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Abstract: Over the past ten years, there has been an increasing demand for reliable con-
sumer wearables as users are inclined to monitor their health and fitness metrics in real-time,
especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers
and smartwatches provide convenient, non-invasive SpO2 measurements but face chal-
lenges in achieving medical-grade accuracy, particularly due to difficulties in capturing
physiological signals, which may be affected by skin pigmentation. Hence, this study
sets out to investigate the influence of skin pigmentation, particularly in individuals with
darker skin, on the accuracy and reliability of SpO2 measurement in consumer wearables
that utilise reflectance pulse oximeters. A Monte Carlo model is developed to assess the
effect on simulated reflectance pulse oximetry measurements across light, moderate, and
dark skin types for oxygen saturation levels between 70 and 100%. The results indicate
that a one-algorithm-fits-all calibration approach may be insufficient, and root mean square
errors (RMSEs) of at least 0.3956%, 0.9132%, and 8.4111% for light, moderate, and dark skin
are observed when compared to transmittance calibration algorithms. Further research
is required to validate these findings and improve the performance of reflectance pulse
oximeters in real-world applications, particularly in the context of consumer wearables.

Keywords: Monte Carlo simulation; photoplethysmography; skin pigmentation; oxygen
saturation; pulse oximetry

1. Introduction
There has been a remarkable evolution in consumer wearables driven by advance-

ments in sensor technology, including a growing emphasis on personal health monitoring
using reflectance pulse oximeters [1,2]. Reflectance pulse oximeters measure blood oxy-
gen saturation (SpO2) using light reflected from tissue rather than transmitted through it,
making them suitable for body sites like the forehead or chest. This technology employs
light-emitting diodes (LEDs) to emit red and infrared light into the skin and a photodetector
to capture the light that is backscattered from the tissue. The relative absorption of these
wavelengths by oxygenated and deoxygenated haemoglobin allows for SpO2 calculation by
computing the ratio of ratios values (R). Unlike transmission-based oximeters, reflectance
models are less dependent on thin measurement sites like fingers or earlobes, making them
versatile for use in diverse clinical settings. However, despite their growing popularity,
several limitations exist. One of the primary challenges is the inherent complexity of ac-
curately capturing physiological signals from the skin’s surface. Consumer-grade devices
often face technical constraints in achieving the same level of accuracy and reliability as
medical-grade equipment relying primarily on transmittance pulse oximeter technology.
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Factors such as motion artifacts, ambient light interference, and variations in skin prop-
erties are inherent in both modes; however, they can be more pronounced in reflectance
pulse oximeters, affecting the quality of the photoplethysmography (PPG) signals [3]. As
a result, this tends to introduce inaccuracies in oxygen saturation measurement by pulse
oximetry, impacting the reliability of the data provided to users, which is a current subject
of concern [4].

Moreover, one of the ambiguous challenges regarding pulse oximeters has been in
understanding the impact of skin pigmentation on the accuracy of SpO2 measurement,
especially in individuals with darker skin. This is a limitation that has been explored
in both retrospective and prospective studies [5], whereas the majority have focused on
investigating SpO2 inaccuracies using transmittance pulse oximeters as a common medical
and diagnostic practice [6]. Consequently, there is a notable gap in comprehensive studies
examining inaccuracies stemming from skin pigmentation in reflectance pulse oximeters,
despite the fact that they rely on interactions with the superficial layers of the skin, including
various properties such as pigmentation.

Monte Carlo simulation is a powerful computational technique widely used in biomed-
ical optics to model light–tissue interactions. Its significance lies in its ability to account
for complex tissue geometries and stochastic light scattering and absorption events. They
are also useful for a range of applications, such as predicting the distribution of tissue
chromophores [7], deriving the optical properties of tissue layers and constituents [8],
and analysing photon behaviour in complex biological structures including analysis of
source-detector separation on output reflectance [9]. Other technologies such as optical
tomography also use reflected light to create high-resolution cross-sectional images based
on light–tissue interactions occurring in deeper tissue structures. While their application is
limited in the context of wearable devices where the primary goal is to achieve accurate,
real-time measurements of oxygen saturation at the skin’s surface, understanding the prin-
ciples of light scattering and absorption, which is the core of optical tomography, remains
essential for improving the accuracy of reflectance-based systems. By applying MC simu-
lations to study these interactions, this research can provide insights into addressing the
challenges posed by melanin concentration in light-based devices. Table 1 provides a sum-
mary of the advantages, limitations, and relevance of different computational approaches
for studying the effect of melanin on reflectance pulse oximeter algorithms.

