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We critically assess to what extent it makes sense to bound the Wilson coefficients of dimension-six
operators. In the context of Higgs physics, we establish that a closely related observable, cH , is well defined
and satisfies a two-sided bound. cH is derived from the low momentum expansion of the scattering
amplitude, or the derivative of the amplitude at the origin with respect to the Mandelstam variable s,
expressed as MðHiHi → HjHjÞ ¼ cHsþOðgSM; s−2Þ where gSM represents all Standard Model cou-
plings. This observable is nondispersive and, as a result, not sign-definite. We also determine the conditions
under which the bound on cH is equivalent to a bound on the dimension-six operator OH ¼ ∂jHj2∂jHj2.
DOI: 10.1103/PhysRevD.110.016007

I. INTRODUCTION AND CONCLUSIONS

The Higgs particle stands out as one of the most
enigmatic particles discovered thus far. Examining it from
every conceivable perspective is a crucial endeavor. In this
paper, we initiate the theoretical study of the maximal
Higgs coupling strengths. Present-day measurements of
Standard Model (SM) Higgs couplings exhibit a good
level of agreement with the SM theory. Nevertheless, the
possibility of new physics emerging at the few TeVs scale
remains a compelling avenue for beyond the Standard
Model physics (BSM). Despite the potential need for some
degree of fine-tuning, this avenue holds the promise of
shedding light on the mechanism that governs electroweak
symmetry breaking.
Precise measurements of Higgs couplings are of particu-

lar significance in scenarios where the Higgs is a light
composite boson. New physics with strong couplings often
involves heavy and broad resonances that may prove
challenging to directly observe at the LHC. Nevertheless,

these resonances can leave their mark as deviations in the
SM Higgs couplings.
The deviations are largest in UV completions of the SM

featuring strong coupling dynamics. In this context, the
strongly interacting light Higgs [1] (SILH) effective field
theory (EFT) provides valuable insights. It offers power
counting rules for the Higgs EFT, where the Higgs emerges
as a light pseudo-Goldstone boson of a strongly interacting
sector. The Higgs becomes massless in the limit gSM → 0
(where gSM collectively denotes the SM couplings)
and acquires a small mass through radiative corrections
for gSM ≠ 0.
We make the following simplifying assumption: we

consider the UV BSM couplings to be significantly larger
than the SM ones, allowing us to treat the latter as small
perturbations. We should further assume that the
composite sector enjoys a custodial global symmetry
SOð4Þ ≃ SUð2ÞL ⊗ SUð2ÞR. Under these assumptions,
the Higgs sector of SILH simply reads Lint

H ¼
gH
2f2 ∂μjHj2∂μjHj2 þOðf−4Þ, where we are neglecting oper-

ators of dimension (dim.) eight and higher. This effective
description can break down either because of strong
coupling dynamics at energies above the scale f2, or
because of the need to incorporate new resonances in the
perturbative regime of the effective description.
The dim.-six operator ∂μjHj2∂μjHj2 ¼ jHj2j∂Hj2 þ

e:o:m: (equations of motion) is interesting because, after
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accounting for the Higgs vacuum expectation value, it leads
to a wave function renormalization of the Higgs which in
turn results in a universal shift of all SM Higgs couplings.
We emphasise why our chosen simplification is interest-

ing in the context of bounding Higgs coupling deviations: it
retains the key complexities of the real problem and allows
gradual step-by-step relaxation of these assumptions, pav-
ing the way for a more realistic model.
Causality and unitarity constraints of the two-to-two

scattering matrix element imply sharp bounds on the LH
EFT. The two-to-two scattering of two SOð4Þ vectors can
proceed through three different channels,

M¼Mðs̄jt̄; ūÞδabδcdþMðt̄jū; s̄ÞδcaδdbþMðūjs̄; t̄Þδdaδcb; ð1Þ

annihilation, reflection, and transmission of the vector
indices fa; b; c; dg which run from 1 to n ¼ 4. We often
use shifted Mandelstam variables ðs̄; t̄; ūÞ≡ ðs; t; uÞ−
4m2=3ð1; 1; 1Þ. Recall that momentum conservation
implies sþ tþ u ¼ 4m2. Crossing symmetry dictates that
the physical process (1) can be described as the boundary
value of a single analytic function with the sym-
metry Mðs̄jt̄; ūÞ ¼ Mðs̄jū; t̄Þ.
The unitarity and crossing symmetry imply a cut that

extends from ðs; t; uÞ ¼ 4m2 to infinity. Therefore, the
point ðs̄; t̄; ūÞ ¼ 0 is analytic, and the amplitude Mðs̄jt̄; ūÞ
can be characterized by its series around the origin,

M=ð4πÞ2¼cλþcHs̄þc2ðt̄2þ ū2Þþc02s̄
2þOðs̄; t̄; ūÞ3; ð2Þ

where the coefficients cλ, cH, c2, c02 are real valued, and
ð4πÞ2 is a convenient normalization. TheWilson coefficient
gH describes the single dim.-six operator contribution to (2)
at tree level: cλ ¼ Oðm2

f2 Þ, cH ¼ gH
ð4π2Þf2 þOðm2

f4 Þ.
The main result of this work is a bound on the parameter

cH in (2). We discuss two extreme single energy scale
scenarios and argue that interesting physics lies in the
interpolation of the two.
In the first scenario, Sec. III A, we look for the extremal

values of cH by making no assumption of weak coupling.
We are led to the rigorous bound,1

−0.46 < cH ×m2 < 1.07: ð3Þ

The single scale in the problem is the mass m2; thus, we
can set units m2 ¼ 1. This bound is saturated by ampli-
tudes that are maximally strongly coupled all the way

down to the IR s≳ 4m2. These amplitudes do not feature
an energy scale separation betweenm2 and a putative scale
of new physics. Therefore, a simple EFT interpretation
of (3) in terms of operators is hardly possible. Although
this is not a useful bound for Higgs physics, it is
nevertheless an interesting proof of principle for the
existence of a universal bound: any theory with the same
symmetries must take values within (3). In Sec. III B, we
discuss how to isolate weakly coupled amplitudes within
the space of nonperturbative Oð4Þ theories.
The second scenario, Sec. III C, is complementary and

assumes that physics below a new energy scale Λ2 is much
weaker than new physics above Λ2 and a large scale
separation Λ2 ≫ m2. In this limit, we are left with a single
scale Λ2, and we find

−0.31 < cH × Λ2 < 0.35: ð4Þ

The bound (4) is saturated by amplitudes that on one hand
are maximally strongly coupled above the cutoff scale Λ,
but on the other hand are very weakly coupled below. This
limiting case has been dubbed UV dominated EFTs [2]. In
this single scale problem, we can set units Λ2 ¼ 1 and
interpret (4) as a universal bound on the space of UV
dominated EFTs. We argue that, under certain specific
conditions, this bound can be interpreted in terms of
LH and identify Λ2 ¼ f2 and cH × f2 ¼ gH=ð4πÞ2. In
Sec. III C, we also explain how to smoothly interpolate
the bounds of the two limiting scenarios (3) and (4), see
Fig. 3. In Sec. III D, we show how to incorporate IR EFT
corrections in order to obtain a more refined bound.
We end this paper with a discussion on the interpretation

of the bounds in terms of dim.-six operators, Sec. IV, and
with a final discussion about future directions, Sec. V.
We have included a number of appendices with details

on the calculations.

II. DUAL BOOTSTRAP FOR OðnÞ THEORIES

A. Setup and constraints

We begin this section by discussing the constraints on the
amplitude (1) that we use. The amplitude satisfies the
double-subtracted dispersion relation,

AIðs; tÞ≡MIðs; tÞ − CIðs; tÞ

−
Z

∞

4

dz½KIJðz; s; tÞMJ
zðz; tÞ

þ LIJðz; s; tÞMJ
zðz; z0Þ� ¼ 0; ð5Þ

where C⃗ðs; tÞ ¼ cλðnþ 2; 2; 0Þ þ cHðn − 1;−1; 1Þ s̄þ
cHð0; 0; 2Þt̄ and is decomposed into irreducible represen-
tation channels MI ≡ ðMsing;Msym;MantiÞ. The Kernels K
and L are simple rational functions of its arguments; the
derivation of (5) is given in Appendix A. In (5) and in the

1We worked with high precision numerical integrals up to
Oð10−80Þ to avoid the rounding errors and kept a duality gap of
Oð10−15Þ when solving the optimization problem. The final
source of systematic errors is due to the number of negativity
constraints imposed (C4), under the limit Lc → ∞ as explained in
Appendix C 2. We set the spin cutoff to Lc ¼ 20, beyond which
bounds (3) and (4) change only by Oð10−3Þ.
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rest of this section, we set m2 ¼ 1. This is a technical
section that some readers may prefer to skip on their first
reading and proceed directly to Sec. III for a discussion of
the physical results.
By taking derivatives of (5), one can express any low

energy coefficient ci of (2) in terms of a sum rule involving
integrals over the amplitude’s discontinuity. If the defini-
tion of ci involves more than two derivatives of the
amplitude with respect to “s”, the subtraction terms are
not present in the sum rule because ∂

