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Abs trac t

Rayleigh's (1916) attempt to describe the experimental 
observations of Benard (1900) is the foundation of a large number of 
theoretical studies on thermal convection. Many of these 
investigations are based on the assumptions that the horizontal fluid 
layer is confined between stress-free upper and lower boundaries and 
is unbounded in the horizontal directions. Here, three-dimensional 
thermal convection in an idealistic infinite channel of rectangular 
cross-section with no-slip sidewalls and stress-free upper and lower 
boundaries, in which an adverse temperature gradient is maintained by 
heating the underside is investigated using both linear and nonlinear 
techniques. The amplitude equation for nonlinear disturbances is 
derived and the variation of its coefficients with both aspect ratio 
(the width of the channel) and Prandtl number ascertained. The results 
show that the amplitude of the motion undergoes a supercritical 
bifurcation as the Rayleigh number passes through the critical value 
for instability predicted by linear theory.

The effect of introducing distant endwalls is investigated using 
the technique developed by Daniels (1977) for the related two- 
dimensional problem. If the endwalls of the long three-dimensional box 
are rigid and the thermal conditions there are consistent with a basic 
state of no motion a supercritical bifurcation occurs at a new 
critical Rayleigh number. By determining the higher order amplitude 
equation the question of wavenumber selection, as developed by 
Cross et al (1980) for two-dimensional rolls, is extended to the 
three-dimensional case for the long box with finite length and aspect 
ratio, for Rayleigh numbers slightly above critical. The results 
indicate a physical behaviour similar to that observed in experiments.
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Chapter 1 Introduction

Thermal instability often arises when a fluid is heated from 

below. A classic example of this is a horizontal layer of fluid in 

which an adverse temperature gradient is maintained by heating the 

underside. The temperature gradient thus maintained is qualified as 

adverse since, on account of thermal expansion, the fluid at the 

bottom is lighter than the fluid at the top. This is a top-heavy 

arrangement which is basically unstable and there is a tendency on the 

part of the fluid to re-distribute itself and remedy the weakness in 

its arrangement. However, this natural tendency on the part of the 

fluid is inhibited by its own viscosity. Thus, the adverse temperature 

gradient which is maintained must exceed a certain critical value 

before the instability can manifest itself. The earliest experiments 

to demonstrate the onset of thermal convection in fluids are those of 

Benard in 1900, though the phenomenon of thermal convection itself had 

been recognized earlier by Rumford (1797) and Thomson (1882). Benard 

carried out his experiments on very thin layers of fluids, about a 

millimetre in depth, or less, on a levelled metallic plate maintained 

at a constant temperature. The upper surface was free and being in
i. ■

contact with the air1 yzasp’j&t a lower temperature. Block (1956) showed 

physically and Pearson (1958) analytically that most of the motions 

observed by Benard, being in very thin layers with a free surface, 

were driven by the variation of surface tension with temperature and 

not by thermal instability of light fluid below heavy fluid.

Stimulated by the experiments of Benard, Rayleigh (1916) 

formulated the theory of convective instability of a layer of fluid 

between horizontal planes. He showed that the instability is decided 

by the numerical value of the non-dimensional parameter g<y’ 
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where g*denotes  the acceleration due to gravity, d the depth of the 

layer, {3*  the uniform adverse temperature gradient which is maintained, 

and°< ,R- , andare the coefficients of volume expansion, thermometric 

conductivity and kinematic viscosity, respectively. This parameter is 

called the Rayleigh number. Rayleigh further showed that instability 

occurs when the Rayleigh number exceeds a certain critical value and 

when the Rayleigh number just exceeds this value, a stationary pattern 

of motions exists.

Rayleigh's (1916) attempt to describe the experimental 

observations of Benard (1900) is the foundation of a large number of 

theoretical studies on thermal convection. Many of these 

investigations are based on the assumptions that the horizontal fluid 

layer is confined between stress-free upper and lower boundaries and 

is unbounded (ie. extends to infinity) in the horizontal directions. 

Linear theory predicts that for an infinite fluid layer with stress- 

free horizontal boundaries heated from below the critical Rayleigh 

number is 27^/4 and the associated critical wavenumber is /FT. The 

desire to make realistic comparisons with experimental work has led to 

studies of the effects of lateral bounding walls. Their importance, 

however distant they may be, has been realised for some time. For 

instance, the experimental work of Koschmieder (1966) indicates that 

'the fluid has little or no ability to form a definite cell pattern on 

its own but the shape is defined by the form of the lateral 

boundaries'. Davis (1967) considered thermal convection in rigid 

perfectly conducting three-dimensional boxes, with width to depth and 

length to depth ratios in the range [%,6J. He defined 'finite rolls' 

as cells with two non-zero velocity components dependent on all three 

spatial variables. Using a linear stability analysis based on the 

Galerkin method with 'finite roll' trial functions he obtained upper 
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bounds on the critical Rayleigh number. Within his approximation 

general three-dimensional flows could be constructed by a linear 

superposition of finite rolls so, he was able to predict the preferred 

mode at the onset of convection. His analysis showed that the 

preferred mode is always some number of finite rolls with axes 

parallel to the short side. In addition, the critical Rayleigh number 

rapidly decreases to the value 1708 as the horizontal dimensions 

increase, consistent with the results of Low (1929) and Pellew & 

Southwell (1940) for the infinite horizontal layer with rigid 

boundaries. The results of Davis (1967) are confirmed by the 

experiments of Stork & Muller (1972). Drazin (1975) was able to 

illustrate some of Davis's ideas analytically by a linear analysis of 

a simplified two-dimensional model with rigid endwalls and stress-free 

upper and lower surfaces.

Davies-Jones (1970) considered thermal convection in an infinite 

rectangular channel of aspect ratio a (width/height) with no-slip 

sidewalls. By assuming the upper and lower surfaces to be stress-free 

he obtained exact solutions of the linearized perturbation equations 

for the convective motions in a Boussinesq fluid heated from below. He 

showed that the preferred modes of convection closely resemble 

transverse finite rolls, as predicted by Davis (1967), unless 

< a < 5. Inside this range they show noticeable departures from roll 

form. The effect of bringing the sidewalls closer together was to 

inhibit convection and generally, to reduce the wavelength at the 

onset of convection.

Theoretical analysis of the effect of the lateral boundaries on 

the convective pattern in a Rayleigh-Benard cell has been mostly 

limited to two cases. Firstly, the linearized equations have been 

studied to determine the onset patterns and their critical Rayleigh 
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numbers (Davis (1967), Davies-Jones (1970)). A second class of 

problems that has been studied is the inclusion of the weak non-

linearities close to onset by the introduction of a slowly varying 

complex amplitude function which describes the slow modulation of the 

roll pattern. An equation of motion, the 'amplitude equation', for the 

amplitude function may be derived from the hydrodynamic equations 

using the method of multiple scales and incorporating the nonlinear 

terms (Segel (1969), Newell & Whitehead (1969), Daniels (1977)), based 

on the method developed by Stuart (1960) for the related Taylor 

problem. The amplitude equation gives a complete description of the 

fluid away from the lateral walls. In addition boundary conditions on 

the amplitude function must be specified so that the temperature and 

velocity components satisfy the physical boundary conditions at the 

lateral walls. The amplitude equation, together with the boundary 

conditions, enable the influence of the lateral walls on convection 

close to onset to be studied.

Segel (1969) used the method of multiple scales to describe the 

motion at the onset of convection in a shallow three-dimensional layer 

bounded by rigid lateral walls. He derived the boundary conditions on 

the amplitude function for two cases in which the rolls are parallel 

and perpendicular to the walls. Later Brown & Stewartson (1977) 

corrected one of his results. Segel's results show that if the lateral 

walls of the container are rigid and the thermal conditions there are 

consistent with a basic state of no motion a supercritical bifurcation 

occurs at a new critical Rayleigh number. Daniels (1977) considered a 

two-dimensional model with stress-free upper and lower surfaces and 

rigid endwalls. Using the assumption that the horizontal distance 

between the endwalls is large compared with the distance between the 

upper and lower surfaces (ie. the aspect ratio 2L is large compared 



with 1), he showed that if there is a small heat transfer through the 

endwalls, so that the boundary conditions there are inconsistent with 

a state of no motion, the bifurcation is replaced by a smooth 

transition to finite amplitude convection. Hall & Walton (1977) 

investigated the fluid motion in a two-dimensional box with stress- 

free upper and lower boundaries and rigid perfectly insulating 

endwalls. They also considered the effect of allowing the endwalls to 

be slightly imperfect insulators. The main difference between the 

study of Hall & Walton (1977) and that of Daniels (1977) is that each 

concerns a different limiting situation. Hall & Walton (1977) were 

mainly concerned with the situation in which the semi-aspect ratio L, 

is of order one and the imperfection X, is small. However, Daniels 

assumed that L >> 1 and that x = 0(L’1). Brown & Stewartson (1977) 

extended the ideas of Daniels (1977) to accommodate rectangular 

containers with large, horizontal dimensions using a similar approach. 

In particular they showed, in agreement with earlier theories and 

experiments, that there is a preference for rolls parallel to the 

shorter side. In the studies by Daniels (1977), Hall & Walton (1977) 

and Brown & Stewartson (1977) it is assumed that the fluid is 

contained by stress-free horizontal boundaries, a situation which is 

difficult to achieve experimentally. Stewartson & Weinstein (1979) 

have considered thermal convection in a large box, with rigid 

horizontal boundaries and rigid endwalls but only for the two- 

dimensional case with L >> 1.

In the present study the ideas of Segel (1969) and Daniels (1977) 

are applied to a three-dimensional long box with stress-free upper and 

lower surfaces, rigid sidewalls at y=ia and rigid endwalls at x=iL. 

Here x and y are horizontal co-ordinates non-dimensionalised with 

respect to the height of the box. The assumption of an idealistic 
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theoretical model with stress-free upper and lower surfaces enables a 

semi-analytical solution of the linearized perturbation equations to 

be constructed by separation of variables, thus avoiding the difficult 

numerical problems associated with the more realistic model, with 

rigid upper and lower surfaces.

In chapter 2, thermal convection in an infinite channel of 

rectangular cross-section with semi-aspect ratio a, no-slip sidewalls 

and stress-free upper and lower boundaries, in which an adverse 

temperature gradient is maintained by heating the underside is 

investigated using a linear stability analysis equivalent to that used 

by Davies-Jones (1970) (section 2.2). The results of Davies-Jones are 

reproduced and extended to include asymptotic forms for the critical 

Rayleigh number and the associated critical wavenumber for thin 

channels (semi-aspect ratio a-*0)  and wide channels (a-*oo)  for both 

perfectly conducting and perfectly insulating rigid sidewalls (y=±a). 

In addition to the rigid model considered in section 2.2, two 

simplified models are investigated. The stress-free model (section 

2.5) assumes that the sidewalls are stress-free and perfect 

insulators, while the 'finite-roll' approximation (section 2.6) 

assumes the y-momentum equation is neglected and the horizontal 

velocity component in the y direction is zero. Both these simplified 

models enable fully analytical solutions to be constructed, in 

contrast to the rigid model which involves extensive numerical 

calculations.

In chapter 3, a nonlinear analysis involving the derivation of 

the amplitude equation using the method of multiple scales as outlined 

by Segel (1969) and Newell & Whitehead (1969), is presented for the 

simple models. In the case of the stress-free model the results for 

the limiting case in which the sidewalls tend to infinity (a-^co), are 
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compared with the results of Newell & Whitehead (1969). In chapter 4, 

the ideas of chapter 3 are extended to the rigid model. The amplitude 

equation for nonlinear disturbances is derived and the variation of 

its coefficients with both aspect ratio and Prandtl number ascertained 

by extensive numerical computations. The results clearly show that for 

the aspect ratios considered the amplitude of the motion undergoes a 

supercritical bifurcation as the Rayleigh number passes through the 

critical value for instability predicted by linear theory.

In chapter 5, the effect of introducing distant endwalls (at 

x=iL » 1) is investigated for both the simple models and the rigid 

model using the techniques developed by Daniels (1977) and Stewartson 

& Weinstein (1979). The results obtained in chapters 3 and 4, in each 

case, form the basis of the solution in the 'core' region which must 

match with the solution in the neighbourhood of each endwall. In the 

end-regions the amplitude of the motion is small and the linearized 

form of the Boussinesq equations may be used. In the case of the 

simple models both linear and nonlinear approaches are considered. 

However, the simplicity of the linear approach is lost in the case of 

the rigid model where only a modified nonlinear approach is used. The 

results show that if the endwalls of the long box are rigid and the 

thermal conditions there are consistent with a basic state of no 

motion a supercritical bifurcation occurs at a new critical Rayleigh 

number. For the limiting case in which the sidewalls tend to infinity 

(a-*co),  the new critical Rayleigh number at which bifurcation occurs, 

approaches the two-dimensional value obtained by Daniels (1977). 

Imperfect end conditions at x=IL are also considered.

Chapters 6 and 7 are devoted to finding the higher order amplitude 

equation for the rigid model, thus enabling the effect of rigid 

endwalls with zero forcing (^ = 0) to be investigated in chapter 8. 
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Cross et al (1980,1983) and Daniels (1981,1984) have shown that for 

the related two-dimensional problem, in the absence of any forcing 

effects at the endwalls the wavelength of the roll pattern can be 

altered significantly from its critical value when the Rayleigh number 

exceeds its critical value by an amount order L ' where 2L is the 

distance between the endwalls. Recent experimental work by Oertel 

(1980) using a laser-anemointerferometer (Oertel & Buhler (1978)) has 

shown that for a fluid of large Prandtl number P (for instance 

silicone oil P=1780) the number of convection rolls within a 

rectangular box of non-dimensional length ten (L=5) and width four 

(a=2) does not change as the Rayleigh number is increased above the 

critical value of 1708. However, at low Prandtl numbers (for instance 

nitrogen P=0.71) the number of convection rolls decreases as the 

Rayleigh number is increased above critical. In addition to his 

experimental work Oertel (1980) has investigated thermal convection in 

a three-dimensional box (of non-dimensional length ten and width four) 

with rigid perfectly conducting lateral walls using a Galerkin and an 

explicit finite-difference technique. His numerical and experimental 

results were in good agreement with regard to wavenumber selection.

In chapter 8, the question of wavenumber selection, as developed 

by Cross et al (1980) and Daniels (1981) for two-dimensional rolls, is 

extended to the three-dimensional case for the long box with a finite 

semi-aspect ratio a and length L » 1, for Rayleigh numbers slightly 

above critical. The effect of varying the closeness of the sidewalls 

at y=ia with either perfectly conducting or perfectly insulating rigid 

endwalls at x=tL is investigated as the Prandtl number is varied from 

zero to infinity. The results indicate a physical behaviour similar to 

that observed by Oertel (1980). However, an explicit comparison of the 

results obtained with those of Oertel cannot be made since in the 
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present study the upper and lower surfaces are assumed to be stress- 

free. It is expected that the boundary conditions at the upper and 

lower surfaces play a more important role in determining the roll 

pattern at large aspect ratios (a-><x>) than at small aspect ratios 

(a-*-0),  when the conditions at the sidewalls would be expected to 

dominate the form and behaviour of the roll pattern as the Rayleigh 

number is increased above critical. It should be noted that the work 

presented in chapter 8 has been done jointly with Professor 

P.G. Daniels.

All numerical calculations were performed on The City University, 

Honeywell 60/66 mainframe computer. All computer programs were 

constructed using the Fortran computer language. For the rigid model 

approximately twenty five minutes of processor time was required to 

determine the critical Rayleigh number and the amplitude coefficients 

of the higher order amplitude equation for a given aspect ratio. Due 

to the large amount of computer programming involved (approximately 

9,000 Fortran statements) it has not been convenient to include 

listings of the programs in the thesis.

The three-dimensional model used in the present study takes us 

one step closer to the ultimate goal of studying the effect of lateral 

walls on the transition to finite amplitude Rayleigh-Benard convection 

in a fully rigid three-dimensional box. From Davis (1967) it is 

expected that the techniques used in this thesis may be extended to 

the fully rigid three-dimensional long box, with a Galerkin method 

used to obtain the basic solution in the 'core' of the box 

perpendicular to the x direction. Multiple-scale techniques could 

still be used to model the behaviour of the solution in the x 

direction.
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Chapter 2 The infinite channel: 1inear theory for rigid and 

simplified models

2.0 Introduction

Rayleigh (1916) showed that for an infinite layer of fluid with 

stress-free horizontal boundaries heated from below linear theory 

predicts that at the onset of convection the critical Rayleigh number 

is 27tt ^/4 and the critical wavenumber is vr|/£-. The effect of lateral 

walls was considered by Davis (1967) who investigated the linear 

stability of a rigid, perfectly conducting rectangular box of fluid 

heated from below using a Galerkin technique. Davies-Jones (1970) 

investigated the linear stability of an infinite channel of fluid with 

a rectangular cross-section of semi-aspect ratio a. Davies-Jones 

assumed the upper and lower boundaries to be stress-free and 

investigated the effect of introducing rigid sidewalls at varying 

aspect ratios using an eigenvalue approach involving extensive 

numerical calculations. In this chapter the results of Davies-Jones 

(1970) are reproduced and extended to include asymptotic solutions for 

both thin channels (a-*  0) and wide channels (a-roo). In addition, two 

simplified models for which there exists completely analytical 

solutions are investigated.

2.1 Formulation of the problem

The following notation is used: x' and y" are the horizontal co- 

ordinates along and across the channel and z" is the vertical co-

ordinate. The superscript * refers to dimensional quantities. The 

channel is defined by the planes z'= 0,d' and y'=^a". The components 

of velocity in the x }y and z ' directions are u',v' and w". The 

temperature, pressure, density and time are denoted by T^p",/^' and t' 

respectively.
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The upper and lower planes are held at the constant 

temperatures Tf and T^' with T"<T~. The basic hydrodynamical equations 

of a heat-conducting viscous fluid must be supplemented by an equation 

of state which is assumed to be

(2.1.1)

where p< '' is the coefficient of volume expansion and />" is the density'G

of the fluid at the temperature T^' of the lower boundary. It is 

assumed that the coefficient of volume expansion is small, so that the 

Boussinesq approximation can be used ie. the change in the density due 

to variations in the temperature may be neglected, except where it is

multiplied by the external force. Thus the equations which govern the

motion of a Boussinesq fluid under the action of gravity are as

follows. The equation of continuity is

+- -v - o
bi* (2.1.2)

The momentum equations are

bn* w> list ~ 
bi* (2.1.3)

bt*
4- 4- bl* (2.1.4)

bx*
11* -v

-3*
•V p V V *

X ' 4-

bt*

U.’’ b SM*

in*
4- UJ* (2.1.5)

operator V*  - st -tit
W' bvj* ’-

viscosity and g" is the accleration due to gravity. The equation of

where the Laplacian 4 It p’ is the 
bz* x

kinematic

heat conduction is

(2.1.6)

where K is the thermal diffusivity.

Assume that the boundary conditions are consistent with a basic state 
of no motion so that

11



U* = V * - o cxnd T*=T*tZ)« (2.1.7)

When no motions are present the Boussinesq equations require that the

pressure distribution is governed by the equations

=o (2.1.8)

The temperature distribution is governed by

(2.1.9)

The solution of (2.1.9) subject to the boundary conditions

T - TL - c end T - Tv cCv 2r - d

is

+ = v.

The corresponding density distribution is

(2.1.10)

(2.1.11)

(2.1.12)

With this expression for z0", equation (2.1.8) can be integrated to

give
= )p*  - ' - ** (t V- t c ) ) = Pb - (2.1.13)

The non-dimensional variables u,v,w,e and p are defined relative 

to this basic state of no motion by

u <^,^3, T‘-. TB‘+ (Tl'-Tt,A)e(-n131s,t)

and

r = (2.1.14)
a"2

where

C x”, j*,  *̂1  - 8*  lx, ij ,^1 ckfid V- cV^-b/K*  * (2.1.15)

The dimensionless form of the Boussinesq equations which govern the 

motion is then
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y. u - o (2.1.16)

4 U. V U -
<! t

- 1L -v P v’ u (2.1.17)

4- pv^v (2.1.18)

4- f'V2w4 P fl 9 (2.1.19)

and
1© 4-

(2.1.20)

where

y = L_l -V -a and u — u t v j •+- <*>  hr ■

The Rayleigh number R, is defined by

(2.1.21)

and the Prandtl number is

J

4

Si ? V

u . y uj - -^t.

y • y 9 =

Ft- d* **

V1- 9

*

•p= (2.1.22)

It should be noted that the Prandtl number is an intrinsic property of 

the fluid, not of the flow; and that the Rayleigh number is a ratio of 

the buoyancy to the viscous forces. The third parameter governing the 

system is the semi-aspect ratio of the channel

(2.1.23)

The stability of the basic state (2.1.7) can be examined by 

considering perturbations equivalent to non-zero values of 

u ,v ,w ,g > and p. If these are small they will satisfy the linearized 

forms of the equations (2.1.16)-(2.1.20), which are

y • u - o (2.1.24)

(2.1.25)
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L'V" (2.1.26)

and

L, vu - — I) V + f o
’St

Lx 9 - tu

(2.1.27)

(2.1.28)

where L, and L-^ denote the differential operators and

respectively.

It will be assumed that the principle of exchange of stabilities 

holds ie. all non-decaying disturbances are non-oscillatory in time. 

Shermann & Ostrach (1966) have proved that this does hold for 

convection in a fully enclosed geometry and Davies-Jones (1970) has 

modified their proof to show that it also holds for periodic solutions 

in the infinite channel considered here.

