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Abstract: The effect of skin pigmentation on photoplethysmography and, specifically,
pulse oximetry has recently received a significant amount of attention amongst researchers,
especially since the COVID-19 pandemic. With most computational studies observing
overestimation of arterial oxygen saturation (SpO2) in individuals with darker skin, this
study seeks to further investigate the root causes of these discrepancies. This study anal-
ysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light,
moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.
With simulated intensity reflecting PPG amplitude, the results showed that systolic inten-
sity decreased by 3–4% as pigmentation increased at 660 nm. It was also shown that the
impact at 940 nm is minimal (<0.2%), indicating that the increased absorption of red light
by melanin has a greater effect on the ratio of ratios calculations. These results suggest
that in-built adjustments may be required for data collected from red-light sources in pulse
oximeters that do not currently have the necessary post-processing algorithms to account
for this difference between diverse skin populations.

Keywords: Monte Carlo simulation; photoplethysmography; skin pigmentation; oxygen
saturation; pulse oximetry

1. Introduction
Photoplethysmography (PPG) is extensively utilised in medical diagnostics to optically

and non-invasively monitor blood volume changes within the microvascular bed of tissue.
The appeal of PPG lies in its simplicity, cost-effectiveness, and its ability to provide essential
physiological metrics, such as heart rate and oxygen saturation (SpO2). This makes it an
indispensable tool in various healthcare environments, from routine monitoring to critical
care [1]. However, the accuracy and reliability of PPG measurements are influenced by
various factors, including skin pigmentation, which has received considerable attention,
particularly since the COVID-19 pandemic [2,3]. Specifically, research has shown that skin
pigmentation can alter the way light is absorbed and scattered within biological tissue,
potentially leading to inaccuracies in SpO2 measurements [4]. Therefore, understanding
and addressing the impact of skin pigmentation on PPG is crucial for improving the
technology’s effectiveness across diverse patient populations.

Several studies have explored the effect of melanin concentration, the primary de-
terminant of skin colour, on SpO2 measurements using the Monte Carlo technique [5–8].
Employing this type of simulation has sought to replicate and better understand the dis-
crepancies observed in clinical settings. These studies have consistently indicated an
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overestimation of SpO2 in subjects with darker skin, particularly evident in the shift in
simulated calibration curves for both transmittance and/or reflectance pulse oximetry
modes in comparison to light skin populations. While this research has been crucial for
establishing the influence of red-light absorption by increasing levels of melanin, some
improvements in the methodologies can help create more realistic models of the human
finger which, in effect, can improve PPG data obtained for different skin types.

Consequently, this study aims to examine the effect of skin pigmentation on simulated
Monte Carlo PPG signals using red light (660 nm) and infrared light (940 nm), which,
to our knowledge, has not yet been explored. The aim of this research is to directly
explore how skin pigmentation affects PPG signals through an in silico investigation, which
provides complementary insights to the studies that have focused on simulated pulse
oximeter calibrations for different skin types [5–7,9,10]. Whilst they have been crucial for
understanding variations in the ratio of ratios values, analysing the initial signal distortions
caused by skin pigmentation provides clarity to the overall knowledge base. This approach
allows for observing the signal’s amplitude and quality with different skin types, offering
insights that can lead to more precise adjustments in calibration algorithms before the raw
PPG data are processed.