2
sC⃗ðs; tÞ in (5)

vanishes. In this case, the ci’s may enjoy positivity proper-
ties that follow from ImMJ ≥ 0. Instead, if the definition of
ci involves less than two derivatives of the amplitude, the
subtraction terms are present, and thus, the positivity of the
sum rule is typically spoiled. This is the case of cH,

cH
π

3
ðs−4Þ¼Refð3Þ1 ðsÞ−

Z
∞

4

dvkð3;JÞ1;l ðs;vÞImfðJÞl ðvÞ; ð6Þ

where repeated indices l and J are summed over, and the

Kernel kð3;JÞ1;l is the partial wave projection of K and L, its

exact form is given in Appendix A, and fðIÞj are the partial
wave projections of the amplitude.
Because of the presence of subtraction terms in the

sum rule (6), the value of cH is not sign definite. Previous
works analyzed the sign constraints of cH by means
of unsubtracted dispersion relations [3,4] and positivity

constraints ImfðIÞj > 0.
Positivity constraints follow from the unitary inequality,

UðIÞ
l ≡ 2ImfðIÞl ðsÞ − ρðsÞjfðIÞl ðsÞj2 ≥ 0; ð7Þ

where ρðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − 4Þ=4p
. Unitarity constraints bound

both the real RefðIÞj and imaginary ImfðIÞj parts of the
amplitude. Therefore, by using the unitarity constraints (7)
(instead of positivity constraints only), we may hope to be
able to bound the minimal and maximal value that cH in (6)
can attain. Establishing the existence of this bound is
nontrivial, as it involves an infinite sum over partial waves
on the right-hand side. Nevertheless, we demonstrate in the
next section that this hope is indeed realized.
Before we proceed, there is one remaining class of

constraints to address. We encoded analyticity in the fixed-t
dispersion relation (6), which is s ↔ u symmetric, but
lacks t ↔ u crossing symmetry constraints,

F⃗ ðs; tÞ ¼ M⃗ðs; tÞ − Ctu:M⃗ðs; 4 − s − tÞ ¼ 0: ð8Þ

In order to extract a discrete number of constraints from the
last equation, we plug the dispersion relation (5) for MI in
the crossing Eq. (8), next expand into partial waves, and
finally take a number of derivatives ∂ns∂mt at s; t ¼ 4=3. We
are left with

F ðIÞ
n;m ≡

Z
∞

4

dv
X∞
l;J

FðIJÞ
n;m;lðvÞnlImfðJÞl ðvÞ ¼ 0; ð9Þ

with FðIJÞ
n;m;lðvÞ¼∂

n
t ∂

m
s F

ðIJÞ
l ðv;s;tÞjs;t¼4

3
, nl ¼ 16πð2lþ 1Þ.

The exact form of FðIJÞ
l follows from projecting the Ker-

nels in (5) into partial waves. On a first reading of
this paper, its exact details are not too important to
follow the logic flow. We note that the lowest nontrivial
constraint is for ðn;mÞ ¼ ð1; 3Þ derivatives. For instance,

for the ðI; JÞ ¼ ð3; 1Þ channel, we have Fð31Þ
1;3;lðvÞ ¼

ðlþ1Þðx−1Þ3½ð½lþ2�x2−lÞPlðxÞ−2xPlþ1ðxÞ�
x3ðxþ1Þ2 , with x ¼ 4−3v

12−3v, and Pl

are Legendre polynomials. Similarly, higher order deriva-

tives give rise to functions FðIJÞ
n;m;lðvÞ consisting of linear

combinations of Legendre polynomials times rational func-
tions of v and l. The constraints in (9) are equivalent to the
null constraints [5,6].

B. Rigorous dual bounds

Our task now is to find the extremal values of cH under
the constraints of unitarity, analyticity, and crossing sym-
metry. We adapt to our needs the rigorous setup developed
in [7].2 With all the constraints laid down, an optimization
problem is best summarized by means of a Lagrangian,

L�ðfPg; fDgÞ ¼ �cH þ
Xðnc;mcÞ

ðn;mÞ¼ð1;3Þ
νðIÞn;mF

ðIÞ
n;m

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s↔t crossing

þ
Z

∞

4

dvλðIÞl ðvÞUl
ðIÞðvÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

unitarity

þ
Z

μc

4

dv
XJc
j¼0

ωðIÞ
j ðvÞaðIÞj ðvÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
analiticityþs↔u crossing

; ð10Þ

where repeated indices I and l are summed over, and

aðIÞj ðvÞ is the jth partial wave projection of AIðs; tÞ.
The first term in (10) is the objective to optimize. The next

terms encode the crossing symmetry (9), unitarity (8), and
analiticity (5) constraints by means of the Lagrange multi-

pliers {νðIÞn;m, w
ðIÞ
J , λðIÞl ≥ 0}. Collectively, all the Lagrange

multipliers are denoted as dual variables fDg. The primal

variables fPg are given by fRefðIÞl ðsÞ; ImfðIÞl ðsÞ; cH; cλg.

2The dual approach to the bootstrap was first revisited in two
dimensions [8] and later generalized to scattering of several
species [9] and flux tubes [10]. In higher dimensions, dual bounds
were studied already long ago in [11–15]. A different approach
based on the Mandelstam representation was developed in [16].
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We keep a finite number of crossing Fm;n’s and spin
projections ajðsÞ’s constraints—the maximal number is
labeled by ðnc;mcÞ and Jc, respectively. Similarly, we keep
a maximal value μc in the evaluation of the projected
dispersion relation A. Even though this is enough for the
derivation of a rigorous bound, we are not leveraging the
full power of all the constraints that we know of. However,
we argue that the observable that we are studying converges
rapidly in ðnc;mcÞ, Jc, and μc. Therefore, despite of
truncating the number of constraints, our bounds will be
close to optimality.
Say we are interested in maximizing cH in (10) (i.e., we

take þ in the first term). The weak duality theorem [17]
states that

cH ≤ dþðfDgÞ≡max
fPg

LþðfPg; fDgÞ: ð11Þ

The maximization over the primal variables is straightfor-
ward since the Lagrangian (10) is a quadratic function.
Below. we summarize the features of the dual problem;
further details can be found in Appendix B.
First, we discuss the maximization of Lwith respect to cλ

and cH. Since they enter linearly into the Lagrangian as αci,
by taking derivatives we get that αmust vanish, yielding the
two normalization conditions,

cλ∶ 0 ¼
Z

μc

4

dv
16π

n⃗1 · N⃗ðvÞ; ð12Þ

cH∶1 ¼
Z

μc

4

dv
16π

��
v −

4

3

�
n⃗2 þ ðv − 4Þn⃗3

�
· N⃗ðvÞ; ð13Þ

where n⃗1 ¼ ðnþ 2; 2; 0Þ, n⃗2 ¼ ðn − 1;−1; 0Þ, n⃗3 ¼
ð0; 0; 1=3Þ, and N⃗ ¼ ðω1

0;ω
2
0;ω

3
1Þ. Maximizing the

Lagrangian (10) with respect to fRefðIÞl ; ImfðIÞl g and
substituting the equations of motion leads to

dþðν;λ;ωÞ ¼
Z

∞

4

dv
λlρ

�
nlμl
2

þ λl

�
2

þ
Z

μc

4

dv
4λjρ

ω2
j ; ð14Þ

where we left implicit a sum on the channels I, and repeated
indices are summed over according to (10),

μðIÞl ¼ νðKÞn;m · FðKIÞ
n;m;lðvÞ − p:v:

Z
μc

4

wðKÞ
j kðKJÞj;l ðs; vÞ; ð15Þ

where repeated indices fK; n;m; jg are summed over, the j
and ðn;mÞ sums are cut according to (10), “p.v.” denotes
the Cauchy principal value, and l ¼ 0; 1;…∞. The kernel

kðKJÞj;l is given in Appendix A.
For any value of the multipliers, the inequality holds

dþðν; λ;ωÞ ≥ cH, and we obtain a bound on cH. Thus, to
obtain the best bound, we should minimize dþ over the
Lagrange multipliers. In practice, it is hard to perform

such minimization analytically. Nevertheless, an efficient
numerical algorithm to search for the minimal value of dþ
in the ν, λ, ω space was developed in [7]. The generalization
to our problem is explained in Appendix C.

III. THE SPACE OF Oð4Þ THEORIES

A. The Oð4Þ nonperturbative island

Our first goal is to determine universal bounds on cλ and
cH defined in (2). By universal, we mean that we are not
making any assumption beyond the rigorous analyticity,
crossing, and unitarity properties [18]. For concreteness,
we set cλ ¼ R cos θ, cH ¼ R sin θ, and for each fixed θ, we
bound the maximum value of R. Our numerical results are
shown in Fig. 1—see Appendix C for detailed explanations
on the numerics. Everything except for the blue region is
rigorously excluded: all Oð4Þ theories must take values
inside the blue “Oð4Þ island” in Fig. 1.
The boundary of the island is determined by the

extremal values that cλ and cH can take. As we are not
making any assumption, it is natural to expect that our
bounds will be saturated by strongly coupled amplitudes
all the way to the IR. A signature of strongly coupled IR
dynamics is the presence of bound states or resonances.
We experimentally observe the presence of scalar thresh-
old bound states in the spin zero singlet and/or in the
symmetric channel. Using this knowledge, we can define
four distinct regions on the boundary of the island, whose
properties are summarized in Table I.
For instance, in the region DA, we have both the singlet

and the symmetric threshold bound states. On the other
hand, in region BC, there are none. However, even without
threshold bound states, there are other strong coupling

FIG. 1. All Oð4Þ theories must lie inside the colored region.