2.2 The infinite channel with rigid sidewalls

In this section thermal convection in an infinite rectangular 

channel with no-slip sidewalls is considered. The upper and lower 

surfaces are assumed to be stress-free, allowing a solution to be 

constructed by separation of variables; the conditions on the top and 

bottom boundaries are therefore

s =■ u = - cv x c t - o, i (2.2.1)
ct 7yt

The sidewalls are assumed to be rigid and either perfect conductors or 

perfect insulators. In the conducting case the conditions on the 

sidewalls are

G ~ U.-V - vxJ = o (2.2.2)

while in the insulating case the condition on the temperature is 

replaced by 

14



(2.2.3)

From equations (2.1.24) and (2.1.28) the conditions (2.2.2) are 

equivalent to

9 _ v - 44 - ' o m - •*-  a «
(2.2.4)

Unfortunately however, the conditions on the sidewalls cannot all be 

expressed in terms of a single variable.

By elimination of variables in equations (2.1.24)-(2.1.28) a 

single sixth order differential equation in 6 is obtained:

PR vile =0, (2.2.5)

where andV^is the Laplacian operator. Since not all the

conditions on the sidewalls are in 

relating and e is also required

I?1-'"-

The boundary conditions (2.2.1) 

obtained by separation of variables

terms of G, the following equation

(2.2.6)

allow normal mode solutions to be

as

c*V vVx
€ e SxQnTVJr

uA->c,y, t,i)

(x, 2,*)
■=

Uy)
Viy)

P4)

uA-K, y, > - \l bp"

04)

C p e ecs mtt

(2.2.7)

where cr is the growth rate of the disturbance with wavenumber k in the

x direction and vertical wavenumber mr (n=l,2...). The value of cr is 

set to zero in order to determine the neutral stability curve.

Substituting (2.2.7) into equations (2.2.5,6) gives

L? ® - o y (2.2.8)
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(2.2.9)

and

where the differential operators are defined by

and

1 r - l T~C ~ — *

The homogenous differential equation (2.2.8) has the general

(2.2.10)

solution

- k1 ■+

- K— b’-P.)],

L

L
® (j ) - zL_ cj e 

J"
(2.2.11)

where rj are the roots of the characteristic equation 

(2.2.12)

and cj are arbitrary constants. The roots rj are assumed to be 

distinct (see below). As the equation (2.2.12) has real coefficients 

and is bi~cubic, the roots can easily be determined using Cardin's 

formula (see appendix A).

Substitution of the general solution (2.2.11) into equation 

(2.2.9) gives a second order inhomogenous equation for V which has a 

particular solution

V^) = £ SPj (2.2.14)

where

-+ 3 y L • (2.2.15)

The complementary solution is

V,bp- X- , rp (2.2.16)
j-3

Hence the complete solution for V(y) is given by
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(2.2.17)
C 8

vkj)- cj pj e?j'] + y cjeVj^ •
j--' j.i

The solutions (2.2.11) and (2.2.17) have already been derived by 

Davies-Jones (1970). He then proceeded by applying the eight boundary 

conditions (2.2.4) to equations (2.2.11,17), giving eight homogenous 

equations in eight unknowns. Here, symmetry properties are used to 

simplify the calculations.

From appendix A, by letting the characteristic equation

(2.2.12) is reduced to the form

y -t + O where and r  . (2.2.18)

The sign of the term determines the format of the roots.

Three possibilities exist. Firstly if R=27(nirf/4 then three real roots 

exist, at least two of which are equal. Secondly if R<27^nhj^/4 then 

there exists one real and two complex conjugate roots, and thirdly if 

R>27(nn) /4 then three distinct real roots exist. For an infinite layer 

of fluid with stress-free boundaries linear theory predicts that the 

Rayleigh number at the onset of convection is 27tt 4/4 and corresponds 

to the vertical mode n=l. The presence of the rigid sidewalls delays 

the onset of instability (Davies-Jones (1970)), so that only the case
• 4when n=l and R is greater than 27tv  /4 need be considered.

Since the characteristic equation is bi-cubic the general

solution of equation (2.2.8) can be written as

x
j"

<Aj CosVi'j'j -V dj

and accordingly

VVj) = Vo(^) -t ,

(2.2.19)

(2.2.20)
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where
Vc - X— Pj S^U. Vj Xj j

and 7 - —
- y Aj Pj Ccsurj'j -v c\a Ccisvvxvj

J -1
From the evenness of the operators Lz and L^, and the form of the

boundary conditions (2.2.4) which have to be satisfied at , it

follows that the general solution of equation (2.2.8) falls into two 

non-combining groups of even and odd solutions. This enables the 

problem to be divided into 'even' and 'odd' cases. Applying the 

boundary conditions (2.2.4) to the equations (2.2.19,20) for the even 

case gives four equations in four unknowns which can be expressed in

matrix form as 

where

A -

and D is

becomes

and the

(2.2.21)

Cc5^ ‘ia , CcsUG.<X . Ct.sk , O

Ccsur,c< t CuskniA , U ttsv^cxtx

T( Cx , pj. S tr»U fl iX ? StvikrjcK > S\.A\«cX_,

the column vector {d^} i=1..4. For the odd case

Siz.kn<v

CosViTiit

column vector D becomes

(2.2.22)

the matrix A

■S.y^k

r s ua Va

pjG.sk

(2.2.23)

{d^ i=1..4. Similar forms can be

SvwiVv. Vj . ex

A -

> j. s vuV* n <a

1

e

constructed for the case where the sidewalls are perfect insulators.

For a non-trivial solution of equation (2.2.21) the determinant 

of the matrix A must be zero. These zeroes were located numerically 

for various values of the aspect ratio a and wavenumber k, using the 

following technique. For given values of a and k, two values of the 

Rayleigh number are found which enclose a root of the equation

18



ckl E Al - o • (2.2.24)

A simple interval bi-section routine is then used to accurately locate 

the value of k, that corresponds to the root. As only values of 

R>27'h '4/4 are considered, the task is made easier by the fact that the 

determinant of the matrix A is either purely real or purely imaginary.

It should be noted that the equation (2.2.24) has an infinite set 

of solutions for a given aspect ratio a and wavenumber k. The lowest 

value of the Rayleigh number (Rt say), is given by the first zero in 

this infinite set. For all Rayleigh numbers less than Rt, disturbances 

with the wavenumber k are stable; these disturbances become marginally 

stable when the Rayleigh number equals R, and unstable when the 

Rayleigh number exceeds R, . Thus the neutral stability curve for a 

given aspect ratio a is determined by plotting R as a function of k.

Having computed the eigenvalues R, the constants d4,d^and d3can 

be found in terms of d4 by means of Cramer's rule. This gives the 

solutions for © and V . The solutions for the other variables are 

obtained from the relations

w = Lip . (2.2.25)

) (2.2.26)

and

(2.2.27)

which are obtained from the equations (2.1.24)-(2.1.28).

Figures 1 and 2 show the Rayleigh numbers at which the two lowest 

modes become unstable as a function of the wavenumber for different 

aspect ratios and for conducting and insulating sidewalls 

respectively. In each case the curve which has the lower minimum 

corresponds to the lowest mode of the even solution, while the other
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curve corresponds to the lowest mode of the odd solution. Except for 

k <: 1 the even mode is the more unstable of the two.

The critical Rayleigh number at the onset of instability, which 

is associated with the even mode is determined by the additional 

condition

(2.2.28)

By using a central difference equation to approximate the derivative 

in equation (2.2.28) the critical Rayleigh number RQ and wavenumber kQ 

for different aspect ratios are obtained numerically, using a simple 

interval bi-section method.

Figures 3 and 4 show the critical Rayleigh number and the 

critical wavenumber plotted against the reciprocal of the aspect 

ratio, for both conducting and insulating sidewalls. The values are 

given in table 1. The higher critical Rayleigh number in the case of 

conducting sidewalls is a manifestation of greater heat loss through 

the sidewalls, which reduces the destabilising effect of buoyancy. It 

should be noted that figures 1~4 are in good agreement with the 

results obtained by Davies-Jones (1970).

It should be noted that the y-dependent function @(y) is 

normalised such that ® = 1 at y = 0.
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Insulating SidewallsConducting Sidewalls

a k_ R„ k„ R^o o 0 o

0.25 3.6094 6734.0354 2.7687 2715.9884
0.50 2.7021 1654.7422 2.4962 1277.5669
0.75 2.3879 1023.0677 2.3629 921.1781
1.00 2.2315 827.5656 2.2680 799.4416
1.25 2.1455 744.7721 2.1894 737.5152
1.50 2.1044 704.8865 2.1333 703.3260
1.75 2.0929 684.4800 2.1056 684.2265
2.00 2.0977 673.5975 2.1013 673.5741
2.25 2.1093 667.5498 2.1093 667.5498
2.50 2.1224 664.0411 2.1214 664.0373
2.75 2.1349 661.9182 2.1337 661.9112
3.00 2.1460 660.5828 2.1449 660.5750
3.25 2.1555 659.7127 2.1546 659.7055
3.50 2.1635 659.1279 2.1628 659.1217
3.75 2.1703 658.7240 2.1697 658.7189
4.00 2.1760 658.4382 2.1756 658.4340
4.25 2.1810 658.2315 2.1806 658.2281
4.50 2.1851 658.0791 2.1849 658.0764
4.75 2.1887 657.9649 2.1885 657.9627
5.00 2.1918 657.8780 2.1917 657.8761

Table 1. The values of the critical wavenumber and critical

Rayleigh number for different aspect ratios for both conducting and 

insulating sidewalls.

Figures 5 and 6 show plots of the y-dependent functions ©,U,V 

and W at the onset of convection for conducting and insulating 

sidewalls respectively, for the aspect ratios a = %,^,1 and 2. Figures 

7 and 8 show plan forms of the cells at the onset of convection for 

the case of conducting sidewalls, showing the isopleths of vertical 

velocity for the aspect ratios a = and a = 2 respectively. In each 

case the dashed vertical lines indicate the boundaries of the 

convection cells.

It should be noted that in figure 5 the vertical velocity 

component W(y) changes direction in the neighbourhood of the sidewalls 

for the aspect ratios a = 1 and a = 2. A similar effect is observed in 

the case of insulating sidewalls (see fig. 6) for the aspect ratio 

a = 2. The flow in this region of 'reverse' flow is extremely weak, 

and therefore does not appear in any detail on the horizontal plan 

21



form of the cells given by fig. 8 for the aspect ratio a = 2 in the 

case of conducting sidewalls. An analytical approach considered in 

section 2.7 (below) confirms that this region of reverse flow does 

exist in the case of both conducting and insulating sidewalls at large 

aspect ratios. A similar effect has been observed by Oertel (1980) who 

considered three-dimensional thermal convection in long rigid boxes.

A more detailed picture of the flow at the onset of convection

can be obtained by tracing the path followed by a particle, which is

given by the equations

±<_ = -4^ - cK - elt,
V V vJ (2.2.29)

where u,v and w are the horizontal and vertical velocity components.

Here, without loss of generality,

u - -
ko

v - V(3) QijhcH '-czrn I

and

U - \d ky) (2.2.30)

where U,V and W are the y-dependent functions determined above and kQ

is the critical wavenumber. Solving (2.2.29) using (2.2.30) gives

K - k, <?xp O'V a,j) 1

and 

(2.2.31)

(2.2.32)

where xQ,y0 and zQ represent the starting point of the particle.

Equations (2.2.31) and (2.2.32) enable the path followed by a particle 

starting at a given point to be traced. Figure 9 shows the projected 

path's traced by three particles A,B and C in all three co-ordinate 

planes, in each case starting at the point (xo,yo>zo) §lven by 
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(0.3,0.4,0.3),(0.18,0.3,0.18) and (0.3,0.18,0.18) respectively, for 

the case of conducting sidewalls and the aspect ratio a = %. As 

expected, all three particles trace closed paths roughly parallel to 

the xz plane. Figure 10 shows the projected paths traced by the 

particles A,B and C, in each case starting at the point (xo,yo,zo) 

given by (0.3,1.9,0.3), (0.3,1.75,0.3) and (0.18,0.3,0.18), for 

conducting sidewalls and the aspect ratio a = 2. As expected, point C 

which has a starting point distant from the region of reverse flow, 

traces a closed path roughly parallel to the xz plane representing a 

cell with x-wavelength ~/kQ. However, points A and B which have 

starting points in and near the region of reverse flow respectively, 

trace three-dimensional paths representing extremely weak 'corner' 

cells with x-wavelength Tr/(2k ).

2.3 Asymptotic solution for large aspect ratio a>>!

As cv-»co, the critical Rayleigh number aprroaches the value 27^/4 

associated with an infinite horizontal layer. Numerical results from 

section 2.2 suggested that, locally the neutral stability curve is 

given by the asymptotic forms

where C and D are finite as a-mj .

nA
(2.3.1)

and
x 7^ £_

(2.3.2)

From appendix A, by letting r1xq+«:'L and using the expressions 

(2.3.1) and (2.3.2) for the values of R and k respectively, the 

characteristic equation (2.2.12) is reduced to the form of equation 

(2.2.18) where

A cA CAnd
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The roots of the reduced cubic are then given by

f E- aa A * Q3 * - 7 + t-) -

where
3 i' za-vr6 iJTT tv ^V>2 \£+ - k V - ) '

(2.3.3)

(2.3.4)

By expressing E^in polar form and using De Movire's Theorm it is 

found that

„ £2— -t iU£__ \
£4r Z \ - 9^5 3^-vr'^A^ '

Hence the roots of the characteristic equation (2.2.12) are found to 

have the forms

q - C \ - c/5 vr1 o (j / }

y
- L l^3C ) 7 .A olja2-), 

>/3 C\_

r3- -+

and

-v2 - 4- ■’ °('M •
1 eV- '

(2.3.5)

Substitution into equation (2.2.15) then gives

-ih - rr V

and

PaW ib-sc) o(t^) . (2.3.6)

The results (2.3.1 )~(2.3.6) apply to both conducting and insulating 

sidewalls.

Since the numerical results show that the most unstable mode is

the even mode (see figures 1 and 2), equations (2.3.5,6) are 



substituted into equation (2.2.21), in order to obtain the relation-

ship between C and D that defines the neutral curve for large aspect

ratios. For the case of conducting sidewalls this gives

VA]

koskx t C*. O
- 0

icsVl O

1)4 CosVv ck 0

(2.3.7)

where the matrix A is given by

3W1
be i ’

x I

J ,

(2.3.8)

For the case of insulating sidewalls the first row of the matrix

A becomes
L

-10-rSC y >
-72--------- wi

is Jia 4? ’ (2.3.9)I
and all other terms are unchanged.

A non-trivial solution of equation (2.3.7) exists if the 

determinant of the matrix A is zero. On expanding the determinant of 

A, in the case of conducting sidewalls the leading terms 0(a°), are 

found to be zero and the first non-zero terms occur at 0(^7). In the

case of insulating sidewalls the leading order terms are of 0(~) and 

non-zero. In both cases equating the determinant of A with zero at 

0(i’ ), shows that C and D must satisfy

-Vow U-
tv-sc A

(2.3.10)
tX )*

- o .

The neutral stability curve in the neighbourhood of the critical

Rayleigh number is defined by the lowest branch.

The critical Rayleigh number for the onset of instability is
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determined by the additional condition (2.2.28) which here is 

equivalent to

A24 - o ■
Ac

(2.3.11)

Applying this to equation (2.3.10) gives 

<ir . (OtScA x
-y=r- * 1

] = o.lo- sc) i -7=-’ IT (2.3.12)
'J 5

For a given value of C the equation (2.3.10) has an infinite set 

of solutions D=Dm (m=l..ct>). The minimum points (Cc,Dc), for the first 

two branches of this even mode were found numerically and checked by 

substitution into (2.3.12). They are given as follows.

m Cc Dc

1 3.1959 13.905 193.36
2 18.0152 58.363 3406.24

The results for m=l show that the critical Rayleigh number and

wavenumber, for both conducting and insulating sidewalls, are given by

and

cv4 (2.3.14)

(2.3.15)

ftS Ck —r -

In table 2 below a comparison of the numerical solutions with the 

asymptotic solutions for both conducting and insulating sidewalls is 

given for aspect ratios 4.25 to 5.0.
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Numerical Solution Asymptotic

Aspect Ratio Conducting Case Insulating Case Solution

Table 2. A comparison of the numerical results for RQ and kQ with the 

asymptotic results for large aspect ratios.

a Ro Ro Ro

4.25 658.231 658.228 658.104
4.50 658.079 658.076 657.983
4.75 657.965 657.963 657.891
5.00 657.878 657.876 657.821

a k k k„o o 0

4.25 2.18096 2.18061 2.18125
4.50 2.18514 2.18486 2.18563
4.75 2.18873 2.18851 2.18933
5.00 2.19184 2.19166 2.19248

Equation (2.3.10) enables a non-trivial solution of the matrix

system (2.3.7) to be determined. However, this solution is not valid

in the neighbourhood of the sidewalls at y=ta (a >> 1) where 

yt = y ± a^l, since equation (2.3.10) corresponds to assuming the 

unknown constants dtand d4in (2.3.7) are zero. Using the overall 

minimum values for Cc and Dc obtained at m=l, and solving the matrix

system (2.3.7), the solution for the temperature & in the case of

both conducting and insulating sidewalls is given by

o r (ccsh^<-3cc)V7/?) , ccsh 5—* *
0 -- 6o I ------- -------------- CC JI ck  43 a J (2.3.16)

where

0c - L <osR “ 5CC) - ecs (Ck } (2.3.17)

a >> 1 and vh  a. It is noted that the solution (2.3.16) has the

property that it and its first derivative vanish at the sidewalls. For 

the aspect ratio a = 5, the analytical solution for the temperature

(2.3.16) and the related numerical solutions for conducting and 

insulating sidewalls (determined as outlined in section 2.2) were in 

good agreement 'away' from the sidewalls. The order of magnitude of the 

velocity components is f ctcfi U
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In order to determine the analytical form of the solution in the 

neighbourhood of the sidewalls using the asymptotic approach outlined 

above, the higher order terms that have been neglected in determining 

equation (2.3.10) would need to be taken into consideration, which 

would be very complicated. However, in section 2.7 (below) the 

solution in the neighbourhood of the sidewalls (at y =-a, a » 1) is 

determined using a matched asymptotic expansion approach, which 

requires the flow field to be divided into a core region -1 < y/a < 1, 

and end regions near the sidewalls at y = ± a (a >> 1). In addition, 

equation (2.3.10) and the related equation for the odd mode of 

instability (not considered here) are obtained.

2.4 Asymptotic solution for small aspect ratio a«l

Section 2.3 shows that when the aspect ratio is large (a->co ), 

the critical Rayleigh number is the same for both conducting and 

insulating sidewalls. As indicated by figure 3, this is no longer true 

when the aspect ratio is small (a->o), since now the conditions at the 

sidewalls have a strong influence on the flow. Two cases are 

considered.

2.4(1) Perfectly conducting sidewalls

Numerical results from section 2.2 and a 'finite-roll' approx-

imation given in section 2.6 below, suggest that for small aspect 

ratios the neutral curve is given by

P- „ Ox
(2.4.1)

with

k1 - (2.4.2)

where D, ,DX and Cs are finite as a-^o .

Substituting (2.4.1) and (2.4.2) into the characteristic equation

(2.2.12) and using Cardin's formula from appendix A, the roots of the
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characteristic equation are found to have the forms

2 b?

q.

and

(2.4.3)

Substitution into equation (2.2.15) gives
Di4V- Dl >*

1 a f

pr. ~ D2r
' oi2-

Figure 1 clearly

- bl (2.4.4)

shows that when the aspect ratio is small, the

critical Rayleigh number is obtained from the even mode solution. It

is convenient to re-write equation (2.2.21) in the form

t

Cc.sU V\cx o

£a] CcsVyCitA - o
^3 CcS Vx Cj c\ o

_ (A-v Cc£U 0- _0 J

t
5

(2.4.5)

where

o

A s f o

p r.
ft fanti r, a

<x (2.4.6)

Expressing the elements to leading order gives

I

CC/a1 - vCx

C(

m3

O

(Cj - (2.4.7)
A

5

5

i

pl 'x 1 1

1

1

a $ & &

1

o

as<w. This shows that the dominant terms are fit? and in

column 3. Hence expanding the determinant of A along the third column, 

from (2.4.6) and (2.4.7) gives
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A - K_C) ~ 0? -v O^a"4*’')
cd*

where

fy - Pi' 5 V^a U '. <k _ p"? t< Vnvilv ^5 O. (2.4.8)

Unfortunately D-j is zero at leading order. However, since just
J

depends on (c(hVrrT) and the root r3 , it is only necessary to 

evaluate these at higher orders. This can be done as follows. The 

expansions (2.4.1) and (2.4.2) are extended to the forms

R~A*4 ’'4+^ -J (2.4.9)

respectively. By letting r5<p<d, the characteristic equation is reduced 

to the form of equation (2.2.18) above, (see appendix A) where X=~R 

and P =-tt R. The leading order term in r3 indicates that the 

corresponding root of the reduced cubic (2.2.18) has the form

r-> -'TV2' -A- Vv <X -r Si tC" -i £ .j cU •+ ' (2.4.10)

Substituting (2.4.9,10) into (2.2.18) and equating coefficients at

ascending powers of a gives

S\ - 4^ - - o 5 <S^ ~ ^'cl 0?

which implies

(2.4.11)

(2.4.12)

Using (2.4.9) and (2.4.12) it can be shown that is given by

Oxas,\ Ox (2.4.14)

which gives

a . 7 o(a’*,x) (2.4.15)
A uqri

Thus the condition that the determinant of A is zero can only be 

satisfied at 0(a'q*x) if

"hmVi Ti.iv v Dt - Ofa-1) , (2.4.16)

30



ie. the tangent is infinite. More specifically, from (2.4.3,15)

_Q. loi-i p?c,j cx/^o/*)  0(1),
(X ' T-0.3

which implies that

O' - mvc/z i, •?,?...

and

Dz= ^|c.xL

(2.4.17)

(2.4.18)

(2.4.19)

From (2.4.18) the lowest mode of instability occurs when m=l and

D| =AT/2. In order to obtain the critical Rayleigh number at the onset 

of instability the additional condition

(2.4.20)

which is equivalent to (2.2.28), must be satisfied. The critical 

values of Dz and C\ are therefore given by

Cic -712 cuid Oic - (2.4.21)

Thus when the sidewalls are perfect conductors the critical

Rayleigh number and wavenumber are given by 

-

(2.4.22)

as«-»o. The closeness of the sidewalls severly restricts the 

instability leading to the large value of RQ. Although the wavelength 

of the instability is small compared to the height of the channel, it 

is large compared to the width.

