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ABSTRACT: We use the S-matrix bootstrap to carve out the space of unitary, analytic,
crossing symmetric and supersymmetric graviton scattering amplitudes in nine, ten and
eleven dimensions. We extend and improve the numerical methods of our previous work
in ten dimensions. A key new tool employed here is unitarity in the celestial sphere. In all
dimensions, we find that the minimal allowed value of the Wilson coefficient «, controlling
the leading correction to maximal supergravity, is very close but not equal to the minimal
value realized in Superstring theory or M-theory. This small difference may be related to
inelastic effects that are not well described by our numerical extremal amplitudes. Although
« has a unique value in M-theory, we found no evidence of an upper bound on « in 11D.
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1 Introduction

General relativity (GR) is a low energy effective field theory. What are its consistent UV

completions? In [1], we addressed this question in 10D and with maximal supersymmetry,

by studying the allowed space of the leading Wilson coefficient « that controls the first

corrections to supergravity. In this paper, we extend this approach to other dimensions,
namely 9D and 11D. In principle, we can study any 5 < d < 11 but for d < 8 the 1-loop
corrections appear at the same or lower order than « which makes the numerics more

challenging.



Let us briefly review the setup explained in [1]. The two-to-two scattering amplitude
of the graviton multiplet for any d > 5 theory with maximal SUSY takes the form

A2_>2 = R4A(8, t, u) 5 (1.1)

where R* is a universal prefactor that takes care of the various components in the graviton
multiplet. It is convenient to consider the following scalar amplitude

T(s,t,u)

1
=5 — ... )=s'4 1.2
o s<8tu+aep+ ) SA(s, 1) (1.2)

where 16mG N = (27r)d_3€dp_2. The ... include the one loop contribution (see appendix D)
and higher order Wilson coefficients (Wcs).

2 String theory
In this section, we review the String Theory predictions for o in d = 9,10, 11.

d = 11. In M-theory, the parameter « is fixed to

o =

2 2
(37;)7 ~ 0.1028. (2.1)

Here we follow [2]. It differs by the 27 numerator from [3] which uses a slightly different
convention for £p.

d = 10. In type IIB superstring, o can be cast in terms of a non-holomorphic Eisenstein
series [4, 5]

Njw

1 _ 1 (Im )
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- - R - 2.2
a 26 %(7’, ) 26 m%;z ImT + n|3 (2.2)
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where 7 is the complexified string coupling, which can be taken in the fundamental do-

main |[Re7| < 1 and |7| > 1. The minimal value is attained at the “corners” 7 = ¢'"/3 and
7 = e27/3 where [6]
in/3_e=im/3) — ghe (3) [ (3 1) _¢ (3.2
E%(e ) € ) 34C<2) |:C<273 ¢ 23 /\@
In type ITA superstring theory, we have (see e.g. [7])
1A ¢(3) 1/2 m

= —. 2.3

This function attains its minimum value 7r3/22(§7§%)1/4 for g2 = 9¢(3)/7% Numerically,

the minimum values of « in type IIB and type IIA are approximately 0.1389 and 0.1403
respectively.



d = 9. Here, we have [8, 9]

_1 -
O[—% v

where v is related to the compactification radius from 10 to 9 dimensions (see appendix A).

o

2 2
Es(,7) + gy?] (2.4)
2

It is easy to minimize (2.4) using the change of variable v — x” Es (7,7) which leads to
2

RIS

Es (7’, 77') 2772
o = {226} [x—?’ + gx‘l] > 0.2417 (2.5)

These formulas satisfy non-trivial (de)-compactifying relations as reviewed in ap-
pendix A.

3 Unitarity in the sky

Our crossing symmetric ansatz is the same as in [1]:

T(s,t,u 1 !
656})_84< —+ I (at1)? X2 a(abc)p?p?mi) (3.1)
TN L At a+b+c<N
SUGRA

UV completion

where p, maps the complex z plane minus the z > 0 cut to the unit disk and where a(q)
are our (symmetric) variables. If N — oo this ansatz should cover any amplitude [10]. The
challenge is to make sure it is a good approximation for the amplitude when N is finite.
The ansatz does some wonderful things: it can satisfy unitarity for the first hundreds of
spins and has a good large energy behavior at fixed angle as explained in [1]. It struggles
with large energy and small angle or equivalently for a double scaling limit of large spin
and large energy if we keep N finite, we elaborate on this further in appendix C.
Unitarity comes from the condition

I =SS, (3.2)

for the full quantum gravity S-matrix S = 144T. Once we insert a complete basis of states
we transform this equality into an infinite sum of matrix elements. If we truncate to 2 — 2
particle amplitudes t < T we get

2Imt — &t = 0 (3.3)

where the last inequality is understood as stating that the matrix on the left hand side is
positive semi-definite. There are two obvious things we can do here.

The first one (which has been used in all the recent S-matrix bootstrap explorations)
is to diagonalize the left hand side by going to a basis of two particle states of definite spin.
Defining Sy(s) to be equal to'

1 a3
— 2 —_— —_ —_—
1+z‘/\f/dz(1—22)dQ4WT(s,s > Ls Z;l), (3.4)
1 c,* (1)

IN = 2372ds%727r17%/11(g — 1), Cf are Gegenbauer’s polynomials.



Figure 1. Distribution of momenta for Positivity in the Sky. On the left, the momenta are
uniformly chosen over the entire celestial sphere at infinity while on the right, the ingoing and
outgoing momenta are chosen to lie within a cone of small opening angle 6.

we translate unitarity into the very simple condition
|Se(s)] < 1. (3.5)

We impose this condition for £ = 0,2,4,..., L where L is big. In practice we go as far as
L =200.2

The second thing we can do which is novel and proves very convenient is what we call
Unitarity in the Sky. It follows from noting that 2Imt — tft defines a positive operator
no matter what in-going and out-going states we sandwich it with. Since the tft term is
quadratic in the ansatz we obtain semidefinite constraints of size M? (M being the number
of terms in (3.1) which scales as N? when restricted to on-shell external particles [10]) which
quickly gets prohibitively expensive.