TABLE I. Threshold singularities along the boundary.

A-B B-C C-D D-A

Singlet ✓ ✗ ✗ ✓
Symmetric ✗ ✗ ✓ ✓
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phenomena happening. Between the point B and the point
with the minimum value of cλ denoted by a black dot,
although the value of cH is positive, we measure a negative
spin one scattering length in the antisymmetric channel.
This change of sign cannot be realized with a weakly
coupled field theory description. On the other hand,
between the black dot and point C, we find a spin one
resonance at low energies. In Appendix F, we have included
a number of plots showing the phase shifts of the amplitude
around the boundary of Fig. 1.

B. Perturbative boundary regions

There are two linear combinations of dimension-eight
operators of the OðnÞ theory (2) that are positive [19],

c2 ¼
1

π

Z
∞

4

dv
v̄3

ImM⃗ðvÞ ·
�
0;
1

2
;
1

2

�
≥ 0; ð16Þ

2c2 þ c02 ¼
1

π

Z
∞

4

dv
v̄3

ImM⃗ðvÞ ·
�
1

n
;
n − 1

n
; 0

�
≥ 0: ð17Þ

Both inequalities are saturated when the theory is free.
Therefore, scanning the values of cλ and cH in the region
where these two linear combinations are small, we single
out weakly coupled extremal amplitudes at the boundary
of the allowed region. An example of this, is shown in
Fig. 2. The red line is analytically computed by performing
a one-loop computation in λjϕ⃗j4, choosing the scheme
in which λ ¼ cλ, and plotting the parametric curve
fcHðcλÞ; c2ðcλÞg—in Appendix D 1, these functions are
given. The red line agrees with the boundary of the allowed
region for small cλ. Interestingly, we do not have a
perturbative description of the whole region around the
origin. The boundary is expected to be saturated by
amplitudes obtained from integrating out strongly coupled
UV dynamics.3

C. EFT bounds

A key property of EFTs is the scale separation between
the mass of the scattered particle and the scale of “new
physics” Λ2 ≫ m2. To incorporate the separation of scales
nonperturbatively, it is useful to introduce the concept of
UV/IR domination of the sum rules. Consider the dispersive
representation of c2 split into two pieces,

cIR2 ¼
Z

Λ2

4

dv
πv̄3

ImM⃗ðvÞ ·
�
0;
1

2
;
1

2

�
; cUV2 ¼ c2−cIR2 : ð18Þ

If cIR2 ≫ cUV2 , then the sum rule is IR dominated.
Conversely, if cIR2 ≪ cUV2 , the dispersive integral receives
the largest contribution from values at s≳ Λ2, in which
case we say it is UV dominated. In the case of cH, this
separation is less universal because of the explicit sub-
traction term. However, being IR or UV dominated is a
physical property of the amplitude, not just of the sum rule.
In the case of cH, we apply this definition to the dispersive
part of the sum rule.
The bounds discussed in Secs. III and III A are IR

dominated either because the amplitude is strongly coupled
at values of s≳m2 (Fig. 1) or because the amplitude is
weakly coupled at all energies with no significant reso-
nance behavior (Fig. 2). In either case, there is no effective
separation of scales between m2 and a putative “new
physics” scale Λ2.
Next, we are interested in the other limit, i.e., theories

that are fully UV dominated. These are EFTs that are so
weakly coupled in the IR s ≤ Λ2 that the IR contribution
to the dispersive integrals is negligible with respect to the
UV contribution.4 In this scenario, the sum rule (6) gets
replaced by

π

3
cHs ¼ Refð3Þ1 ðsÞ −

Z
∞

Λ2

dvkð3;JÞ1;l ðs; vÞImfðJÞl ðvÞ; ð19Þ

where ignore powers of m2 because we are considering
Λ2 ≫ m2. In [2], it was shown that the bounds obtained in
this regime are valid even in presence of a small physical IR
imaginary part, which can be incorporated into a systematic
error on the bound itself. The smaller the IR physics is, the
better is this approximation.
The UV contribution is not necessarily strongly coupled

for UV domination to hold. For instance, the whole
amplitude may be well approximated at tree level at all
energies, but the exchange of a tree-level resonance localizes

FIG. 2. A portion in the boundary of Oð4Þ theories that can be
described by perturbative quantum field theory.

3It is possible to ask several other variations of the questions
that we have asked so far; e.g., one could min./max. cH a a
function of fα; βg, with α≡maxðc2Þ and β≡maxð2c2 þ c02Þ.
Small values of fα; βg isolate perturbative amplitudes.

4Many recent interesting developments [20] exploiting pos-
itivity constraints apply in this regime.

EXTREMAL HIGGS COUPLINGS PHYS. REV. D 110, 016007 (2024)

016007-5



with a delta function [Imðs − Λ2 þ iϵÞ−1 ∝ δðs − ΛÞ] the
UV integral at s ¼ Λ2.5

Next, we find the min/max values of cH. We do so by
neglecting the imaginary part of the amplitude at values
s < Λ2 and by taking the massless limit m → 0. The
procedure is a simple modification of what we described
in Sec. II, and thus, details are relegated to Appendix B.
There is a single scale in the problem Λ2, and therefore,
bounds on cH are naturally expressed by normalizing with
respect to Λ2. We are interested in looking for a field theory
interpretation of the bound; therefore, we set cλ ≪ 1. We
call the theories showing UV dominated sum rules UV
dominated EFTs.
All in all, we find the result in (4). This is a universal

bound to all UV dominated theories: as long as m2 ≪ Λ2

and the dispersive part ofMðsjt; uÞ is negligible for s < Λ2,
any such theory should satisfy the bound.
For completeness, it is interesting to interpolate

between the UV and IR domination regimes. We do

so by min/max cH defined through π
3
cHðs − 4m2Þ ¼

Refð3Þ1 ðsÞ − R∞
Λ2 dvk

ð3;JÞ
1;l ðs; vÞImfðJÞl ðvÞ neglecting the

imaginary part of the amplitude in ½4m2;Λ2� and varying
Λ within ½4m2;∞Þ. The result of this exercise is given in
Fig. 3. The rightmost points correspond to the min/max
values of cH in the 4m2

Λ2 → 1 limit. Those points agree with

Fig. 1, at cλ ¼ 0, after accounting for the 4m2

Λ2 normalization
factor, 4 × ½−0.44; 0.70� ¼ ½−1.76; 2.8�. The leftmost
points are instead the UV domination limit m2

Λ2 → 0, in
agreement with (4). Note that for m

Λ ≲ 1
8
, the bound is close

to the asymptotic bound m2

Λ2 → 0 and shows variation only
below the percent level.
One might ponder how the just-derived boundary will be

influenced by the introduction of a small nonvanishing
discontinuity in the IR. This matter is discussed in the
next section.

D. Rigorous bounds assuming an IR model

In this section, we introduce a small IR imaginary part
and study its effect on our dual bounds. We address this
question using the following model. We imagine that
somebody gives us a functional fit of the imaginary part
of the amplitude for all spins and irreducible representa-
tions below a certain energy scale Λ,

ImfðJÞl ðsÞ≡ gðJÞl ðsÞ; s < Λ2: ð20Þ

We can now extremize the values of cH combining the set
of constraints in (10) with the new conditions (20). The
generalization of the dual problem to include this additional
constraint is straightforward and is discussed in
Appendix E. The final dual bounds take the form

DUV
− þDIR

− ½gðIÞl � ≤ cH ≤ DUVþ þDIRþ ½gðIÞl �; ð21Þ

where DUV is the functional used to obtain the EFT bounds

shown in Fig. 3, and DIR½gðIÞl � is the IR contribution which

vanishes if gðIÞl ¼ 0. For concreteness, if we take Λ ¼ 8m,
and choose

gðIÞ0 ¼ λ2=2
ð16πÞ2

ffiffiffiffiffiffiffiffiffiffi
s − 4

s

r
ððnþ 2Þ2; 4; 0Þ; gðIÞl>0 ¼ 0; ð22Þ

with λ ¼ 0.1, we obtain

−0.33 < cH × 82 < 0.38: ð23Þ

The difference between this bound and the one obtained by
neglecting the imaginary part in Fig. 3 is of order 10−5 for
this value of the quartic coupling.
In this analysis, we have not included nonlinear unitarity

in the IR. If included, it would be interesting to compare
with the bounds in [2], which were obtained by solving the
primal problem. We leave this exploration to a future work.

