessary to have accurate label prediction. Providing label consistency is cru-
cial, such as assigning the same label to points with similar intensity and proximity.
A CRF is utilised to enhance the label map generated by the CNN. The CRF model
employs an energy function given in Equation 3.3 to refine label predictions for a

given point cloud, where ¢; represents the predicted label of the i-th point in the
cloud.

E(c) = E wi(e) + E bij(es, ¢5), (3.3)

The "unary potential" term, u;(e;) = —log P(c;), reflects the CNN classifier’s
predicted probability P(c;). The binary potential terms describe the "penalty”
for assigning different labels to points that are otherwise similar, expressed as
bii(Cir €5) = p(ci, €5) Yom_y wmk™ (fi, f5), where p(ci ;) = 1if ¢ # ¢; and 0 other-

wise, k™ is the m-th Gaussian kernel dependent on the features f of points i and
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Figure 3.11: Conditional Random Field structure implemented as a recurrent

neural network layer.

i, and w,, is the corresponding coefficient. Similar types of Gaussian kernels have

been utilised in Wu et al. (2018).
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The first term is influenced by both the angular position p(f, ¢) and the carte-
sian coordinates (z, v, z) of two locations, while the second term is affected only
by the angular positions. g,, 05, and ., are three empirically chosen hyperparam-
eters. Additional features, such as intensity and RGB values, can also be included.
A refined label assignment is achieved by minimizing the CRF energy function.
An overview of the mean-field iteration implementation as an RNN module is pre-

sented in Figure 3.11. The initial probability map for the CRF module is derived
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from the CNN model’s output.

3.4 Evaluation Outcomes

3.4.1 Evaluation Metric

For class-level segmentation tasks, our model performance is evaluated based on
each predicted point label against its corresponding ground truth annotation. Pre-
cision (P), Recall (R), and intersection-over-union (loU) values are reported our
evaluation measurements:

Precision is the measure of the accuracy of the positive predictions of the
model. That is, the ratio of correctly predicted positive observations to all the

observations that are predicted positive. It is defined as follows:

| BNnG;|

Pr; = : (3.5
| B |

where P, is the predicted point set of class i and G; is the equivalent ground truth
set.

Recall evaluates the model’s ability to identify all relevant instances, rep-resenting
the proportion of correctly predicted positive instances among all actual positive

instances. It is defined as follows:

| PG|

Recall; = \
| G |

(3.6)

where P is the predicted point set of class i and G; is the equivalent ground truth
set.

Intersection-over-Union (IoU) basically calculates the measure of overlap be-
tween the prediction and ground truth sets, providing more information on how

much of their intersection belongs to the union. It is formally defined as follows:
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(3.7)

where | . | is the total number of points in a set, P, represents the predicted point
set of class i, and G; is the corresponding ground truth set.

We can also define precision and recall in terms of True Positives (TP), False
Positives (FP), and False Negatives (FN) to make it clearer:

Precision can be defined as the ratio between true positive instances and the

value obtained by summing true positive and false positive instances:

TF,

B=TRyFR

(3.8)

where T'F; represents true positives, and F'P; represents false positives for class i.
Recall is defined as the ratio of true positive instances to the total sum of true

positive and false negative instances:

TF,

Ri=——— 3.
= TP L FN. (3.9)

where TP, represents true positives, and FN; represents false negatives for class
i.

We primarily use the IoU score as our main accuracy metric in our experiments.

3.4.2 Results

Figure 3.12 shows a loss value for every training step of the model. The x-axis
shows batch step number ranging from 0 to 30,000, while the y-axis represents
the loss value. Figure 3.13 illustrates the progression of the loss value during the
validation phase, providing insight into how well the model generalizes to unseen

data.
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Figure 3.12: Training loss per batch step observed during the process.
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Figure 3.13: Validation loss per batch step observed during the process.

The initial value of the loss is high, as expected, hence representing that the

model is far from correctly predicting. As training continues, the loss value starts
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to decrease further, showing that the model actually learns from the data to
present better results. The model’s capability to reduce the error margin in the
prediction is exactly shown in the graph with a decreasing trend, effectively signal-
ing that the model is learning. Comparison of training and validation loss curves
demonstrates that overfitting is not occurring in the model. Both curves exhibit a
consistent downward trend, reflecting effective learning during training. Although
the training loss decreases slightly faster, the validation loss closely follows with
minor fluctuations, which is expected due to the variability of unseen data. Im-
portantly, the validation loss does not diverge significantly from the training loss
at any point, indicating that the model generalises well to unseen data.

A reduced loss value indicates an improved accuracy of the model over time as
it learns to make better predictions based on the training data. Ideally, the goal is
for this value of loss to converge into stability at a minimum value, which would
mean the model has been sufficiently trained and can make correct predictions on
newer, unseen data.

The results for only the KITTI dataset are presented in Table 3.2. As mentioned

in the previous section, our primary evaluation metric is IoU.

Table 3.2: Network’s segmentation performance on KITTI data. The table includes
metrics for precision (P), recall (R), and intersection-over-union (IoU), with IoU

being the primary measure of accuracy. All values are expressed as percentages.

KITTI

P R IoU
Car 58.9 95.0 57.1
Cyclist 35.7 45.8 25.1
Pedestrian 45.2 29.7 21.8

87



3.4. EVALUATION OUTCOMES

Table 3.3: Network’s segmentation performance on KITTI data combined with

our synthetic data. All values are expressed as percentages.

KITTI+CARLA
P R IoU
Car 70.2 99.3 69.9
Cyclist 44.5 87.3 44.4
Pedestrian 38.7 84.1 38.5

Our synthetic point cloud data collected from the CARLA simulator does not
include intensity information. To examine the impacts of training with synthetic
data, the model was initially trained on the KITTI training set without including
intensity values and validated on the KITTI validation set. Subsequently, we com-

bined our CARLA dataset with the KITTI training data and retrained the model.
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Figure 3.14: IoU values of the object classes when an equal amount of synthetic

data as the amount of real data is used.
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The results over integrated dataset are shown in Table 3.3. IoU values through-
out the training process are shown in Figure 3.14. The network’s segmentation
performance for car, cyclist, and pedestrian classes improves significantly with the
addition of our synthetic data, as shown in Table 3.2 and Table 3.3. The results
indicate a notable boost in accuracy compared to training solely on the KITTI
dataset.

Furthermore, when compared to KITTI+GTAS (GTAS is another synthetic dataset
which is collected from the GTAS video game) data as is shown in Table 3.4, which
did not include cyclist and pedestrian classes, our synthetic dataset enhances the
network’s performance and outperforms it. Figure 3.15 displays a visualization

comparing the segmentation output of the network we trained on the combined

KITTI and our synthetic point cloud data with the ground truth labels.
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Figure 3.15: Predicted labels are compared to actual, correct labels. The network
accurately identifies objects not present in true labels, in addition to correctly

identifying labeled objects.
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Table 3.4: Comparing network segmentation performance on combined KITTI
and our data with KITTI+GTAS data on proposed network and validated on KITTI
validation data.

KITTI+GTAS Data KITTI+CARLA
P R IoU P R IoU
Car 68.6 02.8 66.0 70.2 09.3 69.9
Cyclist N/A N/A N/A 44.5 B7.3 44.4
Pedestrian N/A N/A N/A 38.7 84.1 38.5

3.4.3 Ablation Study

In this ablation study, we investigated the effect of the amount of simulation data
on the network performance. By training the network with 50% less synthetic data
than real data, we achieved the results in Table 3.5 and Figure 3.16. In particular,
the results in Table 3.5 and Figure 3.16 highlighted that even with fewer synthetic
data, the performance of the network outperformed results obtained by training

the network only on the KITTI dataset.

Table 3.5: Segmentation performance of the network on the classes using only an
amount of 50% synthetic data together with the real data and its comparison to

network’s performance on only real world data.

KITI Data KITTI+CARLA
P R IoU P R IoU
Car 58.9 95 57.1 62.7 95.7 65.6
Cyclist 35.7 45.8 25.1 375 55.8 311
Pedestrian 45.2 20.7 21.8 375 44.6 27.1
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Figure 3.16: IoU values of the classes with less amount, 50%, of synthetic data.

Note that accuracy values decreased compared to training on an equal amount
of synthetic and real data. This proves that the synthetic data will significantly
enhance the network’s accuracy, even though its benefits diminish when drastically
lowering the quantity of synthetic data. The tables below show a few specific,

class-by-class comparisons of network performance metrics: precision, recall, IoU.

3.5 Conclusion

This chapter had contributions to the integration of synthetic data with real data
in capturing better neural network accuracies within the context of autonomous
driving. Deep neural network architecture was modified in order to combine syn-
thetic data from simulator with real-world point cloud data. Experimental results
showed that this hybrid training, further validated on real-world KITTI data yields
significant performance improvements compared to previous methodologies that

employed GTA-5 data. This probably is because of reduced noise in our synthetic
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dataset. Also, the fact that we focused on the main task of classifying cars, cyclists,
and pedestrians significantly improved segmentation accuracy.

The findings of this chapter underscore the importance of leveraging synthetic
data to address data scarcity and variability in real-world scenarios. The demon-
strated ability of synthetic datasets to enhance segmentation performance opens
opportunities for broader applications, including the classification of additional
objects like vegetation or infrastructure elements. This work highlights the utility
of hybrid training paradigms for improving object differentiation and classification
in complex transportation environments.

The insights gained from this chapter laid the foundation for exploring inno-
vative approaches in autonomous driving perception tasks, shaping the research
directions presented in subsequent chapters. Specifically, the success of hybrid
training motivated a deeper investigation into architectures that can model com-
plex spatial relationships across diverse datasets. The need for robust feature
extraction, evident in this chapter, inspired the adoption of VViTs for their capa-
bility to capture both local and global context in point cloud segmentation tasks.
This transition builds on the findings about leveraging data diversity and architec-
tural modifications to enhance segmentation tasks. By building on the methods
and challenges addressed here, the next chapter delves into leveraging advanced
architectures to further refine segmentation performance. Furthermore, the ex-
ploration of synthetic data integration influenced our approach to multi-object
tracking and motion forecasting by demonstrating the value of hybrid datasets for
improving accuracy and robustness.

Future research can expand upon the contributions of this chapter in several
meaningful ways. Refining the synthetic data generation process to cover a wider
range of environmental conditions and traffic scenarios could further enhance

model generalization. Additionally, integrating multi-modal data presents an av-
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enue for capturing a more holistic view of the scene. Such efforts could not only
improve segmentation accuracy but also lay the groundwork for better perception
systems capable of handling diverse real-world conditions.

Beyond segmentation, this chapter also lays the foundation for advancing au-
tonomous driving systems’ perception pipelines. The method discussed here pro-
vide a stepping stone for addressing downstream tasks such as tracking and mo-
tion forecasting. The hybrid training strategies and architectural modifications
developed here align with the broader goal of creating reliable, robust percep-
tion frameworks for autonomous systems, contributing directly to safer and more
efficient driving solutions.

In summary, this chapter demonstrated the potential of synthetic data integra-
tion in improving segmentation accuracy and introduced techniques that address
critical challenges in real-world applications. By linking the findings here with
subsequent advancements in architectural exploration, this work sets the stage for
further innovations discussed in later chapters, forming a cohesive narrative in the

development of advanced perception systems for autonomous driving.
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CHAPTER 4

LiDAR Segmentation and Vision Transformers

This chapter introduces an advanced framework for segmenting LiDAR
point clouds using vision transformers that can enhance state-of-the-art
autonomous driving systems. Different from traditional approaches, which
often rely on the use of CNNs, this approach will exploit the strengths of
ViTs in modeling challenging spatial dependencies without requiring pre-
training. This framework projects the unstructured 3D LiDAR data into
structured 2D format space using spherical projection techniques, thus
making it appropriate for the ViTs. Besides, the performance of the pro-
posed method is further evaluated on a multitask learning setup: two
jointly trained ViTs learn feature representations and perform segmen-
tation tasks with high potentials for improved accuracy in real driving
scenarios. This chapter highlights the trend of advantages of Vil5s in the
handling of LiDAR data and emphasizes that they can outperform tradi-
tional approaches.
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4.1 Motivation

The self-driving car has to have an in detail understanding of its surroundings
to gain absolute autonomy. Semantic segmentation has a huge impact on this
that it categorizes the input from various sensors that highlights the safe route to
be taken by the vehicle in such a way that other vehicles around it are located.
This capacity is expected by the artificial intelligence of the vehicle in order to
make decisions effectively through appropriate interpretation of the real world.
Moreover, the collection of a large amount of annotated data from different types
is an essential pre-requisite for the training as well as validating phases of many
applications’ ML models in order to make their performances robust in dynamic
and complex situations Geiger et al. (2012).

In recent years, much attention has been devoted to real-time semantic seg-
mentation, while the evolution of deep neural networks has substantially im-
proved the accuracy and reliability in this field. Segmentation performance in
most of the presently proposed algorithms relies on the dense, structured nature
of the camera images’ pixel grid Poudel et al. (2019), Kendall et al. (2015). Se-
mantic segmentation on 3D LiDAR data is comparably less explored to date as
opposed to image-based approaches Wu et al. (2018), Milioto et al. (2019).In the
case of LiDAR point cloud data, including rich representation of a 3D environ-
ment, it is sparse, unstructured, and noisy; hence, its direct processing in view of
segmentation tasks poses a challenging task.

Overcoming these challenges required various ways of converting the raw data
from point clouds into more structured forms like voxel grids and mesh models.
Recently, owing to its efficiency in LiDAR handling for semantic segmentation,

spherical projection has attracted much attention. Such an approach simplifies
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such complicated 3D data into a 2D format that is more manageable for process-
ing by neural networks. Historically, CNNs have dominated the architecture in
image recognition and served as the foundational approach in the field of com-
puter vision Krizhevsky et al. (2012). Inspired by the human visual system itself,
CNNs perform impressively on object detection and semantic segmentation Long
et al. (2015), both of which require comprehension and classification of image
data. More recently, the family of models that were considered successful was
challenged by the emergence of a new paradigm with so-called ViTs, which have
given a new impulse in the computer vision area by applying the principles of
transformer models—originally designed for natural language processing—to the
analysis of images Dosovitskiy et al. (2020).

Procedures involved in ViTs differ from the procedures involved in CNNs, be-
cause, while all pixels are processed simultaneously and not hierarchically; it al-
lows a broader and more global perception of the content of an image Carion
et al. (2020). This property enables ViTs to model long-range dependencies with
variable-length inputs, as it has never been easier before; therefore, it makes them
highly suitable for most visual tasks. Indeed, ViTs have given state-of-the-art re-
sults on many benchmarks outperforming CNN in several domains: image classi-
fication, object detection, semantic segmentation Zhang et al. (2021). However,
here it is worth mentioning that ViT needs a large dataset for their training because
they tend to be more data dependent Touvron et al. (2021).

With these considerations in mind, exploring applications of ViTs to the area
of autonomous driving, and, in particular, with LiDAR data for semantic segmen-
tation, presents great avenues of research. That is, the high-resolution capability
of LiDAR sensors combined with sophisticated dependency modeling by ViTs have
the potential to significantly enhance the accuracy of segmentation and overall
performance of self-driving vehicles.
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In this chapter, we introduce a new approach for point cloud segmentation,
which is based on the combination of spherical projection methods with Vision
Transformer networks. Our methodology bridges 3D LiDAR data into 2D images
by spherical projection and thus opens the door for segmenting tasks using a class
of ViTs that have demonstrated state-of-the-art performance in numerous com-
puter vision applications Milioto et al. (2019). The idea of combining both tech-
niques is to provide a robust and adaptive framework of point cloud segmentation,
increasing the accuracy and efficiency of autonomous driving systems. The three

stages from the proposed methodology are depicted in Figure 4.1.

Point Cloud Spherical Projection Semantic Segmentation

Figure 4.1: Block diagram of the approach.

4.2 Related Work

Deep learning has recently gained considerable momentum for solving point cloud
tasks, including segmentation. Initial efforts were primarily put into image-based
segmentation methods. However, due to the rapid growth of LiDAR technology, it
is now well established that the 3D point clouds capture depth information with
unprecedented accuracy. This fact finally brought real attention to the peculiar
difficulties of LiDAR data: a scarcity of large-scale datasets and computational
expenses for handling it.

The usual way to handle them is by voxelizing the point cloud data and then
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taking the 3D CNN in for further processing data. These representation models
possess good spatial relation modeling within the voxel grid, hence, enabling one
to segment 3D space more effectively. However, the voxel-based methodology also
comes with its problems; it typically has highly dimensional issue and computa-
tional overhead is tremendous, finding applications nowhere near real time.
Other alternatives could project the point cloud onto a 2D plane, similar to
creating an RGB image, and perform segmentation using 2D CNNs. This whole
procedure lets the computation be efficient, decreasing the complex processing
of 3D information. However, it has the drawback of having the tendency to lose
important 3D spatial information relevant for understanding the complete scene
geometry. In the short term, works have introduced this weakness by combining
the representations from both 2D and 3D data-point projections on multiple 2D
planes from different perspectives. These projected and concatenated images are
first processed by 2D CNNs that leverage both depth and spatial context, therefore

providing a wider contextual comprehension of the environment.

4.2.1 LiDAR and Semantic Segmentation

In recent years, semantic segmentation has progressed quite a lot, especially for
the domain of autonomous driving, where correctly understanding the scene is
crucially important. Much of this improvement owes a debt to two factors: deep
learning methodologies, and huge datasets, such as CamVid Brostow et al. (2009),
Cityscapes Cordts et al. (2016), and Mapillary Vistas Neuhold et al. (2017). These
have paved the way for sophisticated neural network models such as Deeplab V3
Chen, Papandreou, Schroff & Adam (2017) and PSPNet Zhao et al. (2017) which
would provide high-quality segmentation output.

Due to the fact that prior to large-scale LiDAR datasets, methods for point
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cloud segmentation were comparatively less developed. Recently, work pioneering
in this arena was done by Wu et al. (2018), by developing the SqueezeSeg net-
work. This was further fine-tuned and improved to create the SqueezeSegV2 Wu
et al. (2019) and SqueezeSegV3 Xu, Wu, Wang, Zhan, Vajda, Keutzer & Tomizuka
(2020) models. These were based on bounding box annotations present in the
KITTI dataset Geiger et al. (2012) and synthesized scans from game engine simu-
lations to train superior segmentations.

These paved the way for further research in this area, as evidenced by the
recent publication of SemanticKITTI dataset Behley et al. (2019)—a fully anno-
tated large dataset for LIDAR scans based on KITTI odometry dataset. Indeed,
the dataset has catalyzed intensive research in a variety of machine learning algo-
rithms with regard to point cloud segmentation, showing marked performance im-
provements. Notable architectures to highlight are PointNet Qi, Su, Mo & Guibas
(2017), PointNet++ Qi, Yi, Su & Guibas (2017), and SalsaNext Cortinhal et al.
(2020) in which innovative approaches have sought to address the inherent prob-
lem of non-structure and order in point cloud data. However, these networks still
have a high computational cost regarding the processing of 3D point clouds for

real-time applications.

