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1 Introduction and motivation

It is widely appreciated that the paradigm of Effective Field Theory (EFT) is very much
universal. However, despite the wide range of application and flexibility of EFTs, the
principles of unitary evolution and causality imply very interesting bounds on the space of
feasible EFTs, i.e. EFTs with a putative UV completion. A classic example is provided by
the positivity bounds: while a priori Wilson coefficients can take any real value, positivity
of the two-to-two forward scattering amplitude ImM > 0 implies that various Wilson
coefficients are positive [1]. Many works have exploited positivity, including: the original
studies in the context of the chiral Lagrangian [2–4], many interesting applications on
RG-flows and the phenomenology of EFT interactions, see e.g. [5–15], as well as new
developments [16–23].

Recent progress on the S-matrix bootstrap programme [24–31] has triggered a revision
of the space of feasible EFTs, with applications to the EFT of: the QCD string [32],
pions [33–35] and supergravity [36]. At this point a small digression is in order. Say — we
are interested in the problem of finding the minimal value of a particular Wilson coefficient
in an EFT action.1 We can view this task as an optimisation problem subject to the

1or the minimal value of the closely related Low Energy Constant in the scattering S-matrix.
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constraints dictated by unitarity and causality. There are two possible logical routes to
approach the problem: a) search in the space of all physical theories, and pick the one which
achieves the smallest Wilson coefficient (Primal S-matrix bootstrap); or, b) exclude all the
values of the Wilson coefficient that are incompatible with either unitarity or causality,
and claim a bound on the minimal Wilson coefficient (Dual S-matrix bootstrap).

Allowed values (Primal)Excluded values (Dual)

minimisemaximise

When the minimal value found from the Primal approach and the maximal of Dual ap-
proach touch each other, indicated with a dashed line above, the duality gap is closed. The
concept of duality in optimisation theory has been successfully applied to bound the space
of O(N) models [37] and the couplings of bound states [38] in two spacetime dimensions,
and quartic couplings in four spacetime dimensions [39, 40].2 The logic of the dual S-Matrix
bootstrap approach resembles that of the CFT bootstrap [45], were kinks and island are
found [46–48] after excluding allowed values of the operator’s scaling dimensions.

In this work we will show how to optimally bound, using a dual formulation, the al-
lowed values of Wilson coefficients or Low Energy Constants (LECs). In order to do so
we will focus our attention on the EFT of confining flux tubes [49, 50], see also [51–53]
and references there in. This system is very fascinating per se, describing the long strings
of confining three and four-dimensional theories [49, 54], and features an interesting phe-
nomenology [55, 56]. It also provides a simplified setting to test our ideas for bounding
the space of EFTs. At low energies, the flux tube can be described by a two-dimensional
action given by

A =
∫
d2σ
√
−h

[
`−2
s +R(h) +K2 + `2sg1(Kµ

αβK
αβ
µ )2 + `2sg2K

αβ
ν Kµ

αβK
σρ
µ Kν

σρ +O(∂8)
]
.

(1.1)
The action is build out of the fields Xµ(σ), describing the embedding coordinates of the
world-sheet in spacetime. In the rest of the paper we will work in units set by the string
length `s = 1, and in the static gauge Xµ(σ) = (σα, Xa), where a = 1, . . . , D − 2. The
action is invariant under the SO(D− 2) transverse rotations, such that Xa carries a vector
(or flavour) index, and the Poincaré sub-group on the world-sheet ISO(1, 1). The goldstone
particles created by the fields Xa are called branons.

At low energy, the leading piece in the action is the Nambu-Goto (NG) interac-
tion

√
−h =

√
−det∂αXµ∂βXνηµν . On top of the NG interaction, and following the

usual EFT logic, we include in the action any RG-irrelevant interactions that are al-
lowed by the symmetries. Thus we include invariants build out of the intrinsic metric
hαβ = ∂αX

µ∂βX
νηµν (like for instance the Ricci curvature scalar R(h)) and the extrinsic

curvature Kµ
αβ = ∇α∂βXµ. It turns out however that R(h) = 0 in two spacetime dimen-

sions and that K2 vanishes being proportional to the equations of motion. This is known
as low energy universality [51, 52, 54, 57–59].

2The primal bootstrap approach to these problems was studied in [41–44], as well as [24–26, 28].
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D = 3 D > 4
Primal formulation X [32] X [32]
Dual formulation X section 2 X section 3
Analytical solution X section 2.2 and [32] unknown to us

Table 1. Optimization of low energy constants (LECs) of the flux tube EFTs.

The leading deviation from the universal NG interaction, which is sensitive to the
underlying confining dynamics, arrises at order O(K4) = O(∂6), parametrised by g1 and g2
in the action (1.1). In this work we will bound the values of these non-universal interactions.
In order to do so, we will use the world-sheet S-matrix, describing the scattering of the
branons Xa. In particular we will need the two-to-two S-matrix, which is given by [32, 60]

2δsym = s

4 + α2s
2 + α3s

3 +O(s4) ,

2δanti = s

4 − α2s
2 + (α3+2β3)s3 +O(s4) ,

2δsing = s

4 − (D−3)α2s
2 + (α3−(D−2)β3)s3 +O(s4) , (1.2)

where α2 = D−26
384π is a universal one-loop contribution [51, 61], and we are using the

conventional definition for the S-matrix SI(s) = exp 2δI(s) were I = sym, anti, sing. While
further details are given in section 3, note that thanks to the SO(D − 2) symmetry Xa →
RabXb, the two-to-two scattering can proceed in three channels (symmetric, antisymmetric
and singlet), corresponding to the three irreducible representations of the incoming SO(D−
2) vectors Xa +Xb → Xc +Xd.3

The non-universal interactions in (1.1) are parametrised in (1.2) through {α3, β3}.4

Our bounds on the S-matrix parameters translate into bounds on the energy levels com-
puted in [32], which in turn can be compared against lattice Monte Carlo (MC) simulations
of four-dimensional Yang-Mills. The worldsheet S-matrix approach to the QCD flux tube
and its interplay with lattice MC data was pioneered in [56, 62]; see also [63] for a nice
review of flux tubes from a lattice MC viewpoint.

In section 2 we introduce the formalism of dual EFT bootstrap. In order to do so we
start discussing the flux tube in D = 3 bulk spacetime dimensions, which has an additional
pedagogic value because it is a simpler problem. In section 3 we generalize the discussion
to flux tubes in general D > 3 target spacetime dimensions and present the bounds on
{α3, β3}. See table 1 for a summary of what we know on the bootstrap approach to the
EFT of flux tubes. A nice feature of the bootstrap approach is that it delivers the S-
matrix saturating the bounds. In section 4 we discuss the phenomenology of these dual
S-matrices. In 5 we conclude and discuss the interplay of positivity vs. bootstrap. Finally,

3Also recall that, after factoring out the usual delta function of total two-momenta conservation, the
SI ’s depends only on the Mandelstam variable s = (pµ1 + pµ2 )2 because in two spacetime dimensions there
is no scattering angle (i.e. t = 0) and because of the Mandelstam relation s+ t+ u = 0.

4In particular {α3, β3} = {2g1 + 3g2,−2g1 − g2}/8, although the precise matching is not important for
our current purposes.
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appendices A, B and C are dedicated to give further details on the numerics, on the
generalisation of D = 3 and D > 4 analysis, respectively.

2 Dual optimisation of Wilson coefficients

In order to develop the theory of dual optimisation of Wilson coefficients, we start by
analysing the scattering of a single-flavour gapless branon, a.k.a. D = 3 flux tubes. The
three processes in (1.2) reduce to a single channel S(s) = e2iδ(s), with δ = δsing, and a
single non-universal parameter is needed at O(s3), α3 − β3 ≡ γ3.

The S-matrix is the boundary value of the function S(s) which is analytic in the upper
half plane (UHP) of the complexified Mandelstam variable s = (p1 + p2)2. The value of
the function at specular points with respect to the imaginary axis are related by complex
conjugation

S(−z∗) = S∗(z) , (2.1)

as a consequence of crossing-symmetry S(−z) = S(z) and real-analyticity S(z∗) = S∗(z).
A nice discussion of the properties of the scattering S-matrix of massless particles in two
spacetime dimensions can be found in [64]. Since S(z) is the expectation value of a unitary
operator it satisfies

|S(s)| 6 1 for s ∈ (0,∞) , (2.2)

i.e. for physical values of the Mandelstam variable s.
The spontaneously broken Poincaré invariance strongly constrains the low energy be-

haviour of the two-to-two phase shift [32, 65]5

2δ(s) = s

4 + γ3s
3 + γ5s

5 + γ7s
7 +O(s8) . (2.3)

The coefficients γi are tuneable real parameters of the low energy EFT, that should be
fitted to low energy experimental data (or to MC lattice simulations data [66]), and whose
precise values depend on the details of a putative UV completion. However, the γi’s do not
take arbitrary real values but instead satisfy sharp bounds that follow as a consequence of
unitary (2.2), crossing and real-analyticity (2.1).