IV. DIMENSION-SIX OPERATORS

The bounds on cH that we have presented thus far are
sharp and rigorous. Moving forward, next we aim to
interpret them through an effective field theory
Lagrangian. While this will necessitate making additional
assumptions, it will also enable us to make further
predictions. Once we establish a match between the
amplitude’s coefficient, denoted as cH, and the effective
operator j∂Hj2jHj2, it opens up new opportunities to test
the constraints on cH. Besides altering high energy 2 → 2
scattering of the Higgs particles or longitudinal electroweak
gauge bosons, this operator universally modifies all Higgs
couplings. Indeed, after accounting for the Higgs vacuum
expectation value, it leads to a Higgs wave function
renormalization. Thus, the interpretation of our bound on

FIG. 3. Allowed value of cH × Λ2 as a function of 4m2=Λ2.

5This is often the case for large N QCD-like theories [21,22].
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cH in terms of the field theory operator allows us to
determine the maximal deviation on Higgs couplings due
to the OH operator. For instance, Γðh → VVÞSILH=
Γðh → VVÞSM ¼ 1 − ðv=fÞ2cH þ � � �, where � � � denote
other Wilson coefficients [1]. Thus, even though the
dimension-six operator is not a clean observable, establish-
ing a connection with the bound on cH is a worthwhile
exercise due to the physics motivations just explained.

A. Maximally UV dominated EFTs

Consider the field theory given by

LH ¼ LFree − ϵjHj4 − gH
f2

j∂Hj2jHj2 þOðf−4Þ; ð24Þ

with ϵ ¼ m2=f2 ≪ 1. A simple calculation of the ampli-
tude (2) reveals cλ ¼ OðϵÞ and cH × Λ2 ¼ gH

ð4πÞ2
Λ2

f2 þOðϵÞ.
Higher order coefficients do receive possibly large correc-
tions from gH, e.g., c2 × Λ4 ¼ g2H

Λ4

f4 þ � � �. Note also that

ImM ¼ Oðϵ2; ϵgHÞ þ g2H ×Oðs2=f4Þ, and therefore, in the
perturbative computation of the two-to-two scattering
amplitude, it is justified to neglect the imaginary part of
the amplitude provided that s is well below the value
of f2=gH.
In the extreme UV domination limit, and when the gap is

large ϵ−1 ≫ 1, Eq. (4) implies the bound on the dimension-
six operator coefficient,

−0.31 <
gH

ð4πÞ2 ×
Λ2

f2
< 0.35: ð25Þ

What is the appropriate value of Λ2=f2? The scale Λ2 was
introduced to ensure that the IR contribution to the cH sum
rule (6) is small with respect to the UV contribution. Thus,
the derivation of (25) is valid as long as

Z
Λ2

0

dvκðJÞl ðvÞImfðJÞl ðvÞ≪
Z

∞

Λ2

dvκðJÞl ðvÞImfðJÞl ðvÞ; ð26Þ

which follows from (6) in the limit ϵ → 0, and we have

defined κðJÞl ðvÞ≡ kð3;JÞ1;l ð0; vÞ. Instead, the scale f2 does not
have an intrinsic definition within the EFT.6 Thus we define
f2 as the scale at which (26) is satisfied for the largest7

possible Λ2. That is we take f2 ¼ Λ2.

We remark that we are not claiming a regime such that
the imaginary part of the amplitude is necessarily negli-
gible at energies s≲ f2. We are instead arguing for the
existence of a regime such that the IR contribution to the
sum rule is subdominant with respect to the UV contri-
bution (26). After identifying f2 ¼ Λ2, the remaining
question is for what type of theories the condition being
assumed (26) is less constraining than the actual
result (25). While we do not know the answer to this
question in its most general terms, next we provide two
sources of intuition.
The first one comes from simple perturbative models.

As argued above, the effect of exchanging heavy weakly
coupled resonances on the dispersion relation is to localize
the dispersive integrals at the heavy particle threshold. Thus,
if the IR couplings are parametrically smaller than the UV
couplings to heavy states, then UV domination (26) follows.
As the UV couplings becomes stronger, the condition (26)
still holds if the IR couplings are hold weaker. A simple
perturbative example fulfilling this behavior of UV/IR
domination is worked out in Appendix D2.
Even if the scattering amplitude cannot be computed in

perturbation theories for energies s ≤ Λ2, the condition (26)
may still be satisfied. For an intuitive picture see Fig. 4. In
our previous work [2], we constructed scattering amplitudes
meeting this trait, as well as amplitudes that smoothly
interpolate between the UV and IR domination regimes—
providing our second source of intuition. These theories
show broad resonance behavior for s > Λ2, with large
values of the imaginary part for s > f2. For energies below
the resonances, the amplitude decays in powers of energy
over the scale of the new resonances.
Accidentally, Eq. (25) with Λ2 ¼ f2 agrees with the

rough “loop-democracy” estimate—often called naive
dimensional analysis (NDA) [23–25]. Indeed, using (24)
to compare tree vs one-loop corrections to the four-point
function gives gH ≳ g2H=ð4πÞ2s=f2. We are conservatively
arguing for s ∼ Λ2 ¼ f2 and are led to the bound jgHj ≤
Oð1Þ × ð4πÞ2 in (25). What we have achieved here is to turn
the NDA estimate into a precise “theorem” by determining
the order one factors. The bound we have uncovered

FIG. 4. Representation of strongly coupled and UV dominated
amplitudes. The amplitude is strongly coupled at energies s ≳ Λ2;
nevertheless, (26) is satisfied; i.e., the cH sum rule is UV
dominated.

6Given the value of gH , f2 is often associated to the lowest
energy scale at which the perturbative calculation of 2 → 2 breaks
down. However, this definition would be somewhat circular and
not useful to us. The other standard choice is to associate f2 to the
scale of new physics, where the EFT breaks down. This definition
is not useful for our purposes either.

7Equation (26) is trivially satisfied if Λ2 is taken arbitrarily
small.
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shows the symmetry jgmax
H j ≈ jgmin

H j, a trait that was hardly
predictable prior to the calculations presented here.8

Various composite Higgs models, where the light Higgs
is a pseudo-Goldstone boson, have been shown to fall in
within the SILH power counting [1]. For instance, the
holographic minimal composite Higgs model [26] gives
gH ¼ 1. These type of models are well within (25). Our
bound could be made more stringent with further under-
standing or assumptions about the extent to which UV
domination (26) holds for these particular class of models.
For instance, one could argue to improve the bound by
pushing Λ2 to larger values by setting Λ2 ≡ f2g2ρ ≡m2

ρ. A
more interesting possibility is to improve our bound by
further modeling of the IR, in the spirit of Sec. III D.
Besides of requiring a separation of scales with weak
coupling in the IR (26), models where the Higgs arises as a
pseudo-Goldstone boson can be further characterized by
imposing chiral zeros on the scattering amplitude, very
much like in pion physics [27]. We leave this intriguing
possibility to improve the bound for these class of theories
to future investigations.
Defining f2 in terms of Λ2 appears to us as the only

logical possibility for establishing rigorous bounds on
dimension-six operators. Given that the SM is very weakly
coupled at TeV energies, it is reasonable to associate Λ
(≡f) with the largest energy scale for which new physics,
or new resonances, have been excluded. Namely, to the
extent that no new physics contributes to the left-hand side
of (26) up to an energy scale Λ, it is safe to neglect it.9

Therefore, if no new physics appears up to the scale
f2 ≡ Λ2, then (25) is the maximal value of gH that one can
hope of measuring. The current fit to the LHC data reveals
jgHj ≤ 1 × Λ2=ð1 TeVÞ2 [28]. Our bound is universal in
units of the scale Λ2 (recall that as long as Λ≳ 8m, we are
on the asymptotic left region of Fig. 1). Thus, if we assume
no new physics enters on the lhs of (26) up to an energy
scale 5 TeV, then our bound reads −0.31 × ð4πÞ2=52 <
gH < 0.35 × ð4πÞ2=52, i.e., −2.0 < gH < 2.1, which is
comparable to the current experimental bound. Our con-
struction can thus be used to figure out the precision
needed on Higgs coupling measurements given an exclu-
sion bound on the energy scale of new physics.

V. FUTURE DIRECTIONS

This program is in its early stages. We presented the
answer to a very specific problem, what is the maximal/
minimal value of cH and where do SM-like EFTs fit within

this bound. We are led to many more questions that would
be interesting to investigate, next we present few of them:

(i) An interesting aspect of the starting point we took is
that it can be extended to other theories and make it
more realistic. Further modeling of the IR ampli-
tudes will allow for more refined bounds. This
modeling biased on the particular IR physics one
is interested in probing, which is why in this work
we have restricted ourselves to fairly simple choices.

(ii) It would be interesting to constrain the dimension-
six operators involving twoH’s and two electroweak
gauge bosons.10 These operators, together with cH,
control the deviation of h → WþW−=ZZ within the
SILH framework.