4.2.2 Vision Transformers in Computer Vision

Work by Dosovitskiy et al. (2020) introduced vision transformers, another step
away from sole reliance on CNNs in computer vision. ViTs are based on the trans-
former architecture developed for natural language processing; they process im-
ages as sequences of patches rather than collections of individual pixels. This
enables the ViT to capture a representation of the whole image, which works es-

pecially well in tasks such as semantic segmentation. A schematic overview of the
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model is given in Figure 4.2.
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Figure 4.2: Vision transformer architecture Dosovitskiy et al. (2020) and data

flow.

The applications of ViTs also go beyond state-of-the-art tasks in traditional im-
age processing to the processing of LiDAR data by working on the segmentation
of point clouds in autonomous driving. Using the implicit capability of the ViT
models in handling sequence data for the capture of long-range dependencies,
attempts have been made to enhance this interpretation of rich 3D LiDAR data.
Moreover, due to the inherent capability of handling sequences in ViTs, temporal
information can be added between time-consecutive frames to further enhance
the segmentation with contextual understanding over time. Although this opens

promising new research avenues for the application of ViTs to segmentation of
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LiDAR data, their full potential, together with overcoming several challenges in

their implementation, is yet to be explored.

4.2.3 Application of ViTs to LiDAR Segmentation

While the capability of a ViT holds promising direction, applications concerning
segmentation in LiDAR data are still at their infancy. Initial works, such as Zhao,
Jiang, Jia, Torr & Koltun (2021), started adapting the ViT architecture for the pro-
cessing of point cloud data and achieved encouraging results. Usage of ViTs effec-
tively for real-time LiDAR segmentation, concerning applications in autonomous
vehicles is still an open research area and requires further investigation. In this
chapter, we propose a new method for point cloud segmentation using only ViTs,

following a spherical projection of the data.

4.3 Methodology

The rapid developments of the ViT network brought not only its performance
above and beyond traditional CNNs but did so also for many deep learning ap-
plications related to the field of autonomous driving, such as object detection
and segmentation. Drawing inspiration from these advances, our approach fo-
cuses on the use of only ViTs for the efficient and accurate segmentation of LIDAR
point clouds, bypassing the reliance on conventional CNN architecture. We in-
stead utilise a multitask learning framework that leverages multiple ViTs in our
proposed methodology. Our approach enables the model to simultaneously learn
feature representations and segment point cloud data, harnessing the transform-
ers’ capability to process sequential data and capture long-range dependencies

within the inputs.
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4.3.1 Spherical Projection

In contrast, working directly with raw 3D point cloud data is very challenging
due to its high-dimensionality and unstructured nature. We use a spherical pro-
jection technique to make the input 2D data Inan et al. (2023). The dimensional
reduction and added structure of the transformed data make it easier to process
by transformer networks. A number of LiDAR sensors, including but not limited
to Velodyne, produce data in a range image-like format where the columns are
distances measured by an array of laser range-finders at one instant in time, while
the rows correspond to different rotational positions of the same range-finders that
are activated at regular intervals. For moving vehicles itself, you can cheerfully re-
mark that some distortions may be introduced by the so-called "rolling shutter”
effect since the sensor does not rotate within a very short time, let’s say instan-
taneously. To account for this continuous motion of the vehicle in each scan, the
result is compensated by the motion of it during the calculation phase. As a result,
this point cloud does not capture the range measurement from every pixel of the
camera uniformly; multiple measurements are recorded by some pixels.

Our methodology begins with transforming each de-skewed point cloud into a
range-based representation. This is achieved by mapping each point p; = (z, v, 2)
through a function I : B* — R?, converting it to spherical coordinates, and subse-

quently to image coordinates. This process is formalized as:

U 3 [1 — arctan(y, z)r " w
= : (4.1)
v [1 — (aresin (3) + fup) f~']

where (u,v) represent the image coordinates, and (h,w) denote the height and

width of the projected range image. Here, f is the sum of fup and fiown, which

correspond to the sensor’s vertical field of view. Furthermore, r denotes the range
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of each point, computed as r = ||p;||. This procedure yields a set of (u, v) pairs,
where each pair indicates the image coordinates for a specific point p;. For each
point p;, we extract its range r, coordinates z, y, 2, and remission, forming a [5 x

h x w| tensor.

4.3.2 Network Architecture

Concatenation

B L e

+iii$

Figure 4.3: Our model architecture. ViT used for feature extraction and these

features later used as additional input to the second ViT which is responsible for

segmentation.
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Our architecture is designed as a two-stage transformer-based framework for Li-
DAR point cloud segmentation, combining advanced feature extraction and seg-
mentation into a cohesive pipeline. The workflow leverages two distinet ViTs,
enabling it to capture both global contextual information and localized details
essential for accurate segmentation.

The process begins with spherical projection pre-processing, where the raw
LiDAR point cloud data is transformed into a pseudo-image representation. This
transformation enables the ViT to operate efficiently by treating the input as a grid
of non-overlapping patches. Each patch is embedded into a fixed-dimensional
vector through a linear projection layer. This patch embedding step allows the
model to extract meaningful local features while preserving spatial relationships
within the input data.

The embedded patches are then processed by the first ViT using self-attention
mechanisms, which capture both short-range dependencies and long-range con-
textual relationships between patches. This capability is crucial for understanding
complex spatial patterns and interactions present in the LiDAR data. The out-
put of the first ViT is a set of high-level feature representations that encapsulate
both local and global information, which serve as the foundation for subsequent
segmentation tasks.

To bridge the gap between the patch-based embeddings generated by the first
ViT and the per-point resolution required for segmentation, we employ a trans-
posed convolution layer. This operation upscales the feature map to match the
spatial resolution of the original input data, ensuring that each point in the point
cloud is associated with a dense feature vector. By combining the localized patch
information with the global context provided by the transformer, this step pro-
duces a rich and detailed feature map, which is critical for precise segmentation.

The second ViT takes the upsampled feature map as input and is explicitly
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trained for segmentation. It predicts per-point segmentation labels by processing
the dense feature vectors through its self-attention layers. These layers refine the
features by modeling complex dependencies between points, enabling the network
to handle challenging scenarios such as sparse regions, occlusions, and overlap-
ping objects.

A key aspect of this stage is the integration of the feature representations gen-
erated by the first ViT. By using the outputs of the feature extraction stage as ad-
ditional input, the second transformer learns to associate these high-level features
with the specific requirements of the segmentation task. This design ensures that
the segmentation predictions are both accurate and consistent with the underlying
features of the input data.

The entire architecture is trained end-to-end, leveraging the strengths of mul-
titask learning to optimize feature extraction and segmentation simultaneously.
The training process uses raw LiDAR point cloud data paired with ground truth
segmentation labels. During training, the model learns to minimize a combina-
tion of loss functions designed to align feature representations with segmentation
objectives. We present an overview of the overall architecture of our approach in
Figure 4.3.

The segmentation task employs a cross-entropy loss to measure the discrep-
ancy between predicted and ground truth labels. The model is trained using
the AdamW optimizer, with a learning rate schedule based on cosine annealing.
This schedule gradually reduces the learning rate during training, facilitating fine-
tuning in the later stages and preventing overfitting. Dropout layers are employed
within the transformers to further mitigate overfitting, while weight decay regu-
larizes the model’s parameters.

To ensure efficient training, we use a batch size optimized for the computa-

tional resources available, balancing convergence speed with memory require-
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ments. The dual-transformer design allows the model to share information be-
tween the feature extraction and segmentation stages, creating a feedback loop
that enhances learning across both tasks. The end-to-end training process ensures
that the feature representations learned by the first transformer are not only gen-
eralizable but also tailored to the specific requirements of segmentation.

This dual-transformer architecture combines the strengths of ViT in capturing
both global and local context with an efficient training process that aligns fea-
ture extraction and segmentation. By leveraging spherical projection, transposed
convolution, and multitask learning, our approach achieves robust and accurate

segmentation of LiDAR point clouds.

Loss Function

Many neural networks suffer from this problem, where one class or another within
a dataset can be highly imbalanced. Consider autonomous driving; an object like
a bicycle or a traffic sign may appear much more rarely compared to vehicles. This
can easily result in biasing the network to classes that are more frequent within the
training data, because the performance on infrequent classes becomes significantly
poorer. To address this, the network is trained end-to-end using stochastic gradient

descent and a weighted cross-entropy loss function L:

o
L=-> wylog(s), (4.2)
i=1
1
where w; = m (4.3)

This loss function applies a weight w; to each class i, computed as the inverse
of the logarithm of its frequency f;. By doing so his loss helps in tackling the

problem of data imbalance, which is typical in tasks like semantic segmentation,
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in which classes like "road" could have substantially more data points compared

to classes like "pedestrian”.

4.4 Results

After all, our approach was trained and evaluated on the publicly available dataset,
containing dense, point-wise annotations for the complete KITTI Odometry Bench-
mark specified by Geiger et al. (2012) and Behley et al. (2019). The dataset in-
cludes over 43,000 LiDAR scans. Of these, over 21,000 scans of sequences 00 to
10, excluding sequence 08, were used for training. The remaining scans of se-
quences 11 to 21 were held out for testing purposes. Sequence 08 was set aside
solely as a validation set to support choosing the best hyperparameters while train-
ing the model; doing so gives an assurance that the model is well trained and its
performance validated against representative samples from the diversified KITTI
dataset. We compare our model’s results with state-of-the-art results in Table 4.1.

Their dataset features a total of 22 unique classes, 19 of which were tested
on a test set using the SemanticKITTI benchmark website. The wide-ranging na-
ture of this evaluation makes sure that our model’s performance, in regard to all
these categories, is well-checked for a proper understanding of its strengths and
weaknesses.

We used different visualizations while assessing the semantic segmentation
performance by comprehensively analyzing how effective the performance of our
model was due to the difference in classes and scenarios.

Figure 4.4 shows the grouped bar plot of the IoU scores of different seman-
tic classes obtained for each of the methods evaluated. In such a plot, a direct
comparison among the model performances on specific object categories is easy to

perform. It highlights how methods like 2DPASS and RangeNet53 + + perform ex-
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Table 4.1: Semantic segmentation results on the SemanticKITTI test benchmark

(sequences 11 to 21).
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Per-Class lol Across Differant Methods
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Figure 4.4: Grouped bar plot of the IoU scores for the classes.

ceptionally well in classes such as ’car’ and 'road’, but less so in underrepresented
categories like "bicycle’ and ‘'motorcycle’.

While the grouped bar plot gives a very clear comparison of class-wise perfor-
mance across methods, it is equally useful to investigate the consistency of these
methods across all classes. We further provide a heatmap visualization that serves
this purpose for further investigation.

Figure 4.5 shows the IoU score heat map per class and method. This provides
a very interesting overview of the segmentation performances of all methods on
this dataset. It may be immediately clear from the heat map which of the meth-
ods have consistent performance over classes, and which methods may have more
variability within their performance. In particular, Cylinder3D and 2DPASS per-

form good over a large number of classes, which means that they can generalize
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Heatmap of Per-Class 1ol for Differant Methods
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Figure 4.5: Heatmap per class.

to various object types.

Further clarification comes from the stacked bar plot, where it provides a de-
tailed analysis of how different classes contribute to the overall performance of
every method.

Figure 4.6 depicts a stacked bar plot showing the contribution of each class
to the overall IoU in the case of various methods. It is useful to understand the
reflection of each class in the total performance. Methods such as Cylinder3D and
2DPASS depict equal variance in the contributions of diverse classes, indicating

the flexible ability to deal with all object types compared to other methods which
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Mormalized Stacked Bar Plot of leU Contribution by Class fer Each Method
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Figure 4.6: Stacked bar plot for the contributions of each class to the IoU.

depend on high performance classes such as 'car’ and 'road’.

Knowing the distribution of instances among the classes in the dataset provides
important context for interpreting the segmentation results. Figure 4.7 shows
distribution of classes in the dataset. It shows very heavy imbalance that exists
in this dataset. There is heavy dominance within the dataset of 'car’ and 'road’
classes, with very few representations of 'bicycle’ and 'motorcycle’ classes. This
imbalance impacts model training and evaluation, and understanding it will be
helpful in interpreting the performance metrics and thereby guiding improvements
to model design.

These visualizations let us intuitively gauge performance trends across meth-
ods and by different dataset characteristics. Together, they provide a comprehen-

sive overview of the segmentation performance.
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Figure 4.7: Piechart per class shows the distribution.

4.4.1 Hyperparameter Tuning
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Figure 4.8: Importances plot for hyperparameter selection process.

112



4. LIDAR SEGMENTATION AND VISION TRANSFORMERS
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Figure 4.9: Parallel coordinate plot for hyperparameter optimization.
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Figure 4.10: Slice plot for hyperparameter optimization.

We illustrate hyperparameter tuning process via several different visuals. The
importance plot 4.8 extends beyond mere ranking; it highlights which hyperpa-

rameters are most impactful, thereby aiding in prioritizing those that require fine-
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tuning to achieve optimal performance. The parallel coordinate plot 4.9 further
explores how hyperparameters interact with each other and their combined effect
on the objective value. The slice plot 4.10 offers a detailed view of the influence
of individual hyperparameters on the objective value, allowing us to discern the
sensitivity of the model to each parameter’s adjustments. This is especially nec-
essary for understanding the marginal effect of each hyperparameter on overall
performance. Optuna library was utilised for this detailed analysis which gives
us complex relationships, synergies, and potential conflicts between parameters,
providing valuable insights for refining the model. After the analysis, the optimal
learning rate value was determined, and a decay factor of 0.99 was applied for

each subsequent epoch, and the model trained over 150 epochs.

4.4.2 Evaluation Metrics

To quantitatively assess the performance of our model in semantic segmentation,
we employed the mean Intersection-over-Union (mloU) metric, commonly re-
ferred to as mloU. This metric, detailed in Equation 4.4 Everingham et al. (2015),
evaluates the average overlap between predicted and true regions across all classes,
providing a holistic measure of the model’s classification accuracy. The calculation
of mloU considers true positive (T'F.), false positive (F'F.), and false negative

(F'N,) predictions for each class ¢, as formulated below:

TP.

-
1
loU = — :
e C;TP,:-I—FP,_.-I—FNE -

Here, C' denotes the total number of distinct classes in the dataset. By encom-
passing all classes, this metric provides a robust evaluation of the model’s ability to

correctly classify instances across a wide range of categories. The detailed results
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are presented in Table 4.1.

4.4.3 Qualitative Results

In this context of an experimental setup, we have explored how well a purely

ViT-based architecture can perform in segmenting LiDAR point clouds without the
support of a CNN backbone or hybrid CNN-ViT models.

Prediction Groundtruth

Prediction Groundtruth

Groundtruth

Figure 4.11: Qualitative results of the network.

As illustrated in Table 4.1, our approach outperforms several previous works
based on CNNs, without any use of a pretrained ViT. Nevertheless, it does not yet

115



4.4. RESULTS

achieve the performance of the advanced state-of-the-art models, such as those

proposed by Zhu et al. (2021) and Yan et al. (2022). This might be due to the fact

Groundtruth

an

Prediction Groundtruth Pradicti

Groundtruth

Prediction

Groundtruth

Prediction

Figure 4.12: Qualitative results.
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Figure 4.13: Training loss per number of epochs during the process.
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Figure 4.14: Validation loss per number of epochs during the process.

that intrinsically, large datasets are the grounds for the preference of ViTs. Further-
more, our decision to process 64 x 2048 x 5 inputs directly after projection without
initially using a CNN to reduce the feature map could contribute to these results.
To mitigate the absence of a pretrained network, we processed feature maps from
the first ViT through a second ViT, acknowledging opportunities for further opti-
mization. Our findings underscore the potential and flexibility of standalone ViT

models in this domain, suggesting promising directions for future research and
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development. Some qualitative results are given in Figure 4.11 and Figure 4.12.
Groundtruth images and the corresponding predicted images are shared together.
The loss values during the training and validation can be seen in Figure 4.13 and
Figure 4.14.

4.5 Conclusion

In this chapter, we proposed a novel method for LiDAR point cloud segmenta-
tion, specifically addressing the challenges unique to autonomous driving. Distin-
guishing itself from traditional approaches that predominantly rely on CNNs, our
method leverages ViTs to exploit their abilityin capturing the long-range depen-
dencies and modeling complex spatial relationships inherent in point cloud data.

Our architecture is built on a dual-transformer model design. The first model
extracts meaningful feature maps from raw LiDAR data, and the second trans-
former uses these feature maps for segmentation. By integrating two distinct ViT-
based models, the approach enhances the understanding and processing of spatial
and contextual information, improving segmentation quality. This layered design
exemplifies the versatility of transformers in autonomous driving tasks.

A notable feature of our approach is its independence from pre-trained mod-
els, which are often essential for improving performance in related tasks. Training
the transformers from scratch demonstrates their potential to achieve competitive
results on standard benchmarks without relying on pre-existing weights. This in-
dependence simplifies implementation and opens avenues for further exploration
and optimization.

While the results are encouraging and demonstrate that ViTs can serve as a
competitive alternative to CNNs for LiDAR point cloud segmentation, there re-

mains room for refinement and enhancement. Further research could explore
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augmenting transformer architectures or integrating additional sensor modalities
to enhance segmentation performance in diverse real-world scenarios.

The findings of this chapter have broader implications for the perception sys-
tems of autonomous vehicles. By demonstrating the feasibility and promise of
using transformers for segmentation, this work sets the stage for exploring their
application to other autonomous driving tasks. Specifically, the insights gained
here directly influenced the direction of the subsequent chapter, which delves into
object tracking using transformers. The need to model complex spatial interac-
tions and temporal dependencies identified in this chapter motivated the adop-
tion of transformer-based models for multi-object tracking. Additionally, the in-
dependence from pre-trained models explored here highlights the potential for
customized architectures tailored to specific challenges in object tracking and mo-
tion forecasting.