Melanin, the primary pigment responsible for skin colour, plays a pivotal role in
light absorption within the visible and near-infrared spectrum, which can be simulated
in MC models. Studies have shown that melanin concentration in the skin absorbs light
differently, influencing the intensity of the detected signal by the oximeter [10]. In highly
pigmented skin, increased melanin concentration leads to higher absorption of light, par-
ticularly at shorter wavelengths (e.g., red light). This heightened absorption can alter the
reflectance signals detected by pulse oximeters, potentially reducing the accuracy of SpO2

measurements. As pulse oximeters rely on the ratio of red to infrared light absorption to
estimate SpO2, variations in melanin levels across different skin tones may introduce biases,
necessitating adjustments in device algorithms to account for these differences. Reflectance
pulse oximetry is particularly susceptible to the effects of melanin due to the shorter op-
tical path lengths and increased backscattering in superficial layers of the skin. Unlike
transmission oximetry, where light travels through the tissue, reflectance measurements
are more influenced by the optical properties of the epidermis and dermis, where melanin
is concentrated. Consequently, variations in melanin levels can significantly impact the
proportion of light reaching the detector, especially at red wavelengths. With very few
Monte Carlo simulations modelling light interaction within tissue and incorporating skin
pigmentation as a central variable in reflectance pulse oximetry [11,12], the need for more
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robust modelling is required to accurately characterise the impact of melanin on reflectance
signals and inform device calibration. This research has indicated that the AC/DC ratio,
which is the ratio of absorbance between the pulsatile and non-pulsatile components of
the PPG from the desired anatomical site, can be compromised with increasing melanin
concentration, primarily due to differences in light scattering and absorption during systole
and diastole. Based on this phenomenon, the calibration algorithms of pulse oximeters
may be impacted as they depend on the AC/DC ratio at red and infrared wavelengths.
However, modelling skin pigmentation should be enhanced to provide a more compre-
hensive understanding of its effect on optical parameters related to SpO2 calculation by (a)
avoiding the stratification of skin pigmentation based on ethnicity, and (b) incorporating a
broader range of pigmentation levels into the analysis. Therefore, the novelty of this study
lies in examining the influence of melanin concentration on simulated oxygen saturation in
reflective geometry using the Fitzpatrick scale. The aim is to obtain a preliminary under-
standing of the reliability of wearables when worn by individuals of different skin colour,
especially those with darker skin pigmentation.

Table 1. Comparison of different computational techniques for modelling light–tissue interactions in
biological media.

Method Advantages Limitations Relevance to Study

Monte Carlo simulation
(MCS)

Highly accurate for modeling
complex tissue structures and

heterogeneous tissue
properties [13].

Capable of accounting for
scattering, absorption, and

tissue heterogeneity,
providing a statistically

detailed simulation of light
transport and interaction [14].

Can be computationally
expensive, requiring

significant computational
resources and time [15].

Provides high accuracy and
reproducible outcomes by

running a very high number
of photon iterations,

making it ideal for studying
their stochastic nature in

light–tissue interactions as
pigmentation changes.

Finite element method
(FEM)

Suitable for solving complex
systems particularly in

laser-based
applications [16,17].

Less accurate in modelling
light scattering and

absorption compared to
MCS [18].

FEM can be less suited for
pulse oximetry applications

to model the complex
scattering events in tissues

such as skin.

Finite different method
(FDM)

Useful for solving the light
diffusion equation in simple

tissue models and to achieve a
balance between accuracy and
computational efficiency [19].

Assumes constant tissue
properties, limiting its

application in
heterogeneous tissues like

skin [20].

