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Abstract

The research presented in this paper advances the integration of Hebbian learn-
ing into Convolutional Neural Networks (CNNs) for image processing, system-
atically exploring different architectures to build an optimal configuration, ad-
hering to biological tenability. Hebbian learning operates on local unsupervised
neural information to form feature representations, providing an alternative to
the popular but arguably biologically implausible and computationally intensive
backpropagation learning algorithm. The suggested optimal architecture signif-
icantly enhances recent research aimed at integrating Hebbian learning with
competition mechanisms and CNNs, expanding their representational capabil-
ities by incorporating hard Winner-Takes-All (WTA) competition, Gaussian
lateral inhibition mechanisms and Bienenstock–Cooper–Munro (BCM) learning
rule in a single model. The resulting model achieved 76% classification accu-
racy on CIFAR-10, rivalling its end-to-end backpropagation variant (77%) and
critically surpassing the state-of-the-art hard-WTA performance in CNNs of the
same network depth (64.6%) by 11.4%. Moreover, results showed clear indica-
tions of sparse hierarchical learning through increasingly complex and abstract
receptive fields. In summary, our implementation enhances both the perfor-
mance and the generalisability of the learnt representations and constitutes a
crucial step towards more biologically realistic artificial neural networks

Keywords: Hebbian Learning, Unsupervised Feature Learning, Convolutional
Neural Networks (CNNs), Sparse Neural Coding, Hard/Soft Competition

1. Introduction

Deep neural networks (DNNs) have become the dominant paradigm in artifi-
cial intelligence, achieving remarkable performance across computer vision, nat-
ural language processing, and reinforcement learning. However, their primary
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learning algorithm - error backpropagation (Rumelhart et al., 1986; Werbos,
1994) - presents significant challenges for practical deployment and biological
plausibility (Zarkeshian et al., 2022; Lillicrap et al., 2020). Backpropagation is a
supervised learning process that relies on propagating error gradients backward
through the network’s layers to adjust connection weights so that the network
outputs come close to some given target output. This global update process
requires storing all intermediate activations and computing gradients across the
entire network (Rumelhart et al., 1986).

These constraints impose several critical limitations: the algorithm’s require-
ment for precise error signals demands massive labelled datasets (Lagani, 2022),
while the global nature of weight updates leads to extreme computational costs
and energy consumption (Wang et al., 2024; Strubell et al., 2020). Additionally,
the sequential backward pass creates bottlenecks resulting in lengthy training
times (Krithivasan et al., 2022), and the rigid supervised learning approach
limits adaptability while leaving models vulnerable to adversarial attacks (Lee
et al., 2018).

Conversely, Hebbian learning, a biologically inspired learning algorithm, cir-
cumvents the need for error backpropagation, updating weights locally, using un-
supervised local neural activity correlations. Although Hebbian learning shows
promise in addressing these challenges, posing as an alternative that mirrors the
efficiency and adaptability of biological systems (Gerstner and Kistler, 2002), it
is still needed to achieve similar high levels of accuracy as those reported with
backpropagation training (Demidovskij et al., 2023).

Recent research in Hebbian learning has focused on combining purely Heb-
bian learning for unsupervised feature extraction in convolutional layers, with
supervised classification training on these frozen features. Successful Hebbian
integration into DNNs (Amato et al., 2019; Krotov and Hopfield, 2019; Miconi,
2021; Journé et al., 2022) is primarily achieved through neural competition,
which allows distinct neurons to respond to input patterns, preventing redun-
dant feature learning and promoting the development of diverse hierarchical
representations. Two representation coding schemes have been used: soft com-
petition methods (Journé et al., 2022) that enable distributed updates across all
neurons, as well as several hard competition approaches (Grinberg et al., 2019;
Amato et al., 2019; Miconi, 2017) where neurons undergo sparse updates that
limit the number of participating neurons.

Whereas soft-Winner-Takes-All (WTA) competition through Journé et al.
(2022)’s SoftHebb model achieves an accuracy on CIFAR-10 of nearly 80%, cur-
rent hard-WTA Hebbian approaches face challenges to match backpropagation
SOTA performance while maintaining biological plausibility and efficiency. The
SOTA accuracy with a Hard competition WTA model (Hard-WTA) on CIFAR-
10 is 72.2% (Grinberg et al., 2019). Although this architecture utilised just one
convolutional layer, it does not facilitate the construction of hierarchical repre-
sentations of the input, which are crucial for developing intricate representations
and understanding the relationships within the data. Multilayer networks are
necessary to achieve this. A sparse 3-CNN layer Hebbian architecture led to only
64.6% accuracy (Miconi, 2021), and struggled to form meaningful hierarchical
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representations.
Arguably, sparse neural coding derived from Hard-WTA has greater biolog-

ical plausibility (Barth and Poulet, 2012) paralleling the highly sparse brain
connectivity with less than 1% neurons firing in the visual cortex when rep-
resenting an image (Yoshida and Ohki, 2020). This sparseness facilitates the
energy efficiency and high speeds of biological systems. However, local sparse
representations in ANNs generally suffer from poor generalisation and scaling,
resulting in decreased performance with each additional layer in the network
(Lagani et al., 2022a).

Our research addresses these Hard-WTA challenges by advancing the inte-
gration of Hebbian learning into modern deeper CNN architectures for unsuper-
vised feature extraction through three key contributions. First, we integrated
and optimised the computational efficiency of Hard-WTA in the SoftHebb archi-
tecture. Second, we furthered biological realism through Bienenstock, Cooper,
and Munro (BCM) learning rule (Bienenstock et al., 1982) (75%), novel spatial
lateral inhibition, pre-synaptic, temporal, and homeostatic competition mech-
anisms that mirror cortical processing (Blakemore et al., 1976).Third, we de-
veloped architectural improvements including depthwise separable convolutions
and residual connections, reducing parameter count by 6.6x.

To assess performance and explore a suitable Hard-WTA model and archi-
tecture integrating these individual innovations, we implemented 14 distinct
Hebbian feature extraction configurations, and a comparative end-to-end back-
propagation model. These configurations used a two-phase training approach:
unsupervised Hebbian learning for feature extraction in convolutional layers,
followed by a supervised classifier layer trained via backpropagation. This ap-
proach was chosen to match earlier Hebbian CNN research models, which while
maintaining biological plausibility in the feature learning phase, enable direct
comparisons with conventional end-to-end backpropagation CNNs.

By integrating our best performing learning mechanism (lateral inhibition
and BCM Hebbian learning) with Hard-WTA, we achieved 76% accuracy on
CIFAR-10 in the SoftHebb 3-CNN layer architecture, setting a new SOTA
Hard-WTA performance. This represents a 11.4% improvement over the previ-
ous Hard-WTA SOTA Hebbian performance of 64.6% using the same network
depth (Miconi, 2021). Our experimental results evidenced that Hebbian learning
for feature extraction leads to a comparable performance to end-to-end back-
propagation methods, which achieved 77% accuracy under the same training
conditions (20 epochs and same architecture).

These results significantly advance the SOTA for Hard-WTA Hebbian mod-
els, addressing key challenges faced by the Hebbian-AI community: maintaining
competitive performance across multiple layers while reducing computational
requirements and enhancing biological realism.

To validate our implementation and results, we developed a comprehensive
evaluation framework that incorporates a PyTorch-based, modular implementa-
tion enabling direct integration and comparison of different Hebbian approaches
alongside visualisation tools such as Uniform Manifold Approximation and Pro-
jection (UMAP) for feature embeddings, receptive fields and weight distribu-
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tions of neurons for the analysis of competition and feature learning.

2. Background and Related Work

2.1. Convolutional Neural Networks

Neurons, both biological and artificial, function as fundamental units of
information processing. In Artificial Neural Networks (ANNs), neurons are
mathematical models mimicking the behaviour of their biological counterparts.
Learning in both systems involves modifying connection strengths or synapses
between neurons.

In an ANN, a neuron pass operates only on local information during a for-
ward pass, taking, taking an input vector x, applying synaptic weights w, and
producing an output y = f(

∑
xTw), where f is an activation function. This

output is then compared against a target outcome (ground truth) and the error
is used to update weights globally through the network via the backpropaga-
tion algorithm and gradient descent optimisation rule. (Rumelhart et al., 1986;
Rojas and Rojas, 1996; Amari, 1993).

Convolutional Neural Networks (CNNs) (LeCun et al., 1998) are deep ANN
architectures built on key principles of local receptive fields and hierarchical
feature extraction. These architectural elements, inspired by the organisation
of the cat’s visual cortex (Fukushima, 1980), make CNNs particularly effective
for visual processing tasks. In CNNs, neurons are structured into layers for hier-
archical processing of visual data. At every level, neurons generate responses to
patterns in their receptive field by aggregating inputs from units in a preceding
layer, resulting in an expanded receptive field and learning progressively complex
and abstract hierarchical relationships or representations from the data, with
lower layers typically extracting simple patterns like edges or textures while
higher layers combine these into sophisticated representations such as shapes or
objects, thus enabling more effective understanding and classification.

