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Abstract

Evidence from panel surveys of households, collected over several years and in different coun-

tries, shows that people’s perception about their remaining lifetime deviates from actuarial data.

This has consequences for consumption, savings and investment over an individual’s financial

life cycle, and in particular for retirement planning and the purchase of annuities. We use data

from the U.S. Survey of Consumer Finances to estimate subjective survival probabilities at dif-

ferent ages. This relies on two different methods of adjusting survival probabilities from a

suitable life table. We observe survival pessimism at younger ages and optimism at older ages,

consistent with the literature. We optimize numerically for consumption, investment and annu-

itization in a life-cycle model where individuals receive stochastic labour income and invest in a

risk-free asset and in stock whose returns are imperfectly correlated with wages, and where they

can annuitize their wealth at retirement. We demonstrate that there is some under-saving be-

fore retirement, over-saving post-retirement, and under-annuitization when subjective survival

beliefs are used, relative to objective survival expectations. These effects are fairly small, irre-

spective of the method employed to estimate subjective mortality. Subjective survival beliefs

do not therefore fully explain household finance puzzles such as the “annuity puzzle”, i.e. ob-

served lower-than-optimal demand for annuities. This conclusion is robust to variations in risk

preferences, in the labour income profile, and in the loading factored by insurers in annuity

prices.

Keywords: Life expectancy, Survival probabilities, Annuitization, Consumption, Investment

1. Introduction

Life-cycle models of consumption and investment for individuals typically involve inter-

temporal expected utility maximization with survival probabilities drawn from mortality statis-

tics. However, laypeople do not accurately estimate the probabilities that underlie financial
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and insurance markets. A classic illustration of this is that individuals have subjective survival

beliefs which differ from the objective survival probabilities derived from actuarial and demo-

graphic data. This is repeatedly demonstrated in a number of surveys: the Survey of Consumer

Finance (SCF) (Heimer et al., 2019; Puri & Robinson, 2007), the Health and Retirement Study

(HRS) (Elder, 2013; Salm, 2010; Hurd & McGarry, 1995), the English Longitudinal Study of

Ageing (ELSA) (O’Dea & Sturrock, 2021), and the Survey of Health, Ageing and Retirement

in Europe (SHARE) (Post & Hanewald, 2013; Peracchi & Perotti, 2014). The deviation of sub-

jective survival beliefs from objective survival expectations is an important issue because it may

lead individuals to make sub-optimal investment and consumption decisions.

This phenomenon is related to bounded rationality because of limited information and cog-

nitive capacity (Simon, 1955). People have limited information when they estimate probabilities

of events and thus form subjective probabilities which deviate from the objective probabilities

based on data. Indeed, Hamermesh (1985) shows that different people have different abilities to

estimate their lifespan. On the one hand, O’Dea & Sturrock (2018), Gan et al. (2005), Smith

et al. (2001b), and Hurd & McGarry (1995) report that people can make a reasonably accu-

rate estimation of survival based on their health behaviours, related to smoking, substance use,

diet, sleep etc. Subjective survival beliefs can serve as predictors of actual mortality (Hurd &

McGarry, 2002; Smith et al., 2001a) as well as of longevity risk, i.e. uncertain future survival

rates (Post & Hanewald, 2013; Perozek, 2008). On the other hand, O’Dea & Sturrock (2021),

Heimer et al. (2019), Wu et al. (2015), Peracchi & Perotti (2014), Elder (2013) and others docu-

ment discrepancies in subjective survival beliefs compared to objective survival probabilities: in

particular, the young tend to underestimate their survival chances whereas the old overestimate

them.

Subjective survival expectations influence saving and investing decisions to varying de-

grees. Puri & Robinson (2007) show that subjective survival belief can predict key economic

behaviour, including stock market participation. They find that overly optimistic individuals

tend to make imprudent financial decisions. Moreover, retirement decisions can be affected by

subjective survival beliefs. For example, Van Solinge & Henkens (2009) show that subjective

life expectations affect workers’ retirement age. Hurd et al. (2004) find that people with low sub-

jective survival beliefs are more likely to retire earlier and claim social security benefits earlier.

Gan et al. (2015) illustrate that subjective survival beliefs explain bequests better than actuarial

life tables although these authors disregard lifetime portfolio optimization. Heimer et al. (2019)

and Wu et al. (2015) find that subjective mortality can explain under-saving for retirement and
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the slow decumulation of wealth towards the end of life.

Chen et al. (2021) show that subjective mortality beliefs significantly influence the decision

between choosing a tontine or an annuity. An individual’s subjective life expectancy, compared

to the life expectancy used by the insurer for premium calculations, determines the perceived

cost of the insurance product. This finding aligns with the conclusions of Wu et al. (2015).

Han & Hung (2021) address an optimal consumption and annuitization problem for a decision-

maker with ambiguous beliefs about mortality rates. They use a robust control framework to

model ambiguity aversion and they conclude that annuity demand decreases as the individual’s

ambiguity aversion increases.

A specific area of lifetime investment where subjective survival beliefs may be relevant is

the purchase of annuities. Pessimism about survival can potentially furnish an explanation for

the “annuity puzzle” (Benartzi et al., 2011; Boyer et al., 2020). This is the observed empiri-

cal behaviour of individuals to under-annuitize in retirement, relative to the optimal level under

certain idealized circumstances (Yaari, 1965). In 2023 in the U.S., $24.0 trillion of assets were

held in Individual Retirement Accounts (IRAs) and employer-sponsored Defined Contribution

(DC) pension plans, but only $385 billion worth of individual annuities were purchased, i.e.

only 1.6% of assets were annuitized (LIMRA, 2024; Willis Towers Watson, 2024). The corre-

sponding figures in the U.K. in 2023 are £660bn of assets in personal pension plans and DC

pension schemes, and £5.2bn of individual annuities purchased, i.e. 0.8% of assets were an-

nuitized (ABI, 2024; Willis Towers Watson, 2024). O’Dea & Sturrock (2021) and Wu et al.

(2015) claim that under-annuitization can be explained by subjective survival beliefs. Bateman

et al. (2018) also find evidence that subjective views about lifespan affect the decision to buy an

annuity. Horneff et al. (2020) conduct a welfare analysis which shows that defaulting a modest

portion of retirees’ 401(k) assets into annuities can enhance retirement security, potentially in-

creasing welfare by up to 20% of retirees’ plan accruals. Hubener et al. (2016) find that some

Americans claim Social Security retirement benefits at the earliest age of 62, thereby forgo-

ing the option to “purchase” higher benefits by delaying their claims. Peijnenburg et al. (2017)

show that the optimal annuity demand drops significantly when individuals face health cost risk.

However, the annuity puzzle is unresolved and several other explanations have been offered: see

Alexandrova & Gatzert (2019) for a recent review.

This paper is concerned with estimating subjective survival expectations from survey data

and with the application of these expectations to optimal investment and consumption over the

life cycle. The closest studies to ours are O’Dea & Sturrock (2021), Heimer et al. (2019), Wu
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et al. (2015), and Gan et al. (2015, 2005). Our research differentiates itself from these studies in

two key ways:

1. we implement a full life-cycle model with stochastic stock returns and wages, including

annuities at retirement,

2. we estimate subjective survival beliefs (a) at a full spectrum of adult ages (20 and above),

(b) benchmarked to objective life table probabilities, (c) and scaled using survey respon-

dents’ reported subjective life expectancy.

With regard to point 1. above, O’Dea & Sturrock (2021), Wu et al. (2015), and Gan et al.

(2015, 2005) do not have a full life-cycle model with a portfolio decision. Gan et al. (2015,

2005) do not consider annuitization at all.

With regard to point 2.(a), survey respondents are aged 50+ in Wu et al. (2015), 60+ in

O’Dea & Sturrock (2021), and 70+ in Gan et al. (2015, 2005). Their samples are insufficiently

representative of both the working and retired populations to explain full life-cycle investment

and consumption behaviour.

With regard to point 2.(b), several studies find that subjective survival beliefs are infor-

mative about objective survival probabilities and even about longevity risk (Post & Hanewald,

2013; Perozek, 2008; Hurd & McGarry, 2002; Smith et al., 2001a; Hurd & McGarry, 1995).

Consequently, Gan et al. (2015, 2005) and Wu et al. (2015) use life table data when estimat-

ing subjective survival probabilities, as we also do. However, O’Dea & Sturrock (2021) use a

Weibull distribution and Heimer et al. (2019) use a quadratic regression on age, neither with

reference to objective statistical survival data.

With regard to point 2.(c), we use respondents’ stated subjective life expectancy, rather than

their stated survival probabilities. Reported subjective survival probabilities pose a number of

problems. First, respondents are asked to estimate the probability of survival to only a limited set

of future ages, for practical reasons, e.g. O’Dea & Sturrock (2021) and Heimer et al. (2019) use

only a few (3 or 4) reported subjective survival probabilities per respondent. Second, responses

are prone to “focal bias” where respondents answer with focal point probabilities such as 0, 0.5

and 1 (Post & Hanewald, 2013; Hurd & McGarry, 2002). This is a pervasive problem and Gan

et al. (2005) develop a Bayesian updating method to counter it, while other authors use impu-

tation or discard focal responses (see e.g. Post & Hanewald, 2013). Third, Payne et al. (2013)

demonstrate that responses about survival probabilities are strongly influenced by whether sur-

vey questions are framed in terms of survival to or dying by a certain age. Fourth, responses

about probabilities can be incoherent. For example, fully 7% of respondents in the survey of
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Wu et al. (2015) provide answers which imply conditional survival probabilities that are greater

than one, so that their responses have to be discarded. Wu et al. (2015) also find that reported

survival probabilities lack consistency with reported life expectancy. They propose a model

where survival pessimism varies with both cohort age and target survival age, but this results

in non-stationary transition probabilities which means that they cannot implement a stochastic

life-cycle model with asset allocation and annuitization. For these reasons, we use reported life

expectancy rather than reported survival probabilities, but we combine it with life table survival

probabilities.