2.1 Primal optimisation problem

To be concrete and explain in detail the general strategy of dual optimization for Wilson
coefficients, in the rest of the section we will address the specific problem of finding the
minimal value of γ3.

The first simple strategy to approach this problem is based on the direct numerical
optimisation. In a nutshell, one introduces an ansatz for the S-matrix which encodes auto-
matically the analytical and crossing properties (2.1), and the low energy expansion (2.3).
This is for instance achieved by

Sansatz(χ) =
nmax∑
n=0

αn (χ− 1)n with χ(s) = s− i
s+ i

, (2.4)

5The phase shift is real up to O(s8) when 2→ 4 particle production processes kick in.
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with the parameters {α0, α1, α2, α3} fixed to match the low energy expansion Sansatz(χ(s))
= exp[i2δ(s)]+O(s4) (2.3). Next, we minimize γ3 varying over the remaining αn>4 subject
to the unitary constraint (2.2). This basic logic can be generalised to higher dimensions and
has been successfully used to explore the extremal values of the LECs of pion physics [33]
and supergravity [36].

In the case at hand however, an analytical solution was found in [32]

γ3 > − 1
768 . (2.5)

The proof presented there is based on the Schwarz-Pick inequality.6 Consider the following
function of z constructed out of a physical S-matrix S(z)

S(1)(z|w) ≡ S(z)− S(w)
1− S(z)S(w)

/z − w
z − w

, (2.6)

where w is an arbitrary point in the upper half plane, and S(z) maps the UHP into the
unit disk. Next, note that (as a holomorphic function of z in the upper half plane) this
function has no singularities in the upper half plane and by unitarity is bounded by 1 for
z on the real line, |S(1)(s|w)| 6 1 for s ∈ R. Then, by the maximum modulus principle,
S(1)(z|w) is bounded everywhere on the upper half plane

|S(1)(z|w)| 6 1 for z ∈ UHP . (2.7)

The last equation is the content of the Schwarz-Pick theorem. Finally, inserting the low
energy expansion (2.3) in the Schwarz-Pick function (2.6) and expanding for small and
imaginary z and w,

S(1)(ix|iy) = −1 +
( 1

96 + 8γ3

)
x y + . . . > −1 , (2.8)

leads to (2.5). The logic flow just presented can be recursed over, i.e. one can build a S(2)

function out of S(1) to bound γ5, and so on.7

In the next section we will derive an alternative proof of this bound based on duality
in optimization theory.8 We will work out in detail the dual formulation of the primal
problem we just solved generalizing the procedure introduced in [38] for gapped theories,
and highlight the various novel aspects related to gapless systems. This will clear the way
for section 3 where we will be able to use the dual formulation to bootstrap max/min values
of the Wilson coefficients in situations where no analytical solution is known.

6This analytic result fits in the general geometric function theory recently reviewed in [67] and generalised
to other interesting physical examples.

7While further details are provided in [32], we recall that the Schwarz-Pick bounds are saturated by
products of Castillejo-Dalitz-Dyson (CDD) factors (known as Blaschke products in complex analysis lit-
erature). Indeed, it is straightforward to check that the first Schwarz-Pick bound (2.5) is saturated by
Sopt(z) = i8−z

i8+z . The later function is associated (i.e. equal modulo a sign) to the goldstino S-matrix that
describes the flow from the Tricritical to the Critical Ising fixed points [64].

8A nice textbook is for instance [68].
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2.2 Dual optimisation problem

To derive the dual problem it is convenient to formulate the primal approach in terms of the
two to two scattering amplitudes and the associated dispersion relations. The parameter
γ3 appears in the low energy expansion of the flux tube amplitude through (2.3), i.e.

MFT(s) = s2

2 + is3

16 −
( 1

192 − 2γ3

)
s4 +O

(
s5
)
. (2.9)

The amplitude MFT(s) is subject to unitary (2.2), and real-analyticity and crossing (2.1).9

We write the upper index in MFT to distinguish an arbitrary amplitude from the actual
flux-tube amplitude. We formulate the primal optimization problem writing all the con-
straints explicitly:

Primal Problem I:

Minimise γ3 varying M(s) constrained by

◦ U(s) ≡ 2 ImM(s)− 1
2s |M(s)|2 > 0 for s > 0 , (2.10a)

◦ Disp(s) ≡ 1
2ReM(s)− 1

2π

∫ ∞
0

s2

z2 ImM(z)
(
p.v.

1
z − s

+ 1
s+ z

)
dz = 0 for s > 0 ,

(2.10b)

◦ a2(0) ≡ 2
π

∫ ∞
0

ImM(z)
z3 dz = c2 with c2 = 1

2 , (2.10c)

◦ a3(0) ≡ − 2
π

∫ ∞
0

ReM(z)− c2z
2

z4 dz = c3 with c3 = 1
16 , (2.10d)

◦ a4(0) ≡ − 2
π

∫ ∞
0

ImM(z)− c3z
3

z5 dz = c4 with c4 = 1
192 − 2γ3 . (2.10e)

Note that the constraint (2.10b) is satisfied if and only if M(s) is an analytic function
in the UHP, which satisfies M(−s∗) = M∗(s) and unitarity (2.10a). To prove the last
statement we start with the following contour integral

M(s) = 1
2πi

∮
C(s)

s2

z2
M(z)
z − s

dz (2.11)

that encircles counter-clockwise an arbitrary point s ∈ UHP. We introduced a double
subtraction to take into account the most general behaviour at infinity compatible with
unitarity (2.10a). Next we blow up the contour, use M∗(z) = M(−z∗) and take s real:

M(s) = 1
2πi

∫ ∞
0

s2

z2

(
M(z)

z − s− i0 −
M∗(z)
z + s

)
dz , (2.12)

9Recall that iM(s) ≡ 2s(S(s)− 1), where the factor s arises as a Jacobian in the relation of the identity
operator of the S-matrix Ŝ = x1S(s), where 1 = (2π)2s(δ(p1 − p3)δ(p1 − p4) + (3 ↔ 4)), and the two-
momentum conservation delta in the interacting scattering amplitude M̂ = (2π)2δ(2)(kµ1 +kµ2−k

µ
3−k

µ
4 )M(s),

with kµi = (|pi|, pi).
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Figure 1. Contour of integration used to relate (2.13) with (2.10c)–(2.10d).

where we kept a small positive imaginary part in s+ i0 when needed. The double pole at
z = 0 does not pick any residue in virtue of the soft low energy behaviour of the branon
amplitude (2.9). Taking the real part of the last equation, and using the Cauchy principal
value (p.v.), we get (2.10b).

Regarding the low energy constraints (2.10c)–(2.10d), when analyticity and cross-
ing (2.10b) are satisfied, we can deform the integration contours in (2.10c)–(2.10d) and write

an(ε) = (−1)n
∫
Cε

M(z)−
∑n−1
m=2(−1)m+1(−iz)mcm
π(−iz)n+1 dz , (2.13)

where Cε is a counter-clockwise semicircle contour in the UHP and centred around z = 0,
see figure 1. For ε � 1, the integral in (2.13) can be evaluated using the low energy
expansion in (2.9)

an(ε) = cn +O(ε) , (2.14)

with the cn’s fixed by matching the function MFT(s) =
∑9
m=2(−1)m+1(−is)mcm + O(s5)

with low energy expansion (2.9). In particular, we have a4(ε) = 1/192− 2γ3 + O(ε) when
evaluating (2.13) with MFT.

Similar variables to an(ε) where recently used in [18], there named arcs, to study the
positivity constraints of operator’s Wilson coefficients along the Rernormalization Group
flow. In this work, thanks to our knowledge of the low energy expansion (2.3), we have
introduced subtractions in the definition of an(ε) such that we get (2.14).