By assuming that the unknown constant dx in equation (2.4.5) is 

order one, it can easily be shown that the temperature profile is 

given by

(SAj) di (2.4.23)

and substituting this into equation (2.1.23) gives to leading order

v|bj)=e>(a'T
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2.4(2) Perfectly insulating sidewalls

Numerical results from section 2.2 suggest that when the 

sidewalls are perfect insulators, and the aspect ratio is small the 

neutral stability curve is given by

R - * 2-cC a Cj (2.4.25)

where ,D2 and Ck are finite asa-^o. Substituting these forms for R

and k into the characteristic equation (2.2.12) and using Cardin's

formula (see appendix A) gives
f Pi ( . i i _2i_ . \ \

G ~ J a \ * 7 Uo, C‘ ) D, ) ’

a
, ( SvrZ \ Q-____ \

and

(2.4.26)

Substituting these into equation (2.2.15)

and
-c.

2 ' o.

c. (2.4.27)

Figure 2 clearly shows that for small aspect ratios and

insulating sidewalls, the critical Rayleigh number is obtained from

the even mode solution. Applying the boundary conditions (2.2.3) to

equations (2.2.19,20) and expressing in matrix form gives

UU

-

Ai O

<-csV\rrcK - O
—
cl 5 0

c\^ CosV\C£<V _ 0

(2.4.28)

C' x ' D( A

„ ~ O'’ 5 TT5 CA ’

where the matrix A is given by (2.4.6), except that the first row now

becomes 



(2.4.29)V ex. t A'cua Vv Hl  ck  * r3 4tua Va cv o .

Expanding the determinant of the matrix A along the third column and 

using (2.4.25)-(2.4.27) gives

dti A A, -v -y1 c<-^2?/z u,3ft , (2.4.30)

where
A,- t <a  - rr tn7--O.IL ] oT

and Dy is given by (2.4.8) above. As in the conducting case Dy is 

found to be zero at leading order. By extending the expansion (2.4.25) 

to the form

U cv A C1.CX -A- C3^x t
(2.4.31)

and using a similar approach as in the conducting case (2.4(1)), it 

can be shown

which implies

(2.4.32)

(2.4.33)

Substituting (2.4.33) into (2.4.30) and equating the determinant of 

the matrix A to zero at 0(a) gives

(2.4.34)

The critical Rayleigh number at the onset of instability is 

determined by the additional condition (2.2.28) which here is 

equivalent to

J c>f - o - 
jy (2.4.35)

Applying this to equation (2.4.34) gives the critical values of D, and 

C, as
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Die - JTT "n* and Cic - TV (2.4.36)

It should be noted that equation (2.4.34) defines only one mode 

of instability since for a given value of k there exists only one 

value of R satisfying (2.4.34). In order to show that this is the 

lowest mode of instability it is necessary to consider R and k to have 

the same scaling as in the case of the conducting sidewalls ie. R and 

k are defined by (2.4.1) and (2.4.2) respectively. Assuming this to be 

the case, the results (2.4.1~4) will now also apply to insulating 

sidewalls. Equation (2.4.7), which expresses the elements of A to 

leading order, will also apply to the insulating case except that the

first row now becomes

I Z" 5 (2.4.37)

Expanding the determinant of the matrix A now gives

(2.4.38)

(2.4.39) 

instability 

the scaling

where Dy is defined by (2.4.8) above. Using the result (2.4.14) and 

equating the determinant of A to be zero at 0(a'"|z) gives

VioAi Vi — ~ O -j

which has solutions D, (m=l,2.. ). The lowest mode of

(m=l) is given by D^‘^=0, which implies that for this mode

of R given by (2.4.1) is inappropriate. The scaling (2.4.1) is the 

correct scaling for determining all the higher modes of instability 

(m>z2) but, it is necessary to use the scaling of R as defined by 

(2.4.25) in order to obtain the neutral stability curve given by

(2.4.34).
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Thus when the sidewalls are perfect insulators and the aspect 

ratio is small, the critical Rayleigh number and wavenumber are given by

and ko " as (2.4.40)

The wavelength of the instability, which is independent of the 

aspect ratio when the sidewalls are insulators, is larger than in the 

conducting case. Since the wavenumber kQ in the x~direction is the 

same as the wavenumber in the z-direction, the resulting rolls have a 

'square' cross-section in the xz plane.

In table 3 a comparison of the numerical results with the 

asymptotic results for the critical Rayleigh number and wavenumber are 

given for various small aspect ratios for both conducting and 

insulating sidewalls.

Table 3. Comparison of the critical Rayleigh number and wavenumber 

from the numerical and asymptotic results for various small aspect 

ratios for conducting and insulating sidewalls.

Conducting Sidewalls Insulating Sidewalls

Aspect Ratio Numerical Asymptotic Numerical Asymptotic

a R R R Ro o o 0

0.2 0.12251E5 0.80787E4 0.37994E4 0.29609E4
0.1 0.10843E6 O.95O7OE5 O.12718E5 0.11844E5
0.05 0.12955E7 0.12476E7 0.48260E5 0.47374E5

a k_ k k k_o o O o

0.1 4.0223 4.1618 2.8542 3.1416
0.2 5.7281 5.8857 3.0407 3.1416
0.05 8.1904 8.3236 3.1133 3.1416

2.5 The infinite channe1 with stress-free sidewalls

In order to avoid the large amount of numerical work associated

with the rigid channel of section 2.2 a simpler model may be 
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considered. By assuming that the sidewalls are stress-free and perfect 

insulators a fully analytical solution for ® can be obtained. As in 

the case of the rigid channel the upper and lower surfaces are assumed 

to be stress-free, allowing a solution to be constructed by separation 

of variables; the boundary conditions on the top and bottom surfaces 

are then given by (2.2.1), which allows the normal mode solutions 

given by (2.2.7) to be obtained. The conditions on the perfectly 

insulating stress-free sidewalls are

if- — ~ V ~ ~ O O r J <X •

From equations (2.1.24)-(2.1.28) these are equivalent to

i G Y L> 0 — V ~ <_ V - O H 1 i
J1""

where the operator Lxis defined in section 2.1 above.

(2.5.1)

(2.5.2)

Clearly, the solutions satisfying the equations (2.2.8) and

(2.2.9) and the boundary conditions (2.5.2) are

Cos

(n)(j) = <

S.A V'j

By defining

Y = y + a

<t-Oyt, A(fvfcrJ Moots)

V 1,3,5 (0 00 Moq o ) (2.5.3)

(2.5.4)

the solutions (2.5.3) can be re-written in a more convenient form as

®t3) Z C03 y

A
(2.5.5)

where

a = 2a. (2.5.6)

Substituting the solution (2.5.5) into equation (2.2.8) leads to

the characteristic equation
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where

= a1- ^/a2" , (2.5.8)

mir/a and mr are the horizontal and vertical wavenumbers in the y and 

z directions respectively, knm is the wavenumber in the x direction 

and Rnm is the Rayleigh number for the mode of instability (n,m).

The critical Rayleigh number and wavenumber for the mode (n,m) 

are

4
and knrwc " - ZrA7/cd" ) , (2.5.9)

which are obtained by applying the condition (2.2.28) to equation 

(2.5.7). The critical Rayleigh number Rnmc, is independent of m and 

the lowest mode of instability occurs when n=l. This implies that the 

overall critical Rayleigh number and wavenumber for a stress-free 

channel are

Ro" (2.5.10)

so that all y-modes such that

m a.fT“ (2.5.11)

appear simultaneously at this point. This contrasts with the rigid 

channel where for a given aspect ratio, the higher y-modes of 

instability occur at increasing Rayleigh numbers. In the stress-free 

channel the mode m=0 is present for any a and corresponds to a two- 

dimensional motion parallel to the sidewalls of the channel. The 

higher y-dependent modes (m=l,2,..) are only present if the aspect 

ratio is greater than m/Jz . When the aspect ratio, a, equals m//z,the 

mth y-mode corresponds to a set of m rolls with axes parallel to the 

channel walls.

At the onset of thermal instability the solutions for the other

variables obtained from (2.1.24)~(2.1.28) are
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3^2 vkoK

t*J  — Sin'' t C»$
run 'f

■z. a

?TV7 t

and

CcS^t
<vvr y

2<x
22L?
2a

(2.5.12)

2.6 The 1 finite-roll1 approximation

As in the rigid channel of section 2.2 thermal convection in an 

infinite channel with stress-free upper and lower surfaces and no-slip 

sidewalls is considered. Davis (1967) defined 'finite-rolls’ as cells 

with two non-zero velocity components dependent on all three spatial 

variables. Davies-Jones (1970) showed that 'finite-rolls' are never 

exact solutions of the linearized equations (2.1.24)-(2.1.28), except 

when the rigid sidewalls are relaxed to infinity. However, the 

simplified structure allows fully analytical solutions to be obtained 

as in section 2.5. Thus in this section it is assumed that the 

velocity component in the y direction is zero ie. v=0. In addition the 

momentum equation in the y direction (2.1.26) is neglected. In order 

to obtain a completely analytical solution, only the case where the 

sidewalls are perfect conductors is considered.

The assumption that v=0 reduces the boundary conditions (2.2.4)

to the form

0 - Lx 6 - o J ■ 1 a (2.6.1)

and by eliminating the variables in equations (2.1.24,25,27,28) a 

single partial differential equation in G is obtained:

V L.UV^- 1 e o (2.6.2) 
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where , and the operators L,and Lxare defined in section 2.2 

above. This equation is sixth order in x and z and fourth order in y.

By using the same method of solution as for the rigid channel and 

defining Y = y + a, it can be shown that solutions of (2.6.2) 

satisfying the boundary conditions (2.6.1) are

>. (2 6 3) 

where a = 2a. Substituting the solution (2.6.3) into (2.6.2) leads to 

the characteristic equation

, (2.6.4)

where nir and mir/a are the vertical and horizontal wavenumbers in the 

z and y directions respectively and k=knm is the wavenumber in the x 

direction.

The critical Rayleigh number and wavenumber at the onset of 

instability for the mode (n,m) are determined by the condition 

(2.2.28) as

^n<v\c “it v Hx-nr) (2.6.6)

and

knc't “ PrurT (2.6.7)
where

Pnrvx - 4- R1')1' . (2.6.8)

This implies that the lowest mode of instability occurs when n=m=l and 

that the overall critical Rayleigh number and wavenumber for the 

'finite-roll' approximation are given by

V V6 , kc = f (2.6.9)

where v
pu - \

The results (2.6.9) have already been derived by Davies-Jones (1970).
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At the onset of thermal instability the solutions for the other

variables are

2-6k

S vn

and

07 e.
lUc,X

2-a

where

CcSVT?:

Ccstr-i S»n (2.6.10)
7ft

(2.6.11)

Figures 3 and 4 indicate that the 'finite-roll' solution is an 

extremely good approximation to the rigid solution when the aspect 

ratio is small. Indeed, the leading order terms in the expansions for RQ 

and kQ as a^*°  from (2.6.9) are

Re- 77 end - -4^' (2.6.12)

The result for RQ is identical with the leading term in the asymptotic 

solution for the rigid channel with conducting sidewalls given in 

section 2.4(1). The formula for the wavelength is not identical but 

the coefficient of a agrees to within 0.007 with the asymptotic 

result (2.4.22).

Figure 3 indicates that the 'finite-roll' solution for the 

critical Rayleigh number is a good approximation to the rigid channel 

over the whole range of the aspect ratio a. Figure 4 indicates that as 

the sidewalls are moved in from infinity, in the rigid channel, the 

cells widen at first in the x direction (a^2), before narrowing 

(0x<a42). This widening is not a feature of the 'finite-roll' 

calculations, so it must in some way be related to the advection 

across the channel.
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2.7 The 'edge-region' for rigid sidewalls

From the numerical results in section 2.2 (see figures 5 and 6) 

it is known that the profile of the vertical velocity component W(y) 

changes direction near the sidewalls (ie. a region of reverse flow 

exists) for sufficiently large aspect ratios. In the case of 

conducting sidewalls this occurs for aspect ratios a greater than 

approximately one, and in the case of insulating sidewalls for aspect 

ratios greater than approximately two. This change in direction near 

the sidewalls at large aspect ratios for both conducting and 

insulating sidewalls was not predicted by the asymptotic analysis 

considered in section 2.3, the reason being that the higher order 

terms that were neglected in that expansion (and are not needed in 

determining the critical Rayleigh number, the critical wavenumber and 

the solutions of the dependent variables 8 ,u,v,w and p away from the 

sidewalls) are important in obtaining the solutions of the dependent 

variables near the sidewalls.

In this section it is assumed that the aspect ratio a >> 1 and 

the results of Segel (1969), Newell & Whitehead (1969) and Brown & 

Stewartson (1977) are used to re-derive the results of section 2.3 and 

determine the solutions of the dependent variables in the 

neighbourhood of the sidewalls.

Assuming the aspect ratio a is large compared with one, the 

solution for the temperature 9 , except in the neighbourhood of the 

sidewalls may be expanded in the form (see Brown & Stewartson (1977))

(2.7.1)

where

d- y
(2.7.2)
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A is a slowly varying function of the co-ordinates X and Y given by

X . x/ a7- and (2.7.3)

It should be noted that D is the constant defined in (2.3.1). Similar 

expressions for the other dependent variables may be obtained from the 

linearized Boussinesq equations (2.1.24)~(2.1.28). The equation for 

the function A(X,Y) is determined by consideration of the second and 

third terms in the interior expansion for the temperature given by

(2.7.1) and the other dependent variables. Details of the calculation 

are given by Segel (1969), Newell & Whitehead (1969) and Brown & 

Stewartson (1977) and need not be repeated here. An inconsistency in 

the expansion at 0(e A) can only be avoided if A satisfies the equation

2-D;

4TT1
(2.7.4)

where, in the context of the present linear theory, it is assumed that 

A << £ so that the nonlinear term A|Af”can be neglected. This must be 

solved subject to the boundary conditions derived by Brown & 

Stewartson (1977),

Y 1 1.
V

(2.7.5)

Solutions are expressed in the form

AtXJ) = X(.y), (2.7.6)

where C is equivalent to the constant defined in (2.3.2). Then

or (2.7.7)

where

ioc-5 c j . l/j y

and 

Cosh (2.7.8)io-^ y
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and A and Ae denote 'odd' and 'even' solutions and i=1..4 are the 

unknowns constants fixed by the boundary conditions (2.7.5). Applying 

the boundary conditions (2.7.5) to the 'odd' solution for A shows that 

a non-trivial solution for A exists only if the equation

(2.7.9)

is satisfied. Similarly, a non-trivial solution for A only exists if

the equation

is (2.7.10)
1

(D-3L)1 Vcua U

is satisfied. It is noted that the condition (2.7.10) has been 

previously obtained in section 2.3. As the expansion for e given by

(2.7.1) is only valid in the core region (ie. away from the sidewalls) 

where Y'-'l, the solutions for £ and Ae will only be valid in the 

core, which in turn implies that the basic eigensolution for the 

temperature at large aspect ratios given by (2.3.16) is only valid in 

that region.

The solutions for the dependent variables in the core must match 

as Y->il with the solutions for the dependent variables in the 

neighbourhood of each sidewall where y± a— 1. In these edge-regions 

the linearized form of the Boussinesq equations can be considered and 

corrections to the critical Rayleigh number and wavenumber

2.7--n't and (2.7.11)- 0

can be ignored to leading order. The dependent variables take the

forms

e
Ka J

Ul

r
-------

V

V.
A 
p

>-

JJx- «-)
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in the edge-region where y = y*  a. Substituting (2.7.11) and (2.7.12)

into equations (2.2.8) and (2.2.9) gives

and

(2.7.14)

A

where = 3"n" /2. Hence the solutions for and V near the sidewall 

y=-a are

(2.7.15)

and 

where y = y + a. The unknown constants C£ i=0..5 are independent of y

and two solutions which grow exponentially with yt have been omitted. 

A similar set of solutions exists near the sidewall y=+a. At the 

boundary y = 0 the four boundary conditions in the case of conducting 

sidewalls are

av. (2.7.17)

In the case of insulating sidewalls the condition on the temperature
a 4 A
® becomes at yt = 0. Applying the conditions (2.7.17) to the

solutions (2.7.15,16) gives

(2.7.18)

(A similar set of four equations may be derived for the case of 

insulating sidewalls). Thus, there are four equations and six unknowns 

C£ i=0..5. The remaining two conditions are obtained by matching the 

solution for the temperature in the edge-region (2.7.15) as with 

the solution for the temperature in the core (2.7.1) as Y-^-l. This 

gives
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o and i___
(2.7.19)

The even mode for the solution in the core is chosen since the 

numerical results in section 2.2 show that the most unstable mode is 

the even mode (see figures 1 and 2). Hence, the solution for the 

vertical velocity component w in the edge-region near y=~a is given by

A t ~ —-

where

and the constants C£ i=0..4 can be determined from equations (2.7.18) 

and (2.7.19) in the case of conducting sidewalls. The horizontal
A

velocity component U(y, ) can now easily be obtained from the 

continuity equation (2.1.24).

In the core region the vertical velocity component w is given by

vJ <-*
3-^
' 2- ( A(x,y)e •V A*Cx,y)e (2.7.21)

where A is given by (2.7.6).

The solutions (2.7.15) and (2.7.20) for the temperature and 

vertical velocity component w in the edge-region near y=-a, show that 

for large aspect ratios and for both conducting and insulating 

sidewalls, not only does the profile of W(y) change direction near the
A

sidewall, but the profile of the temperature ® (y) also changes 

direction. This effect does not appear in the horizontal velocity 

component profiles. Numerical results obtained for the aspect ratio 

a = 5 (as outlined in section 2.2) verify this behaviour. Table 4 

shows a comparison between the temperature profile given by @(y) and
A

(y ) for the aspect ratio a = 5 near the sidewall at y=-a for both 

conducting and insulating sidewalls. Since @(y) is normalised to be 
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one at y = 0, 0(3 and in (2.7.8) are chosen so that Ae(0) = 1.

The corresponding comparison between the numerical and asymptotic 

results for the vertical velocity component is given in table 5. It 

can be seen that all four sets of results indicate a good agreement 

and the asymptotic theory provides an excellent prediction of the 

region of vertical flow reversal.

Aspect Ratio a = 5

Insulating SidewallsConducting Sidewalls

y ©
A

© ©
A

©

-5.000 0. 0. -O.537E-2 -0.720E-2
-4.875 -0.130E-2 -0.196E-2 -0.540E-2 -0.743E-2
-4.750 -0.482E-3 -0.198E-2 -0.388E-2 -0.650E-2
-4.625 0.341E-2 0.876E-3 0.454E-3 -0.302E-2
-4.500 0.170E-1 0.700E-2 0.808E-2 0.358E-2
-4.375 0.215E-1 0.166E-1 0.191E-1 0.136E-1

Table 4. A comparison of the numerical and asymptotic results for the 

y-dependent temperature profile in the edge-region. (E n denotes 10n)

Aspect Ratio a = 5

A A

Conducting Sidewalls Insulating sidewalls

y W W W W

-5.000 0. 0. 0. 0.
-4.875 -0.161E 0 -0.159E 0 -0.187E 0 -0.194E 0
-4.750 -O.2O7E 0 -0.216E 0 -0.241E 0 -0.262E 0
-4.625 -0.170E 0 -0.199E 0 -0.206E 0 -0.247E 0
-4.500 -0.662E-1 -0.118E 0 -0.101E 0 -0.165E 0
-4.375 0.968E-1 0.194E-1 0.638E-1 -0.235E-1

Table 5. A comparison of the numerical and asymptotic results for the

y-dependent vertical velocity profile in the edge-region.
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LOG 10

Figure 1. Rayleigh numbers at which the two lowest modes

are marginally stable as functions of wavenumber at different

aspect ratios for perfectly conducting sidewalls.
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LOG 10

Figure 2. Rayleigh numbers at which the two lowest modes 

are marginally stable as functions of wavenumber at different 

aspect ratios for perfectly insulating sidewalls.
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LOG10

Figure 3. Critical Rayleigh number versus aspect ratio a. 

curve a: conducting sidewalls rigid channel 

curve b: insulating sidewalls rigid channel 

curve c: 'finite-roll' approximation 

curve d: stress-free channel
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Figure 4. Critical wavenumber versus aspect ratio a.

curve a: conducting sidewalls rigid channel

curve b: insulating sidewalls rigid channel

curve c: 'finite-roll' approximation

curve d: indicates the value TT //”2~

50



Aspect ratio a = 0.2,5

Figure 5 continued on next page
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Aspect ratio a = 0.5

-.50-.40-.30-.20 “.10-.00 .10 .20 .30 .40 .50
y

Figure 5 continued on next page

52



Aspect ratio a = 1.0

Figure 5 continued on next page
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Aspect ratio a = 2.0

Figure 5. Profiles of the y-dependent functions ®(y),U(y),

V(y) and W(y) at the onset of convection for conducting 

sidewalls and aspect ratios a = 0.25,0.5,1.0 and 2.0.
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Aspect ratio a = 0.25

Figure 6 continued on next page
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Aspect ratio a = 0.5
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y

Figure 6 continued on next page
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Aspect ratio a = 1.0

Figure 6 continued on next page
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Aspect ratio a = 2.0

Figure 6. Profiles of the y-dependent functions ®(y),U(y),

V(y) and W(y) at the onset of convection for insulating 

sidewalls and aspect ratios a = 0.25,0.5,1.0 and 2.0.
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ax
is

Figure 8. Horizontal plan form of the cells at the onset of 

convection for the case of conducting sidewalls showing the 

isopleths of vertical velocity for the aspect ratio a = 2.