While CNNs have traditionally been trained using backpropagation, their
fundamental architectural principles are valuable regardless of the learning al-
gorithm employed. Modern CNN models often incorporate additional features,
such as integrated residual blocks and Depthwise Separable Convolutions (DSC),
inspired by biological processes to enhance their effectiveness.

Residual blocks allow training for very deep backpropagation networks by
providing skip connections between layers (He et al., 2016) mimicking the hier-
archical feedback pathways found in biological visual systems. DSCs separate a
typical convolution operation into two separate convolutional operations (Chol-
let, 2017) for computational efficiency and preventing overfitting through pa-
rameter reduction. These features can also be used alongside Hebbian learning.
Hence, following the rationale to improve biological plausibility and efficiency,
we integrated residual blocks and DSC into our Hebbian-CNN framework.

Our depthwise implementation follows Chollet (2017) Depthwise Separable
Convolution (DSC) approach, which modifies standard CNN operations by di-
viding them into two steps: depthwise convolution (applies a single filter per

4



input channel) and pointwise convolution (applies 1x1 convolution across all
channels). This approach not only reduces parameters and computations while
maintaining performance but also increases biological plausibility (Tomen et al.,
2021). DSC achieves this through the separation of spatial and feature combina-
tion operations, sparser connections between layers, and independent processing
of each channel. Recent research (Babaiee et al., 2024) has shown that kernels in
backpropagation-trained depthwise separable networks exhibit centre-surround
receptive fields similar to those found in biological visual systems.

2.2. Fundamental Challenges and Biological Implausibilities of Backpropagation

Backpropagation faces fundamental optimisation challenges that limit its ef-
fectiveness. The algorithm often struggles with local convergence in nonlinear
optimisation problems, frequently becoming trapped in suboptimal local minima
(Sexton and Gupta, 2000). Recent critiques have highlighted additional funda-
mental issues: backpropagation requires unrealistic precision in weight updates,
cannot effectively handle temporal dependencies, and struggles with credit as-
signment across multiple timescales (Hinton, 2022). Despite its effectiveness in
training ANNs, backpropagation is assumed to posses little biological plausibil-
ity. (Apparaju and Arandjelović, 2022; Lillicrap et al., 2020; Song et al., 2020;
Bredenberg et al., 2023).

Backpropagation requires error signals from non-directly connected neurons
(Lillicrap et al., 2020), whereas biological systems rely on local interactions for
synaptic plasticity. It needs the transpose of the weight matrix during backward
pass, while biological neurons use unidirectional synapses (Weight Transport
problem) (Apparaju and Arandjelović, 2022). The error computation requires
complete forward and backward passes, unlike biological neurons, which do not
exhibit such precise coordination (Update Locking problem) (Song et al., 2020).
It relies on top-down supervision signal through a global loss function (Lillicrap
et al., 2020), whereas biological learning involves more localised error correction.

Dale’s Principle (Eccles, 1976), a fundamental concept in neuroscience, states
that neurons release the same neurotransmitters at all their synapses, leading to
either exclusively excitatory or inhibitory effects. This biological constraint is
typically violated in artificial neural networks trained through backpropagation
(Cornford et al., 2020), where single neurons can have both positive and negative
weights.

These biological limitations directly translate to implementation challenges
in neuromorphic computing (Schuman et al., 2022), creating bottlenecks in par-
allel processing, while its heavy energy and memory requirements, and synchro-
nised update needs limit deployment on edge devices and real-time applications.

2.3. Hebbian Learning

Backpropagation’s biological limitations substantiate the significance and
potential of Hebbian learning for theoretical research and practical applica-
tions. Hebbian learning (Hebb, 1949; Lagani et al., 2023), follows the principle
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neurons that fire together, wire together 2. Neural updates are reliant solely on
the activity of locally connected neurons. These neurons undergo a completely
unsupervised learning process, as they do not require input from an external
teacher or an error signal, and can identify statistical patterns in input data.
The local nature of Hebbian learning eliminates the need for backward passes
and target signals through the network, reducing memory requirements and
enabling parallel weight updates. This locality makes Hebbian learning partic-
ularly attractive for neuromorphic hardware implementation (Schuman et al.,
2022), edge computing applications, and scenarios with limited labelled data.

The biological soundness of Hebbian learning, specifically its continuous
adaptation to input patterns and local learning rules, enables systems to nat-
urally adjust to changing input distributions and maintain stability without
global coordination. These properties contrast with backpropagation systems
which typically require complete retraining to adapt to new patterns and can
become unstable when input distributions shift from their training data.

The development of Hebbian learning rules has evolved to address key chal-
lenges in neural network stability and functionality. The basic Hebbian rule,
which forms the foundation of this evolution, is formally expressed as:

∆w(t) = ηy(x,w)x (1)

where y(x,w) or y is the post-synaptic activation or output of the neuron,
x is the pre-synaptic activation or input of a neuron, and η the learning rate.
While this basic rule captures the essence of Hebbian learning by strengthen-
ing connections between co-active neurons, it suffers from unbounded weight
growth or Long Term Potentiation (LTP), leading to instability. This limita-
tion prompted the development of three significant variants that we examine
here for their relevance to our work in stable learning dynamics.

Due to its simplicity and effectiveness in deep network architectures, we
build our implementation upon Grossberg’s Instar rule (Grossberg, 1976). This
rule introduces weight w as a decay proportional to post-synaptic activity y,
enabling both weight growth and decay based on input-output correlations:

∆w(t) = ηy(x− w) = η(yx− yw) (2)

The equation is presented in two mathematically equivalent forms to em-
phasise different interpretations of the learning process. The first expression,
ηy(x − w), highlights the biological intuition: the weight change is propor-
tional to the difference between the input signal x and the current weight w,
gated by the post-synaptic activity y. The second expression, η(yx − yw), re-
veals the rule’s dual mechanism: a Hebbian term yx for weight growth and an

2Originally formulated as ”When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.
(Hebb, 1949, p. 62)”

6



anti-Hebbian term yw for weight decay or Long Term Depression (LTD), pro-
viding inherent stability without requiring complex normalisation schemes or
additional parameters.

Our model also implements the BCM rule (Bienenstock et al., 1982) due to its
strong biological plausibility and effectiveness in preventing runaway synaptic
growth. The rule’s dynamic threshold mechanism closely mirrors biological
synaptic modification processes, making it particularly suitable for our focus on
biologically-inspired learning systems. Belonging to the family of pre-synaptic
gating rules, it inverts the roles of x and y from Equation 2:

∆w(t) = ηxψ(y − θ) = ηxy(y − θ) (3)

The equation is presented in two equivalent forms to highlight different as-
pects of the rule. The first expression uses the nonlinear function ψ, which rep-
resents the general form of the modification threshold function. In the specific
implementation we adopt, this function takes the form ψ(y−θ) = y(y−θ), lead-
ing to the second expression. This quadratic form ensures that weight modifica-
tions exhibit both potentiation and depression depending on the post-synaptic
activity level relative to the threshold θ, creating a natural stability mechanism
in the learning process.

While Oja’s rule (Oja, 1982) achieves weight normalisation and enables on-
line Principal Component Analysis, its requirement for non-local synaptic infor-
mation

∑
yjwj makes it less suitable for biologically plausible learning mecha-

nisms and thus is not implemented in our model. For completeness, the rule is
expressed as:

∆w(t) = ηyi(x−
∑

yjwj) (4)

This theoretical Hebbian foundation underpins the weight update rule in
Hopfield networks (Hopfield, 1982), where the Hebbian principle is applied to
store patterns as attractors in the network. Variants like dense associative mem-
ory (Krotov, 2023) extend this connection by leveraging nonlinear interactions,
further demonstrating the versatility of Hebbian principles.

2.4. Neural Competition and Stability Mechanisms

Neural competition ensures different neurons learn to respond to different
input patterns, preventing redundant feature learning. Through competitive
mechanisms, neurons in each layer specialise in detecting distinct features, from
simple edges and textures in early layers to more complex patterns in deeper
layers. This specialisation enables the emergence of hierarchical representa-
tions, where higher layers combine and build upon the features detected by
lower layers. While Hebbian learning provides biologically-plausible learning,
it tends toward instability and redundancy without competition, as neurons
typically converge to respond to the same dominant features in the input. We
implemented and compared several competition and stability mechanisms to
investigate their performance and adequacy.
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Winner-Takes-All (WTA) competition serves as the primary mechanism for
driving neural competition in Hebbian learning, with two main variants: A)
Hard WTA (Rumelhart and Zipser, 1985) allows only the neuron with the max-
imum activation (winning neuron) to update weights, promoting sparse repre-
sentations and distinct feature specialisation. This mechanism can be applied
within layers, across channels, or the whole network, providing flexibility in how
competition is structured. B) Soft WTA (Nowlan, 1989) uses a softmax function
with a temperature parameter to allow distributed learning while maintaining
competition, providing more nuanced feature representations at the cost of more
complex parameter tuning.