As discussed above, our paper complements the extant literature and leads to two origi-

nal contributions. The first is a method to estimate subjective survival probabilities based on

subjective life expectancy and the objective life table. Our premise is that individuals can in-

tuitively perceive and adjust survival probabilities whereas Gan et al. (2015, 2005) and others

scale hazard rates. This is mathematically convenient but there is little to suggest that it de-

scribes realistically how individuals perceive their survival or mortality. First, people are more

likely to estimate a probability than a hazard rate. Second, as pointed out by Wu et al. (2015),

financial life-cycle decisions such as consumption, savings and investment are concerned with

survival, and only bequests and life insurance are directly about death. Third, panel surveys

such as the SCF couch questions in terms of survival to a given age, and not death by a given

age. Our first contribution is therefore to estimate subjective survival beliefs by scaling survival

probabilities and not hazard rates.

Our second contribution is to utilize these subjective survival probabilities and evaluate

optimal consumption, investment and annuitization decisions in a life-cycle model with stock,

risk-free asset, annuity and stochastic labour income. In contrast to O’Dea & Sturrock (2021),

Heimer et al. (2019) and Wu et al. (2015), we find that subjective survival beliefs contribute

little to explaining household finance puzzles such as under-saving before retirement, under-

annuitization, and over-saving in retirement.

2. Data

There are several longitudinal panel studies which ask respondents about their survival be-

liefs. In this paper, we use data from the Survey of Consumer Finance (SCF, 2019) because this

survey has a large sample and a long continuous history. The SCF is a triennial cross-sectional

survey of U.S. families sponsored by the United States Federal Reserve Board in cooperation

with the U.S. Treasury Department. The first SCF survey took place in 1983 with 3,824 fami-
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(a) Female respondents (b) Male respondents

Figure 1: Scatterplots for female and male respondents of their subjective expected age at death (on vertical axis) vs.

age (on horizontal axis). Source: SCF (2019).

lies. The SCF survey includes information such as age and other demographic characteristics,

financial status (e.g. life insurance and annuity holdings), and it also explicitly asks respondents

about their belief concerning the age to which they expect to survive.

Fig. 1 shows a scatterplot of individuals’ subjective expected age at death versus their age,

from the 2019 SCF data (SCF, 2019). The visible horizontal lines on Fig. 1 suggest that many

respondents may be rounding their answers at ages that are multiples of 5 years. Although this

is an example of focal bias, it is much less pronounced than the focal responses at 0, 0.5 and

1 that occur when people are asked about survival probabilities (Post & Hanewald, 2013; Gan

et al., 2005; Hurd & McGarry, 2002).

For actuarial survival probabilities, we follow Heimer et al. (2019) and use the period life

table from the U.S. Social Security Administration for the year 2019 (SSA, 2019). This corre-

sponds in time to the subjective survival beliefs that are expressed by the respondents in SCF

(2019). The maximum age in this life table is 119 years.

Table 1 shows relevant statistics of the respondents in SCF (2019). The data in the SCF

consists of 4,484 men and 1,293 women. The mean age of respondents is 53.22 years. The

survey allows respondents to state the age to which they believe they will survive as an integer

between their current age and 150. We truncate this at 119, as this is the maximum age in the

life table (SSA, 2019), i.e. any individual who states a subjective expected age at death which is

greater than 119 is assigned a value of 119 years. The survey also asks whether the respondent

has purchased an annuity. 333 respondents state that they hold an annuity product, the average

value of which is $536,227.
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Statistic N Mean St. Dev. Min Max

Age 5,777 53.22 16.24 18 95

Subjective expected age at death

without truncation 5,777 85.33 11.27 40 150

with truncation 5,721 85.21 10.75 40 119

Table 1: Characteristics of the survey respondents. Source: SCF (2019). Subjective expected age at death is the age

at which respondents believe that they will die. If this age is greater than 119 (the maximum age in a corresponding

life table), it is truncated at 119.

3. Model description

3.1. Objective survival probabilities

Consider an individual aged x ∈ Z+. The individual belongs to a population whose survival

probabilities at various ages are known, either through a life table or a mortality law (e.g. the

Gompertz law). We assume that the age x of individual i is rounded down to the nearest integer,

i.e. it is the individual’s age at her last birthday, noting that life tables usually list integer ages.

Denote by px the probability, according to the life table or mortality law, that the individual

survives for at least 1 year till at least age x + 1, given that she is alive at age x. We refer to

px as the objective one-year survival probability of individuals aged x since it is estimated from

the lifetime data of a large sample of individuals of age x in the population. The following

assumption about px is satisfied by all life tables, in practice. In particular, it states that human

lifetime is finite and there is a pragmatically-chosen terminal age ω, e.g. 119 years.

Assumption 1. The objective one-year survival probability px at age x ∈ Z+ satisfies 0 < px <

1 for x ∈ [0, ω − 1] and px = 0 for x ∈ [ω,∞), where ω ∈ Z++ is a terminal age beyond which

no individual in the population is alive.

Assumption 1 states that no individual is alive past the age of ω, so all individuals die in the

year after they turn ω years old. (The terminal age is often defined somewhat differently as the

age ϖ at and beyond which no individual is alive, in which case ω = ϖ − 1.) Mortality laws do

not usually have a terminal age. If we implement a mortality law rather than a life table, we let

ω→ ∞ with suitable convergence conditions on {px} as x→ ∞.

It is convenient to borrow compact actuarial notation and extend the above notation to a

k-year survival probability. Let k px be the objective probability that an individual survives till at
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least age x + k given that she is alive at age x ∈ [0, ω − 1], for k ∈ [1, ω − x]. Clearly, 1 px = px.

It is easily verified that k px =
∏k−1

j=0 px+ j for x ∈ [0, ω − 1] and k ∈ [1, ω − x] (Promislow, 2010,

p. 39).

The (objective) life expectancy, or expected future lifetime, of an individual aged x ∈ [0, ω−

1] is

ex =

ω−x∑
k=1

k px. (1)

See for example Promislow (2010, p. 40) and Dickson et al. (2013, p. 33). ex is known as the

curtate life expectancy as it is the expected value of the future lifetime, where the future lifetime

is rounded down to the nearest integer, in keeping with the definition of age as an integer (age

last birthday). The curtate life expectancy ex ∈ R+ is not necessarily an integer, of course. The

curtate life expectancy of an individual aged ω is 0, since pω = 0 by Assumption 1.

Remark 1. By Assumption 1, 0 < k px < 1 for x ∈ [0, ω−1] and k ∈ [1, ω−x], and 0 < ex < ω−x

for x ∈ [0, ω − 1].

3.2. Subjective survival probabilities

An individual’s personal belief about her survival probability may differ from the objective

survival probability according to an actuarial life table. Define p i
x as individual i’s subjective

probability that she survives for at least 1 year, given that she is alive at age x. Assumption 2

below rules out individuals who believe in their immortality and sets a terminal age ω for sub-

jective survival beliefs. Without loss of generality, this terminal age is equal to the terminal age

in the life table (see Assumption 1).

Assumption 2. The subjective one-year survival probability p i
x of individual i, aged x ∈ Z+,

satisfies 0 ≤ p i
x ≤ 1 for x ∈ [0, ω − 1] and p i

x = 0 for x ∈ [ω,∞), where ω is defined in

Assumption 1.

Compare the strict inequalities satisfied by px in Assumption 1 with the non-strict inequal-

ities satisfied by p i
x in Assumption 2. An individual may believe that she is certain to die, or

certain to survive, over the next year. No such certainty exists objectively except, by assumption,

at the terminal age ω.

As with the objective survival probability, we can define the k-year subjective survival prob-

ability of individual i aged x ∈ [0, ω − 1] as k p i
x =

∏k−1
j=0 p i

x+ j for k ∈ [1, ω − x]. Her subjective

life expectancy is (see e.g. Wu et al., 2015)

e i
x =

ω−x∑
k=1

k p i
x. (2)
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Remark 2. By Assumption 2, 0 ≤ k p i
x ≤ 1 for x ∈ [0, ω−1] and k ∈ [1, ω−x], and 0 ≤ e i

x ≤ ω−x

for x ∈ [0, ω − 1].

3.3. Hazard scaling (µx-scaling)

The objective hazard rate or instantaneous mortality rate µx at age x is related to the one-year

objective survival probability px as follows (see e.g. Dickson et al., 2013, p. 23):

px = exp
(
−

∫ 1

0
µx+τdτ

)
. (3)

The subjective hazard rate µ i
x of individual i at age x is similarly related to the subjective one-

year survival probability p i
x.

