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1 Introduction

The description of QCD as a theory of strings remains an infamous open problem in theoretical
physics. While we have accumulated an increasing amount of analytic, numerical and
experimental evidence that such description is possible, at least in the limit of the large
number of colors N , we are still lacking theoretical tools needed to describe the worldsheet
theory of the corresponding strings, needless to say their interactions. In order to develop
such tools, a natural object to study is a single long confining string, or a flux tube, stretching
along one of the spacial directions in a pure Yang-Mills theory without dynamical quarks. It
is a stable object, even at a finite N , and it defines a relativistic 1 + 1 dimensional theory
whose low-energy excitations are “branons”, or Goldstone bosons of the spontaneously broken
Poincaré symmetry [1]. Below the confinement scale ΛQCD an effective theory of branons is
perturbative and decoupled from the four-dimensional excitations. This theory is constrained
by the non-linearly realized Lorentz transformations which do not leave the straight string
invariant. There is of course a very intuitive geometric picture of branons as describing the
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bending of the string in the transverse directions. The low energy action for branons looks like:

Sb=
∫

d2σ

[
−1
2
(
∂αXi

)2
−ℓ2s

8
(
∂αXi∂αXi

)2
+ℓ2s

4 ∂αXi∂βXj∂αXj∂βXj+O
(
ℓ4s∂6X6,ℓ6s∂8X4

)]
.

(1.1)
Here the string length ℓs ∼ Λ−1

QCD is the strong coupling scale. At finite N , the UV completion
is given by the full YM theory containing all bulk excitations, however, when N goes to
infinity, it is very plausible that the 1 + 1 theory is UV complete on its own. Note that
there is no allowed term at the order O

(
∂6X4), thus extending universality of the EFT

to the one-loop order. This theory is what one would like to call the worldsheet theory of
QCD string, from which the stringy description of QCD could be built. There are several
methods that are being explored for studying this theory beyond EFT: lattice QCD, solvable
toy-models, S-matrix bootstrap, and holography.

In this paper, we report on some developments in the S-matrix bootstrap approach.
The flux-tube S-matrix bootstrap was initiated in [2], and further developed in [3]. One
concrete motivation for our work is to understand certain numerical observation that we
will call the “triple coincidence”. This observation is related to the spectrum of massive
excitations of QCD flux tubes beyond those fixed by symmetries, more precisely to the
properties of the so-called worldsheet axion. The worldsheet axion1 is a particle which lives
on the worldsheet and that couples to branons through a topological density that counts
the self-intersection number of a string:

Sa =
∫

d2σ

[
−1
2 (∂αa)2 − 1

2maa2 − ℓ2sQaaεijεαβ∂α∂γXi∂β∂γXj + . . .

]
. (1.2)

As evident from the coupling, the axion is odd under both worldsheet and target space parities,
hence the name. Lattice data unambiguously confirms the existence of the worldsheet axion,
and, so far, does not hint at the presence of any other massive excitations of the QCD string.
There is also an integrable toy-model, called Axionic String [4, 5] which contains a massless
worldsheet axion, and, in addition to it, we have a region in the parameter space in which the
bootstrap predicts the axion as well. In this regard, the holographic models stay out from the
other three approaches, as they generically predict a parity even scalar excitation, the dilaton,
which parametrizes the excitation of the string in the radial AdS direction [6]. There is a
conjecture that the axion may have a simple origin from perturbative QCD point of view: it
matches the quantum numbers of the gluon field strength with transverse indices inserted in
the Wilson line creating the flux tube on the lattice [7]. If the conjecture were true, the axion
would be a crucial step in connecting the stringy description to asymptotic freedom of QCD.

Let us now review the relation between lattice, Axionic String and bootstrap in some
more details and explain the above-mentioned coincidence.

1.1 Worldsheet axion and the triple coincidence

We start by briefly summarizing the lattice data on QCD flux tubes in 3+1 dimensions [8–11].
Lattice measures the energy spectrum of flux tubes of finite length winding around a compact

1Not to be confused with the four-dimensional QCD axion.

– 2 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
0

SU(3) SU(5) SU(∞)
2++

mL
a ℓs 1.85+0.02

−0.03 1.64+0.04
−0.04 1.5

QL
a 0.380+0.006

−0.006 0.389+0.008
−0.008 —

2+−

mL
a ℓs 1.85+0.02

−0.02 1.64+0.04
−0.04 1.5

QL
a 0.358+0.004

−0.005 0.358+0.009
−0.009 —

Table 1. Axion mass and axion charge extracted from the lattice data in [8, 13]. Table is taken
form [4]. The largest systematic uncertainty affecting the charge determination is coming from the
lattice-induced split between two components of the symmetric-traceless flux tube state as seen form
the two rows of the table. The large-N value reported here is approximate and is a simple c1 + c2/N2

fit to SU(3) and SU(5) points.

direction.2 Of main interest for us is the spectrum of two-particle states corresponding to two
branons moving in the opposite directions. This spectrum can be related to the scattering
matrix of branons and matched to the EFT lagrangian. The axion then appears as a narrow
resonance in the parity odd channel of the scattering, hence lattice allows to measure with
axion mass and coupling, leading to the values as in table 1. The large-N value quoted here
is somewhat below the one in [13] since in this reference the winding corrections, and other
corrections caused by interactions, were not included.

Let us now introduce the Axionic String [4]. The absence of one-loop counter-terms in
the EFT Lagrangian leads to the universal particle production in the Goldstone sector [1]
breaking integrability of the worldsheet theory. In the language of fundamental strings,
breaking of integrability is related to the conformal anomaly which is present away from
the critical dimension.3 It would be nice to have an integrable theory, to which the QCD
string is in some sense close, as a toy-model to study. The only possibility to do so is to
introduce another massless particle on the worldsheet, however, lattice shows that no such
particles are present at least in the pure YM theory. There is, instead, a relatively light
particle — the axion. Turns out that if we take the axion exactly massless, there is an
integrable theory which respects the non-linear Poincare symmetry. This theory demands
that the axion coupling is equal to Qc

a =
√

21
48π , surprisingly close to the lattice results. This

coincidence was noticed in [4] and may hint to approximate integrability at high energies,
above the axion mass. In this model, the axion in some sense cancels the anomaly, even
though the Axionic string is only understood in the long-string sector at the moment. It
would be interesting to find a corresponding description of short strings.

2One can also simulate open strings ending on heavy color sources. Corresponding data [12] shows the
presence of the axion as well.

3There is an alternative and equivalent approach to the effective string theory where the relation between
integrability and conformal anomaly is more manifest [14, 15].
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Figure 1. Left: in green, the region in the γ3 − γ5 space allowed by the bootstrap constraints for
D = 3 flux tubes. Right: in green, the region in the β3 −α3 space allowed by the bootstrap constraints
for D = 4 flux tubes; in red, the region excluded analytically using the Schwarz-Pick theorem [2].
With the bar we denote S-matrix coefficients rescaled as ᾱn = 2n+1(4π)n−1αn, and the same for β

and γ. See below for the definition of these coefficients.

The logic here seems a bit flawed: axion mass is of the order of the EFT cutoff, so
why would we trust any numerology at the energies above it? In other words, the range
of energies ma ≪ E ≪ ℓ−1

s does not seem to exist. One important result of our paper is
to show that bootstrap provides some justification for using the approximation maℓs ≪ 1
even for the actual axion mass.

The numerical S-matrix bootstrap carves out the space of allowed EFTs satisfying the low
energy conditions that we input, as well as non-perturbative unitarity, crossing and analyticity
conditions. In the flux tube context this amounts, in the simplest case, to constraining the
allowed values of two leading non-universal coefficients in the 2 → 2 worldsheet S-matrix.
These coefficients, which appear at the order O(∂8X4) in the action are denoted by α3 and β3.
The allowed region has the form as shown in figure 1, right. Using the bootstrap algorithm it
is also possible to reconstruct and study the extremal amplitudes along the boundary of the
allowed region. As was first observed in [2] there are two pronounced boundaries, and one of
them has a single sharp resonance which is an axion.4 Mass of the axion varies along the
boundary, and both ma = mL

a and ma ≈ 0 are included. Once we fix the mass, position on
the boundary is determined and the coupling of the axion can be determined giving a value
Qb

a. It happens to be again close to Qc
a [2]. We thus have the triple coincidence:

QL
a ≈ Qc

a ≈ Qb
a (1.3)

In this paper, we improve the numerical data on the flux tube S-matrix bootstrap,
focusing on the determination of the properties of the axion. We significantly improve the
numerical precision which is made possible by rescaling the kinematic variables with the
Wilson coefficients in an appropriate way. We will observe that in the asymptotic region of
large positive β3, the axion mass becomes small and the EFT which explicitly contains the
light axion gives a good analytic approximation to the results. In this regime, the coincidence

4The other boundary shows the presence of a sharp dilaton instead of the axion. At D = 4 there exists a
symmetry of the crossing constraints under the exchange of the singlet and the antisymmetric channels. This
transformation also sends β3 → −β3, leaving α3 invariant.
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Qc
a ≈ Qb

a can be readily explained. In both cases, the axion coupling is fixed so that it cancels
the O(s2) growth of the phase shift. The regime of validity of the EFT roughly corresponds
to an axion mass smaller than the large-N value. We will see, however, that numerically
the coincidence still holds even away from the validity of this EFT, in particular when the
axion mass is close to its SU(3) value. In this regime, we have a less rigorous explanation
for it which is based on dispersion relations. If one assumes that the UV completion of the
real flux tube theory is not very different from the boundary bootstrap S-matrix, it would
also explain the first equality in (1.3). Flipped another way, one can take the coincidence
as an evidence for the similarity of UV completions. Namely, our results provide additional
evidence that existence of the axion is related to non-criticality of the QCD string.