We investigated the integration of other competition and stability strate-
gies with WTA competition architectures. New architectural configurations
were thus built by independently combining: C) Anti-Hebbian learning (Choe,
2022) actively decorrelates neural activities by weakening synaptic strengths be-
tween co-activated neurons, supporting the WTA-driven specialization through
explicit decorrelation. D) Lateral inhibition (Gabbott and Somogyi, 1986) en-
hances WTA competition by modulating neuron activity based on neighbouring
neurons’ activity levels, particularly valuable in visual processing tasks where
local contrast enhancement directly influences feature detection quality. E)
Pre-synaptic competition (Rasmussen and Willshaw, 1993) reflects biological
systems’ resource constraints and complements WTA by regulating input signal
competition, affecting learning outcomes and representation efficiency.

Our network stability enhancements focused on two independent key mech-
anisms which neural systems employ to regulate activity: synaptic traces and
homeostatic plasticity. F) We implemented synaptic traces (Morris, 2006), a
form of short-term plasticity, enable neurons to retain information about their
recent activation history, influencing their response to subsequent inputs. This
temporal integration of activity plays a crucial role in learning and memory
formation. G) We also employed homeostatic plasticity, (Turrigiano and Nel-
son, 2004) represents another fundamental biological mechanism where neurons
adjust their properties to maintain stable activity levels while preserving their
ability to respond to relevant stimuli. This process helps prevent neural overex-
citation and ensures efficient coding of input patterns across varying conditions.

2.5. Previous Hebbian-CNN Integration

Recent research has incorporated Hebbian learning principles and neural
competition into CNNs, with varying approaches to Winner-Take-All (WTA)
competition yielding different trade-offs between performance and biological
plausibility. A key characteristic in these approaches is the separation between
unsupervised feature learning and supervised classification. The convolutional
layers learn representations through purely local Hebbian updates without labels
or error signals, while only the final classifier layer uses supervised learning. For
proper comparison with existing research, our models followed the same general
scheme.

Journé et al. (2022) set the current Hebbian benchmark with 80% accuracy
on CIFAR-10. Their implementation combined soft-WTA competition with
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anti-Hebbian learning, which is mathematically akin to a variant of the Gross-
berg Instar rule.

∆w
(SoftHebb)
ik = η · yk · (xi − uk · wik). (5)

where wik is a synaptic weight from a pre-synaptic neuron i with activa-
tion xi, yk is the postsynaptic output of a neuron k, and uk is the result of
the post-synaptic softmax competition. While this leading approach represents
significant progress, it required a fourfold increase in the neurons per layer,
highlighting ongoing efficiency challenges.

Grinberg et al. (2019) achieved the leading performance in Hard-WTA, im-
plementing a single CNN layer architecture with patch normalisation, reaching
72.2% accuracy on CIFAR-10 (a natural image dataset). Amato et al. (2019)
further advanced the hard-WTA approach with cosine similarity activation,
achieving 98.55% accuracy on MNIST (a simple dataset of handwritten digits)
but only 64% on CIFAR-10 using a two-layer CNN. Data whitening emerged
as an essential pre-processing step for enhanced performance with hard-WTA
competition. Their work revealed fundamental limitations in scaling hard-WTA
to deeper architectures, as its performance markedly decreased with additional
layers. Building on this foundation, Lagani et al. (2022a) maintained 60% ac-
curacy on CIFAR-10 with a deeper five-layer model by implementing the Oja
rule.

Miconi (2021) reached the highest Hard-WTA accuracy for a shallow network
with 64.6% in a three CNN-layer model using a hybrid approach combining hard-
WTA, homeostasis, new Triangle Activation function, and extensive pruning.
Despite this improvement in accuracy in a deeper architecture, it is trained
through gradient-based backpropagation learning, using surrogate losses which
are equivalent to Hebbian learning rules.

Still, these Hebbian approaches incorporating WTA competition demon-
strate Hebbian learning’s advantages in convergence speed, performance with
limited data, and resilience against adversarial attacks (Gupta et al., 2022). Re-
cent research (Lagani, 2024) suggests several promising directions for improve-
ment, including incorporating inter-layer feedback and top-down connections,
implementing pre-synaptic competition, applying the BCM learning rule, and
developing spatial decorrelation in WTA competition.

Our work addressed the challenge of scaling hard-WTA competition in deeper
architectures, leveraging its key advantages over soft-WTA: it reflected the bi-
nary firing states of biological neurons, enables energy-efficient implementations,
and crucially, enforces true sparseness by silencing all but the strongest neurons.

Integration of the theoretical foundations of Hebbian learning, neural compe-
tition, and stability mechanisms from the biological neural networks into modern
convolutional neural networks promises more efficient and biologically plausible
deep learning systems, allowing networks to learn from limited data, exhibit
greater noise robustness, and consume fewer computational resources. This
approach bridges biological and artificial systems, potentially enabling more
resilient and flexible learning. In this paper, we first searched for a suitable
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combination of these mechanisms, exploring their accuracy and potential to en-
hance the formation of hierarchical representations, incorporating hierarchical
layers of increasingly abstract, sparse representations shaped by competition.
The we selected the 4 most suited configurations based on their accuracy for
further evaluation and analysis.

3. Methodology

This section outlines the PyTorch-based Hebbian-CNN framework adopted.
We designed and implemented 15 distinct configurations to systematically evalu-
ate their components and interactions and build a naturalistic optimal architec-
ture based on their performance as measured by accuracy values. To this aim, we
developed a configurable architecture using different learning algorithms, Heb-
bian Grossberg Instar and BCM learning, two main neural competition mecha-
nisms, hard and soft WTA, and additional temporal, homeostatic, pre-synaptic
and spatial competition mechanisms. These mechanisms were implemented as
optional components in a customisable Hebbian layer. Each element could be
enabled, disabled, or combined into distinct configurations to allow us to ex-
plore their performance. Architectural changes, including depthwise separable
convolutions and its enhancement through skip connections in residual blocks
were evaluated.

The design philosophy behind this work encompasses computational effi-
ciency, code readability, modular architecture, parametric flexibility, and ex-
tensibility. We prioritised a GPU-accelerated implementation leveraging the
PyTorch framework, known for its efficient parallel processing capabilities in
deep learning applications. The modular structure closely mirrors that of the
PyTorch, providing an intuitive organisational system familiar to researchers ex-
perienced with this machine learning library. The code is available on GitHub:
Link

3.1. Learning Pipeline

A two-phase approach was used to ensure feature learning biological plausi-
bility while having a standard classifier system. Unsupervised Hebbian learning
was employed for feature extraction in convolutional layers, followed by super-
vised backpropagation linear classifier training on the frozen features.

The framework implemented a consistent, unsupervised feature learning
pipeline across all Hebbian configurations, enabling feature extraction without
requiring labelled data or global error signals. Figure 1 illustrates the Hebbian
learning process in each CNN layer. Each forward pass followed these steps:

1. Pre-synaptic competition is applied to modify weights w before any cal-
culations if enabled

2. Post-synaptic activities are computed through convolution between mod-
ified weights and input

3. Lateral inhibition modulates post-synaptic activities through the DoG ker-
nel when enabled
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4. Post-synaptic competition mechanisms are applied when enabled:

• Hard-WTA selects maximally activated neurons

• Temporal selection uses synaptic traces for consistent activation

• Homeostatic selection adjusts based on input statistics

5. Weights are updated using the chosen learning rule (Grossberg, BCM, or
SoftHebb)

6. Weight normalisation is applied to maintain stable learning dynamics

INPUT OUTPUT

Input
Data

Pre-
synaptic

Competition

Post-
synaptic
Activity

Lateral
Inhibition

Competition
Methods

Hard-WTA
Soft-WTA
Temporal
Homeostatic

Hebbian
Weight
Update

Weight
Normal-
ization

Feature
Maps

Figure 1: Diagram of the Hebbian learning process in our custom Hebbian-CNN layer. Green
boxes correspond to input/output, blue boxes indicate optional processing, and orange boxes
deesignate core learning and competition mechanisms.

This pipeline can be configured through layer parameters to activate different
combinations of mechanisms based on research requirements.

3.2. Dataset Selection and Pre-Processing

To evaluate our framework’s performance and compare it with existing Heb-
bian CNN approaches, CIFAR-10 (Krizhevsky et al., 2009) was chosen as the
benchmark dataset. CIFAR-10 consists of 60,000 RGB images of 32x32 pixels
across 10 classes. Data processing included implementing random horizontal
flip augmentations and zero-phase components analysis (ZCA) whitening. ZCA
whitening was computed as improvements in performance were found for Hard-
WTA competition.

3.3. Core Learning and Competition Mechanisms

Previous non-gradient-based implementations of synaptic plasticity using
the Grossberg Instar rule with Hard-WTA (Amato et al., 2019) and Soft-WTA
(Journé et al., 2022) were built into the system to be replicated as experimental
controls and foundational elements for investigating enhanced biological learning
approaches.