(iii) Our bound (25) is fairly symmetric, jgmax
H j ≈ jgmin

H j. It
would be phenomenologically interesting to know
whether other dimensions-six operators enjoy in-
stead very asymmetric bounds.

(iv) Related to the previous point, we remark that our
bound is not optimal. It is nevertheless sufficiently
stringent to provide a rigorous constraint within the
relevant experimental ballpark. The primal S-matrix
bootstrap [29] is well suited to study in detail the
physical properties of the UV completed amplitudes
saturating the bounds studied. It would be interesting
to close the gap between the UV dominated primal
amplitudes constructed in [2,30] and the dual ap-
proach here presented in Sec. III D by including also
nonlinear unitarity in the IR.

(v) As a final remark, there are many generalizations of
our approach that could be done. From the dual
perspective, it might be interesting to extend the dual
problem including crossing symmetric dispersion
relations, recently reviewed in [31], see also [32,33],
and check whether this helps reconstructing the
phase shifts in a larger domain. Another direction
is to study the scattering of massless particles,
assuming an IR EFT input, and compare, for
instance, with the results obtained in [34]. Finally,
it would be also interesting to use the recursive
approach of [36] and reconstruct the full amplitude
starting from an IR EFT input.
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APPENDIX A: OðnÞ AMPLITUDES AND
DISPERSION RELATIONS

The two-to-two scattering amplitude of scalars trans-
forming as vectors under an OðnÞ internal symmetry,
va þ vb → vc þ vd, can proceed through three different
channels, as shown in (1). In this theory, crossing symmetry
amounts to the fact that the function M is symmetric
under the exchange of its last two variables Mðs̄jt̄; ūÞ ¼
Mðs̄jū; t̄Þ.
Unitary acts diagonally when expressed in terms of the

three irreducible representations of va ⊗ vb, respectively,
the singlet, symmetric, and antisymmetric irreducible
representations,

MðsingÞ ¼ nMðs̄jt̄; ūÞ þMðt̄jū; s̄Þ þMðūjs̄; t̄Þ; ðA1Þ
MðsymÞ ¼ Mðt̄jū; s̄Þ þMðūjs̄; t̄Þ; ðA2Þ

MðantiÞ ¼ Mðt̄jū; s̄Þ −Mðūjs̄; t̄Þ: ðA3Þ

We often group the irreducible representations into the
vector M⃗ ≡ ðMðsingÞ;MðsymÞ;MðantiÞÞ. Then, the action of
crossing symmetry on the irreducible representations fol-
lows from their definition and the symmetry properties of
M. It turns out that

M⃗ðs̄; t̄; ūÞ ¼Cst:M⃗ðt̄; s̄; ūÞ; M⃗ðs̄; t̄; ūÞ ¼Csu:M⃗ðū; t̄; s̄Þ;
M⃗ðs̄; t̄; ūÞ ¼Ctu:M⃗ðs̄; ū; t̄Þ; ðA4Þ

where the crossing matrices satisfy Cst:Csu ¼ Ctu:Cst ¼
Csu:Ctu, Ctu ¼ diagð1; 1;−1Þ,

Cst ¼

0
BBB@

1
n

1
2
− 1

n þ n
2

n
2
− 1

2

1
n

1
2
− 1

n − 1
2

1
n − 1

2
− 1

n
1
2

1
CCCA;

Csu ¼

0
BBB@

1
n

1
2
− 1

n þ n
2

1
2
− n

2

1
n

1
2
− 1

n
1
2

− 1
n

1
2
þ 1

n
1
2

1
CCCA; ðA5Þ

and C2
st ¼ C2

su ¼ C2
tu ¼ 1.

The partial wave decomposition can be carried inde-
pendently on each of the three different channels,

MðIÞðs; tÞ ¼
X∞
l;I

nlf
ðIÞ
l ðsÞPl

�
1þ 2t

s − 4

�
; ðA6Þ

where I ¼ sing; sym; anti, or equivalently I ¼ 1, 2, 3.
As usual,

fðIÞl ¼ 1

32π

Z
1

−1
dzPlðzÞMðIÞðs; tðzÞÞ; ðA7Þ

with tðzÞ ¼ −1=2ðs − 4Þð1 − zÞ and nl ≡ 16πð2lþ 1Þ.
Singlet and symmetric channels are symmetric under the
exchange of t ↔ u; therefore, their odd spin partial wave
projections vanish. Similarly, even spin partial wave
projection of the antisymmetric channel amplitude are
zero. The sum over the indices fl; Ig in (A6) means
fl even; I ¼ ðsing; symÞg and fl odd; I ¼ ðantiÞg.

1. Deriving the OðnÞ dispersion relation

In this section, we outline double subtracted dispersion
relations for the OðnÞ amplitude inspired by the original
derivation of Roy in [36]. Roy equations are often used to
analyze pion scattering amplitudes (see, [37] for example),
and the main difference of the treatment here is that our
subtractions points are the first and second derivatives of
M⃗ðs; tÞ at ðs ¼ 4=3; t ¼ 4=3Þ (namely, cλ and cH), instead
of the scattering lengths as in [37]. Let us start by writing a
contour integral counterclockwise around an analytic point
z ¼ s for fixed-t,

M⃗ðs; tÞ ¼ 1

2πi

I
dz

1

z2
s2

z − s
M⃗ðz; tÞ: ðA8Þ

Then, we blow up the contour to infinity, and by using
M⃗ðs; tÞ ¼ 1

2
M⃗ðs; tÞ þ 1

2
Csu:M⃗ðu; tÞ, we get

M⃗ðs; tÞ ¼ f⃗ðt; s; uÞ þ 1

π

Z
∞

4

dzKðz; s; uÞ:M⃗zðz; tÞ; ðA9Þ

where the kernel K is a matrix given by

Kðz; s; uÞ ¼ 1

z2

�
s2

z − s
1þ u2

z − u
Csu

�
; ðA10Þ

satisfying Kðz; s; uÞ ¼ Csu:Kðz; u; sÞ, and M⃗z ≡ Discz ×
M⃗ðz; tÞ=2i, and f⃗ is a function that contains residues at
z ¼ 0 and integrals along the left-hand cuts. Notice that the
s ↔ u symmetry of the amplitudeM and the kernel K force
f⃗ to satisfy f⃗ðz; s; uÞ ¼ Csu:f⃗ðz;u; sÞ. Below, we replaced f⃗
with a simple ansatz with the desired s ↔ u symmetry
property and obtained the following equations:

M⃗ðs; tÞ ¼ Cst:½c⃗ðtÞ þ ðs − uÞd⃗ðtÞ�

þ 1

π

Z
∞

4

dzKðz; s; uÞ:M⃗zðz; tÞ; ðA11Þ
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∂sM⃗ðs; tÞ ¼ Cst:½2d⃗ðtÞ� þ
1

π

Z
∞

4

dz∂s½Kðz; s; uÞ�:M⃗zðz; tÞ; ðA12Þ

where c⃗ðtÞ ¼ ðcsingðtÞ; csymðtÞ; 0ÞT and d⃗ðtÞ ¼ ð0; 0; dantiðtÞÞT . Evaluating (A11) and (A12) at the crossing symmetric point,
we can derive the following:

c⃗

�
4

3

�
¼ ðnþ 2; 2; 0ÞTcλ −

1

π

Z
∞

4

Cst:K

�
4

3
;
4

3

�
:M⃗z

�
z;
4

3

�
; ðA13Þ

2d⃗

�
4

3

�
¼ ð0; 0; 2ÞTcH −

1

π

Z
∞

4

Cst:∂sK

�
s;
8

3
− s

�
js¼4=3:M⃗z

�
z;
4

3

�
: ðA14Þ

Then, using the equation M⃗ð4=3; tÞ ¼ Cst:M⃗ðt; 4=3Þ, we can reexpress t-dependent subtraction constants with the
ones above,

Cst:½c⃗ðtÞ þ ðs − uÞd⃗ðtÞ� ¼ c⃗

�
4

3

�
þ 2

�
t −

4

3

�
d⃗

�
4

3

�
þ 2

�
s −

4

3

�
Cst:d⃗ðtÞ þ

Z
absorptive; ðA15Þ

as well as

2d⃗ðtÞ ¼ 2d⃗

�
4

3

�
þ ð1 − CtuÞ

ðt − 4=3Þ
1

π

Z
∞

4

dz

�
K

�
t;
8

3
− t

�
− K

�
4

3
;
4

3

��
:M⃗z

�
z;
4

3

�
− Cst:K

�
4

3
;
8

3
− t

�
:M⃗zðz; tÞ:

The integrand in the second term goes like Oððt − 4=3Þ2Þ, so it is regular when t → 4=3. Finally, plugging everything back
into (A11) yields

MðIÞðs; tÞ ¼ CðIÞðs; tÞ þ
Z

∞

4

dz½KðIJÞðz; s; tÞImMðJÞðz; tÞ þ LðIJÞðz; s; tÞImMðJÞðz; 4=3Þ�; ðA16Þ

where

C⃗ðs; tÞ ¼ cλ

0
B@

nþ 2

2

0

1
CAþ cH

0
B@

n − 1

−1
1

1
CAðs − 4=3Þ þ cH

0
B@

0

0

2

1
CAðt − 4=3Þ: ðA17Þ

Notice that the absorptive pieces vanish at ðs; tÞ ¼ ð4=3; 4=3Þ. The explicit form of the kernels is given by