Additionally, another novelty in this study is improving the modelling of skin pig-
mentation. One of the key advancements is the use of spectrophotometrically obtained
optical properties for different skin tones rather than relying on mathematical equations.
Traditionally, the Fitzpatrick scale evaluates parameters related to predicting the skin’s
reaction to ultraviolet light [11]. As a result, it may not account for all aspects of skin colour,
such as undertones, redness, or colour evenness [12]. This approach risks introducing bias
into the subjective stratification of skin pigmentation, which may reduce the reliability and
applicability of traditional phototyping in clinical research. For instance, a study by He
et al. showed that patient self-reported race and pigmentary phenotypes are inaccurate
predictors of sun sensitivity, as defined by the Fitzpatrick scale [13]. Moreover, another
study presented by Pershing et al. employed reflectance spectrophotometry to quantify
skin pigmentation in anatomical sites that are both protected and unprotected from UV
radiation [14]. With a motivation to also assess the correlation between objective skin pig-
mentation stratification methods and the Fitzpatrick scale, they found that, in some cases,
there is a lack of complete agreement between the phenotype group assigned to the patient
by the clinician and the spectra obtained. Hence, greater accuracy in the methodology
approach can be achieved when objectively quantifying skin pigmentation.

2. Materials and Methods
Monte Carlo models simulate the path of virtual photon clusters as they travel through

biological tissue with defined optical properties. During their travel, they undergo multiple
instances of absorption, scattering, and reflection. Photons propagate in three-dimensional
(3D) space using a Cartesian coordinate system (x, y, z) and spherical polar coordinate
system, which is essential for accurately illustrating the distribution of light in all possible
directions. When photons interact with scatterers in the tissue and its path changes, the
resulting directional shift is first computed in the spherical polar system before being
converted to the Cartesian coordinate system.

To represent the direction of a photon at any given point, a vector
→
r is used. In

the spherical polar coordinate system, this direction is defined by the deflection angle
(θ) and the azimuthal angle (φ), as illustrated in Figure 1. In the Cartesian system, the
position vector

→
r forms angles with α, β, and γ with the x, y, and z axes, respectively.

These relationships allow for the transformation between the spherical polar and Cartesian
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coordinate systems through direction cosines given by ux, uy, uz, which are given by
the following:

ux = cosα = sin θcosφ (1a)

uy = cosβ = sin θsinφ (1b)

uz = cosγ = cos θ (1c)

where φ = 2πξ, a randomly generated azimuthal angle between 0 and 2π to represent
a full circle. In MATLAB, the ‘rand’ function generates a random number (ξ) between
0 and 1 based on a uniform distribution, which means that each value in the range has an
equal chance of being selected. It uses a deterministic algorithm, such as the Mersenne
Twister, which determines the entire sequence of numbers based on an initial ‘seed’ value.
If the same seed is used with the same settings, the sequence of random numbers will be
identical each time, making experiments reproducible. Therefore, if the same simulation is
run multiple times, it will not produce the same exact data but should generate the same
trends observed between different inputs and outputs.
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Figure 1. The relationship between the cartesian coordinate and spherical polar coordinate system.
The vector

→
r makes the deflection angle (θ) and the azimuthal angle (φ) in the spherical polar

coordinate system. Similarly, the position vector
→
r forms angles with α, β, and γ with the x, y, and z

axes, respectively.

Other parameters that are randomly generated are the photon step size, which defines
the distance that the photons travel between each scattering event, the position coordinates
of the photons, and the radius of the gaussian beam. Briefly, the step size (l) and the
gaussian beam radius (r1) are derived by solving specific probability density functions
given by:

l = − ln(ξ)
µa + µs

(2)

r1 = b
√
−ln(ξ) (3)
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where b is the radius of the beam. Then, to determine the position of the incident photons,
the x and y coordinates are calculated using basic trigonometric functions:

x = r1 cosφ (4a)

y = r1 sinφ (4b)

The Monte Carlo model in this study is designed to simulate characteristic points
which, when combined together, emulate the alternating component of a PPG signal. This
is achieved by incorporating volumetric changes in blood vessels, which reflect variations
in blood pressure over time. Vessel diameters are varied as input parameters to mimic the
pulsatile nature of blood flow, with the resulting light-intensity outputs representing the
amplitude of a PPG signal. While the model does not directly simulate the full time-domain
signal as a continuous waveform, it effectively captures the relationship between vascular
dynamics and optical intensity changes, enabling the analysis of factors such as melanin
concentration and its impact on PPG signal generation. The methodology will be described
in detail in the subsequent paragraphs.