While this paper is focused on strings in four-dimensional space, we also discuss cases
D = 3 and D > 4. In particular, an analog of the axionic string can be considered where the
axion is replaced by the anti-symmetric form field: aεij → Aij [4]. Theories with massive
anti-symmetric form fields are also found by bootstrap. Unfortunately we do not have any
confining gauge theories to compare with. Also, self-interactions of the form-fields imposed
by non-linear Lorenz symmetry make them harder to construct [5]. In D = 3, lattice does not
predict any resonances, in some sense one can think of it being consistent with continuation
of the axionic string to D = 3 since anti-symmetric form has no components. Bootstrap
results are summarized on figure 1, and we will explain their interpretation below.

2 Scaling theory for light resonances

In this section, we explore the EFTs with light resonances that provide an analytic under-
standing of some boostrap bounds. In addition to this, they help to improve significantly
the numerical convergence of our procedure.

Numerical S-matrix bootstrap is a non-perturbative tool, and often we do not have
a good analytic understanding of the theories that lie on the boundary of the allowed
region. We expect, however, that at least in various asymptotic regions such understanding
is possible. [16, 17] In particular, we will study the phenomenologically relevant part of
the boundary with large and positive β3. It will turn out that a simple EFT containing
a light worldsheet axion explains the leading scaling of S-matrix coefficients in this limit.
This will be the key observation that will allow us to connect the bootstrap results with
the Axionic String model. Before we discuss the relevant 4D case, let us first study the
simpler 3D case in this language.

2.1 3D

In D = 3, the phase shift of the 2 → 2 scattering amplitude of branons can be described at
low energies by a leading universal term proportional to sℓ2s, and by a number of non-universal
sub-leading corrections, characterized by dimensionless parameters γn

2δ(s) = s

4ℓ2s + γ3s
3ℓ6s + γ5s

5ℓ10s + γ7s
7ℓ14s + iγ8s

8ℓ16s + . . . (2.1)

The phase shift is real and the scattering elastic up to O(s8ℓ16s ), when the inelasticity due
to 2 → 4 processes kicks in. The leading particle production coefficient is not arbitrary, but
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related to the first non-universal correction to Nambu-Goto γ3 by the non-linearly realized
Poincare symmetry

γ8 =
81

215 × 72 × π2 γ2
3 . (2.2)

The first three non-universal corrections {γ3, γ5, γ7} satisfy a set of analytic inequalities derived
assuming that the low energy EFT amplitude is the expansion of a generic nonperturbative
amplitude satisfying maximal analyticity, crossing, unitarity, and polynomial boundedness5

γ̃3 ⩾ 0 =⇒ γ3 ⩾ − 1
768 ≃ − 3.3

(4π)2 × 24 ,

γ̃5 ⩾ 4γ̃2
3 −

γ̃3
64 ⩾ 0 =⇒ γ5 ≳ − 4.9

(4π)4 × 26 ,

γ̃7 ⩾
γ̃2
5

γ̃3
+ γ̃5

64 − γ̃2
3

16 + γ̃3
4096 ⩾ 0 =⇒ γ7 ≳ − 2.1

(4π)6 × 28 , (2.3)

where
γ̃n = γn + (−1)

n+1
2

1
n23n−1 . (2.4)

Those inequalities are saturated by integrable S-matrices. For instance, the optimal value of
γ3 is saturated by an S-matrix with a single broad resonance with mass m = (2 + 2i)ℓ−1

s

Scusp = −SGoldstino = 8i − sℓ2s
8i + sℓ2s

. (2.5)

The inequality for γ5 is saturated by a family of S-matrices with one complex resonance
with a mass depending on γ3

Sedge =
ŝ2γ̃3 − 192− 24iŝ

ŝ2γ̃3 − 192 + 24iŝ
, ŝ = sℓ2s. (2.6)

We can determine the large γ3 behavior of this resonance from the exact solution to find

mℓs = 1
√
2γ

1/4
3

+ i

64
√
2γ

3/4
3

+O(γ5/4
3 ) (2.7)

At large γ3, this resonance becomes light and weakly coupled. In particular, the cutoff of the
low energy EFT of branons is then only set by the mass of this resonance. As we will explain
momentarily, we could imagine describing the asymptotic bootstrap bounds for large γ3 by
using a simple tree level amplitude computed in the EFT with the light particle.

Consider the simple Lagrangian describing the interaction of the branons X with a
massive scalar field ϕ

Lϕ = −1
2(∂X)2 − 1

2(∂ϕ)2 − 1
2m2ϕ2 − 1

2g(∂X)2ϕ. (2.8)

Of course this Lagrangian does not respect the non-linear Lorentz invariance, however,
bootstrap is also blind to it, so for our current purposes we can use it. The tree-level
scattering amplitude XX → XX is

M tree(s) = −g2m4

4

( 1
s − m2 − 1

s + m2

)
− g2m2

2 . (2.9)

5More precisely we just need the amplitude to grow slower than exponential.
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At energies s ≪ m2, we simply have

M tree(s) = g2m2

2

(
s2

m4 + s4

m8 + s6

m12 + s8

m16 +O(s10)
)

. (2.10)

In order to make predictions we need to match the above expansion with the low energy
expansion of the flux-tube amplitude in the large γ3 limit. The generic low energy expansion
of the flux-tube amplitude takes the form

MEFT(s > 0) = −2is(S − 1) = s2ℓ2s
2 + i

s3ℓ4s
16 +

(
2γ3 −

1
192

)
s4ℓ6s + . . . (2.11)

This expansion is valid when sℓ2s ≪ 1. When γ3 is large, the mass of the resonance becomes
parametrically smaller than ℓ−1

s , namely, mℓs ∼ γ
−1/4
3 .

Matching the first two terms in (2.10) and the first and third term in (2.11) yields in
the large γ3 limit

mℓs = 1
√
2γ

1/4
3

, g = 1
√
2γ

1/4
3

. (2.12)

Note that the terms proportional to the odd powers of s, naturally associated to loops
corrections, are suppressed by powers of γ3, while for the even powers we get

γ5 = 4γ2
3 + . . . , γ7 = 16γ3

3 + . . . (2.13)

that matches the asymptotic behavior in eq. (2.3).
So far, we exploited our model to match tree-level quantities, but we can go a bit further

with the use of perturbative unitarity to compute the imaginary part of the O(g4) amplitude

2Im M = 1
2s

|M2| ≡ 1
2s

(M tree)2 (2.14)

that matches perfectly the order O(s3) term in eq. (2.11). The tree-level matching correctly
predicts the leading large γ3 behavior of the mass of the resonance. To access the sub-leading
term we need to compute the one-loop correction to the self-energy, alternatively we can
use the Inverse Amplitude Method [18, 19] and take the tree level phase shift to write a
unitarized ansatz of our tree level model

SU(s) = 1 + iδtree(s)
1− iδtree(s) = 1 + 2iδtree(s)− 2(δtree(s))2 + . . . (2.15)

where by δtree(s) we mean the leading phase shift in g2

δtree(s) = M tree(s)
4s

. (2.16)

We use (2.15) as a resummed expression, which is equivalent to resumming 1PI propagator
for ϕ. Resonance then corresponds to a zero of this object.

1 + iδtree(s) = 0 =⇒ s = m2
(
1 + i

g2

16 +O(g4)
)

, (2.17)

that matches eq. (2.7) after replacing the mass and the coupling with eq. (2.12).
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As a last comment, we check that using the rescaling sℓ2s = s̄√
γ3

it is possible to obtain
a systematic large γ3 expansion of the exact Sedge solution

Sedge(s̄) = 1 + i

4√γ3

s̄

1− 4s̄2
− 1

32γ3

s̄2

(1− 4s̄2)2 + . . . (2.18)

that matches our tree level model.

2.2 4D

Interpretation of bootstrap results is more complicated in 4D since we do not have a simple
analytic expression for the boundary S-matrix. Let us first summarize the numerical bootstrap
results. The phase shifts at low energies behave respectively for the singlet, antisymmetric,
and symmetric channel as

2δsing(ŝ) = ŝ

4 − α2ŝ
2 + (α3 − 2β3)ŝ3 − α4ŝ

4 +
(

α5 − 2β5 −
4α2β3

π
log(ŝ)

)
ŝ5 + . . .