3.3.1. Grossberg Hebbian Learning Implementation

The Grossberg Instar modification of the Hebbian rule was used as the pri-
mary learning algorithm. The process began with computing post-synaptic
activities through convolution:

y = w ∗ x (6)
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where ∗ denotes the convolution operation between weights w and pre-synaptic
activities x. The Grossberg weight update rule was then calculated as:

∆w = y ∗ x− y ⊙ w (7)

where the y ∗ x term was computed via convolution, and the y ∗ w term is
calculated via scalar multiplication as a single value per output channel repre-
senting total activation across the batch and spatial locations. These updates
were normalised and stored in a buffer for efficiency and analysis.

3.3.2. Hard-WTA Competition

Hard Winner-Takes-All (WTA) competition was implemented to achieve
sparse and specialised feature representations. For each spatial location (h,w),
competition took place across channels to create a binary mask maskWTA(y)
that outputs 1 for the maximum activation across channels and 0 otherwise.
The final post-synaptic activities are then computed as:

yfinal = y ⊙maskWTA(y) (8)

Following Lagani’s approach (Lagani et al., 2022a), we refined the selectivity
by applying a cosine similarity activation function to these WTA results:

sim(y, w) =
⟨y, w⟩

||y||2 · ||w||2
(9)

Our implementation enhanced Amato’s approach (Amato et al., 2019) by
harnessing PyTorch’s GPU matrix and convolutional operations for efficient par-
allel computation, as suggested by Lagani et al. (2022b). This allowed weights
to update during the forward pass without requiring gradients or backpropaga-
tion, significantly improving computational efficiency while maintaining biolog-
ical plausibility.

3.3.3. SoftHebb Implementation

To establish a comprehensive comparison with current state-of-the-art Heb-
bian methods, we implemented SoftHebb as detailed in Journé et al. (2022). Un-
like in Hard-WTA, SoftHebb applied soft competition to postsynaptic activity
through a Softmax function with an inverse temperature parameter (Equation
5). A key distinction of this method is its use of anti-Hebbian learning for all
neurons except the maximally activated one, creating a more nuanced form of
competition than the binary selection of Hard-WTA.

The combination of these three core procedures (learning algorithm and
hard/soft-WTA) provided the foundation for our framework and the modularity
of its components allowed for a systematic evaluation of their individual and
combined effects on the network’s performance.
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(A) Hard-WTA Competition

Figure 2: Implementation of Hard-WTA competition in CNNs influences neurons situated at
the same spatial position across various filters.

3.4. BCM Learning Rule

We implemented the BCM learning (Equation 3) rule within CNNs to eval-
uate its unsupervised feature learning capacity compared to standard Hebbian
approaches. Our implementation started by computing winner-take-all (WTA)
activities for each neuron:

yWTA = y ⊙maskWTA(y) (10)

where ⊙ represents element-wise multiplication. For each output channel, we
maintained an adaptive threshold θ that tracked the average squared activity
of WTA neurons through an exponential moving average:

θt = (1− α)θt−1 + αE[y2WTA] (11)

where α is the theta_decay parameter controlling adaptation speed (set at a
default value of 0.5), and E[·] denotes the spatial mean. The BCM non-linearity
ψ(y − θ) was then computed as:

ψ(y − θ) = yWTA ⊙ (yWTA − θ) (12)

The final weight updates xψ(y− θ) were computed by convolving the presy-
naptic input x with the BCM non-linearity and normalising to maintain con-
sistent weight magnitudes across layers. Our method preserved the Hard-WTA
competition mechanism, substituting the Grossberg rule, commonly employed
in traditional Hebbian learning, with BCM’s adaptable threshold dynamics.
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3.5. Temporal and Homeostatic Competition

Two competition strategies, grounded in biological stability principles and
relying on the competitive model proposed by Lagani (2024), were implemented
among neurons situated in the same spatial area but across channels to enhance
biological realism and robustness.

We developed two selection mechanisms following Lagani’s proposals. Our
Temporal Selection implementation tracked neuronal activity through an acti-
vation history buffer Ht of size T for each neuron:

Ht = yt−T , yt−T+1, ..., yt (13)

From this buffer (with default size of 500), we computed a temporal threshold
θt as the median of historical activations:

θt = median(Ht) (14)

This threshold-based approach promoted neurons demonstrating consistent ac-
tivity over time, as only neurons whose activation y exceeded θt are permitted
to update their weights.

For Homeostatic Selection, we applied an input-driven competition mecha-
nism that calculates normalised similarity scores between weights and input:

Sc,h,w =
⟨x,w⟩
|w|2 + ϵ

(15)

where Sc,h,w represents these scores across channels and spatial locations, with
ϵ = 10−10. Based on these similarities, we computed an adaptive threshold:

θadaptive = µS + kσS (16)

where µS and σS are the mean and standard deviation of similarities respec-
tively, and k is the competition factor (typically set to 2). This adaptive thresh-
old dynamically adjusted neural plasticity, increasing when input patterns pro-
duced high similarity scores to prevent overactivation, and decreasing with low
scores to facilitate more neural updates. Only neurons with post-synaptic ac-
tivities y exceeding θadaptive updated their weights.

Both selection mechanisms were designed to be compatible with additional
competition methods like Hard-WTA to further promote efficient specialisation
and sparse connectivity.

3.6. Pre-synaptic Competition

Pre-synaptic competition was enforced using synaptic couplings, modifying
the weights w before calculating the postsynaptic activity. Three competition
modes were developed across the input channel, where different input features
compete to influence the same output. Each mode first computed an inverse
weight magnitude (m = 1

|w|+ϵ ) to promote competition between strong synapses,

where ϵ is a small constant (1e-6) to prevent division by zero:
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1. Linear Competition, defined as:

weff =
m∑

imi + ϵ
(17)

It normalises the weights to values between 0-1.

2. Softmax Competition, defined as:

weff = softmax(m) =
emi∑
j e

mj
(18)

This creates a more pronounced competition where stronger connections
are emphasised, and the weights summed together add up to 1.

3. L2 Norm Competition, defined as:

weff =
m√∑
im

2
i

(19)

This ensures that the sum of squared effective weights equals 1.

3.7. Lateral Inhibition

A fixed kernel created through a difference of Gaussians (DoG) function was
designed to simulate lateral inhibition and surround modulation, as proposed
by (Hasani et al., 2019). This kernel models how neurons in the visual cortex
respond to stimuli in their receptive field and surrounding areas. The centre
(excitatory) region represents the classical receptive field, while the surround
(inhibitory) region models lateral inhibition from neighbouring neurons. Math-
ematically it is defined as :

KSM (x, y) =
1

Kcenter

(
Ge(x, y)

2πσ2
e

− Gi(x, y)

2πσ2
i

)
(20)

where Ge and Gi represent the excitatory and inhibitory Gaussian functions,
respectively, and σe and σi denote the standard deviations of the excitatory and
inhibitory Gaussians (with default value of 1.2 and 1.4). This kernel strengthens
synapses in the immediate spatial neighbourhood of a neuron, and weakens
synapses further from this neighbourhood. When applied, it created a kernel of
size 5 in all layers.

3.8. Architectures

To investigate biologically-plausible learning mechanisms while maintain-
ing computational efficiency, we explored three distinct architectural variants,
specifically SoftHebb along with its counterparts, the depthwise separable con-
volution, and the residual block. Each variant built upon SoftHebb baseline
architecture while introducing specific modifications aimed at reducing parame-
ters, improving performance, and enhancing biological realism. These architec-
tures were evaluated independently to assess their individual contributions to
the model’s capabilities.
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SoftHebb Architecture

Figure 3: Visual representation of the main SoftHebb Architecture, composed of 3 Hebbian
CNN layers and a final backpropagation linear classifier layer.

The baseline architecture, SoftHebb (Figure 3), consisted of 3 convolutional
layers featuring padding, Triangle/Rectified Polynomial Unit activation function
(Miconi, 2021; Journé et al., 2022), and an increased number of filters in each
subsequent layer (quadrupling the channels at each layer). This design choice
aligns with current SOTA Hebbian architectures (Journé et al., 2022), moving
beyond the single-CNN layer hard-WTA approach of Grinberg et al. (2019).

For comparison, we also implemented Lagani’s architecture (Lagani et al.,
2022a), a padding-free design with fewer channels per layer and 3-5 convolu-
tional layers, enabling systematic evaluation of architectural effects on Hebbian
learning and competition dynamics. Detailed specifications are provided in Ap-
pendix C.

3.8.1. Depthwise Separable Convolution

Our first architectural variant replaced standard convolutions in the Soft-
Hebb architecture with Depthwise Separable Convolutions to better approx-
imate biological visual processing while reducing computational complexity.
Furthermore, all our previously detailed Hebbian learning rules and competi-
tion mechanisms were incorporated into these convolutions to investigate their
potential to produce centre-surround receptive fields.

In the depthwise component, we restricted competition and learning to op-
erate independently within the spatial dimensions of each input channel. This
was accomplished by computing activations and weight updates separately for
each channel’s convolutional filter, preventing cross-channel competition. We
then implemented the pointwise component as 1x1 standard convolutions that
combined channel-wise features, with Hebbian learning rules and competition
operating across the channel dimension. The pointwise layer’s weight updates
were computed using the same learning rules and competition mechanisms as
the depthwise layer, but applied to the channel-wise feature combinations rather
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than spatial patterns.