Gan et al. (2005, 2015) suggest that subjective survival probabilities may be derived from

their objective counterparts by scaling the hazard rate. Under their hazard-scaling method (or

µx-scaling),

µ i
x = γi µx, with γi ≥ 0. (4)

This method is used in several studies, e.g. Boyer et al. (2020). Combining eqs. (3) and (4), the

relationship between objective and subjective one-year survival probabilities is:

p i
x = exp

(
−

∫ 1

0
µ i

x+τdτ
)
= exp

(
−γi

∫ 1

0
µx+τdτ

)
= (px)γi . (5)

γi may be regarded as an index of survival pessimism for individual i. We highlight five

cases concerning p i
x here: (a) If γi = 1, then individual i is neutral in her survival beliefs,

relative to the objective survival probability, since p i
x = px. (b) If γi > 1, then individual i is

pessimistic in her survival beliefs since p i
x < px. (c) If γi < 1, she is optimistic. (d) If γi = 0,

then individual i is perfectly optimistic with p i
x = 1. (e) If γi → ∞, then individual i is perfectly

pessimistic since p i
x → 0.

The subjective life expectancy of individual i aged x ∈ [0, ω − 1], using eqs. (2) and (5), is

e i
x =

ω−x∑
k=1

k−1∏
j=0

p i
x+ j =

ω−x∑
k=1

k−1∏
j=0

(px+ j)γi =

ω−x∑
k=1

k−1∏
j=0

px+ j


γi

=

ω−x∑
k=1

(k px)γi . (6)

We propose to use the subjective life expectancy that individual i discloses in a survey and solve

eq. (6) to determine her pessimism index γi. Proposition 1 below is helpful for this purpose.

Proposition 1. Suppose that Assumptions 1 and 2 hold. (a) Survival beliefs: γi = (>)(<) 1⇔

e i
x = (<)(>) ex. (b) Perfect pessimism: as γi → ∞, e i

x → 0. (c) Perfect optimism: γi = 0 ⇔

e i
x = ω − x > 0. (d) One-to-one correspondence: e i

x is strictly decreasing wrt γi.
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Proof. For clarity, we suppress the subscript i where no ambiguity arises. Let f (γ) represent

the rhs of eq. (6), i.e. f (γ) =
∑ω−x

k=1 (k px)γ. Note that γ ≥ 0 from eq. (4) and that 0 < k px < 1

from Remark 1. Hence, f (γ) > 0, f ′(γ) =
∑ω−x

k=1 (ln k px) (k px)γ < 0 (proving part (d)), f (0) =

ω− x > 0 since age x ∈ [0, ω−1] (proving sufficiency in part (c)), and limγ→∞ f (γ) = 0 (proving

part (b)). f (γ) is continuous wrt γ at γ > 0 and is right-continuous at γ = 0. The slope and

continuity of f (γ) wrt γ prove necessity in part (c). Part (a) is easily verified by comparing the

corresponding summation terms in eqs. (1) and (6), and by exploiting part (d) for the direction

of the inequalities and for necessity. □

Prop. 1 describes the subjective life expectancy e i
x of individual i, aged x, in terms of her sur-

vival pessimism index γi under the hazard scaling method. In particular, e i
x is positive, strictly

decreasing, has a maximum at γi = 0 of ω − x > 0, and converges asymptotically to an in-

fimum of 0 as γi → ∞. Part (a) of Prop. 1 states than an individual who is neutral (resp.

pessimistic, optimistic) in her survival beliefs, relative to objective survival probabilities, has a

life expectancy equal to (resp. less than, greater than) the objective life expectancy for her age.

Part (b) of Prop. 1 states than a perfectly pessimistic individual expects to survive only for an

instant. Part (c) states that a perfectly optimistic individual expects to survive up to just before

the terminal age.

There is a one-to-one relation between γi and e i
x, according to part (d) of Prop. 1. This is

important because it confirms that we can estimate a unique value of the survival pessimism

index γi for individual i if she states her subjective life expectancy e i
x, given a suitable life

table or mortality law of objective survival probabilities for the population to which individual i

belongs.

In order to apply Prop. 1, the survey respondent’s objective and subjective life expectancies

are subject to Assumptions 1 and 2, and specifically to e i
x ≤ ω − x (Remark 1). One may wish

to censor fancifully high survey responses, or delete anomalous responses altogether. Alterna-

tively, one can raise the terminal age ω to an arbitrarily high level. If a mortality law, rather

than an actuarial life table, is used to model objective survival probabilities, the terminal age

is infinite (see the discussion in the vicinity of Assumption 1). This is discussed further in

Appendix A.

3.4. Survival probability scaling (px-scaling)

The hazard scaling method of Gan et al. (2005, 2015) described in sec. 3.3 above relates

subjective survival beliefs to objective survival probabilities in a mathematically convenient
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way. As argued in section 1, it is more likely that individuals perceive a survival probability

than a hazard rate. We suggest therefore an additional method by which subjective survival

probabilities may be derived from reported life expectancies and objective survival probabilities.

We refer to this method using the shorthand of px-scaling. The objective one-year survival

probability is directly scaled and capped so that the subjective survival probability cannot exceed

one:

p i
x = min (νi px, 1) , with νi ≥ 0. (7)

The presence of the minimum function in eq. (7) introduces a nonlinearity and so px-scaling

is less convenient mathematically than µx-scaling. However, we show below that this may be

overcome.

In eq. (7), νi is the survival optimism index of individual i. (Compare with γi in eq. (4).) If

νi > 1, individual i is optimistic over the next year, relative to objective mortality. If νi = 1, she

is neutral in her survival beliefs whereas, if νi < 1, she is pessimistic. If νi = 0, individual i is

perfectly pessimistic about survival over the next year since p i
x = 0. If νi ≥ 1/px, individual i is

perfectly optimistic with p i
x = 1.

The subjective life expectancy of individual i aged x ∈ [0, ω − 1], using eqs. (2) and (7), is

e i
x =

ω−x∑
k=1

k−1∏
j=0

p i
x+ j =

ω−x∑
k=1

k−1∏
j=0

min
(
νi px+ j, 1

)
. (8)

Proposition 2 below relates the subjective life expectancy e i
x of individual i, aged x ∈ [0, ω− 1],

to her survival optimism index νi under the px-scaling method.

Proposition 2. Suppose that Assumptions 1 and 2 hold. (a) Survival beliefs: νi = (>)(<) 1⇔

e i
x = (>)(<) ex. (b) Perfect pessimism: νi = 0 ⇔ e i

x = 0. (c) Perfect optimism: νi ≥ 1/px

⇔ e i
x = ω − x > 0 where px = min{px+ j : j ∈ [0, ω − x − 1]}. (d) Bounded one-to-one

correspondence: e i
x is strictly increasing wrt νi if 0 ≤ νi ≤ 1/px and e i

x is constant at ω − x if

νi ≥ 1/px.

The proof of Prop. 2 is relegated to Appendix B.

Parts (a)–(c) may be interpreted in a similar way to the corresponding parts of Prop. 1.

Part (d) is worthy of note. We observe that e i
x is non-negative, has a minimum of 0 at νi = 0,

increases strictly up to a maximum of ω − x as νi reaches a critical value of 1/px, and thereafter

flattens out. By Remark 2, subjective survival expectancy cannot exceed the remaining years

to the terminal age (i.e. e i
x is restricted to no more than ω − x). This means that e i

x is strictly

increasing wrt νi for the meaningful values of νi. Therefore we can estimate a unique value of

the survival optimism index νi given individual i’s stated subjective life expectancy e i
x.
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Remark 3. No assumption is made about the slope of {px} in Props. 1, 3 and 2.

The relevance of Remark 3 is that the sequence of survival probabilities {px} typically de-

creases with age x but there are empirical regularities, which go counter to this. Perinatal mor-

tality is particularly high and mortality then declines into early childhood, and young adult

mortality (at ages around 18–25) also peaks because of accidents (Dickson et al., 2013, p. 51;

Pitacco et al., 2009 , p. 97). Mortality rates at very old ages also decline very slowly and possibly

reach a ‘plateau’ (Pitacco et al., 2009, pp. 75, 103).

Finally, the case of a mortality law, when the terminal age of the life table is removed to

infinity, is discussed further in Appendix C.

3.5. Life-cycle model

Armed with the subjective survival probabilities derived in the earlier sections, we solve

numerically for the optimal consumption and investment over an individual’s lifetime. The life-

cycle model that we build is based on the classic model, with stochastic labour income correlated

to stock returns, of Cocco et al. (2005), Campbell et al. (2001) and Gomes et al. (2008). Our

model also features annuities (Horneff et al., 2008, 2010) and social security (Inkmann et al.,

2011).

Consider an individual investor i who turns x years old at time 0. She retires at age xr at

time τ = xr − x and lives to a maximum age of ω at time ω − x, as per Assumption 1. The risk

preferences of this investor are given by additive time-separable power utility:

E

 ω−x∑
k=1

βk−1
(
k p i

x

) C1−δ
k

1 − δ
+

ω−x∑
k=1

ν
(
k−1 p i

x

) (
1 − p i

x+k−1

)
βk−1 W1−δ

k

1 − δ

 , (9)

where 0 < β < 1 is a time preference coefficient or discount factor, Ck is the individual’s

consumption at the end of year (k − 1, k), δ is the coefficient of relative risk aversion of the

individual, and ν is a bequest preference parameter. The individual has boundedly rational

survival expectations and uses her subjective survival probabilities in eq. (9).