The formulation of Primal Problem I in terms of dispersion relations pays off now
because we can encode all the constraints in the following quadratic Lagrangian functional

L(M; Λ) = 2γ3 + λ2(a2(0)− c2) + λ3(a3(0)− c3) + λ4(a4(0)− c4)︸ ︷︷ ︸
low energy constants constraints

+
∫ ∞

0
[ω(z)Disp(z)− µ(z)U(z)]dz︸ ︷︷ ︸

analyticity and unitarity constraints

, (2.15)

where γ3 is our optimisation goal, and we have introduced a dual variable for each con-
straint in (2.10a)–(2.10e). M and Λ collectively denotes all the primal and dual variables
respectively

M = {ReM(z), ImM(z), γ3} , Λ = {λ2, λ3, λ4, ω(z), µ(z)} . (2.16)

– 7 –
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We stress that λ2, λ3, λ4 ∈ R, and ω(z) and µ(z) are real functions defined for z > 0, with
µ(z) > 0 as it is related to an inequality constraint. Is is useful to think of M(z), ω(z) and
µ(z) as local fields of a field-theory. While the M(z) variables — one for each point in the
real positive line z ∈ R+ — are a priori arbitrary, it turns out that for M(z) = MFT(z)
in (2.9) the low energy constants constraints in (2.15) are finite.

At this point we are ready to introduce the dual functional

d(Λ) ≡ inf
M

L(M; Λ) , (2.17)

obtained by minimising the Lagrangian w.r.t. varying M. It turns out that d(Λ) satisfies
the following inequalities

d(Λ) 6 sup
Λ
d(Λ) = sup

Λ
inf
M

L(M; Λ) 6 inf
M

sup
Λ
L(M; Λ) = 2γ∗3 (2.18)

where γ∗3 is the solution to Primal Problem I. Indeed, the second inequality follows from the
Min-Max theorem, switching the order of the action of sup(remum) and inf(imum). The
last equality holds because supΛ L(M; Λ) = +∞ if any of the constraints is not satisfied,
while supΛ L(M; Λ) = 2γ3 ifM is feasible, i.e. if all the constraints are satisfied. Eq. (2.18)
provides the basis for formulating

Dual Problem I:

Maximize d(Λ) varying Λ = {ω(z), µ(z), λ2, λ3, λ4}, constrained by µ(z) > 0 . (2.19a)

The general logic to get to formulate Dual Problem I parallels that of [38]. Next we
will solve Dual Problem I and find novel aspects particular to bootstrapping EFTs. In
doing so we will show that indeed the solution of Dual Problem I and Primal Problem I
coincide.

In order to find d(Λ) we will use the Euler-Lagrange equations of motion (e.o.m.)
applied to (2.15). Before doing that, note that the Lagrangian (2.15) is non-local in M(z)
because it appears integrated over the real line in Disp(z), defined in (2.10b). It is useful
to introduce the function

W (z′) = 1
2π

∫ ∞
0

ω(z) z
2

z′2

( 1
z − z′ − i0 −

1
z + z′ − i0

)
dz . (2.20)

because in terms of W the Lagrangian is an integral of a local density. Indeed, using∫∞
0 ω(z)Disp(z) =

∫∞
0 dz Im (W (z)M(z)),10 and the definition of the functions ai(ε), the

Lagrangian in (2.15) simplifies into

L(M; Λ) = 2γ3−λ2c2−λ3c3−λ4c4+
∫ ∞

0
dz

2
π

c2λ3+λ4c3
z2 +

∫ ∞
0
dz Im

(
W̃ (z)M(z)

)
−µ(z)U(z)

(2.21)
where we have defined

W̃ (z) ≡W (z) + 2
π

(
λ2
z3 −

λ4
z5

)
− i 2

π

λ3
z4 . (2.22)

10It is useful to note that ImW (z′) = ω(z′)/2 and ReW (z′) = 1
2π

∫∞
0 ω(z)

(
p.v. 1

z−z′ + 1
z+z′

)
z2

z′2 dz.

– 8 –
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Now we are ready to find the extrema of the functional L(M; Λ) ≡
∫
dzL(z). By using

the Euler-Lagrange e.o.m. ∂M∗c L = 0, and find

Mc(z) = 2iz − iz

µ(z)W̃
∗(z) . (2.23)

Moreover, the Euler-Lagrange equation ∂γ3L = 0 implies λ4 = −1, fixing one of the dual
variables. It is easy to check that Mc is a minimum of L(M; Λ). Then, upon plugging the
critical value of the amplitude Mc back on the Lagrangian L we are led to

d(Λ) = 1
192 −

λ2
2 −

λ3
16 +

∫ ∞
0

dz

[
λ3
πz2 −

1
8πz2 + 2z

(
ReW̃ (z)− µ(z)− |W̃ (z)|2

4µ(z)

)]
, (2.24)

where we have inserted the LECs values {c2, c3, c4} = {1
2 ,

1
16 , 1/192− 2γ3}.

The dual functional defined in (2.24), according to (2.18), gives a lower bound on γ3
for arbitrary values of the dual variables Λ = {λ2, λ3, ω(z), µ(z)}.11 Next we will be able
to find the maximal value of d in (2.24) analytically. However, when considering more
complicated problems in the sections below, it will be very useful to perform a numerical
search of the functions that maximise expressions like (2.24).

2.2.1 Analytic solution to Dual Problem I

We are now in a good position to solve the Dual Problem I using the dual optimisation
functional in (2.24). We start by finding the supremum of (2.24) w.r.t. varying µ(z) under
the constraint µ(z) > 0. We get the critical function µc(z) = |W̃ (z)|/2, which substituting
back to (2.24) gives

D(W,λ2, λ3) ≡ supµ(z)d(Λ) = 1
192 −

λ2
2 −

λ3
16

+
∫ ∞

0
dz

[
λ3 − 1

8
π

1
z2 + 2z

(
ReW̃ (z)− |W̃ (z)|

)]
. (2.25)

Next we have to maximise the dual optimisation functional D(W,λ2, λ3) over varyingW (z),
λ2 and λ3.

Here it comes an interesting aspect of the dual functional for Wilson coefficients. The
integrand in (2.25) has the following low energy expansion

λ3 − 1
8

π

1
z2 + z

(
ReW̃ (z)− |W̃ (z)|

)
= −(1− 4λ3)2

8πz2 +O(z) . (2.26)

The factor −(1 − 4λ3)2 6 0 is negative for λ3 ∈ R. Therefore upon integrating the latest
expression we find that D(W,λ2, λ3, λ4) = −∞, unless the residue of the second order pole
vanishes. Thus, in order to maximize D we must fix λ3 = 1

4 . All in all, we get

D(W,λ2, 1/4) = − 1
96(1 + 48λ2) +

∫ ∞
0

dz

[
+ 1

8π
1
z2 + 2z

(
ReW̃ (z)− |W̃ (z)|

)]
, (2.27)

11The functional in (2.24) it is only convergent for particular values of the multipliers. However, it is
possible to ignore this subtlety working at ε > 0, using the definitions in (2.13), and taking the limit ε→ 0
only at the end.
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which is a nicely finite dual functional. We stress that the finiteness of D(W,λ2, 1/4), i.e.
the “cancelation” of the value −∞ by picking λ3 = 1

4 , comes out naturally as a result of
maximizing D over varying λi’s.

To proceed further, we notice that the maximum is attained by picking ImW (z) = 0,
which in turn using (2.20) implies ReW (z) = 0.12 We are led to maximize the following
functional over varying λ2

D(0, λ2, 1/4) = −λ2
2 −

1
96 + 1

π

∫ ∞
0
dz

+1
8

1
z2 + 4λ2

z2 + 4
z4 −

√(4λ2
z2 + 4

z4

)2
+ 1
z6

 . (2.28)
It is easy to check that λ2 = −1/64 is a local maximum of D(0, λ2, 1/4), and it is the unique
zero of f(λ2) ≡ ∂λ2D(0, λ2, 1/4) because f(λ2) is absolutely monotonic.13 Therefore

sup{W,λ2,λ3}D(W,λ2, λ3) = D(0,−1/64, 1/4) = −2 1
768 , (2.29)

in agreement with (2.5)!
We also find that the critical value of W̃ is given by W̃c(s) = 2

π
1
s5 − 1

32π
1
s3 − i 1

2π
1
s4 .