Aspect ratio a = 2.0
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Chapter 3. The infinite channel: nonlinear theory for simplified 

models

3.0 Introduction

Nonlinear theory for an infinite layer of fluid bounded by 

stress-free horizontal boundaries predicts that the amplitude of the 

motion undergoes a bifurcation as the Rayleigh number passes through 

the critical value for instability predicted by linear theory. Segel 

(1969) and Newell & Whitehead (1969) recognized that near the critical 

Rayleigh number for an unbounded fluid R=Rco , the solution may be
. . Vi

expanded in integral powers of a small parameter (R-Rqo ) and consists 

of convection cells of horizontal width comparable with the height of 

the layer, modulated in strength by an amplitude function A, varying 
s on the large horizontal length and time scales proportional to (R-Rco ) 

and (R-Rce ) respectively. The solution was developed by using the 

method of multiple scales, and the incorporation of the nonlinear 

terms leads to an amplitude equation for A. The correct form of this 

equation has been discussed recently by Siggia & Zippelius (1981).

In this chapter the solutions for the simplified models of 

chapter 2 are expanded in integral powers of the small parameters , 

defined by

R-Rq --e t  (3.0.1)

where Rois the appropriate critical Rayleigh number. The infinite 

channel with stress-free sidewalls is considered in section 3.1 and 

the 'finite-roll' approximation for the infinite channel is considered 

in section 3.2. As in the linear theory, the simplified boundary 

conditions enable analytical solutions to be obtained, thus avoiding 

the large amount of numerical work associated with the rigid channel.
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3.1 The infinite channel with stress-free sidewalls

Linear theory for the infinite stress-free channel (section 2.5) 

shows that at the critical Rayleigh number all y-modes such that 

appear simultaneously. If a only the two dimensional (m=0) mode 

discussed by Daniels (1977) is present. For higher values of a, 

further modes must be taken into account and here it is assumed that a 

is bounded such that

/T < a < -l Jt . i A -Taa ), (3.1.1)

when the first two modes corresponding to m=0 and m=l will be present.

Thus from (2.5.5) and (2.5.12) modified neutral solutions are

I B £ + B c J- -VA C ) 5<nKt

o

\ Be. 4 B ? j

v; «

ko

(3.1.2)

where

(3.1.3)

and * denotes complex conjugate. A(X,zt) and B(X,T) are the amplitude 

functions associated with the m=0 and m=l modes respectively. The slow 

spatial and time variables X and r are related to x and t by

X - tx , (3.1.4)

With these transformations the operators in x and t become

CAI (A (3.1.5)ijK1-
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By defining a unit vector 2, in the z direction and using the

identity

( u <V) u - y.4) + £ xu (3.1.6)

where the vorticityjj= vx. u , the dimensionless momentum equations

(2.1.17)—(2.1.19) can be more conveniently written as

— (.xx X u ) - + P V1 u 4 f R e A

where

?4o,O, 1), U= (u ,v ,uj ).

(3.1.7)

(3.1.8)

A single equation in w and© can be obtained by twice taking the curl 

of equation (3.1.7) and then its scalar product with.?-. The 

temperature dependence 0 can be eliminated by applying the operator Lz 

and using the heat equation (2.1.20), thus leaving a single equation 

for w, namely

(l.ue-pRvJw - u))) (3.1.8) 

(3.1.9)

(3.1.10)

to express

where the operators jLj . andvH are those defined in chapter 2. The 

boundary conditions on the upper and lower surfaces and on the 

sidewalls are

W- yr " TT '0 = j " Tj °

respectively. The equations (2.1.16)“(2.1.20) imply

vj  - ^-3 = ~ o 1 - c, \ , -= c y- g , a  .

Unlike the case of the rigid channel, here it is possible 

all the conditions on the sidewalls in terms of a single variable.

The dependent variables are expanded as power series in £:

f © vj u v . y ] - £ 11*1*  u, pt 1 + Ox uz ^5 ^3 F51 A * (3.1.11)
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where [G£,W£,U£,V£,p£] i=l,2,.. are functions of x,X,y,z andf. The 

leading terms corresponding to i=l are the modified neutral solutions 

of the most unstable modes.

Using the transformations (3.0.1) and (3.1.4,5,11) equation

(3.1.8) becomes

( L, -Y € ‘Ctj A: • ’ )( U)t'V A W 5-X- - * )

I. 1 v. v £ Nx * £^5 V • ■ ] - " P. CPj< • • J

(3.1.19)

(3.1.12) 

"—J I ux‘? ex * ux-Hh o Ux )1
ok'

x ((jl u,)-t (jux  Ox)) t 0(c)) 1

where

L, = [IaLx V1-- 5

and

The

and

The

t; 1 L>^" PUV'-L,^- P^ J

C? = [ LU-Ur-Pl^H

conditions (3.1.10) become

V
04» -*  •+ * - 1 ~ o

— t vJi -v £Wx a - Ex v J-5 + • • 3=0

Boussinesq equations

-L ~ O,l

Y*  o,ft

(2.1.16)—(2.1.20) become

(3.1.14)

(3.1.15)

PI R. V 3 .

o , z ,

u. £ Ux -*<rxu5 + • - 1-0 (3.1.16)

V EUx -A 4 • • ] - I 5-ir
tx 51 dx  31 p + •« • • 3 (3.1.17)

(3.1.18)
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and

where

(3.1.20)L-v V 61 ■+ € -t * • 1 - t -v 8tA?i_ a  -+ - •

and (3.1.21)

The procedure by which the dependent variables are found is as 

follows: having obtained the vertical velocity component w from 

equation (3.1.12), subject to the boundary conditions (3.1.15), the 

temperature C can be found from the heat equation (3.1.20). This 

enables the pressure p to be determined from equation (3.1.19), which 

in turn enables the horizontal velocity components u and v to be 

obtained from (3.1.17) and (3.1.18) respectively. Once all three 

velocity components have been obtained a consistency check is provided 

by the continuity equation (3.1.16). Possible contributions to the 

pressure and horizontal velocity components independent of z require 

consideration of the coupled system (3.1.16-18) (see below).

Equating ascending powers of £ in equations (3.1.12-20) gives:

(1) Expansion at 0(£°)

The linear balance

Lt c o (3.1.22)

with the conditions 

(3.1.23)

yields the neutral solution set (3.1.2) above.

(2) Expans ion at 0(g )

At orders?, equation (3.1.12) becomes

(3.1.24)
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where Jji.-yxu, and the boundary conditions from (3.1.15) are

y. o,«• (3.1.25)

Expanding the right hand side of (3.1.24) gives

fr- - u - Lvh‘X I r — -11—_ _.r __ dk+k.jH
L w,. = -Coil-v t t<X,P+<Ai B'S ■+ c-c] + I °4P -*o<  JfBB He*  ■*- ABe +cclus _' A

Lcs Tl X
Ct (3.1.26)

where the coefficients i=1..8 are given by (Bl) in appendix B and

2? «, (3.1.27)

is zero, since the expansion is centred about the critical Rayleigh 

number RQ. Therefore, no forcing functions appear on the right hand 

side of (3.1.26) which are eigensolutions of the basic linear operator 

Lt with the conditions (3.1.25). Thus

+ [cdik' * c c)l&$TT 1

where i=l..8 are given by (B2) in appendix B, and C and D

(3.1.28)

are

arbitrary amplitude functions associated with the modes m=0 and m=l

respectively, which could be omitted for the purpose of finding the

amplitude equations for A and B.

Having obtained wa, the temperature may be obtained from the

heat equation (3.1.20), which at order e is

<a Ji -- (3.1.29)

— - - o 7. ~ O,« on<A

S,n Z-fTt

The conditions on are

Thus
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where Tc is a possible complementary solution which must satisfy

VxTc=o Tc - c £=o,i , M”'0 (3.1.31)

and the coefficients dv i=1..12 are given by (B3) in appendix B. The 

only relevant solution for Tc satisfying the conditions (3.1.31) is 

the trivial solution

Vo-o. (3.1.32)

The solution for the pressure jd is obtained from the wx momentum

equation (3.1.19) which at order t, is

t - (-2f + “t-y ) • (3.1.33)

The velocity components and ux can then be obtained using the

horizontal momentum equations (3.1.18) and (3.1.17) which at order E

are

and

(3.1.34)

(3.1.35)Lt u*

The solutions for y^and u^must satisfy the conditions

23? .
'it Tt ~ ° and xy -c Y-o,a. (3.1.36)

Having obtained all three velocity components a consistency check is 

provided by the continuity equation (3.1.18) which at order £ is

347' TT * 'fc'j 377
(3.1.37)
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Equation (3.1.33) gives

fe eU^\c cl + io<»t + ^uPll&B*]  +^Plf A Be -tccl(o$^p

+ V*xc+tfnP]t  c.cl Us “ef" 11 Ccszw-B

■+ { Ax c ] + o(wp[§x eV^?c.c 1goj 51X + c<TgP[ ( Ct’U\t.c )-f(p e^c-c)^ 1 Cosivt

u-

“ FU.y.x.x) (3.1.38)

where the coefficients <X; i=14..28 are given by (B4) in appendix B 

and F is an arbitrary function of x,y,X andx.

Expansion of the right hand sides of (3.1.34) and (3.1.35) gives

(3.1.40)

where and satisfy

P Vi Vx = - Nv *

and x „
P V h Ur

(3.1.41)

where Nv and Nu are the z~independent parts of the right hand sides of 

(3.1.34) and (3.1.35), given by (B5) and (B6) in appendix B. In 

addition, Vxand Uxsatisfy the two-dimensional continuity equation

lu (3.1.42)

The coefficients <XV i=29..46 are given by (B8) and (B9) in appendix 

B. As in the case of the temperature , no additional complementary 

solutions are generated in v^ and ux.

In order to complete the solutions for the horizontal velocity 
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components it is necessary to obtain the arbitrary function F, so that 

\ and Ux may be determined. Applying the operator to equation 

(3.1.42) gives

** (3.1.43)

Thus, from (3.1.41) it is clear that the condition needed for this 

equation to be satisfied is that the arbitrary function F satisfies

= +w(3-1-44)
A particular solution Fp for F can be found such that

and i,FP= Mu (3.1.45)

(see (B7) in appendix B) which implies 

(3.1.46)

where Fc is the complementary solution for F. The conditions on Vz and 

U^are

Vi = 2^- = ° Y (3.1.47)

which from (3.1.42) are equivalent to

-- ~ (3.1.48)

Eliminating U^in (3.1.43,46) gives the single fourth order partial 

differential equation

7*̂=0  (3.1.49)

and the only relevant solution satisfying the conditions (3.1.48) is 

the trivial solution

Vz - o - (3.1.50)

This implies

Uftd - p X ( P n?at) (3.1.51)

such that A
" P CMld ~ o y- o,o. -

(3.1.52)

It should be noted that a term of the form px in the pressure at the 

present order, is equivalent to a term of the formpX in the pressure 

at the previous order. The overall mass flux down the channel at this
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level of approximation is given by

7-c i-o

From (3.1.40)this is zero if

a
f U2 dy - o .

1=o

This condition together with (3.1.52) implies
*
Ux=-O o-nd p - O

which gives

(3.1.53)

(3.1.54)

(3.1.55)

U<-o. (3.1.56)

Having obtained the solutions for all three velocity components u15v^ 

and w,, , they can be shown to be consistent by substitution into the 

continuity equation (3.1.37), which is found to be satisfied.

In later chapters the stress-free channel will be assumed to have 

rigid endwalls in which case the mass flux (3.1.53) must be zero. 

However, it should be noted that if the flux condition is relaxed a 

solution is possible in which

A.

Uo and p-xo (3.1.57) 

where UQ is a constant. A solution of this type which corresponds to 

the stress-free analogue of a Poiseuille-type flow down the channel is 

not of interest in the present study.

The solutions for all the dependent variables at this order have 

thus been obtained and are re-stated in full in appendix B.
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(3) Expans ion at 0(g7')

At the order equation (3.1.12) becomes

— — r
C, ~ -Lj wi - w, - hoi1 ( u>.y) o, + ( ut. y 4. u^. y et + U1 —) 1

+ Yx? X ( X U, J1(X Ui)) + + ill) )

(3.1.58)

where
•£T»u - Vu x Ui 5 = ( -?x ’ O ’ O ) v

The boundary conditions from (3.1.15) are

(3.1.59)

It is known from Daniels (1977) that in the related two-dimensional 

problem a nonlinear equation for the amplitude function arises at this 

stage of the expansion due to the appearance of a forcing function 

which is an eigensolution of the basic linear operator. Thus, 

expanding (3.1.58) assuming

H,c (x 7t ) - V ^4-3 * 1 A\, + Xs&FA v c^5i P A |A\2 + v *^53 P ♦ ] Xhijl y

v Va  A .• — __ -k
* t’ W3ij/i5 X, v)+ C.C + •'• (3.1.60)

gives

Pt -h2)]ui5x + X (3.1.61)

and

V> )] = dl5 (x ,t ) Sx^vn. (*>$ “=?■ -*■  •/-<k (3.1.62)

where

(x,i) - + ^«pj St 4 Bxx •*  ^5^ P BlBl2- -v I ktc •+ kc» p + ku/f 1 B | A C

+ s -v »<tAP + oQy/P] Ble>C ,

~ z T /-
”X ~ Hnrri lX,\) S.Arvnt Cxs —=^~ y

nti tx

$ (.1,0)

\ (vrrvY
~X- “ /— Sxt^AVV?: Cg $ ~

a’»

j: U »*}

(3.1.63)
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and i=47..65 are complicated real coefficients that are known. The 

unknown functions Nn m and Nn m do not need to be determined 

explicitly (see below). It should be noted that other terms with x

dependencies of the form 1,^
idikv+kjx

ande also exist in w3 .

obtaining the amplitude equations. 

(3.1.60) gives

+ ivk,x +5«.h,xe' ? e 5 e } e

However, these play no part in

Applying the conditions (3.1.59) to

n

= O nxc,l,4 1:0,1 y =o ,a . (3.1.64)

The solvability conditions for equations (3.1.61,62) are

P-J 1 ~kc) 1 w3 S«nul <AYcU
Y~*--«>  3 _ ~ (3.1.65)

-f J S«AlVn2 + X Is'in'KidYdl. = )

>=c i=c
and

(3.1.66)

P f* I t(K )1 ^3 cos AYdl
Y=c 2-0 3 _

"Vi X1-I v) 5*nxi  Cos £ v Xjs*o\Vicc5  —AYcklz
y-c 1-° 4

Expanding (3.1.65,66) using (3.1.64) and repeated integration by parts 

gives
A. 4

? f f ) ikche J ch <11 - i ix$T )

Y=c 2xc

and (3.1.67)

Thus, the solvability conditions (3.1.65) and (3.1.66) are

(3.1.68)

Using the transformations

-K _ A
' ^TT7- ’ _3TT^

where
£ - d ,

(3.1.69)

the conditions (3.1.68) imply that the scaled amplitude functions A

and B, satisfy the equations
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The amplitude coefficients i=1..6, which are functions of the

V .+ -i
id1 \. <A J s

-3-tt 4 r
P 5 - □. <Xx I

iLj]
J J •

<l>- (.1+0)

+ (u o - 1/4-cd)

(v-D) (\ + t>) - Mv-pA ,¥ L
^^<>3 J ,

(3.1.72)

where D, and yt i=1..4 are given by (Bia) and (B2a) in appendix B.

Figures 11 and 12 show profiles of the amplitude coefficients 

i=1..6 as the aspect ratio is varied from a=f2 to a= 5-JT

As expected, if the amplitude function B is assumed to be zero, 

the equations (3.1.70,71) reduce to the single equation

-At  * Axx  + A- AlAl" (3.1.73)

equivalent to that used by Daniels (1977).

In the limit

a -+■ co and P-*°° (3.1.74)

the results agree with those obtained by Newell & Whitehead (1969).

The amplitude coefficients (3.1.72) are

= , p5 = pt-° (3.1.75)

and the modified neutral solution for the velocity component w, is 



where, from (3.1.70,71), the amplitude functions A and B satisfy the 

equations

(3.1.77) 

and

"Et ■**  Bxx 4 B = ~BIb C + ib I Al1. (3.1.78)
4-

In the Newell & Whitehead (1969) analysis the equivalent vertical 

velocity can be expressed as

[A(x,v)e + c(x,x)e + tVx.xR + c-cJ s.nvz (3.1.79)

A 
where in the limit (3.1.74), the arbitrary amplitude functions A,C and 
a
E satisfy the equations

At 't Axx  + A- A|Ar -rXA|cl A 2A|c.r,

* A A A , A ,-1 Aii-> A , ,
-Ct *C Xxt C C|C| -»2C|A|l .. zclEI1,

and
A A A A A

-Ex* Wt = ElM -v

Considering the case

C(x ,t ) <xn4 XC(Xj) B(Xj)

gives

vJj = 2A2 d V A(x./t)e + Ccs -2T- + C C J Stnrri - oJk f

(3.1.80)

(3.1.81)

(3.1.82)

(3.1.83)

(3.1.84)

while the three equations (3.1.80,81,82) reduce identically to the 

equations (3.1.77,78).
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3.2 The * finite-roll1 approximation

At the onset of thermal instability in the stress-free channel 

the number of y-dependent modes that appear is determined by the 

aspect ratio and is always equal to or greater than one. However, in 

the 'finite-roll' approximation only one y-mode appears, whatever the 

aspect ratio, thereby providing a better model of the situation likely 

to be relevant in a real channel with rigid sidewalls. From (2.6.3) 

and (2.6.10) the modified neutral solutions are

0, =
T*/------ -- 1
A I X,V / S-OTFi A

( A • | _
uj, - 07 \ At -+ A e ) s.mrt

a

U-, = k,
— yA e J cosvri

<A

V, - O

and
- P — Tr'y

cv (3.2.1)

where

(3.2.2)

and * denotes complex conjugate. A and k, are the amplitude function 

and wavenumber associated with the most unstable mode. The slow 

spatial and time variables X and t  are related to x and t as given by 

(3.1.4).

Since the 'finite-roll' approximation assumes that the velocity 

component in the y direction, v, is zero and that the y momentum 

equation is neglected, the following simplified form of the single 

differential equation for w derived in the previous section is 

obtained:

(3.2.3)
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-x . .
where the operators L, ,LxandV, are those defined in chapter 2. This 

equation is sixth order order in x and z and fourth order in y. The 

boundary conditions on the upper and lower surfaces and on the rigid 

sidewalls are

_ tv
0 - W = ° £-0p ftnA 0= z V.-Q y~o,a (3.2.4)

respectively, which from equations (2.1.16,17,19,20) infer that

— a cm A VJ — - O Y- O, a . (3.2.5)

As in the previous section, by expanding the dependent variables 

as a power series in e given by (3.1.11) and using the 

transformations (3.0.1) and (3.1.4,5), equation (3.2.3) becomes

Lt + s C*!  u)s + c -t -V • • )

(3.2.6)

where

-r 0^) ] ,

and

Lv = U( L,,U, Vt\ U = bi(tHL2/ Vz, Vh ) t = qz,3. (3.2.7)

~ _ r + c A- ’ ° ‘ y-z, 1

vukert

The conditions (3.2.5) become

and

n-- 0,2,^ i -oti

OA + £^ - J -6
*■ J

n.O,Z Y-O,cl .
(3.2.8)

The Boussinesq equations (2.1.16,17,19,20) are now given by the 

equations (3.1.16,17,19,20) in the previous section.
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As the horizontal velocity component v is assumed to be zero, the 

procedure by which the dependent variables are determined is simpler 

than in the case of the stress-free channel. Once the vertical 

velocity component w has been determined from (3.2.6) subject to the 

conditions (3.2.8), the temperature G1 is found from the heat equation 

(3.1.20) and the horizontal velocity component u is obtained from the 

continuity equation (3.1.16).

Equating ascending powers of £ gives:

(1) Expans ion at O(£c )

The linear balance

Lt VJ; - O , 

with the conditions

'£*0,1

(3.2.9)

(3.2.10)

yields the neutral solution set (3.2.1) above.

(2) Expans ion at 0(£ )

At order € , equation (3.2.6) becomes

Ll Wr - - Li '-’•J; (3.2.11)

and the boundary conditions from (3.2.8) are

- --—. - O (3.2.12)/= O a .

Expanding the right hand side of (3.2.11) gives

L, uJ-x - - t2

(3.2.14)

The right hand side of (3.2.14) is zero since the expansion is centred 

about the critical Rayleigh number RQ. Thus

80



<7 (. C(x,t)e
iktx

■+
_*  Tt-y
C C HkGTTi ' - (3.2.15)

where C is an arbitrary amplitude function which could be taken as 

zero for the purpose of finding the amplitude equation for A. 