In summary, this chapter shows the feasibility and promise in rethinking tradi-
tional methodologies for LiDAR point cloud segmentation. By exploring the capa-
bilities of ViTs and challenging the reliance on CNNs, this work contributes to the
ongoing effort to develop innovative, robust, and effective autonomous systems. It
provides a strong foundation for the trajectory of this thesis, as the methodologies
and findings inspire and inform subsequent research on perception and prediction

tasks in autonomous driving.
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CHAPTER 5

Enhanced Multi-Object Tracking Based on

Transformers and Sensor Fusion

This chapter will introduce a new framework of multi-object tracking us-
ing a transformer-based architecture, combined with sensor fusion, in or-
der to achieve higher accuracy in dynamic environments. The method-
ology will therefore incorporate both 2D and 3D object detection, fusing
data from both LiDAR and cameras for better interpretation of the traffic
agents’ movement. Sensor fusion will allow the tracking system to es-
timate, on every frame in runtime, both the exact position and velocity
of the moving agents. In the proposed tracking framework, transformer
networks use advanced attention mechanisms to capture both local in-
teractions and global contexts. An evaluation of the system performance
is presented in this chapter to demonstrate how effectively challenges for
complex tracking scenarios in an urban driving environment can be han-

dled.
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5.1 Motivation

In the broadening area of autonomous driving and mobile robotics, safety and
efficiency in vehicle navigation are of great concern. The capability for clear per-
ception and the forecasting of motion for objects in proximity is very critical; thus,
systems should avoid accidents or navigate through challenging environments.
This calls for not only object detection and segmentation, but with the precise
tracking object trajectories in 3D space both in the time and spatial domains.

One of the central issues of concern within this scope is the so-called 3D object
detection task, which needs to identify objects both in terms of their spatial loca-
tion and category. Approaches such as VoxelNet Zhou & Tuzel (2018) and Point-
Pillar Lang et al. (2019) have utilised LiDAR sensors for creating point clouds, thus
obtaining valuable three-dimensional data. But, these methods perform poorly on
sparse point clouds, in particular on large-scale datasets such as nuScenes Caesar
et al. (2020) and Waymo Sun et al. (2020), the detection of small or far objects
becomes quite a challenging task. High-resolution cameras capture finer details of
objects at a longer distance. This would include details that can provide comple-
mentary information useful for enhancing the overall perception system.

Multi-object tracking extends the capability of any detection system to monitor
the trajectory of multiple objects continuously, preserving their identity between
consecutive frames. In self-driving vehicles, 3D MOT allows us to have a nuanced
situational awareness of dynamic environments and decision-making processes.
Tracking systems based on LiDAR have indeed been performing well so far due to
their ability to provide precise 3D information, which is needed for object tracking
to be very accurate. However, in reality, these systems have faced severe limita-

tions from being sensitive to reflective surfaces and signal sparsity, that can reduce
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their performance. On the contrary, image-based approaches present strong visual
information; even partial occlusion does not affect them, and excellent localisa-
tion within the image plane is achieved Voigtlaender et al. (2019), Sharma et al.
(2018).

Although such advances have been made, there is still a great gap in how 2D
and 3D sensor data are integrated to enhance accuracy and robustness of tracking
in real-time applications. Most of those methods would usually fail due to complex
occlusions when object interactions are normal in certain cluttered environments.
Such challenges therefore call for innovative methods which could fuse such multi-
modal data and adapt dynamically to the evolving scenarios.

An enhanced framework for vehicle tracking, which involves transformer-based
object detection and sensor fusion methods to tackle the aforementioned issues is
presented in this chapter.Utilising a novel transformer architecture that integrates
2D and 3D sensor data, the target of the method is to achieve substantial im-
provement in accuracy and robustness. It consists of a combination of three key
components: transformer-based 2D and 3D object detection, sensor data fusion
and association, and transformer-based track management. The effectiveness of
the followed method is proven by extensive evaluations on nuScenes and KITTI.
Our proposed method has great potential for further enhancements in various au-

tonomous systems operating within complex real-world environments.

5.2 Related Work

5.2.1 Vision-Based 2D Multi-Object Tracking (MOT)

This field of vision-based 2D MOT keeps on developing with continuous object

detection technology improvement. The early methods in their core relied on the
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advancement of CNN for the detection and identity consistency of objects across
frames. For example, TrackR-CNN Voigtlaender et al. (2019) extends Mask R-CNN
He et al. (2017) with combining 3D convolutional networks to improve temporal
consistency and object reidentification techniques to make the object association
across frames more robust. Tracktor Bergmann et al. (2019) revised the head
of Faster R-CNN Ren et al. (2015) to predict positions of objects over time cor-
rectly from the regression head. CenterTrack Zhou, Koltun & Krihenbiihl (2020)
proposed an offset-regression head for associating objects across frames, hence
improving detection continuity Zhou et al. (2019).

Recent works in this area have moved to end-to-end learning-based models
Xu, Osep, Ban, Horaud, Leal-Taixé & Alameda-Pineda (2020), Frossard & Urtasun
(2018), using graph neural networks (GNNs) to learn more sophisticated asso-
ciation strategies Braso & Leal-Taixé (2020),Weng, Wang, Man & Kitani (2020).
These contributions indicate a general tendency of integration of so many compo-
nents related to the tracking pipeline for better but also efficient tracking systems.
Most of such methods often encounter obstacles like occlusions, fast motion, and
appearance changes that make the continuity of tracking broken with reduced ac-
curacy. In order to address these problems, we develop a strategy that ensures the
exploitation of the global context provided by transformers. Thus, we propose the
use of transformers for both detection and association to enhance robustness in

tracking, especially complicated interaction and partial occlusion scenes.

5.2.2 LiDAR-Based 3D Multi-Object Tracking (MOT)

Different LiDAR-based 3D multi-object tracking methods have been progressively
developed with the advance of autonomous driving technologies. Initial approaches

focused on segmenting LiDAR scans and performing segment association across
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frames to track objects over time Teichman et al. (2011), Moosmann & Stiller
(2013). The emergence of point cloud representation learning techniques, includ-
ing PointNet Qi, Su, Mo & Guibas (2017), PointNet+ + Qi, Yi, Su & Guibas (2017),
together with the advance of 3D object detection Chen et al. (2015), Shi et al.
(2019), Shi & Rajkumar (2020), led to a shift in the research direction toward
tracking-by-detection methods with LiDAR and stereo data Osep et al. (2017),
Frossard & Urtasun (2018). These have considerably boosted the accuracy of 3D
object tracking owing to the precise point cloud data detecting and tracking ob-
jects in three-dimensional space.

Despite these developments, LiDAR-based tracking approaches fail to evade a
number of challenges. As one example, reliance on 3D detections makes meth-
ods prone to false positives and occlusion gaps, which can impact tracking per-
formance, especially within dynamic environments presenting high object density
Weng, Wang, Held & Kitani (2020). Recent approaches have tried to bridge this
gap. For example, CenterPoint Yin et al. (2021) detects 3D object centers and
establishes frame-to-frame associations based on predicted velocity vectors. The
challenges are that it is difficult to maintain consistent tracks and handle occlu-
sions accurately.

Our approach improves how 3D detectors are combined with transformer-
based models by stimulating robust feature fusion and object association in 3D
tracking. This, therefore, lets the result retain higher tracking coherency and ac-

curacy during difficult situations.

5.2.3 Tracking Paradigms

In MOT, several paradigms have been devised to handle complexities arising in

object association between frames. These can broadly be categorized as follows:
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Tracking-by-Detection

In the tracking-by-detection paradigm, object trajectories are created by associ-
ating detections over time. This has been widely adopted since it is simple to
implement and works well in a number of cases. Approaches belonging to this
paradigm usually rely on graph-based methods for track association and long-
term re-identification, using algorithms such as maximum flow (minimum cost)
optimisation Berclaz et al. (2011), and distance-based association Pirsiavash et al.
(2011). Other approaches incorporate motion information Keuper et al. (2018)
and trainable graph neural networks Braso & Leal-Taixé (2020), Wang, Kitani &
Weng (2021) to achieve better association performance. Unfortunately, the com-
putational complexity brought in by graph-based methods often makes them un-

practical for deployment in real-time applications.

Motion-Based Tracking

The motion-based tracking methods estimate the object trajectories under the as-
sumed motion model, such as a constant velocity Andriyenko & Schindler (2011).
These models are very helpful for track association across frames, by predicting fu-
ture object positions from previously estimated motion Zhang, Sheng, Wu, Wang,
Lyu, Ke & Xiong (2020). However, these methods have difficulty in correctly mod-
eling nonlinear 3D motion and its projection into a 2D image domain, where the

amount of visual information may be sparse.

Tracking-by-Regression

Tracking-by-regression methods break the conventional association of detections,
as they regress the object’s past locations to predict its new position in the current

frame. Usually, these methods apply regression heads to region-pooled object fea-
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tures Bergmann et al. (2019), Feichtenhofer et al. (2017), or are expressed as cen-
ter points under distance-based association Zhou, Koltun & Kridhenbiihl (2020).
More often than not, additional improvements are done through re-identification
models and graph-based approaches Braso & Leal-Taixé (2020) for enhancing

identity preservation and track reasoning.

Tracking-by-Segmentation

Tracking-by-segmentation approaches predict object masks and leverage pixel-
level information in crowded scenes with ambiguous backgrounds. In the family
of methods, category-agnostic segmentation Osep et al. (2018) and Mask R-CNN
He et al. (2017) using 3D convolutions Voigtlaender et al. (2019), have shown
promise in densely packed scenes. However, as annotated MOT segmentation
data is lacking, most recent works still recognize object tracking using bounding

box annotations.

5.2.4 Transformers and Attention Mechanisms in Tracking

Recently, transformers and attention mechanisms attracted extensive interest due
to their applications on various computer vision tasks. Attention mechanisms have
been used in multi-object tracking for improving object detection and association
Carion et al. (2020), Zhu et al. (2020). These allow for selective focusing by the
models on different parts of the input. They capture, in a particularly effective
way, dependencies across sequences and enhance robustness in tracking Chu et al.
(2017), Zhu et al. (2018).

Building on this, our approach further uses transformers for the detection and
tracking tasks. Transformers, first proposed by Vaswani et al. (2017), uses self-

attention mechanisms that process sequences of tokens, each represented as a
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feature vector. The attention mechanism computes the weights between tokens
by taking a dot product between query and key vectors, respectively. This is an
important part that is giving the model the capability to focus dynamically on
diverse aspects of an input sequence. Using several attention heads in parallel,
the model can gain the capabilities to capture diverse features and relationships

in data toward comprehensive scene understanding.

Attention(Q, K, V) = softmax (?/I}:) V, (5.1)

where in Equation 5.1, di represents the dimension of the keys (K) and queries
(Q). In cross-attention, query vectors are generated from a second sequence rather
than from the same sequence as in self-attention. The encoder-decoder architec-
ture allows the model to have both the self-attention and cross-attention mecha-
nisms to take advantage of both spatial and temporal information toward tracking
tasks. By harnessing these capabilities, our approach endeavors to conduct inte-

grated, robust multi-object tracking in insightful environments.

5.3 Methodology

Our proposed method introduces an improved multi-object tracking framework
that fuses 2D and 3D information with an enhanced transformer-based network.
To sum up, this framework is designed in a way such that it comes up with some
complementary strengths: 2D image data and 3D point cloud data, for enhancing
accuracy and robustness in the capture of object tracking over dynamic environ-
ments. The system’s architecture consists of three main components: Detection
Transformer (DETR) for 2D object detection, Yin et al. (2021) for 3D object de-
tection, and a novel integrated transformer module performing the feature fusion,

data association, and tracking.
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Figure 5.1: Comprehensive architecture of the proposed multi-object tracking
framework. The framework includes DETR for 2D detection, Yin et al. (2021)
for 3D detection, and a detailed unified transformer for fusion, association, and
tracking. This transformer uses object and track queries to provide bounding boxes

with IDs as output.

5.3.1 2D Object Detection with DETR

First, our framework incorporates DETR for 2D object detection. For the detection,
a CNN backbone 5.2 is taken into consideration in order to achieve rich feature
extraction from the input images. Further, extracted features are fed into the
transformer encoder of DETR, which applies self-attention mechanisms in order to
model relationships and spatial context within the image. While capturing long-

range dependencies and contextual information, the encoder improves feature
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Figure 5.2: DETR backbone.

representation. This is then fed into the DETR transformer decoder, which uses
object queries to transform these encoded features into 2D object detections in the
form of bounding boxes, with class labels for each of the detected objects. The
core role of the DETR module in this framework is, therefore, to establish object

identification and its classification based on appearance from camera images.

5.3.2 3D Object Detection Framework

Our architecture for the 3D detection is adapted from the Yin et al. (2021) ap-
proach, which is meant to process raw LiDAR point cloud data in three-dimensional
object detection. Before processing, voxelization pre-processing converts the point
cloud into structured grid format, thereby making it amenable to processing through
convolutional layers. After that, the convolutional layers aim to extract notable 3D
features that are subsequently used to produce 3D bounding boxes and class la-
bels, encapsulating the spatial features of the detected objects. The role of 3D
framework is hence crucial in capturing the depth and geometric information of

the scene, a pre-requisite to accurately identify objects in 3D.
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5.3.3 Feature Fusion and Integration with Transformers
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Figure 5.3: Encoder decoder architecture of the integrated transformer.
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The main novelty of our approach lies in the integrated transformer module, which
combines the outputs from both the DETR and 3D detection modules into unified
multi-modal tracking. Whilst the DETR. module solely focuses on 2D object de-
tection, the encoder in the integrated transformer instead processes 2D and 3D
features, separately and with the objective of refining and encoding these features
without losing their individual characteristics. It is ensured by this approach that
the distinctive information conveyed by both the 2D and 3D data is preserved and
enriches the feature representation for further effective integration.

The pipeline begins with independent feature extraction from 2D images and
3D point clouds. DETR extracts spatial embeddings that emphasize appearance,
shape, and texture details, while the 3D detection module, such as CenterPoint,
processes point cloud data to extract spatial and geometric features. These fea-
tures represent complementary aspects of the scene: the visual information from
the camera and the structural information from LiDAR.

The integrated transformer combines the information from both modalities at
the decoder stage. The refined features from the 2D and 3D data are combined
using a cross-attention mechanism, aligning the two modalities and integrating
them into a unified representation.

Cross-attention works by forming queries from one modality (e.g., 2D features)
and keys and values from the other modality (e.g., 3D features). The computed
attention weights highlight the relevance of specific features in one modality with
respect to the other. This dynamic alignment enables the model to focus on the
most relevant features from both modalities, ensuring robust tracking performance
even under challenging conditions like occlusions or appearance changes.

The decoder leverages object queries to detect new objects in the scene and
track queries to maintain the identities of objects detected in previous frames. By

dynamically updating the importance of each modality based on the scene context,
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the cross-attention mechanism enables the model to concentrate on features that

are most relevant for accurate detection and tracking.

5.3.4 Data Association and Object Tracking

Data association and object tracking are thus handled coherently within the in-
tegrated transformer decoder. Object queries identify the set of newly detected
objects, whereas track queries update and maintain the states of tracked objects
across time. Encompassed within this are issues of object identity management,
occlusion management, and re-identification of objects that disappear and then
reappear. The attention mechanisms in the decoder enable it to effectively match
new detections with the existing set of tracks, providing continuity and accuracy
in the tracking of objects.

In a nutshell, the integrated transformer architecture of our method proposes
an end-to-end multi-object tracking that effectively fuses the multi-modal data and
executes the object identity consistency over time. The proposed architecture sep-
arates feature extraction and refinement in the encoder, carrying out a thorough
feature fusion and tracking in the decoder to ensure robust performance even in
dynamic and complex scenarios. This architecture will make full use of both 2D
and 3D data to capture a rich, accurate representation of targets and improve the

tracking capability for autonomous systems as a whole.

5.4 Experimental Evaluation

5.4.1 Datasets

In this work, we evaluate the performance of the proposed method using two

widely recognized datasets in the field of autonomous driving: the nuScenes
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dataset and the KITTI tracking dataset.

The nuScenes dataset covers one of the large-scale, multimodal datasets that
have gone through heavy annotation in a number of autonomous driving tasks.
It contains synchronized data from multiple sensors, such as LiDAR and cameras,
making it very suitable for 3D MOT. The scenarios in this dataset vary from differ-
ent weather conditions to night time scenes, thus offering a robust benchmarking
for performing autonomous driving systems in the real world. Another contribu-
tion is the KITTTI tracking dataset, which focuses on urban traffic scenarios and fea-
tures mainly vehicles. It provides detailed 2D and 3D annotations, which makes it
very suitable for tasks involving sensor fusion, where the integration of data from
different modalities is crucial. The fact that the KITTI dataset puts an emphasis
on urban traffic scenes allows a thorough assessment of the tracking methods in

environments typical of everyday driving conditions.

5.4.2 Evaluation Metrics

We use the standard evaluation metrics of the multi-object tracking field, specifi-
cally the CLEAR-MOT, to assess the performance of our tracking system. Among
all the metrics, the most important is the Multi-Object Tracking Accuracy (MOTA)
metric, because it is an inclusive metric: missed detections, false positives, and
identity switches are all factors combined that give a holistic view pertaining to
how effective the tracking system is performing.

Apart from MOTA, we report the averaged variants of these metrics: AMOTA
and AMOTP. The averaged metrics will allow having a more specific overview
concerning tracking performance for various challenging scenarios and datasets,
encapsulating both accuracy and precision. This is done to maintain consistency

with previously established protocols for evaluation and creates room for fair com-
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parisons with previous works in the area.

i
AP = [ Precision(r) dr, (5.2)
0

where Precision(r) represents the precision of the model at a given recall r. AP
measures the area under the Precision-Recall curve, providing an overall perfor-

mance metric for object detection.

", (FN, + FP, + IDSW,)

MOTA =1 — ;
>, GT;

(5.3)

where:

FN,: Number of false negatives at time t,

FP,: Number of false positives at time t,

IDSW,: Number of identity switches at time t,

GT,: Number of ground-truth objects at time .

MOTA evaluates tracking accuracy by penalizing false negatives, false positives,

and identity switches, normalized by the total number of ground-truth objects.

1 Ty
AMOTA = — E MOTA(r), (5.4)

T =1

where n, represents the total number of recall thresholds considered. AMOTA
provides the average MOTA score across multiple recall thresholds, capturing the

tracking performance across varying levels of recall.

Zi,t 'ii,t

MOTP = ,
Zi Ci

(5.5)

where:
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* d;,: Distance between the predicted and ground-truth positions of object i at

time f,

* ¢;: Number of correctly matched objects at time .

MOTP measures the average localisation error of tracked objects, quantifying the

precision of the spatial alignment between predictions and ground-truth data.

5.4.3 Results

The results of our experiments demonstrate the effectiveness of our method in

various tracking and detection tasks. Table 5.1 shows the tracking performance

of the car and pedestrian classes on the KITTI validation set. Qur approach yields

competitive tracking performance for both object classes. Although the results are

slightly worse than the top-performing method, our approach still maintains very

strong tracking capabilities.