One workaround is to impose the weaker positivity condition Im t > 0. For each energy
s we consider d random momenta? in the celestial sphere peaked around the forward limit,
see figure 1. We then construct a d x d matrix M with matrix elements i, j equal to Im(7")
at energy s and scattering angle ¢;; being the angle in the celestial sphere between vectors
7 and j,

1 — cos 0;; 1 + cos 0

Im(T");; = Im(T") (s, —S —$ ) . (3.6)

2 ’ 2
The diagonal elements of the matrix being positive is nothing but the familiar optical
theorem at forward scattering. We can now impose that all these random matrices, one
for each grid point s, are positive semi-definite. These extra conditions which we dub as

20One important bottle-neck is evaluating the integrals in (3.4); we do them monomial p2p?pS by mono-
mial and save these integrals so we only need to do them once. Still, there are many monomials, many
spins and these integrals need to be done for each s with a huge precision to be fed into sdpb later. For
illustration, our integral files for L = 200, N = 30 and 326 grid values of s occupy around 10 gigabytes.

3Less points would not probe the full angular unitarity in d dimensions. More points would lead to
heavier numerics.
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Figure 2. Minimum value of a as we impose more and more unitarity constraints up to spin L
for N =24 in d = 10. The green curve from [1] converges way slower than the red and blue curves
where we supplement the physical conditions with the new Positivity in the Sky. We see that Spin
Subtracted is slightly better but not significantly. This improved convergence allows us to restrict
our numerics to L < 200 while in [1] one needed L = 300 to attain reasonable convergence.

Positivity in the Sky are very easy to impose because we do not need to compute tedious
integrals and are numerically tractable because they grow linearly with the ansatz size M.
These conditions capture all spin information — specially large spin since we focus close
to the forward limit — and thus greatly help with convergence in L of the bootstrap as
displayed in figure 2.

A stronger condition we imposed is Imt — Imt;, > 0 where t;, is the contribution of
the first L spins, for which we imposed full unitarity; in practice this means subtracting
the sum over the first L spins from the matrix Im(7");; and imposing positivity of this
subtracted matrix. This is not extra costly since these first L integrals were computed
to impose full unitarity (3.5) anyway. We call this stronger yet rigorous condition Spin
Subtracted Positivity in the Sky.

We can also take extreme kinematical limits to get more mileage out of the unitarity
constraints. As explained in [1] an interesting limit of (3.4) which immediately yields several
linear constraints on the a/(4)’s is to consider large energy s at fixed spin £ or large spin £ at
fixed energy s.* We imposed both in this paper as well. Importantly, they hold at finite N.

We could also take large spin and large energy. If we scale s = 2¢? and send ¢ — oo and
expand the unitarity condition (3.5) perturbatively in 1/¢ we obtain a polynomial positivity
condition. These conditions, valid for large ¢, can be recast as an SDP problem [11].
However, these conditions turn out to be too constraining at finite IV, because they demand
an infinite tower of resonances, analogous to the double twist operators in the Conformal
bootstrap. We discuss further this important point — raised to us by Simon Caron-Huot
who we thank — and its implications for our numerics in appendix C.

“Note that the regime of large spin £ and fixed energy is rather tame — the partial waves here decay as
0 (for massless scattering), and therefore imposing positivity of the imaginary part is sufficient to ensure
unitarity.
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Figure 3. On the left, we have the data from minimizing « in 9, 10 and 11 dimensions plotted
against L. The values of N corresponding to the different colours are shown in the legend and the
horizontal black lines are ayy,, from string theory. The points on the right are obtained after fitting
in L and the error bars represent the variance across several fits. The large IV extrapolations of
amin fall in the green (very thin) strips. Notably, in 11 dimensions the string theory result lies
within the error bars of the bootstrap result, as shown in the bottom right inset.

4 Results

We minimize « subject to unitarity and positivity constraints using sdpb [12, 13]. Details
about our numerical setup are found in appendix B. The results for dimensions d = 9,10, 11
are summarized in figure 3. Each colour corresponds to an N in the ansatz ranging from
16 to 30.



Dimension  Bootstrap  String/M-Theory

9 0.223 £ 0.002 0.241752
10 0.124 £ 0.003 0.138949
11 0.101 £ 0.005 0.102808

Table 1. The bootstrap minimal value estimates for « are very close to the minima attained
by String/M-theory. They are slightly smaller; that small gap between the two might be due to
unaccounted inelasticity effects as discussed below.

What these plots show are the numerics converging to some asymptotic value as we
push L further and further.® The reader might have noticed that the numerics in figure 3
converge way better than those in [1] as far as L goes. This is because of the new Spin
Subtracted Positivity in the Sky conditions we are imposing. Figure 2 highlights this huge
improvement for an illustrative N = 24.

Having extrapolated in L we extrapolate in N, see figure 3. These fits (first in L,
then in N) are of course a bit of an art. We attach a notebook with these fits so that
other artists can try it themselves. What we did was the same as in [1]: we try a bunch
of fits in L and weight all of them by how well they fit the data. The dispersion gives
us an estimate for the plateau as well as some error bars. Then we fit these points with
their corresponding error bars to an ansatz of the form A + B/NY to extract the infinite
N estimate for A which is our final prediction for the minimum value of a as extracted
through this primal bootstrap approach. These fits are plotted in figure 3, right column,
and the resulting bounds are summarized in table 1.

Beautifully, the bounds are quite close to the String Theory predictions in all dimen-
sions and of course they allow M-theory and String Theory at all couplings. They better
do! In fact the fit predicts a value slightly below the minimum String/M-theory value. We
comment on that small gap in the next section when we analyse the extremal amplitudes
in more detail.

Although a in M-theory takes a precise value, we do not find any evidence for an
upper bound. It should not come as a surprise: we are not incorporating all consequences
of maximal supersymmetry in the Bootstrap. Instead, we could fix o in M-theory as an
input, and explore the bounds on the higher derivative corrections.

5 Extremal amplitudes

Once we minimize « we get much more than this minimum value as the outcome of the
extremization: we get the full set of variables (4. and thus the full amplitude. Instead
of extrapolating N and L to infinity, in this section we will analyse the outcomes of the
largest values of N = 30 and L = 200 in our numerics. If we take o as a good proxy for

5Strictly speaking these are transient plateaus as argued in the appendix C but that does not invalidate
our conclusions as explained there.