3.8.2. Residual Block

The second variant incorporated residual connections using Depthwise Sep-
arable Convolutions in an inverted bottleneck structure, motivated by the pres-
ence of feedback connections in biological neural circuits. Each block consisted
of three sequential operations: an initial pointwise convolution that expanded
the channel dimension by a fixed factor, followed by a depthwise convolution for
spatial feature learning, and a final pointwise convolution that projected fea-
tures back to the original channel dimension. Skip connections bypassed these
three operations, directly connecting the input to the output of each block.

This configuration was designed to match the SoftHebb architecture’s feature
map dimensions and channel counts at corresponding depths, enabling direct
performance comparisons. The channel expansion factor of 4 and block place-
ment were specifically chosen to maintain parameter counts comparable to Soft-
Hebb while preserving the network’s representational capacity. The complete
architectural specifications, including layer dimensions and block placements,
are detailed in Appendix C.

3.9. Dale’s Principle Weights

To pledge biological realism, all the mdodels were designed to allow an op-
tional adherence to Dale’s Principle. We ensured all synaptic weights were
initialised and maintained excitatory values. This was achieved by using an
absolute value function whenever an operation on weights took place. Weight
changes still facilitated both Long-Term Potentiation (LTP) and Long-Term
Depression (LTD), as both processes are crucial for plasticity and learning.

3.10. Analysis and Visualisation Methods

We implemented various visualisation techniques, including UMAP, weight
distributions and receptive fields, for qualitative and quantitative analysis of
the network dynamics during training. Class separability was assessed through
Uniform Manifold Approximation and Projection (UMAP) projections of layer
feature embeddings, measuring the clustering quality of different class cate-
gories. Weight distributions were analysed using kernel density estimation to
track the evolution of synaptic strengths.

To understand learned hierarchical feature representations, we implemented
Projected Gradient Ascent (PGA) for receptive field visualisation. This tech-
nique optimises an input image I to maximise the activation A of specific neurons
according to: It+1 = It + η ∂A

∂I − λIt where η represents the learning rate and λ
controls L2 regularisation to ensure visual coherence.

3.11. Configurations

To systematically evaluate our framework’s components and their interac-
tions, we designed and implemented 15 total distinct experimental configura-
tions: 3 of these replicated the results of published SOTA models, 11 which built
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upon previous Hard-WTA research approaches, and a comparative end-to-end
backpropagation trained model. Each configuration represents a specific addi-
tion of either architectural design, competition mechanisms, or learning rule,
allowing us to isolate and analyse their individual effects on network perfor-
mance. Out of these configurations, the top four will be selected according to
an accuracy criterion and thoroughly assessed.

4. Experimental Settings

4.1. Experimental Configurations

Table 1 lists all the experimental setups, outlining the architecture, types
of competition mechanisms, variants of the Hebbian learning rule for weight
updates, and any extra activations and features utilised. Table 2 summarises
the rationale behind each experimental setup, including the choice of specific
competition mechanisms, architectures, or learning rules.

The configurations were built upon two fundamental architectural approaches
established in previous research: the SoftHebb architecture from (Journé et al.,
2022), and the Lagani architecture from (Lagani et al., 2022a). The SoftHebb

-SoftWTA-Instar and Lagani\_HardWTA/Cos-Instar/Lagani\_Deep-HardW
TA/Cos-Instar configurations directly replicate these approaches, serving as
benchmarks for our enhanced implementations.

Building upon these foundations, we developed a series of novel configura-
tions that integrate additional biologically-sound mechanisms or architectural
improvements. Our configurations explored combinations of Hard-WTA com-
petition with presynaptic competition (SoftHebb-Pre/HardWTA/Cos-Instar),
lateral inhibition (SoftHebb-Surr/HardWTA/Cos-Instar), homeostatic (So
ftHebb-Hom/HardWTA/Cos-Instar) and temporal (SoftHebb-Temp/HardWT
A/Cos-Instar) competition. SoftHebb-None-Instar evaluated the system
performance with no competition mechanism.

We introduced architectural variants including depthwise separable convolu-
tions (Depthwise\_SoftHebb-HardWTA/Cos-Instar) and residual connections
(Residual\_SoftHebb-HardWTA/Cos-Instar) to investigate more efficient and
biologically-inspired network structures. Either the Grossberg Instar or BCM
rule was employed to adjust the convolutional weights.

The Dale\_Depthwise\_SoftHebb-Surr/HardWTA/Cos-BCM configuration
represents our most biologically realistic implementation, uniquely combining
three key elements: Dale’s Principle constraints on synaptic weights, depthwise
separable convolutions, and BCM Hebbian learning with Hard-WTA competi-
tion and lateral inhibition.

To establish a direct comparison with traditional deep learning approaches,
we included the SoftHebb-Backpropation configuration, which implements
end-to-end backpropagation training using the same architecture as our Heb-
bian implementations. This configuration serves as a control, allowing us to
evaluate the relative performance of our biologically-inspired learning mecha-
nisms against conventional gradient-based methods.
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Table 1: Hebbian Learning Initial Configurations and Features

Configuration Architecture Competition Hebbian
Rule

Replications of Published SOTA models

SoftHebb-SoftWTA-Instar SoftHebb Soft WTA GI

Lagani HardWTA/Cos-Instar Lagani Hard WTA GI

Lagani Deep-HardWTA/Cos-Instar Lagani Hard WTA GI

Backpropagation Comparison

SoftHebb-Backpropagation SoftHebb N/A BP

Novel Implementations

SoftHebb-HardWTA/Cos-Instar SoftHebb Hard WTA GI

SoftHebb-HardWTA/Cos-BCM SoftHebb Hard WTA BCM

SoftHebb-Pre/HardWTA/Cos-
Instar

SoftHebb Hard WTA+Pre GI

SoftHebb-Temp/HardWTA/Cos-
Instar

SoftHebb Hard
WTA+Temp

GI

SoftHebb-Hom/HardWTA/Cos-
Instar

SoftHebb Hard
WTA+Hom

GI

SoftHebb-Surr/HardWTA/Cos-
Instar∗

SoftHebb Hard
WTA+Surr

GI

Depthwise SoftHebb-
HardWTA/Cos-Instar†

SoftHebb Hard WTA GI

Residual SoftHebb-HardWTA/Cos-
Instar‡

SoftHebb Hard WTA GI

Dale Depth SoftHebb-
Surr/HardWTA/Cos-BCM§†

SoftHebb Hard
WTA+Surr

BCM

SoftHebb-None-Instar SoftHebb None GI

Note: WTA: Winner-Take-All, GI: Grossberg Instar, BCM:

Bienenstock-Cooper-Munro, BP: Backpropagation, Pre: Presynaptic, Temp:
Temporal, Hom: Homeostatic, Surr: Surround. Special features: ∗Surround lateral

inhibition, †Depthwise separable convolutions, ‡Residual connections, §Dale’s
Principle.

Lastly, a SoftHebb-Optimal configuration was built which integrates the
mechanisms shown to improve performance to serve as the optimal configura-
tion.
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Table 2: Purposes of Initial Hebbian Learning Configurations

Configuration Purpose

Replications of Published SOTA models

SoftHebb-SoftWTA-Instar Evaluate SoftHebb research
Lagani HardWTA/Cos-Instar Evaluate Lagani Hard-WTA research
Lagani Deep-HardWTA/Cos-
Instar

Evaluate Lagani Hard-WTA 4-layer research

Backpropagation Comparison

SoftHebb-Backpropagation Evaluate pure backpropagation baseline

Novel Implementations

SoftHebb-HardWTA/Cos-Instar Evaluate Hard-WTA in network with padding
SoftHebb-HardWTA/Cos-BCM Compare BCM to Grossberg-Instar rule
SoftHebb-Pre/HardWTA/Cos-
Instar

Assess impact of presynaptic learning

SoftHebb-Temp/HardWTA/Cos-
Instar

Evaluate temporal competition with/without
WTA

SoftHebb-Hom/HardWTA/Cos-
Instar

Evaluate statistical competition with Hard-
WTA

SoftHebb-Surr/HardWTA/Cos-
Instar

Assess effect of surround modulation kernel

Depthwise SoftHebb-
HardWTA/Cos-Instar

Evaluate depthwise equivalent of hard-WTA re-
search

Residual SoftHebb-
HardWTA/Cos-Instar

Evaluate residual equivalent of hard-WTA re-
search

Dale Depth SoftHebb-
Surr/HardWTA/Cos-BCM

Evaluate improved biological realism in a CNN

SoftHebb-None-Instar Evaluate basic learning without competition

4.2. Network Training

The training process for the configurations consisted of two distinct phases
for all configurations except the end-to-end backpropagation comparison:

1. Unsupervised Feature Learning Phase: Only convolutional layers
were trained for one epoch with a batch size of 64 using Hebbian learning rules.
Hard-WTA configurations used a learning rate of 0.1 across all layers, while
Soft-WTA used a custom per-layer learning rate schedule as detailed in (Journé
et al., 2022). A normal random distribution with a large radius range was used to
initialise the SoftWTA Hebbian-CNN weights (detailed in (Journé et al., 2022)
and A.1) as learning only occurred with this specific setup. All Hard-WTA and
backpropagation experiments were initialised with the default PyTorch Kaiming
Uniform distribution (He et al., 2015). ZCA-Whitening was applied only for
configurations with Hard-WTA competition mechanisms. Custom visualisation
tools were used throughout to analyse the network’s representational abilities.
After feature learning, convolutional layer weights were frozen.
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2. Supervised Classifier Training Phase: The single-layer classifier head
underwent training using backpropagation over 20 epochs employing the Adam
optimizer with a learning rate of 0.001. A scheduler was used to cut the learning
rate by half every 2 epochs starting from the 10th epoch, and a dropout rate
of 0.5 was applied to avoid overfitting, as performed by Journé et al. (2022).
The classifier layer had as input size the flattened features of the CNN, and
has as output size the number of classes (10 for CIFAR-10). Both training and
test sets were evaluated at each epoch. The pure backpropagation comparison
model was trained end-to-end through the Adam optimiser with a learning rate
of 0.001.