Car Ped

Method Input

sAMOTAT| MOTAT| MOTPt |IDs| | sSAMOTAT | MOTAT | MOTP | IDs)
EagerMOT Eim et al. (2021) D+30| 9693 | 9529 | 7697 | 1 0292 | 93.14 | 73.22 | 36
GNNIDMOT Weng, Wang, Man & Kitanl (2020) (2D+3D( 96.03 | 94.70 | 75.93 | 10
mmMOT Zhang et al. (2019) D+3D| 9368 | B4.70 | 7477 | 12
EANTrack Baser et al. (2019) 3D 8297 | 74.30 | 72.45 (202
AB3DMOT Weng, Wang, Held & Kiani (2020) iD 0178 | 8335|7817 | 1 7318 | 6698 [ 6777 | 1
Ours 20+3D| 93.02 | 8762 Tes3d | 7 76.18 | 71.07 | 70.63 | 23

Table 5.1: Tracking performance comparison for car and pedestrian classes on

KITTI val set
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Method APt |ATE (m)]|ASE (1-I0U)}
PointPillars Lang et al. (2019) |0.684| 0.281 0.164
TransMOT Ruppel et al. (2022)|0.727| 0.284 0.161
Our Method 0.736| 0.268 0.152

Table 5.2: Object detection results for the car class

Table 5.2 gives the performance of object detection for the class car It is
straightforward to see from Table 5.2 that the Average Precision (AP) of our ap-
proach is the highest among the compared methods. Therefore, it outperforms
others in object detection. This is because effective fusing of the multi-modal data

boosts both the accuracy and robustness of car detection for our method.

Method AMOTA?| TP+ | FPL | FN| |IDS]

CenterPoint Yin et al. (2021) 63.8 |95877|18612|22928| 760

EagerMOT Kim et al. (2021) 67.7 |93484(17705|24925|1156

AlphaTrack Zeng et al. (2021)| 69.3 |95851|18421|22996| 718

Ours 65.4 |94454|17963|22617|1013

Table 5.3: Tracking results comparison on the Nuscenes.
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Table 5.3 comparison of tracking results on the nuScenes dataset. Our ap-
proach ranks a respective second with an AMOTA score of 65.4, behind the 69.3
presented by the method in Zeng et al. (2021). Although this places us slightly be-
hind some of the leading methods, performance shows a stable tracking capability
considering the nuScenes dataset is challenging. Notice that our approach tends
to have lower numbers of FP compared to EagerMOT, which underlines higher
precision in object tracking.

In short, our approach performed consistently on all datasets and metrics of
tracking. While the first ranking might not be possible on all metrics, it showed
a very balanced strength of both detection accuracy and stability in tracking, es-
pecially with fewer identity switches and false positives. Due to this balance, our
approach is robust and reliable, especially for complex scenarios with multiple ob-
ject types in various environments. Figure 5.4 shows some qualitative results of
tracking. Training and validation losses can be seen in Figure 5.5 and Figure 5.6,

respectively.

t t41 t42

Figure 5.4: Qualitative result showing the tracking through time.
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Training Loss Over Epochs
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Figure 5.5: Training loss per number of epochs during the process.

Validation Loss Over Epochs
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Figure 5.6: Validation loss per number of epochs during the process.
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5.5 Conclusion

This chapter has introduced the improved framework for multi-object tracking,
effectively combining transformer-based object detection with advanced sensor
fusion. We design the transformers in a tracking-by-attention paradigm to exploit
their capability of modeling global context and higher-order dependencies over
both 2D and 3D data. This yields significant improvements in tracking accuracy
and robustness, particularly in dynamic scenes and challenging conditions.

We evaluated this approach on two large, well-known datasets in autonomous
driving: nuScenes and KITTI. These experimental results certify that our proposed
method delivers competitive performance for challenging multi-object tracking
problems in various dynamic scenarios. The incorporation of 2D and 3D features
improves the detection accuracy and tracking consistency, while the synergy of
these data modalities enables deeper insights into the environment. This results
in a more reliable and effective tracking output, a critical factor for autonomous
driving systems.

A notable strength of the proposed framework lies in its ability to leverage
transformer architectures for capturing complex relationships and dependencies
among objects. This capability is particularly crucial in autonomous driving ap-
plications, where understanding the interactions between multiple objects is es-
sential for safe navigation. By effectively utilising self-attention mechanisms and
cross-attention layers, the framework ensures that appearance and spatial data
from different sensor modalities are seamlessly fused, enabling comprehensive
environmental interpretation.

While the results are promising, there remains room for further improvement.

optimising the network to enhance performance and increase overall accuracy for
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real-time applications is an important future direction. Another avenue of research
could be how to embed other sensor modalities, such as radar, in a way that allows
richer environmental perception and enhances the robustness across a variety of
conditions. For instance, radar sensors can provide critical information on those
climatic conditions when most of the other sensors, such as cameras and LiDAR,
fail to operate efficiently. Moreover, exploring the integration of emerging data
sources, such as thermal cameras or GPS, could expand the scope of multi-modal
data fusion, enabling more extensive environmental perception and enhancing
overall system reliability and safety in unpredictable conditions.

The findings of this chapter form a pivotal bridge between the segmentation
techniques discussed in the previous chapters and the motion forecasting ap-
proaches explored in subsequent work. The emphasis on integrating multi-modal
data and leveraging transformers for robust tracking informed our exploration
of motion prediction, where understanding object trajectories and interactions be-
comes paramount. The demonstrated success of attention-based fusion techniques
inspired the development of novel transformer architectures for motion forecast-
ing, aiming to model not just spatial relationships but also temporal dynamics.

In summary, the proposed framework marks a significant advancement in multi-
object tracking, showcasing the effectiveness of transformer-based architectures
in fusing 2D and 3D sensor data. By providing tangible improvements in tracking
performance, this work lays a strong foundation for subsequent research on under-
standing object trajectories and interactions. The insights gained here, particularly
in leveraging transformers to model complex spatial relationships, informed the
development of novel transformer architectures for motion forecasting. In the next
chapter, the findings and methods developed here are extended to tackle the chal-
lenge of motion forecasting. Building on the insights gained from tracking object

interactions, the next chapter introduces innovative techniques such as anchored
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goal queries and localised attention mechanisms to predict agent trajectories with
high accuracy. These methods leverage the strengths of transformer architectures
to address the complex dynamics of multi-agent interactions, contributing to safer
and more reliable autonomous driving systems. These contributions align with
the broader narrative of the thesis, highlighting the evolution from tracking to

forecasting as part of building robust perception systems for autonomous driving.
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CHAPTER 6

Motion Forecasting

This chapter provides an in-depth insight into motion forecasting, one of
the key tasks in autonomous driving, that basically forecasts of future tra-
Jectories of traffic agents like vehicles, pedestrians, and cyclists. It presents
the Intention Refined Motion Transformer (IRMTR), a novel architecture
that combines local and global contextual information to improve accu-
racy in forecasts. This framework uses anchored goal queries to propose
possible future positions of the agents and localised attention mechanisms
that dynamically capture agent interactions with the environment. The
model makes use of high-definition map information and real-time sensor
data together to develop a comprehensive representation of the driving
environment. It can make accurate predictions of complex multi-agent
interactions such as lane changes, merges, and intersection navigation.
Extensive evaluations using the Argoverse dataset result in significant im-
provements in both high accuracy and robustness. Ablation studies pri-
oritize investigating key components such as anchored goal queries and
localised attention, which refine predictions of IRMTR as a robust solution

toward motion forecasting in real-world driving scenarios.
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6.1 Motivation

While autonomous driving technology is rapidly improving, it still faces one of the
big challenges: maintaining safety in a dynamic, unpredictable environment. A
self-driving vehicle has to be able not only to perceive and interpret what happens
around it but also to predict what the future behavior will be like of other road
participants, such as vehicles, cyclists, or pedestrians. This leads to collision avoid-
ance and informed decision-making in completing complex traffic situations. This
gets very difficult because there are so many different ways one person may intend
on doing something or the other. Each vehicle or pedestrian’s future trajectory de-
pends on interactions with others and adherence to the local traffic regulations,
making tasks of motion forecasting much more complex.

In our previous work related to LiDAR segmentation and multi-object tracking,
advanced techniques have been identified to allow deep learning models based on
CNN and transformers to compete with classic ones in detecting and tracking of
objects at runtime with high accuracy. This is an effort to improve the perception
of the proximal environment that surrounds a vehicle through the processing of
LiDAR point cloud and cameras for an accurate and high-resolution representa-
tion of the objects surrounding the vehicle. While these techniques showed good
results in object detection and tracking, they did not fulfill the key requirement of
forecasting future states of those objects, which forms the very basis of indepen-
dent decision-making in a dynamic environment.

Building on our work, this research moves beyond segmentation and tracking
into the next logical step in autonomous driving, motion forecasting.

In multi-agent scenarios, the behavior of each agent is influenced by inter-

actions with objects in the scene and specific rules of traffic at the location. This
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makes the prediction of diverse behaviors in a scene quite difficult since it involves
not only an understanding of the current state of each agent but also how such
states would evolve according to both individual and collective dynamics. Typical
motion prediction approaches can be defined in two categories, goal-based and
direct regression methods. Goal-based methods Gu et al. (2021), Zhao, Gao, Lan,
Sun, Sapp, Varadarajan, Shen, Shen, Chai, Schmid et al. (2021) generate a set
of possible next positions for an agent, estimate the probability of each position,
and then predict complete trajectories for the most likely outcomes. It may be
effective in handling uncertainty of trajectory prediction and simplifying model
optimization. However, the approach heavily relies on the count of pre-defined
goal candidates; too few candidates lower the accuracy and too many increase
computation and memory requirements significantly.

In contrast to that, direct-regression methods do not rely on predefined goals.
Instead, the encoded features of the agent are used to directly predict a set of
possible trajectories Ngiam et al. (2021), Varadarajan et al. (2022). This allows
modeling possible future behaviors in a more flexible way, without the constraints
imposed by spatial priors. However, many of these methods converge slower, since
they have to regress multiple modes of motion with the same features, and can be
biased to predict the most frequent behaviors during training, since this reduces
the loss for training, but hurts generalization to less common scenarios. So far,
we have proposed a novel approach, which overcomes the limitations of both
goal-based and direct-regression methods by incorporating strengths of both ap-
proaches while mitigating weaknesses. This gave rise to the Intention Refined Mo-
tion Transformer, an advanced architecture further improving multi-agent motion
accuracy and robustness in dynamic environments. IRMTR refines the intention-
based mechanism with a compact set of intention points representing the most

probable future positions of agents, eliminating the need for dense candidate goal
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placement and greatly enhancing efficiency of the model to meet real-world appli-
cation requirements.

Our method further develops the concept of intention-driven prediction through
an elaborate mechanism in order to capture and embed the intention points of dif-
ferent agents effectively.

The IRMTR model processes scene context through a hierarchical encoding
structure that embeds both local and global features and refines predictions with
the embedded intentions. With this, the model is able to produce a more accu-
rate and contextually aware prediction about agent trajectories, with the incor-
poration of both immediate environmental data and broader scene information.
IRMTR first extracts the scene context, which includes both historical movement
from the agents and static map features. This is passed through a local encoder,
which embeds the immediate environment and interactions of the agent. These
embeddings are further refined by the global context aggregator, which integrates
broader-scene information and intention points into the prediction process. The
static intention query module constitutes a significant module of this architecture
that narrows the model’s focus on most probable future trajectories, hence nar-
rowing down possible outcomes for a given scenario with increased accuracy. This
information is synthesized by the decoder to create highly accurate, context-aware
trajectory predictions. Our experimental results involve showing that IRMTR per-
forms competitively on the Argoverse motion forecasting dataset, showing that
our model can handle most scenarios of driving. The model produces consistent,
highly accurate predictions that justify the effectiveness of our intention refine-
ment approach. With IRMTR balancing well between computational efficiency
and predictive accuracy, this presents an effective solution toward real-time appli-
cations in autonomous driving and helps to push the limits further for much safer

and reliable self-driving cars.
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6.2 Related Work

In the task of autonomous driving, enabling motion forecasting requires to learn
rich and detailed representations for diverse elements in a traffic scene, ranging
from high-definition maps to the historical trajectories of agents. Indeed, accurate
predictions depend on the model being able to understand both the static spa-
tial layout of the environment and the dynamic interactions between the moving
objects.

Most previous work has taken as input to their models rasterized versions of the
scene. In this paradigm, an image of the world is rendered in bird’s eye view with
the various map elements-lane markings, crosswalks, traffic lights-all extracted
from HD maps and represented in different colors or through segmentation masks
Cui et al. (2019), Djuric et al. (2020), Chai et al. (2019), Bansal et al. (2018), Salz-
mann et al. (2020), Hong et al. (2019). It is done by either appending the past
trajectories of agents as additional channels in the images Chai et al. (2019), Cui
et al. (2019), or by processing them using temporal models such as recurrent neu-
ral networks Rhinehart et al. (2019), Alahi et al. (2016), Rhinehart et al. (2018).
These works then adopt commonly used image processing models like Efficient-
Net Tan & Le (2019), DenseNet Huang et al. (2017), ResNet He et al. (2016) and
XceptionChollet (2017) to learn the representations of these rasterized scenes.

While the vision based approaches are good candidates to leverage from the
rich history of methods developed in computer vision and can easily accommodate
pre-trained image models, they usually tend to be more computationally expensive
and typically fail to capture fine grained details and interactions. This has fostered
the growth of vectorized methods, which have become popular owing to their ef-

ficiency in encoding sparse representations and capturing complicated structural
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information of a scene Ye et al. (2021), Liang et al. (2020), Gao et al. (2020). The
vectorized methods model the scene as a set of entities where each entity is de-
fined by semantic and geometric attributes. They learn the relationships between
entities. For instance, LaneGCN Liang et al. (2020) constructs a lane graph to cap-
ture the topology of a map effectively. VectorNet Gao et al. (2020) models both
road maps and agent trajectories as polylines. Most recent literature follows this
approach Varadarajan et al. (2022), Ngiam et al. (2021), Sun et al. (2022), Gu
et al. (2021) since it is efficient in terms of computational cost and scalability.

Our scene representation follows the vectorized approach, but it involves a
special method proposed in HiVT Zhou et al. (2022), where all vectorized entities
are relatively defined with respect to their positions. This translation-invariant
representation allows the model to generalize much better across different scenes
and overcome many previous pruning works in terms of robustness.

Besides the representation of future scenes, there are various ways in which re-
searchers have modeled multimodal future motions. Early works in this field Tang
& Salakhutdinov (2019), Rhinehart et al. (2019, 2018), Alahi et al. (2016), Gupta
et al. (2018) concentrated on producing sets of trajectory samples to approximate
the output distribution. Accordingly, this sampling-based approach aims to cap-
ture a wide range of possible futures by generating diverse trajectory hypotheses.
Other approaches utilise Gaussian Mixture Models to parameterize multimodal
predictions; this typically yields a more compact representation of the distribu-
tion Phan-Minh et al. (2020), Salzmann et al. (2020), Mercat et al. (2020), Chai
et al. (2019), Hong et al. (2019). That allows for effective modeling of uncer-
tainties and invariances of agent behaviors. The HOME series Gilles et al. (2021,
2022) generates trajectories by sampling from a predicted heatmap, while Intent-
Net Casas et al. (2018) frames intention prediction as a classification task involv-

ing high-level actions. Recent developments have introduced regional training
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methodologies Liu et al. (2021), goal-based approaches such as Mangalam et al.
(2020), Fang et al. (2020), Rhinehart et al. (2019), Zhao, Gao, Lan, Sun, Sapp,
Varadarajan, Shen, Shen, Chai, Schmid et al. (2021) are first estimating a number
of possible goal points for the agents and then full trajectory proposals for each of
these goals.

With the flexibility of transformers in modeling long-range dependencies and
relations, they have seen extensive applications in natural language processing
Devlin et al. (2018), Bao et al. (2021), Brown (2020), and more recently in com-
puter vision Zeng et al. (2022), Wang, Xu, Narasimhan & Wang (2021), Carion
et al. (2020), Wang et al. (2018), Dosovitskiy et al. (2020). Due to their suc-
cess in these domains, transformers have been retrospectively adapted for motion
prediction, modeling with great success spatial relationships, temporal dependen-
cies, and interactions between agents and map elements Yu et al. (2020), Yuan
et al. (2021), Ngiam et al. (2021), Mercat et al. (2020), Liu et al. (2021), Li et al.
(2020), Giuliari et al. (2021).

Our proposed architecture, the Intention-Refined Motion Transformer, extends
existing transformer-based models with a novel local and global context refine-
ment process integrated with an intention-driven forecasting solution. In con-
trast to previous approaches that focus either on spatial or temporal dependencies,
our contribution is represented along a hierarchical structure that combines both.
IRMTR refines motion predictions by anchored goal queries that allows it to effec-
tively obtain multi-scale interactions among agents and their environments. This
ensures a very substantial improvement in prediction accuracy while maintaining
computational efficiency adequate for application in real-time settings.

By incorporating the intention points directly into the prediction process, IRMTR
enhances the model with more capability to reason about possible future positions

of agents in a socially aware way, which is especially important in complex traf-
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fic scenarios where interpreting multiple agents’ intentions and possible actions
play a vital role in safe navigation. The IRMTR’s design demonstrates competi-
tive performance across diverse traffic situations, underscoring the robustness and
effectiveness of our streamlined and efficient architecture. This represents a sig-
nificant further step toward improved motion forecasting for building safer and

more reliable autonomous driving systems.

6.3 Intention Refined Motion Transformer (IRMTR)

IRMTR introduces a novel approach to motion through a combination of innova-
tive components. A defining feature of this architecture is the use of anchored
goal queries, a compact set of probable future positions for traffic agents that
significantly enhance prediction efficiency and accuracy. Unlike other methods
that rely on dense candidate goal placements, IRMTR leverages a GMM cluster-
ing algorithm to generate intention points. This choice ensures that the clustered
intention points are flexible and probabilistically informed, effectively represent-
ing diverse trajectory endpoints while maintaining computational efficiency. By
adopting GMM clustering, the architecture captures the inherent uncertainty and
overlapping nature of agent trajectories in real-world scenarios, setting it apart
from rigid clustering methods like K-means.

Furthermore, the architecture employs a localised attention mechanism that
dynamically prioritizes immediate interactions between agents and their environ-
ment, improving fine-grained understanding while maintaining computational ef-
ficiency. Additionally, IRMTR introduces a hierarchical encoding structure to pro-
cess local and global contexts separately, enabling effective handling of both de-
tailed agent interactions and broader scene dynamics. This multi-faceted approach

allows the model to reason about socially aware interactions and predict trajec-
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tories accurately even in complex scenarios like intersections, lane changes, and

merges.

6.3.1 Overall Framework

An overview of our IRMTR framework is illustrated in Figure 6.1. In this frame-
work, we propose a systematic structuring of the input that incorporates both
agents’ previous trajectories and relevant map features; this allows our model to
handle challenging motion forecasting in dynamic traffic effectively. With the pro-
posed representation, our framework can capture and process multi-scale spatial-
temporal information in multiple steps and achieve high accuracy in trajectory
predictions.