During her working life, the individual receives labour income at the end of year (k − 1, k),

for k ∈ [1, τ]. During her retirement, she receives a fixed pension income (which may comprise

both social security and a defined-benefit pension) at the end of year (k − 1, k) for k ∈ [τ+ 1, ω].

Both labour and pension income at time k are denoted by Yk and

Yk =


exp(w f (x + k) Pk Uk) for k ∈ [1, τ]

κ exp(w f (xr) Pτ) for k ∈ [τ + 1, ω],
(10)
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where w is a wage rate, f (x+ k) is a deterministic function of age x+ k which captures the hump

shape of labour income over working lifetime (and possibly other characteristics such as indi-

vidual i’s education level of), Pk is a persistent productivity shock given by Pk = Pk−1 + ϵk with

innovation ϵk ∼ iid N(0, σ2
ϵ ), Uk ∼ iid N(0, σ2

u) is a transitory productivity shock uncorrelated

with ϵk, and 0 < κ < 1 so that pension is a fixed proportion of the permanent component of

labour income in the last year of work (Cocco et al., 2005; Horneff et al., 2008, 2010).

At retirement, the individual can purchase an annuity which pays $1 at the end of every year

while she remains alive. The price of this annuity is

s = (1 + ξ)
ω−xr∑
k=1

k pxr (1 + r f )−k, (11)

where r f is a risk-free rate and ξ represents a loading factor charged by an insurer to cover its

expenses and profit margin on top of the fair actuarial premium for the annuity. Three remarks

may be made here: (1) The insurer uses objective survival probabilities to price the annuity. The

more pessimistic about survival that individual i is, the more she will perceive the annuity to

be expensive. (2) The annuity can only be purchased at retirement. (3) The annuity pays out

immediately, and has no deferral period.

During her lifetime, the individual invests her financial wealth Wk, at time k ∈ [0, ω − x]

in an investment portfolio consisting of a dollar amount Bk of a risk-free asset (“bond”) and a

dollar amount S k of a risky asset (“stock”), so that Wk = Bk + S k. The individual may have an

initial endowment W0 known w.p. 1. The risk-free asset earns the risk-free rate r f and the risky

asset earns rk = r f + µr + ϑk with ϑk ∼ iid N(0, σ2
ϑ) and correlation between wages and stock

return: Cov
[
ϵ j, ϑ

]
= ρσϵσϑ (Cocco et al., 2005; Fagereng et al., 2017; Campanale et al., 2015).

The proportion of financial wealth held in stock is πk = S k/Wk. At retirement (time k = τ),

a proportion π̃τ of financial wealth is used to buy annuities which will then pay Zk = π̃τWτ/s

annually in retirement (k > τ) while the investor is alive.

Short-sales and borrowing constraints apply. Thus,

Wk ≥ 0, 0 ≤ πk ≤ 1, 0 ≤ π̃τ ≤ 1, π̃k = 0 for k , τ. (12)

The budget constraint for the investor is

Wk+1 = (1 + r f + πk(rk − r f ))(1 − π̃k)Wk + Yk+1 + Zk+1 −Ck+1. (13)

The investor’s optimization problem is therefore to maximize the discounted expected utility

in eq. (9) wrt the portfolio, annuity purchase and consumption decision variables (πk, π̃k, Ck

respectively) subject to the constraints in eqs. (12) and (13). As is well known, this problem
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does not admit an analytical solution and numerical dynamic programming is therefore required

(Cocco et al., 2005; Horneff et al., 2008; Fagereng et al., 2017). The numerical method is

described in Appendix D.

4. Model calibration

4.1. Estimation of subjective survival probabilities

For every single individual i in the SCF survey described in sec. 2, we use his stated sub-

jective life expectancy e i
x, and calculate his pessimism index γi by numerically solving eq. (6).

Likewise, we calculate his optimism index νi by solving eq. (8). The numerical method is de-

tailed in Appendix D. We can then compute the subjective one-year survival probability p i
x for

every individual i aged x, according to both the µx-scaling and px-scaling methods, described in

sections 3.3 and 3.4 respectively.

We assume that there is a representative agent at every age. Individuals draw their subjective

survival probabilities from the same distribution. We find the mean of of p i
x for each age and fit a

spline curve to build the set of subjective survival probabilities. More specifically, we employ I-

splines (Ramsay, 1988) with a cubic polynomial to capture the monotonic behaviour of survival

probability wrt age, following the method of Wang & Yan (2021).

Fig. 2 depicts, as dots, the mean of p i
x over all males at each age. Actuarial survival probabil-

ities and subjective survival probabilities fitted using splines are shown as solid and dashed lines

respectively. Subjective survival probabilities with px- and µx-scaling are plotted in Figs. 2a and

2b respectively. It is immediately apparent, under both px- and µx-scaling, that older individuals

are optimistic about their survival. At older ages, the px curve is higher than the µx curve, but

the opposite is true at younger ages.

This is examined further in Fig. 3 which shows the survival curves for the male representa-

tive agent at four different ages. Underestimation of survival probabilities at younger ages gives

way to overestimation at older ages. This pattern is well-documented in other studies (Gan et al.,

2005; Wu et al., 2015; Heimer et al., 2019; O’Dea & Sturrock, 2021). Furthermore, we observe

that px-scaling generates more pronounced underestimation at younger ages and overestimation

at older ages than µx-scaling. Similar effects are seen in the female data in Appendix E .

Life expectancies at different ages under objective and subjective longevity are recorded in

Table 2 and graphically depicted in Fig. 4. This confirms the pattern of survival pessimism when

young and survival optimism when old. Survival pessimism appears to reduce as individuals

age, then switches to optimism by about age 85. We observe again that px-scaling suggests
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(a) px-scaling (b) µx-scaling

Figure 2: Subjective one-year survival probabilities averaged over all males at each age (dots), spline curve fitted to

subjective survival probabilities (dashed line), and corresponding actuarial survival probabilities (solid line).

(a) Survival curves at age 20 (b) Survival curves at age 40

(c) Survival curves at age 60 (d) Survival curves at age 80

Figure 3: Survival curves for males at different ages with actuarial and subjective survival probabilities
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e20 e40 e60 e80 e85 e90 e95 e100

Males

Objective 57.51 39.14 22.03 8.47 5.94 3.95 2.56 1.78

Subjective (px-scaling) 50.29 33.24 19.36 8.23 6.18 4.45 3.16 2.13

Subjective (µx-scaling) 52.62 34.06 19.22 7.72 5.69 4.05 2.78 1.82

Females

Objective 62.41 43.20 25.13 9.95 7.06 4.76 3.13 2.15

Subjective (px-scaling) 48.12 31.47 18.07 8.74 7.08 5.66 4.45 3.39

Subjective (µx-scaling) 53.77 35.45 19.92 8.55 6.61 5.02 3.74 2.71

Table 2: Life expectancy for males and females at different ages with objective mortality and subjective mortality

(under both px- and µx-scaling)

greater pessimism at younger ages than µx-scaling but also greater optimism at older ages. This

appears to be because the subjective survival probability is more sensitive to a change in νi,

which is effectively capped at 1/px (eq. (7)), than it is to a change in γi, which is unbounded

above (eq. (4)). 1 It is therefore worth studying the effects of subjective mortality under both

µx- and px-scaling.

4.2. Data estimation over time

The results that we describe above are based solely on the 2019 wave of the SCF survey. It

is useful to consider whether the results continue to hold based on other waves. Tables 3 and

4 show objective and estimated subjective life expectancies using the 1995 and 2007 waves.

Comparing with Table 2, we find minor variations but the observation that there is survival

pessimism among the young, which reduces as they age, holds for all three waves of the SCF

survey. The SCF provides cross-sectional data only and not panel data, so the updating of

subjective beliefs by individuals as they age cannot be analyzed fully. However, the stability of

the trend that we observe across all three waves gives greater credence to our results.