FDM is more suited for
simpler models of tissue

and may be faster for initial
simulations but lacks the

precision needed for
accurately modelling light

absorption and scattering in
tissues like skin with

varying pigmentation.

Diffusion
approximation

Computationally efficient for
modelling light transport in

scattering media especially in
deep tissue [21].

Less accurate for tissues
with high scattering

properties [22].

Diffusion approximation is
better suited for modelling
light in deep tissues rather

than superficial layers,
which is the main focus of
this study. Like FEM, it is

also not ideal for predicting
radiative transport in turbid

media such as the
human finger.
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2. Materials and Methods
To investigate the effect of melanin concentration on simulated oxygen saturation,

a previous Monte Carlo model of the finger was adapted to produce calibration curves
for light, moderate, and dark skin in reflectance mode PPG [23]. This involved changing
the sensor configuration such that the LED source and photodetector were adjacent to
each other, with a separation distance of 3 mm (Figure 1). This source-detector separation
was selected as it has shown to produce high-quality AC and DC PPG signals from the
finger [24].
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Figure 1. The anatomical site implemented in the developed Monte Carlo model. (a) Position of the
light-emitting diode (LED) and photodetector (PD) in reflectance mode on the finger. (b) The layers
of the finger are represented by rectangular slabs (skin, fat, and muscle) and cylinders (bone).

Furthermore, the optical properties of all the tissue layers and constituents, including
the absorption coefficients (µa), scattering coefficients (µs), and anisotropy values (g) at the
two operating wavelengths of pulse oximetry (660 nm and 940 nm), as well as the diastolic
blood volumes and water concentration values that were inputted into this model can be
found from previous work as extracted from the literature [23]. The melanosome fractions
(vmel) for the three skin types were extracted from the literature to calculate the absorption
coefficients of the epidermis, which were 2.55%, 15.5%, and 30.5% for light, moderate, and
dark skin, respectively [25]:

µa_epi

[
mm−1

]
= µa_melanin × vmel + µaw × vw + (1 − vw − vmel) + µa_skinbaseline (1)

where
µa_melanin = 6.6 × 1010 × λ−3.33

µa_skinbaseline = 7.84 × 107 × λ−3.255

µa_w is the absorption coefficient of water
(
mm−1); and vw is the volume fraction

of water.
Furthermore, the systolic phase was replicated by doubling the diastolic blood vol-

ume, which was equally distributed between arterial and venous blood [26]. Changes in
arterial and venous blood oxygenation were accounted for when calculating the absorption
coefficients of arterial and venous blood using the following equation:

µaderm(n)

[
mm−1] = satA × µaHbo + (1 − satA)× µaHHb × vA + satV × µaHbo + (1 − satV)× µaHHb × vV+

µaw × vw + (1 − (vA + vV + vw))× 7.84 × 107 × λ−3.255 (2)
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where
satA is arterial oxygen saturation, ranging between 70% and 100% in increments of 5%;
satV is venous oxygen saturation, set to 10% less than satA;
(1 − satA) and (1 − satv)× µaHHb is the contribution from deoxygenated arterial and

venous blood, respectively;
derm(n) is the nth sublayer of the dermis;
λ is the wavelength of interest (nm);
vv is the volume fraction of venous blood;
vA is the volume fraction of arterial blood;
µaHbo is the absorption coefficient of oxyhaemoglobin

(
mm−1);

and µaHHb is the absorption coefficient of deoxyhaemoglobin
(
mm−1).

The model was run until one million photons were detected. Output reflectance, given
by the ratio of incident and output intensity, was calculated during systole and diastole
to compute the AC and DC components at both wavelengths. The perfusion index (PI)
was calculated by dividing the AC value by the DC value for both wavelengths. This
allowed for calculation of the ratio of ratios at each oxygen saturation level, by dividing the
perfusion index at 660 nm by the perfusion index at 940 nm.