2δanti(ŝ) = ŝ

4 − α2ŝ
2 + (α3 + 2β3)ŝ3 − α4ŝ

4 +
(

α5 + 2β5 +
4α2β3

π
log(ŝ)

)
ŝ5 + . . . (2.19)

2δsym(ŝ) = ŝ

4 + α2ŝ
2 + α3ŝ

3 + α4ŝ
4 + α5ŝ

5 + . . .

with α2 = − 22
384π fixed by non-linearly realized Poincaré symmetry. This term is sometimes

referred to as the Polchinski-Strominger (PS) term. Note that it does not correspond to any
term in the action for branons, it is a result of the one-loop calculation with the leading
interaction vertices in (1.1) [1]. Analytically, we know that

α3 ⩾ − 1
768 + 121

9216π2 , α3 ⩾ − 1
768 + |β3|. (2.20)

In D = 4, the crossing constraints are symmetric with the exchange of singlet and antisym-
metric channel. Numerically, we observe that the bootstrap bound shows the presence of a
pronounced resonance in the anti-symmetric channel for β3 > 0 and in the singlet channel
for β3 < 0. We refer to these resonances as worldsheet axion and dilaton respectively, as
we already discussed in the introduction.

Let us focus on the axion case. Numerically, we observe that when β3 > 0 is large, the
axion mass scales like maℓs ∼ β

−1/2
3 (see section 2 for details). Thus, similarly to the 3D

case the resonance becomes light, however, the scaling is different compared to (2.7). This
suggests to try an effective theory with a different number of derivatives in the coupling:

La = −1
2(∂X i)2 − 1

2 (∂a)2 − 1
2m2

aa2 − gaaεijεαβ∂α∂γXi∂β∂γXj + . . . (2.21)

We use a different coupling than in (1.2) to emphasize that so far the theories are not related.
A simple tree-level computation produces

Msing = −g2a
4

s4

(s + m2
a)

,

Manti = −g2a
4

s4(s + 3m2
a)

(s − m2
a)(s + m2

a)
, (2.22)

Msym = g2a
4

s4

(s + m2
a)

.
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We see that the expansion of these amplitudes at low energies starts from the α3 and β3
terms, while the tree-level and one-loop NG terms are not produced by it. We thus match
the leading order expansion of the axion amplitudes for s ≪ m2 with the O(ŝ3) of eq. (2.19)

g2a
8m2

a

{−1, 3, 1} = ℓ6s{(α3 − 2β3), (α3 + 2β3), α3} =⇒ {α3 = β3, ga = 2
√
2β3maℓ3s}. (2.23)

We then match the next order term, which is also real in this case, to the Wilson coefficient
α4. This leads to

α4 = −a4β
2
3 , with, maℓs = 1√

a4β3
, ga = 2

√
2ℓ2s√
a4

, (2.24)

where a4 is positive and it does not scale with β3. To summarize, we related the coefficients
α3, β3 and α4 to the mass and the coupling of the axion. Three parameters are matched to
two because of the constraint α3 = β3, satisfied asymptotically by the bootstrap bound, and
consistent with the weakly coupled axion EFT. Our axion EFT coupling ga is dimensionful,
so it is a weakly coupled particle at the scale of its own mass as long as maℓs ≪ 1 is satisfied.

Using the tree level axion amplitude, we also predict the following relations between
higher order Wilson coefficients:

α5 = β5 = a2
4β

3
3 , α6 = −a3

4β
4
3 , . . . (2.25)

So far the axion EFT appears to be unrelated to the string tension which controls the
leading NG interactions.6 How does this relation come about? The logic here is different
from what we had in 3D: instead of matching in the IR, the matching happens in the UV
with respect to the axion mass. Note that at s ≫ m2

a, the axion amplitudes grow as s3,
and so does the PS, or α2, term. This growth of the amplitude, corresponding to the s2

growth of the phase shift, is very unphysical (for example the S-matrix eics2 explodes on
the physical sheet for any c), thus bootstrap cancels this growth by matching the axion
amplitudes with the PS term. This condition reads:

g2a
4 = −2ℓ4sα2 = ℓ4s

22
192π

. (2.26)

This implies, in turn, that the dimensionless S-matrix coefficient a4 is set to be

a4 = − 1
α2

. (2.27)

After this identification all S-matrix coefficients are fixed in terms of the universal EFT
terms ℓs, α2 as well as the leading non-universal coefficient β3, to the leading order in the
large-β3 expansion.

Let us now compare the resulting axion coupling with the Axionic String prediction.
Of course, the condition of UV-cancelation is the same as in the Axionic String. The
dimensionless coupling we get is, however, slightly different:

QEF T
a ≈ ℓ−2

s ga =
√

22
48π

(2.28)

6ℓs appears in (2.24) only because we chose to express the higher order S-matrix coefficients in the units of
ℓs. This was done in anticipation of the correct scaling, but we could have used any other scale so far.
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To understand the difference from Qc
a =

√
21
48π , let us remember that the s3 term in the

amplitude comes form the loop of branons contributing a factor ∼ D − 26 = 22 [1]. Once
the axion is added to the theory, the non-linearly realized Poincaré symmetry demands it to
also runs in the loop transforming 22 into 21. This comes form the universal (∂a)2(∂X i)2
term in the effective action. Bootstrap, in its current realization, is blind to the symmetry
and, likely does not know about the axion running in the loop. We will come back to this
point in the discussion of the numerical results.

A comment is in order. Even though we did not introduce the non-linear Poincaré
symmetry into bootstrap, the effective theory that we picked, namely (2.21), is fully consistent
with it since it is equivalent to (1.2). While the most dangerous, order s2, term in the phase
shift is cancelled by the light axion, the linear in s growth is not affected by it at the leading
order in large β3 expansion. While the phase shift linear in s is consistent with the known
S-matrix properties, we expect that the optimal S-matrix does not have it, at least not in
all channels. The physical flux tube phase-shift is expected to have some linear piece in the
UV, however, it should be smaller than that in the IR [7]. As we will see, bootstrap cancels
this linear growth by heavy resonances with couplings not respecting non-linear Poincare,
similarly to the 3D case. We thus expect that the UV part of the amplitude, parametrically
above the axion mass, can differ in the bootstrap case and for the real flux tube theory, in
particular it will have some particle production.

As we did in D = 3, we can repeat the unitarization procedure and derive the asymptotic
dependence of the axion width on β3, a4. Using (2.23), (2.24) and (2.26) we get

2δanti(ŝ) =
ŝ

4 − α2ŝ
2 + α2ŝ

3 ŝ − 3α2
β3(

ŝ + α2
β3

) (
ŝ − α2

β3

) . (2.29)

If we perturbatively solve the equation near the axion mass the NG terms are suppressed,
and for large β3 we get

1 + iδanti(ŝa) = 0 =⇒ ŝa = |α2|
β3

+ iα4
2

β3
3

+ . . . (2.30)

we obtain the imaginary part of the axion mass

maℓs =
√

|α2|
β3

+ i
|α2|7/2

2β
5/2
3

+ . . . (2.31)

Therefore we have a prediction for the ratio

Qa =
√
8Γa

m
5/2
a ℓ2s

= 2
√
2|α2|+ . . . (2.32)

So far our discussion in this section was limited to the case of large β3, or equivalently
small maℓs. Just form the EFT perspective we cannot conclude whether the cancellation
discussed above should occur for the physical values of the axion mass, however, bootstrap
allows us to do precisely that. We can go to the point on the boundary corresponding to the
physical mass and check numerically how well (2.26) or (2.28). works. The detailed analysis is
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presented below, but the short summary is that, according to bootstrap, maℓs ≪ 1 is already a
decent approximation for large-N, and both equalities are satisfied with a reasonable precision.
For the higher values of the mass, including the SU(3) case, (2.26) fails, however (2.28)
continues to hold. It suggests the cancellation of the UV growth by the axion resonance
holds more non-perturbatively, as we discuss in section 5. It thus likely that QCD strings
also utilize the axion to cancel the PS growth, which explains the second part of the triple
coincidence: approximate equality of lattice and critical axion couplings.

3 Improved data for flux tube bootstrap

Let us now discuss the numerical procedure that we implemented. In any dimension D > 3,
the flux tube two-to-two scattering amplitude depends on a number of low energy constants
{α3, β3, α4, . . . } that can be unambiguously related to the Wilson coefficients appearing in
the EFT Lagrangian. Assuming that the nonperturbative scattering amplitude of branons
satisfies the S-matrix constraints of analyticity, crossing, and unitarity, we can use the
Bootstrap to determine the allowed space of the EFT Wilson coefficients.