For consistent comparisons, all configurations were trained using the same
predetermined random seed. To enable a quantitative comparison among con-
figurations, we applied standard evaluation metrics on the test set during each
epoch of the classifier training phase, namely accuracy, precision, recall, and F1
score.

5. Results

5.1. Classification Accuracy

Table 3: Optimal Test Performance Metric for all Configurations within 20 Epochs

Configuration Accuracy (%) F1 Score

Replications of Published SOTA models

SoftHebb-SoftWTA-Instar 79.2 0.79
Lagani HardWTA/Cos-Instar 59.7 0.59
Lagani Deep-HardWTA/Cos-Instar 52.8 0.53

Backpropagation Comparison

SoftHebb-Backpropagation 77.7 0.77

Novel Implementations

SoftHebb-HardWTA/Cos-Instar 74.8 0.75
SoftHebb-HardWTA/Cos-BCM 75.3 0.75
SoftHebb-Presynaptic/HardWTA/Cos-Instar 65.1 0.65
SoftHebb-Temp/HardWTA/Cos-Instar 74.6 0.74
SoftHebb-Hom/HardWTA/Cos-Instar 68.5 0.69
SoftHebb-Surr/HardWTA/Cos-Instar 75.7 0.76
Depthwise SoftHebb-HardWTA/Cos-Instar 71.9 0.72
Residual SoftHebb-HardWTA/Cos-Instar 74.7 0.75
Dale Depthwise HardHebb-Surr/HardWTA/Cos-BCM 67.3 0.67
SoftHebb-None-Instar 19.9 0.600

Optimal Hard-WTA Configuration

SoftHebb-Optimal 76 0.76
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5.1.1. Replications of Published Research

Our initial configurations focused on reproducing previous research results.
The SoftHebb-SoftWTA-Instar configuration, with 5.9M parameters, achieved
79.2% accuracy and 0.79 F1 score, confirming the benchmark performance re-
ported by Journé et al. (2022). To establish additional baselines, we imple-
mented the Lagani_HardWTA/Cos-Instar configuration, and its deeper 4-CNN
layer counterpart Lagani_Deep-HardWTA/Cos-Instar (with 0.39M and 0.8M
parameters), which achieved 59.7% and 52.8% accuracy respectively, close to
Amato’s research (Amato et al., 2019) which reached 59.69% and 49% in the 3
and 4-layer architectures.

5.1.2. Novel Implementations

A significant enhancement in Hard-WTA performance was achieved with the
new configurations developed, directly building upon the previously described
baselines. With the same number of parameters (5.9M), the SoftHebb-Har

dWTA/Cos-Instar configuration achieved 74.8% accuracy and 0.75 F1 score,
marking the first time Hard-WTA performance has surpassed Grinberg et al.
(2019) ’s SOTA performance (72.2%) in a deeper network. This integration of
the SoftHebb architecture with Hard-WTA mechanisms yielded a substantial
improvement of 15.1% accuracy over the 3-CNN layer Lagani baseline, and an
increase of 9.2% over the previous 3-CNN layer Hard-WTA SOTA (64.6%) by
Miconi (2021).

Further biologically inspired enhancements rendered additional Hard-WTA
improvements. The SoftHebb-Surr/HardWTA/Cos-Instar configuration
achieved 75.7% accuracy, further improving our new SOTA performance for
Hard-WTA implementations. Alternative learning rules with BCM in SoftHe

bb-HardWTA/Cos-BCM also improved performance to 75.3%, suggesting further
evidence of biological efficiency of BCM.

While scoring slightly lower in accuracy (74.6%), the temporal competition
variant, SoftHebb-Temp/HardWTA/Cos-Instar, also contributed to high-
light the robustness of our enhanced Hard-WTA framework. Other competition
mechanisms showed varying degrees of effectiveness, with the SoftHebb-Hom

/HardWTA/Cos-Instar and SoftHebb-Presynaptic/HardWTA/Cos-Instar

configurations achieving 68.5% and 65.1% accuracy respectively.
Our architectural variants focused on efficiency and biological plausibil-

ity. The Depthwise-SoftHebb-Surr/HardWTA/Cos-Instar, which signifi-
cantly reduced model parameters from 5.9M to 0.9M (a factor of 6.6), and the
Residual-SoftHebb-Surr/HardWTA/Cos-Instar with 4.03M parameters,
achieved 71.9% and 74.7% accuracy respectively. They maintained robust per-
formance while reducing network parameters. The putatively most biologically
realistic network, Dale-Depthwise\_SoftHebb-Surr/HardWTA/Cos-BCM, only
achieved 67.3% accuracy with exclusively centre-surround filters at Layer 2-3
(Appendix B). This result suggests that inhibitory weights may be essential for
attaining high performance. The significant importance of competition mecha-
nisms was emphasised by the SoftHebb-None-Instar setup, which by lacking a
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competition mechanism reached only 24% accuracy. However, it is worth men-
tioning that it learnt features that enabled it to exceed the balanced 10-class
baseline random accuracy of 10%.

5.1.3. Backpropagation Comparison

The SoftHebb architecture trained through end-to-end backpropagation (So
ftHebb-Backpropagation) achieved 77.7% accuracy. This comparison demon-
strates that our enhanced Hard-WTA Hebbian approaches (75% accuracy) can
successfully approximate traditional gradient-based performance in shallow net-
works. It should be noted that the advantages of backpropagation become more
evident with the addition of more deep layers and prolonged training durations,
leading to significant performance improvements.

5.1.4. Optimal Setup: Hard-WTA Combined with Lateral Inhibition and BCM

The SoftHebb-Optimal configuration was set up by integrating the most
effective, biologically inspired mechanisms that enhanced performance. The con-
figuration built included Hard-WTA, layer-specific kernel parameters for Lateral
Inhibition, and the BCM learning rule’s theta_decay, similar to Journé et al.
(2022) with per-layer Soft-WTA parameters

For Layer1, the settings were sigmae = 1.2, sigmai = 1.3, with a lateral
kernel size of 5, theta_decay= 0.3, and a learning rate of 0.1. For Layer2,
sigmae = 1.0, sigmai = 1.2, with a lateral kernel size of 3, theta_decay= 0.35,
and a learning rate of 0.08. Lastly, for Layer3, the parameters were sigmae =
0.8, sigmai = 1.1, a lateral kernel size of 3, theta_decay= 0.35, and a learning
rate of 0.05.

As hypothesised, the resulting SoftHebb-Optimal configuration achieved
the highest values: 76% accuracy with a F1-Score of 0.76.

5.2. Comparison of Prior Work and New Hard-WTA State-of-the-Art

A detailed evaluation of our framework’s performance was conducted by
comparing the results of the two published Hebbian SOTA models, SoftHebb
-SoftWTA-Instar and Lagani\_Hard/Cos-Instar, and the SoftHebb-Backp

ropagation against our highest performing Hard-WTA model, SoftHebb-Opt
imal.

The following section presents detailed analyses of these selected configu-
rations, examining their performance through accuracy plots and consistency
across multiple random seeds, class clustering capabilities through UMAP em-
beddings, weight distribution characteristics and learnt receptive field patterns.

5.2.1. Accuracy Dynamics

Figure 4 displays accuracy per epoch during training and Figure 5 the test
accuracy for the SoftHebb-Optimal (solid blue line), SoftHebb-Backpropaga
tion (dashed orange line), SoftHebb-SoftWTA-Instar (dotted green line), and
Lagani-Hard/Cos-Instar (red dash-dotted line).