3. Results and Discussion
The Monte Carlo model presents three distinct calibration curves for light, moderate,

and dark skin (Figure 2). These curves are derived by computing the ratio of ratios using
input and output intensity data during systole and diastole. From this data, it is clear
that red light is highly absorbed by melanin in comparison to infrared light, especially at
higher melanin concentrations. As a result, normalised reflectance at 660 nm reduces in
magnitude as melanin concentration increases, and more so at lower oxygen saturation
levels. With larger and less compromised normalised reflectance values at 940 nm across
the simulated oxygen saturation range, a consistent reduction in the range of the ratio of
ratios is observed. Moderate and dark skin calibration curves are shifted with respect to
the light skin calibration curve due to changes in skin pigmentation for the same oxygen
saturation level, thereby leading to inaccuracies and especially overestimation of SpO2.
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Once again, the results indicate that a single calibration algorithm may not allow for
the accurate measurement of health metrics such as SpO2 by smart wearable technologies
on diverse skin pigmentations as is the case with transmittance pulse oximeters [23].
Therefore, a similar approach of applying correction factors to the moderate and dark
skin calibration curves was adopted. In doing so, correction factors of 1.21 and 2.17 were
calculated, respectively, and applied to the original calibration curves (Figure 3). As
shown, the simulated curves do not fully overlap with each other across the entire oxygen
saturation range, unlike the behaviour observed with previous work on transmittance
pulse oximeters. This discrepancy is possibly due to differences in light absorption and
scattering that arise from variations in skin pigmentation as photon travel is primarily
limited to the superficial layers, and where sensitivity could be heightened in the epidermis
region from backscattering [27]. Therefore, in reflectance mode, there is a greater likelihood
for photons to traverse a shorter depth before they are detected especially in darker skin
types due to the increased absorption by higher melanin levels, and more so at shorter
wavelengths. Hence, additional and/or alternative corrections could be explored by
adjusting the source-detector separation for different skin types. By varying the separation
distances for individuals with light, moderate, and dark skin, similar photon penetration
depths can be achieved, which could ensure more consistent light interaction with specific
regions of the tissue. This adjustment could help to normalise the calibration curves,
potentially making post-processing corrective measures easier to implement.
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with applied corrective factors.

From the existing literature, it is known that reflectance pulse oximeters exhibit a
decreased accuracy level of 3.5% compared to transmittance pulse oximeters of 3% [28].
Hence, part of the data analysis was to assess whether the computational outcomes reflect
this accuracy gap by comparing simulated calibration algorithms for light, moderate, and
dark skin in transmittance mode [23] (Figure 4). Visually, the simulated calibration curves
suggest that the effect of melanin concentration on oxygen saturation measurement was
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significantly amplified in reflectance mode, and that pulse oximeter calibrations may indeed
be calibrated on individuals from predominantly light-skinned populations due to the
smaller gap between both modes. Furthermore, this accuracy consistently decreased with
oxygen saturation as observed in studies on hypoxaemic patients [29,30]. All simulated
calibration curves were defined by an equation with a linear function, provided in Table 2.
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Figure 4. Simulated calibration curves in transmittance and reflectance mode pulse oximetry for (a)
light skin, (b) moderate skin, and (c) dark skin. (d) Calculated bias between simulated transmittance
and reflectance SpO2 for healthy SaO2 range (95–100%).
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Table 2. Calibration equations for the Monte Carlo simulated curves from finger transmittance and
reflectance pulse oximetry with light, moderate, and dark skin. The ratio of ratios is given by ‘R’.