Therefore using the fat that critical scattering amplitude (2.23) is given by

Mc(z) = 2iz
(
1− W̃ ∗c (z)/|W̃c(z)|

)
(2.30)

we have Mc(s) = + 4is2

s+8i .
14

The formulation presented in this section can be generalised in order to bound the
higher order LECs γ5 and γ7 in (2.3). For these more involved dual problems, we also find
that the dual functional is finite when computed using the optimal λi’s, and the extremal
values of γ5 and γ7 coincide with the primal optimisation problem bounds of [32]. Further
details are given in appendix B.

3 Bounds on flux tubes

In D > 4 there are D− 2 transverse directions to the flux-tube. This translates into D− 2
Goldstone bosons that transform as vectors of a O(D−2) global symmetry. The scattering
amplitude can be expressed in terms of three functions of the Mandelstam variable s =
(pa + pb)2

Sdcab(s) = σ1(s) δcdab +σ2(s) δcaδdb +σ3(s) δdaδcb = σ1(s)
d c

a b

+σ2(s)
d c

a b

+σ3(s)
d c

a b

.

(3.1)
12We can find the solution by varying ImW (z) and ReW (z) as independent field variables, and then check

a posteriori that the solution falls inside the constraint (2.20).
13This is expected: the dual problem is always concave for minimisation (convex for maximisation)

independently of the properties of the primal. This follows from the definition of the Lagrangian and from
the fact that point-wise extremization is a convexity-preserving operation.

14This is similar to the Goldstino-like scattering amplitude introduced in [64] — similar bootstrap equa-
tions and bounds can be derived for the fermionic S-matrix S(0) = −1.
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These three functions describe annihilation, transmission and reflection of the vector index,
as indicated by the diagrams. Crossing symmetry and real analyticity imply the following
relations

σ1(−s∗) = σ3(s)∗, σ2(−s∗) = σ2(s)∗, σ3(−s∗) = σ1(s)∗. (3.2)

Similarly to the D = 3 case, it is therefore possible to restrict the domain of these functions
to the UHP without loss of generality. The underlying O(D − 2) symmetry implies that
the two-to-two S-matrix is diagonal when scattering two vectors in the irreps. of O(D−2).
Thus, the suitable linear combinations

Ssing = (D − 2)σ1 + σ2 + σ3, Santi = σ2 − σ3, Ssym = σ2 + σ3, (3.3)

satisfy the diagonal unitary equation

|SI(s)| 6 1 , for s ∈ (0,∞) , (3.4)

where I = {sing, anti, sym}, and henceforth we will use capital index I to denote these
channels. The amplitudes, i.e. the interacting part of the S-matrix, is defined as usual
MI = 2is (1− SI).

For our current purposes it is useful to introduce a different basis:

M1 = 2Msing + (D − 4)Msym − (D − 2)Manti
4(D − 2) , M2 = 1

2 (Msym +Manti) ,

M3 = 2Msing −DMsym + (D − 2)Manti
4i(D − 2) , (3.5)

where crossing symmetry and real analyticity (3.2) acts on the vector (M1,M2,M3) diago-
nally: Mi(−s∗) = Mi(s)∗. In contrast to what happens in the single flavour case (D = 3),
unitarity does not act in a simple way in the basis where crossing-symmetry is diagonal.

The low energy expansion of the flux tube (FT) amplitude defined in terms of the
crossing symmetric components reads

MFT
1 = 0× s2+ 0× is3− 2β3 s

4 +O(s5) ,

MFT
2 = 1

2 s
2+ i

16 s
3−
( 1

192 − 2α3 − 2β3

)
s4 +O(s5) ,

MFT
3 = 0× s2+ 2iα2 s

3− α2
2 s4 +O(s5) . (3.6)

The coefficient α2 = D−26
384π is universal, depending only on the target space-time dimension.

The Wilson coefficients α3 and β3 are related to the first two non-universal corrections to
the D = 4 flux tube action.

3.1 The dual problem with flavor

In this section we apply the dual formalism to determine what is the allowed region in
the {α3, β3} space excluding all the values of the Wilson coefficients that violate crossing,
analyticity and unitarity.
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In analogy to what we have done in section 2.2, we express each coefficient of the
low energy expansion of the amplitude Mi = c

(i)
2 s2 + . . . in terms of arc variables of the

respective amplitudes

a
(i)
2 (ε) = 2

π

∫ ∞
ε

ImMi(z)
z3 dz ,

a
(i)
3 (ε) = − 2

π

∫ ∞
ε

ReMi(z)− c(i)
2 z2

z4 dz ,

a
(i)
4 (ε) = − 2

π

∫ ∞
ε

ImMi(z)− c(i)
3 z3

z5 dz . (3.7)

Similarly to the previous section, the c(i)
n are read from the low energy expansion of (3.6),

MFT
i = −c(i)

2 (−is)2 + c
(i)
3 (−is)3 − c(i)

4 (−is)4 + . . . . The notation will look slightly more
Baroque because we need to carry with us the upper flavour index. Nevertheless the logic
we follow is the same as in the D = 3.

To find the boundaries of the {α3, β3} space we choose to minimize α3 at fixed β3.15

Thus, we formulate the following (primal) problem in terms of dispersion relations:

Primal Problem II:

Minimize α3 varying Mi(s) constrained by

◦ UI(s) ≡ 2 ImMI(s)−
1
2z |MI(s)|2 > 0, for I ∈ irreps, and s > 0 , (3.8a)

◦ Dispi(s) ≡
1
2ReMi(s)−

1
2π

∫ ∞
0

s2

z2 ImMi(z)
(
p.v.

1
z − s

+ 1
s+ z

)
dz = 0

for i = 1, 2, 3 and s > 0 , (3.8b)

◦ a(1)
2 (0) = 0, a

(1)
3 (0) = 0, a

(1)
4 (0) = 2β3, (3.8c)

◦ a(2)
2 (0) = 1

2 , a
(2)
3 (0) = 1

16 , a
(2)
4 (0) = 1/192− 2α3 − 2β3, (3.8d)

◦ a(3)
2 (0) = 0, a

(3)
3 (0) = 2α2, a

(3)
4 (0) = α2/2 . (3.8e)

We remark that (3.8a) is in the unitary basis (3.3), while (3.8b) is in the crossing-symmetric
basis (3.5). In (3.8b) we took a twice subtracted dispersion relation for the three crossing-
symmetric amplitudes.

The formulation of Primal Problem II is in a nice form ready for dualization. Following
the same strategy explained in section 2.2 we introduce a new Lagrangian

L(M; Λ) = 2α3︸︷︷︸
opt. goal

+ λ(i)
n (a(i)

n (0)− c(i)
n )︸ ︷︷ ︸

LECs constraints (3.8c)–(3.8e)

+
∫ ∞

0
[ωi(z)Dispi(z) + µI(z)UI(z) ] dz︸ ︷︷ ︸
analyticity and unitarity constraints

,

(3.9)
15It is also possible to bound a linear combination of the two Wilson coefficients (α3, β3) = (r cos θ, r sin θ),

with θ fixed and maximize the radius, similar to the radial optimization of [37, 38].
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with I summed over I ∈ {sing, anti, sym}, i over i ∈ {1, 2, 3} in the basis of (3.5), and
n ∈ {2, 3, 4}. The functions µI(z) > 0 are non-negative, ωi(z)’s are real and we have
introduced eight real dual variables λ(i)

n , one for each of the eight low energy constraints
in (3.8c)–(3.8e). The primal and dual variables are collectively denoted by

M = {ReMi(z), ImMi(z), α3} and Λ = {λ(i)
n , ωi(z), µI(z)} , (3.10)

respectively. It is useful to introduce three analytic and anti-crossing symmetric functions
Wi(z) like (2.20), such that

∫∞
0 ωi(z)Dispi(z)dz =

∫∞
0 Im(Wi(z)Mi(z)) dz. It is also con-

venient to further simplify the Lagrangian by defining W̃i(z)π/2 ≡ Wi(z)π/2 + λ
(i)
2 /z3 −

iλ
(i)
3 /z4 − λ(i)

4 /z5 with i = 1, 2, 3, in order to absorb in W̃i the contributions coming from
the archs a(i)

n ’s. Then, we have

L(M; Λ) = 2α3−λ(i)
n c

(i)
n +

∫ ∞
0

2
π

λ
(i)
3 c

(i)
2 + λ

(i)
4 c

(i)
3

z2 +Im(W̃i(z)Mi(z))+µI(z)UI(z)dz , (3.11)

where we left implicit the sum over I, i and n.16 We introduce the dual functional

d(Λ) ≡ inf
M

L(M; Λ) . (3.12)

Following analogous steps to the previous section and using equation (2.18), it fol-
lows that

d(Λ) 6 2α∗3 , (3.13)

where α∗3 is the solution to Primal Problem II. The last equation provides the basis for
formulating

Dual Problem II:

Maximize d(Λ) varying Λ = {ωi(z), µI(z), λ(i)
a } , constrained by µI(z) > 0 . (3.14a)

At this point it is simple to minimize over the primal variables Mi and α3, and derive an
analytical expression for the dual functional d(Λ). In particular, the equation of motion
for α3 implies λ(2)

4 = −1. The equations of motion for MI are derived in a similar way to
the previous section.