First, a block diagram of the different layers in the human finger was created for
implementation in the current Monte Carlo model (Figure 2). This included the stratum
corneum, epidermis, a dermis layer containing five blood vessels positioned 1 mm apart in
the lateral (x) direction, fat, and muscle containing a cylindrical bone perpendicular to the
vessels, in alternate order. This way, adequate blood perfusion was modelled by including
a sufficient number of blood vessels, which also covered the area where the light would
travel from the source to the detector, placed 3 mm apart in the reflectance mode. The
thicknesses of each layer were extracted from the literature and used in previous models,
including the Monte Carlo algorithm used to simulate photons and model the different
light–tissue interaction mechanisms [4,6].
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Figure 2. Anatomical structure of the region of interest. (a) Diagram of a finger showing the
vasculature network to implement in the MC model [15]. (b) Block diagram of the finger showing the
stratum corneum, epidermis, dermis and vessels, fat, muscle, and bone in alternate order.

Next, three silicone skin layers were prepared using different concentrations of Bismark
Brown as the absorber along with a fixed concentration of titanium dioxide in Sylgard
184, specifically designed to mimic the optical and mechanical characteristics of skin.
These pigmented silicone skin samples were then placed in an optical-grade cuvette and
positioned inside the LAMBDA 1050+ UV/VIS/NIR spectrophotometer (PerkinElmer Inc.,
Waltham, MA, USA) to measure diffuse reflectance. After machine calibration, light was
directed through a monochromator to the sample, and reflected light was captured by
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detectors for wavelengths ranging between 400 nm and 1000 nm. The diffuse reflectance
spectrum was calculated by comparing the sample’s reflected light to the baseline, enabling
detailed analysis of the light scattering and absorption influenced by pigmentation. After
that, the spectra was processed with an Inverse Adding–Doubling (IAD) algorithm to
derive the absorption and reduced scattering coefficients of the epidermal layers using
an input anisotropy value of 0.8 [16]. Additionally, the L*a*b* values of the developed
skin layers were calculated from the reflectance spectra, which is a colour representation
system that describes colours in a three-dimensional space [17]. The optical properties of
the bloodless dermis and blood vessels were calculated to reflect changes in the anatomy
presented in the current model. The absorption coefficient and scattering coefficient of
arterial blood (µa_A and µs_A, respectively) and venous blood (µa_V and µs_V, respectively)
were calculated using Equations (5a)–(5d) for arterial oxygen saturation levels of 70% and
100%, as adapted from Jacques (1998) [18,19]:

µa_A = satA ∗ µaHbo + (1 − satA) ∗ µa_HHb (5a)

µa_V = satV ∗ µaHbo + (1 − satV) ∗ µa_HHb (5b)

µs_A = satA ∗ µsHbo + (1 − satA) ∗ µs_HHb (5c)

µs_V = satV ∗ µsHbo + (1 − satV) ∗ µs_HHb (5d)

satA = arterial oxygen saturation level (70% and 100%);
satV = venous oxygen saturation level (60% and 90%);
µaHbo = absorption coefficient of oxygenated blood;
µaHHb = absorption coefficient of deoxygenated blood;
µsHbo = scattering coefficient of oxygenated blood;
µsHHb = scattering coefficient of deoxygenated blood.
Then, the overall absorption coefficient and scattering coefficient of each vessel was

calculated by taking the mean of these coefficient values to account for overall contribution
from the arterial and venous blood. Lastly, the absorption coefficient of the dermal layer was
calculated by taking the average of the papillary dermis, upper blood net dermis, reticular
dermis, and deep blood net dermis using their respective water concentrations (Table 1):

µa_dermis = µaW(n) ∗ vw(n) + (1 − vW(n)) ∗ 7.84 ∗ 107 ∗ λ−3.255/a (6)