Expanding the heat equation (3.1.24) gives

which implies

5 A2rvty-<\)]+ Cc,snrtvcs

where

(3.2.18)

is the complementary solution of (3.2.16) chosen such that e*.  vanishes 

on the rigid boundaries at Y = 0,a. It should be noted that the 

corresponding complementary solution for 6?. in the case of the stress- 

free channel was shown to be zero. Since G is independent of x, it 

does not affect the solution for u^, which from the continuity 

equation (3.1.37) is

ua= ■ (3.2.19)

As v-. is assumed to be zero, all the dependent variables that are 

needed at the next stage of the expansion have thus been determined.

(3) Expansion at 0(£x )

At order the equation (3.2.6) becomes

- piu  kux.y,)e,-r (-Yde,
(3.2.20)

where VL is defined by (3.1.58). The boundary conditions from (3.2.8) 

are
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u5 - (3.2.21)

Following the procedure outlined in the previous section for the 

stress-free channel, expanding equation (3.2.20) assuming

i , *T ) + c • c V (3.2.22)

gives

(3.2.23)

where

bi, ( X, u) - cr; 1 -(i + p)<j; V kf + Vt + icr?) k* + Ph? 3

Nt lx ,1) = - P fU rAh? / t 4 ) (jLshrTTA ]

and
y

£.2— U;t)S''OnTV£Swv - ^'5(X,i)siA 5 KiS tnu7 vcsK 2rr Vr-cO ,

f\ii n = t 0,

(,n,n)f lUO
(3.2.24)

and the unknown functions N- and N?do not need to be determined 

explicitly. It should be noted that other terms with x dependencies of 
t jAh x

the form 1 and e' also exist in w3. However, these play no part in 

obtaining the amplitude equation.

The solvability condition for equation (3.2.23) demands

ti.txyv) + = o
where

(3.2.25)

pt ~ pt 7TT<A f pt - TV CA I ZTT ( I + O?) . (3.2.26)

Using the transformations 

X = ttn4 u- (j+p)r/^pf^ (3.2.27)

where
- aUt4a2)7 I -pj , £3 = tpu rn^)/Up„ 
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TrZ ) | t ( +‘5Tr1 ) 3 (3.2.28)

and and cr; are given by (3.2.2), the condition (3.2.25) implies 

that the scaled amplitude function satisfies the equation

— A-p + Axy-»- A=A|mx . (3.2.29)

Figure 14 shows plots of px , and as the aspect ratio is varied.
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Figure 11. The amplitude coefficients $^(i) i=l,2,3

for the stress-free infinite channel.

84



Figure 12. The amplitude coefficients PXi) i~4>5»6 

for the stress-free infinite channel.
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Figure 14. The coefficients £(i) i=2,3,4 for the

'finite-roll' approximation.
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Chapter 4 The infinite channel: nonlinear theory for rigid sidewalls

4.0 Introduction

In the previous chapter the solutions for the simplified models 

in the neighbourhood of the critical Rayleigh number RQ, are expanded
'/z

in integral powers of a small parameter (R-R ) . In the case of the

stress-free channel it is assumed that the sidewalls are stress-free 

and perfect insulators. For the 'finite-roll' approximation the 

horizontal velocity component v, is assumed to be zero in addition to 

the y momentum equation being neglected. These conditions which enable 

the y-dependence in the dependent variables to be obtained 

analytically are unfortunately difficult to achieve experimentally. 

Thus, it is clearly desirable to extend the 'weakly' nonlinear theory 

discussed in the previous chapter for the simple models to include the 

more realistic model with rigid sidewalls and no assumptions on the 

behaviour of the horizontal velocity component v. This task is 

undertaken below.

4.1 Formulation of the nonlinear expansion

As in the case of the simple models the solution for the rigid 

channel near the critical Rayleigh number RQ, is expanded in integral 

powers of the small parameter •£ , defined by

(4.1.1)

From section 2.2 the modified neutral solutions are
. ■> / — . —   L K c . _   — v I c X \

■+• A ( X,t ) C J smni

vJj - W\y)( A(X,vkv -4 A (x,T ) s.nui

V,- A(a  r A*(  ) cesm

I , , . j T j — _ I I k, - > / - - 1 - uk K x

and “ 
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where * denotes complex conjugate. A is the amplitude function and kQ 

is the critical wavenumber associated with the critical Rayleigh 

number RQ, for a given value of the aspect ratio a. The slow spatial 

and time variables X and t  are related to x and t as given by

(3.1.4).  The y-dependent functions in the neutral solution set are

5

f

Pta) = £

where

(4.1.3)

theand r- i=1..3 areJ
(2.2.12). As shown in

ft = I rj5“Zi*2'rj> * V17

roots of the bi-cubic characteristic equation

section 2.2 the arbitrary constants dj j=1..4

are fixed by the boundary conditions on the rigid sidewalls which are

c<\ kc * r'2 r- b2,s,

(4.1.4)

From the heat equation (2.1.20) and the continuity equation (2.1.16) 

these are equivalent to

(4.1.5)

It is noted that in contrast to the simple models the boundary 

conditions at the sidewalls cannot all be expressed in term of a 

single variable. Unlike the linear theory where the rigid sidewalls 

were either perfect conductors or perfect insulators, here only the 

case where the sidewalls are perfect conductors is considered. The 

conditions on the stress-free upper and lower boundaries are given by

(2.2.1).
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<x

As in section 3.1 by expanding the dependent variables as a power 

series in £ given by (3.1.11) and using the transformations (4.1.1) 

and ( 3.1.4,5) the Boussinesq equations (2.1.16)~(2.1.20) become the 

equations (3.1.16)—(3.1.20). The conditions (4.1.5) and (2.2.1) become 

t -» * • 3 = ^7 ■*  [ V. + EVi-^Vy-r-- J s I V, +-S.V1 ‘ -'] = O y = +

and (4.1.6)
<> >

f. G,+ + wi-t V_xv^i^ • • ] - bt t u» £’■‘*-5  + • * ] - 3- Z

The procedure by which the dependent variables are obtained is as 

follows: by eliminating the variables in equations (3.1.16)~(3.1.20) a 

sixth order equation for the temperature 9 may be obtained. However, 

since not all the conditions on the sidewalls are in terms of 9 , a 

second order equation relating and 9 is also required. This 

enables G and v to be determined subject to the conditions (4.1.6). 

Having obtained 9 and v the vertical velocity component w may be found 

from the heat equation (3.1.20). This enables the pressure p, to be 

determined from equation (3.1.19), which in turn allows the horizontal 

velocity component u to be obtained from (3.1.17). Once all three 

velocity components have been obtained a consistency check is provided 

by the continuity equation (3.1.16). Any z~independent parts of the 

solutions for u,v and p have to be determined seperately.

Ascending powers of £ in the equations (3.1.16—20) and (4.1.6) 

are now considered.

4.2 Expans ion at 0(£°)

At order E°, the Boussinesq equations (3.1.16~20) reduce to the 

linearized equations (2.1.24~28), which with the conditions

-0,1..

(4.2.1)

yield the neutral solution set (4.1.2). The y-dependent functions ®

89



and V in the temperature and horizontal velocity component v, 

satisfy equations which it is more convenient to express in the 

generalised form

(4.2.2a)

where, here

M = N = 0.

The boundary conditions are

(4.4.2b)

(4.4.2c)

(4.2.3)

where tr denotes transpose and the superscript (i) denotes the

equations (4.2.2a) and the conditions (4.2.2c) can be more

conveniently expressed in matrix notation as

(4.2.4)and J

where

n? f ( GqV) - 0 r i n

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

EU,c) = 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

c
-2*  

c 0 I
c 0 0 0
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and

(4.2.5)
= L 0,0, O, M, 0, 0, 0, Nltr,

Here Q=0 and solutions of the system (4.2.5) are given by (4.1.3) above

4.3 Expansion at 0(E)

At order e , the Boussinesq equations (3.1.16-20) become

-------- -v (4.3.1)
' 5 X

L, 5*  5a  k  ~ 1
(4.3.2)

Lt Vl + ■**•*)*• (4.3.3)

t( ^7 4 (4.3.4)

and

Czei-^x- -k-2 (4.3.5)

where the operators L, and L^are those defined in section 2.1. The

boundary conditions from (4.1.6) are

Cz - ~ ~ ~ + zx o.n<l Gj. - vm-j =■ o (4.3.6)

In sub-section 4.3(1) the basic forms of the dependent variables are

‘ 'ST ' c ^S°J.

constructed; the numerical determination 

functions of y that occur in the solutions is 

of the various unknown

described in sub-section

4.3(2) below.

4.3(1) The basic forms of the dependent variables

As in the linear theory, by eliminating the variables in

equations (4.3.1)-(4.3.5) a single sixth order differential equation 

for the temperature is obtained, namely
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[vW- = _ A—J.3V-Ro)el 4- v\u,.v'|6t --V^u.-v)^ 
z Sxex P ' “'

+ y x'-^(-'-->‘l, + ^l-'--)v‘l- (4.3.7)

It should be noted that the terms are not relevant and haveCT

been omitted. Expanding the right hand side of (4.3.7) gives

which implies

Oz “ + p +-cc)5irtZW2, 4’p’Q3l‘f)(2AA )$kAw2. + De (4.3.9)

where

(4.3.10)

[ ( - P( *»Vp-  (^“AlCkjVf) ■+^rr^.c<s4'l)- (4.3.11)

(4.3.12)

and i=1..5,7,9 are functions of @,W,V and U, given by (C5) 

in appendix C. 6c is a possible complementary solution of (4.3.8) 

which for the purpose of finding the amplitude equation for A can be 

taken to be zero.

From the heat equation (4.3.5) the vertical velocity component wz 

has the form

uJ-l.- I cd JlfTK?- + Wi^)Ut -t c-clswAlTV-Z + VljVjlLzAA

where

H -U^G> + ,

( «A1> -p (iy ’''“'J ®> ),

and

U3=

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)

The form of the solution for the pressure p^ is obtained from the w^ 

momentum equation (4.3.4). The form of the horizontal velocity



components v^ and u^can then be obtained using the horizontal 

momentum equations (4.3.3) and (4.3.2). Having constructed all three 

velocity components a consistency check is provided by the continuity 

equation (4.3.1).

Equation (4.3.4) gives

I A7 eV^_ c cjCt5-Z •+ e^^c-c Jc-usztri -v F^bjHlAA*)  CosznTr

(4.3.18)

where

P4 = ~ TT t 2 -V ) W( + Ro ®t , (4.3.19)

Bl  - " Tn- -+ P( ajv- + ta @7. ] , (4.3.20)

p5- -T^-t '*  p-^'Hs t RoQj] (4.3.21)

and F is an arbitrary function of x,y,X and r .

where

-iltap,

and v, and u„ satisfy

PV^ = + o^lllAA*)

(4.3.24)

(4.3.25)

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)
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and

(4.3.30)

where <4, up i=6,8,10 are given by (C5) in appendix C. In addition v2 

and ux satisfy the two-dimensional continuity equation

Ux ')-2
(4.3.31)

In order to complete the basic forms of the horizontal velocity 

components it is necessary to determine v. and u2. The right hand 

sides of equations (4.3.29,30) suggest 

v, -- t W<.aVXk+c .c )

and

F- Fpj)(.Aex + c>c) + Fzp)t^AA ) ■+ FolXjT ') 4

(4.3.32)

(4.3.33)

(4.3.34)

The boundary conditions on v. and u7 are

z G - ± a (4.3.35)

which from (4.3.31) are equivalent to

(4.3.36)

Substituting the forms (4.3.32,33,34) into the equations (4.3.29) and

(4.3.30) gives

Ldy4 bo It kc 1 - -zha £ “X? i^) ~ )1 (4.3.37)

where V4 satisfies the conditions

V4X 3 (4.3.38)

Also

^4 " 2_k<j ^4 , (4.3.39)



(4.3.40)

(4.3.41)

(4.3.42)

where U3 satisfies the conditions

U-3 - ° j - icx' (4.3.43)

The overall mass flux down the channel at this level of approximation

is given by

(4.3.44)

From (4.3.23) this is zero only if

= o . (4.3.45)

This condition together with (4.3.42) and (4.3.43) imply

U? x,t) o- (4.3.46)

The numerical solution for is considered in sub-section 4.3(2) below.

The basic forms of the solutions for all the dependent variables
3-

have thus been obtained. By applying the Laplacian operator v to the 

continuity equation (4.3.1) a consistency check for the z~dependent 

terms in the three velocity components , v2and is obtained, and 

is found to be satisfied.

In later chapters the channel will be considered to have rigid 

endwalls in which case the mass flux (4.3.44) must be zero. However,

it should be noted that if the flux condition is relaxed a solution in

which

U5 = f c)2P (4.3.47)

associated with a term of the form px in the pressure at the previous 

order is possible. Solutions of this type which correspond to a 
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Poiseuille-type flow down the channel are not of interest in the 

present study.

4.3(2) Determination of y~dependent functions in the basic forms 

(a)®. ,V,

From equations (4.3.10,24,19,15) the y-dependent functions

and V, satisfy the equations

which must be solved subject to the conditions

(4.3.48a)

(4.3.48b)

(4.3.48c)

It should be noted that the system (4.3.48) is a non-homogenous form 

of the basic linear system (4.2.2). A necessary condition for (4.3.48) 

to have a solution is described later. However, differentiation of the

basic linear equations (2.2.8,9) with respect to k gives

(4.3.49a)

(4.3.49b)

having set n=l, k=kQ and used the fact that ^'° at k=kQ. The

boundary conditions (2.2.4) imply

(4.3.49c)

Comparing the systems (4.3.48) and (4.3.49) implies that one solution

for G, and V, is 

and xi I (4.3.50)
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Therefore a solution for and V, exists although it is not unique 

since an arbitrary constant multiple of the basic linear solution for 

© and V, may be added to and Vt respectively. It is known from 

section 2.2 that @ is normalised such that

© = ' at y=o. (4.3.51)

Thus, the solution (4.3.50) for has the property

- a cit y - o . (4.3.52)

Unfortunately^— and are difficult to obtain analytically. 

Alternative analytical and numerical methods for determining @t and 

V, are discussed below. However, it should be noted that the condition 

(4.3.52) is used as the criterion for obtaining a unique solution for 

and V, .

An analytical method for determining and V( is as follows:

solving (4.3.48a) gives

= -k*  L. i -d sinkrjy ■£ 7 CcsVvr
JXI q J j* 1 J J (4.3.53)

Substituting into (4.3.48b) gives

t = '2k“v ■ of- )s,nwj;j

(4.3.54)

which implies

a , | . t ____ TV rJ pjS.nhrjj + $-.nV> <X«j

(4.3.55)

where
4j * (5r/ 0<4-Ro

(4.3.56) 
• • .

dj,pj j=1..3, d^are given by (4.1.3) and the arbitrary constants dj 

j=1..4 are determined from the boundary conditions (4.3.48c).

Applying the conditions (4.3.48c) to (4.3.53,54) gives four non- 
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homogenous equations in four unknowns which can be expressed in matrix

notation as

Av- |
[All 4., al, d?5 A«t3 = V SA«), (4.3.57a)

where A is the 4x4 matrix given by (2.2.22) and S^(a) i=1..4 are 

given by (C6) in appendix C. As the expansion is centred about the 

critical Rayleigh number RQ and wavenumber kQ, for a given aspect 

ratio a, from section 2.2 the determinant of the matrix A is zero.
r**

Assuming d^(say) to be a known arbitrary constant, a non-homogenous 

system of three equations in the three unknowns dj j=1..3 is obtained 

which can be solved using Cramer's rule. The existence of the 

solutions (4.3.50) is equivalent to the fact that the fourth equation 

is automatically satisfied. Since the value of the constant d^is
A A

arbitrary, the solutions for and Vt are not unique. However, 

applying the additional condition (4.3.52) gives

(o) (J) cxnA V, = V, - ®, (o) V . (4.3.57)

A solution of the system (4.3.48) may also be obtained 

numerically in which case, it is more convenient to express the 

equations (4.3.48a,48b) and the conditions (4.3.48c) in the matrix 

notation

t
l

Tljf I,®, ,<) = , rt.) , (4.3.58)

rn£ , V4) = 0 y - ± a
where

I a
K. -- and <W] .

Following the procedure outlined by Eagles (1980) and given in 

appendix D, it can be shown that the condition needed for the 

existence of a solution of (4.3.58) is
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where (4.3.59)

A A . .

and f4 & are solutions obtained from the matrix system

I dj + t (k0 ,-n)] £ - 0

with boundary conditions
A *

m f = 0

(4.3.60)

where

and

The matrix system (4.3.60) is the adjoint system corresponding to

(4.3.58), the solutions of which are also needed to obtain the

amplitude equation for A at the next stage of the expansion.

Expanding (4.3.60) gives eight equations in eight unknowns, namely

ft*  r+, - —te ; n - -k k  ,
A ( A a  A / '? A~ “ 5C< I4 4 x ~ F? ~ rrif , (4.3.61a,b,c,d)

f 5 = ~ Ko) (4 , K- A (4.3.61e,f,g,h)

where
kJ Ro

and prime denotes — . The boundary conditions are

A A A A
£ - k = fj = 14 - 0 ij - ± A . (4.3.62)

Eliminating the variables in (4.3.61a~f) gives the sixth order 

differential equation

(4.3.63)

where the operator l^is given by (2.2.10) with n=l. Equations



(4.3.61g,h) give

(4.3.64)

which implies
A _

A

Substituting for f& in (4.3.63) gives

(4.3.65)

(4.3.66)

where ej j=1..8 are arbitrary constants and rj j=1..6 are the roots of 

the bi-cubic characteristic equation (2.2.12) which have been shown to

be distinct in section 2.2, since the critical Rayleigh number for the

infinite channel with rigid sidewalls is always greater than 
. . 4- ....

critical value 27tt /4 for a layer of infinite width.

the

As in the linear theory, since the characteristic equation is bi-

cubic the general solution (4.3.66) can be written as

A

•Fy
AC AO

= is h (4.3.67)

where

- X. cosurjvj +

Accordingly

« f'-E

(4.3.68)

(4.3.69)

From the evenness of the operator L7, the form of the solution 

(4.3.65), the linearity of equations (4.3.61a~d,f) and the form of the 

conditions (4.3.62) which have to be satisfied at y = la, it follows 

that the general solution of equation (4.3.69) falls into two non-

combining groups of even and odd solutions. This enables the problem 

to be divided into 'even' and 'odd' cases. Unfortunately, the boundary
A

conditions (4.3.62) are in terms of the variables f; i=1..4, which can 

be obtained from (4.3.61a~d,f) as
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(4.3.70)
r c° CC • A A0
' L = + I = A j 1 , * an A 13 + 4;

where

V =_H KpjV4 tc$urn4 CoskP<^ ’

K " T I >< S,A^^ ■* y

L £j cc3brp . tos^-]

and
^l|i^lC^1-^)^-<?AR.)\rjG>skrn+^^-<^)^coSU«y3. (4.3.71)

AC A £ A.0 A O

Similar expressions exist for f^, f 3, fz and f, . However, at the 

critical Rayleigh number RQ and wavenumber kQ for the given aspect
A

ratio a, it is found that for the case where fs is even only the 
. . A

trivial solution ej = 0 j=1..4 exists. For the case where f5 is odd, 

applying the boundary conditions (4.3.62) to the equations (4.3.70) 

gives four homogenous equations in four unknowns which can be 

expressed in matrix notation as

[4lie3 --Vol (4.3.72)

A , , , A

where S is the 4x4 matrix obtained from (4.3.71) and e is the column
A , A ,

vector (ej] j=1..4. The determinant of the matrix S is found to be 

zero, which implies that a non-trivial solution does exist. Thus the
A . . A .

constants ej j=1..3 can be determined in terms of e^(say) using

Cramer's rule. Hence 

A A

f C< Ce sUrt j

which implies
, *

K U V V- A 05*  ^4 . i a a
~ r| C 4- £csh Vj vj J 6.aA - ^4 $v«Ma -

(4.3.73)

(4.3.74)

A A
These solutions for f^ and fg together with M, and N, imply that the 

integrand G of the condition (4.3.59) is an even function in y. Graphs 

of the integrand for the aspect ratios %,%,! and 2 are given by
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figures 15 and 16.

Numerical integration (Simpson's rule) confirmed that the 

condition (4.3.59) was satisfied for the aspect ratios under 

consideration ie. a = %,%,1 and 2, thus providing a check that the 

system (4.3.58) has a solution. It should be noted that in the case of 

the simple models the expansions were clearly consistent at 0(£), 

since for the stress-free channel equation (3.1.27) and for the 

'finite-roll' approximation the right hand side of equation (3.2.14), 

were algebraically zero. The method of finding the numerical solution 

of the system (4.3.58) is discussed below.

(8) 3 Va/5

In order to determine the y-dependent functions ©z and ©3 in 

the temperature 65., and V2 and V3 in the horizontal velocity component 

vx, numerical methods need to be used. From (4.3.11,25) and 

(4.3.12,26) the coupled functions <S)x,Vzand ,V3 satisfy the matrix 

systems

E NJ, JYjIjdzAhO (4.3.75a)

(4.3.75b)

where
a _ A

®7-Gj 2 + P®2 and Vz = Vx * Pv- (4.3.75c)

Rx" ?

and

1a , ,

where

bl x = i i-K •* 3 ,

(4.3.75d)

A
•VJ f \ ® 3 , j = 0 J " 1 (X }

(4.3.76a)

oHQsJz)"0 J - (4.3.76b)
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@3 - ®5 + P and (4.3.76c)

MX" , - V zvr *̂4  ** °M ,

(4.3.76d)

As noted above, the y-dependent functions Q and Vt satisfying the 

matrix system (4.3.58) may also be determined numerically. Thus the 

solutions of five eighth order systems (4.3.58,75a,75b,76a,76b) need 

to be determined.