Given the simplicity of the dual objective, we can also maximize analytically over the
multipliers µI > 0. After a bit of algebra we are lead to the following dual functional

supµI(z)d(Λ) = −λ(i)
n c

(i)
n +

∫ ∞
0

2
π

λ
(i)
3 c

(i)
2 + λ

(i)
4 c

(i)
3

z2 dz +
∫ ∞

0

z

2 Ω(z)dz
∣∣∣∣
λ

(2)
4 =−1

, (3.15)

where Ω(z)≡4ReW̃2−|W̃1−2W̃2+iW̃3|− 2
d−2 |W̃1−iW̃3|− 1

d−2 |(d−4)W̃1+2(d−2)W̃2+idW̃3|.
We want to emphasise that the dual functional can be further maximized analytically

by maximizing the residues of the poles of the integrand in (3.15). When the residues of the
higher order poles in the expansion of z2Ω(z) do not vanish, the dual functional is divergent

16E.g. λ(i)
n c

(i)
n = 1/96 + 2α3 + 2β3 + λ

(2)
2 /2− 11λ(3)

3 /(96π) + 2β3λ
(1)
4 .
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with a definite sign, namely d(Λ)→ −∞, hence providing a trivial (yet consistent) bound.
Therefore, maximizing the residues turn out to be equivalent to set those to zero. Explicitly,
for D = 4,

z

2Ω(z) =
4−2

√
(λ(3)

4 )2+1−
√

(λ(3)
4 )2 + (λ(1)

4 )2 −
√

4+(λ(1)
4 )2 + (λ(3)

4 )2 + 4λ(1)
4

πz4 +O(z−3) .
(3.16)

In order to maximize the residue in (3.16), we find the critical values λ(3)
4 = 0 and

−2 6 λ
(1)
4 6 0. For this choice of the dual variables, the coefficient of the z−4 and z−3 pole

of z2Ω(z) vanishes. Next we look for the 1/z2 and 1/z poles of the integrand in (3.15) and
cancel the corresponding residues by maximising over λ(i)

a . Solving the system of two equa-
tions for λ(1)

3 and λ(2)
3 and taking the real solution we find (λ(1)

3 , λ
(2)
3 ) = (−λ(1)

4 /4, +1/4)
All in all we find that the values

(λ(2)
4 , λ

(3)
4 , λ

(1)
3 , λ

(2)
3 ) = (−1, 0,−λ(1)

4 /4, +1/4) and − 2 6 λ
(1)
4 6 0 , (3.17)

maximize the dual functional, and lead to a regular integrand in (3.15) for z → 0. The
value λ(3)

4 = 0 trivialises the constraint a(3)
4 = α2/2, which is fine because such constraint

follows from unitarity (which we have already accounted for when integrating out µI(z)’s
in (3.15)) once a(i)

3 = c
(i)
3 is satisfied.

Evaluating (3.15) with the critical values in (3.17) we find

D(Wi, λ
(i)
2 , λ

(3)
3 , λ

(1)
4 ) ≡ − 1

96 −
λ

(2)
2
2 + 2α2λ

(3)
3 − 2β3(λ(1)

4 + 1) +
∫ ∞

0

( 1
8πz2 + z

2 Ω(z)
)
dz ,

(3.18)
for D = 4. All in all we are left with the

Simplified Dual Problem II:

Maximize D(Wi, λ
(i)
2 , λ

(3)
3 , λ

(1)
4 ) varying {Wi(z), λ(i)

2 , λ
(3)
3 , λ

(1)
4 } . (3.19a)

We solve this problem in the next section.

3.2 Bounds

According to (3.13), evaluating D(Wi, λ
(i)
a ) in (3.18) with arbitrary values of the dual

variables, provides a rigorous bound to the minimal value of 2α3 that can be achieved in
Primal Problem II.

In order to generate bounds that are close to optimality, we consider the following class
of ansatzes

W ans
j (s) = i

s2

N∗∑
n=0

a(j)
n χn(s) where χ(s) = is0 − s

is0 + s
, (3.20)

for j = 1, 2, 3, and minimize D(W ans
i , λ

(i)
2 , λ

(3)
3 , λ

(1)
4 ) varying {a(j)

n , λ
(i)
a }. The parameter s0

is arbitrary, and we set s0 = 4, in units of `s. We note that as N∗ →∞, (3.20) characterises
an arbitrary anti-crossing symmetric function W ans

j (s∗) = −W ans
j (−s∗), analytic in the
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Figure 2. Primal and dual bounds on the Wilson coefficients {α3, β3}. The green region is allowed
by primal numerics, the red region is excluded by the dual problem. The red lines are obtained
solving the dual problem at fixed β3 maximizing the dual functional for N∗ = 5, 10, . . . , 30; the
dashed red lines are the analytic bounds obtained in [32]. The green lines denote the boundary
at some fixed Nmax from Nmax = 20, 40, . . . , 120; the black line is the power law extrapolation of
primal numerics at N∗ → ∞. In the inset we zoom around a point of the boundary to appreciate
better the convergence rate of dual numerics compared to the primal one.

UHP of s, and that decays as 1/s2 as s→∞. Integrability at infinity of the dual function
D(Wi, λ

(i)
a ) requires an ansatz decaying as 1/s3, which we achieve imposing additional

linear constraints on the a(j)
n ’s. Imposing

∑N∗
n (−1)na(j)

n = 0 guarantees W ans
j ∼ 1/s3 as

s→∞. We allow the ansatz to have additional poles at threshold s = 0, which are allowed
from general principles and the integrability of (3.18). Intuitively, the double pole we add
is ‘dual’ to the double zero we find in the physical amplitude Mi ∼ s2.

The results of the dual minimisation problem are shown in figure 2. The different red
lines correspond to values of N∗ = 5, 10, . . . , 30, and the region below, shaded in red colour,
are the values of {α3, β3} that are rigorously excluded. Needless to say, N∗ = 30 signifies
our best exclusion bound. Convergence is so fast that on the scale of the plot the red lines
are all squeezed together. We have tried variational improvement with more sophisticated
ansatzes17 which show a faster convergence. However, for the maximal N∗ that we are
reporting the difference between these variational improvements is insignificant.

The green region results from primal numerics as in [32]. It is determined constructing
primal solutions, namely minimising α3 at fixed β3 in the space of amplitudes parametrized
as in (2.4) for different nmax (the number of free parameters in the power series ansatz).
In figure 2 the green lines correspond to values of nmax = 20, 40, . . . , 120.

Between the green and red lines there is a white space, see the zoomed in inset. That
is the duality gap which we do expect to vanish once optimality is attained (or when

17Like for instance W ans
j (s) =

(
1

(s+izj )3 + 1
(s+izj )2

Rj

s
+ 1

(s+izj )
Rj+1
s2

)∑N∗
n=0 a

(j)
n χn(s).
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nmax →∞ and N∗ →∞). We have also performed an extrapolation of the primal numerics
in nmax,18 shown with a black curve in figure 2. Interestingly, we find that the extrapolation
of the primal falls nearly on top of the boundary of the exclusion region.

4 Critical amplitudes and phase-shifts

The critical amplitudes are obtained by minimising (3.11) w.r.t. Mi and α3, and sub-
sequently evaluating the µI dependence by maximising d(Λ). The procedure, which is
analogous to the one for D = 3 that led to (2.30), is simplified by working in the basis19

W1 ≡ W̃1−iW̃3 , W2 ≡ W̃1−2W̃2+iW̃3 , W3 ≡ (D−4)W̃1+2(D−2)W̃2+idW̃3 . (4.1)

From the critical Mi’s we construct the S-matrices in each irrep. and, after a bit of algebra
we find: (

SDsing, S
D
anti, S

D
sym

)
=
(

W∗1
|W1|

, − W∗2
|W2|

,
W∗3
|W3|

)
, (4.2)

were the super index D stands for dual. Interestingly, the dual bounds provide the dual
functions that saturate 2 → 2 unitarity |SDI | = 1. Note however that the SDI ’s do not
satisfy analyticity for generic values of the dual variables: this is only achieved when the
duality gap closes.