µaW = absorption coefficient of water;
vw = water concentration;
n = papillary dermis (1), upper blood net dermis (2), reticular dermis (3), and deep

blood net dermis (4);
a = number of dermal sublayers (4).
The optical properties of the stratum corneum, fat, muscle, and bone layers were

consistent with those also used in previous studies [4,6].
To calculate the alternating current (AC), direct current (DC) components of the

simulated PPG waveforms, the perfusion index (PI), and the ratio of ratios (R) at the
operating wavelengths, the systolic and diastolic intensities (Is, Id) were utilised [4,6,19]:

AC = Id − Is (7a)

DC = Is (7b)

PI = AC/DC (7c)

R =
(PI)660
(PI)940

(7d)
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Table 1. Optical properties and water concentrations of different tissue constituents from the literature
to calculate the absorption coefficients and scattering coefficients of arterial and venous blood, as
well as the absorption coefficient of the dermis. The anisotropy factor, g, is also included to define the
directionality of the photons. All values are rounded to three significant figures.

660 nm 940 nm

µa µs g µa µs g

Oxygenated haemoglobin [20] 0.150 92.3 0.985 0.650 56.8 0.977

Deoxygenated haemoglobin [20] 1.64 81.5 0.986 0.430 49.7 0.978

Water [21] 0.000400 - - 0.0267 - -

Water concentration (%) [22]

Papillary dermis 50

Upper blood net dermis 60

Reticular dermis 70

Deep blood net dermis 70

To simulate the characteristics of the AC component of the PPG signal, it was important
to understand how the vessel volume changes when inducing different levels of internal
pressure. Therefore, a custom-built phantom body with a 0.5 mm vessel channel was
created by mixing 20 g of Part A Platsil Gel 00 (Polytek Development Corp, Easton, PA,
USA) with 0.6 g of retarder (1.5% of the total silicone used) to extend the working time
from 6 min to 10–12 min. This allowed for sufficient time to combine all components before
the silicon started to harden. After that, 20 g of Part B Platsil Gel 00 was incorporated
into the mixture for approximately one minute before placing it in a vacuum to remove
any air bubbles. A 3D-printed 40-by-77 mm mould (width by length) was used to insert a
0.5 mm diameter wire through pre-made holes. The wire was carefully straightened and
secured with weighted objects at both ends to ensure the channel remained as straight as
possible. The silicone mixture was then poured into the mould and left to cure for 24 h.
Once cured, the phantom was removed from the mould and the wire was extracted by
pulling it to expose the channel. Figure 3 shows the vessel channel highlighted with blue
ink for enhanced visualisation.

Subsequently, the phantom was connected to a pump (Legato 180, KD Scientific Inc.,
Holliston, MA, USA) via small connectors and attached to a syringe containing blue ink,
which was injected into the channel in 20-microliter increments. This was considered a
suitable increment to find a balance between reliable data collection, time, and system
stability. Initially, one end of the channel was left open until it was filled with blue ink to
establish a baseline volume at 0 mmHg pressure. The channel was then sealed with the
other connector and an additional 20-microliter of blue ink was injected into the closed
system. Each increase in volume corresponded to a specific pressure value displayed on
a screen, which was recorded from the pressure sensor after 10 s from when fluid was
injected into the vessel channel (Figure 4). This procedure was repeated twice for a total of
seven readings, and the average pressure was plotted against the channel diameter. The
diameter was calculated using the following equation:

V = πr2L (8a)

Which was then rearranged to:

r =

√
V

πL
(8b)

V = the volume of vessel channel;
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r = the radius of the vessel channel;
L = the length of the vessel channel.
After that, the diameter was calculated by doubling the value of each radius.
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ink is used to visualise the vessel channel.