Here we follow the constructive primal approach introduced in [20], and adapted to the
flux tube branons case in [2]. In the primal Bootstrap, we construct amplitudes compatible
with the S-matrix constraints. The first step is to make an analytic and crossing symmetric
ansatz for the S-matrix. We recall that, in generic D, the branons are labelled by an index
i = 1, . . . , D − 2 corresponding to one of the transverse directions to the flux tube. In general

Skl
ij (s) = δijδklσ1(s) + δk

i δl
jσ2(s) + δl

iδ
k
j σ3(s) (3.1)

where the three scalar functions σa(s) can be restricted to take value in the upper half plane
(UHP) where they satisfy the following crossing and real analyticity properties

σ∗
2(−s∗) = σ2(s), σ∗

1(−s∗) = σ3(s). (3.2)

We can write an elegant and compact ansatz for these functions using the map from
the UHP to the unit disk

χs0(s) =
is0 − s

is0 + s
(3.3)

and Taylor expand in χ

σ1(s) =
Nmax∑
n=0

(an + ibn)χs0(s)n

σ2(s) =
Nmax∑
n=0

cnχs0(s)n

σ3(s) =
Nmax∑
n=0

(an − ibn)χs0(s)n. (3.4)

We truncate the Taylor expansion at the order Nmax since we want to evaluate this ansatz
numerically. For fixed Nmax, we explore a subset of all possible amplitudes that becomes
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s s

 without rescalingSanti  with rescalingSantiNmax = 100
Nmax = 150

Nmax = 100

Real
Imaginary
Absolute value

1 2 3 4

-1.

-0.5

0.5

1.

1 2 3 4

-1.

-0.5

0.5

1.

m2
a ≃ 2.15

2maΓa ≃ 0.19

Figure 2. S-matrix in the antisymmetric channel as a function of s obtained by minimizing α3 at
fixed β̄3 = 22.74. Left: result of the optimization using an Ansatz without rescaling. Right: result
using an Ansatz with the rescaling s0 = |α2|/β3. All dimensionful quantities appearing in the figures
are expressed in units of ℓs = 1.

complete when Nmax → ∞. The set of real coefficients {an, bn, cn} satisfy an infinite number
of quadratic inequalities derived by imposing unitarity |Sirrep(s)|2 ⩽ 1 for any s ⩾ 0 on the
irreducible representations of the O(D − 2) flavour group

Ssing(s) = (D − 2)σ1(s) + σ2(s) + σ3(s)
Santi(s) = σ2(s)− σ3(s)
Ssym(s) = σ2(s) + σ3(s). (3.5)

To zoom in on the space of non-linear-Lorentz invariant amplitudes, we have to impose
a number of linear low energy constraints, which arise from matching our Ansatz (3.4) to
the low energy expansion in eq. (2.19). For instance, at leading order in the small energy
expansion σ2(0) = 1, and σ1(0) = σ3(0) = 0, thus we get

Nmax∑
n=0

cn = 1,
Nmax∑
n=0

an =
Nmax∑
n=0

bn = 0, (3.6)

and similarly for the higher orders in s. Indeed, we implement this matching up to O(s3)
where the first non universal correction to Nambu-Goto appear in the low energy expansion.7

The Ansatz in (3.4) is the general parametrization of a holomorphic function inside the
unit disk. When Nmax → ∞, it gives the Taylor series representation of any analytic function.
On the other hand, not all functions can be well approximated using a truncated series
representation with Nmax terms. A class of functions that are hard to approximate is given
by weakly coupled resonances, namely zeros of the S-matrix, that are close to the real axis. A
weakly coupled resonance is parametrized by its mass and width obeying the condition Γ ≪ m.
These quantities are related to the position of the zero in the upper half s-plane through the
formula sR = (m + iΓ2 )2 ≃ m2 + imΓ. Around the position of the resonance, the real and
imaginary parts behave universally forming the typical structure shown in figure 2 (right
panel). In figure 2, we take as a benchmark point β̄3 = (4π)224β3 = 22.74 that correspond

7Strictly speaking, to impose the soft theorems from nonlinearly realized Poincaré and elastic unitarity
would be sufficient to match up to O(s2).
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roughly to the value associated to the SU(∞) flux-tube theory. At this point, the axion has
mass ma = 1.467 and width Γa = 6.512× 10−2. From the figure, it is clear that the resonant
structure is contained in a window of size ∆s = 2mΓ. When we map the upper half-plane
to the unit disk, or equivalently the positive real axis to the upper boundary of the disk
χs0 = eiϕ, this window will be deformed according to the simple formula

∆ϕ = 2s0
s2 + s20

∆s = 2s0
m4 + s20

2mΓ. (3.7)

Since we Taylor expand in the unit disk, we can define a critical value Ncritical = π/∆ϕ

corresponding to the minimum value of Nmax needed to resolve the resonance, that we
empirically associate to the appearance of the zero in the complex plane. Moreover, to
have a precise reconstruction of the resonance we want to make sure that ∆ϕ ≫ π/Nmax or
Nmax ≫ Ncritical. The maximum of the jacobian factor is attained when s0 = m2. In that
case ∆ϕ ≡ 2Γ

m , which depends only on the intrinsic properties of the resonance and not on the
conformal map chosen. Thus, it is clear that with a careful choice of s0 we can minimize the
number of terms in the ansatz needed to resolve the resonance, however there is an intrinsic
lower bound on Nmax which depends only on the ratio Γ

m .
In general, resonances are dynamically generated by solving the bootstrap optimization

problem, and it is hard to know a priori where they will appear. However, according to the
EFT predictions discussed in section 2.2 we can tune s0 as a function of β3 according to

s0 =
|α2|
β3

≃ 46
β̄3

, =⇒ ∆ϕ = 2 |α2|5/2

β
3/2
3

≃ 11.4
β̄
3/2
3

(3.8)

in order to use each time the best possible ansatz to describe the dynamically generated
axion in the theory. For instance, in the example in figure 2 left panel, we plot the S matrix
in the antisymmetric channel for two values of Nmax = 100 (in solid) and Nmax = 150 (in
dashed). In this example we have chosen s0 = 8, a value used for instance in [2]. Using our
estimate we can predict a critical value Ncritical ≃ 60. Indeed, for Nmax = 100 > Ncritical the
resonant structure is already well reproduced, but not perfectly converged. If we push a bit
higher to Nmax = 150, then the absolute value (the green dashed line) saturates unitarity
almost perfectly close to the resonance.

With the rescaling, we can set s0 ≃ 2.05, and predict a critical Ncritical ≃ 30. In
figure 2, right panel, we check that using Nmax = 100 the axion resonance is already perfectly
reproduced. Rescaling becomes even more relevant for larger values of β3, and in what
follows we always use numerics with rescaling.

4 Results

4.1 Results in general D

Using the methodology described in the previous section, we can explore the space of Flux
Tube amplitudes. We will consider a simple optimization problem where we fix the value of
β3 and we minimize α3. The result in several dimensions larger or equal to 4 are given in
figure 3. On the left figure we show the absolute analytic lower bound on α3. For D = 4, 26
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D

5 10 15 20 25 30 35

-4

4

8

12

16

20

Bosonic String (26,0)

Analytic exclusion Bound:  
ᾱ3(D)

(4π)2 × 16 ≥ − 1
768 + 4α2(D)2

Integrable point (4,0.07)

-4 4

-2.5

2.5

-4 4

-2.5

2.5

ᾱ3

ᾱ3

β̄3

β̄3

4

8

6

9

26

D
ᾱ3 = (4π)2 × 16 × α3

Figure 3. Left: minimum of ᾱ3 as a function of the dimension D (greed dots). We denote the allowed
region of ᾱ3 in green. In red, the region excluded by the analytic Schwarz-Pick inequality [2] applied
to the symmetric channel S-matrix. Right: boundary of the allowed region in the β̄3 − ᾱ3 plane for
different dimensions D. In red, the analytically excluded region using the Schwarz-Pick inequality
applied to the two crossing symmetric components σ2 and σ1 +σ2 +σ3 which gives ᾱ3 > −π2/3+ |β̄3|.

it is achieved for β3 = 0, while it is not so for other dimensions. D = 26 is special because it
corresponds to the critical string. In this case, α2 vanishes and the kink corresponds to the
integrable theory known as the T T̄ deformation of 24 free bosons. D = 4 is special because
of the existence of another integrable theory identified in [21].

On the right figure, we show the boundaries of allowed regions for D up to 26. We see
that the boundaries quickly approach straight lines in agreement with the scaling predicted
by EFTs with light particles. We briefly describe the corresponding EFTs possessing the
dilaton or the anti-symmetric form particle in appendix A.1 and A.2. We expect these
theories to have the same properties as the light axion EFT studied in section 2.2.8 We did
not explore in details the boundary for D > 26, however, our preliminary analysis confirms
expectations of [4]. For D > 26 α2 is negative, and one needs a particle in the symmetric
representation of SO(D − 2) in order to cancel the amplitude growth in the UV. Such a
resonance indeed does appear.