First, the local encoder processes the data from each agent to compute its local
context feature. All these include information about the ego-motion, interaction
with nearby agents, and the structure of the road, capturing the immediate sur-
roundings around every agent. A global contextual aggregator then aggregates
these local features, enriching the representation at each agent to capture long-
range interactions and entire-scene dynamics. Also, this aggregator has an impor-
tant role in understanding the context of the scene in a broader aspect, important
for accurate prediction of motions.

Simultaneously, an anchored goal query module refines the information by in-
corporating predefined intention points, which guide the model towards more pre-
cise trajectory predictions. By incorporating these intention points, the model nar-
rows its focus to the most probable paths and hence reduces uncertainty, thereby
making accurate predictions. Finally, enhanced representations are decoded to
obtain multi-modal trajectory predictions of all agents, effectively modeling the

inherent uncertainty in dynamic traffic scenarios.

150



6. MOTION FORECASTING

Scene Context

Figure 6.1: Our model architecture. Different encoder modules used for different

tasks and then the features are combined using a cross attention module.

6.3.2 Environmental Context Encoding

In the IRMTR framework, we represent a traffic scene by encoding both the spatial
and temporal characteristics of agents and map features. To achieve this, the
scene is decomposed into vectorized entities, including the trajectory segments
of moving agents and the lane segments that make up the road network. Unlike
traditional methods that rely on absolute positions, our approach uses a relational
representation that captures the geometric properties of these entities, ensuring
robustness to environmental transformations such as translations.

For each agent a, its trajectory over time is represented by a sequence of rel-
ative displacements {ui,*:' VI, where nl? = ¢ — ¢V and ¢ £ R? denotes the
agent’s position at time step t. Here, T represents the total number of historical

steps considered. Each lane segment ) is represented by its geometric attribute as

h, = qj —aj, (6.1)
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where q3 and q5 € R? are the starting and ending points of the lane segment in
Equation 6.1, respectively. This relational encoding inherently preserves transla-
tion invariance, which is crucial for consistent scene interpretation across varying
spatial contexts.

By arranging the scene in this manner, our representation effectively captures
the relative spatial configuring between entities, such as how an agent’s trajectory
relates to its surrounding environment. This ensures that the learned representa-
tions remain robust, so the model can generalize across different driving scenarios
and is insensitive to absolute positional shifts. It guarantees that any subsequent
processing step respects inherent geometric properties of the scene for more reli-

able motion prediction.

6.3.3 Local Encoder for Scene Context and Agent Interaction

The local encoder in our model is fundamental for encoding the spatial structure
of the environment and capturing both agent-agent and agent-environment inter-
actions. Rather than relying on predefined local regions, we utilise a localised
attention mechanism that dynamically identifies and focuses on the most perti-
nent interactions within the scene. This approach enables the model to be both
memory-efficient and highly accurate by concentrating computational resources

on interactions most likely to influence the agent’s behavior.

Agent-Environment Interaction

For each agent a at time step t, the interaction with its environment is represented
by its trajectory segment u’, — u'~!, which serves as a directional reference vector.
To ensure consistency in our model’s predictions, regardless of the agent’s orien-

tation, we apply a rotation matrix R, based on the orientation 8, of this reference
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vector. This rotation matrix is defined as:

. (ms{ﬂﬂ] —sm{aﬂ}) 62
sin(f,) cos(f.)

This matrix is used to align the trajectory data with a consistent reference
frame, ensuring that the agent’s movements are interpreted accurately in relation
to the rest of the environment. The trajectory features are then encoded using
multi-Layer perceptrons, where the central agent’s features are processed by the
MLP ¢yoca, and the features of the neighboring agents, adjusted relative to the
central agent, are encoded by ¢neighbor-

The encoded features hy, for the central agent at time ¢ and h’, for a neighboring

agent j are given by:

bt = b (R (1 — uE7) ,x,) (63)

h = dueighbor ([RY (uf — uf™") , RT(uf — ul),x;]) (6.4)

where x, and x; are the semantic attributes of agents a and j, and e,; is the edge

attribute representing the spatial relation between these agents.

Local Scene Context Encoding with localised Attention

The localised attention mechanism employed in our model introduces significant
adaptations tailored specifically to the challenges of multi-agent motion forecast-
ing in autonomous driving. Our approach integrates this mechanism into a hierar-
chical encoder-decoder framework that captures both immediate and long-range
interactions. By dynamically focusing on the most relevant neighbors and spatial
features, our implementation ensures that critical agent-environment and agent-

agent interactions are captured effectively. This method avoids the inefficiencies
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of global attention by concentrating on the interactions that are most likely to in-
fluence the agent’s future trajectory. This integration, coupled with the broader
architecture—including the temporal encoder, global contextual aggregator, and
anchored goal queries—results in a system suited for real-time, context-aware tra-
jectory prediction in complex traffic scenarios.

The encoded features from the central agent and its neighbors are used to
compute the query, key, and value vectors required for the scaled dot-product

attention mechanism. Specifically:

q, = W7, (6.5)
ki; = W¥hy,, (6.6)
Vo; = WWhy, (6.7)

where W9 W¥ and WV are learnable matrices for linear projections, and o',
k!;, and v ; are the query, key, and value vectors, respectively.
The attention score o, between the central agent a and its neighboring agent j

is computed using:

Kt
a! = softmax (qﬂ ﬂj) (6.8)

where d;. is the dimensionality of the key vectors.
The updated embedding for the central agent g* is computed by combining its
own embedding with the weighted sum of the value vectors from its neighbors:

gt =h! + Z Ve (6.9)
FEN,

This localised attention mechanism allows the model to efficiently capture crit-

ical spatial interactions, thereby improving the accuracy of its motion predictions.
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The encoded local context is then utilised in subsequent layers to further refine the
agent’s trajectory predictions, ensuring that the model effectively leverages both

immediate and broader environmental cues.

Temporal Encoder Block Spatial Encoder Block

Figure 6.2: Encoder blocks inside the local encoder.

Temporal Encoder Block

To effectively capture the temporal dynamics inherent in motion prediction, we
utilise a Temporal Transformer Encoder that processes the sequence of embed-
dings derived from the spatial context encoder across different time steps. For
each central agent a, the input sequence to this module is composed of embed-
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dings u! at each time step ¢, wheret =1,...,T.

In our framework, similar to the BERT architecture Devlin et al. (2018), we
append a learnable token uf,; to the end of the input sequence. This token acts
as a global representation summarizing the temporal information of the agent’s
trajectory. We further enrich these embeddings by adding positional encodings to
account for the sequential nature of the input data.

The resulting sequence S* € RT+1*d ig then passed through the Temporal

Attention block, which operates as follows:

Q, = S W Wsime (6.10)

K, = S*W Kume (6.11)

V, = STW Viime (6.12)
T

S. = softmax (Qﬁ_ﬂ + M) Va, (6.13)
k

where W @ime VW Kiime W lime & RdeXde gre learnable matrices for the query, key,
and value projections, and M € RT+1=(T+1) j5 3 temporal mask that restricts the

tokens from attending to future time steps:

—oo ifu<w,
M,, = (6.14)

0 otherwise.

This mechanism ensures that the attention mechanism only considers past and
present information when predicting the future trajectory, preserving the causal
structure of the sequence. The output of this temporal attention block, which
encapsulates the spatial-temporal features of the scene, is subsequently fed into

the next stages of our model for trajectory forecasting.
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6.3.4 Global Contextual Aggregator

To capture long-range dependencies and global interactions among agents in the
scene, we introduce a global contextual aggregator. Our approach aggregates
global information through a holistic summarization of agent embeddings using a
pooling operation, allowing for comprehensive context integration.

We generate a global context vector that encapsulates the collective dynamics

of all agents by applying a pooling operation:

Calobal = Pooling ({,}. ;) (6.15)

where:

* h,: Local embedding of agent a from previous encoders.
* N: Total number of agents in the scene.
* Pooling(-): A permutation-invariant aggregation function.

In our model, we utilise mean pooling as the pooling operation due to its sim-

plicity and effectiveness:

N
1
Calobal = - > ha (6.16)

a=1

This mean pooling operation ensures that the global context vector is a fair and
unbiased summary of all agent embeddings, capturing the overall scene context
without being influenced by the order of agents or dominated by any particular
agent.

Each agent’s embedding is then refined by integrating it with the global context

vector:
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ha = MLPrefine ([ha; Celobal]) (6.17)

where:

* [h4:Cgiohat]: Concatenation of the agent’s local embedding &, and the global

context vector Cgjghal-

* MLPrefine: A multi-layer perceptron that learns to fuse local and global infor-

mation.
* ha: The refined embedding for agent a.

By first defining a general pooling operation and then specifying that we use
mean pooling, we clarify our methodology and the rationale behind our choice.
The global context vector cgobal represents the collective behavior of the scene,
capturing average movements, interactions, and overall dynamics.

Integrating this global context with each agent’s local embedding allows the
model to enhance the agent’s representation with information about the broader
scene. This is particularly beneficial in scenarios where the collective behavior
influences individual agents, such as in traffic flow or crowd movements.

This method is computationally efficient and avoids the complexity of comput-
ing pairwise interactions between agents, making it suitable for real-time applica-

tions and large-scale scenes.

6.3.5 Decoder with Anchored Goal Queries

Our proposed model utilises a decoder architecture specifically designed to refine
motion predictions by incorporating anchored goal queries. These queries help fo-
cus the attention mechanism on relevant future positions, improving the accuracy

of trajectory predictions.

158



6. MOTION FORECASTING

Problem Formulation and Notation

In the context of motion prediction for autonomous driving, we aim to predict the

future trajectories of agents over a fixed prediction horizon. We define:

* N: Number of agents in the scene.
* T: Length of the observed trajectory (number of historical time steps).
* H: Prediction horizon (number of future time steps).

* K: Number of modes or anchored goal queries considered for multimodal

prediction.

* Pas € R?: Position of agent a at time step t.

Time steps t range from 1 to T for observed data and from T'+ 1 to T + H for

future predictions.

Anchored Goal Queries

To effectively localise potential motion intentions of agents, our model incorpo-
rates anchored goal queries. These queries are designed to reduce the uncertainty
in predicting future trajectories by focusing on representative intention points that
encapsulate possible future positions of the agents.

We generate K representative intention points A € R**? by applying a Gaus-
sian Mixture Model clustering algorithm on the endpoints of the ground-truth
trajectories. Each anchored goal query corresponds to an implicit motion mode,
capturing both the direction and velocity of the agent’s possible future trajectory.

Each anchored goal query is modeled as a learnable positional embedding of

the intention point, formulated as:

159



6.3. INTENTION REFINED MOTION TRANSFORMER (IRMTR)

()4 = MLP(PE(A4)) (6.18)
where:
* PE(.) is the sinusoidal positional encoding function.
* ()4 € RP is the learnable embedding of the anchored goal query.

Collectively, Q@ , € R**P contains all goal query embeddings.

Integration with Global Contextual Aggregator

The decoder in our architecture is designed to translate the aggregated context fea-
tures, which include both the global scene context and refined intention queries,
into accurate future trajectory predictions for each agent. The decoder leverages
the input from the global contextual aggregator and the anchored goal queries to
generate multimodal trajectories.

For each agent a and anchored goal query ()4, the input to the decoder is

represented as:

COR _h 4+ Qs (6.19)

“input

where:

* h, is the refined embedding of agent a obtained from the global contextual
aggregator, calculated as:

fl‘a = MPrEﬁ_m:_n ([h'n:: Cg]ﬂbﬂl]}

with &, being the local embedding of agent a, and ¢, the global context

vector.

* ()4 is the embedding of the k-th anchored goal query.
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Attention Mechanism

We employ an attention mechanism to focus on critical features from the encoder

outputs. For each agent a and anchored goal query Q 4 ;., we define:

Query:
Quye = Chu W9 (6.20)
Key and Value:
K = Ho WX, V= H, WY (6.21)
where:

* Henc is the set of encoded features from the encoder or global contextual

aggregator.

* W9 W%, and WV are learnable weight matrices.

The attention scores for agent a and anchored goal query Q.4 are computed

ds.

@, = softmax (Q’L’%g T) (6.22)

where d;. is the dimensionality of the key vectors.

The context vector is then obtained by:

Zog = gV (6.23)

Multimodal Trajectory Prediction with GMM

For each decoder layer, we attach a prediction head to z,, for predicting future

trajectories. As the behaviors of agents are highly multimodal, for each future
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time step, we model the distribution of predicted trajectories with a GMM. Con-
cretely, for each future time step t € {1,--- , H}, we predict the parameters of each

Gaussian component as follows:

Za gt = MLP(2, ) (6.24)

where Z, ;. ; € R® includes the parameters (p,, ft,, 0, 0y, p, T, ) of the bivariate
Gaussian distribution N (u,., pi,,. ., 7,. p) for agent a and mode k at time step t.
The predicted distribution of the agent’s position at time step ¢ can be formu-

lated as:

K
Pas(0) = Map "N (0| fagt, Do k) (6.25)

k=1

where:

o € R? is a spatial position.

Pakt = (Ms, [L,) is the mean position for agent a and mode k at time step t.

Y, k¢ is the covariance matrix constructed from o,, 7,, p.

T, is the mixture weight (predicted probability) for component k for agent

a, satisfying Yk | . = 1.
The predicted trajectories T, ; can be generated by extracting the predicted
means i, ., over the future time steps.
Decoder Output

Finally, the decoder produces the predicted trajectories by applying a series of
multi-layer perceptrons on the refined feature set. The output of the decoder

represents the future positions of agents, considering multiple possible motion
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modes. This approach enables the model to generate diverse and plausible future

trajectories, contributing to safer and more reliable autonomous driving systems.

6.3.6 Training Losses

Our model is trained end-to-end using a combination of regression and classifica-
tion losses to optimize the multimodal trajectory predictions. The training process
is designed to minimize the prediction error while ensuring diverse trajectory hy-

potheses through the following components:

Regression Loss

To measure the accuracy of predicted trajectories against the ground truth, we
adopt a negative log-likelihood (NLL) regression loss. For each agent a, we com-

pute the regression loss over the Gaussian components:

H K
1
ﬂf-gé =T Z;log (; Tak - N (Pa | #a.k,f:zu,k,:]) (6.26)
t= =

where:
* p.. is the ground truth position of agent a at future time step t.
* m,; is the mixture weight for component k for agent a.

* Mg and ¥, ;. , are the mean and covariance of the Gaussian component k

for agent a at time step .

Classification Loss

The model also predicts the likelihood of each trajectory mode. To optimize these
predictions, we use a cross-entropy classification loss £, which helps in learning

the mixture weights 7, :
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K
LE == varlogmas (6.27)
k=1

where:

* Y.k is a binary indicator (0 or 1) that assigns the ground truth trajectory to

one of the predicted modes for agent a.

* T, satisfies Y | T, = 1 and represents the predicted probability of mode

k for agent a.

Combined Loss Function

The final loss function is a weighted combination of the regression and classifica-

tion losses:

1 N

L=< (A,Egﬁggg + Ac.sﬁjijg?') (6.28)

a=1

where:

* N is the number of agents.

* Mg and Ay, are weighting factors that balance the contributions of the re-

gression and classification losses.

This loss function ensures that the model is both accurate in its trajectory pre-

dictions and robust in distinguishing between multiple plausible futures.

Rationale Behind the Training Loss Function

The design of the training loss function in IRMTR is central to its ability to bal-
ance accuracy, multimodality, and robustness. The model employs a negative log-
likelihood (NLL) regression loss, which allows it to predict a probability distribu-

tion over multiple plausible trajectories rather than a single deterministic outcome.
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This is particularly important in motion forecasting, where agents often have sev-
eral valid paths to choose from. The NLL loss ensures that the model captures this
inherent uncertainty by modeling each trajectory as a bivariate Gaussian distribu-
tion, reflecting both spatial accuracy and multimodal behavior.

In addition to regression, the model incorporates a cross-entropy classification
loss to optimize the likelihood of each predicted trajectory mode. This ensures that
the model accurately prioritizes plausible modes and avoids mode collapse, where
it might otherwise predict only the most frequent behaviors. By combining regres-
sion and classification losses with carefully tuned weighting factors, the training
process encourages diverse trajectory predictions while maintaining precision for
the most likely outcomes. This integrated loss design also aligns closely with eval-
uation metrics such as minADE and minFDE, ensuring that improvements in the

loss function directly translate to better real-world performance.

6.4 Evaluation Outcomes

6.4.1 Experimental Setup

Intention Points Creation

In this section, we compare the two clustering techniques, k-means clustering and
Gaussian Mixture Model clustering, for the purpose of generating intention points
based on the AGENT class. Both methods are applied to the same dataset of
endpoints to form clusters that represent the likely future paths of agents. Below
are detailed observations from the visualizations, followed by a comparison of the

two techniques and an explanation of why GMM was chosen.
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K-means Clustering
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Figure 6.3: Intention points created using K-means clustering algorithm.

The clusters generated by k-means (see Figure 6.3) are more uniform, with
evenly distributed intention points within the clusters. This method inherently
assumes that the clusters have a spherical shape and are of similar size. As a
result, the points are grouped into relatively homogeneous clusters, with clearly
defined boundaries between them. The rigid assignment of each point to a single
cluster is reflected in the clean, distinct clusters visible in the plot.

In contrast, GMM (see Figure 6.4) clustering provides more flexibility in the
shape of the clusters. The algorithm assumes that data is generated from a mixture
of Gaussian distributions, allowing clusters to take on elliptical or irregular shapes,
rather than strictly spherical forms. GMM also allows for soft clustering, where

each point is assigned to multiple clusters with a probability. This probabilistic
assignment makes GMM more adaptable to complex or overlapping data, which is

particularly evident when observing the more natural and flexible distribution of
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intention points in the plot.

GMM Clustering
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Figure 6.4: Intention points created using GMM clustering algorithm.

The k-means assumes that clusters are spherical and of equal size. This works
well when the data fits these assumptions. However, real-world data, such as
agent trajectories, often do not form such perfect shapes.

GMM, on the other hand, allows clusters to take on more flexible shapes. This
is important in motion forecasting, where the paths that agents might take are not
always uniformly distributed or confined to clear, separate regions.

In k-means, each point is strictly assigned to the nearest cluster center based
on Euclidean distance. While this provides clear-cut boundaries, it can lead to
inaccuracies when data points lie near the boundary between two clusters, as they
are forced into a single cluster regardless of how close they might be to the others.

GMM offers a soft assignment, where each point is assigned to clusters based

on a probability distribution. This probabilistic model is better suited for motion
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prediction, where agents may have overlapping or ambiguous trajectories. GMM
accounts for this uncertainty by assigning probabilities, rather than enforcing hard
boundaries.