Sensors 2025, 25, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 4. The phantom set up for a pressure–volume experiment. A pump (Legato 180, KD Scientific 
Inc., MA, USA) has a syringe mechanism containing blue ink to inject into the phantom. The other 
end of the phantom is connected to a pressure sensor to measure pressure in the vessel channel as 
20 μL of blue ink is injected each time. The pressure sensor is connected to a data acquisition device 
(CompactDAQ−9178, National Instruments Corp., Austin, TX, USA) to process the data and display 
pressure readings on the monitor. 

3. Results 
3.1. Optical Properties 

The L* and b* values of the silicone pigmented skin layers, corresponding to the light-
ness of the colour and the colour’s position between blue and yellow, respectively, are 
presented in Figure 5. As observed, there is a similar trend to the L* and b* values reported 
in the literature for light, intermediate, and brown skin tones corresponding to light, mod-
erate, and dark skin, respectively. After validating the pigmented skin layers against the 
L*a*b* scale [23], the optical properties were calculated and incorporated into the model. 
These are presented in Table 2 along with the optical properties of the stratum corneum, 
fat, muscle, and bone from the literature. 

Figure 4. The phantom set up for a pressure–volume experiment. A pump (Legato 180, KD Scientific
Inc., MA, USA) has a syringe mechanism containing blue ink to inject into the phantom. The other
end of the phantom is connected to a pressure sensor to measure pressure in the vessel channel as
20 µL of blue ink is injected each time. The pressure sensor is connected to a data acquisition device
(CompactDAQ–9178, National Instruments Corp., Austin, TX, USA) to process the data and display
pressure readings on the monitor.
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3. Results
3.1. Optical Properties

The L* and b* values of the silicone pigmented skin layers, corresponding to the
lightness of the colour and the colour’s position between blue and yellow, respectively,
are presented in Figure 5. As observed, there is a similar trend to the L* and b* values
reported in the literature for light, intermediate, and brown skin tones corresponding to
light, moderate, and dark skin, respectively. After validating the pigmented skin layers
against the L*a*b* scale [23], the optical properties were calculated and incorporated into
the model. These are presented in Table 2 along with the optical properties of the stratum
corneum, fat, muscle, and bone from the literature.

Table 2. Optical properties of the finger layers, including the blood vessels, at 70% and 100%
oxygen saturation [6].

Tissue Layer/Component µa (mm−1) µs (mm−1) g

660 nm 940 nm 660 nm 940 nm 660 nm 940 nm

Stratum corneum 0.0495 0.0170 25.6 5.68 0.910 0.940

Light epidermis 0.00964 0.00571 13.8 7.79 0.800 0.800

Moderate epidermis 0.0195 0.00567 12.3 7.10 0.800 0.800

Dark epidermis 0.0396 0.00627 12.9 7.70 0.800 0.800

Dermis (Bloodless) 0.0135 0.0209 25.6 5.68 0.910 0.940

Blood vessels (O2 = 70%) 0.672 0.573 60.6 37.1 0.985 0.977

Blood vessels (O2 = 100%) 0.225 0.639 87.8 54.1 0.985 0.977

Fat 0.0104 0.0170 6.20 5.42 0.900 0.900

Muscle 0.0816 0.0401 8.61 5.81 0.880 0.910

Bone 0.0351 0.0457 34.5 24.7 0.920 0.930

3.2. Mechanical Properties

Changes in pressure were recorded from the pressure transducer as more and more
ink was injected into the vessel channel. These values were recorded and then plotted
against their respective calculated vessel diameter in MATLAB. Since there was a clear
linear relationship between the two variables, a linear equation was extracted using in -built
MATLAB tools for the maximum possible pressure that the system was able to withstand.
This accurately represented pressure variations with vessel volume before the system was
no longer functioning in a closed loop:

Pressure = 576 ∗ diameter − 237 (9)