4.2 Detailed results in D = 4

We now switch to describing our results in D = 4. In this, and in the next section, we set
ℓs = 1, unless we explicitly write it. In appendix B, we report all the data we will study in
this section. Our main focus is on the region of large and positive β̄3, since it corresponds

8We have explicitly checked the EFT predictions for β̄3 ≫ 1 and D = 5, 15.
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-3.2

-3.

-2.8

-2.6

β̄3

ᾱ3 − β̄3

n

n

ᾱ(0)
3

ᾱ(1)
3

n
4

12

4 6 8 10 12 14

-3.29

-3.285

-3.28

Figure 4. Left: the black dots correspond to the data for ᾱ3 − β̄3 as a function of β̄3; the coloured
curves to the fits obtained using the ansatz in (4.1) for different values of the truncation n; the
coloured horizontal lines are the extrapolated asymptotic values of ᾱ3 − β̄3. The dashed black line is
the analytic guess −π2/3. Right: the blue dots are the extrapolated values of ᾱ

(0)
3 (top), and ᾱ

(1)
3

(bottom) with the corresponding error bars. The blue curve is the power law Ansatz used to further
extrapolate in n. The blue bands represent the final extrapolated values with the error bar.

to QCD flux tubes. The boundary quickly becomes a straight line with the unit slope, in
accord with our EFT predictions.

We start with the first asymptotic prediction ᾱ3 = β̄3. In general, we can parametrize
the corrections to the tree level EFT result generated by integrating out the UV physics
with an expansion in inverse powers of the form9

ᾱ3(β̄3)− β̄3 =
n∑

k=0

ᾱ
(k)
3

β̄k
3

. (4.1)

In figure 4 on the left, the black dots correspond to the numerical values of ᾱ3 − β̄3 as
a function of β̄3. In the same figure, we plot the curves obtained by fitting the data using
the ansatz in (4.1) for different values of the truncation parameter n ranging from n = 2 in
green to n = 9 in red. On the right, we show the first two corrections to the EFT prediction
ᾱ
(0)
3 and ᾱ

(1)
3 as a function of the truncation parameter n. The error bars are extracted from

the fit procedure, and do not include a systematic error related to the finite Nmax size of
our numerical Ansatz that we use for the fits. The data used are obtained for Nmax = 400.
However, each observable we extract from the bootstrap has a different rate of convergence
in Nmax. For instance, the higher the order of the coefficients in the low energy expansion,

9As already done before, in this section we will rescale any Wilson coefficient appearing at order O(sn) in
the small energy expansion of the phase shift by a factor 2n+1(4π)n−1 to take into account naive dimensional
analysis factors.
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0.54
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-0.54

-0.5

-0.46

-0.42

β̄3

ᾱ4/β̄2
3

EFT prediction:  -6/11

n

a(0)4 /(32π)n
4

12

Figure 5. Left: black dots are the values of the ratio ᾱ4/β̄2
3 . We extrapolate the data using eq. (4.4)

for different values of n. Curves with different colours are obtained with different n. The horizontal
lines represent the asymptotic value extrapolated. Right: the extrapolated value of a

(0)
4 with the error

bars. The blue curve is the power law fit of the data. The blue band is the final result. The black
dashed line is the EFT prediction.

the worse it converges. ᾱ3 is the fastest to converge, and we can safely use all the points to
fit. We further extrapolate in n for each of the coefficients ᾱ

(k)
3 using a power law Ansatz

of the form f(n) = a + bn−c, finding that

ᾱ3(β̄3)− β̄3 = −3.2900(1) + 12.9(2)
β̄3

+O(β̄−2
3 ) (4.2)

We can conjecture that the leading correction converges to ᾱ
(0)
3 = −π2/3 ≃ −3.2899. In

the next section, we will explain this conjecture and it will be related to the specific UV
completion of the bootstrap amplitude. The extrapolation of the higher order corrections
ᾱ
(k)
3 with k > 2 requires more precision, and we do not attempt it here.

The scaling theory of the light axion also predicts that

ᾱ4 = − a4
32π

β̄2
3 +O(β̄3), a4 = − 1

α2
= 192π

11 ≃ 54.83. (4.3)

Similar to what we have done above for α3, we can unambigously extract the α4 coefficient
from the low energy expansion of the numerical S-matrices obtained by minimizing α3 at
fixed β3.10 The values obtained are shown in figure 5 (the black dots). As before, we use
the following parametrization to extrapolate the data for large β̄3:

ᾱ4(β̄3)
β̄2
3

= − 1
32π

n∑
k=0

a
(k)
4
β̄k
3

. (4.4)

In figure 5, on the left, we plot the result of the various fits where each colour corresponds
to a different n. The horizontal lines represent the extrapolated asymptotic value of ᾱ4/β̄2

3 .
In the same figure, on the right, we perform an additional extrapolation using a power law

10In D = 4, the logarithms appear in the phase shifts at order O(s5). In D > 4, they appear at the same
order as α4, making the extractions of this coefficient from our numerical amplitudes ambiguous.
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β̄3

ma × β̄1/23

EFT prediction  8 11π /7 ≃ 6.72
Extrapolation: ≃ 6.72(5)

β̄3

Γa × β̄5/23 EFT prediction ≃ 244.5
Extrapolation: ≃ 2.5(1) × 102
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4
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100
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300

Bad convergence in Nmax

Figure 6. Left: comparison of the two ratios ᾱ5/β̄3
3 and β̄5/β̄3

3 with the analytic EFT prediction.
Top right: mass of the axion as a function of β̄3 (red dots), and the fit with an inverse power Ansatz
with n = 11 (red curve). The error band is determined by combining the results for 4 ⩽ n ⩽ 11, and
further extrapolating in n. Bottom right: width of the axion (blue dots), and the inverse power fit with
n = 7 (blue curve). Only the points in the blue shaded region have been used for the extrapolation.
The final estimate and the blue error band were obtained combining fits with 4 ⩽ n ⩽ 7.

Ansatz in the truncation parameter n obtaining a value a
(0)
4

32π = 0.5451(3) in agreement with
the analytic asymptotic prediction a4

32π = 6/11 ≃ 0.5454.
The predictions for the higher order coefficients are harder to check. The reason is that

our numerical Ansatz does not contain logs and cannot match precisely the EFT low energy
expansion at such higher orders in eq. (2.19). However, we expect that in the regime of
large β3, logs should not matter because they are parametrically suppressed. In figure 6 (left
panel), we show respectively in blue and in red the two ratios β̄5/β̄3

3 and ᾱ5/β̄3
3 . Indeed, the

coefficients ᾱ5 and β̄5 are extracted by matching the low energy expansion of our ansatz
with (2.19) setting the logs identically to zero. We clearly see that the EFT prediction

ᾱ5 = β̄5 =
( 6
11

)2
β̄3
3 +O(β̄2

3) (4.5)

is well verified.
Next, we extract the axion parameters from the zeros of the S-matrix in the antisym-

metric channel

Santi(sa) = 0. (4.6)

For β̄3 > 0, we always find two zeros. We call axion the zero with smaller Re sa, while
the heavier will be called axion*. By definition the mass and width are related to the zero
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Integrability prediction: 
21

4 3π
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SU( )∞

Figure 7. Nonperturbative axion charge Qa as a function of the mass ma. The lightest points have
Nmax = 200, the darkest ones Nmax = 400. The purple curve has been determined by fitting separately
the mass and the width as in figure 6 and constructing the ratio

√
8Γam−5

a . The band represents the
extrapolated charge and its error.

position by the relation sa = (ma + iΓa/2)2. The results are shown in figure 6 on the right.
In the top right panel, the red dots are the values of the mass of the axion as a function of
β̄3. We perform the same extrapolation procedure already explained for ᾱ3 and ᾱ4 using
different truncated inverse power expansions. In particular, we consider 4 ⩽ n ⩽ 11. We
repeat the same analysis for the width of the axion Γa. However, for β̄3 > 50 this observable
still depends on Nmax. The dots in blue, from light to dark, correspond respectively to
Nmax = 200 to Nmax = 400 in steps of 50. The blue shaded region indicates the window
used to extrapolate Γa. Given that we can use less points compared to the other cases, we
extrapolate using 4 ⩽ n ⩽ 7. The final result is

mextr
a β̄

1/2
3 = 6.72(5), Γextr

a β̄
5/2
3 = 250(10) (4.7)

to be compared with the EFT predictions

maβ̄
1/2
3 = 16π

√
|α2| =

8
√
11π

7 ≃ 6.72, Γaβ̄5/2 = (16π)5|α2|7/2 ≃ 244.5. (4.8)

Finally, we can use this analysis to estimate the value an error of the charge11

Qextr
a =

√
8Γextr

a

(mextr
a )5 = 0.381(9). (4.9)

11This definition of the charge comes from matching the Lagrangian definition (1.2) to the narrow-width
approximation of the axion resonance shape, below we will use it even when perturbation theory appears to
break down.
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Looking at the error propagation for the values of the mass and width extrapolated, we would
expect the uncertainty to be dominated by the error on the mass

∆Qa ≃
√
2.0× 10−2∆m2 + 5.9× 10−7∆Γ2. (4.10)

However, it is easy to verify that with our current results the two terms in the square root are
comparable. Reducing the uncertainty on the mass is certainly possible, since the mass of the
resonance depends little on Nmax ⩾ Ncritical. However, as discussed in section 3, to describe
the axion resonance well, and to estimate Γa for large β̄3, we must have Nmax ≫ Ncritical.
The largest Ansatz we use has Nmax = 400. With this Nmax, we find an axion until the point
β̄3 = 106.1. For this value of β̄3, we estimate Ncritical ≃ 300. Empirically, we have established
that we need at least Nmax = 3Ncritical to have good convergence of a resonance. In this case,
we need at least Nmax ≃ 103. We think that designing more adaptive Ansatzes, allowing for
multiple tunable scales, it might be possible to achieve a better convergence with less terms.