Kðz; s; tÞ ¼ ð3s − 4Þð3sþ 3t − 8Þ
πnð3z − 4Þð3tþ 3z − 8Þðsþ tþ z − 4Þ ×

2
664
1 − nðsþtþz−4Þ

s−z
1
2
ðn2 þ n − 2Þ − 1

2
ðn − 1Þn

1 − nðsþ2tþ3z−8Þ
2ðs−zÞ − 1 n

2

−1 nþ2
2

− nðsþ2tþ3z−8Þ
2ðs−zÞ

3
775; ðA18Þ

Lðz;s; tÞ ¼ 3ðn− 1Þð3t− 4Þ
πnð3z− 4Þð3tþ 3z− 8Þ×

2
66664

2ð3t−4Þ
3ðn−1Þðz−tÞ þ 4−3s

3z−4
3ns−4nþ6s−8

2ð3z−4Þ þ ðnþ2Þð3t−4Þ
3ðz−tÞ

nð2sþt−4Þ
z−t − nð3s−4Þ

2ð3z−4Þ
3s−4

ðn−1Þð3z−4Þ þ 2ð3t−4Þ
3ðn−1Þðz−tÞ

ðn−2Þð3t−4Þ
3ðn−1Þðz−tÞ−

ðnþ2Þð3s−4Þ
2ðn−1Þð3z−4Þ

−2ns−ntþ4n
ðn−1Þðz−tÞ þ 3ns−4n

2ðn−1Þð3z−4Þ
2ð3t−4Þ

3ðn−1Þðz−tÞ−
3ðsþ2t−4Þ
ðn−1Þð3z−4Þ

3ðnsþ2nt−4nþ2sþ4t−8Þ
2ðn−1Þð3z−4Þ − ðnþ2Þð3t−4Þ

3ðn−1Þðz−tÞ
2nsþnt−4n
ðn−1Þðz−tÞ −

3ðnsþ2nt−4nÞ
2ðn−1Þð3z−4Þ

3
77775:

ðA19Þ
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The jth partial wave projection of (A16) gives rise to the Roy equations [36],

aðIÞj ðsÞ ¼ RefðIÞj ðsÞ − CðIÞ0

16π
δ0;j −

CðIÞ1

16π
δ1;j − P:V:

Z
∞

4

dv
X∞
l;J

kðIJÞj;l ðs; vÞnlImfðJÞl ðvÞ ¼ 0: ðA20Þ

where the subtraction constants are given by

C⃗0 ¼

0
B@

cλðnþ 2Þ þ cHðn − 1Þðs − 4=3Þ
2cλ − cHðs − 4=3Þ

0

1
CA; C⃗1 ¼

0
B@

0

0

ðcH=3Þðs − 4Þ;

1
CA; ðA21Þ

and the kernels by

kðIJÞj;l ðs; vÞ ¼ 2

32π

Z
1

0

dzPjðzÞ½KðIJÞðv; s; tÞPl

�
1þ 2tðzÞ

v − 4

�
þ LðIJÞðv; s; tÞPl

�
1þ 8=3

v − 4

��
: ðA22Þ

APPENDIX B: DUAL FUNCTIONAL

Let us find d� defined in Eq. (11), corresponding to the problem of maximizing or minimizing cH using only rigorous
analyticity, crossing, and unitarity. First, maximizing L� with respect to cλ and cH yields the following normalization
constraints:

∂L�
∂cλ

¼ 0∶ 0 ¼
Z

Λ2
c

Λ2

dv
16π

ðnþ 2; 2; 0Þ · ω⃗ðvÞ;
∂L�
∂cH

¼ 0∶ � 1 ¼
Z

Λ2
c

Λ2

dv
16π

��
v −

4

3

�
ðn − 1;−1; 0Þ þ ðv − 4Þ

�
0; 0;

1

3

��
· ω⃗ðvÞ; ðB1Þ

where ω⃗≡ ðwð1Þ
0 ; wð2Þ

0 ; wð3Þ
1 Þ. Next, comes the maximiza-

tion with respect to fRefðIÞl ; ImfðIÞl g. On their equations
of motion,

ρ · RefðIlÞ ¼
wðIlÞ
2λðIlÞ

; ðB2Þ

ρ · ImfðIlÞ ¼ 1þ nl
μðIlÞ
2λðIlÞ

; ðB3Þ

where ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − 4Þ=sp
. After plugging in the solution,

we get Eq. (14) in full glory

d�ðDÞ ¼
Z

∞

Λ2

dv
ρ
·

1

4λðIlÞ
ð2λðIlÞ þ nlμðIlÞÞ2

þ
Z

Λ2
c

Λ2

dv
ρ

·
w2
ðKjÞ

4λðKjÞ
; ðB4Þ

where we have grouped isospin and spin indices together
in a common parentheses for convenience, and we have
defined an auxiliary function,

μðIÞl ðvÞ≡ νðKÞn;m · FðKIÞ
n;m;lðvÞ − p:v:

Z
Λ2
c

Λ2

dswðKÞ
j ðsÞkðKIÞj;l ðs; vÞ:

ðB5Þ

Here, repeated indices are summed over, meaning that ðKjÞ
and ðn;mÞ sums are cut by Jc and ðnc;mcÞ, and ðIlÞ sum
goes up to ∞. The functional d� is to be minimized over
the set of dual variables D. However, to keep under control
the infinite l sum, one needs to make sure the squared
expression in the first term of (B4) must be suppressed as
l → ∞. One way to achieve this is to minimize analytically
for λðIlÞ, which gives

2λðIlÞ=nl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðIlÞðvÞ2 þWðIlÞðvÞ2

q
≥ 0: ðB6Þ

Plugging this expression in (B4) produces

d�ðfν; wgÞ ¼
Z

∞

Λ2

dv
ρðvÞ

X∞
ðIlÞ

nl
h
μðIlÞðvÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðIlÞðvÞ2 þWðIlÞðvÞ2

q i
; ðB7Þ
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where we have defined

WðIlÞðvÞ≡
�
wðIlÞðvÞ=nl for l ≤ Jc and v ≤ Λ2

c

0 otherwise
; ðB8Þ

and dropped the� label on d since its effect only enters into
cH normalization condition, but not in the objective. We
stress that the functional d� must be evaluated on the
solution of the two normalization conditions (B1).
Now, a final remark is in order: note that in the region

where WðIlÞ has no support, the integrand in the dual
objective reduces to

μðIlÞðvÞ · Θ½μðIlÞðvÞ�;

where Θ is the Heaviside theta function. This means that
higher spins will not contribute to the objective, as long
as μðIlÞ ≤ 0.

APPENDIX C: NUMERICAL IMPLEMENTATION

The (dual) problem presented before is a mathemati-
cally well-defined nonlinear optimization problem, which
can be studied by the favorite methods of the reader. For
our purposes, we numerically looked for the minimum
of (B7), and we chose to work with a linear problem solver
named SDPB, mostly used in the conformal bootstrap
literature [38,39]. The reason of choice for us was its
ability to achieve a reasonable degree of precision in the
optimization objective and the possibility to parallelize the
computations on a cluster.
To put the problem on a computer, we need to take

several steps to transform it into a suitable form. We start
with turning the nonlinear problem into a linear one, by the
relaxation method.

1. Relaxation

Let us write a new objective function, by extending the
set of dual variables to

Drel ¼ D ∪ fX IR
ðIlÞðvÞ;XUV

ðIlÞðvÞg:

Then, the relaxed dual objective, in which the new set of
dual variables enter linearly,

drelðDrelÞ ¼
Z

Λ2
c

Λ2

dv
ρ2ðvÞ

X∞
ðIlÞ

nlX IR
ðIlÞðvÞ

þ
Z

Λ2
c

Λ2

dv
ρ2ðvÞ

X∞
ðIlÞ

nlXUV
ðIlÞðvÞ; ðC1Þ

subject to semipositive conditions on the following 2 × 2
matrices:

0
@X IR

ðIlÞðvÞ WðIlÞðvÞ
WðIlÞðvÞ X IR

ðIlÞðvÞ − 2μðIlÞðvÞ

1
A≽ 0;

0
@XUV

ðIlÞðvÞ 0

0 XUV
ðIlÞðvÞ − 2μðIlÞðvÞ

1
A≽ 0: ðC2Þ

When these matrix constraints are saturated, rhs of (C1)
reduces to the rhs of (B7), and both dual objectives become
equal drel ¼ d.
In this section, we assume the lower boundary of

integration in (C1) to be the generic value Λ2, instead of
the normal threshold 4m2. This simple generalization will
allow us to describe the setup discussed in Sec. III C, where
we impose that ImM ¼ 0 for s < Λ2.
Notice that the positivity of the determinants imply

X IR
l ≥ μl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2l þ ðwl=nlÞ2

q
and XUV

l ≥ 2μlΘ½μl�. As a
result, determinants measure how far away we are from
saturating the true inequality drel ≥ d. We call the positive
difference drel − d measured by the determinant as the
relaxation gap.
The relaxation gap adds an additional layer of difficulty

on the way of achieving the optimal solution to the dual
problem. However, it does not compromise the rigor of our
approach, since its sole impact is to increase the objective,
which still qualifies as a valid dual bound. To reduce the
gap, we should increase the number of degrees of freedom
in X IR and XUV variables as much as we can.