This equation is rearranged and used to convert variations in a normotensive blood
pressure pulse (Figure 6) to changes in vessel diameter (Figure 7). The pressure pulse
consists of approximately 7000 data points, which corresponds to 7000 vessel diameter
values. However, simulating all these points would be computationally inefficient, so
15 key points were selected to represent the features of a PPG signal. First, the onsets of
the pressure signal were identified, followed by key inflexion points, including the systolic
peak and points before and after the dicrotic notch. Additional points were then chosen
between these key locations to accurately capture the overall shape of the PPG signal.
This vessel diameter data were input into the Monte Carlo model to simulate the dynamic
response of a PPG signal.
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Figure 5. Quantification of pigmented silicon skin layers against the L*a*b* scale. (a) L*b* plane
values for six skin types ranging between very light and dark. (b) L* and b* values calculated from
the reflectance spectra of the developed skin layers in the Research Centre for Biomedical Engineering
at City St George’s, University of London, using Microsoft Excel. The results show a similar trend to
the L* and b* values reported in the literature for light, intermediate, and brown skin tones.
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Figure 7. Pressure pulse used to convert volumetric blood changes into vessel diameter data using
Equation (9). These 15 vessel diameter values are inputted into the Monte Carlo model to simulate
characteristic points of a PPG waveform in synchrony with pressure. (a) Normotensive blood pressure
waveform; (b) calculated vessel diameter values.

3.3. Simulation Outcomes

The photon profiles, which illustrate the trajectories of photons as they travel between
the source and detector, are presented in Figure 8. To plot these images, the positions of
the photons were tracked along the x, y, and z directions until they were detected. The
coordinates were then stored in separate vectors and organised into histograms in MATLAB
to visualise the photon scattering density, with brighter red regions indicating areas of
higher density. At both wavelengths, the scattering density is notably high within the
vessels, particularly at 660 nm, which aligns with the magnitude of blood’s scattering
coefficients (Table 2). Although photon penetration depth is quite limited to the skin layers
in reflectance mode, the photons are seen to travel across a sufficient width of the finger and
through the vessels. This interaction is essential for generating reproducible characteristic
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points where the key features of the PPG signal are visibly clear and well distinguished.
The high scattering coefficient facilitates photon transport and interaction with the blood in
the vessels, which enhances the signal-to-noise ratio by increasing the light modulation
corresponding to pulsatile blood flow. However, it should be noted that the scattering
coefficient alone does not directly minimise noise but rather supports conditions conducive
to a higher-quality PPG signal.
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By employing the methodology outlined in this study, PPG characteristic points were
successfully simulated from the Monte Carlo model, clearly illustrating the systolic and
diastolic slopes, systolic peaks, onsets, and dicrotic notches. These signals were generated
for light, moderate, and dark skin at 70% and 100% oxygen saturation with red and infrared
light, as shown in Figure 9.

Notably, at 660 nm, the detected intensity decreases as skin pigmentation becomes
darker. Additionally, the intensity at 100% saturation is greater than at 70%, since de-
oxygenated haemoglobin absorbs more light at this wavelength compared to oxygenated
haemoglobin, resulting in reduced detected intensity at lower oxygen levels. In contrast,
with infrared light, higher intensities are observed at 70% oxygen saturation since de-
oxygenated haemoglobin absorbs less light. However, changes in detected intensity are
minimal as skin pigmentation increases, suggesting that this absorber has a lesser effect on
PPG amplitude compared to red light. This trend is evident in the percentage difference
in systolic intensities between light, moderate, and dark skin, as shown in Table 3. For
red light, the percentage difference between light and moderate skin exceeds 1% and rises
to over 4–5% between light and dark skin. However, even for dark skin, the maximum
percentage difference for infrared light is just above 0.1%, implying that the impact on the
systolic peak with infrared light is approximately 50 times less than red light. Furthermore,
changes in oxygen saturation result in a 0.11% and 0.27% difference between light and
moderate skin and light and dark skin, respectively, at 660 nm, and 0.13% and 0.031% at
940 nm. These findings once again confirm the trends in haemoglobin absorption spectra
at the two wavelengths consistently across different skin pigmentations.
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Table 3. The percentage difference in systolic intensities between light skin (reference) and moderate
skin and light skin and dark skin at 660 nm and 940 nm for 70% and 100% oxygen saturation. All
values are rounded to three significant figures.