In k-means, overlapping data points are assigned strictly to one cluster, which
can distort the cluster boundaries and result in less accurate intention points, es-
pecially when agents are traveling in close proximity or have overlapping trajecto-
ries.

GMM, with its ability to model data as a mixture of Gaussians, is naturally bet-
ter at handling overlapping data points. This makes it a more suitable choice when
forecasting motion in environments where agent paths frequently intersect or run
close to one another, which is often the case in autonomous driving scenarios.

The k-means is computationally efficient and generally faster than GMM. Its
simplicity makes it a popular choice when working with large datasets and when
real-time performance is a critical factor.

GMM is computationally more expensive due to the probabilistic nature of the
algorithm, which requires estimating the parameters of multiple Gaussian distri-
butions. However, given that the intention points are computed offline (prior to
real-time use), this additional computational cost is manageable and justified by
the improved accuracy and flexibility in clustering.

While k-means clustering provides a fast and straightforward solution for clus-
tering intention points, its limitations in handling non-spherical clusters, overlap-
ping data, and its rigid assignment of points make it less suitable for complex
datasets like motion forecasting. GMM offers a more flexible, accurate, and prob-
abilistically informed approach, making it the preferred choice for generating in-
tention points in our work. Its ability to model uncertainty and overlapping trajec-
tories provides a significant advantage in predicting agent behavior in real-world

autonomous driving scenarios.
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Dataset

We evaluate the performance of our Intention Refined Motion Transformer (IRMTR)
using the comprehensive Argoverse motion forecasting dataset Chang et al. (2019).

This dataset is specifically designed to support research in autonomous driving,

providing extensive annotations for a wide range of real-world driving scenarios.

The dataset consists of 323,557 driving sequences, which include detailed tra-

jectories of various agents, such as vehicles, cyclists, and pedestrians, alongside

high-definition map data that captures the structural layout of the environment.

The dataset is split into training, validation, and test sets, with 205,942 sam-
ples in the training set, 39,472 samples in the validation set, and 78,143 samples
in the test set. Each sequence in the training and validation sets covers a 5-second
window, sampled at a frequency of 10 Hz, providing dense temporal data for mo-
tion analysis. For the test set, only the first 2 seconds of the trajectories are publicly
available, aligning with the Argoverse Motion Forecasting Challenge, which tasks
participants with predicting the future 3-second trajectories of agents based on
these initial 2-second observations.

This dataset setup is particularly advantageous for evaluating motion predic-
tion models, as it encompasses diverse driving conditions and complex interac-
tions among multiple agents. The availability of high-definition map data further
enhances the richness of the dataset, allowing models to leverage detailed envi-

ronmental context for improved trajectory forecasting.

Evaluation Metrics

To assess the effectiveness of our model, we utilise a set of well-established met-

rics commonly used in the field of motion prediction: minimum Average Displace-

ment Error (minADE), minimum Final Displacement Error (minFDE), and Miss
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Rate (MR). These metrics are designed to evaluate the accuracy and reliability of
predicted trajectories over a defined forecast horizon, supporting the generation

of up to six potential future paths for each agent.

Minimum Average Displacement Error (minADE): This metric measures the
L, distance in meters between the best-predicted trajectory and the ground-truth
trajectory, averaged over all future time steps. It provides an aggregate measure
of how closely the predicted trajectory follows the actual path of the agent. The

formula is given as:

N T
‘nADE — 1 1 pred i o
o E= N ; I]:lklll T ; ”p'i-,i - e‘.,i”ﬂ (6.29)

where:

N': Total number of agents.

T: Prediction horizon (number of future time steps).

pffd’k: Predicted position of agent i at time ¢ for mode k.

pf;: Ground-truth position of agent i at time t.

k: Represents the mode of the multimodal prediction.

Minimum Final Displacement Error (minFDE): Unlike minADE, this metric
focuses on the prediction error at the final predicted time step. It calculates the
L, distance between the endpoint of the best-predicted trajectory and the ground-
truth endpoint, offering insights into the model’s ability to accurately predict the

final position of an agent. The formula is given as:

N
) 1 . d
minFDE = §__1 min ||pf7* — il (6.30)
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where:

N': Total number of agents.

T Final predicted time step.

pff;d’k: Predicted endpoint position of agent i for mode k.

p;r: Ground-truth endpoint position of agent i.

k: Represents the mode of the multimodal prediction.

Miss Rate (MR): This metric is defined as the percentage of scenarios where
the distance between the ground-truth endpoint and the best-predicted endpoint
exceeds 2.0 meters. It serves as an indicator of the model’s capability to predict

trajectories within a reasonable range of error. The formula is given as:

N
MR = 3 (min [p75F** ~ bl > D) 631)

i=1

where:

* N: Total number of agents.

T Final predicted time step.

Dw: Threshold distance (e.g., 2.0 meters).

J(-): Indicator function that equals 1 if the condition is true, and 0 other-

wise.

k: Represents the mode of the multimodal prediction.

These metrics collectively provide a comprehensive evaluation of the model’s
performance, allowing for a detailed comparison with other state-of-the-art meth-

ods in motion prediction.
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6.4.2 Implementation Details

Our model is implemented and trained on an NVIDIA RTX 3080 Ti GPU to lever-
age its high computational power. We employ the AdamW optimizer for training,
which is well-suited for handling the sparse gradients typical in deep learning
tasks. The training process spans 50 epochs, with a batch size of 32 to balance
between convergence speed and memory efficiency:

The initial learning rate is set to 10—, with a weight decay of 1 x 10~2 to prevent
overfitting by penalizing large weights. To further enhance training stability, we
apply a dropout rate of 0.1 across the network layers. The learning rate is adjusted
throughout the training process using a cosine annealing scheduler, which gradu-
ally reduces the learning rate to facilitate fine-tuning in later stages of training.

Our model consists of multiple layers tailored to capture both localised and
global features. Specifically, the context encoder is composed of 4 layers of lo-
calised attention to focus on immediate interactions, while the temporal encoder
includes 4 layers to effectively model temporal dependencies. The global contex-
tual aggregator module is implemented with 3 layers to integrate broader scene
information. Each decoder layer is equipped with 128 hidden units and utilises 8
attention heads in each multi-head attention block to capture diverse features.

For generating anchored goal queries, we use a Gaussian Mixture Model (GMM)
to cluster potential intention points extracted from the training dataset. This ap-
proach provides more refined clustering compared to traditional k-means cluster-

ing, improving the representation of potential future positions.

6.4.3 Results

Performance Comparison with State-of-the-art: Table 6.1 presents a detailed

comparison of our proposed model against various state-of-the-art methods, eval-

172



6. MOTION FORECASTING

uated on the Argoverse validation set using standard metrics such as minADE,
minFDE, and MR. Our model achieves competitive results with a minADE of 0.724,
minFDE of 1.11, and MR of 0.11.

Table 6.1: Comparison of Performance Metrics Across Different Methods.

Method minADE minFDE MR
LaneGCN Liang et al. (2020) 0.71 1.08 0.10
DenseTNT(w/100ms opt.) Gu et al. (2021) 0.73 1.05 0.10
DenseTNT(w/goal set pred.) Gu et al. (2021) 0.75 1.05 0.10
mmTransformer Liu et al. (2021) 0.713 1.153 0.106
HOME Gilles et al. (2021) 0.93 1.28 6.8
GOHOME Gilles et al. (2022) 0.8904 1.26 7.1
TPCN Ye et al. (2021) 0.73 1.15 0.11
HiVT-64 Zhou et al. (2022) 0.69 1.04 0.10
HiVT-128 Zhou et al. (2022) 0.66 0.96 0.09
Ours 0.724 1.11 0.11

Our approach performs slightly better than mmTransformer Liu et al. (2021),
which has a minADE of 0.713, minFDE of 1.153, and MR of 0.106, indicating that
our model can offer comparable prediction accuracy. Although HiVI-128 Zhou
et al. (2022) demonstrates the best overall performance with a minADE of 0.66,
minFDE of 0.96, and MR of 0.09, our model still maintains strong results, partic-

ularly given its relative simplicity compared to the HiVT architecture.
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Figure 6.5: Qualitative result of IRMTR 1.

Moreover, our model shows significant improvements over models like GO-
HOME Gilles et al. (2022), which reports much higher minADE and minFDE val-
ues (0.8904 and 1.26, respectively) and a substantially higher MR of 7.1. The
results also indicate that our model outperforms LaneGCN Liang et al. (2020) and
remains highly competitive with DenseTNT’s variations, which also show strong

performance but with slightly different optimization setups.
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"l

Figure 6.6: Qualitative result of IRMTR 2.

Overall, the results confirm that our intention-refined transformer model ef-
fectively reduces prediction error and stands as a competitive method among the
top-performing models in trajectory prediction tasks on the Argoverse validation

set. Some qualitative results can be observed in Figure 6.5, Figure 6.6, Figure 6.7,
and Figure 6.8.
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Figure 6.7: Qualitative result of IRMTR 3.
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s~

Figure 6.8: Qualitative result of IRMTR 4.

6.4.4 Ablation Studies

Importance of Each Module

We conduct a series of ablation studies to evaluate the impact of each module
within our model, as shown in Table 6.2. This analysis focuses on the Tempo-

ral, Global, and Agent-Environment modules, highlighting their contributions to
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overall model performance.

* Temporal Module: Removing the Temporal module results in a significant
performance drop, with minADE and minFDE increasing to 1.09 and 1.64,
respectively, and MR rising to 0.24. These findings emphasize the impor-
tance of temporal information in refining trajectory predictions and main-

taining accuracy over time.

* Global Module: Excluding the Global module also leads to a noticeable
degradation in performance, with minADE increasing to 0.77 and minFDE
to 1.21, along with an MR of 0.13. This highlights the module’s role in cap-

turing long-range dependencies and enhancing the overall prediction quality.

* Agent-Environment Module: The removal of the Agent-Environment in-
teraction module results in further performance degradation, with minADE
increasing to 0.82, minFDE to 1.31, and MR to 0.15. This underscores the
importance of modeling interactions between agents and their environment

for accurate and reliable predictions.

Table 6.2: Ablation Study: Effect of Removing Key Components

Temporal Global Agent-En minADE minFDE MR
v v v 0.724 1.11 0.11
* v v 1.09 1.64 0.24
v ® v 0.77 1.21 0.13
v v ® 0.82 1.31 0.15
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These ablation studies confirm that each component contributes significantly
to the model’s performance, with their combined use leading to the most accurate
predictions, as indicated by the lowest minADE, minFDE, and MR values in the
full model.

Importance of the Anchored Goal Query

An additional ablation study, shown in Table 6.3, investigates the effect of incor-
porating Anchored Goal Queries into our model. The results clearly demonstrate
that these queries significantly enhance the model’s performance.

When Anchored Goal Queries are utilised, the model achieves a minADE of
0.724 and a minFDE of 1.11, with an MR of 0.11. These values represent the best
performance, indicating that Anchored Goal Queries help reduce uncertainty in
future trajectory predictions, thereby improving both accuracy and reliability.

In contrast, removing the Anchored Goal Queries leads to a decline in perfor-
mance, with minADE increasing to 0.741, minFDE to 1.23, and MR to 0.13. This
decline highlights the importance of Anchored Goal Queries in guiding the model
towards more accurate and plausible trajectory predictions.

Overall, these results from the ablation study demonstrate that Anchored Goal

Queries are a crucial component for enhancing the prediction accuracy of our

model.

Attention Mechanisms Difference

To explore the impact of different attention mechanisms on model performance,
we conduct an ablation study as presented in Table 6.4. This study compares the

use of global attention with localised attention in the model’s architecture.

* Global Attention: When only global attention is used, the model achieves
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Table 6.3: Ablation Study: Impact of Anchored Goal Query

Anchored Goal Query minADE minFDE MR
v 0.724 1.11 0.11
X 0.741 1.23 0.13

a minADE of 0.74 and a minFDE of 1.22, with an MR of 0.14. While these

results are competitive, they suggest that relying solely on global interac-

tions may overlook some finer, localised details that are crucial for accurate

trajectory prediction.

* Localised Attention: In contrast, using localised attention results in supe-

rior performance with a minADE of 0.731, minFDE of 1.14, and an MR of

0.12. These improvements highlight the effectiveness of localised attention

in capturing relevant spatial details, which contribute to more precise trajec-

tory predictions.

Table 6.4: Ablation Study: Impact of Different Attention Mechanisms

Global Attention Localised Attention minADE minFDE MR
1/ * 0.74 1.22 0.14
Y v 0.731 1.14 0.12

The findings from this ablation study demonstrate that localised attention is

a more effective approach within our model, contributing to enhanced predictive
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performance by focusing on critical local interactions that global attention alone

may miss.

6.5 Conclusion

In this chapter, we proposed the Intention Refined Motion Transformer (IRMTR),
an innovative architecture designed to address the complex task of multi-agent
trajectory prediction in dynamic environments. By effectively balancing both local
and global contextual information, IRMTR enhances the accuracy and robustness
of motion forecasting. To achieve this balance, we integrated two key components
into our framework: anchored goal queries and localised attention mechanisms.

Anchored goal queries play a pivotal role in guiding the model toward plau-
sible future positions of agents, effectively narrowing down the search space for
potential trajectories. By focusing the model’s attention on critical areas of the
scene, this mechanism enhances its ability to anticipate the likely paths agents
might follow. Leveraging predefined intention points derived from historical data,
anchored goal queries provide a structured approach to capturing diverse motion
patterns, which is essential for generating accurate and reliable trajectory pre-
dictions. This strategy sets our model apart by efficiently incorporating probable
future positions into the prediction process.

Simultaneously, the localised attention mechanisms enable the model to dy-
namically allocate computational resources to the most relevant spatial interac-
tions within the environment. This targeted focus allows the model to capture
fine-grained details and local dependencies crucial for understanding complex
agent interactions. By concentrating on specific regions pertinent to agents’ future
movements, the localised attention mechanisms enhance the model’s sensitivity

to subtle cues and environmental variations, thereby contributing to more accu-
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rate trajectory predictions. This approach offers a significant improvement over
traditional global attention mechanisms by reducing complexity:

Through extensive experiments conducted on the Argoverse motion forecasting
dataset, we have demonstrated that IRMTR significantly improves the prediction
accuracy over existing baseline models. The model excels in reducing prediction
errors across a variety of driving scenarios, including those with complex agent
interactions and diverse environmental conditions. This capability is particularly
important for real-world applications, where the ability to accurately forecast the
movements of multiple agents can significantly enhance the safety and efficiency
of autonomous driving systems.

The results of our ablation studies further underscore the importance of each
component within our architecture. By systematically evaluating the impact of re-
moving key modules, we have confirmed that both the anchored goal queries and
localised attention mechanisms are integral to the model’s overall performance.
These components not only contribute individually to improving prediction accu-
racy but also work synergistically to refine the model’s understanding of the scene,
enabling it to make more informed predictions under various conditions.

In summary, the Intention Refined Motion Transformer represents a significant
advancement in the field of trajectory prediction. The proposed architecture offers
a robust and flexible framework that effectively integrates both local and global
context to generate accurate and contextually aware predictions of agent trajecto-
ries. As a result, IRMTR not only enhances the current state-of-the-art in motion
forecasting but also provides a solid foundation for future research and develop-
ment in this domain. Potential extensions of this work include adapting the model
to more complex environments, incorporating additional sensor modalities, and
exploring broader applications beyond autonomous driving, such as robotics and

human motion analysis.
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The insights gained from this chapter align with the overarching goals of this
thesis, which emphasizes the development of robust and reliable perception sys-
tems for autonomous driving. By addressing the challenges of motion forecasting,
this chapter builds upon the advancements in multi-object tracking and paves the
way for future research in comprehensive motion understanding, linking seam-

lessly with the narrative of improving autonomous vehicle safety and capability.
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CHAPTER 7

Conclusion

7.1 Overview

Most research over the past couple of decades has focused on autonomous driving
to make vehicles that can compete in driving safely through complicated envi-
ronments without human assistance. The ability of the vehicle to perceive the
environment correctly and predict the future motion of the other road users is
the prime ability of this system. While considerable work has been done in this
domain, a few challenges persist, particularly in the integration of diverse sensor
data and the application of an advanced machine learning model to a real-world
scenario.

Perception tasks in self-driving vehicles have traditionally relied on LiDAR and
camera sensors. These sensors represent a trade-off between their merits and their
demerits: in most cases, LIDAR enforces highly accurate depth but is generally very
expensive, whereas its performance degrades based on the environmental condi-
tions. Whilst cameras have richer visual detail, but suffers from depth perception
and object recognition challenges in changing light conditions. Recent advance-

ments have introduced synthetic data generation and deep learning models like
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ViTs. These recent innovations also introduce their problems to efficiency of com-
putation and the capability to generalize across environments.

Aiming to alleviate these challenges and seize the opportunities, this thesis
aimed at improving recognition and prediction competence in autonomous driving
with a series of innovative methodologies. It contributed to solving the problem of
data scarcity in LIDAR segmentation by integrating synthetic data with real-world
datasets. Our experiments showed that models trained on the integrated dataset
achieved significant improvements in segmentation accuracy compared to those
trained solely on real-world data, thus effectively improving model generalizability
across different driving scenarios.

Besides, another contribution is adapting ViTs to LiDAR data processing. We
transform 3D point cloud into a well-structured 2D format with the spherical pro-
jection technique to make it possible to utilize ViTs for complex spatial dependen-
cies modeling. This way; it significantly lifted the accuracy of segmentation and
increased robustness against diverse driving conditions.

We also proposed a multi-object tracking framework that utilized both 2D and
3D data through transformer-based sensor fusion. This work improved tracking
performance and is also robust against occlusions and identity switches-providing
insight into adapting transformer architectures for handling multi-object tracking
in dynamic scenes.

Additionally, our research introduces the Intention Refined Motion Transformer
and is a novel architecture. IRMTR combines the best features of intention-based
prediction mechanisms with a hierarchical attention structure that helps to im-
prove further the performance of trajectory prediction in complex driving scenar-
ios. IRMTR reduced the prediction error in these uncertain, multi-agent interac-
tion scenarios, thus contributing a new approach toward motion forecasting.

Among those contributions, some of the main challenges in perception, track-
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ing, and prediction have been addressed in this thesis, with further improvement
on the capability of autonomous driving systems. Through extensive experimen-
tation and validation on several datasets and scenarios, we have shown that our
methods can achieve salient improvements compared to the current techniques,

confirming that our approaches are effective.

7.2 Future Work

While this thesis has made substantial progress in advancing the field of au-
tonomous driving, there are several avenues for future research that could further
enhance the capabilities of the proposed methodologies.