With the current precision, we cannot discriminate between our EFT prediction, and,
for example, the value of Qc

a in the Axionic String Ansatz, which assumes that the axion
is contributing to the s2 term in the phase shift through loops. We remind that these
numbers are given respectively by

QEFT
a =

√
22

4
√
3π

≃ 0.382, Qc
a =

√
21

4
√
3π

≃ 0.373. (4.11)

More generally, the bootstrap allows us to study arbitrary values of α2. While most
of our results correspond to the physical value, we checked that changing α2 modifies the
bootstrap results according to the EFT expectations.

The following picture emerges from our numerical analysis: a common feature of our
plots for the S-matrix coefficients, figures 4–6 is that the deviation from the light-axion EFT
predictions becomes significant below β̄3 ≈ 20, or ma ≈ 1.5ℓ−1

s . It is thus not valid for masses
above this value. On the other hand, figure 7 shows that the approximate relation Qb

a = Qc
a

holds for significantly higher values of the mass. If it was the full story, the figure 7 would
still look very mysterious. In the next section, we study this non-perturbative regime and
give some more justification for the coincidence.

5 Axion dominance beyond EFT

In order to study our S-matrices beyond EFT, we first discuss the fate of the three broad
resonances present in the extremal Bootstrap amplitudes in addition to the axion. In figure 8,
we show the mass and the width of these particles as a function of β̄3. We observe the
following asymptotic behavior

lim
β̄3→∞

m = 2, lim
β̄3→∞

Γ = 4. (5.1)

Thus, their mass does not become small in the asymptotic region and they are not present in
the light-particles EFT. Instead, we conjecture that for all channels the Bootstrap S-matrix
asymptotically factorizes into a product of the form

Sirrep(s) = e2iδirrep
a × 8i − s

8i + s
(5.2)
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Figure 8. Left: mass of all the four resonances of the S-matrix as a function of β̄3. Right:
corresponding widths as a function of β̄3. Black dashed lines are the values of the mass and width of
the conjectured asymptotic UV completion of the bootstrap S-matrix (5.2).

Here δanti
a = δanti − s

4 (see (2.29)) and similarly for other channels. Thus the axion unitarizes
the quadratic (PS) part of the phase shift in all channels, while the linear (NG) part is
unitarized by the three broad resonances independently in each channel. One check of this
conjecture is the computation of the sub-leading correction to ᾱ3 which turns out to be,
indeed, close to −π2/3 as we observed above, see figure 4.

We also know what the S-matrix for β3 = 0 is: it is an integrable solution to massless
Yang-Baxter discussed in [21] and [2]

S±
Y B = 8 + is ± 32α2s

8− is ± 32α2s
, (5.3)

where S+
Y B is the S-matrix in the singlet and antisymmetric channel, S−

Y B in the symmetric.
Thus the β3 = 0 point in figure 8 is analytic. We see that our numerical results converge to
them at smaller β3. The S-matrix for β3 = 0 has a very different nature: there are three
resonances, in singlet, symmetric and anti-symmteric channels that roughly equally contribute
to the unitarization of NG and PS parts of the phase shifts. The second pseudoscalar
resonance simply decouples. We thus conclude that there is a transitional region between
the EFT and the small β3 regime where the axion still dominates over the other resonances,
but light-axion EFT already breaks down. We will call it the axion dominance. To study
this regime we turn to sum rules and dispersion relations. We will see that indeed the axion
channel gives a dominant contribution to them, explaining the value of its coupling.

The sum rules for flux tubes were developed in [3]. Here we use the D = 4 expressions,
presenting the general D formulas in the appendix A.3. The idea is to construct crossing-
symmetric combinations of amplitudes in order to reduce the integral over the real line to
that of the positive half-line. In particular, the following sum rules can be constructed for
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Figure 9. Integrand of the “total cross-section” sum rules σirrep as a function of s(ϕ) = 8 tanϕ/2.
The Jacobian is included in the integrand. Each irrep is highlighted by a different colour.

the first few Wilson coefficients:

0 = 1
π

∫ ∞

0

Im Msing(z)− Im Manti(z)
z3

dz (5.4)

ℓ2s
2 = 1

π

∫ ∞

0

Im Msym(z) + Im Manti(z)
z3

dz (5.5)

α2ℓ
4
s = − 1

4π

∫ ∞

0

Im Msing(z) + Im Manti(z)− 2Im Msym(z)
z4

dz (5.6)

β3ℓ
6
s = 1

4π

∫ ∞

0

Im Manti(z)− Im Msing(z)
z5

dz (5.7)

α3ℓ
6
s = 1

4π

∫ ∞

0

Im Msing(z) + Im Manti(z) + 2Im Msym(z)− z3/4
z5

dz + 1
384 (5.8)

First two sum rules are the “total cross-section” sum rules similar to the one used in [22].
They are related to the leading NG interactions at low energies. Higher-order sum rules
are related to higher-order Wilson coeffcieints. We can check that at tree-level they result
into the same expressions as our light-axion EFT together with the UV-matching conditions.
Namely, in the EFT we have Im Msing = Im Msym = 0, while Im Manti = π

2 g2m8δ(s − m2).
Plugging into the dispersion relations we get

β3ℓ
6
s = 1

4π

∫ ∞

0

Im Manti(z)
z5

dz = g2a
8m2

a

(5.9)

α2ℓ
4
s = − 1

4π

∫ ∞

0

Im Manti(z)
z4

dz = −g2a
8 (5.10)

in agreement with (2.26).
Sum rules, however, can be used beyond perturbative computations. We will use them

to test numerically whether the axion contribution dominates certain observables. First, note
that the sum-rules related to the total cross-section are not dominated by the axion. For
example, (5.4) implies that contributions of the anti-symmetric and singlet channels must be
equal. This can also be seen from figure 9, where the UV part of the integrand is comparable
to the axion bump. This is in agreement with the fact that the NG part of the phase shifts
is unitarized by the heavy resonaces, not by the axion.
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Figure 10. Left plots: integrands of IR finite dispersion relations as a function of s(ϕ) = 8 tanϕ/2
for ma ≃ 1.8 (the Jacobian is included in the figure). Right plots: integrals of the IR finite dispersion
relations as a function of the axion mass ma.

1
4π |α2 |m2a ∫

∞

0

ds
s2

log |Sf |2

ma

1.2 1.4 1.6 1.8 2. 2.2 2.4

-0.1

-0.05

Figure 11. Relative size of the integral contribution to the axion-coupling sum rule (5.14).

On the other hand, higher-order sum rules are dominated by the axion. It is natural,
since they are more peaked in the IR. Since integration of amplitudes in individual channels
would diverge in the IR, to test this we form IR-finite linear combinations, see figure 10. We
see that for ma ≲ 2ℓ−1

s the integrals that contain the anti-symmetric channel are larger than
the integrals that do not. In this sense the axion dominates these dispersion relations.