Red Infrared

70% 100% 70% 100%

Light–Moderate skin 1.28 1.39 0.0356 0.166

Light–Dark skin 4.89 5.16 0.0966 0.128
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Lastly, further analysis examined the calculated perfusion index values, which repre-
sent the ratio between the AC and direct current (DC) components of the simulated PPG
signals for red and infrared light at 70% and 100% oxygen saturation for light, moderate,
and dark skin (Table 4). At 70% oxygen saturation, the perfusion index decreases with
red light as skin pigmentation becomes darker; it then increases with infrared light. Con-
sequently, the overall ratio of ratios (R), calculated by taking the ratio between the red
and infrared perfusion indices (Equation (7d)), decreases as pigmentation increases, as
shown in Figure 10. However, at 100% oxygen saturation, there is no direct relationship
between the perfusion index and skin type. This can be attributed to the differences in
the optical properties of blood when it is more oxygenated in addition to the non-linearity
of the scattering coefficients of the epidermal layers (Table 2). This increase in scattering
may result in it being the dominant mechanism of the light–tissue interactions taking place
and hence increasing the random redirection of the photons. Despite this, the importance
of analysing the ratio of ratios instead of solely examining intensity changes or perfusion
indices at individual wavelengths is highlighted. The ratio method captures the interplay
between contributions from different tissue components at both wavelengths, showing that
skin pigmentation has a minimal impact on pulse oximeter calibration at 100% oxygen
saturation compared to 70%. While there are a number of studies relating the perfusion
index to several biomarkers, including oxygen, lactate, glucose, etc., a potential area of
research could involve the assessment of the perfusion index at specific wavelengths of
interest. This would serve as a useful validation tool to compare with such data derived
from computational models.

Table 4. Simulated perfusion index (AC/DC) values for light, moderate, and dark skin at 70% and
100% oxygen saturation with 660 nm and 940 nm light sources. L = light skin, M = moderate skin,
and D = dark skin.

SaO2 (%) Red
(660 nm)

Infrared
(940 nm)

L M D L M D

70 0.0484 0.0478 0.0467 0.0393 0.0398 0.0403

100 0.0221 0.0215 0.0217 0.0422 0.0429 0.0421
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4. Discussion
This study presents a comprehensive Monte Carlo model of the human finger to

examine the effects of skin pigmentation on simulated characteristic points of PPG signals
at two oxygen saturation levels. The model was successfully implemented, and the analysis
of the results from the simulations align with findings in some of the existing literature
regarding the overestimation of SpO2 in patients with darker skin pigmentation, especially
at lower saturation levels [24–27].

A key innovation of this work lies in its methodological improvements for characteris-
ing the optical properties of the skin layers, producing a more realistic finger model. The
pigmented skin layers were validated against the L*a*b* scale, which is a more objective
method for stratifying skin pigmentation in comparison to the Fitzpatrick scale. As a
result, this ensured that the optical properties incorporated into the current Monte Carlo
model more accurately reflected real-world variations in skin pigmentation. This is an
advancement from previous studies [6,8] where the optical properties of the epidermis
were calculated using equations from the literature [18] for skin types based on a subjective
scale. Although variations in the perfusion index at 940 nm were consistent with previ-
ous studies [6], which further confirms the minimal influence of melanin concentration
at this wavelength, the perfusion index at 660 nm was significantly more affected. This
difference can be attributed to the greater magnitude in absorption coefficients (0.73 mm−1,
4.21 mm−1, and 8.24 mm−1 for light, moderate, and dark skin, respectively), which impact
light–tissue interactions and intensity predictions in the model. These findings suggest
that varying the melanin concentration alone may be an insufficient approach to accurately
quantifying epidermal absorption coefficients and highlights the complexity of optically
characterising skin colour beyond simple equations. Overall, this characterisation was
essential for generating more representative magnitudes of simulated detected intensities
which better reflect the effect of light absorption and scattering with different skin types.
Furthermore, the elastic properties of the vessel were characterised through the develop-
ment of a custom phantom, which enabled an analysis of the relationship between the
vessel channel diameter and internal pressure based on a derived equation. However, as
improvements in obtaining the optical properties of the skin layers have been shown, the
same effort should be applied to capturing the complex mechanical properties of blood ves-
sels to improve the modelling of peripheral haemodynamics in future work. One key area
to focus on is the active regulation in the vessels, such as vasodilation and vasoconstriction,
which control how vessels expand and contract in response to blood flow and pressure
changes. These dynamic processes are important for simulating real-world conditions like
stress, exercise, or disease. Additionally, the non-linear stiffness of vessel walls, which
behave differently under varying pressures and include more realistic blood flow dynamics
and viscosity, should be considered.