2. Spin cutoff

We truncate the spin sum in (B7) to deal with only a
finite number of spins. Remember that for l > Jc the
integrand for each spin becomes

μðIlÞ · Θ½μðIlÞ�;

where Θ is the Heaviside theta function. This is interesting,
because if we can show that there exists an Lc such that
μðIlÞðvÞ < 0 for all v∈ ½4;∞� and l > Lc > Jc, the infinite
tail would not contribute to the spin sum, and we can safely
truncate the sum at Lc.
It turns out that there is such a corner in dual variables

space, providing a feasible solution for our objective. The
way we enforce the conditions are twofold: (i) we study
large-l expansion of each term in μðIlÞ and make sure that it
stays negative as l → ∞. (ii) for the intermediate spins, we
impose by hand the negativity conditions.

ðiÞ∶ μðIlÞðvÞ ≤ 0 for Lc ≤ l; ðC3Þ

ðiiÞ∶ μðIlÞðvÞ ≤ 0 for Jc ≤ l ≤ Lc: ðC4Þ
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By analyzing the asymptotics of (i) at large l, we find out that it is equivalent to the conditions,

ð−1Þncþmc · yðsingÞ < 0

ð−1Þncþmc · yðsymÞ < 0 where y⃗≡
0
B@

nþ 1 1 1
2ðn2þn−2Þ

n
2ð3n−2Þ

n
2ð−n−2Þ

n

n − 1 −1 3

1
CA · ν⃗;

ð−1Þncþmcþ1 · yðantiÞ < 0

ðC5Þ

and v⃗≡ ðνðsingÞnc;mc ; ν
ðsymÞ
nc;mc ; ν

ðantiÞ
nc;mcÞT , together with

XJc
j¼0

wðsymÞ
j ðΛ2

cÞPjð0Þ > 0 with Λ2
c ∈ ½vc; 4Λ2 − 4�;

XJc
j¼0

�
wðsingÞ
j ðΛ2

cÞ −
wðsymÞ
j ðΛ2

cÞ
n − 1

�
Pjð0Þ ¼ 0: ðC6Þ

See the next subsection for a detailed account on how to
derive them.
We impose (i) through (C5) and (C6) and (ii) with a fixed

Lc on the relaxed problem, and we increase Lc until a
convergence in drel is obtained.

a. Large l asymptotics in more detail

Large l behavior of μðIÞl ðvÞ is determined by Legendre
polynomials in the definition of the kernels (A22). Their
argument is either xðv; tÞ≡ 1þ 2t=ðv − 4Þ or xðv; 4=3Þ.
Remember that Legendre polynomials will grow exponen-
tially whenever their argument exceed �1. It turns out that
there is a critical value,

vc ¼ 2 − 4=3þ Λ2
c=2; ðC7Þ

along the integration range of v, such that

jxðv; 4=3Þj ≥ jxðv; tÞj for vc ≤ v; ðC8Þ

jxðv; tÞj ≥ jxðv; 4=3Þj for Λ2 ≤ v ≤ vc: ðC9Þ

We call the two regions the outer and inner region,
respectively.
Outer region vc < v. It is easy to see that at large l,

w̄ðIÞ
l ðvÞ ∼ Plðxðv; 4=3ÞÞ: ðC10Þ

We have checked the crossing term for all nþm ≤ 7, and
the leading contributions go like

FðKIÞ
n;m;lðvÞ ∼ ð−lÞðnþm−2ÞPlþnþm−2ðxðv; 4=3ÞÞ; ðC11Þ

with a positive overall l-independent factor that we
omitted. Crossing symmetry contribution clearly wins over
the other terms. We choose the set of crossing constraints
such that nc þmc gives uniquely the highest sum, and (C5)

will suffice to enforce μðIÞl < 0.
Inner region 4 ≤ v ≤ vc. The only dominant contribu-

tion in this case is

w̄ðIÞ
l ðvÞ ∼ Plðxðv; tÞÞ: ðC12Þ

PlðxÞ grows exponentially in x < −1; therefore, s- and

z-integrations in w̄ðIÞ
l ðvÞ are dominated by the minimum of

xðv; tðs; zÞÞ which occurs at the end points ðs ¼ Λ2
c;

z ¼ 0Þ. Approximating the result using the saddle point
method around the minimum gives

w̄ðIÞ
l ðvÞ ≈ 1

l2

ðΛ2
c − vÞ2
Λ2
c − 4

XJmax

j;K

wðKÞ
j ðΛ2

cÞPjð0ÞPl

×

�
v − Λ2

c

v − 4

�
KðKIÞðv;Λ2

c; 2 − Λ2
c=2Þ: ðC13Þ

Notice that Pjðz → 0Þ ≈Oð1Þ for j even and OðzÞ for j
odd. As a consequence, saddle point contributions from

wðantiÞ
j are Oð1=lÞ suppressed with respect to symmetric

and singlet channels. Therefore, inner region constraints

will be only on the dual variables wðsingÞ
j and wðsymÞ

j .

Note further that Plðv−Λ
2
c

v−4 Þ > �1 for all v and even/odd

l. To enforce μðIÞl < 0, we need to combine w̄ðsing;symÞ
l > 0

and w̄ðantiÞ
l < 0. These three conditions put together even-

tually imply the ones in (C6).

3. Dual ansatze

Next, we describe how to write an ansatz for the dual
variables in terms of a finite basis of functions. We send the
interval x∈ ½−1; 1� into vIR ∈ ½Λ2;Λ2

c� and vUV ∈ ½Λ2
c;∞Þ

with the following maps:
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vIRðxÞ ¼ 1

2
ðΛ2

c þ Λ2Þ þ x
2
ðΛ2

c − Λ2Þ;

vUVðxÞ ¼ π

3
Λ2
c tan

�
π

4
ðxþ 1Þ

�
sec2

�
π

4
ðxþ 1Þ

�
: ðC14Þ

Then, we parametrize the dual variables fX IR
l ;XUV

l ; wlg in
terms of Chebyshev polynomials Tn,

wðIÞ
l ðxÞ ¼

XNw

n¼0

aðIÞl;nTnðxÞ; X ðIÞ;IR
l ðxÞ ¼

XNIR

n¼0

cðIÞl;nTnðxÞ;

X ðIÞ;UV
l ðxÞ ¼

XNUV

n¼0

dðIÞl;nTnðxÞ; ðC15Þ

such that dxXlðxÞ ¼ dvXlðvÞ, and they give the same
result under the integral sign. In our runs, we often take
Nmax ¼ Nw ¼ NIR ¼ NUV, and we sample above functions
of x on a Chebyshev grid with 199 points on ½−1; 1� for
both IR and UV sections.
Notice that dvUV=dx has a zero at x ¼ −1 which can

cause us problems, since

lim
v→Λ2

c

XUV
l ðvÞ ¼ lim

x→−1
XUV

l ðxÞ
�
dvUV

dx

�−1

will behave singular, unless XUV
l ðxÞ⟶x→−1

Oðxþ 1Þ. To
make sure it is regular, we require

X ðIÞ;UV
l ð−1Þ ¼

XNUV

n¼0

dðIÞl;nTnð−1Þ ¼ 0: ðC16Þ

All in all, the dual problem to be solved numerically is the
following:

min drelðDrelÞ overfνðIÞn;m; a
ðIÞ
l;n; c

ðIÞ
l;n; d

ðIÞ
l;ng

subject to fðB1Þ; ðC2Þ; ðC4Þ; ðC5Þ; ðC6Þ; ðC16Þg: ðC17Þ

4. The space of OðnÞ theories
We have left the parameter n > 1 to be a generic integer

so far. In order to explore the space of nonperturbative
islands at various n, we solved the radial optimization
problem given in Sec. III A for a couple of values n ¼ 2, 3,
4. The resulting islands are shown in Fig. 5.
Numerical bounds we obtain in Figs. 1, 3, and 5 depend

on the cutoff parameters fJc; Lc; ðnc;mcÞ; Nmaxg. To
obtain well converged bounds, we fixed them to the
following values in all of our runs:

Jc ¼ 5; Lc ¼ 25; ðnc;mcÞ ¼ ð1;6Þ; Nmax ¼ 8:

APPENDIX D: PERTURBATIVE COMPUTATIONS

1. Perturbative λjϕ⃗j4 low energy constants

Consider the interaction Lagrangian Lint ¼ −λjϕ⃗j4=8.
The amplitude at tree level is given by M ¼ −λ. Here, we
are interested in computing the leading order contribution
to the low energy constants coming from the one-loop
interaction. The bare coupling λ diverges at one-loop, so we
just redefine the coupling using the physical amplitude
cλ ¼ Mðs ¼ t ¼ u ¼ 4=3Þ ¼ −λR. The imaginary part at
one-loop is simply given by