In each case a fourth order Runge-Kutta process is used to 

compute the solution from y=~a to y=+a. A problem that arises is that 

each of the systems specifies four conditions at y=~a, which for 

instance in the case of (4.3.58) can be written as

0,0,0,at yx -a (4.3.77)

where the constants q^ 1=1..4 correspond to the unknown values of ,

,at y=~a. The other four conditions are specified at 

y=+a. However, in order to start the Runge-Kutta process eight 

conditions are needed at y=-a. This difficulty is overcome by letting 

q£ i=1..4, be known arbitrary constants enabling a particular solution 

f of the system to be computed. In addition by choosing four linearly 

independent combinations for i=1..4, for instance

J % %
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1 (4.3.76)

four complementary solutions

general solution f.,

fj J-1..4 of the system are computed. The 

say in the case of (4.3.58) is then given by
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where the arbitrary constants qj j=1..4 are determined by applying the 

four known conditions at y=+a. This gives a non-homogenous system of 

four equations in four unknowns which can be expressed in matrix 

notation as

[fJlM = -t+pl (4.3.78)

where f is a 4 x 4 matrix, f is a column vector with four elements c p

and q is the column vector {qj^ j=1..4. In the case of (4.3.58) the 

j th column (j=1..4) of the matrix f corresponds to the last four 

elements of the column vector fj(,Vi ) and the vector fp corresponds 

to the last four elements of the vector fp(®» ,V, ).

In general the determinant of the matrix fc is non~zero and the 

constants qj j=1..4 can be uniquely determined using Cramer's rule. It 

is noted that the systems (4.3.75a,75b,76a,76b) fall in this category. 

The condition needed for

det[ fc ] = 0 (4.3.81)

is that E = E(k0,ir); the system (4.3.58) falls in this category. In 

this case the value of q^(say) is assumed to be a known arbitrary 

constant, which leaves a non-homogenous system of three equations in 

three unknowns qj j=1..3, which can be determined using Cramer's rule. 

The existence of the solution (4.3.50) and the solvability condition 

(4.3.59) which for the aspect ratios under consideration has been 

shown to be satisfied, ensure that the fourth equation is 

automatically satisfied. It should be noted that the solutions for 

and V, are not unique since the value of the constant q is arbitrary.
4

However, application of the condition (4.3.52) gives

®,--©?-©,%)© and V,z V,'*- (4.3.82) 

where and V, are the numerical solutions. A comparison of the 

analytical solutions (4.3.57) and the numerical solutions (4.3.82) for
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and Vi showed good agreement. This provides a check that the 

Fortran computer program constructed to obtain the Runge-Kutta 

solution, as outlined above, is correct.

(c) V4.

From (4.3.37,38) the y-dependent function V^in the horizontal 

velocity component vx satisfies the matrix system

(4.3.83)

where

0 1 0 0

E(2k0) =

000 0 -16ko 0

0 0 0 1

1 0 0 %

(4.3.84)

and
0

lx

The fourth order system (4.3.83) is solved using a fourth order

Runge-Kutta process as outlined above. The only difference is that 

only two complementary solutions need to be computed. Thus, the

general solution for (4.3.83) is given by 

f(v4) = •V.JlV,)*  frW+l (4.3.85)

where the arbitrary constants qj j=l,2 may be determined uniquely from 

the boundary conditions at y-+a, as outlined above.

(d) The other dependent variables

Having numerically computed GK i=1..3 in the temperature 02 and
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i=1..4 in the horizontal velocity component vz , the y-dependent 

functions i=1..3 that appear in the vertical velocity component wx 

may be obtained from the relationships

z'c<x)®il 4 "fib*1-

(4.3.86)

(4.3.87)

(4.3.88)

which are obtained from equations (4.3.15,16,17). The y-dependent 

functions band Uzin the horizontal velocity component ux, may 

either be obtained from the second order differential equations

which are obtained from equations (4.3.27,28), or from the relationships

and

(4.3.89)

(4.3.90)

where

(4.3.91)

Uz= Ui-+ pQx (4.3.92)

(4.3.93)

Ui- nA Ml * Wi J and = ifeA ■*  l-n^i^ (4.3.94)

which are obtained from the continuity equation (4.3.1). In practice 

both methods were used and good agreement of the results was obtained. 

The third y-dependent function U4, that appears in q^may be obtained 

from the relationship (4.3.39). Having obtained all three velocity 

components uz,vzand wza consistency check for the z~dependent terms 

is provided by the continuity equation (4.3.1) which is found to be 

satisfied. The y-dependent functions i=1..3 and F^ i-1,2 in the 
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pressure pz, may be obtained from the equations (4.3.19)-(4.3.21) and 

(4.3.40,41).

It should be noted that the y-dependent functions W, and U, in 

the vertical and horizontal velocity components w2and u^may also be 

determined analytically as follows: substituting (4.3.53) and (4.1.3) 

into (4.3.86) gives

A d' 5 ~V4 = bo ~ (rj -■s<’‘)y smVi rj^j - dj ccsVir. u . (4.3.95)
j-i J J-

Substituting (4.3.53,96) and (4.1.3) into (4.3.89) gives

d-4 j sTk 3 * te
3

4 ds

ChSktj

(4.3.96)

From the continuity equation (4.3.1) the unknown constant ds 

associated with the even complementary solution of (4.3.89) is given 

by

5= -<XA4 + ■ (4.3.97)

The solutions for all the dependent variables at orders have 

thus been obtained. Figures 17a-17e show profiles of the y-dependent 

functions i=l,2,3.

4.4 Expans ion at 0(tx)

At order , the Boussinesq equations (3.1.16~20) become

tt  * tj Tf = -4
A? (4.4.1)

(4.4.2)

(4.4.3)
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(4.4.4)v^3 ■* ^^3 ~ PRc.03 - “ 17 * P0«

and

L.05 -^3 -vx(9x (4.4.5)

where

r. = + , v?=l ^-p^ +

r» 4 ' AJ'-V. ] , * «>■•’ + *'^-] . (4.4.6)

The boundary conditions from (4.1.6) are

M-ta and S,=u 5--j4’= z.-o,(. (4.4.7a,7b)

It should be noted that from (4.4.1~5), the conditions on the top and 

bottom boundaries (4.4.7b) are equivalent to

Z= Q, I « (4.4.7c)C

By elimination of variables in equations (4.4.1~5) a single sixth 

order differential equation in 65 is obtained:

+ PG,] 4-2P

(4.4.8)

Since not all the conditions on the sidewalls are in terms of , the 

following equation relating and 6? is also required.

- K x VVx + r5v. ] +• lyi qr4(Ah (4.4.9)

Expanding the right hand sides of equations (4.4.8,9) gives

P(V -R<»Vh )$5 - I I I'AsAv Mu Axx  + M? A A * Mg Ax -vc-cl s-.n-n^ + c.c) s.n'tvi

t XukcM . r_1f„ TT*fl  -? . . Tir#;hcH \1

+ I Kiok^Ajr p - c.< )+Mui A Ax - A A*/1  s>n2Mt-v uAA^ + c c)+t4|j|A A^> c-cJj s"'5tTt(4.4.10)

and
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~ Z vzA3 + e’l - I A+ Me Axx +Ai}. a  ZA*4-  Hf, A0 A + c.c]s»mvi a  tVj(A e + c-c) 5*«vn%

+I ^\t»VKAx ^V^°-€-<)+- AAj()}jS»nxvr?.+t*4 vt.V^c vc-t) * ^vj(A A V +c-c)J S'nsrr-Z (4.4.11)

where

tU-PH? = ? ® 5 (4.4.12)

(4.4.14)

Kq. - VA^ + PtA} 4 p

_ ) -virKl^ + O -irUn h -Ex!)Jz (4.4.15)

(4.4.16)

= PHS x - P ® , (4.4.17)

(4.4.18)= PNt- P[ 2hc[zl^ -^©.AirVJ-ll ^-^V+2k? ^<£>13 ,

u^^.Pstu.^4-^)®--v],pl-t^-^©L (4-4-20)

and E ^(y) i=1..12 are given by (C7) in appendix C. It should be noted 

that for the purpose of finding the amplitude equation for A, the 

other y-dependent functions and i=9..13 that appear in equations 

(4.4.10,11) d° not need to be determined explicitly.

Following the procedure outlined for the stress-free channel

(section 3.1), expanding the right hand sides of equations (4.4.8,9)
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assuming

and v3= v3(y,i,x<T)e^U4-cc+♦- (4.4.21)

it is clear from (4.4.10) and (4.4.11) that

(4.4.22a)

A4S.Q3V^

where

(4.4.22b)

Av- I KSA + Nit Aax  A -vbAfeAxl , A-i - S A 5

Au = T Ms A Ayx + A* Af 1 , A^.= V A* . (4.4.23)

It should be noted that other terms
+xi'Uo‘*<.

e" and C also exist in O3 and . However, these play no part

with x dependencies of the form 1,

in obtaining the amplitude equation. Applying the conditions

(4.4.7a,7c) to (4.4.21) gives

(4.4.24a,b)

The z solvability condition for the system (4.4.22,24) is

pf t( 03s.n-nZ<Vi - J £ A($vTtT£ + 4.?S.nVTz'] S.ntrz clz

(4.4.25a)
A,

-
Zrc

and
+U^ + fe"£)x-<l|;Ms'<vw4 Al (4.4.25b)

Tt-c.

Expanding (4.4.25a,25b) using (4.4.24b) and repeated integration by

.K

parts gives

pI )1 e? Sinwrdl X ^A,
? = c J J

and

-p f'{-'r^-c<l^sCc5,Ii+U^--'<2t-Ro]^;e3s-,nwpl.-

(4.4.26a)

(4.4.26b)

£ x
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By defining

e^(q,x,r)= 9 and v5(y,x,f) = pj v5 , (4.4.27)
1=0 Z=o

equations (4.4.26a,26b) become

and

^tx_£Z1J^3 + (^4-r 0)] 63 = Ai/^-rr^ (4.4.28)
-J J

which together with the boundary conditions

e?"- h = '-o (4.4.29)

can be expressed in matrix notation as

^(eJvv3) - >hr^) 5 rn£l^,v?)^o y-ta- (4.4.30)

From the previous section, the condition needed for the existence of a 

solution of (4.4.30) is
*a
f H(<jvX,x) dtj =o (4.4.31)

where

a , + £g a 2/tt  (4.4.32)

A A

and f^ & fft are solutions obtained from the matrix system (4.3.60) 

given by (4.3.74).

Expanding (4.4.32) shows that the condition (4.4.31) is only 

satisfied if the amplitude function A satisfies the equation

C, A Ct , Ajj x C3 C^/p + Os I p2) A A\ +- ( C& + C7/p) Av ■= o (4.4.33)

where

C, HI % , Ht ) , Ci - U ( Mt , Hg  ) ,

C 5 ~ H ( Mt » ^7) 7 C4 - H ( M7 , ^7.) y Ct  - H ( Mt , N7.) ,
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C& , C,.-H (, big/)

and
4- A

1 J [45-*  ’Vl dJ • (4.4.35)

T-‘x

Numerical integration (Simpson's rule) is used to determine the 

amplitude coefficients i=1..7, which for the aspect ratios under 

consideration are given in table 7. However, it should be noted that 

the coefficients , C6 and C^. may be expressed analytically as

(4.4.34)

— i
(4.4.36)

(4.4.37)

where
v^-<x , ,

Iij = fcsKt-jO I (.Ij1- r;x)

. ( s.nh no. urtiTjO ■+ rva 1 [ r

£ rjs.nhrja ccsVi - r^s.nVif^a. t + j

v- j

and

v 1 T^.5>>r\V^rj c\ - ^js^nUr^a CcsUrja

- q <O/>\
V

V [’ sAr^ix CcsVi j - (4.4.38)

A comparison of the analytical and numerical results for the 

coefficients i=l,6,7 showed good agreement.

C£ a = % a = a = 1 a = 2

1 1.17356E-1 2.98550E 0 6.66208E 2 2.35883E 7
2 6.82607E 1 8.17820E 2 1.16230E 5 3.26389E 9
3 -9.05110E 3 -3.88266E 4 -3.12612E 6 -8.00064E10 *
4 -5.90913E 2 -3.10812E 3 -2.59926E 5 -4.27370E 9 *
5 -4.61856E 2 -3.16741E 3 -3.11862E 5 -5.77686E 9 *
6 -1.26669E 1 -1.82351E 2 -3.14470E 4 -1.04976E 9
7 -1.25073E 1 -1.77438E 2 -3.04607E 4 -1.04380E 9

Table 7. The amplitude coefficients. (E n denotes 10n)

* Indicates that the coefficient for the aspect ratio a = 2 may be

inaccurate (see section 7.4 below).
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Aspect ratio a = 0.25

m
a
x

Figure 15 continued on next page
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Aspect ratio a = 0.5

m
a
x

Figure 15. Graphs of the integrand G of the integral

condition (4.3.59) for the aspect ratios a = 0.25 and 0.5.
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Aspect ratio a = 1.0

m
a
x

Figure 16 continued on next page
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Aspect ratio a = 2.0

m
a
x

Figure 16. Graphs of the integrand G of the integral

condition (4.3.59) for the aspect ratios a = 1 and 2.
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©,(0.5) = -0.09573

V (0.5) = -1.82152

117



W (0.5) = -5.05939

U (0.0) = -0.6852.6

Figure 17a. Profiles of the y-dependent functions 

®j(y) ,V|(y) and U (y) for the aspect ratio 

a = 1 and conducting sidewalls.
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Aspect ratio a = 1

A
®2(0) = -0.03028

(
o
)
Z®

 I

y axis
A

Figure 17b. Profile of the y-dependent function

for the aspect ratio a = 1 and conducting sidewalls.
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Aspect ratio a = 1

for the aspect ratio a = 1 and conducting sidewalls.
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Aspect ratio a = 1

~t i » i » I» »t 11 i » i» 11 i r 11 i » »i 1« i» »1111 »i r rrt ] t »»i ; n ti i
-1.00 -.60 -.20 .20 .60 1.00

y axis
J A

Figure 17d. Profile of the y-dependent function @3

for the aspect ratio a = 1 and conducting sidewalls.
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Aspect ratio a = 1.0

for the aspect ratio a = 1 and conducting sidewalls.
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Chapter 5 The long box: simplified and rigid sidewall models

5.0 Introduction

Nonlinear theory for an infinite layer of fluid confined between 

horizontal boundaries predicts that the amplitude of the motion 

undergoes a bifurcation as the Rayleigh number passes through the 

critical value for instability predicted by linear theory. Segel 

(1969) has shown that if the flow is confined by rigid perfectly 

insulating endwalls a supercritical bifurcation occurs at a new 

critical Rayleigh number. Daniels (1977) showed that if there is a 

small heat transfer through these endwalls, so that the boundary 

conditions there are inconsistent with the basic state of no motion, 

the bifurcation is replaced by a smooth transition to finite amplitude 

convection.

In this chapter the ideas of Segel (1969) and Daniels (1977) are 

applied to more realistic models. The infinite channel defined in 

section 2.1 is assumed to be of finite length with rigid endwalls at 

x =-L It is generally assumed that the distance between the endwalls 

is large compared with the distance between the upper and lower 

surfaces and the distance between the sidewalls ie. 2L is large 

compared with 1 and 2a. This assumption is not needed however, when 

solving the linearized Boussinesq equations for the simple models (see 

sections5.1 and 5.3). In general, following the method used by Daniels 

(1977), the effect of the distant endwalls on the transition to finite 

amplitude Benard convection is investigated analytically for the 

simple models using both linear and nonlinear techniques. However, for 

the long box with rigid sidewalls the simplicity of the analytical 

methods used for the simple models is lost and a method used by 

Stewartson and Weinstein (1979) involving extensive numerical 
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calculations must be used.

5.1 Long box with stress-free sidewalls: linear theory

As in the case of the infinite stress-free channel (section 2.5) 

the upper and lower surfaces are assumed to be stress-free and perfect 

conductors, while the sidewalls are assumed to be stress-free and 

perfect insulators, thus allowing a solution to be constructed by 

separation of variables. The conditions on the top and bottom 

boundaries and the sidewalls are then given by (2.2.1) and (2.5.2) 

respectively. The endwalls are assumed to be rigid but not perfect 

insulators. Thus the conditions on the endwalls are

c; - u - v - o x - ± L

and

X---L and +L ,

(5.1.1)

(5.1.2)

where the parameter L is introduced for convenience, g and h are 

given functions of Y (=y+a) and z which are assumed to be consistent 

with the conditions (2.2.1) and (2.5.2), and may be decomposed into 

the Fourier series

OG CX> OJ oo

= > , (5.1.3)
n = i a. a

In general the functions g and h and the parameter A (>,o), which 

determines the magnitude of the heat transfer through the endwalls, 

are functions of both the physical properties of the containing walls 

and of the basic temperature field in the container. The flow is 

assumed to be steady. Thus, from the heat equation (2.1.20) and the 

continuity equation (2.1.16) the conditions (5.1.1) are equivalent to

V1© - U - -- c x - ± l  . (5.1.4)

If the parameter AL is assumed to be small, the dependent

124



variables u,v,w,9and p satisfy the linearized form of the Boussinesq 

equations that govern the motion, given by equations (2.1.24~28). By 

eliminating the variables in equations (2.1.24~28) a single sixth 

order differential equation inG given by (2.2.5) is obtained. Since 

not all the conditions on the endwalls are in terms of 6 the following 

equation relating u and 9 is also required

(5.1.5)

From section 2.5 the solution satisfying the homogenous 

differential equation (2.2.5) and the boundary conditions (2.2.1) and 

(2.5.2) is 

CO — .

where

G - 7 9nfvAx) Los
Ct 

rn-c nzi
(5.1.6)

(5.1.7)

(5.1.8)

and Cnmj are arbitrary constants. As equation (5.1.8) is bi-cubic and 

has real coefficients, the roots can be easily determined using 

Cardin's formula. From appendix A by letting k^m = n\'2‘ , the 

characteristic equation (5.1.8) reduces to the form

p-o where and pzaVR. (5.1.9)

It should be noted that the properties of equation (5.1.9) are the 

same as those of equation (2.2.18), which have been discussed in 

section 2.2. From the existence of the neutral stability curve and the
'l-

properties of the characteristic equation (5.1.8) the root knm3 =
“ 1- # 9

remains real and negative for all values of R. The roots and
*2L • • A

knmx are real and positive for R>Rnmc = 27(rnr) /4, are equal when
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*2
R=Rnmc (Rnmi = knmx = “ 2mL/ax)) and are complex conjugate 

pairs with non~zero imaginary parts for R<Rnmc. Here Rnmc is the 

critical Rayleigh number determined in section 2.5 for the mode of 

instability (n,m) in the infinite stress-free channel.

Since the characteristic equation is bi~cubic the solution

(5.1.6) can be written as

where
"E - k j A

X •+ Unmi co$knMlX •+ <^0^3 cosh X

and

— c — - . _ -
“ dnrvu S»AKn<v\*X -V Anml SiHRnmZ^ •+ dr\<v\J S»nk .■

Substituting (5.1.10) into (5.1.5) gives

(5.1.10)

(5.1.11)

(5.1.12)

U: [ U^^VX) -V CcSAXVi Cc$ 1^2
<v\~c tV

where

(5.1.14)

_v

A N — A
dnmi pAM1,Sink,^ V<nirx^X + 3<nh bivrX ? (5.1.15)

Anertt ^iVni ^CS^hmiX S10 ^X ■+■ <1 iyi 5 film 5 C'-Skl Kfj/nJ V h H ‘T'X , (5.1.16)

"*■  l^4lr4-R) knmvl jtmV + , Prwn’c pome

and (5.1.17)

fn<v\5 " 71 V - (0 Krt/v'S I j V 0 V ~ r'~ ) ] , pilAk? - *

A —

For a given mode (n,m) if R>Rnmc the arbitrary constants d^j and d^j
. . X —

j=1..4 are purely real. However, if R<Rnmc the constants dnmj,dnmj
A _

1=3,4 remain purely real while the constants cLmi „ and cLm, becomeJ ’ r J mm i ,z nm i ,7.

complex conjugate pairs.

From the evenness of the equations satisfied by 8nfn and unm and 

the form of the conditions (5.1.2,4) which have to be satisfied at 

x=iL, it follows that the general solutions for 0n(n and unm fall into 
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two non-combining groups of even and odd solutions. This enables the 

problem to be divided into 'even' and 'odd' cases. The conditions 

(5.1.2) may be more conveniently expressed as

^0 K CO

iTT ■ ~ Z H + CcS K-
>W-c r\zi A.

and (5.1.18)

2Z 2^ I x-. + l.
n\=O «V»

Thus, applying the boundary conditions (5.1.4,18) to the solutions 

(5.1.10,14), for the even case gives a non-homogenous system of four 

equations in four unknowns which can be expressed in matrix notation as

MdHS] (5.1.19)

where

6 -

-X
, ’knm?+NV 5 o

p.Tv'i to.n b-nrnit t f nrox tAn t ivnlF ) tnm?L , t'c'.nti rl vrL 1

Pami ^nrwi , P>.a <v\'5 ham'? , NTT

“ kr\rr\i htAtrim i L , — tnmi t<xn h « trims t~o.nta i O

__

h. r\mit > <Anmj Ccshknm?L

(5.1.20)

<Anrv\^ ccs Um-h  u >

For the odd case the matrices B,D and S becomeand tr denotes transpose.

. X 2 -1
-kniAj c.