In figure 3 we show the phase-shifts of the three-channels for two points in the boundary
of figure 2. In each plot we show three lines: the EFT (gray), the dual (dashed) and primal
(solid). The dual S-matrix phases are obtained from (4.2) while the optimal primal phase-
shifts are obtained following [32]. We find that the primal and dual S-matrix phases nicely
coincidence. We are showing a limited range of s where the phases show the most interesting
features. At larger s the various phases eventually flatten.

In the left panels we plot the phase shifts for a point along the boundary with β3 < 0,
in the right panels we do the same but for β3 > 0. Those values of β3 define two phases
along the boundary of the allowed region in {α3, β3} separated by the integrable point at
β3 = 0 [32]. The two phases differ by the presence of a sharp resonance respectively in
the singlet (dilaton) and anti-symmetric channel (axion). In the D = 4 case, these two
phases are compatible with a symmetry of the crossing equations by exchanging singlet and
anti-symmetric channels, which in turn exchanges the sign of β3. Interestingly, the axion
branch agrees with the expectations from approximate integrability of the QCD flux-tube:
in [32] and in this work with the dual approach, we find that the axion couples to the
branons with the coupling dictated by the integrable theory [69] that one would recover as
the axions mass ma → 0.20

The plotted S-matrices allow analysing perturbative and non-perturbative physics.
The perturbative physics amounts to the small momentum expansion (1.2). Comparison
of the EFT amplitude with the critical amplitude informs us of the cutoff. We see that

18Done with a simple-minded power-like fit f(x) = a+ b/xc, with three free parameters {a, b, c}.
19Notice the basis (4.1) is equivalent to the unitarity basis used in [37] that makes unitarity trivial.
20It is tempting to speculate that large N Yang-Mills produces the integrable theory with ma → 0 [69].

However, lattice MC simulaitons indicate that the axion mass achieves a positive value as N →∞ [70].
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β3 = 1.5 × 10−3, α3 = 7.9 × 10−4β3 = − 3.4 × 10−4, α3 = 9.7 × 10−5
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Figure 3. Phase shifts δI = 1
2i logSI as a function of s`2

s for some irrep I, with I={singlet,
antisymmetric, symmetric} respectively in red, blue and green. In each plot, solid line is obtained
from primal numerics with Nmax = 120, the dashed line is obtained from the dual with N∗ = 30.
The gray lines are the predictions from the EFT up to two-loops. The left panel shows the phase
shifts for an arbitrary β3 < 0: in the singlet channel there is a sharp resonance, signaled by the
phase shifts passing through π/2. The right panel shows the phase shifts for a fixed β3 > 0: in this
case we see an axion resonance in the antisymmetric channel. Notice that for both points the EFT
prediction agrees well with the non perturbative completion up to the scale set the by the lightest
resonance, which, for this values of β3 we chose appears dynamically around the naive cutoff scale
s∗ = 4/`2

s.

for the actual choice of {α3, β3} the EFT validity roughly coincides with the naive EFT
cutoff s∗ inferred in the IR from s∗`

2
s/4 ≈ 1. The actual cutoff is set dynamically by the

non-perturbative phase-shifts shown in the singlet channel (left column) and antisymmetric
channel (right). These two abrupt phase-shifts signal the presence of an unstable resonance.

– 17 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
6

Finally we note that for β3 = 0, we can find an analytic optimal solution of the dual
problem. It is easy to check that

λ
(1)
4 = −1, λ

(3)
2 = α2, λ

(1)
2 = λ

(2)
2 = − 1

64 + 16α2
2, λ

(3)
3 = −8α2 (4.3)

with Wi = 0 is a local maximum of the dual function D(Wi, λ
(i)
2 , λ

(3)
3 , λ

(1)
4 ), hence a global

maximum because the dual functional is concave by definition. The analytic value of the
dual functional yields the exact inequality

α3 > − 1
768 + 4α2

2. (4.4)

The S-matrix saturating this bound is explicitly integrable and can be obtained plugging
the dual solution (4.3) in the definition (4.2)

SDsing = SDanti = (32α2 + i)s+ 8
(32α2 − i)s+ 8 , SDsym = (−32α2 + i)s+ 8

(−32α2 − i)s+ 8 . (4.5)

This critical S-martrix nicely coincides with the one guessed in appendix C of [32].

5 Conclusions and outlook

In this work we have shown how to bound the space of two-dimensional EFTs through a S-
matrix bootstrap approach. For concreteness we have focused on the flux tube EFTs, which
describe the long effective string sector of three and four dimensional confining theories.

As discussed in the introduction, positivity constraints on EFT Wilson coefficients has
been a topic of intensive research for more than a decade. Due to the two dimensional nature
of our system, we have been able to go beyond the positivity constraint by considering the
full two-particle sector unitarity equation (2.10a) instead of ImM > 0. Nevertheless it is
interesting to compare our methodologies with the positivity bounds widely employed in
four dimensional EFTs. As a proof of concept we discuss the flux tube EFT for a single
flavor (or D = 3 flux-tube). The tree-level amplitude is

M(s) = c2s
2 + 2γ3s

4 +O(s6) , (5.1)

where c2 = 1/2 in the normalisation of the paper. Therefore, applying the widely-known
EFT positivity dispersion relation [1],21 we conclude

γ3 > 0 , at tree-level. (5.2)

In light of the perspective advocated in [18], next we improve the bound on γ3 taking into
account running effects, or loop corrections. For that purpose we define the arc variables

arc2 = 2
π

∫ ∞
ε

ImM(z)
z3 dz = c2 +O(ε) > 0 ,

arc4 = 2
π

∫ ∞
ε

ImM(z)
z5 dz = c2

2
2πε + c4 +O(ε) > 0 , (5.3)

21While it is not essential to the logic low of our analysis, we remark that in two-dimensions there has
been constructions of seemingly consistent UV complete Lorentz invariant theories with the ‘wrong sign’
c2 < 0 [71, 72], which exhibit superluminality.
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where the inequality signs follow from positivity ImM > 0, and recall that the loop-
corrected amplitude is given by

M(s) = c2s
2 + ic2

2s
3/4︸ ︷︷ ︸

one-loop

+ (2γ3 −
c3

2
24︸ ︷︷ ︸

two-loop

)s4 +O(s5) . (5.4)

The integrals in (5.3) are done by deforming the contour as in figure 1, and c4 is the coeffi-
cient of s4 in (5.4). Note that due to peculiarities of two spacetime dimensions the massless
cuts and naive 1/π loop factors are absent at this order (e.g. s3 log(s)+crossing-symmetry =
s3 log(s)− s3 log(−s) = −iπs3). Thus, after taking into account all loop corrections to the
O(s4) amplitude, positivity of (5.3) implies

2γ3 −
c3

2
24︸ ︷︷ ︸

”running” γ3

> −c2
2
επ

+O(ε) . (5.5)

Two main points follow from (5.5): in the far IR ε→0 the constraint is satisfied due to
IR EFT unitarity − c2

2
επ < 0 (thus not sensitive to UV causality or analyticity constraints),

and at intermediate energy scales the formula shows that loop corrections open a new
region of parameter space allowing γ3 to be negative. This is a sharp conclusion, which
corrects the tree-level result (5.2).

Formula (5.5) does not allow us to precisely determine the value of the exact quantum
bound on γ3. Nevertheless, we do expect that such bound must exist because an arbitrarily
negative γ3 would produce a negative phase (2.3), which would signal non-analyticities in
the UHP.22 As we have learned in this paper, such expectation is precisely addressed by
the dual EFT bootstrap approach which sets the bound γ3 > −1/768. An amplitude with
a γ3 below such value is not feasible: it is either non-analytic in the UHP or it violates
unitarity for some energy regime.

The next key step in the dual bootstrap program is to generalise the approach de-
veloped in this work to higher dimensions. Recently in [33, 36] it has been shown that
the non perturbative bounds on pion-like and supergravity EFTs put strong constraints on
the space of possible UV completions. On the other hand, for those systems the precise
determination of the feasible region in the space of Wilson coefficients using the numerical
S-matrix Bootstrap is a challenge. It would be very interesting to upgrade the dual EFT
approach proposed in this work to higher dimensions and apply it to those and another
phenomenologically relevant EFTs.