Dimension (N, L) = (30,200) Bootstrap Extrapolation

9 0.2411 0.223 £ 0.002
10 0.1499 0.124 £ 0.003
11 0.1304 0.101 £ 0.005

Table 2. For N = 30 and L = 200 we are already about 80% close to the optimal primal solution
if we trust using « as a proxy of that convergence.

Im(s) =0
Amplitude is huge on the
unphysical left side Re(s)<0 6.6
Zeros close to the 3.1
imaginary s plane/broad
sigma-like resonances 1.9
1.4
1
Resonance well converged
inside the physical sheet 0.8
(graviball)
0.6
0.4
0.3
Re(s)
0 TO 20 30
Unitarity already close to
saturated here

Figure 4. |Sp(s)| in the complex s—plane. For physical energies s > 0 unitarity tends to saturation
with |So(s)] = 1 as N — oo. Here we are plotting N = 30. We see smooth unitarity saturation with
a graviball well inside the physical sheet with m? ~ 3 + i in units of Planck mass. (d = 10 here).

how close these are to the optimal large N, L solutions, we would guess that taking these
values already gives us a reasonable qualitative picture — see table 2.

5.1 Resonances

In figures 4 and 5 we depict the absolute value of the partial waves S;(s) with spin 0 and
2 respectively for d = 10 in the complex s plane. A more comprehensive set of such plots
can be found in appendix F. A few qualitative features emerge:

e Spin 0 is special. It has a single well defined resonance.
e There are infinitely many massive resonances at higher spins.

e There are also broader resonances in the complex plane whose particle interpretation
is less obvious.

Let us now expand on these points.

790 (€20¢C) 90dHHL



Im(s) (=2

6.6
3.1
More broad resonances

1.9
) 14

Analogue of the graviball for

spin 2. Next resonance in
that leading Regge trajectory 1

0.8

Resonances entering the
the physical sheet. 0.6
0.4
0.3

0 10 20 \ 30/

Unitarity will converge to |S|=1 for larger N
here once the heavier resonances converge

Figure 5. The spin 2 resonance in the Regge trajectory of the graviball is heavier and broader
but still very well defined. There are now infinitely many resonances showing up. Unitarity is not
as clean here close to heavier resonances for this same N = 30. Indeed, when resonances enter
the physical sheet through the s > 0 cut we must have |S| = 0 at its location and thus sacrifice
unitarity saturation momentarily. More details can be found in appendix F. (d = 10 here).

Dimension m23
9 3.0+ 0.8:
10 3.2+ 0.5¢
11 3.3+ 0.3i

Table 3. Spin-0 “graviball” in different dimensions.

For | = 0 the well defined resonance (i.e. zero of |Sp|) close to the real line is sometimes
called the graviball [14]. We find in the numerics in any dimension:®

The d = 10 value was estimated first in [1].”

At higher energy for [ > 2 there are more such zeros of |S;(s)|. These correspond to
heavier resonances. There are probably infinitely many such resonances for any spin [ but

we will only really attain this as N, L — oo; in the current outcome of the numerics we

5Tt is amusing to note that our lower bound a > 0.12 in ten dimensions is not so far from the upper
bound (3.42) in [15] & < 0.09 estimated using the mass of the graviball m? = 3.2/¢% in table II1. At this
point, it seems like a numerical coincidence given that the extremal amplitudes studied here are quite far

from being weakly coupled.
"The real part is the same as in [1] but the width here is better estimated; it is broader than originally
reported.

790 (€20¢C) 90dHdHL
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Figure 6. The first two Regge trajectories in 10d for N=30 and L=200. The error bars represent
the widths and the resonances lie on curved trajectories that scale approximately like ¢!3. More
details in appendix F.

can only resolve a few of these. As pointed out in [1] these resonances seem to organize
themselves in nice curved Regge trajectories, see figure 6.

That we find an infinite sequence of resonances for higher spins is perhaps not surpris-
ing. We know gravity requires them to Reggeize properly. It is amuzing though that spin 0
seems to have a single resonance. Since we are minimizing « which can be extracted from

all = 2/ gs AL Fiet =0) (5.1)
™ Jo

S

a simple sum rule [1]

we see that minimizing the imaginary part of the amplitude is encouraged. That means
minimizing the number of possible bumps/resonances. It seems like a single one for spin 0
is the minimum.

There is also a sequence of broader zeroes. Calling them resonances or not would
be debatable, much like calling the QCD o resonance a particle was debatable in pion
particle physics [16]. Here these zeros are really “more imaginary than real” which would
make their particle interpretation even more dubious. It would be fascinating to see how
all these resonances arise (or not) from re-organizing the singularities of weakly coupled
Virasoro-Shapiro as the coupling is increased; more on this below.

5.2 Low spin dominance

Since « is also given by a sum rule (5.1) we can partial wave decompose A in the sum
rule integrand to estimate how much each spin “contributes” to a. We find — perhaps not
surprisingly — that lower spins contribute the most to the result as depicted in figure 7
for our bootstrapped strongly coupled amplitude in d = 10. For comparison, in that same
figure we plotted the contribution to « spin by spin in perturbative string theory where
the same low spin dominance is also neatly observed despite these amplitudes being in

~10 -
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Figure 7. The Wilson coefficient o can be written as a sum rule: the integral of the imaginary part
of the amplitude in the forward limit. Decomposing the latter into its various spin contributions
we can assign a spin by spin contribution to the Wilson coefficient. Both the weakly coupled
perturbative String amplitude as well as the strongly coupled bootstrapped amplitude (plotted
here for d = 10 at N = 30 and L = 200) are dominated by the lowest spins.

dramatically different physical regimes. The computation of the perturbative string theory
values is in appendix G.