1 We observe that the magnitude of the sensitivity of p i
x to γi in eq. (4) is

∣∣∣(d/dγi)(px)γi
∣∣∣ = ∣∣∣(ln px)(px)γi

∣∣∣ ≤ − ln px

because γi ≥ 0 and 0 < px < 1. It is readily shown that − ln px < px = (d/dνi)(νi px) for px > W0(1) ≈ 0.567

using Lambert’s W-function. Therefore,
∣∣∣(d/dγi)(px)γi

∣∣∣ < ∣∣∣(d/dνi)(νi px)
∣∣∣ holds for most values of px. For a quantum

of over- or under-estimation of survival probability, represented by an equal change in γi and νi, the subjective

survival probability estimate with px-scaling will tend to overshoot, in the direction of optimism or pessimism, the

corresponding estimate with µx-scaling.
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(a) Life expectancy at ages 20–60 (b) Life expectancy at ages 60–100

Figure 4: Life expectancy for males at different ages with actuarial and subjective survival probabilities

e20 e40 e60 e80 e85 e90 e95 e100

Objective 54.25 36.04 19.29 7.07 5.03 3.51 2.43 1.70

Subjective (px-scaling) 44.53 29.19 16.99 7.23 5.40 3.89 2.70 1.79

Subjective (µx-scaling) 47.49 30.40 17.09 6.78 4.95 3.48 2.34 1.49

Table 3: Life expectancy for males at different ages with objective mortality and subjective mortality (under both px-

and µx-scaling) using 1995 SCF data

e20 e40 e60 e80 e85 e90 e95 e100

Objective 56.83 38.26 21.19 7.91 5.56 3.72 2.43 1.69

Subjective (px-scaling) 49.13 33.10 18.35 8.25 6.58 5.19 4.05 3.08

Subjective (µx-scaling) 52.25 34.78 18.74 7.50 5.69 4.24 3.09 2.19

Table 4: Life expectancy for males at different ages with objective mortality and subjective mortality (under both px-

and µx-scaling) using 2007 SCF data
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Parameter Value

Individual

Risk aversion coefficient δ 6

Discount factor β 0.98

Retirement age 65

Minimum age 20

Maximum age 100

Sex male

Financial

Risk-free rate r f 2%

Equity risk premium µr 4%

Equity return volatility σϑ 18%

Parameter Value

Labor income

Wage-stock return correlation ρ 0.1

Persistent wage shock volatility σϵ 0.1095

Transitory wage shock volatility σu 0.2917

Education level college grad.

Wage rate w 26,695

Other

Life table SSA 2019 male

Pension replacement ratio κ 0.7567

Annuity loading factor ξ 0

Bequest preference parameter ν 0

Table 5: Baseline parameter values for the life-cycle model.

4.3. Calibration of life-cycle model

The life-cycle model described in sec. 3.5 is calibrated to U.S. markets using the parameter

values of Heimer et al. (2019) and Love (2013), to whom we refer readers for underlying cali-

bration work and justification. The baseline parameter values are summarized in Table 5. Note

in particular that, for the labour income process, we follow Love (2013) who uses data from the

1970–2007 waves of the U.S. Panel Study of Income Dynamics (PSID) to estimate the income

profiles for individuals with different levels of education. We use the parameter values for col-

lege graduates in our baseline model. We also use objective and subjective survival probabilities

for males, since the survey data in SCF (2019) comprises more males than females, as described

in sec. 2.

5. Results

In this section, we solve the life-cycle model with risk-free asset, risky asset and an annuity

at retirement using numerical stochastic dynamic programming. The method follows Fehr &

Kindermann (2018), as set out in Appendix D.

5.1. Baseline case

We first consider results from the model with baseline parameter values. Average values,

at different ages, of income, financial wealth, consumption, annuity payment, equity weight in

portfolio, and fraction of wealth annuitized are shown in Fig. 5. Some of these average values
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are also tabulated in Table 6. Recall that income consists of labour income prior to retirement

and pension income (social security and/or defined benefit pension) after retirement. Financial

wealth consists of wealth invested in the portfolio of stock and risk-free asset. Typical life-cycle

results are visible: (1) average financial wealth and consumption grow during working lifetime

(Figs. 5b and 5c); (2) wealth is partially annuitized at retirement (Figs. 5b and 5d); (3) the

composition of the investment portfolio shifts away from risky asset as the bond-like holding

in human capital declines with age before retirement, but the availability of a risk-free pension

income and an annuity means that it is optimal to allocate post-retirement wealth fully to stock

(Fig. 5e); (4) the larger financial wealth is just before retirement, the larger the fraction of wealth

that is annuitized (Fig. 5f).

We observe, in both Fig. 5 and Table 6, that there is a difference between the average life-

cycle paths in the objective and subjective mortality cases. On average, there is some under-

saving of about 1% prior to retirement, some over-saving of about 4% post-retirement, and

under-annuitization of about 8% when individuals exhibit boundedly rational survival expecta-

tions than when they are fully rational. This discrepancy is not very large, so subjective mortality

beliefs cannot fully explain stylized facts such as the annuity puzzle. It is noteworthy that the

average annuity purchases of between $763,702 and $837,959 in Table 6 are significantly larger

than the average annuity value of $536,227 held by annuity-holders in the SCF data as reported

in section 2. Further, subjective mortality under px- and µx-scaling produce roughly similar

average consumption, investment and annuitization decisions over time.

The optimal paths are stochastic, of course, so Figure 6 shows quantiles related to the life-

cycle paths. There is no marked difference in these quantile profiles with age between the

objective and subjective mortality cases. (There is also very little difference between px- and

µx-scaling, so we only show the former.) We do observe that the quantiles of annuitization in

Fig. 6d are lower in the subjective mortality case compared to the objective case, but again this

is not substantial enough to fully explain the annuity puzzle.

5.2. Variations on the baseline case

In this section, we consider how the optimal life-cycle paths change with reasonable vari-

ations in parameter values. We vary one parameter at a time while all other parameter values

remain as in the baseline set out in sec. 4 (see particularly Table 5).

First, we consider the annuity loading, which represents a charge made by the annuity-

provider to cover for expenses and provide a profit margin. A common explanation for the

lower-than-optimal annuity demand seen in practice is that annuities are too expensive (Mitchell
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(a) Income (b) Financial Wealth

(c) Consumption (d) Annuity payment

(e) Proportion of risky assets (f) Fraction of wealth annuitized

Figure 5: Average optimal life-cycle paths with objective and subjective survival probabilities
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(a) Income (b) Financial wealth

(c) Consumption (d) Annuity payment

(e) Proportion of risky asset

Figure 6: Quantiles of the optimal life-cycle paths with objective and subjective survival probabilities
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Objective Subjective

px-scaling µx-scaling

Consumption

at 21 23,934 23,946 23,937

at 40 70,943 71,730 71,639

at 60 121,178 120,710 121,126

at 80 132,193 127,131 127,353

at 100 123,471 119,136 118,571

Financial wealth

at 64 941,764 889,483 893,470

Annuity purchase

at 65 837,959 771,858 763,702

Annuity payment

after 65 55,373 51,005 50,466

Table 6: Selected values from the average optimal life-cycle paths with objective and subjective survival probabilities

et al., 1999; Finkelstein & Poterba, 2002). It is therefore worth investigating if subjective mor-

tality beliefs, in combination with higher annuity loadings, can explain the annuity puzzle. In

Fig. 7, the annuity loading factor ξ, which appears in eq. (11), is varied from 0 to 0.5. As

may be anticipated, the larger the annuity loading factor, the more expensive the annuity is, so

the less of it is purchased at retirement (Figs. 7c and 7e), less financial wealth is annuitized

(Fig. 7a), post-retirement consumption is lower (Fig. 7b), and the post-retirement investment

portfolio is less risky to compensate for riskier overall retirement income (Fig. 7d). However,

our principal observation from Fig. 7 is that the average optimal paths are not very different be-

tween the objective and subjective mortality cases. Although slightly less annuity is purchased

on average under subjective mortality beliefs than objective mortality expectations (Fig. 7c), the

difference is small compared to the drop in annuitization which occurs as the annuity loading

factor increases.

In Fig. 8, we also vary the labour income profile based on education level, to consider not just

college graduates (who earn the most) but also high school graduates and high school dropouts

(who earn the least), using the parameterizations of Love (2013) as described in sec. 4.3. In

Fig. 9, we vary the risk aversion coefficient δ (see eq. (9)). Again, the results are as anticipated.

Our chief observation, from Figs. 8 and 9, is that there is little difference between the average

optimal life-cycle paths in the objective and subjective mortality cases. In particular, annuitiza-
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(a) Financial wealth (b) Consumption

(c) Annuity payment (d) Proportion of risky asset

(e) Fraction of wealth annuitised

Figure 7: Average optimal life-cycle paths with annuity loading factor ξ = 0, 0.1, . . . , 0.5
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Objective Subjective (px-scaling)

Annuity purchase at 65

ν = 0 837,959 771,858

ν = 5 826,952 778,746

ν = 15 818,037 768,937

ν = 30 811,846 762,179

Annuity payment after 65

ν = 0 55,373 51,005

ν = 5 54,646 51,460

ν = 15 54,057 50,812

ν = 30 53,647 50,365

Financial wealth at 80

ν = 0 46,999 39,201

ν = 5 221,292 216,545

ν = 15 239,447 234,527

ν = 30 251,763 246,909

Table 7: Selected values from the average optimal life-cycle paths with objective and subjective survival probabilities

for different values of bequest preference parameter ν = 0, 5, 15, 30

tion is lower on average with subjective mortality beliefs than objective mortality expectations,

but not substantially so (Figs. 8d and 9c).

The baseline case of section 5.1 comprises no bequest motive, similar to the baseline ref-

erence case of Horneff et al. (2008). A willingness to bequeathe wealth is expected to depress

annuitization, so this is an important factor to investigate. In Table 7, we show the average

values, at different ages, of annuity purchases and payments at retirement as well as financial

wealth at age 80, for different values of the bequest preference parameter ν (see eq. (9)). As

anticipated, we observe that annuitization is negatively related to the bequest motive, whereas

financial holdings in retirement are positively related. Under subjective beliefs, annuitization

and financial wealth in retirement are lower than objectively, but again the discrepancy is not

very wide. Under-annuitization is about 6–8% on average.