B ~ f>nmi rot tnml L , twl knmiL ~~kn/YtsL - cctu Miri-

pnmi tn mi , Uo<AX pn^\3 tnr*\3 ;<TT

tnmi Cct hnm*t 5 ^r\mx «; Vn*V5  tcVVl ^nr*\5^  «j 0

P - S Ia Vvd.-XfrM 5*nkn*VMf- , SAnknmzt,

(5.1.22)

tr

o o o

?

a

(5.1.23)
tr

05 Co5
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For a given mode (n,m) when the eight constants dnmj and dnmj j=1..4 

are determined from the conditions at x=iL, all the terms in the 

solutions (5.1.10,14) decay near the endwalls if R<Rnmc and L»1.

It is expected from Segel (1969) and Daniels (1977) that the 

change in the overall critical Rayleigh number RQ for the infinite 

channel (given by (2.5.10)) due to the introduction of the distant 

endwalls may be investigated by considering a perturbation of the form

R = Ro +H (5.1.24)

where S is assumed to be order one and L>>1. It should be noted that 

RQ corresponds to the vertical mode n=l and is independent of the 

horizontal mode m. It can be shown from (5.1.8) that

k,„x>l- X-’R" (5.1.25)

where

(5.1.26) 

so that

Cx,. ~ I'’ (0)1). (5.1.27)

Substituting (5.1.27) into (5.1.18) gives

Tz / z . (5.1.28)+ 0(t ) .

Thus, when<V is positive the solution for the temperature

G(x,y,z) may be expanded in the form

0 - - { Z_ V 9

V S.rvZx

A-

4-

rvVH 7
CcS —

a

4- t set MEXT
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■V X.X- Hn,^(xx')3 -t ©(MJ'2’) (5.1.29)
<V\-Q n-X

where

x, = x + L, xz = x - L (5.1.30)

and

4, - hmf t krv?-bis?)[ "bi^d ■*  t N1) (f>5] ,

fa~ ( ferw + HSf ) h,v»j A -+- ( $6 ~ (fin-S in A - k^QjsA ) f

fa - -ikm+ hlSt1) PkrtVS S<a A - (</>£ - blOkrvv^f (nk A -v h™ S'AA ) ,

fa' »/6krvty U1-2^v >hLf  ^6x(44-m1/ax)/2'

& - 5'/(sliTTb-iiv?-/^) ) > a - a --^, (5.1.31)

aimi’^«mi i=l--3 are real constants which may be written in terms of 

gtm and h)m respectively, and M is the largest integer such that

M < a / [2. (5.1.32)

It should be noted that for the vertical mode n=l, the horizontal 

modes m^ M associated with being purely real penetrate into the

interior region where x/L^ 1. However, the modes m >M which correspond 

to kinu ( being equal and purely imaginary, decay in the neighbourhood 

of the endwalls where x+ 1. The functions Gnm and Hnm in (5.1.29) 

have the forms

- cO— X4
(^nrvti tcS>AunAti X| r =>\n A5n/vti )<J ■* <AnrA5

Ai.inrtv x2 / r . — J
'■ burnt <-c? + btA GO ■+ br\<v\5 € 3 Z

(5.1.33)

where anm£ and b m£ i=1..3 are real constants which may be expressed 

in terms of gnm and hnm respectively and

C>^nr*\* ^nrv\i ~ , I (5.1.34)

where u>nm^ 2 are real and positive. If the forcing functions g and h 

given by (5.1.3) are assumed to be independent of Y, only the m=0 mode

129



is generated and the solution (5.1.29) becomes

a A A - 4 (
<P1 SiA S L~ K

S.n £
A . A A — l_
41 CcshcX s'.o <£4 <S 2 C K

A
S^<\

cc$ <^4 S’ L x
A

CciZ-

J *v -»
+ ^-(3^ 6 )jS.nTTZ -V AL X l£qob^ + K\AXx)lsinnn-t vO(M'r) (5.1.35)

A-2

where
a  * TV
kc-^l^y <ti = COS —L -2JS: 5>vn^L , $3 - Stn^L + Ccs ILl

N 'ill ’

4>4~ ' [ t -=.^ and A 3 £ tv  * (5.1.36) 

equivalent to that obtained by Daniels (1977).

In contrast to the finite solution obtained for £<0 , from 

(5.1.29) and the form of A , it can be seen that the linear solution 

becomes infinite (ie. resonance occurs) at an infinite sequence of 

values of S given by

J A'- tV>72aZ) (5.1.37)

These states correspond to the existence of eigensolutions in the 

equivalent long box with null endwall boundary conditions (?=csee 

section 5.2). The first such state corresponds to the critical 

Rayleigh number Rc for the long box, the distant endwalls resulting in 

a slight increase from the critical value RQ for the infinite channel:

R, * + olr5) (5.1.38)

In contrast to RQ, the critical Rayleigh number Rc for the long box is 

dependent on the horizontal mode m and the aspect ratio a. For a given 

value of the aspect ratio a, the lowest mode of instability 

corresponds to M, the largest value of m satisfying the condition

m < /2a, (5.1.39)

which must be related to the fact that the extra freedom associated
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with choosing in (ie. the number of rolls in the y direction), in some 

way allows an easier 'fit' of the rolls in the x direction. As 

expected if the flow is assumed two-dimensional, only the m=0 mode is 

allowed and (5.1.38) becomes Rc = R. + , equivalent to the result

obtained by Daniels (1977).

From Daniels (1977) it is expected that the O(I75) correction in 

(5.1.38) will distinguish the resonance points of the even and odd 

parts of the solution (5.1.29), which are identical at order L x. 

Figure 23 below, shows the correction to RQ at 0(L“2') plotted against 

the aspect ratio a for the horizontal modes m=0,l,2 and 3.

5.2 The long box with stress-free sidewalls: nonlinear theory

It is known from section 3.1 that for the infinite stress-free 

channel the solution near the critical Rayleigh number RQ may be 

expanded in integral powers of a small parameter proportional to
P . . .

(R-Ro)'x. Here, the semi-aspect ratio L is assumed to be large compared 

with 1 and 2a and the solution is expanded in decaying powers of L. In 

addition a scaled Rayleigh number & defined by

R = Ro +5 L 2 (5.2.1)

is introduced, where £ is assumed to be order one. As in the case of 

the stress-free channel a (-2a) is assumed to be bounded such that 

J~2 < a < 2/2. Thus only the first two modes corresponding to m=0 and m=l 

will be present away from the endwalls. From section 3.1 the solutions 

for the dependent variables in the interior of the long box may be 

expanded in the forms
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M= JconriCos'P' 1 + Ck+L’V- (5.2.4)

v = "1T^ t ° + >n:(B(x^)evk'*  8\x^e~^\oSTis><S]n\+L%*--  (5.2.5)

and

V" -fc-n-JzPC'l UlK}x)e'' Xoc ) v V2 U(x$T)eV^c-c)cesvi Cos— J-t-Lb +tl + — (5.2.6)

where * denotes complex conjugate, kQ and k, are given by (3.1.3) and

X andt are slow spatial and time variables related to x and t by

and t  = L\pi I (wp) * (5.2.7)

The equations for the amplitude functions A(X,t ) and B(X,T) are 

determined from consideration of the second and third terms in the 

interior expansions (5.2.2~6) and the details of the calculations are 

essentially the same as those given for the infinite stress-free 

channel in section 3.1. An inconsistency in the expansion at 0(L“i) 

due to the appearance of forcing functions which are eigensolutions of 

the basic linear operator with the conditions (3.1.59) can only be 

avoided if A and B satisfy the equations

and

-A-c-t Aka  + 5 A = AUf+ i M p./p-i ^P1] A^T (5.2.8)

-b t  1me >i|p+ ^/p^W+b+pv p$/p+ pc|pxJbibi l

where

(5.2.9)

(5.2.10)

and the amplitude coefficients i=1..6 are given by (3.1.72). It 

should be noted that the equations (5.2.8,9) can be obtained directly 

from the equations (3.1.70,71) using the transformations

, A-*A/£ ki (5.2.11)

The solutions (5.2.2~6) must match as X->fl with the solutions in 

the neighbourhood of each endwall where xt Lr'l. In these regions the
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amplitude of the motion is small and the linearized form of the 

Boussinesq equations may be used. At x=+L the solution for the 

temperature e has the form

-J0=1—x 1 ([ *(et+< ’*X 2)e +<?3eluKx]slnui + + I * *

try? ** js.nr-tCos y-j- -t L £ H,™
J H\--l

t > tv^ n Y
t'X-x I S»n\\ i C05—~ -v 

ex
I '2 7L B^kxz^SuAniT^cos^^ 
rA'O A=*l. (5.2.12)

N * L + L-5e5 + -•«
where xQ = x - L and H m has the form•*-  »m

Hlnd^ = (5.2.14)I

where

(5.2.15)

and b p i=1..3 are real constants which can be expressed in terms of 

h|m. The complex constants ej j=l,2,4,5 and the real constants e3 and 

e6 must be determined from the boundary conditions at x=+L and 

matching with the interior solutions (5.2.2~6). Frcm the latter

(5.2.16)

Similarly at x=~L the solution for the temperature 6 is

J 5.HTV
-ZTTA, -j

(5.2.17)

where x, = x + L and ej j=7,8 are unknown real constants. The function
A

G has the form

(5.2.18)

where aimp i=1..3 are real constants which can be expressed in terms 

of g|m. From (5.2.12,17), and with

A(x»"v) = A,-y lAi x B|-+vB-z (5.2.19)

133



the solution for the temperature

9= — | I 2( Ai Ccsk^x-AjSkn^cx) •+ C-j C + ']smTri -tl ^41 ~ ^IxtgC
3W v

Sur-ra Cc5^}+ L ‘L (LW+ Sxv T2 Co S*?p  * L~‘EE HrtM) S>o nWl Cos*̂  (5.2.20)

• JL \A<ll'-’'|2ax) •+ Bxb>T)ccsk,u) = c, tq ,

° ” »a ~2 CA=C >-v=l <x

4- 0(t_1)
may be regarded as valid to leading order throughout the fluid. From 

the linearized Boussinesq equations (2.1.24~28) the corresponding 

' velocity components are

- \Ti L ' £ 1A t Ccs ko K - AxSmk. >t - V5 € -iTrX. r CtTTKz CT--U.-,
-CzfS Isiarrz +4z tbvco5hix.--B2Su-itax- '' J

t 2 v4V(Atx)s^irtcos*̂-  +L X.E VJn^U)Stnnu^ cos + 01l ~x ) , (5.2.21)
*v'~x n=x ‘

U. - -\j'{ 2(T 1 2p5A Ax + Ax testedx.) - (€3 _ e7e *')]  cc5tv ?

+ L ' 51 thnAxd CcsTTl C.CS T?? + L ' E-J- UnAAlU) Ccs OKI C<5 + O(t~Z)

A ^.-o ^-2 tV

and

V z

(5.2.22)

•+1“' Z_ V|rvA>0 CCSnl^in^ •+
<v\zz <A-

oo co
L X-E— CoS ATT?.i<n ^152,-4- 0(L_x)

Mtc Grj lk

where

(5.2.23)

(5.2.24)

* A
e<o and eq are real unknown constants, and the functions W^m,Uim and
a  . A A
V(m can be expressed in terms of Glm(x,) and Him(xr). Similarly the

unknown functions Wnm,Unm and Vnm can be expressed in terms of Gnm(x,)

and

The boundary conditions at x=+L give the relationships

A j U L - Ai_U ,t ) sinhyL -63 , Btkb’C) ecskt - 5

AA\>^ s.rtkol^ Aih^iccskot) -
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I8?t + ,

(5.2.25)

(5.2.26)

(5.2.27)

•

-q
— <

^^[-’GTV^Jt,T)s-(nkoL+ Az(l,t) CcskoJ + Zu-^] = >Vi(0 }

?. r L
—zY-4I-nrb- i|2<C)i s^k.L-v %U,t A cosk.t) + c<

Hence

A(i>v) ~ s 6U»t ) - <a 5

where

sH,c^v f bt - -kot ■+ W i |2rr ,

a5- -crlin U + aV)Vi> bx--k(l vU'lqf ,

Similarly the conditions at x=~L give

e“vbl 5 = -a4>e','bx (5.2.28)

where

ax = 3 /£ , q 4 --rrgn (v+as)V1/- (5.2.29)

It should be noted that if the endwalls are perfect insulators, 

the condition on the endwalls are

bQ
"OH

■X. X v L o— U- 7 (5.2.30)

which is equivalent to 7-=0. Thus the conditions (5.2.26,28) become

- G

A = B = 0 X = 11. (5.2.31)

The critical Rayleigh number Rc for the long box determined in the 

previous section using linear theory may also be determined for the 

horizontal modes m=0 and m=l as follows: the nonlinear terms in 

equations (5.2.8,9) may be neglected since at the critical Rayleigh 

number the amplitude of the motion is small. In addition, by 

neglecting the slow time dependence tr the equations (5.2.8,9) become

Axx+^’A = o and (\-\|ia x )Bxx  + 5B-o - (5.2.32)

Solving the equation (5.2.32) subject to the conditions (5.2.31) gives
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t 0,1,
(5.2.33)

which agrees with the result (5.1.37). Here it is assumed that <a<J£ 

and therefore the critical Rayleigh number Rc for the long box 

corresponds to j=l and m=l, with

(5.2.34)

as obtained in the previous section (M=l). The correction to RQ 

plotted against the aspect ratio a is shown in figure 23 below.

5.3 'Finite-roll1 approximation: linear and nonlinear theory

5.3(1) Linear theory

As in the case of the 'finite-roll' approximation for the 

infinite channel (section 2.6) the upper and lower surfaces are 

assumed stress-free and perfect conductors, while the sidewalls are 

assumed to be rigid and perfect conductors, thus enabling a solution 

to be constructed by separation of variables. The conditions on the 

top and bottom boundaries and the sidewalls are given by (2.2.1) and

(2.6.1) respectively. As in sections 5.1 and 5.2 the endwalls are 

assumed to be rigid but not perfect insulators. The thermal conditions 

on the endwalls are given by (5.1.2) where g and h are given functions 

of Y (=y+a) and z, which are assumed to be consistent with the 

conditions (2.2.1) and (2.5.2), and may be decomposed into the Fourier 

series

3^,1) 'IL s .a . (5.3.1)
•A-i n=. a ’ n-.t a

The conditions on the velocity components at x=±L are given by

(5.1.1) . It is assumed that the flow is steady.

If the parameter A-l 'in the thermal condition (5.1.2) is assumed
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to be small the dependent variables satisfy the linearized form of the 

Boussinesq equations given by (2.1.24~28). Since the 'finite-roll' 

approximation assumes that the horizontal velocity component in the y- 

direction, v, is zero and that the y momentum equation is neglected, 

eliminating the variables in equations (2.1.24,25,27,28) gives a 

single partial differential equation in 6 given by (2.6.2).

From section 2.6 the solution satisfying the homogenous

differential equation (2.6.2) and the boundary conditions (2.2.1) and

(2.6.1) is

rv\Try

a.
(5.3.2)

where
A A

Anmx H -V
A ~

CosU

(5.3.3)

x. i . . . .
5^imi’^nm3~-^nm3 are t^ie roots °f t^e bi-cubic characteristicand *4nii  

equation

t 3r\xrrx + imx-nx | + 1 (ax-n-x+A>xrrx|ax)l^ nx-rrx+ iYixirx/ax)-gj lkn<v>)
(5.3.4) 

+ a'xvrx ( nx tt  1 -t mx tt x / - o •

As in section 5.1, from the existence of the neutral stability curve

— 2.

and the properties of the characteristic equation (5.3.4) the root
7-

knm^-Rnm^ remains real and negative for all values of R. The roots 

>£m. and

<^ml
are real and positive if R>Rnmc, are equal when R-Rnmc

A.

~ mmz n ’n- /^ / -2_e  ) and are complex conjugate pairs

with non-zero imaginary parts for R<Rnmc. Here

is the critical Rayleigh number determined in section 2.6 for the mode 

of instability (n,m) in the infinite rigid channel using the 'finite- 

roll' approximation. Thus for a given mode (n,m) if R>Rnmc t^ie 
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constants Qnmj and Qnmj j=1..3 are purely real. However, if R<Rnmc the 

constants cLm^, qnmz remain real while the constants cLm, _ and cLm.nnni3’ mm3 mnii,z mmi

become complex conjugate pairs.

From the linearized heat equation (2.1.28) the vertical velocity 

component w is

CC OO £ o

w- E-£[ J s .a ^Y (5.3.6)

where

+ C4.) C£>sknMtM + ‘tnmi — _ c a ) V.nen-5 X i

WAfA- c4-) Ta^ S.nVii^^x (5.3.7)
-1
^r'r*'  3

and

C^ - n.xTVz ~r rv>iTfT^ ex' . (5.3.8)

Since the horizontal velocity component v is assumed to be zero, the 

horizontal velocity component u from the continuity equation (2.1.24)

is
co co

U — 2L. r\r< IK)’] Lcsmvi: s»n ^2 Y

r* -» a xy a.

where

c A A _
C; Sva RAnA<X “ C2 4- <Vn/v>3 c3 sunk x s

(5.3.9)

v L _ - (5.3.10)
Tr\iv" C‘ ccsKn^V>< c X CcSKn^^- -+- q,nn,5 C-5 Cc$V» kanVJ K

and

CL C - qx , C5 - ryv i~ I ^'cvryA j • (5.3.11)

From the evenness of the equations satisfied by $nm, the linearity 

of the equations (2.1.24,28) and the form of the conditions (5.1.2,4) 

which have to be satisfied at x=±L, it follows that the general 

solution for $nm falls into two non-combining groups of even and odd 

solutions. This enables the problem to be divided into 'even' and 

'odd' cases. The conditions (5.1.2) may therefore be more conveniently 

expressed as
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and

. a cc
" X ^i^i^^nrv^hnrvJ * ^ruvx'UnrtJl Svnnrr^ S'C ^L

"b x ' 7T ~ k 1 SxAnirt s\n
CA.t ar I Ct

x--L

(5.3.12)

X - + L •

Thus applying the conditions (5.3.12) and (5.1.1) to the equations

(5.3.2,6,9), for the even case gives a non-homogenous system of three

equations in three unknowns which can be expressed in matrix notation

as

(5.3.14)

where

*€4) oj Vn<wt ,

4 kn<v\Z

-2

-<J) cotV,
“ kn«V5

A A _
n«> 5<akn1YMt-, Tnmx ^n^onriL , Fnal5t3

A
For the odd case the matrices B,q and

v-U, ±r

y

A.
S become

MT’ Jr (5.3.15)
5 2- •

A
B

A
B =

1
hmi Lj “(k,

5

x r
s-Io $ O

1

C' > C"
, z x
k kn<vl J C4) Fan hnrtx(t j C4) tunUnrn j

fenrvM <; knrvix

5

i t , knmi - C4) hxah L

5 J

%mJoskn^ltt%^1cosVnmx'-»%rvx,Ccskkn/njA s $ " » 0 » 3T (5-3-16)

As in the case of the stress-free long box, for a given mode 

(n,m) when the six constants qnmj and Tnmj j=1..3 are determined from 

the conditions (5.1.1,2) all the terms in the solutions (5.3.2,6,9) 

decay near the endwalls if R<Rnmc and L»l.

It is expected from section 5.1 that the change in the overall 

critical Rayleigh number RQ for the 'finite-roll' approximation of the 

infinite channel (given by (2.6.9)) due to the introduction of the 

distant endwalls may be investigated by considering a perturbation of
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R = Ro +6 L‘x (5.3.17)

the form

where is assumed to be order one and L>>1. It should be noted that

RQ corresponds to the vertical mode n=l and the horizontal mode m=l in 

the y-direction. It can be shown from (5.3.5) that

*2- V / i
~ K I ' (Ro -r ) -v as R^Rg

where

and

so that

~ k? t i’ (on)
Hip

where

K = zkj (3pu -+<nrJ + .

Substituting (5.3.20) into (5.3.5) gives

(5.3.18)

(5.3.19)

(5.3.20)

(5.3.21)

(5.3.22)

Thus, when S is positive the solution for the temperature

G(x,y,z) may be expanded in the form

Try
$ tnTTl S<n •=?

Ct

Sxnnul s.n -v Q (MT*  )
Ck '

where

x( - x + L, xz = x - L, - W2 + V2 / ,

i ~ cosl  ~ l  , - V.(Sxnbit + hj coshk i_ y G - “ C ,

(5.3.23)

(5.3.24)

and the functions Gnm and have the forms

JQ<v\(^d ' ^Hrvu CCS G_i nxj V- CXnmi. S id W p(v\j_X J "+
-kU3
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and (5.3.25)

~ < A 7 — \ +~L z,kt3X2-^nrvA^7^ " ' ^Ar*n  * Dqi vq  S'n ^nmxKx) ^nm'5^

where a^ml^njni i=1..3 are real constants which may be written in 

terms of gm and h^ respectively and

• <-''z
— t CO n,vxx - Lk(W1 5 I (5.3.26)

where w are real and positive constants.

In contrast to the finite solution obtained forS<o , from 

(5.3.23) and the form of A, it can be seen that the linear solution 

becomes infinite at an infinite sequence of values of 6 given by

(5.3.27)

As shown for the stress-free long box, these states correspond to the 

existence of eigensolutions in the equivalent long box with null 

endwall boundary conditions ^-=0). The first such state corresponds to 

the critical Rayleigh number Rc for the long box:

+ -V2At 7cA)C + 0(l “'5) (5.3.28)

where

(5.3.29)

The correction to RQ plotted against the aspect ratio a is shown in 

figure 23 below.