6 Discussion

6.1 Inelasticity from black hole production

At high energy, for each fixed £ we expect to enter the regime of black hole production
eventually. Above that energy s.(¢) we expect inelasticity to dominate and |Sy(s)| ~ 0,
see e.g. [17, 18]. This has implications on «. Indeed, we know that (5.1) is positive since
the integrand is positive. Black hole inelasticity allows us to improve this positivity bound
a > 0. Decomposing A(s,t) in the sum rule into partial waves we have (here we are
specializing to d = 10 for simplicity)

4614Z€+1 2€+7/d —RGSZ( )), (6.1)

If we assume that for each spin there is a minimal energy s.(¢) after which the corresponding

S-matrix is effectively vanishing, we get

14Z£+1 (20+7) / ds (6.2)

8
S
by = 5e(0)

To produce a lower bound on « we need a model for the transition value s, (¢). The simplest
estimate is to define a semi-classical impact parameter b = 2¢/./s and set it equal to the

- 11 -



inelasticity
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10+
\ Min String Theory Value at 0.14

0.100

0.001

1
2 4 6 8 10 12 14 16 18 20 ls

Figure 8. If we start around ¢, equal to 4 or 6 we get an order of magnitude similar to the gap
between numerics and string theory. Much larger £, produce a negligible bound and smaller £,’s
would lead to a much too strong bound even excluding string theory. This plot is done for d = 10;
d = 9,11 are similar (the only significant difference is that for d = 11 both £, = 2 and ¢, = 4 would
predict too much inelasticity; there we would need ¢, > 6).

348
Schwarzschild radius Ry = 1057; e V5 to get®

5.(0) ~ zi < 2 )1/4. (6.3)

2, \ 10573

Of course, for the semi-classical picture to be valid we need the spin to be large so we
should sum starting at some critical £, in (6.2), ignoring the contributions from the lowest
spins ¢ < ¢, (after all we are interested in a lower bound). As we see in figure 8, if ¢, is
too small, this crude model would predict a lower bound way too stringent, even excluding
string theory; if ¢, is too large the predicted inelasticity is negligible. Would be great if
the small gap between the bootstrap and String theory values reported in table 1 could
have a simple inelasticity explanation. Properly incorporating inelasticity in the SUGRA
bootstrap, taking into account the ¢ < /., and making all this precise is an important open
problem we are currently investigating together with Lance Dixon.

8Strictly speaking, we should consider a spinning Myers-Perry black hole [19]. In this spacetime, the
(d—2)%¢0% d—5 167Gy T((d=1)/2) pr _
a2z 'Ho T (d—2)2r(d—1)/2 -

threshold energy s.(¢) by a factor of % Another subtlety in this case is that the horizon is shaped like a

horizon radius satisfies Tf{_g + 0. Plugging in b = ry changes the

pancake and accounting for this bulge caused by angular momentum once again changes the result by an
O(1) factor. We ignore these effects because they don’t change the qualitative picture below. We thank
the referee for suggesting this exercise.

- 12 —



6.2 Other Wilson coefficients and sum rules

Of course, « is just the first out of infinitely many Wilson coefficients which parametrize
the low energy expansion of any SUGRA UV completion as

A(s,t) = [1 + allstu+ 052 f1(s,t,u) (6.4)

stu
+BOP (stu) (2 + 2 +u2) + -]

Here we see the second Wilson coefficient — 3 — as well as the universal one loop correction
fi(s,t,u) computed in appendix D. These are the two leading corrections beyond a.

In String theory («, 3) carve out a beautiful space as depicted in figure 9 in ten dimen-
sions. The numerical bootstrap is a convex optimization problem and « and [ are linear
functions of the S-matrix. So, the allowed bootstrap region, must be no smaller than the
convex hull of the String theory values. This is depicted by the gray region in figure 9. The
lower bound « > 0.124 that we found is clearly away from this minimal region, however
as we discussed above, we expect this bound to tighten when we input inelasticity due to
black hole production. It would be fascinating to see what is the actual space predicted by
the Bootstrap. Will it mimic something like the gray shape in the figure — which could be
seen as either a remarkable coincidence or as strong evidence for the uniqueness of String
theory as a consistent UV completion — or will it be a much larger region? In principle
we have all the technology to settle this question: as done in the pion bootstrap [20], we
should add the f; threshold behavior to the ansatz so we can access the subleading coeffi-
cient 5. Then we can simply hold « fixed and maximize/minimize 3. We hope to report
on progress in this direction soon.

Here, instead of carving out this space in this more rigorous way we will discuss how
we can try to measure 3 for the extremal amplitudes we found which minimize «. In short

— and with a big grain of salt since this extraction procedure is subtle — we find that

bootstra .
P.0) is

these amplitudes have a very small 8. If true, these would indicate that (a,;,

(either inside or very close being) inside the primal space.
We can read off the leading Wilson coefficients neatly by focusing on forward limit. At
1<K sK 61_32 we have that A(s,t) — 1/stu is approximately equal to

all +nlh (31/2 + (—3)1/2> +28009s*  d=9
all, + inlls + 280105 ,d=10 (6.5)
all +nt) (53/2 + (—5)3/2) +2000s? , d=11
where the one-loop constant 7 is fixed by the corresponding d-dimensional f; in the true
amplitude,
L ~0.0646 ,d=9
N=19 1153 ~0.0269 ,d =10 (6.6)
s060 = 0.0109 ,d =11
After all unitarity is saturated at threshold up to two loops.
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Figure 9. Allowed values of a and § in 10d type IIB String theory (colourful region corresponding
to various moduli in the fundamental region indicated by the inset) and in type ITA String theory
(solid black line). The convex hull of these allowed values is the region in gray (the lower boundary of
the convex hull is horizontal because when the complex string coupling 7 — oo the ratio a/8 — 0
in type IIB string theory.) Since the numerically bootstrap problem is convex the space of QG
theories carved out through this problem could at most capture this region. The current numerical
estimate for the minimum of a (~ 0.124) would be outside the range of this plot and the measured
B through arcs would be much to the left. If we trust this point as being inside the primal region
then the convex hull would be much larger of course. Accounting for inelasticity it might approach
the String theory region.

Note that our p series ansatz will, strictly speaking, not have this behavior. In d = 10,
for instance, we see from (6.5) that we should have a logarithmic behavior while the p
ansatz contains only square roots! This is not a huge deal, with an infinite p series we can
reproduce any analytic function. In figure 10 we see how the constant imaginary plateau
(from Im log(—|z|) = im) is indeed better and better approached by the p series as N
increases. As this plot illustrates, this approach is not point-wise. The behavior very close
to the origin is always a bit polluted and as we go to larger energies, the EFT description
breaks down due to the graviball resonance. There is a nice intermediate region depicted
in green — which we colloquially call the EFT region — where this constant behavior is
well captured and the height matches the perturbative expectation. What we can then do
is to consider a point at a small sy in the EFT region so that we can extract all constants
(a, B,7m) from three simple sum rules

p 29 7 ImA
a— —nf?gso ~ —/ds m , (6.7a)
T ¥4
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2 4 29 T Red
Nt —Bﬁgso ~ /ds ==, (6.7b)
T S
50

50 ml%
1 T ImA
n m
b+ —— =~ 1O/ds = (6.7c)
mlpsy Ty J s

where in the right hand side we plug the optimal amplitudes obtained from our numerics

evaluated at ¢ = 0 and s infinitesimally above the real axis. What we did — see appendix E
— was a bit better than this. For several N’s, we considered several sy in the EFT region
and fitted the resulting sum rules to extract the best (a, 3,7n) which we then extrapolated
to N = co. There are two important cross-checks of this procedure:

e 1 better agree with the analytic prediction from the one loop correction computed in
appendix D.1.