Finally, let us try to produce a sum rule which connects the value of α2 and the position
of the axion zero. Here we employ the sum rule similar to the one used in [7] for the string
tension. Our logic is the following: suppose we know that there is a single narrow and
relatively light resonance in the anti-symmetric channel with the real part of its mass equal
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to ma. We would like to show that then its width should be related to α2. We know that the
amplitude will be the largest in this channel for s ∼ m2

a, hence an appropriately constructed
sum rule can be dominated by it. Let us consider the following object:

Sf = 1− Msing + Manti − 2Msym
2is2

m2
a . (5.11)

It is crossing symmetric, that is Sf (−s∗) = S∗
f (s). Under the assumption that Manti ≫

Msing, Msym for s ∼ m2
a, Sf ∼ Santi so it will have a zero at the axion point, up to corrections

of order Γ/ma ≪ 1. Under the same assumptions, and also assuming that the S-matrix in
the anti-symmetric channel is elastic, |Sf | ≈ 1. We then consider the integral

If =
∮

γ

ds

s

S′
f

Sf
, (5.12)

where the contour is the same as in [7] (line above the real axis plus the arch at infinity).
Evaluating this integral by residues we get:

If = 2πi
∑

zeros

1
si

. (5.13)

On the other hand, because S′
f

Sf
≈ −4iα2m

2
as for small s, evaluating the integral over the real

line directly, integrating by parts and using crossing symmetry gives us

If = −πi(−4iα2)m2
a −

∫ ∞

0

ds log |Sf |2

s2
. (5.14)

We know that Sf has two crossing-symmetric zeros s± ≈ ±
(
ma ± iΓ2

)2
. For small enough

ma we also know that there will be no other zeros. This follows from the fact that by unitarity
the amplitude in each channel is bounded, and, since in (5.11) all amplitudes are multiplied
by an additional factor of m2

a/s, there can be no zeros of Sf when this ratio is large enough.
We, however, would like to use our sum rule in the regime when other the resonances have
masses comparable to the axion, so we do not have an analytic argument for the absence
of other zeros. Nevertheless, we checked numerically that it is indeed the case. It would
be nice to construct a sum rule for α2 such that the absence of zeros is more manifest, or
such that their contribution is significantly suppressed.

Using the fact that Sf has no other zeros and expanding to leading order in Γa/ma, we get:

Γa

m5
a

= −α2 −
1

4πm2
a

∫ ∞

0

ds log |Sf |2

s2
. (5.15)

The integral is evaluated numerically in figure 11. We see that it gives a relative correction
of order 10% for the mass range we are interested in, since |Sf | is relatively small as we
expected. This results into order 5% correction once we take the square root to extract
the dimension-less charge according to (2.32). We thus conclude that the sum rule (5.14)
explains sufficiently well why the axion coupling is close to the critical value even when
the EFT breaks down, but when the axion is still light enough to dominate the dispersion
relations. It is plausible that the same sum rule applies to real QCD flux tubes, and the
couplings coincidence (1.3) hints in this direction. To make a careful statement we need
to make sure that there are no extra zeros of Sf .
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6 Conlusions & outlook

In this work, we have explored a class of flux-tube S-matrices saturating the Bootstrap bounds,
and featuring a light axion resonance. We have shown how it is possible to analytically
predict many properties of these S-matrices using the EFT of light weakly coupled particles
in an asymptotic regime. To access numerically this regime and check the predictions, we
have improved the numerical convergence of the primal Bootstrap by taking into account
the EFT power counting.

We have begun our discussion addressing the “triple coincidence” among Lattice, Integra-
bility, and Bootstrap. It is now clear that when the axion is sufficiently light this coincidence
can be explained using the EFT of light-particles. For physical values of the axion masses,
however, the EFT prescription breaks down. Nevertheless, we have found that even for masses
close to the cutoff of the effective string description, as it is the case for SU(N) YM theories,
dispersion relations are dominated by the axion. We call this regime axion dominance. By
constructing a suitable sum-rule (5.14), we have proven that the axion coupling is indeed
related to the PS coefficient α2 up to an error that turns out to be numerically small for
the amplitudes that saturate the Bootstrap bounds.

In the light-particle EFT, the role of the axion is to cancel the universal PS term at
intermediate energies above its mass, but below ΛQCD. In the Axionic String, the coupling of
the axion is tuned to cancel the particle production at low energies which is again proportional
to the PS term. The two mechanisms lead to similar values for the axion coupling. The
small difference is due to whether or not the axion runs in the loop, see eq. (4.11). In the
non-perturbative axion dominance regime, we might conjecture that the worldsheet YM axion
is also responsible for an approximate cancellation of particle production in some intermediate
regime, thus suppressing the inelasticity effects. If that were the case, one could hope that
there exists an integrable model close to the real QCD flux tube theory. Finding such a
model would give us a fundamental tool to understand the dynamics of confining strings.

Below we list a number of possible extensions of our work.

• In this work we studied only the two-particle S-matrix. Including multi-particle processes
into the Bootstrap is a notoriously hard task.12 A simpler approach is to study the
sensitivity of the Bootstrap bounds to the inelasticity profile, see also [24]. It would be
interesting to parametrize the inelasticity function in the 2 → 2 scattering amplitude
and determine what are the relevant features that let the bound change. Another
approach is to estimate the particle production from the lattice data with the help of
dispersion relations, and inject this information into the Bootstrap.

• Another source of discrepancy with the real flux tube theory comes from the tuning of
higher order coefficients. We have checked that the bounds on α3 and β3 do not change
when we vary the value of α4. There is an RG intuition for this: even if we fix the lowest
energy Wilson coefficients within the allowed region, there are still infinite possible
consistent UV completions. However, for any fixed value of α4, it is possible to look
for bounds in the {α5, β5} space. In general, by tuning these higher order coefficients

12See [23] for a first exploration in the case of D = 3 flux tubes.

– 24 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
0

we should expect the appearance of other light resonances in all channels. It would
be interesting to study their effect on the bounds and on the axionic S-matrix. This
would correspond to moving inside the allowed region. Combining this analysis with
the empirical absence of additional massive states on the flux-tube will help us to better
establish our picture.

• In this work, we have started the exploration of confining strings in any D. In
appendix A, we summarize the EFT predictions in any dimension. We have numerically
checked that our predictions are explicitly verified in dimension D = 5, 15, and we
find an axion (anti-symmetric form field) for β̄3 ≫ 1 with the expected properties. In
D = 30, we have found a weakly coupled symmetron (a resonance in the traceless
symmetric channel), but with a mass that did not become light for the range of β̄3
we have studied. It would be interesting to construct a similar sum-rule to the one
in (5.14), and check the symmetron dominance, and understanding the large β̄3 regime
for D > 26. In figure 3, we observe interesting things happening as we vary D: the
bound on α3 reaches a maximum around dimension D = 9 before going down, and
at D > 26 we have a sharp transition where the axion is replaced by the symmetron,
while for D = 26 the bounds saturate the analytic Schwarz-Pick inequalities. A more
detailed study of general D confining strings might elucidate the mechanism behind
these phenomena. We discussed only briefly the case of negative β̄3. The axion in this
case gets replaced by the dilaton, thus in this region of parameters bootstrap can be
relevant for studying a string propagating in AdS-like spacetimes.

• Dispersion relations and sum rules provide an alternative and insightful description of
scattering amplitudes. For instance, the fact that for large positive β̄3 the antisymmetric
channel dominates over the singlet can be simply interpreted using the sum rules in
eq. (5.7). In fact, all the qualitative features we observe studying the Bootstrap S-
matrices can be a posteriori connected with properties of the dispersion relations. We
think it will be worth using the dispersive approach more extensively to reconstruct
the flux-tube S-matrix. Using the method developed in [25], it might even be possible
to reconstruct an amplitude where particle production is dynamically generated when
we break integrability with the PS term.

• The determination of the axion charge from lattice data is based on a fit of the phase
shifts extracted using the Lüscher method. This fit is done using a simple unitarized
model for the axion phase shift, very similar to the one we have considered in this
paper (2.29). Obtaining reliable phase shifts from lattice is separate problem that
we are not addressing in this paper. The newest lattice data will be analyzed in [26].
However, in this paper we have shown that the light-particle EFT description breaks
down at the QCD axion mass scale. A more precise way to fit the properties of the
axion would be to use the Bootstrap solutions we have found. Each extremal amplitude
we find is only function of β3. Minimizing the norm ||δexp − δbootstrap(β3)|| would tell
us the precise value of β3 associated to the axion using a model that obeys unitarity,
crossing, and analyticity exactly, hence fixing also the non-perturbative axion coupling.
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• Another possible extension is to consider flux tubes in supersymmetric theories, for
example N = 1 Yang-Mills. The EFT for supersymmetric confining strings which
includes goldstones and goldstinos has been developed in [21]. It would be interesting
to understand the fate of the axion in presence of spontaneously broken supersymmetry,
and if any other light resonances generically appear. It is an interesting challenge both
for bootstrap and for the lattice.