6. Conclusion

Several studies show that subjective beliefs about survival differ from actuarial survival rates

based on population data. In particular, younger individuals are pessimistic about survival, this
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(a) Income (b) Financial wealth

(c) Consumption (d) Annuity payment

(e) Proportion of risky asset (f) Fraction of wealth annuitised

Figure 8: Average optimal life-cycle paths with different labour incomes profile based on different levels of education
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(a) Financial wealth (b) Consumption

(c) Annuity payment (d) Proportion of risky asset

(e) Fraction of wealth annuitised

Figure 9: Average optimal life-cycle paths with risk aversion coefficient δ = 4, 6, 10
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pessimism decreases with age, and older individuals turn optimistic. Heimer et al. (2019) and

Wu et al. (2015) argue that subjective survival beliefs can explain empirically verified under-

saving before retirement and over-saving in retirement, relative to optimal financial decisions.

O’Dea & Sturrock (2021) and Wu et al. (2015) also argue that subjective survival beliefs can

explain the annuity puzzle, i.e. lower-than-optimal annuity demand that is observed in practice.

We investigate this further by (1) estimating subjective survival probabilities using two different

methods, and (2) solving for optimal consumption, investment and annuitization decisions in a

life-cycle model, under both objective and subjective survival expectations.

To this end, we use self-reported life expectancy data from the U.S. Survey of Consumer

Finances. Some studies use self-reported survival probabilities, but these can be inconsistent

and can suffer from focal responses. We transform subjective life expectancies into subjective

survival probabilities by scaling hazard rates, an established method used in several studies (e.g.

Gan et al., 2005, 2015; Wu et al., 2015; Boyer et al., 2020). We also rigorously establish a

second method, where survival probabilities are scaled rather than hazard rates, on the basis that

individuals are more likely to perceive a probability than a hazard rate, and that most financial

life-cycle decisions are concerned with survival rather than death. A unique value of an index of

survival optimism/pessimism is estimated for each survey respondent. Under both methods, we

find that there is indeed survival pessimism at younger ages which reduces with age and turns

to optimism at older ages well into retirement, a finding which is consistent with the literature.

We then use our estimated subjective survival probabilities within a full life-cycle model.

Individuals receive stochastic labour income and invest their savings in a portfolio consisting

of risk-free asset and stock whose returns are imperfectly correlated with wages. At retirement,

they can purchase an annuity, which is priced by an annuity-provider using objective (actuar-

ial) survival probabilities. Individuals exhibit boundedly rational survival expectations and they

maximize their expected discounted CRRA utility allowing for their subjective survival proba-

bilities. When we solve the model numerically, we find that there is some under-saving (about

1%) before retirement, some over-saving (about 4%) after retirement, and under-annuitization

(about 8%), on average, when individuals operate under their subjective survival beliefs, relative

to objective survival expectations. This effect is fairly small, whichever method is used to esti-

mate subjective mortality, so subjective mortality does not fully explain these household finance

puzzles. This conclusion holds for a wide range of parameter values. This conclusion also runs

counter to recent results in the literature (O’Dea & Sturrock, 2021; Heimer et al., 2019; Wu

et al., 2015). This is likely to be because we allow investment portfolio decisions over a full
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spectrum of adult ages in our life-cycle model, whereas some authors do not allow this. It could

also be because our subjective survival probability estimates are benchmarked to objective life

table probabilities, as opposed to a Weibull distribution or a quadratic regression on age in some

of the earlier literature.

A number of limitations of our analysis should be pointed out, even though these limitations

are also present in the extant literature. First, we assume that agents are boundedly rational in

that their age-related subjective survival beliefs deviate from objective expectations in a consis-

tent way over time. There may instead be a time inconsistency in survival beliefs and this should

be investigated using panel data to observe how individuals update their beliefs. Second, there

is considerable heterogeneity in beliefs across education levels, wealth and income, whereas we

aggregate individuals across these socio-economic factors. There is also strong heterogeneity

in objective survival probabilities across these factors (Carannante et al., 2023). Capturing this

heterogeneity fully poses significant data collection, estimation and computational challenges.

There are several promising avenues of research that are being carried out to extend the

present model. First, health risk is an important factor in that it discourages annuitization not

only through its impact on expectations but also due to uncertain healthcare costs and related

precautionary savings (Munnell et al., 2022; Peijnenburg et al., 2017). The differential impact of

health risk on subjective and objective survival expectations deserves greater scrutiny. Second,

annuities should be available at various ages rather than only at retirement (Horneff et al., 2008).

Again, survival optimism at older ages may increase annuitization. Third, annuities with a de-

ferral period should be available (Horneff et al., 2010; Owadally et al., 2021a). Greater choice

and flexibility should lead to welfare gain but survival pessimism in the young may confound

this. Finally, financial life-cycle decisions are highly sensitive to interest rates and inflation

(Owadally et al., 2021b) and the effect of subjective survival beliefs may be tempered or am-

plified at different stages of the economic cycle. These features will be included in subsequent

studies.

Appendix A Hazard scaling under a mortality law

If a mortality law, rather than an actuarial life table, is used to model objective survival

probabilities, the terminal age is infinite. Prop. 1 is then amended as shown below.

Proposition 3. Suppose that Assumptions 1 and 2 hold with ω → ∞ so that 0 < px < 1 and

0 ≤ p i
x ≤ 1 for x ∈ Z+. (Here, lim ≡ limω→∞ unless specified otherwise.) (a) Survival beliefs:

γi = (>)(<) 1⇔ lim e i
x = (<)(>) lim ex. (b) Perfect pessimism: limγi→∞ lim e i

x = 0. (c) Perfect

28



optimism: γi = 0 ⇔ lim e i
x = ∞. (d) Finiteness: γi > 0 ⇔ lim e i

x < ∞. (e) One-to-one

correspondence: lim e i
x is strictly decreasing wrt γi.

Proof. For clarity, we suppress the subscript i where no ambiguity arises. Let f∞(γ) represent

the rhs of eq. (6) with ω → ∞, i.e. f∞(γ) =
∑∞

k=1 (k px)γ. Consider γ = 0. f∞(0) =
∑∞

k=1 1

diverges to ∞, proving sufficiency in part (c). Consider γ > 0. An application of the ratio test

(d’Alembert criterion) for convergent positive series (Rudin, 1976, p. 66; Ito 1993, p. 1758)

shows that |(k+1 px)γ/(k px)γ| = (px+k)γ, and lim supk→∞(px+k)γ < 1, given that px+k < 1 for

k ∈ Z+. Hence f∞(γ) is finite for γ > 0, proving sufficiency in part (d). limγ→∞ f∞(γ) =∑∞
k=1 limγ→∞ (k px)γ =

∑∞
k=1 0 = 0, proving part (b). The rest of the proof proceeds along

similar lines to the proof of Prop. 1, noting that the objective life expectancy is also finite,

f∞(1) = lim ex < ∞. □

Appendix B Proof of Proposition 2

Proof (Proof of Proposition 2). For clarity, we suppress the subscript i where there is no am-

biguity. Let g(ν, x, ω) represent the rhs of eq. (8):

g(ν, x, ω) =
ω−x∑
k=1

k−1∏
j=0

min
(
νpx+ j, 1

)
. (B.1)

Since x and ω are constant for the rest of this proof, we omit them as arguments and use g(ν).

The terms inside the sum-product for g(ν) in eq. (B.1) above are either 1 (if νpx+ j ≥ 1) or

less than 1 and positive (if νpx+ j < 1, noting that 0 < px+ j < 1 by Assumption 1). The relative

size of ν and the objective survival probabilities px+ j determines what happens to each term in

the sum-product in eq. (B.1). It is convenient to define

px = min{px+ j : j ∈ [0, ω − x − 1]} (B.2a)

px = max{px+ j : j ∈ [0, ω − x − 1]} (B.2b)

Four cases arise and we examine each separately. (If px+ j is constant for j ∈ [0, ω− x−1], which

is an unlikely occurrence for objective survival probabilities in a life table, then px+ j = px = px

and case 4 below is redundant.)

Case 1: ν = 0. In this case, all the terms inside the sum-product for g(0) in eq. (B.1) are

zero and g(0) = 0, verifying sufficiency of part (b) in Prop. 2.

Case 2: 0 < ν < 1/px. In this case, all the terms inside the sum-product for g(ν) in

eq. (B.1) are less than 1 and positive, since 0 < νpx+ j ≤ νpx < 1 for j ∈ [0, ω − x − 1], and
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min(νpx+ j, 1) = νpx+ j. In eq. (B.1),

g(ν) =
ω−x∑
k=1

νk
k−1∏
j=0

px+ j =

ω−x∑
k=1

νkk px. (B.3)

Now, g′(ν) =
∑ω−x

k=1 kνk−1
k px > 0, noting that 0 < k px < 1 for x ∈ [0, ω − 1] and k ∈ [1, ω − x]

in Remark 1. Hence, g(ν) is strictly increasing wrt ν for 0 < ν < 1/px.

Case 3: ν ≥ 1/px. In this case, all the terms inside the sum-product for g(ν) in eq. (B.1) are

equal to 1, since νpx+ j ≥ νpx ≥ 1 for j ∈ [0, ω − x − 1], and min(νpx+ j, 1) = 1. In eq. (B.1),

g(ν) =
ω−x∑
k=1

1 = ω − x > 0. (B.4)

Hence, g(ν) is constant wrt ν for ν ≥ 1/px. This verifies sufficiency of part (c) in Prop. 2.