One potential direction is to expand the integration of synthetic data to other
sensor modalities, such as radar or thermal cameras, to provide additional robust-
ness to perception models. By diversifying the types of synthetic data used, future
studies could explore the benefits of multi-sensor fusion in a wider range of driving
conditions, particularly in scenarios where certain sensors may be compromised.

Other future directions include optimizing the Vision Transformer-based seg-
mentation framework toward real-time data processing and online learning. It
will be necessary to devise strategies that reduce computational complexity with
no penalty on the accuracy of segmentations, hence enhancing adaptability within
dynamic environments and making such models more feasible for application in
real-world scenarios.

Another promising avenue is the advancement of a transformer-based sensor
fusion and tracking framework that incorporates real-time data processing with
online learning to add robustness in countering unprecedented situations with
dynamically changing environmental factors. This would be further enhanced if
algorithms could be designed with efficiency, adapting to new information on the
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fly.

The Intention Refined Motion Transformer (IRMTR) offers significant potential
for further enhancement and adaptation. This becomes further useful on inves-
tigation into its application in highly crowded urban areas or situations involv-
ing complicated scenarios of various modes of transport: bicycles, scooters, and
pedestrians. A more efficient framework for predicting multimodal trajectories
of multiple agents simultaneously would reduce redundant context encoding and
enhance computational efficiency. Beyond rule-based post-processing, refining the
selection of trajectories stands to offer a more robust and versatile framework that
optimizes performance on key metrics like minADE and minFDE. Also, the incor-
poration of sophisticated intention recognition models or inclusions of feedback
from real-time V2V communications would potentially enhance predictiveness and
adaptability.

With respect to the future directions outlined above, we would like to build
upon what this thesis has established as a foundation and, in doing so, contribute
to the ongoing development of much safer and more efficient autonomous vehi-
cles that could successfully navigate the complexities of real-world driving envi-

ronments.

187



CHAPTER 8

Bibliography

Aksoy, E. E., Baci, S. & Cavdar, S. (2020), Salsanet: Fast road and vehicle segmen-
tation in lidar point clouds for autonomous driving, in ‘2020 IEEE intelligent

vehicles symposium (IV)’, IEEE, pp. 926-932.

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L. & Savarese, S.
(2016), Social 1stm: Human trajectory prediction in crowded spaces, in ‘Pro-
ceedings of the IEEE conference on computer vision and pattern recognition’,

pp- 961-971.

Alonso, 1., Riazuelo, L., Montesano, L. & Murillo, A. C. (2020), ‘3d-mininet: Learn-
ing a 2d representation from point clouds for fast and efficient 3d lidar semantic

segmentation’, [EEE Robotics and Automation Letters 5(4), 5432-5439.

Andriyenko, A. & Schindler, K. (2011), Multi-target tracking by continuous energy
minimization, in ‘CVPR 2011’, IEEE, pp. 1265-1272.

Ba, J. L., Kiros, J. R. & Hinton, G. E. (2016), ‘Layer normalization’, arXiv preprint
arXiv:1607.06450 .

Bahdanau, D., Cho, K. & Bengio, Y. (2014), ‘Neural machine translation by jointly

learning to align and translate’, arXiv preprint arXiv:1409.0473 .

188



8. BIBLIOGRAPHY

Bansal, M., Krizhevsky, A. & Ogale, A. (2018), ‘Chauffeurnet: Learning to drive by

imitating the best and synthesizing the worst’, arXiv preprint arXiv:1812.03079

Bao, H., Dong, L., Piao, S. & Wei, F. (2021), ‘Beit: Bert pre-training of image
transformers’, arXiv preprint arXiv:2106.08254 .

Baser, E., Balasubramanian, V., Bhattacharyya, P. & Czarnecki, K. (2019),
Fantrack: 3d multi-object tracking with feature association network, in ‘2019

IEEE Intelligent Vehicles Symposium (IV)’, IEEE, pp. 1426-1433.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C. & Gall,
J. (2019), Semantickitti: A dataset for semantic scene understanding of lidar

sequences, in ‘Proceedings of the IEEE/CVF International Conference on Com-
puter Vision’, pp. 9297-9307.

Berclaz, J., Fleuret, E., Turetken, E. & Fua, P. (2011), ‘Multiple object tracking
using k-shortest paths optimization’, IEEE transactions on pattern analysis and
machine intelligence 33(9), 1806-1819.

Bergmann, P., Meinhardt, T. & Leal-Taixe, L. (2019), Tracking without bells and
whistles, in ‘Proceedings of the IEEE/CVF international conference on computer

vision’, pp. 941-951.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X. & Tian, Q. (2022), ‘Pangu-weather: A
3d high-resolution model for fast and accurate global weather forecast’, arXiv

preprint arXiv:2211.02556 .

Bishop, C. M. & Nasrabadi, N. M. (2006), Pattern recognition and machine learning,
Vol. 4.

189



Braso, G. & Leal-Taixé, L. (2020), Learning a neural solver for multiple object
tracking, in ‘Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition’, pp. 6247—-6257.

Brostow, G. J., Fauqueur, J. & Cipolla, R. (2009), ‘Semantic object classes in video:
A high-definition ground truth database’, Pattern Recognition Letters 30(2), 88—
97.

Brown, T. B. (2020), ‘Language models are few-shot learners’, arXiv preprint
ArXiv:2005.14165 .

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G. & Beijbom, O. (2020), nuscenes: A multimodal dataset for
autonomous driving, in ‘Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition’, pp. 11621-11631.

Camuffo, E., Mari, D. & Milani, S. (2022), ‘Recent advancements in learning algo-
rithms for point clouds: An updated overview’, Sensors 22(4), 1357.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A. & Zagoruyko, S.
(2020), End-to-end object detection with transformers, in ‘European conference

on computer vision’, Springer, pp. 213-229.

Casas, S., Luo, W. & Urtasun, R. (2018), Intentnet: Learning to predict intention

from raw sensor data, in ‘Conference on Robot Learning’, PMLR, pp. 947-956.

Chai, Y., Sapp, B., Bansal, M. & Anguelov, D. (2019), ‘Multipath: Multiple prob-
abilistic anchor trajectory hypotheses for behavior prediction’, arXiv preprint
arXiv:1910.05449 .

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,

190



8. BIBLIOGRAPHY

S., Savva, M., Song, S., Su, H. et al. (2015), ‘Shapenet: An information-rich 3d
model repository’, arXiv preprint arXiv:1512.03012 .

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D.,
Carr, P, Lucey, S., Ramanan, D. et al. (2019), Argoverse: 3d tracking and fore-
casting with rich maps, in ‘Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition’, pp. 8748-8757.

Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. (2017), ‘Rethinking atrous

convolution for semantic image segmentation’, arXiv preprint arXiv:1706.05587

Chen, X., Kundu, K., Zhu, Y., Berneshawi, A. G., Ma, H., Fidler, S. & Urtasun,
R. (2015), ‘3d object proposals for accurate object class detection’, Advances in

neural information processing systems 28.

Chen, X., Ma, H., Wan, J., Li, B. & Xia, T. (2017), Multi-view 3d object detec-
tion network for autonomous driving, in ‘Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition’, pp. 1907-1915.

Chen, X., Milioto, A., Palazzolo, E., Giguere, P., Behley, J. & Stachniss, C. (2019),
Suma+ +: Efficient lidar-based semantic slam, in ‘2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)’, IEEE, pp. 4530-4537.

Cheng, R., Razani, R., Taghavi, E., Li, E. & Liu, B. (2021), 2-s3net: Attentive
feature fusion with adaptive feature selection for sparse semantic segmentation
network, in ‘Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition’, pp. 12547-12556.

Chollet, F. (2017), Xception: Deep learning with depthwise separable convolu-

191



tions, in ‘Proceedings of the IEEE conference on computer vision and pattern

recognition’, pp. 1251-1258.

Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B. & Yu, N. (2017), Online multi-object
tracking using cnn-based single object tracker with spatial-temporal attention

mechanism, in ‘Proceedings of the IEEE international conference on computer

vision', pp. 4836-4845.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S. & Schiele, B. (2016), The cityscapes dataset for semantic
urban scene understanding, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 3213-3223.

Cortinhal, T., Tzelepis, G. & Aksoy, E. E. (2020), ‘Salsanext: Fast, uncertainty-
aware semantic segmentation of lidar point clouds for autonomous driving’,

arXiv preprint arXiv:2003.03653 .

Cui, H., Radosavljevie, V., Chou, F.-C., Lin, T.-H., Nguyen, T., Huang, T.-K., Schnei-
der, J. & Djuric, N. (2019), Multimodal trajectory predictions for autonomous
driving using deep convolutional networks, in ‘2019 international conference

on robotics and automation (icra)’, IEEE, pp. 2090-2096.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018), ‘Bert: Pre-training
of deep bidirectional transformers for language understanding’, arXiv preprint
arXiv:1810.04805 .

Djuric, N., Radosavljevic, V., Cui, H., Nguyen, T., Chou, F.-C., Lin, T.-H., Singh,
N. & Schneider, J. (2020), Uncertainty-aware short-term motion prediction of
traffic actors for autonomous driving, in ‘Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision’, pp. 2095-2104.

192



8. BIBLIOGRAPHY

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. et al. (2020), An image is
worth 16x16 words: Transformers for image recognition at scale’, arXiv preprint

arXiv:2010.11929 .

Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J. & Zisser-
man, A. (2015), ‘The pascal visual object classes challenge: A retrospective’,

International journal of computer vision 111, 98-136.

Fan, L., Xiong, X., Wang, F., Wang, N. & Zhang, Z. (2021), Rangedet: In defense of
range view for lidar-based 3d object detection, in ‘Proceedings of the IEEE/CVF

international conference on computer vision’, pp. 2918-2927.

Fang, L., Jiang, Q., Shi, J. & Zhou, B. (2020), Tpnet: Trajectory proposal network
for motion prediction, in ‘Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition’, pp. 6797-6806.

Feichtenhofer, C., Pinz, A. & Zisserman, A. (2017), Detect to track and track to
detect, in ‘Proceedings of the IEEE international conference on computer vision’,

pp- 3038-3046.

Frossard, D. & Urtasun, R. (2018), End-to-end learning of multi-sensor 3d tracking
by detection, in ‘2018 IEEE international conference on robotics and automation

(ICRA)’, IEEE, pp. 635-642.

Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C. & Schmid, C. (2020), Vec-
tornet: Encoding hd maps and agent dynamics from vectorized representation,
in ‘Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition’, pp. 11525-11533.

193



Geiger, A., Lenz, P., Stiller, C. & Urtasun, R. (2013), ‘Vision meets robotics: The
kitti dataset’, The International Journal of Robotics Research 32(11), 1231-1237.

Geiger, A., Lenz, P. & Urtasun, R. (2012), Are we ready for autonomous driving?
the kitti vision benchmark suite, in ‘2012 IEEE conference on computer vision

and pattern recognition’, IEEE, pp. 3354-3361.

Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B. & Moutarde, F. (2021),
Home: Heatmap output for future motion estimation, in ‘2021 IEEE Interna-
tional Intelligent Transportation Systems Conference (ITSC)’, IEEE, pp. 500-
507.

Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B. & Moutarde, E. (2022), Go-
home: Graph-oriented heatmap output for future motion estimation, in ‘2022
international conference on robotics and automation (ICRA)’, IEEE, pp. 9107-
0114.

Giuliari, F., Hasan, 1., Cristani, M. & Galasso, F. (2021), Transformer networks for

trajectory forecasting, in ‘2020 25th international conference on pattern recog-
nition (ICPR)’, IEEE, pp. 10335-10342.

Goodfellow, 1., Bengio, Y. & Courville, A. (2016), Deep learning, MIT press.

Gu, J., Sun, C. & Zhao, H. (2021), Densetnt: End-to-end trajectory prediction
from dense goal sets, in ‘Proceedings of the IEEE/CVF International Conference
on Computer Vision’, pp. 15303-15312.

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. & Alahi, A. (2018), Social gan:
Socially acceptable trajectories with generative adversarial networks, in ‘Pro-

ceedings of the IEEE conference on computer vision and pattern recognition’,

pp- 2255-2264.

194



8. BIBLIOGRAPHY

He, K., Gkioxari, G., Dollar, P. & Girshick, R. (2017), Mask r-cnn, in ‘Proceedings

of the IEEE international conference on computer vision’, pp. 2961-2969.

He, K., Zhang, X., Ren, S. & Sun, J. (2015), Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in ‘Proceedings of the IEEE

international conference on computer vision’, pp. 1026-1034.

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image
recognition, in ‘Proceedings of the IEEE conference on computer vision and pat-

tern recognition’, pp. 770-778.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, 1. & Salakhutdinov, R. R.

(2012), ‘Improving neural networks by preventing co-adaptation of feature de-

tectors’, arXiv preprint arXiv:1207.0580 .

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural com-
putation 9(8), 1735-1780.

Hong, J., Sapp, B. & Philbin, J. (2019), Rules of the road: Predicting driving behav-
ior with a convolutional model of semantic interactions, in ‘Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition’, pp. 8454
8462.

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N. & Markham, A.
(2020), Randla-net: Efficient semantic segmentation of large-scale point clouds,
in ‘Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition’, pp. 11108-11117.

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. (2017), Densely con-
nected convolutional networks, in ‘Proceedings of the IEEE conference on com-

puter vision and pattern recognition’, pp. 4700-4708.

195



landola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. & Keutzer, K.
(2016), ‘Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <

0.5 mb model size’, arXiv preprint arXiv:1602.07360 .

Inan, B. A., Rondao, D. & Aouf, N. (2023), Enhancing lidar point cloud segmen-
tation with synthetic data, in ‘2023 31st Mediterranean Conference on Control

and Automation (MEDY)’, IEEE, pp. 370-375.

loffe, S. & Szegedy, C. (2015), Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in ‘International conference on ma-
chine learning’, pmlr, pp. 448-456.

Jaritz, M., Vu, T.-H., Charette, R. d., Wirbel, E. & Perez, P. (2020), xmuda: Cross-
modal unsupervised domain adaptation for 3d semantic segmentation, in ‘Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recogni-

tion’, pp. 12605-12614.

Kendall, A., Badrinarayanan, V. & Cipolla, R. (2015), ‘Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene un-

derstanding’, arXiv preprint arXiv:1511.02680 .

Keuper, M., Tang, S., Andres, B., Brox, T. & Schiele, B. (2018), ‘Motion segmen-
tation & multiple object tracking by correlation co-clustering’, IEEE transactions

on pattern analysis and machine intelligence 42(1), 140-153.

Kim, A., Osep, A. & Leal-Taixé, L. (2021), Eagermot: 3d multi-object tracking via
sensor fusion, in ‘2021 IEEE International conference on Robotics and Automa-

tion (ICRAY’, IEEE, pp. 11315-11321.

Kingma, D. P. (2014), Adam: A method for stochastic optimization’, arXiv preprint
arXiv:1412.6980 .

196



8. BIBLIOGRAPHY

Kochanov, D., Nejadasl, F. K. & Booij, O. (2020), ‘Kprnet: Improving projection-

based lidar semantic segmentation’, arXiv preprint arXiv:2007.12668 .

Kong, L., Liu, Y., Chen, R., Ma, Y., Zhu, X., Li, Y., Hou, Y., Qiao, Y. & Liu, Z. (2023),
Rethinking range view representation for lidar segmentation, in ‘Proceedings of
the IEEE/CVF International Conference on Computer Vision’, pp. 228-240.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), ‘Imagenet classification with
deep convolutional neural networks’, Advances in neural information processing

systems 25.

Lai, X., Chen, Y., Lu, E, Liu, J. & Jia, J. (2023), Spherical transformer for lidar-
based 3d recognition, in ‘Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition’, pp. 17545-17555.

Landrieu, L. & Simonovsky, M. (2018), Large-scale point cloud semantic segmenta-
tion with superpoint graphs, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 4558-4567.

Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J. & Beijbom, O. (2019), Pointpil-
lars: Fast encoders for object detection from point clouds, in ‘Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition’, pp. 12697—
12705.

Le Cun, Y., Jackel, L., Boser, B., Denker, J., Graf, H. & GuyOI, I. (1989), ‘Handwrit-

ten digit recognition: Applications of neural network chips’.

Li, L. L., Yang, B., Liang, M., Zeng, W., Ren, M., Segal, S. & Urtasun, R. (2020),
End-to-end contextual perception and prediction with interaction transformer,
in ‘2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROSY’, IEEE, pp. 5784-5791.

197



Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S. & Urtasun, R. (2020), Learn-
ing lane graph representations for motion forecasting, in ‘Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part I 16’, Springer, pp. 541-556.

Liu, Y., Zhang, J., Fang, L., Jiang, Q. & Zhou, B. (2021), Multimodal motion pre-
diction with stacked transformers, in ‘Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition’, pp. 7577-7586.

Long, J., Shelhamer, E. & Darrell, T. (2015), Fully convolutional networks for
semantic segmentation, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 3431-3440.

Maas, A. L., Hannun, A. Y., Ng, A. Y. et al. (2013), Rectifier nonlinearities improve
neural network acoustic models, in ‘Proc. icml’, Vol. 30, Atlanta, GA, p. 3.

Macqueen, J. (1967), Some methods for classification and analysis of multivari-
ate observations, in ‘Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability/University of California Press’.

Maddern, W., Pascoe, G., Linegar, C. & Newman, P. (2017), ‘1 year, 1000 km: The
oxford robotcar dataset’, The International Journal of Robotics Research 36(1), 3—
15.

Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli, E., Malik, J. & Gaidon, A.
(2020), It is not the journey but the destination: Endpoint conditioned trajec-
tory prediction, in ‘Computer Vision-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part II 16’, Springer, pp. 759
776.

198



8. BIBLIOGRAPHY

Maturana, D. & Scherer, S. (2015), Voxnet: A 3d convolutional neural network
for real-time object recognition, in ‘2015 IEEE/RSJ international conference on

intelligent robots and systems (IROSY’, IEEE, pp. 922-928.

Mercat, J., Gilles, T., El Zoghby, N., Sandou, G., Beauvois, D. & Gil, G. P.
(2020), Multi-head attention for multi-modal joint vehicle motion forecasting,
in ‘2020 IEEE International Conference on Robotics and Automation (ICRA),

IEEE, pp. 9638-9644.

Milioto, A., Vizzo, L., Behley, J. & Stachniss, C. (2019), Rangenet+ +: Fast and ac-
curate lidar semantic segmentation, in ‘2019 IEEE/RSJ international conference

on intelligent robots and systems (IROSY’, IEEE, pp. 4213-4220.

Moosmann, F. & Stiller, C. (2013), Joint self-localization and tracking of generic
objects in 3d range data, in ‘2013 IEEE International Conference on Robotics
and Automation’, IEEE, pp. 1146-1152.

Murphy, K. P. (2012), Machine learning: a probabilistic perspective, MIT press.