Moreover, the photon profiles in Figure 8 revealed that scattering density is notably
higher in blood vessels, particularly at 660 nm. This observation aligns with the known
scattering properties of blood and indicates that the simulated finger model effectively
captures the interaction between the photons and the tissue layers. Despite high scatter-
ing densities, photon penetration was limited to the skin layers in reflectance mode, a
phenomena also observed in previous studies [4,8,19]. The PPG signals displayed consis-
tent features across different skin types and oxygen saturation levels, and they suggested
that skin pigmentation effects detected intensity, which is indicative of amplitudes from
experimental-based PPG signals. More analysis on the simulated amplitude of the PPG
signal at 660 nm is necessary, as higher levels of pigmentation showed a greater affect at
this wavelength in comparison to the infrared PPG signals. The results confirm that red
light is more sensitive to changes in skin pigmentation than infrared light, with percentage
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differences in systolic intensities being significantly higher for red light (Table 3). This
differential impact is attributed to the varying absorption of deoxygenated and oxygenated
haemoglobin at different wavelengths. However, further analysis of the perfusion index
is vital when accounting for changes in oxygen saturation as well as skin pigmentation.
Overall, the findings highlight the importance of accounting for skin pigmentation in
pulse oximeter calibration at different oxygen saturation levels. Whilst a number of signal
processing techniques have been introduced in pulse oximeter technology to minimise the
effects of other known limitations, including motion artefact reduction [28–30], baseline
drift correction [31], etc., the same is proposed to account for differences in diverse popula-
tions. This could include the integration of classification algorithms to estimate skin colour,
apply pre-defined correction factors tailored to pigmentation levels, or consider scaling the
absorption differences due to differences in melanin, particularly for the red-light source.

5. Conclusions
This study presents a detailed Monte Carlo model of the human finger, demonstrating

the effects of skin pigmentation on simulated PPG signals at varying oxygen saturation
levels. By incorporating the spectrophotometry measurements of developed pigmented
skin layers, the model improves upon previous methodologies, offering more accurate
input parameters. The results highlight how skin pigmentation alters signal intensity,
particularly at 660 nm, and how the perfusion index varies between skin types at different
oxygen saturation levels. These findings underscore the importance of considering diverse
patient populations in device calibration or integrating post-processing algorithms to adjust
for variations, promoting inclusivity in healthcare technology.

While the model successfully simulates characteristic points of PPG signals and pro-
vides valuable insights into blood pressure dynamics, certain limitations remain. The
focus on volumetric vessel changes does not account for active regulatory mechanisms,
such as vasodilation and vasoconstriction, which could influence PPG formation under
more complex scenarios. Such considerations are important in future work to provide a
more holistic representation of finger haemodynamics. Nonetheless, this work serves as a
foundational framework for simulating PPG signals and understanding the effect of skin
pigmentation on PPG outcomes, as well as refining peripheral haemodynamic modelling
to enhance the physiological accuracy and applicability of Monte Carlo-based simulations.
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