¢ « should match with the a we got from the minimization.

While this nicely works not only in d = 10 but also in the other d = 9,11 — see panels in
appendix E — the g fits are quite erratic and therefore we are unable to get reliable fits.
However, they appear to converge to values smaller than the String Theory predictions as
anticipated above.

Again, the rigorous thing to do is to impose the right threshold behavior in the ansatz
and extremize both o and 3.° We will do it soon.
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A Decompactification limits

In string theory, the values of o in d+1 spacetime dimensions can be obtained from « in d di-
mensions by taking the decompactification limit R — oo, where R is the radius of the com-
pact extra dimension. This provides a consistency check of the formulas quoted in section 2.

%In d = 9 the behavior of the ansatz is already a bit closer to the real behavior and indeed the arc fits
seem to agree much better with the extremization targets.
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Figure 10. Integrand in the sum rule for . The different lines correspond to N = 20 to 30 and
with the red line being N = 30. The horizontal dashed line is the one-loop term which is well
approximated in the green region by the ansatz. Therefore, eqs. (6.7) hold in this region.

Firstly, notice that we can relate the gravitational constant across dimensions by com-
paring the coefficient of the Ricci scalar in the spacetime action. This gives 16nGy =
167G 441/ (27 R), which leads to

(£e)" R = (Lar1)" ", (A1)

where /; denotes the Planck length in d spacetime dimensions. Then, from the scattering
amplitude (1.2), we expect

li 6 = 61 A2
Aimaqgly = aarila (A.2)

ITAd =10 — d = 11. Using (A.1) and the expression of the type IIA string coupling
gs = (R/ 511)% in terms of the radius of the M-theory circle and the 11-dimensional Planck
length, it is straightforward to check that

2
lim oTA¢8, = = 8 (A.3)

R0 107 g6 7117

in agreement with (2.1).
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ITAd=9 — d=10. In order to check this decompactification limit, one needs the
following formulas

N

R\2 I R _3
v= <> gs, Im7=-—gs*, (A.4)
610 ElO
that relate the 9 dimensional parameters to the 10 dimensional ones [9].1 Then, using

Es(r,7) ~ 2¢3(Im T)% for large Im 7, we can easily check that
2

0 27
Rli_Igo 2—2 [V?Eg (1,7) + gvﬂ = 8,aA (A.5)

IIB d =9 — d = 10. In this case, we keep fixed the complexified string coupling 7
and the 10-dimensional Planck length /19, and use v = (¢19/R)? and (A.1) to compute the
limit:

Ay s 2 a8 _
lim —» ly 7E%(7', T) + 31/71 = %E%(T, 7). (A.6)

B Numerical setup

The numerical optimization follows [1] and uses most of the same technology. To start with,
we have the ansatz (3.1). In order to have the correct large energy and large spin behaviour,
we impose the linear constraints described in appendices G and F of [1]. We impose the
unitarity conditions eq. (3.5) as SDP constraints for £ = 0,2,4...L and s € [0,00) on a
Chebyshev grid of size 326.

Additionally, for each grid point in s, we impose the novel Positivity in the Sky
conditions with SDP matrices of size d x d in d-dimensions. As we increase the en-
ergy, the impact parameter decreases and we need to shrink the opening angle 6y of the
cone (figure 1) in order to see non trivial scattering. Therefore, we scale 6y such that
to = 5 (1 — cosly) = —0.005 is held fixed.

In addition to the positivity conditions considered in the main text, we can also do
something intermediate between full Unitarity in the Sky and linear Positivity in the Sky.
Following the split in (3.1) into the SUGRA tree-level part tree and the rest — which we
will refer to as loops — we can split

QImu: - [I:iree[ttree - [tlree[tloops - [tioops[ttree i &Ioops[tloops i 0

and impose that the left hand side is positive semi-definite, see figure 11. This still requires
computing the integrals over the intermediate phase space when multiplying tree and
loops but those are done once and for all and the left hand side remains linear in the loops
variables so the M? cost is gone. This extra constraint is not stronger (or weaker) than
positivity since the mixed terms in the left hand-side do not have a definite sign. Instead,
it is an extra condition we can easily impose. We call it Tree-level Subtracted Positivity
in the Sky. However, we checked that these extra constraints do nothing significant in the
examples studied in this paper; their tiny effects can not even be seen in our plots.

"These formulas follow from the ones in [9] using the standard relations £5, = g2¢5 and £5 = g3/ that
involve the string length ¢; and the 9-dimensional coupling gg.
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Figure 11. Tree-level Subtracted Positivity in the Sky.

C Unitarity in the Regge limit

At high energies and large impact parameters, the gravitational S-matrix is governed by
semiclassical physics. In this regime, the tree level graviton exchange must eikonalize [18,
21-23],

S(s,b) s €0 (0), (C.1)

where b = 2¢/+/s is the impact parameter and 6(°) is the tree level phase shift (D.2). In
a physical theory, this behaviour results from an infinite sum of ladder and crossed ladder
diagrams [23], which are the leading contributions in this limit. In addition to fixing high
energy unitarity, these terms lead to infinitely many resonances in the crossed channel
organized into a Regge trajectory as in the Virasoro-Shapiro amplitude [24]. However, at
finite N, our ansatz can only have a finite number of zeros. We should therefore expect
trouble with unitarity in this semiclassical regime. Indeed, as we increase IN, we see more
and more zeros entering the physical sheet as described in appendix F.