• In this paper, we have tuned the parameter s0 of the conformal map used in the
Bootstrap to optimally describe the axion for large β̄3. However, we have shown that
there exists an intrinsic lower bound on the resolution we need to achieve, which is
given by the ratio Γ/m. In the future, it might be worth to explore different maps, in
particular, conformal maps that contain more than one scale parameter. For instance, a
generalization of the wavelet idea introduced in [27]. We believe that studying a different
class of conformal maps could lead to a better performing Ansatz, and eventually reduce
the uncertainty on the extrapolation of the asymptotic axion charge (4.9).
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A Flux tubes in D-dimensions

In this appendix, we study the generic Flux Tube EFT in D dimensions. As we discussed in
section 2.2, in D = 4 when the sign of β3 is positive the EFT contains a weakly coupled light
axion, when β3 is negative we find a dilaton. To study the general case, it is convenient to
couple particles in all different representations to the world-sheet branons. To be consistent
with non-linear Lorentz symmetry we must consider a four derivative interactions

1
2∂α∂γXi∂β∂γXj(δαβ(g0P0+g2P2)kl

ij+εαβg1(P1)kl
ij )Φkl ≡

1
2∂α∂γXi∂β∂γXj(Gαβ)kl

ijΦkl, (A.1)

where the irreps projectors are explicitly given by

(P0)kl
ij = 1

D − 2δijδkl, (A.2)

(P1)kl
ij = 1

2(δ
k
i δl

j − δl
iδ

k
j ), (A.3)

(P2)kl
ij = 1

2(δ
k
i δl

j + δl
iδ

k
j )−

1
D − 2δijδkl. (A.4)
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We can use the Feynman rule for the interaction vertex −ipi
αpj

β(Gαβ)kl
ij , and the identity

εαβpαqβ = −p · q to readily compute the amplitude with generic polarizations of the ex-
ternal legs

iMkl
ij =iM1δijδkl+iM2δ

k
i δl

j+iM3δ
l
iδ

k
j =−i

∑
I={0,1,2}

g2I (PI)kl
ij

s4

s−m2
I

+i
∑

I={0,1,2}
g2I (−1)I(PI)jk

il

s4

s+m2
I

(A.5)
From this equation, we can extract the components Mi

M1 = s4

2

(
2g20

(D − 2)(m2
0 − s) −

g21
s + m2

1
+ g22

( 1
m2

2 + s
− 2

(D − 2)(s − m2
2)

))
(A.6)

M2 = s4

(m4
1 − s2)(m4

2 − s2)(g
2
2m2

2(s2 − m4
1) + g21m2

1(s2 − m4
2)) (A.7)

M3 = s4

2

(
2g20

(D − 2)(s + m2
0)

+ g21
s − m2

1
+ g22

( 1
s + m2

2
+ 2

(D − 2)(s − m2
2)

))
(A.8)

and combine them into irreps

Msing = (D − 2)M1 + M2 + M3 (A.9)
Manti = M2 − M3 (A.10)
Msym = M2 + M3 (A.11)

Below, we adapt these formulas to specific examples.

A.1 Axion branch: D < 26, β3 > 0

Our numerical results suggest that for any D < 26 and for β3 > 0, the asymptotic Bootstrap
bounds are dominated by an axionic (antisymmetric form field) EFT. So, if we set g0 = g2 = 0,
and call g1 = g, m1 = m, we get

Msing = −(D − 3) g2

m4
s4

s + m2 (A.12)

Manti =
g2

m4
s4(s + 3m2)

m4 − s2
(A.13)

Msym = g2

m4
s4

s + m2 (A.14)

The tree-level matching implies

α3 = β3, α4 = −a4β
2
3 , m = 1

ℓs
√

β3
√

a4
, g =

√
2

β3a
3/2
4

. (A.15)

The predictions for the higher order coefficients are

α5 = β5 = a2
4β

3
3 , α6 = −a3

4β
4
3 , (A.16)

the mass and charge of the axion are given respectively by

m = 1
ℓs

√
β3|a4|

+ i

2ℓsβ
5/2
3 |a4|7/2

, Qa/ℓ2s = 2
√
2√

|a4|
. (A.17)

– 27 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
0

Finally, UV causality of the phase shift implies

a4 =
1

α2(D) =⇒ Qa(D)/ℓ2 =
√
26− D

4
√
3π

. (A.18)

A.2 Dilaton branch: D < 26, β3 < 0

When β3 < 0, we can conjecture dynamics being dominated by a single dilaton. Under
this hypothesis we have

Msing = g2

m4 s4
( 1

m2 − s
+ 1

(d − 2)(m2 + s)

)
(A.19)

Manti = − g2

m4
s4

(d − 2)(s + m2) (A.20)

Msym = g2

m4
s4

(d − 2)(s + m2) (A.21)

The tree-level matching implies

α3 = −β3, α4 = −a4β
2
3 , m = 1

ℓs

√
|β3|

√
a4

, g =
√
2(D − 2)
|β3|a3/2

4
. (A.22)

Predictions for the higher order coefficients are

α5 = −β5 = a2
4|β3|3, a6 = a3

4β
4
3 , (A.23)

and for the mass and charge of the dilaton

md = 1
ℓs

√
|β3|a4

+ (D − 2) i

4ℓs|β3|5/2a
7/2
4

, Qd/ℓ2s = 2
√

D − 2√
|a4|

. (A.24)

Imposing UV causality, we get

|a4| = − 1
α2(D) , Qd(D)/ℓ2s =

√
(D − 2)(26− D)

4
√
6π

. (A.25)

A.3 Sum-rules in any D

In general D, we can use the crossing symmetric components introduced in [3] to write down
sum rules for the imaginary part of the flux-tube scattering amplitudes

0=
∫ ∞

0

2ImMsing(z)−(D−2)ImManti(z)+(D−4)ImMsym(z)
z3

dz, (A.26)

ℓ2s
2 = 1

π

∫ ∞

0

ImMsym(z)+ ImManti(z)
z3

dz, (A.27)

α2ℓ
4
s =− 1

4(D−2)π

∫ ∞

0

2ImMsing(z)+(D−2)ImManti(z)−DImMsym(z)
z4

dz, (A.28)

β3ℓ
6
s =− 1

4(D−2)π

∫ ∞

0

2ImMsing(z)−(D−2)ImManti(z)+(D−4)ImMsym(z)
z5

dz, (A.29)

α3ℓ
6
s =

1
4(D−2)π

∫ ∞

0

2ImMsing(z)+(D−2)ImManti(z)+(3D−8)ImMsym(z)−(D−2) z3

4
z5

+ 1
384 . (A.30)
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B Table with the D = 4 data

β̄3 ᾱ3 ᾱ4 ᾱ5 β̄5 ma Γa

2.527 1.085 6.624 -24.52 520.9 2.408 0.9305
5.053 3.007 -5.580 28.98 706.6 2.298 0.5931
7.580 5.217 -45.59 140.8 955.8 2.136 0.3978
10.11 7.554 -22.98 321.9 1283 1.986 0.2780
12.63 9.956 -73.76 598.1 1705 1.853 0.1994
15.16 12.40 -107.8 991.2 2248 1.736 0.1462
17.69 14.86 -147.9 1508 2925 1.634 0.1095
20.21 17.33 -194.3 2197 3757 1.545 8.363× 10−2

22.74 19.82 -247.0 3075 4787 1.467 6.512× 10−2

25.27 22.31 -306.2 4164 5300 1.398 5.160× 10−2

30.32 27.32 -444.1 7127 8490 1.283 3.390× 10−2

35.37 32.33 -608.3 1.129× 104 1.288× 104 1.191 2.344× 10−2

40.43 37.36 -799.2 1.684× 104 1.865× 104 1.114 1.688× 10−2

45.48 42.39 -1017 2.398× 104 2.601× 104 1.050 1.258× 10−2

50.53 47.43 -1261 3.292× 104 3.519× 104 0.9959 9.619× 10−3

55.59 52.46 -1533 4.391× 104 4.641× 104 0.9487 7.493× 10−3

60.64 57.51 -1831 5.708× 104 5.981× 104 0.9075 5.912× 10−3

65.69 62.55 -2157 7.275× 104 7.570× 104 0.8710 4.670× 10−3

70.75 67.59 -2510 9.118× 104 9.436× 104 0.8384 3.752× 10−3

75.80 72.64 -2890 1.125× 105 1.159× 105 0.8092 2.926× 10−3

80.85 77.68 -3298 1.373× 105 1.409× 105 0.7827 2.284× 10−3

85.91 82.73 -3732 1.653× 105 1.691× 105 0.7586 1.666× 10−3

90.96 87.78 -4195 1.967× 105 2.008× 105 0.7366 1.281× 10−3

96.01 92.83 -4684 2.321× 105 2.364× 105 0.7163 7.959× 10−4

101.1 97.87 -5201 2.719× 105 2.764× 105 0.6975 4.947× 10−4

106.1 102.9 -5745 3.156× 105 3.203× 105 0.6802 2.557× 10−4

111.2 108.0 -6317 3.640× 105 3.690× 105
116.2 113.0 -6917 4.170× 105 4.222× 105
121.3 118.1 -7544 4.759× 105 4.813× 105
126.3 123.1 -8198 5.394× 105 5.450× 105
131.4 128.2 -8880 6.080× 105 6.139× 105
136.4 133.2 -9589 6.819× 105 6.880× 105
141.5 138.3 −1.033× 104 7.620× 105 7.683× 105
146.5 143.3 −1.109× 104 8.490× 105 8.556× 105

Table 2. The quantities listed in the table are extracted from the S-matrix obtained by solving the
optimization problem of minimizing ᾱ3 at fixed β̄3 for Nmax = 400. The black data have been used
in the fits and extrapolations in section 4.2. We denote in blue the values of Γa that still haven’t
converged for the value of Nmax used.
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