Training and Test accuracy were remarkably higher and converged faster in
our SoftHebb-Optimal than the previous Hard-WTA research Lagani-Har
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Figure 4: Accuracy values during training for Lagani-Hard/Cos-Instar (red), SoftHebb-
SoftWTA-Instar (green), SoftHebb-Backpropagation (orange), and SoftHebb-Optimal (blue)

Figure 5: Accuracy values during test for Lagani-Hard/Cos-Instar (red), SoftHebb-SoftWTA-
Instar (green), SoftHebb-Backpropagation (orange), and SoftHebb-Optimal (blue)

d/Cos-Instar. Moreover, the accuracy achieved by both SoftHebb-Optimal

and SoftHebb-SoftWTA-Instar variants were comparable throughout training
(Figure 4), with both Hebbian WTA approaches surpassing SoftHebb-Backp

ropagation at each epoch in both higher accuracy and convergence, with a
significant higher initial accuracy for SoftHebb-Optimal. A similar pattern
was observed during test (Figure 5), although the final accuracy level of the
SoftHebb-SoftWTA-Instar was slightly higher than other configurations.

5.2.2. UMAP Class Clustering Embeddings

The UMAP embeddings at the final layer (Figures 6 and 7) revealed distinct
patterns in feature organization. In these visualisations, dots of the same colour
represent class labels, with Hebbian configurations showing clustering tenden-
cies, where instances of the same class gather together and are separated from
other classes.

The current Hebbian SOTA SoftHebb-SoftWTA-Instar (Figure 6 A)
demonstrated highly effective class separation, with clearly delineated clusters
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(A) SoftHebb-SoftWTA-Instar (B) Lagani-Hard/Cos-Instar

Figure 6: UMAP projection of class clusters from unsupervised feature extraction of the
SoftHebb-SoftWTA-Instar and Lagani-Hard/Cos-Instar configurations.

(A) SoftHebb-Optimal (B) SoftHebb-Backpropagation

Figure 7: UMAP projection of class clusters from unsupervised feature extraction of the
SoftHebb-Optimal and SoftHebb-Backpropagation configurations.

showing minimal overlap between classes. Some cross-clustering occurred at
cluster boundaries, but the overall organisation suggested effective hierarchi-
cal learning with semantically related classes (e.g., automobile in orange and
truck in cyan) positioned in proximity to each other while semantically different
classes (e.g., ship in yellow and cat in red) located at distant positions.

The previous Hard-WTA benchmark Lagani-Hard/Cos-Instar (Figure 6 B)
showed weaker clustering characteristics, with less defined boundaries and sig-
nificant overlap between class clusters. This more diffuse distribution pattern
indicates limited ability to form discriminative feature representations, explain-
ing its lower classification performance.

Our enhanced Hard-WTA framework, SoftHebb-Optimal (Figure 7 A), achieved
clustering quality approaching that of SoftHebb-SoftWTA-Instar. The visual-
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isation reveals well-defined semantic clusters while maintaining natural class
boundaries, validating that our enhanced competition mechanisms enable more
effective feature learning than previous Hard-WTA approaches.

Intriguingly, while SoftHebb-Backpropagation (Figure 7 B) achieved high
classification accuracy, its UMAP embedding shows a radically different organ-
isation of the learnt feature space. Unlike the Hebbian models which form clear
cluster boundaries, the backpropagation model creates a more continuous man-
ifold structure where classes flow into each other with no distinct separation.

This striking difference in representation structure, despite similar perfor-
mance metrics, suggests that backpropagation and Hebbian learning discover
fundamentally different solutions to the classification task. The backpropaga-
tion model appeared to learn non-linear discriminative features for optimisa-
tion, which create high-dimensional decision boundaries that do not necessarily
cluster visually, rather than the discrete clustering preferred by competitive
Hebbian learning. The findings suggest that Hebbian learning offers greater
interpretability and explainability compared to backpropagation.

5.2.3. Weight Distributions

(A) SoftHebb-SoftWTA-Instar (B) Lagani-Hard/Cos-Instar

Figure 8: Weight distribution of SoftHebb-SoftWTA-Instar and Lagani short-
Hard/Cos-Instar configurations at Layer 1.

(A) SoftHebb-Optimal (B) SoftHebb-Backpropagation

Figure 9: Weight distribution of SoftHebb-Optimal and SoftHebb-Backpropagation
configurations at Layer 1.

Analysis of weight distributions (Figures 8 and 9) revealed distinct patterns
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across learning approaches. SoftHebb-SoftWTA-Instar (Figure 8A) main-
tained a broad normal distribution across all layers, reflecting its soft compe-
tition approach. In contrast, Lagani-Hard/Cos-Instar (Figure 8B) showed
a bimodal distribution with two distinct peaks, suggesting more binary weight
patterns emerging from the hard competition mechanism.

Our SoftHebb-Optimal’s BCM learning rule (Figure 9A) produced a highly
sparse distribution with a pronounced peak near zero and long tails, closely mir-
roring the sparse connectivity observed in biological neural networks (Hawkins
et al., 2016). SoftHebb-Backpropagation (Figure 9B) displayed a classic
normal distribution, characteristic of the global nature of gradient descent op-
timization.

5.2.4. PGA Receptive Fields

SoftHebb-SoftWTA-Instar (Figure 10) demonstrated features that de-
viate from traditional Gabor-like patterns. Layer 1 exhibited diverse patterns
including solid colour detectors (visible in bright orange/green squares), che-
querboard patterns capturing local contrast and various colour-mixing effects.
Layer 2 showed a transition to more complex combinations with fragmented pat-
terns, smaller pixel clusters, and intricate colour interactions. Layer 3 developed
highly abstract, sparse representations with noise-like features and scattered
colour points, suggesting specialised detectors for complex distributed patterns.

(A) Layer 1 (B) Layer 2 (C) Layer 3

Figure 10: PGA Receptive fields for first 25 neurons at each layer of the SoftHebb-
SoftWTA-Instar configuration.

Lagani Hard/Cos-Instar (Figure 11) exhibited classical biological neural
network characteristics with Gabor-like edge detection. Layer 1 showed strong
binary patterns with sharp edges and clear geometric shapes, where black-and-
white regions and isolated pure colours (purple, blue, orange) demonstrate deci-
sive edge detection from hard-WTA competition. Layer 2 maintained structured
organisation with discernible orientation shapes and subtle colour blending, in-
dicating effective combination of edge detectors with colour information. Layer
3 preserved defined shapes compared to SoftHebb’s diffuse activations, reflecting
maintained feature selectivity in deeper layers.
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(A) Layer 1 (B) Layer 2 (C) Layer 3

Figure 11: PGA Receptive fields for first 25 neurons at each layer of the La-
gani HardWTA/Cos-Instar configuration.

(A) Layer 1 (B) Layer 2 (C) Layer 3

Figure 12: PGA Receptive fields for first 25 neurons at each layer of the SoftHebb-Optimal
configuration.

(A) Layer 1 (B) Layer 2 (C) Layer 3

Figure 13: PGA Receptive fields for first 25 neurons at each layer of the SoftHebb-
backpropagation configuration.

SoftHebb-Optimal (Figure 12) showcased successful integration of hard-
WTA, lateral inhibition and BCM learning. Layer 1 combined sharp geomet-
ric boundaries comparable to Lagani’s Gabor-like edge detection, features that
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characterises biological neural networks, with more sophisticated colour process-
ing, demonstrated through solid or multiple-colour colour detectors and complex
edge patterns with smoother gradients and colour information. Layer 2 exhib-
ited refined feature organisation with distinct colour combinations and organised
spatial arrangements, where lateral inhibition promoted coherent transitions be-
tween spatial regions. Layer 3 developed specialised detectors with sparse but
organised patterns maintaining structural coherence, suggesting effective preser-
vation of feature selectivity while enabling complex pattern detection.

SoftHebb-Backpropagation (Figure 13) revealed characteristics of gradient-
based optimisation. Layer 1 demonstrated strong directional selectivity with
vertical and horizontal structures alongside systematic colour organisation, ap-
pearing more regularly than in Hebbian models. Layer 2 developed complex
features while maintaining organisational principles, with uniform pattern and
colour distribution suggesting global optimisation benefits. Layer 3 exhibited
distinctive grid-like patterns with architectural regularity, reflecting systematic
feature decomposition optimised for classification rather than biological plausi-
bility.

5.3. Limitations

Several limitations were also encountered. While competitive with backprop-
agation in shallow networks, Hebbian learning may face challenges in deeper
architectures, as the width-factor significantly increases the parameters in the
architecture by a factor of 16x with each additional layer. Enhanced feature
representation by eliminating redundant information among neurons might help
resolve this problem. The 32x32 pixel images and 3-layer models limited the
complexity of learnt representations, particularly in deeper layers. Performance
varied significantly with architectural changes, highlighting the need for care-
ful design considerations. Furthermore, the study focused on CIFAR-10, and
generalisation to other datasets, limited training data scenarios and adversarial
attacks remains to be explored.

6. Conclusion

This work advances the state-of-the-art in biologically-plausible Convolu-
tional Neural Networks by demonstrating that Hard Winner-Takes-All (WTA)
competition can achieve performance comparable to backpropagation while main-
taining biological realism. By reaching 76% accuracy on CIFAR-10, our imple-
mentation significantly improves upon previous Hard-WTA Hebbian approaches
of the same network depth (64.6% by Miconi (2017)) and approximates back-
propagation performance (77%), albeit only in shallow networks, through careful
integration of lateral inhibition and BCM learning rule.