More concretely, we can address this problem by looking at unitarity in the double
scaling limit of large s and large ¢ with b = 4/?/s held fixed. Let us denote the partial
wave amplitudes by hy(s) = —i(Se(s) — 1). The contribution of the graviton pole to the
partial waves can be computed straightforwardly and is given by,

d _ d—2
hpole(s) _ r (2 2) S 2 '
¢ Qd_lﬂ% (5 + 1)d—4

(C.2)

Clearly, when s ~ ¢2, this term grows like 2. The p ansatz must unitarize the amplitude
by cancelling this divergence. We can obtain the partial wave decomposition of the ansatz
in the double scaling limit using the Froissart-Gribov equation

B INsT

™

ho(s) /1 Tz (2% — 1) QY (2)Dise, T(s, ), (C.3)

where A is the same normalization constant as in (3.4) and Q%(2) is the Gegenbauer-Q
function. It is given by the following expression [25],

C Az)~* (5—d d—3 d+20—1 1 )

F
()\(2)2_1)%2 2 2 2 "1 - \(2)?

Ql(z) = (C.4)
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where A(z) = z+v/22 — 1 and C{ is a constant!!. In order to study the large spin behaviour,
92

we need to zoom in close to the forward limit. Let us change variables to z = 1+ 5. Now,
consider the following integral representation for the Hypergeometric function,
T(c) fy dt 211 — tz)~%(1 — t) et
o Fi(a,b;c;m) = () Jo ( Gl (C.5)

L')(c—0)

which is valid for ¢ > b > 0. Note that at large spin A(z) ~ 1, so the argument of the
Hypergeometric is very large. Therefore, the integral is dominated by the region near ¢t = 1.
Let us again change variables to t = 1 — r/¢ and expand the integrand in 1/¢. Integrating
the resulting series, we get the following approximation for £ > 1,

(20)7 T (432) Kus (6)
pd—4 :

N2 - 17 Qlz) ~ +o. (C.6)
where once again, z =1+ %. One can systematically go to higher orders in 1/¢.
Plugging in a monomial of the form p’(s)p’ (t)p*(u) and the above expansion for the Q-

function into (C.3) with s = 4¢2 /b?, we obtain a complicated expression which schematically
looks like

hi* () ~ Ko(b) (£°poly(1/b) + poly(1/b) +...)
+ Ki(b) (¢°poly(1/b) + Epoly(1/b) + ....) (C.7)
+ (€6poly(1/b) + £Opoly(1/b) + ) ,

where poly(1/b) is a placeholder for polynomials in 1/b whose degree depends on i, j, k and
K, (z) are Struve functions of the second kind. This expression grows like £5, so it might
be possible to unitarize the pole term which grows like £2.

We need to cancel the coefficients of positive powers of ¢ in
(h?de(s) + 2 ik aijkhéj k(s)) We need unitarity to hold at all energies, and there-
fore at all b. Also, the terms in the three lines of (C.7) cannot mix. So, we need to cancel
separately all the structures that come with different powers of b in poly(1/b). This gives
us a set of linear constraints analogous to the high energy fixed angle conditions in [1]. Tt
turns out however that at finite N there are no non-trivial solutions (i.e. with non-zero
G ). Therefore we must encounter infeasibility as we go to very large L at fixed N.

In practice, the bootstrap works hard to delay this divergence to spins larger than L. To
see this better, consider the extremal amplitude for N = 24 and L = 200. We computed the
partial waves hy(s) in the manner described above upto order 1/¢2 and evaluated it at a large
value of s, ~ 7x10'0. In figure 12, we see that there are unitarity violations for ¢ > L = 200.
This means that the numerical optimization procedure pushes the violations to just beyond
the point where we are probing it. Other values of N and L display the same behavior.

This analysis tells us that the apparent plateaus in figure 3 must be transient and
eventually all those curves need to shoot up. This infeasibility will be more pronounced for

Hpd _ VATUADT(52)
(4 22+1F(Z+%) .

~19 —



h[(S*)

A —Re hl’(S*)
4 —1Im h((S*)
[ Al

Figure 12. Here we plot hy(s.) for a fixed s, &~ 7 x 10!? up to corrections of order 1/¢3 for N = 24
and L = 200 in 10d. The dashed grey line is unity. We have imposed full unitarity up to £ = 200
and interestingly, there are unitarity violations for ¢ > 200.

small values of N because the ansatz has less freedom to tame these effects, see figure 13.
Of course, as N — oo these plateaus will be longer and longer such that fitting them and
then extrapolating in N should yield the optimal minimal value of a. For the range of N
considered in figure 3, we expect the infeasibility to show up at very high spins beyond the
reach of our numerics. The naive extrapolations to L — oo in section 4 should always be
understood as estimates for the heights of these long transient plateaus.

Is it possible to invent a better (crossing symmetric and analytic) ansatz that can
satisfy unitarity at all energies and for all spins, with a finite number of parameters? This
is a very interesting question that we do not know the answer.

D One loop unitarization

Here we determine the one-loop contribution to (1.2) using elastic unitarity. This appendix
complements appendix B of [1] where this was carried out in detail in d = 10 and where the
general d setup was described. As explained there, the main relation in this computation
reads

d
8s2 "3ty 2 ) (u—t
i = Do S (5) P;><u+t) (D.1)

(0)

which can be summed in closed form in a given spacetime dimension. Here ¢, is the tree
level phase shift

(D.2)
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Figure 13. For large enough energy and spin we will run into trouble with unitary at any finite
N. The smallest value of N for which the high energy linear constraints from [1] are feasible is
N = 10. We see here that for N = 10 and 11, we encounter infeasibility as we impose more
unitarity conditions at L = 50 and L = 150 respectively. For N = 12 we begin to lose the plateau
near I = 340. This is as far as we went in spin, but it seems likely that N = 12 will become
infeasible for L ~ 360. Since the runaway will be more and more delayed with larger N, to be
more rigorous and avoid this trouble, we could do a fit in L and N at the same time rather than
extrapolating in L first and N last. Such mixed fits were explored in [26].

Once we find the imaginary part from (D.1) we find the full one loop amplitude f; in

(2mlp)d—2 s q—
T:T% (1+a€§5gstu+fp 2f1(s,t,u)+'--) (D.3)

by finding an appropriate crossing symmetric expression with that imaginary part.

d =10.