There are several questions the Dual Bootstrap might help to address in the context
of two dimensional flux-tube EFTs. In [69] it was introduced the so called Axionic String
Ansatz (ASA) which proposes that there are either no resonances for the D = 3 confining
flux tube, or just the axion (the resonance in the antisymmetric channel) for the D = 4 case.
Positivity bounds for the D = 3, under the ASA hypothesis, were derived already in [32].23

22Indeed, analyticity in the UHP implies that the total integrated phase is non-negative
∫ +∞
−∞ dθ∂θ2δ(θ) >

0 [73].
23See ref. [74] for a recent lattice calculation comparing the ASA for short strings against lattice MC

simulations.
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For instance, in the D = 4 case, we find that for β3 < 0 the optimal S-matrix contains a
sharp dilaton resonance — see figure 3 — and it would be excluded by incorporating the
ASA into the Bootstrap constraints. We leave this exploration for the future.

Adding multi-particle processes to the bootstrap is a fascinating challenge both con-
ceptually and numerically. Two-dimensional flux-tube theories are simple enough yet rich
of an interesting phenomenology that would justify the effort. We believe the dual formu-
lation might help tackling such a hard problem and perhaps single out the region where
physical large-N flux-tube theories might live.

We know that adding fermionic degrees of freedom and supersymmetry on the world-
sheet of confining strings leads to a series of predictions for the low energy flux-tube dy-
namics and its S-matrix [75]. The scattering of supersymmetric gapped particles in two
dimensions was studied in [76] and the bound of allowed space of couplings showed inter-
esting geometric structures in that case. It could happen that supersymmetric world-sheet
theories lies at a special point in the space of feasible Wilson coefficients. It would be
interesting to study these theories with the dual bootstrap approach.

We have observed that the axion becomes lighter and that its coupling matches the
integrable value as β3 is increased along the boundary of figure 2. It is tempting to imagine
that, along this boundary, the axion mass ma decreases following a technically natural
trajectory which, within perturbation theory s � `−1

s , could be defined as the integrable
theory in [69] softly broken by the axion mass. It will be interesting to understand how
generic is this feature by checking if the resonances observed in [32], and in this work,
present an analogous pattern: the mass decreases along a section of the boundary of
critical Wilson coefficients and the coupling to branons matches the integrable couplings
of [69]. As more couplings are turned on, it would be interesting to explore the critical
manifold of the dual EFT bootstrap. Are special points (cusps, edges, . . . ) in this manifold
of theories close to the QCD string?, and what is the spectrum of resonances along such
special trajectories? It will be fascinating to analyse these questions with the dual EFT
bootstrap.
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A Numerical dual problem

In this appendix we give more details about the numerical implementation of the dual
problem focusing on the D = 4 case.

As explained in section 3, the dual problem depend on a set of real variables ~λ and
three anti-crossing holomorphic functions Wi(s) in the UHP. The space of Wi(s) is infinite-
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dimensional, so we must truncate it choosing, for instance, a finite basis of functions. A
simple choice is the Taylor series expansion

Wi(s) = i

s2

N ′i∑
n=0

w(i)
n χn(s), (A.1)

where the function
χ(s) = −s− iz0

s+ iz0
. (A.2)

maps the upper half plane to the unit disk with centre iz0.24 The prime means that we
eliminate one constant w(i)

n in the sum to makeWi ∼ 1/s3 at large s. This choice is dictated
by the behaviour for z →∞ of the integrand in the dual functional definition (3.18). The
reader may also notice that the functional Wi is not regular at s = 0, but diverges as
Wi ∼ i/s2. This divergence does not affect the convergence of the dual functional at the
origin and it turns out that is needed to attain quickly the optimal bound.

To compute the integral in (3.18) numerically, we discretise the integrand on a grid
of points using the Lagrange interpolation formula. We first change variable mapping the
positive energy axis s > 0 to the segment x ∈ [−1, 1] using s(x) = z0 tan(π4 (1 + x)), then
we approximate the integrand

f(~w(i), ~λ|x) = z0
4

π

cos2(π4 (1 + x))

(
− 1

8π2
1

s(x)2 + s(x)
2 Ω(s(x))

)
(A.3)

by the interpolating polynomial of degree Npts passing through the Npts+1 points {xk},25

f(~w(i), ~λ|x) ≈
Npts∑
k=0

f(~w(i), ~λ|xk)`k(x), (A.4)

where
`k(x) =

∏
m 6=k

x− xm
xk − xm

. (A.5)

For the interpolation points we use the set of Chebyschev nodes xk = cos( kπ
Npts+1).

Using (A.4) we obtain an approximated expression for the dual functional

D(~w(i), ~λi) ≈ −
1
96 − 2β3 −

λ
(2)
2
2 + 2α2λ

(3)
3 − 2β3λ

(1)
4 +

Npts∑
k=0

f(~w(i), ~λ|xk)
∫ 1

−1
`k(x)dx. (A.6)

To search for the maximum of D we use the Mathematica built in function FindMaximum.
The discretised version of the dual objective in eq. (A.6), used for the search provides

a solution in terms of the dual variables {~w(i), ~λ}. The numerical approximation does
not affect the rigour of the bound since we can plug the solution found in the analytic
expression (3.18) obtaining a rigorous value. We chose the number of points Npts large
enough so that the difference between (A.6) and the analytic expression is much smaller
compared to the typical values of the objective of our optimization.

24There is no obvious choice for z0 a priori, though the rate of convergence of the numerical problem
depend on its value. For our numerics we have found empirically that z0 ∼ 4 gives the best convergence.

25To run the numerics we used Npts = 300.
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B Analytic bounds on γ5 and γ7

In this appendix we derive the analytic shape of the D = 3 flux-tube “Monolith” in [32],
namely the 3-dimensional allowed region in the γ3,5,7 space using the dual technology
developed in section 2.2.1.

We start by considering the problem of minimizing γ5 for any fixed value of γ3, given
the low energy expansion for the S-matrix

S(s) = ei
s
4 +iγ3s3+iγ5s5+iγ7s7

+O(s8). (B.1)

As explained in the main text, we fix the low energy ansatz using arcs sum rules 2.13 for
the amplitude M = −2is(S − 1), which explicitly yield

a2k(ε) = 2(−1)k+1

π

∫ ∞
ε

ImM(z)−
∑2k−1
m=3 cm sin mπ

2 (−z)m

z2k+1 dz,

a2k+1(ε) = 2(−1)k

π

∫ ∞
ε

ReM(z) +
∑2k
m=2 cm cos mπ2 (−z)m

z2(k+1) dz, (B.2)

where the coefficients cm can be read off from the expansion

M(s) = −
9∑

m=2
(is)mcm(γi) +O(s9) (B.3)

using the definition in (B.1). Notice that these sum rules are valid if the amplitude we
consider is analytic and crossing symmetric in the upper half plane.

So far, the derivation followed closely the one in section 2.2.1. At this point we can take
a shortcut. We do not impose the dispersive constraint for any positive value of s, but we
add just unitarity. This is not a problem, of course, since a dual bound obtained imposing a
subset of constraints is still a rigorous bound. Nonetheless, it will not be generally optimal.