ImM⃗ðs≥ 4m2; tÞ ¼ 1

2

λ2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

s

r
ððnþ 2Þ2;4;0Þ: ðD1Þ

Plugging this expression into the dispersive representations
(6), (16), and (17), we obtain

cH ¼ c2λ
256π2

3ðnþ 2Þ
�
3

ffiffiffi
2

p
tan−1

�
1ffiffiffi
2

p
�
− 2

�
; ðD2Þ

c2 ¼
c2λ

4096π2
9

�
14 − 15

ffiffiffi
2

p
tan−1

�
1ffiffiffi
2

p
��

; ðD3Þ

2c2 þ c02 ¼
c2λ

8192π2
9ðnþ 8Þ

�
14 − 15

ffiffiffi
2

p
tan−1

�
1ffiffiffi
2

p
��

:

ðD4Þ

2. Further comments on (26)

We now present a simple perturbative calculation to gain
additional insights into the range of validity of (26).
Consider the Lagrangian L ¼ ð∂ϕ⃗Þ2=2 −m2ϕ⃗2=2 − λϕ⃗4=
8 −M2Φ2=2 − gϕ⃗2Φ=2þOðΦ3Þ, with M2 ≫ m2. The
imaginary part of the two-to-two scattering amplitude, at
lowest nontrivial order, is given by

FIG. 5. A family of OðnÞ dual exclusion plots, for n ¼ 2, 3, 4,
respectively, from outer to innermost boundary. Markers along
the boundaries indicate the angular grid chosen in the radial
optimization problem described in Sec. III A.
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ðD5Þ

which has nonvanishing partial wave projection to spin-zero only, in both singlet and symmetric isospin channels. Then, the
only integrals to evaluate in the sum rule (6) are for J ¼ 1, 2 and l ¼ 0. The corresponding kernels are

κð3;1Þ1;0 ðs; vÞ ¼ −
1

3
κð3;2Þ1;0 ðs; vÞ ¼ −12ðs − 4Þðv − 4

3
Þ2 þ 6ðv − 4

3
Þ2ðsþ 2v − 4Þ logðsþv−4

v Þ − ðs − 4Þ3
192π2ðs − 4Þ2ðv − 4

3
Þ2 : ðD6Þ

Let us choose Λ2 ¼ M2 and study the following IR/UV ratio:

r½s�≡ cIRH ðsÞ
cUVH ðsÞ with cIRH ðsÞ≡

Z
Λ2

4

dvkð3;JÞ1;l ðs; vÞImfðJÞl ðvÞ; cUVH ðsÞ≡
Z

∞

Λ2

dvkð3;JÞ1;l ðs; vÞImfðJÞl ðvÞ; ðD7Þ

to be evaluated on the above amplitude. We fix the subtraction point to two values: s ¼ 4m2 and s ¼ M2.
r½s� then depends on two free parameters of the amplitude (D5): The ratio of couplings g2=λ2 and the mass of the heavy

particle M2. Defining r½s� ¼ 1 as the transition point between IR/UV domination regimes, we find out the domination
regions in the parameter space as shown in Fig. 6.

APPENDIX E: RIGOROUS BOUNDS ASSUMING AN IR MODEL

In this Appendix, we solve the problem discussed in Sec. III D. We assume that

ImfðIÞl ðsÞ ¼ gðIÞl ðsÞ; s ≤ Λ2: ðE1Þ

The phenomenological input enters into the choice of Λ and glðsÞ. With this condition, the Roy equations are given by

RefðIÞl ðsÞ ¼ cðIÞl ðsÞ þ 1

π

Z
Λ2

4m2

X
j;K

gðKÞj ðvÞkðKIÞjl ðv; sÞdvþ 1

π

Z
∞

Λ2

X
j;K

ImfðKÞj ðvÞkðKIÞjl ðv; sÞdv: ðE2Þ

We want to solve the problem of maximizing αcH where α ¼ �1 within our model. We write the Lagrangian (we omit the
unitarity constraints for simplicity)

L ¼ αcH þ
XL
lI

Z
μ2

Λ2

RefðIÞl ðsÞwðIÞ
l ðsÞdsþ

X∞
lI

Z
∞

Λ2

ImfðIÞl ðsÞw̄ðIÞ
l ðsÞdsþ

X∞
lI

Z
Λ2

4m2

gðIÞl ðsÞw̄ðIÞ
l ðsÞds

þ
XL
lI

Z
μ2

Λ2

cðIÞl ðsÞwðIÞ
l ðsÞds; ðE3Þ

where

FIG. 6. IR/UV domination regimes of the amplitude (D5). Blue is when r < 1, and orange is when r > 1.
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w̄ðKÞ
j ðvÞ ¼ −

1

π

XL
lI

Z
μ2

Λ2

wðIÞ
l ðsÞkðKIÞjl ðv; sÞds: ðE4Þ

Maximizing with respect to the primal variables cλ, cH, we
obtain the dual constraints

∂

∂cH

�
αcH þ

XL
lI

Z
μ2

Λ2

cðIÞl ðsÞwðIÞ
l ðsÞds

�
¼ 0;

∂

∂cλ

�
αcH þ

XL
lI

Z
μ2

Λ2

cðIÞl ðsÞwðIÞ
l ðsÞds

�
¼ 0; ðE5Þ

while first maximizing with respect to the physical partial
waves and then minimizing with respect to the unitarity
constraints we obtain the inequality

cH ≤ D ¼ DUV þDIR½gðIÞl �; ðE6Þ

where

DUV ¼
XL
lI

Z
μ2

Λ2

w̄ðIÞ
l ðsÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw̄ðIÞ

l ðsÞÞ2 þ ðwðIÞ
l ðsÞÞ2

q
ρ2ðsÞ ds;

ðE7Þ

and

DIR½gðIÞl � ¼
X∞
lI

Z
Λ2

4m2

gðIÞl ðsÞw̄ðIÞ
l ðsÞds; ðE8Þ

provided that w̄ðIÞ
l ðsÞ ≤ 0 whenever it does not appear in

DUV or DIR.
For each given IR model, we can solve a dual problem.

Let us discuss now some limiting situations. Imagine

gðIÞl ¼ 0, which gives

cH ≤ DUV: ðE9Þ

This approximation can be well justified in two scenarios.
One is realized when we have weakly coupled UV
complete models such as in gauge theories with large
Nc. In this case, we do expect our bound to be extremely
loose. The second scenario is realized when, due to
nonperturbative effects, there is a cancellation among terms
in the low energy expansion, and we can neglect the
imaginary parts way beyond the radius of convergence of
the EFT. This scenario sometimes is realized on the
boundary of the allowed region determined by nonpertur-
bative bootstrap studies [2].

Suppose now that DIR½gðIÞl � ≤ 0. Then, we obtain the
chain of inequalities,

cH ≤ DUV þDIR½gðIÞl � ≤ DUV: ðE10Þ

In it, it could be possible to impose this condition, and the
bound should hold for any IR model and therefore contain
theOð4Þ island. In general, however, it is hard to satisfy the
inequalityDIR½gðIÞl � ≤ 0, and, a priori, we cannot rigorously
use the DUV functional alone to bound the Wilson
coefficients in presence of an IR imaginary part.
However, it is possible to obtain a bound on cH by

solving first the truncated optimization problem

dUV ¼ min
w
DUV; ðE11Þ

which is attained for some critical wc, then construct the
bound

cH ≤ DIR½gðIÞl � þ dUV; ðE12Þ

by plugging wc in DIR½gðIÞl �.
So, solving the simple universal problem (E11)—see

also Sec. III C—has a conceptual value since it can be used

to generate rigorous bounds for any choice of the gðIÞl . If we
commit from the beginning with some IR model, then we

can fully optimize DUV þDIR½gðIÞl �, and obtain even
stronger bounds.

APPENDIX F: PHASE SHIFTS

We can reconstruct the optimal dual S-matrices from the

partial waves fðIÞl ðvÞ on the support where we impose

the Roy equations. wðIÞ
l exist, because then we can use the

fixed-t dispersion relation to reconstruct RefðIÞl ðvÞ, as can
be seen in (B3). Then the S-matrix on a single partial wave
channel is given by

SðIÞl ðsÞ ¼ 1þ i

ffiffiffiffiffiffiffiffiffiffi
s − 4

s

r
fðIÞl ðsÞ; ðF1Þ

which is a pure complex phase evaluated on the solutions
(B3). This allows us then to plot the phase shift of the
scattered wave as a function of s,

δðIÞl ðsÞ ¼ 1

2i
log SðIÞl ðsÞ: ðF2Þ

Below, in Fig. 7, we give sample dual phase shifts along the
four distinct sections of the Oð4Þ nonperturbative island.

Note that a threshold singularity puts δðIÞl ð0Þ ¼ π=2 which
would otherwise be zero.
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