7383

m fi = o

[—stu (32 +7(t— u)2) (D.4)
48t log (—t/s) + 8u® log (—u/s)} :

From this one can use analyticity and crossing to reconstruct the function f; from its
imaginary part,

2 53 (t° 4 u®) log?(—s
P B 2)2g( ) (D.5)
960 2t°u
3 (s° + ) log?(—t)  u?(s° +t°) log?(—u)
25%u? 252t2
s3t3 log(—s)log(—t)  s3u?log(—s)log(—u)
+ o2 + 2
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N t3u3 log(—t) log(—u) B s4(s2 +7(t — u)?) log(—s)

52 8tu
B t4(t2 + 7(s — u)?) log(—t) B ut(u? + 7(s — t)?) log(—u)
8su 8st
L/ 9 9\2 72 (88 + 16 + ub — 135%2u?)
+§ (8 it ) (1 + 2521292

One can easily check that this crossing symmetric function has the s-channel imaginary
part given by (D.4). The rational part is fixed by dimensional analysis and the requirement
that fi vanishes at t = 0, so that the residue of the T" amplitude at ¢ = 0 is not affected
by the one loop contribution.

d=11.

745972 (23t%20u% — 20t3u — 20tu® 4 15t* + 15u?)
46080t2u2
B s 2\/tu (5 + uf) (D.6)
122883u3 '

. i sT/2\/tu (u® — 19) log (%)
6144t3u3

Im f1 =

This matches the result in [3] (up to an overall normalization), which also gives the full
result

wstu

~ 46080

fi (B(s,t) + B(s,u) + B(u,t)) (D.7)

where

15(st) log <(m+ﬁ3§7m+ﬁ)>

(—s—1)7/2
(—5)3 (352 + 11st 4 23t2) + (—)7 (2352 + 11st + 3t2)

- (5 1 1) (D8)

B(s,t) = —

m3s7/2 (3t% — dtu + 3u?)
768tu
74s%/2\/tu (t* + u?)
1024¢2u2

ims5/2 /T (11 — ') log (Yot
5126202 ’

Imf1 = —

(D.9)

+

This leads to

f1 = B(s,t) + B(s,u) + B(u,t) (D.10)
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Figure 14. Integration contour leading to equation (E.2). The large arc does not contribute
because f(s) — 0 when |s| — cc.

where

N
256(—s — £)3/2
383/ —t(2s + 5t)  w3\/—st3(5s + 2t)
- T68(s+t)  T68(s+t)

7r3(st)5/2 log ((er\/fs)(er\/jt))
B(s,t) =

(D.11)

E Dispersive sum rules for a, 8 and ~

In this appendix, we obtain the low energy coefficients using fixed-t dispersion relations for
the 11d amplitude (in 9d and 10d the analysis is very similar).

Consider the function f(s) = limy_0 (A(s,t) — %) . This function is analytic in the
upper-half plane with a branch point at s = 0. The branch cut stretches along the real axis
and f(s*) = [f(s)]" on the first Riemann sheet. Furthermore, crossing symmetry implies

that f(s) = f(—s). At small s, and for d = 11, we can expand the function as follows,
£(s) = alh + nlh(s*2+(—5)%?) + 2800s* + O(s”?). (E.1)

Consider now the contour integral in figure 14 for the function f(s)/s. By Cauchy’s
theorem ¢ ds f(s)/s = 0, which gives

i/ﬂ do f(spe™) = /°° B [ f(s 4 i€) — f(—s +ic)]
0 S0

s
=2 /S:O %Im f(s +ie) (E.2)
For sp < 1, the left hand side of (E.2), becomes
i /O " 40 f(s06™) = imatls — z‘%e%sg/ 2100, (E.3)
In the same limit, the right hand side of (E.2) gives

2 [* g =2 [ Cimaste=o0), (E-4)

S0 S0
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Figure 15. In all dimensions, « extracted from the sum rules converges to the bootstrap mini-
mization targets in table 1. The coefficient 7 converges well to the values fixed by unitarity (6.6).
In 9 — d, B is clearly attaining values lower than the String Theory minimum. Similarly in 10 — d,
the decreasing trend in § appears to go below the string theory minimum. The § values in 11 — d
are the noisiest and are far from converging.

where sT = s + ie. Therefore, we conclude that

an /5 \3/2 2 [  ImA(sT,0)

Similarly, we obtain a sum rule involving 3 by repeating this analysis with f(s)/s®

20 (o N\-1/2 1 o Im A(s*,0)
5"’?(61)80) Nﬂ’/SO dSW . (EG)

Choosing the function f(s)/s%/? yields the following sum rule,

_2£ 2 —3/2 é 2 I/QNE/OO 1 A(S+,O)
3 <£P80> + 7'('/8 <£P80> T s ds 09,55/2 lm [ (1+4) |~ (E7)
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For completeness, we report the sum rules in 9d

4n o 172 2/00 Im A(s*,0)
Mgz 2 [ g imALT0) ES
a+ —(Lpso) ) (E.8)

20 - 48 2 [ ds A(s™,0)

2002 o172 4B e s f/ I ! E.9
not o Epso) T = g Epso) A T SRt | T 59

_2Mp y-sp L /°° Im A(s™,0)
B~ 5 (Ghso) ™~ — | ds o (E.10)

As explained in the main text, we can use the sum rules in (6.7) and those computed
above to extract S and the 1-loop coefficient 1 from the extremal amplitudes. For instance,
in 10d we evaluated the sum rules at various values of N and L, with sg lying in the region
depicted in figure 10 and found the best fit values for «, 5 and 7 (see figure 15). In all
dimensions, 1 converges to the value predicted by unitarity. In 10d and 11d, « converges to
values slightly below those in table 1 due to the following reason — the ansatz (3.1) behaves
like s9/2 at low energies, whereas the expected low energy behaviour, from unitarizing the

/2.

tree level is s This mismatch for d = 10 and 11 leads to the peak at s = 0 seen in

figure 10, and ignoring that leads to slightly lower a.