The superiority of Hard-WTA over Soft-WTA (Journé et al., 2022) stems
from its modelling of biological neural dynamics, particularly sparse coding
where only a small fraction of neurons are active for any input. This sparsity
translates into practical benefits: improved feature interpretability, enhanced
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noise robustness, and reduced computational overhead. Our implementation
demonstrates that enforcing strict competition through Hard-WTA, rather than
the distributed activations of Soft-WTA, better captures the efficient coding
principles observed in biological visual systems.

Our approach addresses fundamental limitations of backpropagation by elim-
inating the need for labelled data and global error signals. The local nature
of Hebbian learning, combined with Hard-WTA competition, enables efficient
parallel processing and reduced memory requirements, critical advantages for
neuromorphic computing and edge applications. Moreover, the emergence of
rientation-selective neurons and centre-surround receptive fields in our network
provides computational neuroscientists with a more faithful model of biological
visual processing.

Two key challenges remain: scaling to larger datasets and enhancing biolog-
ical realism. Future work should focus on developing efficient learning schemes
for high-resolution images while controlling parameter growth in deeper archi-
tectures. Additionally, incorporating distinct excitatory and inhibitory popu-
lations could further bridge the gap between artificial and biological networks
while potentially improving representation learning.

This research demonstrates that embracing biological constraints, particu-
larly Hard-WTA competition and local Hebbian learning rules, can enhance
both the efficiency and robustness of artificial neural networks while maintain-
ing competitive accuracy. Our framework validates that principles underlying
biological neural computation can be successfully translated into practical arti-
ficial systems, opening new possibilities for energy-efficient, interpretable, and
robust AI architectures that better reflect biological intelligence.

Data and Code Availability

All code used in this study are publicly available. The code is available on
GitHub: https://github.com/Julian-JN/Advancing-the-Biological-P

lausibility-and-Efficacy-of-Hebbian-Convolutional-Neural-Netwo

rks. Any requests for additional data or materials should be directed to the
corresponding author.
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Appendix A. Details of Methods

A.1. SoftWTA Weight Initialisation

The weight initialisation scheme used for the SoftWTA Hebbian (SoftHe
bb-SoftWTA-Instar) configuration is detailed below, mirroring the Normal
Distribution used in (Journé et al., 2022). To allow all neurons to learn and
reach convergence in a single epoch, a positive distribution with a radius larger
than 2.5 is necessary:

weight range =
25√

Cin ·Kh ·Kw

W = weight range ·X

X ∼ N (0, 1)

Appendix B. Centre-Surround Filters through Dale’s Principle

(A) Initial Layer 2 (B) Trained Layer 2

Figure B.14: Direct weight visualisation of filters in Layer 2 of Dale Depthwise SoftHebb-
Surr/HardWTA/Cos-BCM before and after training. Note the exclusive formation of
centre-surround filters.

The depthwise network (Dale_Depthwise\_SoftHebb-Surr/HardWTA/
Cos-BCM) which fully respected Dale’s principle exhibited exclusively centre-
surround patterns in its depthwise filters at Layers 2-3 (seen through the di-
rect filter visualisation in Figure B.14), further accentuating the biological re-
alism of combining the depthwise architecture with Hebbian Learning and its
biologically-inspired competition mechanisms.

Appendix C. Network Architectures
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Table C.4: SoftHebb CNN Architecture (Non-Depthwise)

Layer Type Output Shape Kernel Stride Padding Activation

Input – (3, 32, 32) – – – –

1 BatchNorm2d (3, 32, 32) – – – –

HebbianConv2d (96, 32, 32) 5x5 1 2 –

Triangle (96, 32, 32) – – – power=0.7

MaxPool2d (96, 16, 16) 4x4 2 1 –

2 BatchNorm2d (96, 16, 16) – – – –

HebbianConv2d (384, 16, 16) 3x3 1 1 –

Triangle (384, 16, 16) – – – power=1.4

MaxPool2d (384, 8, 8) 4x4 2 1 –

3 BatchNorm2d (384, 8, 8) – – – –

HebbianConv2d (1536, 8, 8) 3x3 1 1 –

Triangle (1536, 8, 8) – – – power=1.0

AvgPool2d (1536, 4, 4) 2x2 2 0 –

Output Linear (10) – – – –

Table C.5: Lagani 3-layer CNN Architecture (Non-Depthwise)

Layer Type Output Shape Kernel Stride Padding Activation

Input – (3, 32, 32) – – – –

1 BatchNorm2d (3, 32, 32) – – – –

HebbianConv2d (96, 28, 28) 5x5 1 0 Cosine

Triangle (96, 28, 28) – – – power=1.0

MaxPool2d (96, 14, 14) 2x2 2 0 –

2 BatchNorm2d (96, 14, 14) – – – –

HebbianConv2d (128, 12, 12) 3x3 1 0 Cosine

Triangle (128, 12, 12) – – – power=1.0

3 BatchNorm2d (128, 12, 12) – – – –

HebbianConv2d (192, 10, 10) 3x3 1 0 Cosine

Triangle (192, 10, 10) – – – power=1.0

AvgPool2d (192, 5, 5) 2x2 2 0 –

Output Linear (10) – – – –
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Table C.6: Lagani 4-layer CNN Architecture (Non-Depthwise)

Layer Type Output Shape Kernel Stride Padding Activation

Input – (3, 32, 32) – – – –

1 BatchNorm2d (3, 32, 32) – – – –

HebbianConv2d (96, 28, 28) 5x5 1 0 Cosine

Triangle (96, 28, 28) – – – power=1.0

MaxPool2d (96, 14, 14) 2x2 2 0 –

2 BatchNorm2d (96, 14, 14) – – – –

HebbianConv2d (128, 12, 12) 3x3 1 0 Cosine

Triangle (128, 12, 12) – – – power=1.0

3 BatchNorm2d (128, 12, 12) – – – –

HebbianConv2d (192, 10, 10) 3x3 1 0 Cosine

Triangle (192, 10, 10) – – – power=1.0

AvgPool2d (192, 5, 5) 2x2 2 0 –

4 BatchNorm2d (192, 5, 5) – – – –

HebbianConv2d (256, 3, 3) 3x3 1 0 Cosine

Triangle (256, 3, 3) – – – power=1.0

Output Linear (10) – – – –

Table C.7: SoftHebb CNN Architecture (Depthwise)

Layer Type Output Shape Kernel Stride Padding Activation

Input – (3, 32, 32) – – – –

1 BatchNorm2d (3, 32, 32) – – – –

HebbianConv2d (96, 32, 32) 5x5 1 2 –

Triangle (96, 32, 32) – – – power=0.7

MaxPool2d (96, 16, 16) 4x4 2 1 –

2 BatchNorm2d (96, 16, 16) – – – –

HebbianDepthConv2d (96, 16, 16) 3x3 1 1 –

BatchNorm2d (96, 16, 16) – – – –

HebbianConv2d (384, 16, 16) 1x1 1 0 –

Triangle (384, 16, 16) – – – power=1.4

MaxPool2d (384, 8, 8) 4x4 2 1 –

3 BatchNorm2d (384, 8, 8) – – – –

HebbianDepthConv2d (384, 8, 8) 3x3 1 1 –

BatchNorm2d (384, 8, 8) – – – –

HebbianConv2d (1536, 8, 8) 1x1 1 0 –

Triangle (1536, 8, 8) – – – power=1.0

AvgPool2d (1536, 4, 4) 2x2 2 0 –

Output Linear (10) – – – –
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Table C.8: Residual CNN Architecture
Layer Type Output Shape Kernel Stride Padding Activation

Input – (3, 32, 32) – – – –

1 BatchNorm2d (3, 32, 32) – – – –

HebbianConv2d (96, 32, 32) 5x5 1 2 Cosine

Triangle (96, 32, 32) – – – power=0.7

MaxPool2d (96, 16, 16) 4x4 2 1 –

2 HebbianResidualBlock (384, 16, 16) – – – power=1.4

MaxPool2d (384, 8, 8) 4x4 2 1 –

3 HebbianResidualBlock (1536, 8, 8) – – – power=1.0

AvgPool2d (1536, 4, 4) 2x2 2 0 –

Output Linear (10) – – – –

HebbianResidualBlock Internal Structure

Main Path BatchNorm2d (in ch, H, W) – – – –

HebbianConv2d (hidden dim, H, W) 1x1 1 0 Cosine

Triangle (hidden dim, H, W) – – – power=act

BatchNorm2d (hidden dim, H, W) – – – –

HebbianDepthConv2d (hidden dim, H, W) 3x3 1 1 Cosine

Triangle (hidden dim, H, W) – – – power=act

BatchNorm2d (hidden dim, H, W) – – – –

HebbianConv2d (out ch, H, W) 1x1 1 0 Cosine

Shortcut BatchNorm2d* (in ch, H, W) – – – –

HebbianConv2d* (out ch, H, W) 1x1 1 0 Cosine

Add (out ch, H, W) – – – –

Triangle (out ch, H, W) – – – power=act

* Only if in channels ̸= out channels
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