Case 4: 1/px ≤ ν < 1/px. In this case, some of the terms inside the sum-product for g(ν) in

eq. (B.1) will be equal to 1 and some will be less than 1 and positive. In general, the larger ν is,

the more there are 1’s inside this sum-product since ν exceeds px+ j more often.

Consider two individuals both aged x but with survival optimism index ν1 and ν2 such that

1/px ≤ ν1 < ν2 < 1/px. The corresponding values of g(ν) are

g(ν1) =
ω−x∑
k=1

k−1∏
j=0

min
(
ν1 px+ j, 1

)
, (B.5a)

g(ν2) =
ω−x∑
k=1

k−1∏
j=0

min
(
ν2 px+ j, 1

)
. (B.5b)

Since ν2 > ν1, there are at least as many terms that are capped at 1 in the sum-product for g(ν2)

as there are in in the sum-product for g(ν1). We would like to show that g(ν2) > g(ν1). The

indicator function, I{A} = 1 if A is true and 0 otherwise, is helpful in this regard.

g(ν1) =
ω−x∑
k=1

k−1∏
j=0

(
ν1 px+ jI

{
ν1 px+ j < 1

}
+ I

{
ν1 px+ j ≥ 1

})
(B.6a)

(g(ν1) from eq. (B.5a) is rewritten using the indicator function)

≤

ω−x∑
k=1

k−1∏
j=0

(
ν1 px+ jI

{
ν2 px+ j < 1

}
+ I

{
ν2 px+ j ≥ 1

})
(B.6b)

(terms capped at 1 inside the sum-product for g(ν2) are inserted into their corresponding position

inside the sum-product for g(ν1))

<

ω−x∑
k=1

k−1∏
j=0

(
ν2 px+ jI

{
ν2 px+ j < 1

}
+ I

{
ν2 px+ j ≥ 1

})
(B.6c)

(ν1 is replaced by ν2 inside the sum-product)

= g(ν2). (B.6d)
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We have therefore shown that 1/px ≤ ν1 < ν2 < 1/px ⇒ g(ν1) < g(ν2). Hence, g(ν) is strictly

increasing wrt ν for 1/px ≤ ν < 1/px.

Continuity of g(ν) wrt ν. The function min(νpx+ j, 1) for ν ≥ 0 in eq. (B.1) is continuous

wrt ν at ν > 0 and right-continuous at ν = 0 (and differentiable at ν > 0 except at ν = 1/px+ j).

Hence, g(ν) is continuous wrt ν at ν > 0 and right-continuous at ν = 0.

Strictly increasing g(ν) wrt ν. Putting together cases 1–4 along with continuity above proves

part (d) of Prop. 2.

Necessity. Combining continuity and the strictly increasing property proves necessity in

parts (b) and (c) of Prop. 2. Sufficiency was shown earlier in cases 1 and 3.

Survival beliefs. Part (a) of Prop. 2 is easily verified by comparing the corresponding sum-

mation terms in eqs. (1) and (8), noting that ν = 1 belongs to case 2 above, and exploiting

part (d) of Prop. 2 for the direction of the inequalities and for necessity. □

Appendix C Survival probability scaling (px-scaling) under a mortality law

In Proposition 4 below, the terminal age of the life table is removed to infinity, and objec-

tive survival rates can be modelled using a mortality law instead of a finite life table. A mild

assumption concerning {px} is required for this purpose.

Assumption 3. Let 0 < px < 1 and 0 ≤ p i
x ≤ 1 for x ∈ Z+, and limx→∞ px = p where

0 ≤ p < 1. Further, there exists y ∈ Z+ such that y = min{x : px+ j+1 ≥ px+ j for j ∈ Z+}.

Assumption 3 says that, from age y onwards, objective survival probabilities must decline

monotonically and converge. In more detail, Assumption 3 states that there are two possible

components to the age structure of objective 1-year survival probabilities. The first component

is always present: for age x ≥ y, the sequence of survival probabilities {px} is monotonic de-

creasing (i.e. non-increasing) and convergent. This can cater for the old-age mortality plateau, if

it is exists. The second component may or may not be present: for age x < y, the sequence {px}

has an unspecified slope wrt age x. This component caters for any empirical troughs and peaks

in mortality at younger ages, such as the young-adult mortality peak. Note that Assumption 3

does not rule out that {px} is monotonically decreasing wrt x from age 0, i.e. it is possible that

y = 0.

Since subjective survival beliefs are based on objective survival probabilities under both

px- and µx-scaling, Remark 3 and Assumption 3 show that both px- and µx-scaling can flexibly

capture people’s subjective survival probabilities. This is true whether one employs an empirical
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life table with stationary and inflection points and a finite terminal age, or a theoretical mortality

law with no terminal age. Proposition 4 below is the analogue of Proposition 2 when the terminal

age is removed to infinity, under Assumption 3.

Proposition 4. Suppose that Assumption 3 holds. (Here, lim ≡ limω→∞ unless specified oth-

erwise.) (a) Survival beliefs: νi = (>)(<) 1 ⇔ lim e i
x = (>)(<) lim ex. (b) Perfect pessimism:

νi = 0⇔ lim e i
x = 0. (c) Perfect optimism: νi ≥ 1/p and p > 0⇔ lim e i

x = ∞. (d) Finiteness:

0 ≤ νi < 1/p⇔ lim e i
x < ∞. (e) One-to-one correspondence: 0 ≤ νi < 1/p⇔ lim e i

x is strictly

increasing wrt νi.

The proof of Prop. 4 requires two intermediate lemmas which are stated and proven here.

Throughout, the suffix i, denoting the subjective survival beliefs of individual i, is omitted from

the notation if this is unambiguous, and lim ≡ limω→∞ unless otherwise specified. We re-use

the function g(ν, x, y) =
∑y−x

k=1 k p i
x, from eq. (B.1), and we define h(ν, x, y) = y−x p i

x, for y ∈ Z+,

y > x. We also define

g∞(ν, x) = lim
ω→∞

g(ν, x, ω) = lim
ω→∞

e i
x =

∞∑
k=1

k p i
x =

∞∑
k=1

k−1∏
j=0

min(νpx+ j, 1). (C.1)

Lemma 1 below partitions g∞ into a component before age y, when the slope of {px} is

unspecified, and a component at or after age y, when {px} is monotonically decreasing (see

Assumption 3).

Lemma 1. Let y ∈ Z+ and x < y. Then g∞(ν, x) = g(ν, x, y) + h(ν, x, y) g∞(ν, y).

Proof (Proof of Lemma 1). (The argument ν is omitted for brevity.) Since k p i
x =

∏k−1
j=0 p i

x+ j,

g∞(x) =
∞∑

k=1
k p i

x = p i
x + p i

x

∞∑
k=2

k−1 p i
x+1 = p i

x + p i
x

∞∑
k=1

k p i
x+1. (C.2)

Eq. (C.2) shows that Lemma 1 holds for y = x + 1. Suppose that Lemma 1 holds for y = x + k,

k ≥ 1.

g∞(x) =
y−x∑
k=1

k p i
x + y−x p i

x

∞∑
k=1

k p i
y =

y−x∑
k=1

k p i
x + y−x p i

x

p i
y + p i

y

∞∑
k=1

k p i
y+1

 , (C.3)

using eq. (C.2). Therefore,

g∞(x) =
y−x∑
k=1

k p i
x + y−x+1 p i

x + y−x+1 p i
x

∞∑
k=1

k p i
y+1 =

y−x+1∑
k=1

k p i
x + y−x+1 p i

x

∞∑
k=1

k p i
y+1

= g(x, y + 1) + h(x, y + 1) g∞(y + 1). (C.4)

By induction, since Lemma 1 holds for y = x + 1, it also holds for y = x + k, k ≥ 1. □
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Lemma 2 below examines the properties of h(ν, x, y) for the component of mortality before

age y, i.e. for x < y (see Assumption 3).

Lemma 2. Let h(ν) ≡ h(ν, x, y) with x < y. (a) h(0) = 0, (b) h(ν) is strictly increasing wrt ν for

0 ≤ ν < 1/px, (c) h(ν) = 1 for ν ≥ 1/px, where px = min{px+ j : j ∈ [0, y − x − 1]}.

Proof (Proof of Lemma 2). h(ν) = y−x p i
x =

∏y−x−1
j=0 min(νpx+ j, 1). As in the proof of Prop. 2, it

is useful to consider four cases. px is as defined in Lemma 2 and we define px = max{px+ j : j ∈

[0, y − x − 1]}. In the event that {px+ j : j ∈ [0, y − x − 1]} is a constant sequence, then px = px

and case 4 below is redundant.

In case 1, ν = 0, and clearly h(0) = 0. In case 2, 0 < ν < 1/px, and 0 < νpx+ j ≤ νpx < 1,

so that all terms inside the product for h(ν) above are positive and less than 1. Therefore,

h(ν) =
∏y−x−1

j=0 νpx+ j = ν
y−x ∏y−x−1

j=0 px+ j. By virtue of Assumption 1 and because y > x,

g′2(ν) = (y − x)νy−x−1 ∏y−x−1
j=0 px+ j > 0. In case 3, ν ≥ 1/px, and all the terms inside the product

for h(ν) above are equal to 1, so that h(ν) = 1.