Neuhold, G., Ollmann, T., Rota Bulo, S. & Kontschieder, P. (2017), The mapillary
vistas dataset for semantic understanding of street scenes, in ‘Proceedings of the

IEEE international conference on computer vision’, pp. 4990-4999.

Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H.-T. L., Ling, J., Roelofs,
R., Bewley, A., Liu, C., Venugopal, A. et al. (2021), ‘Scene transformer: A
unified architecture for predicting multiple agent trajectories’, arXiv preprint

arXiv:2106.08417 .

Osep, A., Mehner, W., Mathias, M. & Leibe, B. (2017), Combined image-and
world-space tracking in traffic scenes, in ‘2017 IEEE International Conference
on Robotics and Automation (ICRA)’, IEEE, pp. 1988-1995.

199



Osep, A., Mehner, W., Voigtlaender, P. & Leibe, B. (2018), Track, then decide:
Category-agnostic vision-based multi-object tracking, in ‘2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA)’, IEEE, pp. 3494-3501.

Phan-Minh, T., Grigore, E. C., Boulton, E. A., Beijbom, O. & Wolff, E. M. (2020),
Covernet: Multimodal behavior prediction using trajectory sets, in ‘Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition’,

pp. 14074-14083.

Pirsiavash, H., Ramanan, D. & Fowlkes, C. C. (2011), Globally-optimal greedy
algorithms for tracking a variable number of objects, in ‘CVPR 20171’, IEEE,
pp- 1201-1208.

Poudel, R. P., Liwicki, S. & Cipolla, R. (2019), ‘Fast-scnn: Fast semantic segmenta-
tion network’, arXiv preprint arXiv:1902.04502 .

Press, O. & Wolf, L. (2016), ‘Using the output embedding to improve language
models’, arXiv preprint arXiv:1608.05859 .

Qi, C. R., Liu, W., Wu, C., Su, H. & Guibas, L. J. (2018), Frustum pointnets for
3d object detection from rgb-d data, in ‘Proceedings of the IEEE conference on

computer vision and pattern recognition’, pp. 918-927.

Qi, C. R., Su, H., Mo, K. & Guibas, L. J. (2017), Pointnet: Deep learning on
point sets for 3d classification and segmentation, in ‘Proceedings of the IEEE

conference on computer vision and pattern recognition’, pp. 652—660.

Qi, C. R, Yi, L., Su, H. & Guibas, L. J. (2017), ‘Pointnet++: Deep hierarchical
feature learning on point sets in a metric space’, Advances in neural information

processing systems 30.

200



8. BIBLIOGRAPHY

Ren, S., He, K., Girshick, R. & Sun, J. (2015), ‘Faster r-cnn: Towards real-time
object detection with region proposal networks’, Advances in neural information

processing systems 28.

Rhinehart, N., Kitani, K. M. & Vernaza, P. (2018), R2p2: A reparameterized push-
forward policy for diverse, precise generative path forecasting, in ‘Proceedings

of the European Conference on Computer Vision (ECCV)’, pp. 772-788.

Rhinehart, N., McAllister, R., Kitani, K. & Levine, S. (2019), Precog: Predic-
tion conditioned on goals in visual multi-agent settings, in ‘Proceedings of the
IEEE/CVF International Conference on Computer Vision’, pp. 2821-2830.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D. & Lopez, A. M. (2016), The syn-
thia dataset: A large collection of synthetic images for semantic segmentation
of urban scenes, in ‘Proceedings of the IEEE conference on computer vision and

pattern recognition’, pp. 3234-3243.

Rosu, R. A., Schiitt, P., Quenzel, J. & Behnke, S. (2019), ‘Latticenet:
Fast point cloud segmentation using permutohedral lattices’, arXiv preprint
arXiv:1912.05905 .

Roynard, X., Deschaud, J.-E. & Goulette, F. (2018), ‘Paris-lille-3d: A large and
high-quality ground-truth urban point cloud dataset for automatic segmentation
and classification’, The International Journal of Robotics Research 37(6), 545
557.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), ‘Learning internal rep-
resentations by error propagation, parallel distributed processing, explorations
in the microstructure of cognition, ed. de rumelhart and j. meclelland. vol. 1.

1986, Biometrika 71, 599-607.

201



Ruppel, E., Faion, F., Glaser, C. & Dietmayer, K. (2022), Transformers for multi-
object tracking on point clouds, in ‘2022 IEEE Intelligent Vehicles Symposium
(IVY’, IEEE, pp. 852-859.

Russell, S. J. & Norvig, P. (2016), Artificial intelligence: a modern approach, Pear-

S0M.

Salzmann, T., Ivanovic, B., Chakravarty, P. & Pavone, M. (2020), Trajectron+ +:
Dynamically-feasible trajectory forecasting with heterogeneous data, in ‘Com-
puter Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23—
28, 2020, Proceedings, Part XVIII 16’, Springer, pp. 683-700.

Sharma, S., Ansari, J. A., Murthy, J. K. & Krishna, K. M. (2018), Beyond pix-
els: Leveraging geometry and shape cues for online multi-object tracking, in
‘2018 IEEE International Conference on Robotics and Automation (ICRA)’, IEEE,
pp- 3508-3515.

Shi, S., Wang, X. & Li, H. (2019), Pointrecnn: 3d object proposal generation and
detection from point cloud, in ‘Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition’, pp. 770-779.

Shi, W. & Rajkumar, R. (2020), Point-gnn: Graph neural network for 3d object
detection in a point cloud, in ‘Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition’, pp. 1711-1719.

Simonyan, K. & Zisserman, A. (2014), Very deep convolutional networks for large-
scale image recognition’, arXiv preprint arXiv:1409.1556 .

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.-H. & Kautz, J.

(2018), Splatnet: Sparse lattice networks for point cloud processing, in ‘Pro-

202



8. BIBLIOGRAPHY

ceedings of the IEEE conference on computer vision and pattern recognition’,

pp- 2530-2539.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B. et al. (2020), Scalability in perception for au-
tonomous driving: Waymo open dataset, in ‘Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition’, pp. 2446-2454.

Sun, Q., Huang, X., Gu, J., Williams, B. C. & Zhao, H. (2022), M2i: From factored
marginal trajectory prediction to interactive prediction, in ‘Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition’, pp. 6543
6552.

Sutskever, 1., Vinyals, O. & Le, Q. V. (2014), ‘Sequence to sequence learning with

neural networks’, Advances in neural information processing systems 27.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V. & Rabinovich, A. (2015), Going deeper with convolutions, in ‘Pro-
ceedings of the IEEE conference on computer vision and pattern recognition’,

pp- 1-9.

Tan, M. & Le, Q. (2019), Efficientnet: Rethinking model scaling for convolutional
neural networks, in ‘International conference on machine learning’, PMLR,

pp. 6105-6114.

Tang, C. & Salakhutdinov, R. R. (2019), ‘Multiple futures prediction’, Advances in

neural information processing systems 32.

Tatarchenko, M., Park, J., Koltun, V. & Zhou, Q.-Y. (2018), Tangent convolutions
for dense prediction in 3d, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 3887-3896.

203



Tchapmi, L., Choy, C., Armeni, 1., Gwak, J. & Savarese, S. (2017), Segcloud: Se-
mantic segmentation of 3d point clouds, in ‘2017 international conference on

3D vision (3DVY’, IEEE, pp. 537-547.

Teichman, A., Levinson, J. & Thrun, S. (2011), Towards 3d object recognition via
classification of arbitrary object tracks, in ‘2011 IEEE International Conference
on Robotics and Automation’, IEEE, pp. 4034-4041.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F. & Guibas,
L. J. (2019), Kpconv: Flexible and deformable convolution for point clouds,

in ‘Proceedings of the IEEE/CVF international conference on computer vision’,

pp- 6411-6420.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. & Jégou, H. (2021),
Training data-efficient image transformers & distillation through attention, in
‘International conference on machine learning’, PMLR, pp. 10347-10357.

Turing, A. M. (1950), ‘Mind’, Mind 59(236), 433—460.

Varadarajan, B., Hefny, A., Srivastava, A., Refaat, K. S., Nayakanti, N., Cornman,
A., Chen, K., Douillard, B., Lam, C. P., Anguelov, D. et al. (2022), Multipath+ +:
Efficient information fusion and trajectory aggregation for behavior prediction,
in ‘2022 International Conference on Robotics and Automation (ICRA)’, IEEE,
pp- 7814-7821.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. & Polosukhin, I. (2017), ‘Attention is all you need’, Advances in neural infor-

mation processing systems 30.

Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A. & Leibe,
B. (2019), Mots: Multi-object tracking and segmentation, in ‘Proceedings of

204



8. BIBLIOGRAPHY

the ieee/cvf conference on computer vision and pattern recognition’, pp. 7942—
7951.

Wang, J., Xu, H., Narasimhan, M. & Wang, X. (2021), ‘Multi-person 3d motion
prediction with multi-range transformers’, Advances in Neural Information Pro-

cessing Systems 34, 6036-6049.

Wang, X., Girshick, R., Gupta, A. & He, K. (2018), Non-local neural networks, in
‘Proceedings of the IEEE conference on computer vision and pattern recogni-

tion’, pp. 7794-7803.

Wang, Y., Kitani, K. & Weng, X. (2021), Joint object detection and multi-object
tracking with graph neural networks, in ‘2021 IEEE international conference on
robotics and automation (ICRA)’, IEEE, pp. 13708-13715.

Weng, X., Wang, J., Held, D. & Kitani, K. (2020), 3d multi-object tracking: A base-
line and new evaluation metrics, in ‘2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS)’, IEEE, pp. 10359-10366.

Weng, X., Wang, Y., Man, Y. & Kitani, K. M. (2020), Gnn3dmot: Graph neural net-
work for 3d multi-object tracking with 2d-3d multi-feature learning, in ‘Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition’,
pp. 6499-6508.

Wu, B., Wan, A., Yue, X. & Keutzer, K. (2018), Squeezeseg: Convolutional neural
nets with recurrent crf for real-time road-object segmentation from 3d lidar
point cloud, in ‘2018 IEEE international conference on robotics and automation

(ICRA)’, IEEE, pp. 1887-1893.

Wu, B., Zhou, X., Zhao, S., Yue, X. & Keutzer, K. (2019), Squeezesegv2: Improved

model structure and unsupervised domain adaptation for road-object segmen-

205



tation from a lidar point cloud, in ‘2019 International Conference on Robotics

and Automation (ICRA)’, IEEE, pp. 4376-4382.

Xiao, A., Yang, X, Lu, S., Guan, D. & Huang, J. (2021), ‘Fps-net: A convolutional
fusion network for large-scale lidar point cloud segmentation’, ISPRS Journal of
Photogrammetry and Remote Sensing 176, 237-249.

Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K. & Tomizuka, M. (2020),
Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmen-

tation, in ‘European Conference on Computer Vision’, Springer, pp. 1-19.

Xu, Y., Osep, A., Ban, Y., Horaud, R., Leal-Taixeé, L. & Alameda-Pineda, X. (2020),
How to train your deep multi-object tracker, in ‘Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition’, pp. 6787—6796.

Yan, X., Gao, J., Zheng, C., Zheng, C., Zhang, R., Cui, S. & Li, Z. (2022), 2dpass:
2d priors assisted semantic segmentation on lidar point clouds, in ‘European

Conference on Computer Vision’, Springer, pp. 677—-695.

Yan, X., Zheng, C., Li, Z., Wang, S. & Cui, S. (2020), Pointasnl: Robust point clouds
processing using nonlocal neural networks with adaptive sampling, in ‘Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition’,

pp- 5589-5598.

Ye, M., Cao, T. & Chen, Q. (2021), Tpcn: Temporal point cloud networks for
motion forecasting, in ‘Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition’, pp. 11318-11327.

Yin, T., Zhou, X. & Krahenbuhl, P. (2021), Center-based 3d object detection and

tracking, in ‘Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition’, pp. 11784-11793.

206



8. BIBLIOGRAPHY

Yu, C., Ma, X., Ren, J., Zhao, H. & Yj, S. (2020), Spatio-temporal graph transformer
networks for pedestrian trajectory prediction, in ‘Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XII 16’, Springer, pp. 507-523.

Yuan, Y., Weng, X., Ou, Y. & Kitani, K. M. (2021), Agentformer: Agent-aware
transformers for socio-temporal multi-agent forecasting, in ‘Proceedings of the

IEEE/CVF International Conference on Computer Vision’, pp. 9813-9823.

Zeiler, M. D. & Fergus, R. (2014), Visualizing and understanding convolutional
networks, in ‘Computer Vision-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13’, Springer, pp. 818-
833.

Zeng, E., Dong, B., Zhang, Y., Wang, T., Zhang, X. & Wei, Y. (2022), Motr: End-
to-end multiple-object tracking with transformer, in ‘European Conference on

Computer Vision’, Springer, pp. 659-675.

Zeng, Y., Ma, C., Zhu, M., Fan, Z. & Yang, X. (2021), Cross-modal 3d object detec-
tion and tracking for auto-driving, in ‘2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)’, IEEE, pp. 3850-3857.

Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. (2021), ‘Understanding
deep learning (still) requires rethinking generalization’, Communications of the
ACM 64(3), 107-115.

Zhang, R., Wu, Y., Jin, W. & Meng, X. (2023), ‘Deep-learning-based point cloud

semantic segmentation: A survey’, Electronics 12(17), 3642.

Zhang, W., Zhou, H., Sun, S., Wang, Z., Shi, J. & Loy, C. C. (2019), Robust multi-

207



modality multi-object tracking, in ‘Proceedings of the IEEE/CVF international

conference on computer vision’, pp. 2365-2374.

Zhang, Y., Sheng, H., Wu, Y., Wang, S., Lyu, W., Ke, W. & Xiong, Z. (2020),
‘Long-term tracking with deep tracklet association’, IEEE Transactions on Image
Processing 29, 6694-6706.

Zhang, Y., Zhou, Z., David, P., Yue, X., Xi, Z., Gong, B. & Foroosh, H. (2020),
Polarnet: An improved grid representation for online lidar point clouds semantic
segmentation, in ‘Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition’, pp. 9601-9610.

Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen, Y.,
Chai, Y., Schmid, C. et al. (2021), Tnt: Target-driven trajectory prediction, in
‘Conference on Robot Learning’, PMLR, pp. 895-904.

Zhao, H., Jiang, L., Jia, J., Torr, P. H. & Koltun, V. (2021), Point transformer,
in ‘Proceedings of the IEEE/CVF international conference on computer vision’,

pp. 16259-16268.

Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. (2017), Pyramid scene parsing net-
work, in ‘Proceedings of the IEEE conference on computer vision and pattern

recognition’, pp. 2881-2890.

Zhou, X., Koltun, V. & Krahenbiihl, P. (2020), Tracking objects as points, in ‘Euro-

pean conference on computer vision’, Springer, pp. 474-490.

Zhou, X., Wang, D. & Krihenbiihl, P. (2019), ‘Objects as points’, arXiv preprint
arXiv:1904.07850 .

Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., Guo, J., Ngiam, J.

208



8. BIBLIOGRAPHY

& Vasudevan, V. (2020), End-to-end multi-view fusion for 3d object detection in
lidar point clouds, in ‘Conference on Robot Learning’, PMLR, pp. 923-932.

Zhou, Y. & Tuzel, O. (2018), Voxelnet: End-to-end learning for point cloud based
3d object detection, in ‘Proceedings of the IEEE conference on computer vision

and pattern recognition’, pp. 4490-4499.

Zhou, Z., Ye, L., Wang, J., Wu, K. & Lu, K. (2022), Hivt: Hierarchical vector

transformer for multi-agent motion prediction, in ‘Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition’, pp. 8823-8833.

Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W. & Yang, M.-H. (2018), Online multi-
object tracking with dual matching attention networks, in ‘Proceedings of the

European conference on computer vision (ECCV)’, pp. 366-382.

Zhu, X., Su, W, Lu, L, Li, B., Wang, X. & Dai, J. (2020), ‘Deformable
detr: Deformable transformers for end-to-end object detection’, arXiv preprint

arXv:2010.04159 .

Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W,, Li, H. & Lin, D. (2021),
Cylindrical and asymmetrical 3d convolution networks for lidar segmentation,
in ‘Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition’, pp. 9939-9948.

209



	List of Figures
	List of Tables
	Introduction
	Motivation
	Perception
	Object Tracking
	Motion Forecasting
	Research Objectives
	Outline and Contributions
	Published and Submitted Manuscripts

	Theoretical Background and Tools
	Artificial Intelligence
	Machine Learning
	k-means Clustering
	Gaussian Mixture Model (GMM) Clustering
	Deep Learning
	Activation Functions
	Optimisation
	Convolutional Neural Networks
	Transfer Learning
	Recurrent Neural Networks
	Attention Mechanism
	Transformers
	The Transformer Decoder 
	Regularisation
	Image Augmentation

	Semantic Segmentation of LiDAR Point Clouds
	Point-Based Methods
	Voxel-Based Segmentation
	Projection-based Segmentation

	Motion Forecasting
	Incorporating Map Information for Motion Forecasting

	Datasets

	Integrating Synthetic Data with Real-World Data for LiDAR Segmentation
	Motivation
	Related Work
	Methodology
	Dataset Creation
	Spherical Projection of the LiDAR Point Cloud
	Network Architecture
	Conditional Random Field

	Evaluation Outcomes
	Evaluation Metric
	Results
	Ablation Study

	Conclusion

	LiDAR Segmentation and Vision Transformers
	Motivation
	Related Work
	LiDAR and Semantic Segmentation
	Vision Transformers in Computer Vision
	Application of ViTs to LiDAR Segmentation

	Methodology
	Spherical Projection
	Network Architecture

	Results
	Hyperparameter Tuning
	Evaluation Metrics
	Qualitative Results

	Conclusion

	Enhanced Multi-Object Tracking Based on Transformers and Sensor Fusion
	Motivation
	Related Work
	Vision-Based 2D Multi-Object Tracking (MOT)
	LiDAR-Based 3D Multi-Object Tracking (MOT)
	Tracking Paradigms
	Transformers and Attention Mechanisms in Tracking

	Methodology
	2D Object Detection with DETR
	3D Object Detection Framework
	Feature Fusion and Integration with Transformers
	Data Association and Object Tracking

	Experimental Evaluation
	Datasets
	Evaluation Metrics
	Results

	Conclusion

	Motion Forecasting
	Motivation
	Related Work
	Intention Refined Motion Transformer (IRMTR)
	Overall Framework
	Environmental Context Encoding
	Local Encoder for Scene Context and Agent Interaction
	Global Contextual Aggregator
	Decoder with Anchored Goal Queries
	Training Losses

	Evaluation Outcomes
	Experimental Setup
	Implementation Details
	Results
	Ablation Studies

	Conclusion

	Conclusion
	Overview
	Future Work

	Bibliography