Transmittance Reflectance

Light skin SaO2 = 109 − 25.44 × R SaO2 = 110.8 − 29.98 × R

Moderate skin SaO2 = 109.2 − 32.05 × R SaO2 = 108.4 − 32.3 × R

Dark skin SaO2 = 110.6 − 49.33 × R SaO2 = 114.9 − 76.99 × R

Commercial SpO2 = 110 − 25 × R

Next, these equations were used to calculate the level of bias between reflectance
and transmittance modes for each skin type i.e., light skin transmittance—light skin re-
flectance, etc. To do this, the equation derived from the simulated light skin transmittance
pulse oximetry curve was used as a reference as it closely matched the commonly used
commercial pulse oximeter algorithm. This equation was rearranged to calculate the ratio
of ratios values for a healthy SaO2 range of 95–100% to understand the effect of melanin
concentration independently of SpO2 inaccuracies at lower oxygen saturation levels. These
R values were then substituted into all other equations to calculate bias as shown in
Figure 4d. Evidently, light and moderate skin calibration exhibit a low level of bias across
the SaO2 range between −0.0154% and 0.6984%, and between 0.8884% and 0.9376%, re-
spectively. This results in a root mean square error (RMSE) of 0.3956% and 0.9132% in
comparison to 8.4111% for dark skin. However, it is important not to interpret this error
by its actual value until further computational investigation of dark skin simulation is
conducted due to its more complex structure. Rather, this indicates the potential difference
in bias between transmittance and reflectance pulse oximeters on skin types with high
melanin concentrations.

Following development of the model and conducting simulations to explore light–
tissue interactions of a perfused finger with three distinct skin types, it is clear that a
single calibration curve for measuring oxygen saturation is inadequate without accounting
for variations in skin pigmentation. This study underscores the need to rectify inaccu-
racies inherent in reflectance pulse oximeters, particularly due to the high demand of
consumer wearables.

In light of these findings, other computational studies have adopted a similar approach
in attempt to provide insight into the variations in SpO2 measurements based on differences
in skin pigmentation. For instance, Bolic conducted an examination of the influence of skin
colour and the depth of the air gap on SpO2 levels in reflectance mode, focusing on melanin
concentrations ranging from 0.3% to 16% [11]. Similar trends in the simulated calibration
algorithms were observed, specifically higher levels of absorption at 660 nm as melanin
concentration increased. Some limitations of the study included an anomalous calibration
outcome at 8% melanin concentration, whereby a satisfactory explanation was not provided.
Additionally, the study focused on the exclusive representation of light and moderate skin
types, which neglects individuals with darker skin tones [25], including a significant
portion of African populations. Therefore, this could explain the smaller difference in the
y-intercepts of the best fit lines, similar to the differences between light and moderate skin
in the current study with 2.55% and 15.5% melanin concentrations, respectively.

Furthermore, Jung et al. [12] conducted a study to characterise and evaluate the esti-
mation of oxygen saturation measured by a wrist-worn reflectance pulse oximeter during
sleep. While the study had a number of limitations, the accuracy of the smartwatch was
said to comply with FDA and ISO standards. In the context of skin pigmentation as the
limitation explored in this study, the 97 participants enrolled in the investigation were
reported as ‘Asian’. While ethnicity may not serve as a precise method for stratifying skin
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pigmentation, the probability of not meeting FDA and ISO standards was low, assuming
uniform skin pigmentation levels across all participants and a maximum RMSE of ±8%
with co-oximetry as a reference. Therefore, future studies are advised to recruit an ade-
quate number of participants with quantified skin pigmentation levels and assess SpO2

measurement using reflectance pulse oximeters. This can, in addition to providing insight
into the effect of skin pigmentation in reflectance pulse oximeters, serve as a validation
study to compare with the simulated results from the current Monte Carlo model. While
this has been investigated by Jiang et al. [19], larger sample sizes and raw SpO2 data are
required for a more direct comparison. Meanwhile, the generated data from the MC model
should be interpreted with caution as there is still potential to enhance the modelling of
haemodynamics and skin colour more objectively.

4. Conclusions
This study investigated the impact of skin pigmentation on the accuracy of reflectance

pulse oximetry using a Monte Carlo model. By simulating oxygen saturation measurements
across light, moderate, and dark skin types, the results highlight significant challenges in
applying a single calibration algorithm for all skin tones. Increased melanin concentrations
were shown to attenuate red light reflectance disproportionately, leading to biases in
SpO2 estimations, particularly for individuals with darker skin. Root mean square errors
were markedly higher for dark skin compared to light and moderate skin when using
transmittance-based calibration algorithms as a benchmark. These findings underscore the
limitations of current reflectance pulse oximeters and the necessity of tailored calibration
algorithms to ensure accuracy and inclusivity in consumer wearables. Future work should
validate these findings through experimental studies with diverse populations and optimise
device algorithms to address disparities in SpO2 measurement caused by variations in
skin pigmentation.
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