In case 4, 1/px ≤ ν < 1/px, and some of the terms inside the product for h(ν) above are

positive and less than 1, while the other terms are equal to 1. Proceeding as in the proof of

Prop. 2, we consider 1/px ≤ ν1 < ν2 < 1/px.

h(ν1) =
y−x−1∏

j=0

(
ν1 px+ jI

{
ν1 px+ j < 1

}
+ I

{
ν1 px+ j ≥ 1

})
≤

y−x−1∏
j=0

(
ν1 px+ jI

{
ν2 px+ j < 1

}
+ I

{
ν2 px+ j ≥ 1

})
(terms capped at 1 inside the product for h(ν2) are inserted into their corresponding position

inside the product for h(ν1))

<

y−x−1∏
j=0

(
ν2 px+ jI

{
ν2 px+ j < 1

}
+ I

{
ν2 px+ j ≥ 1

})
(ν1 is replaced by ν2 inside the product)

= h(ν2).

Thus, 1/px ≤ ν1 < ν2 < 1/px ⇒ h(ν1) < h(ν2). Combining cases 1–4, h(0) = 0, h(ν) is strictly

increasing wrt ν for 0 ≤ ν < 1/px, and is then constant at 1 for ν ≥ 1/px. □

Lemmas 1 and 2 above are exploited in the proof of Prop. 4 below.

Proof (Proof of Prop. 4). The proof of Prop. 4 follows that of Prop. 2, except that we have to

show convergence or divergence as ω→ ∞. For clarity, we suppress the subscript i where there
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is no ambiguity. Here, lim ≡ limω→∞ unless specified otherwise. Recall that lim e i
x = g∞(ν, x)

in eq. (C.1).

Sufficiency in part (a) of Prop. 4 is straightforward in the manner of the proof of Prop. 2,

i.e. compare the summation terms on the rhs of eqs. (1) (with ω→ ∞) and (C.1). Sufficiency in

part (b) of Prop. 4 is also straightforward from eq. (C.1).

For the rest of the proof, we consider separately two possible scenarios depending upon the

age x of individual i compared to age y (see Assumption 3).

Scenario 1: Individual i is aged x ≥ y. By Assumption 3, {px, x ≥ y} is monotonic decreas-

ing and convergent. The definitions of px and px, in eqs. (B.2a) and (B.2b) respectively from

the proof of Prop. 2, stand except that ω→ ∞, and px = p and px = px. Should {px} be constant

at all ages (an unusual scenario for human mortality), then px = px = px = p and case 4, in the

proof of Prop. 2 as well as below, is redundant.

In case 1 in the proof of Prop. 2, ν = 0. This case clearly holds in the limit as ω→ ∞.

In case 2, 0 < ν < 1/px and we only need to show that g∞(ν, x) is finite. Applying the ratio

test (d’Alembert criterion) for convergent positive series (Rudin, 1976, p. 66; Ito 1993, p. 1758)

we find that
∣∣∣∣(νk+1

k+1 px)
/
(νkk px)

∣∣∣∣ = νpx+k, and lim supk→∞(νpx+k) = ν × limk→∞ px+k = νp <

νpx < 1. Hence g∞(ν) is finite for 0 < ν < 1/px. The instance of ν = 1 is included in case 2 and

corresponds to objective life expectancy, hence lim ex is finite.

In case 3 in the proof of Prop. 2, ν ≥ 1/p. Unlike in Prop. 2 where px > 0 by Assumption 1,

Assumption 3 permits a non-strict inequality to hold: p ≥ 0. So we insist that p > 0 for the case

ν ≥ 1/p to hold. Eq. (B.4) then shows that g∞(ν, x) =
∑∞

k=1 1 diverges.

Case 4 in the proof of Prop. 2 concerns 1/px ≤ ν < 1/p. In this case, some of the terms

inside the sum-product for g∞(ν, x) in eq. (C.1) will be equal to 1 and the remaining terms will

be less than 1 and positive. Define k = min{k : px+k < 1/ν}. Then, p i
x+k = νpx+k < 1 if k ≥ k,

and p i
x+k = 1 if k < k. Now, k p i

x =
∏k−1

j=0 p i
x+ j. Therefore,

k p i
x =


1 if k ≤ k∏k−1

j=k (νpx+ j) = νk−k (k px)/(k px) if k > k.
(C.5)

Substituting the above into eq. (C.1) yields

g∞(ν, x) =
k∑

k=1
k p i

x +

∞∑
k=k+1

k p i
x =

k∑
k=1

1 +
∞∑

k=k+1

νk−k (k px)/(k px) = k +
∞∑

k=1

νk(k px+k). (C.6)

Applying the ratio test again shows that
∣∣∣∣νk+1(k+1 px+k)

/
νk(k px+k)

∣∣∣∣ = νpx+k+k, and lim supk→∞

(νpx+k+k) = ν × limx→∞ px = νp < 1. Hence g∞(ν, x) is finite for 1/px ≤ ν < 1/p.
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We have therefore shown that g∞(ν, x) = lim e i
x is finite when 0 ≤ ν < 1/p and is infinite

when ν ≥ 1/p. The rest of the proof, for scenario 1 (x ≥ y), proceeds along similar lines to the

proof of Prop. 2, and continuity and the strictly increasing property of lim e i
x wrt ν provide for

necessity in the various parts of Prop. 4.

Scenario 2: Individual i is aged x < y. For parts (c) and (d) of Prop. 4, use Lemma 1,

g∞(ν, x) = g(ν, x, y) + h(ν, x, y) g∞(ν, y), and consider each of the terms on the rhs. (Recall that

g(ν, x, y) is identical to g(ν, x, ω) in eq. (B.1) in the proof of Prop. 2, except that ω is replaced by

y.) g(ν, x, y) is finite according to Prop. 2, Lemma 2 confirms that h(ν, x, y) is also finite, and we

have just shown in scenario 1 above that g∞(ν, x), x ≥ y is finite if and only if 0 ≤ ν ≤ 1/p. This

proves sufficiency in parts (c) and (d) of Prop. 4.

For part (e), consider the case ν > 0. From Lemma 1,

∂

∂ν
g∞(ν, x) =

∂

∂ν
g(ν, x, y) + g∞(ν, y)

∂

∂ν
h(ν, x, y) + h(ν, x, y)

∂

∂ν
g∞(ν, y). (C.7)

By virtue of part (d) of Prop. 2, the first term (∂g(ν, x, y)/∂ν) on the rhs of eq. (C.7) is non-

negative (when ν > 0). Similarly, Lemma 2 shows that h(ν, x, y) is positive and ∂h(ν, x, y)/∂ν is

non-negative (when ν > 0). In scenario 1 above, g∞(ν, x) and and ∂g∞(ν, x)/∂ν for x ≥ y are

positive (when ν > 0). Thus, the second term on the rhs of eq. (C.7) is non-negative, while the

third term is positive. Hence, ∂g∞(ν, x)/∂ν > 0 on the lhs of eq. (C.7). This proves part (e) of

Prop. 4, which also provides for necessity in the various other parts of the proposition. □

Appendix D Numerical methods

The financial life-cycle model described in sec. 3.5 is solved numerically using the Fortran

code provided by Fehr & Kindermann (2018, p. 469), which is suitably modified for our pur-

poses. The Bellman equation is solved backwards using grid search, spline interpolation and

Gaussian quadrature. The assumption in eq. (10) that the annual pension is proportional to the

permanent component of final labour income means that variables can be normalized by di-

viding by the permanent shock exp(Pk), thus removing one state variable and simplifying the

numerical dynamic programming problem (Cocco et al., 2005; Fehr & Kindermann, 2018, p.

447).

As for the subjective survival model in sections 3.3 and 3.4, Propositions 1 and 3 guarantee

the existence and uniqueness of a solution to eq. (6), and likewise with Props. 2 and 4 in relation

to eq. (8). To solve for γi and νi, in eqs. (6) and (8) respectively, we use Brent’s algorithm,

originally called the “Algol 60 procedure zero” by Brent (1973, p. 48), as implemented in R.
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(a) px-scaling (b) µx-scaling

Figure E.1: Subjective one-year survival probabilities averaged over all females at each age (dots), spline curve fitted

to subjective survival probabilities (dashed line), and corresponding actuarial survival probabilities (solid line).

This is a derivative-free method which uses combined quadratic interpolation and bisection

methods to find roots of equations (Conn et al., 2009; Fehr & Kindermann, 2018, p. 63). In

particular, it is fast and able to solve eq. (8) despite its local non-differentiability.

Appendix E Subjective survival probabilities for females

Figs. E.1–E.3 in this appendix pertain to females and correspond to Figs. 2–4 for males.
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(a) Survival curves at age 20 (b) Survival curves at age 40

(c) Survival curves at age 60 (d) Survival curves at age 80

Figure E.2: Survival curves for females at different ages with actuarial and subjective survival probabilities

(a) Life expectancy at ages 20–60 (b) Life expectancy at ages 60–100

Figure E.3: Life expectancy for females at different ages with actuarial and subjective survival probabilities
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