F Resonances in the extremal amplitudes

Resonances in a scattering amplitude show up as zeros of the partial waves S;(sg) = 0 on
the physical sheet of the complex s plane. When the zero is sufficiently close to the real axis
in a region where the scattering is nearly elastic |S;(Re sg)| ~ 1 it produces the expected
experimental signature of an unstable particle: the spin [ phase shift §;(s) = % log Si(s)
jumps by 7 in a neighbourhood of Resg. In this regime we can use the Breit-Wigner
approximation and relate the position of the zero to the physical mass and decay width
parameters sp = (mpg + %F R)Z. In figure 16 we plot the location of the three most visible
zeroes corresponding the lowest lying resonances in the spin [ = 0,2,4 for the extremal
amplitude in d = 10 as a function of N.!?> The dependency on N is denoted by the color
(from blue to red as we increase N). It is interesting to notice how the ratio % ~ 0.2
for these three resonances, is comparable with the ratio % for the p meson in QCD.
This confirms that the spectrum of resonances of the extremal amplitude minimizing «
resembles that of a strongly coupled theory. Figure 16 also shows the different rate of
convergence of the different partial waves. For the spin zero graviball, the location of the
real part of the resonance almost does not change as we increase N, although it moves
along the imaginary axis entering in the physical sheet through the cut. For the higher
spin resonances convergence is harder and their trajectory in N looks more erratic. The
blue circles denote our extrapolated estimates.

1276 find the position of the resonances we perform a Newton’s search in the complex plane. At each
step we approximate the zero by

Si(sn)

Sn+l1 = Sn — S/(S )
l n

where the values of S;(s,) and S](s,) are computed numerically using a simple quadrature method.

(F.1)
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Figure 16. Lightest resonances’ location s for spin | = 0,2,4 as we increase N all the way to
N = 30. In a dashed blue circle we estimated (by eye) where the resonance seems to eventually
converge to.

In figure 17a, 17b, and 17c we plot the absolute value of |S;(p)| for [ = 0,2,4 in the
upper half-plane in s, corresponding to the semi-circle |p| < 1, and Im p > 0, for different
values of N. For the spin zero partial wave, figure 17a, we observe the presence of a single
resonance close to the boundary of the disk (the spin zero graviball of figure 16), and a
number of zeros entering through the left cut —1 < p < 1. Their number increases as we
increase N. We do not have a physical interpretation for such zeros since they lie almost
along the imaginary s axis and cannot be interpreted as resonances. For spins [ = 2,4
in figures 17b, and 17c beyond the leading [-spin graviballs we also observe several higher
energy resonances entering into the p disk through the boundary, accompanied by other
zeros coming in through the left cut.

The way new resonances enter the physical sheet is quite interesting. On the one hand
unitarity always tends to be saturated in these S-matrix bootstrap numerics [10], trying
to converge towards |S;(s)| ~ 1 for real s. (Indeed, note in figure 4 that for s > 0 and
not too large we have indeed |S| ~ 1 indicated by the orange colour; that region becomes
larger as N increases.) On the other hand, when the resonance zero enters the physical
sheet we will have |S;(s)| ~ 0 nearby that resonance. In practice what happens is that
unitarity needs to be sacrificed for a while when the resonance enters the physical sheet
and afterwards it struggles to be saturated again. In other words, as we increase N, there
is a tension between unitarity saturation and the addition of more and more resonances
needed to ensure a good behavior of the amplitude in the Regge limit. This should be
related to the tension raised by Caron-Huot which we discussed in appendix C.

In figure 18 we plot the |S;(p)| for [ = 0,2,4 in 9d and 11d. The extremal amplitudes
in these cases present the same qualitative features of the 10d amplitudes.
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(c) Spin-4 resonances.

Figure 17. Resonances in the 10d extremal amplitudes for various spins and N in the p plane.
Here, the physical energies s > 0 are mapped to the boundary of the disks and we see resonances
entering into the first sheet as we increase N.
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Figure 18. Resonances in 9d and 11d for N = 30 and L = 200. Here too, the spin-0 partial wave
only has one resonance close to the real axis in the s complex plane.

G Virasoro Shapiro spin decomposition

It is amusing to recall how « extracted from the sum rule goes for perturbative string
theory and contrast that to what we find here. By expanding Virasoro-Shapiro we have
LA -9ra-5Hra-4% 1 G

T ST NI+ DT+ Y) ~ stu 320 (@1

VS

Here we omit the 87Gn overall normalization and recall that s,t,u are all measured in
units of string length (and not Planck length). Let us recall first how the sum rule
(G.2)

o= —
0

2 /Oods Im A(s + i€, t = 0) '
0 s

produces the perturbative ays = (3/32. (Again, the (3/32 is in units of string length; in
units of Plank Length it would be (3/32 X (lstring/lPlank)® — oo in this perturbative regime.)

When ¢t = 0 we have © = —s and
Avyg ~ —i + <l — iI—I(s/4) + —1 H(—s/4)) + (G.3)
VS 2% 332 32 G.

At positive s the last Harmonic number has poles when s/4 in an integer; these correspond
to the various massive strings. At the pole s = 4n we thus have

1 1 1

Ayg ~ — — s G.4
Vs (4n)%2t  (4n)? T " (G-4)

Each pole contributes as —im to the imaginary part,

T
Im(Ays) ~ (an)? d(s —4n) (G.5)
so that plugging it into (G.6) yields
— 1 €

=2 == G.6
avs nZ::l (dn)® ~ 32 (G-6)
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It is fun to probe deeper inside this sum rule and decompose it into its various spin con-
tributions. We have, for s ~ 4n,

L ()T (YT (k)
s—4n  (4n+t)°T'(n+1)2TC (L+1) T (—n—1%)
2(n—1 7/2

ch

= /()
(n)

It is trivial to compute as many constants ¢, ’ as needed; it is quite nontrivial to

12

Ays

(G.7)

s—4n

establish analytically that they are all negative as recently studied in [27], see also [28].
The previous computation is reproduced as

ays = Z Z (G.8)

%/_/
1

T (4n)?

Instead, we can swap both sums to get

(0.]
avs=2< 522—1 n) (G.9)
=0 n

We can plot how the contribution of this sum up to spin L contributes to .. Spin 0 alone
contributes to about 84% of the result and the first 4 spins capture 99% of (3/32 as depicted
in figure 7. We can of course repeat the same exercise and see how much the various spins
contribute to our bootstrapped amplitude; that is also in figure 7 for d = 10. (d = 9,11
exhibit a very similar behavior.)

Once we find an interpolation between perturbative and strongly coupled String theory
we should find an interpolation between all such sum rules.
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