The Lagrangian for this problem simply reads

L(M ; Λ) = γ5 +
6∑

n=2
λn(an(0)− cn(γi))−

∫ ∞
0

µ(z)U(z)dz, (B.4)

with µ > 0, and

U(s) = 2ImM(s)− |M(s)|2

2s > 0. (B.5)

By solving the equations of motion we can solve for the ReM , ImM and one of the λ’s

δL

δReM = 0 =⇒ ReM = 2
πs5µ

(s2λ3 − λ5),

δL

δImM = 0 =⇒ ImM = 2
πs6µ

(s2λ4 − s4λ2 + πs7µ− 1
2),

∂L

∂γ5
= 0 =⇒ λ6 = 1

2 . (B.6)

Plugging this solution into the Lagrangian L(M ; Λ) yields the dual functional d(Λ). Before
writing its explicit expression let us perform a further simplification.
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We recall that d(Λ) is the objective of the dual problem which, in this example, provides
lower bounds to the minimum value of γ5 for any set of dual variables Λ. However, due to
the simplicity of the Lagrangian (B.4) we can also analytically maximise d(Λ) w.r.t. µ > 0,
finding

µc = 1
πs3

√(
λ2 −

λ4
s2 + 1

2s4

)2
+
(
λ5
s3 −

λ3
s

)2
. (B.7)

Moreover, the function D(λi) ≡ d(λi, µc) is divergent for generic values of the dual vari-
ables.26 We find that for this problem it is sufficient to fix λ5 = −1

8 to make sure that the
dual functional D(λi) converges, yielding explicitly

D(λi) = 1
285! −

γ3
32 −

λ2
2 −

λ3
16 + λ4

(
2γ3 −

1
192

)
+
∫ ∞

0

dz

π

(
1

16z4 +
λ3 + 1

8λ4 − 1
210

z2

)

+
∫ ∞

0
dz

4
πz2

 1
2z4 −

λ4
z2 + λ2 −

√( 1
2z4 −

λ4
z2 + λ2

)2
+
( 1

8z3 + λ3
z

)2
 . (B.8)

By numerical inspection it turns out that the maximum of D(λi) is attained when the
integrand in eq. (B.8) vanishes. Despite the non linearity of the integrand, it is possible to
set it to zero choosing λ4 = 1

128 − 8λ3 and λ2 = 32λ2
3 leaving us with a function of λ3 only

D(λ3) = −16λ2
3 −

( 1
48 + 16γ3

)
− 1

122880 −
γ3
64 . (B.9)

This is a concave function of λ3 whose maximum is attained for λ3 = −γ3
2 −

1
1536 producing

the analytic inequality

D(λ3) 6 4γ2
3 −

γ3
192 −

1
737280 6 γ5. (B.10)

By definition, the local maximum we have found it is also global since the dual func-
tional is a concave function of all the multipliers.

Once we find the optimal dual solution we can plug into the equation of motions (B.6)
and obtain the critical S-matrix

S = 1 + i

2sM = 8− 32γ̃3s
2 + is

8− 32γ̃3s2 − is
, (B.11)

where γ̃3 = γ3 + 1
768 . For any fixed γ3 this S-matrix is analytic in the upper half-plane

and unitary with zeros whose location depend on the value of γ3. Hence, for this problem,
we find that the dual optimal solution saturates all the constraints imposed and also the
analyticity constraint we have not explicitly imposed.

26It is reassuring to observe that D(λi) = −∞ is still a lower bound, though a trivial one.
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The same argument can be applied to derive analytic bounds for the minimum γ7 at
fixed γ3 and γ5. Here we just report the dual optimal solution

λ2 = −(64γ̃5 − 256γ̃2
3 + γ̃3)2

524288γ̃2
3

,

λ3 = −(γ̃3(256γ̃3 − 1)− 64γ̃5)(γ̃3 + 64γ̃5)
32768γ̃2

3
,

λ4 = − 3
8192 −

16γ̃2
5 + γ̃3γ̃5 − 2γ̃3

3
32γ̃2

3
,

λ5 = 1
256 −

γ̃3
2 + γ̃5

4γ̃3
, λ6 = − 3

128 −
γ̃5
γ̃3
,

λ7 = 1
8 , λ8 = −1

2 . (B.12)

The bound on γ7 is

γ7 > − 1
7340032 + γ̃3

4096 −
γ̃2

3
16 + γ̃5

64 + γ̃2
5
γ̃3

(B.13)

and the critical S-matrix

S(s) = ((−8 + s)(−8i+ s)(8 + s)γ̃3 − 256s3γ̃2
3 + 64s2(−8i+ s)γ̃5)

(−((−8 + s)(8i+ s)(8 + s)γ̃3) + 256s3γ̃2
3 − 64s2(8i+ s)γ̃5)

. (B.14)

C Bonus: critical manifold and log’s

The low energy expansion of the D = 4 flux tube S-matrix is analytic up to O(s5) [75].
The first non-analytic terms are of the form s5 log s, and are fixed by unitarity. At O(s4)
there is a new non-universal parameter α4 (O(s5) in the M-matrix), and O(s5) there are
two new non-universal coefficients {α5, β5} appearing in the S-matrix (hence O(s6) in the
M -matrix). In this section we extend the dual functional introduced in the main text
incorporating the parametrisation of the low energy expansion up to O(s6).

It turns out that (3.6) generalises into

MFT
1 = 0× s2 + 0× is3 − 2β3s

4 − 1
2 iβ3s

5 +
( 1

16β3 − 2β5 −
4
π
α2β3 log(−is)

)
s6 +O(s7)

(C.1)

MFT
2 = 1

2s
2 + i

16s
3 −

( 1
192 − 2α3 − 2β3

)
s4 − i

2

( 1
1536 − 2α2

2 − α3 − β3

)
s5

+
(

1
61440 + 2α5 + 2β5 −

(2α2)2 + α3 + β3
16 − 4

π
α2β3 log(−is)

)
s6 +O(s7) (C.2)

MFT
3 = 0× s2 + 2iα2s

3 − α2
2 s4 − i

(
α2
16 − 2α4

)
s5 +

(
α2
192 − 2α2α3 −

α4
2

)
s6 +O(s7),

(C.3)

where we are using the crossing-symmetric basis introduced in (3.5), and we have indi-
cated in red and blue the appearance of the higher order non-universal parameters α4 and
{α5, β5}.

– 24 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
6

Once more, we repeat the steps to formulate the dual functional. We define the
Lagrangian

L(Mi; Λ) = o.g.︸︷︷︸
opt. goal

+ λ(i)
n (a(i)

n (0)− c(i)
n )︸ ︷︷ ︸

LECs constraints (C.3)

+
∫ ∞

0
[ωi(z)Dispi(z) + µI(z)UI(z) ] dz︸ ︷︷ ︸
analyticity and unitarity constraints

. (C.4)

where Λ collectively denotes all the Lagrange multipliers {λ(i)
n , ωi, µI}; the c(i)

n are read
from the low energy expansion MFT

i =
∑5
n s

nc
(i)
n + c

(i)
6 s6 + c

(i)
6,1s

6 log(−is) +O(s7) in (C.3);
and on top of (3.7) we are using

a
(i)
5 (ε) = 2

π

∫ ∞
ε

ReMi(z)− c(i)
2 z2 + c

(i)
4 z4

z6 dz , (C.5)

a
(i)
6 (ε) = 2

π

∫ ∞
ε

ImMi(z)− c(i)
3 z3 + c

(i)
5 z5 − c(i)

6,1z
6π/2

z7 dz . (C.6)

After going through the by now familiar algebra we are led to the following dual
functional

D(Λ) ≡ infµI(z)d(Λ) = o.g.−λ(i)
n c

(i)
n + 2

π

∫ ∞
0
dz

λ
(i)
3 c

(i)
2 + λ

(i)
4 c

(i)
3 + λ

(i)
5 c

(i)
4 + λ

(i)
6 c

(i)
5

z2 , (C.7)

− 2
π

∫ ∞
0
dz
λ

(i)
5 c

(i)
2 + λ

(i)
6 c

(i)
3

z4 −
∫ ∞

0
dz
λ

(i)
6 c

(i)
6,1

z
+
∫ ∞

0
dz
z

2 Ω(z) (C.8)

where Ω(z) ≡ 4ReW̃2+|W̃1−2W̃2+iW̃3|+ 2
d−2 |W̃1−iW̃3|+ 1

d−2 |(d−4)W̃1+2(d−2)W̃2+idW̃3|
and we have defined W̃i(z)π/2 ≡Wi(z)π/2+λ

(i)
2 /z3− iλ(i)

3 /z4−λ(i)
4 /z5 + iλ

(i)
5 /z6 +λ

(i)
6 /z7

with i = 1, 2, 3. By the same reasoning explained in the sections above, lower bounds on
the minimal value of o.g. can be placed by evaluating the dual functional (C.8), and the
most stringent bound are found by maximising D(Λ) over the Lagrange multipliers.

Our next task is to remove the potential singularities D(Λ)→ −∞ by maximising over
the λ(i)

n ’s. Again we find that dual functional is nicely finite at the maxima. In particular
by fixing

(λ(2)
6 , λ

(3)
6 , λ

(1)
5 , λ

(2)
5 , λ

(3)
5 ) = (λ(1)

6 , 0,−λ(1)
6 /4,−λ(1)

6 /4, 4α2λ
(1)
6 ) (C.9)

and λ(1)
6 > 0 the integrand in (C.8) is analytic around z = 0. We have obtained bounds —

taking (o.g., λ(1)
6 , β3) = (2α5, 1, 0) and scanning over α4 — but we leave for the future the

detailed investigation of the critical manifold.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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