5.3(2) Nonlinear theory

It is known from section 3.2 that in the case of the 'finite- 

roll' approximation for the infinite rigid channel the solution near 

the critical Rayleigh number R , may be expanded in integral powers of
x

a small parameter proportional to (R-Rq )2-. Here, as in the case of the 

stress-free long box, the semi-aspect ratio L is assumed to be large 
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compared with 1 and 2a, and the solution is expanded in descending 

powers of L. By introducing the scaled Rayleigh number £ defined by

R - RQ + 3 L (5.3.30)

where 8 is assumed to be order one, from section 3.2 the solutions for 

the temperature 9 and the velocity components w and u, in the interior 

of the long box may be expanded in the forms

(5.3.31)

(5.3.32)

(5.3.33)

where * denotes complex conjugate, k, and 07 are given by (3.2.2), 

and are given by (3.2.28) and X andrare slow spatial and time 

variables related to x and t by

X-L x , T - L X 4PM/ (5.3.34)

The 'finite-roll' approximation assumes that the horizontal velocity 

component, v, is zero. The equation for the amplitude function A(X,t ) 

is determined from consideration of the second and third terms in the 

interior expansions (5.3.31~35). An inconsistency in the expansion at 

0(L ) due to the appearance of a forcing function which is an

eigensolution of the basic linear operator with the conditions 

(3.2.21), can only be avoided if A satisfies the equation

- Ar + AXx + <8 A - A\A^ (5.3.35)

where

5 = (5.3.36)

where is given by (3.2.28). It should be noted that the equation 
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(5.3.35) can be obtained directly from equation (3.2.29) using the

trans forma t ions

-- - t5 2 , X-*  &xX 5 r Sr anA A A/ S x . (5.3.37)

The solutions (5.3.31~35) must match as X-^ll with the solutions 

in the neighbourhood of each endwall where x±L^l. In these end 

regions the amplitude of the motion is small and the linearized form

of the Boussinesq equations may be used. At x=+L the solution for the

temperature 0 has the form

( mn) U 0

"X-2. = X - L , I

where

(5.3.38)

(5.3.39)C '

A . A
and the complex constants ej j=l,2 and the real constant e^must be 

determined from the boundary conditions at x=+L and matching with the 

interior solutions (5.3.31-35). From the latter

£*2.-0 = Ahj) .and (5.3.40)

Similarly at x=~L the solution for the temperature 0 is

A - C Kk -] TTY 1
? J S<n;n-2 Jtk

cc
+ L Z- 5L 

m-v n-.i

Im a) V")

where x, = x + L, and the constant e is real. From (5.3.38,41) and

-2 ,-3 <~
(5.3.41)

with A = A4 + iAx the solution

9 - 1 t £ 2 S>OK1 S.n *4~

R-'

Vv .a J £ U 0

(5.3.42) 
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may be regarded as valid to leading order throughout the fluid. The 

vertical velocity component w can be obtained from the linearized heat 

equation (2.1.28), which in turn enables the horizontal velocity 

component u to be obtained from the continuity equation (2.1.24), 

since the horizontal velocity component v is assumed to be zero.

The boundary conditions at x=+L give the relationships

A, ccsU/v - Ai ( c'u-TT‘r_'Mv/A.ax) ,

A, - Ai cosh.L = ~~ z €3 ,
2<rjc

(5.3.43)

Thus

(5.3.44)

where
v

and L>t- ~ktL +W‘ L .
c

(5.3.45)

Similarly the conditions at x=~L give

_i,b
-Ai "NtA(-u v) - (5.3.46)

where

y I 1 x
«.z- 7 . (5.3.47)

It should be noted that the change in the critical Rayleigh 

number R , due to the introduction of the distant endwalls may be 

investigated by assuming that the rigid endwalls are perfect 

insulators. The thermal condition (5.1.2) becomes

do
tx ' 0 (5.3.48)x-_ t I ,

which is equivalent to7-=0. Hence the conditions (5.3.44,46) on the 

amplitude function A(X,t ) become

144



A(X,t ) = 0 X =i 1. (5.3.49)

As in the case of the stress-free long box, neglecting the 

nonlinear term and the slow time dependence in equation (5.3.35) gives

Axx *SA  = o . (5.3.50)

Solving (5.3.50) subject to the conditions (5.3.49) gives

(5.3.51) 

The value j=l corresponds to the critical Rayleigh number Rc for the 

long box with rigid sidewalls using the 'finite-roll' approximation:

♦ (L»l), (5.3.52)

as obtained using the linear method above.

5.4 Long box with rigid sidewalls

When the sidewalls at y=±a are assumed to be rigid and no 

conditions are imposed on the behaviour of the horizontal velocity 

component v, the simplicity of the previous approaches is lost. This 

is because the eigenfunctions in y are no longer orthogonal and there 

is no obvious way of reducing the boundary conditions at x=tL to 

determine the coefficients of a finite number of eigenfunctions. Thus 

for the long box with rigid sidewalls only a modified version of the 

nonlinear approach used for the stress-free long box in section 5.2 

and the 'finite-roll' approximation for the long box in section 

5.3(2), is considered.

As in the case of the infinite rigid channel (section 2.2) the 

upper and lower surfaces are assumed to be stress-free and perfect 

conductors, thus enabling a solution to be constructed by separation 

of variables. The sidewalls at y=ia are assumed to be rigid and only 
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the case where they are perfect conductors is considered. The 

conditions on the top and bottom boundaries and the rigid sidewalls 

are given by (2.2.1) and (2.2.4) respectively. The distant endwalls 

are assumed to be rigid but not perfect insulators. The thermal 

conditions on the endwalls are

X---L and (5.4.1)

where the parameter L is introduced for convenience, g and h are 

given functions of y and z which are assumed to be consistent with the 

conditions (2.2.1,4) and may be decomposed into the Fourier series

°° A. A 00 A

= Z Z . (5.4.2)
rv=i J a~»

The parameter X is that introduced in section 5.1. The conditions on 

the velocity components at x=+L are given by (5.1.1). It is assumed 

that 2L is large compared with 1 and 2a, and the flow is steady.

It is known from chapter 4 that for the infinite rigid channel 

the solution near the critical Rayleigh number RQ may be expanded in
i

integral powers of a small parameter proportional to (R-R )’’. Here, as 

in sections 5.2 and 5.3 the solution is expanded in descending powers 

of the semi-aspect ratio L. By introducing the scaled Rayleigh number 

8 defined by

R = Ro + 8 L_z (5.4.3)

where 5 is assumed to be order one, and assuming that L>>1 the 

solution for the temperature 9 in the interior of the long box may be 

expanded in the form

(5.4.4)

where * denotes complex conjugate, kQ is the wavenumber associated
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with the critical Rayleigh number RQ, and X and^are slow spatial and 

time variables related to x and t by

X = L"'x , (5.4.5)

Similar expressions also exist for the other dependent variables w,u,v 

and p. The equation for the amplitude function A(X,t) is determined 

from consideration of the second and third terms in the interior 

expansions for the dependent variables, as given by (5.4.4) for the 

temperature 9 . An inconsistency in the expansion at 0(L* 3) due to the 

appearance of a forcing function which is an eigensolution of the 

basic linear system with the conditions (4.4.7), can only be avoided 

if A satisfies the equation

C, S A + Cx/\<x v + Cs/p"') A IA I + C?/P) Av - 0 • (5.4.6)

The amplitude coefficients i=1..7 are determined numerically from 

equations (4.4.34). For the aspect ratios under consideration (ie. 

a=^,^,l and 2) the coefficients are displayed in table 7. It should be 

noted that equation (5.4. 6) can be obtained directly from equation 

(4.4.33) using the transformations

t81 L ' 9 XxX $ v —* t a  -v a  I 8 x . (5.4.7)

In order to complete the specification of A(X,t ), boundary 

conditions at X=il which are fixed by the conditions at the endwalls 

are needed. Initial conditions at^=0 would also be required in time-

dependent situations. The solutions for the dependent variables in the 

interior of the long box must match as X-*-l  with the solutions in the 

neighbourhood of each endwall where xt L~ 1. In these regions the 

amplitude of the motion is small and the linearized form of the 

Boussinesq equations given by (2.1.24-28) may be used. Here the 

solution at x=-L is considered; the solution near x=+L has a similar form.
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In the case of the 'finite-roll’ approximation for the long box 

(section 5.3) the solution at the critical Rayleigh number RQ, near 

x=~L where x, = x + L = 0(1), is expressed as a sum of eigenfunctions 

in y and z each multiplied by three exponential functions of xv which 

remain bounded as x^oo :

0 1 51— Ortm 5>»O QTV1 (5.4.8)

where, for (n,m) i (1,1) 

A H-i
(5.4.9)

where i=1..3 are arbitrary constants and knm4 , k^m5L, W=~^nm3 are 

the roots of the bi-cubic characteristic equation (5.3.5) with R=RQ. 

As the eigenfunctions in y and the eigenfunctions in z are orthogonal, 

when applying the boundary conditions at x(=0 each mode (n,m) may be 

considered independently of the other modes. It is known from section 

5.3 that if (n,m) 4 (1,1) the roots k^mt and k^ are complex 

conjugate pairs with non-zero imaginary parts and thus, 9 nm consists 

of six possible exponential terms, of which three decay and three grow 

as Xt-^oo . The latter are therefore discarded in (5.4.9). If however, 

(n,m) = (1,1), the roots k^ and k^a are purely real and equal. 

Therefore has the general form

(5.4.10)

where ej j-1,2 are complex constants and ej j-3,4 are real constants. 

Of the six terms in (5.4.10), one can be excluded on the grounds that 

it is exponentially large at infinity and two because they are 

algebraically large, since as shown in section 5.3(2) the matching 

condition requires that their numerical coefficients be zero. The 

three unknown numerical coefficients are determined from the boundary 

conditions at xt =0. In this way A(~l,"t), and similarly A(1,t ), are
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fixed.

In principle the same method may be used here but there is one 

essential difference. The eigenfunctions in z are orthogonal and thus 

only the n=l case needs to be considered. However, the eigenfunctions 

in y are not orthogonal and strictly speaking there is no obvious way 

of reducing the conditions at x, =0 to enable the coefficients of a 

finite number of eigenfunctions to be found. Following the method 

outlined by Stewartson and Weinstein (1979) for the related two- 

dimensional long box with rigid lower and upper boundaries (z=0,l), an 

infinite set of eigenfunctions in y must be considered. A typical 

element of the temperature 6 is given by

(5.4.11)

where, for an even solution in y

d, CcshV, y + diCo^kVxvj V • (5.4.12)

Since not all the conditions (2.2.4) are in terms of 0 , the

corresponding element of the horizontal velocity component v is also

needed:

V = ( -i-p^ (5.4.13)

where i=1..3 are defined by (2.2.15). The roots r^ i=1..3 satisfy

(5.4.14)

x z 2 .
and r^ - k + K , where RQ is the critical Rayleigh number for a given 

aspect ratio a. It should be noted that the full end-zone solution is

and (5.4.15)

However, attention may be restricted to the part of 9 that is even in 

y, denoted by GL , since no component of the odd part in y, denoted by 
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0° , remains finite as x v-><p when R=RQ and, therefore, cannot affect 

the interior solution.

Applying the boundary conditions (2.2.4) to (5.4.12,13) gives a 

homogenous system of four equations in four unknowns which can be 

expressed in matrix notation as

CoKdl =tol (5.4.16)

where 

oCosk r(a

CcshGa

s»nVi

, CosVi rya

fk

, (5.4.17)

-i

T 1 t-osk

o
v

and d is the column vector {djri=1..4. For a non-trivial solution of 

(5.4.16) to exist the determinant of the (generally complex) matrix D 

must be zero.

From the (n,m) = (1,1) mode for the stress-free long box (section 

5.2) it is anticipated that there are three distinct groups of 

eigenfunctions, one where k is complex in which case^'I'm and k=km, 

and two groups where k is positive and purely imaginary in which case
— A — A

i’^mKand k=km,km respectively. The numerical computation of is 

tedious, since it requires a search in the complex plane of k. It 

starts at k=kQ and the curve through this point on which the real part 

of the determinant of the matrix D vanishes, is computed. Once a new 

point on this curve is found the imaginary part of the determinant of 

D is computed, thus enabling the points where the complete determinant
— A

vanishes to be computed. The numerical computation of and is
_ A

simpler since km and km are purely imaginary and, therefore the 

determinant of D is purely real. A simple interval bi-section method 

was used to find km and km. A problem that arises is that since km and 
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km are both purely imaginary there is no definite way of dividing them 

into two distinct groups. To some extent this difficulty may be
---- A

overcome by counting the zeroes of (j^^and the related terms in v, 

and grouping them accordingly. Unfortunately, this approach does not 
. . . . — A .conclusively distinguish km and km into two groups. However, it 

should be noted that it is not really necessary to distinguish and 
A

km into definite distinct groups, since this just corresponds to a re-

ordering of the exponentially decaying solutions that exist in the end 

region where xp'1 (see below). The figures 18,19,20 and 21 show plots
_ A

of km,km and km, m=0,1..19 for the aspect ratios a=%,^,l and 2. The 
— A

values of km,km and kffl are displayed in the tables 8,9,10 and 11 for 

a=%,%,l and 2 respectively.

The solution of the linearized Boussinesq equations (2.1.24~28) 

at R=RO, near x=~L, can now be written as where

eE= I" 21
m - c

• r* p A

+ E^^<A^e Jsu-nr^

co CD -'ll
+ L‘Z.5_

m-c n-j.
(5.4.18)

_ A
Here Em are complex constants and Em,Em are real constants which need

- A —
to be determined, ikm and ikm < 0, Im(km)> 0, (m>0),^is complex,

A

and are real, and all the functions Gnm decay as xt-*oo  . The 

corresponding velocity components u,v and w can be easily obtained 

from the linearized Boussinesq equations. It should be noted that when 

m-0, kQ is purely real and there exists an additional eigenfunction of

the form

where
' Eo ( k ,

and 'V”-'V ik" Afe. ' v®' ,

(5.4.19)

(5.4.20)

© is given by (4.1.3) and is the solution obtained from the 
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matrix system (4.3.48) subject to the additional condition (4.3.52). 

However, the matching requirement as x,-*co  implies that EQ=0. In 

contrast to the (n,m) = (1,1) mode for the stress-free long box where 

the solution for the temperature 9 given by (5.2.17), contains three 

exponential functions of x,, here the solution for the temperature 6 

given by (5.1.18), contains four exponential functions of x, . This is 

because here, in order to determine the related eigenfunctions in y, 

it is necessary to consider a coupled eighth order system in0 and v, 

for which there are eight boundary conditions, four in terms of Gand 

four in terms of v. For the stress-free case the related 

eigenfunctions in y can be determined directly from a sixth order 

differential equation in 9, for which there exists six boundary 

conditions in terms of 6 . The corresponding fourth set of exponential 

functions in x are then confined to the solutions for u and v.

By applying the boundary conditions (5.1.1) and (5.4.1) to 

(5.4.18) and the corresponding forms for the velocity components u,v
— A

and w, a quadruply-infinite set of equations for Em,Em and Em is 

obtained. Since there are no obvious orthogonality relationships
. _ A _ A

connecting ,4^and kp , the unknown constants Em,Em and Em need to be 

determined using a collocation method. This involves satisfying the 

boundary conditions on 9 ,u and w at a set of points distributed along 

the line x=-L, |y\^ a and, on v at another set of points. The infinite 

series in (5.4.18) is truncated so that there are as many equations
— A, .

for Em,Em and Em as there are unknowns. Thus, replacing the oo m 

(5.4.18) by m00} the conditions on e ,u and w need to be satisfied at 

the set of points

= O.(Y\ | rv\a mx CM , 2 • “ , (5.4.21)

while the conditions on v^ need to be satisfied at the points
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- tx (. m + i) J ( ■+ «) (5.4.22)

the different sets arising since v^=0 automatically at y=0.

The matching conditions which enable the specification of A(X,r ) 

to be completed are

A (-ht) = Ec and A(»yT) = (5.4.23)

As a first example, the function g (y) in the thermal condition 

(5.4.1) at x = 0 was taken to be

3, = 5 > = » (5.4.24)

— A
and the values of E0,EQ and EQ computed. The value of mw was allowed 

to vary from zero to fourteen, thereby providing a check on the 

convergence of the estimates for EO,EQ and EQ as m^cc . The results 

are displayed in tables 12,13,14 and 15 for a=%,^,l and 2 respective-

ly. In all cases the gross convergence is rapid and the values of
— A A

E^,E^ and E^ seem to have settled down when m reaches fourteen. If g, o’ o o ct

is chosen such that it is incompatible with the conditions at y=Ia ie.
*
g( £ 0 y=ia, an effect known as Gibb's phenomenon is obtained. For 

example, for the aspect ratio a=l and g^ given by

= (5.4.25)
— A

the values computed for EO,EQ and EQ as m^varies from zero to 

fourteen are given in table 16. From figure 24r which shows the 

computed profile obtained at x=-L (it should be the line ^~=^), it can 

be seen that near y=+a the series (5.4.18) is a relatively poor 

approximation to (5.4.25).

In summary, the amplitude equation for A(X,t) given by

C\SA * CxAxx vc4|p-rtv/p^AUf 4 (Ct-vC^/p)AT = o (5.4.26) 
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where the amplitude coefficients i=1..7 are determined numerically 

from the equations (4.4.34), must be solved subject to the boundary 

conditions derived above,

A(->(T)--EceXL and KU.-ch Eo . (5.4.27)

The change in the critical Rayleigh number RQ for the infinite 

rigid channel due to the introduction of the distant endwalls may be 

investigated by assuming that the rigid endwalls are perfect 

insulators. Thus the thermal condition (5.4.1) becomes

(5.4.28) 

which is equivalent to > = 0. Hence the conditions (5.4.27) on the 

amplitude function A(X,'t) become

AW,t)-0 X-it. (5.4.29)

As in the case of the stress-free long box, neglecting the nonlinear 

term and the slow time dependence 'v in equation (5.4.26) gives

(5.4.30) 

Solving (5.4.30) subject to the conditions (5.4.29) gives

f = ?it 2C1/4C1 (5.4.31)

The value j=l corresponds to the critical Rayleigh number Rc for the 

long box with rigid sidewalls:

Rc = Ro + (5.4.32)

Figure 22 shows the correction to RQ plotted against the reciprocal of 

the aspect ratio. The values are displayed in table 17. From figure 22 

it is clear that as the aspect ratio, a-vco, the correction to Rq does 

approach AA , as obtained for the two-dimensional case. As the 

sidewalls are moved in from infinity the correction to Rq decreases at 

first (a^ 2) before increasing (0^ a^ 2), which must in some way be 

related to the fact that the critical wavenumber kQ behaves in an 

almost identical manner (see figure 3). Figure 23 shows a comparison 

of the correction to Ro for the rigid case with both the 'finite-roll'
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and stress-free approximations. It can be seen that for small a, the 

correction to RQ for the rigid case approaches that obtained for the 

corresponding 'finite-roll' approximation. This is expected, since in 

section 2.4(1) it was shown that as a-> 0 the basic eigensolution for 

the infinite rigid channel with perfectly conducting sidewalls is 

equivalent (to leading order) to the basic eigensolution for the 

'finite-roll' approximation for the infinite channel.

For a->o? the limiting value of C^/C, is the same for the rigid 

sidewall case and the 'finite-roll' approximation (see figure 23). For 

any fixed value of m, it is also the same for the stress-free sidewall 

model. Thus all the curves in figure 23 tend to the value as a->os , 

although the asymptotic approach to this limit is different in each 

case. The latter behaviour corresponds to different basic profiles in 

y/a in each case.

a = 0.25

m ^mr Kni -lkm
A

"lkm

0 3.6094 0. 11.609 16.806
1 5.4533 15.281 21.176 30.241
2 6.6672 27.965 32.854 43.152
3 7.4128 40.594 45.018 55.906
4 7.9530 53.199 57.357 68.590
5 8.3772 65.793 69.778 81.238
6 8.7267 78.380 82.243 93.864
7 9.0240 90.962 94.735 106.476
8 9.2826 103.541 107.244 119.078
9 9.5116 116.117 119.765 131.673

10 9.7170 128.693 132.295 144.263
11 9.9032 141.266 144.831 156.850
12 10.0735 153.839 157.372 169.433
13 10.2305 166.411 169.918 182.014
14 10.3760 178.982 182.465 194.593
15 10.5116 191.553 195.015 207.171
16 10.6386 204.123 207.567 219.747
17 10.7581 216.693 220.120 232.323
18 10.8707 229.263 232.676 244.897
19 10.9774 241.832 245.232 257.470

Table 8. Eigenvalues of and for aspect ratio a =
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a = 0.5

m v ^mi 'lkm
A

0 2.7021 0. 8.0409 7.6419
1 2.7017 8.0134 11.8969 14.6941
2 3.2950 14.2156 17.2748 21.2783
3 3.6802 20.4661 23.1261 27.7236
4 3.9585 26.7322 29.1618 34.1085
5 4.1756 33.0052 35.2854 40.4616
6 4.3535 39.2819 41.4575 46.7957
7 4.5043 45.5606 47.6589 53.1178
8 4.6352 51.8407 53.8794 59.4316
9 4.7507 58.1217 60.1130 65.7395

10 4.8543 64.4032 66.3561 72.0431
11 4.9480 70.6851 72.6061 78.3434
12 5.0337 76.9673 78.8613 84.6412
13 5.1125 83.2497 85.1207 90.9369
14 5.1856 89.5323 91.3834 97.2311
15 5.2537 95.8150 97.6487 103.5239
16 5.3174 102.0978 103.9162 109.8156
17 5.3773 108.3807 110.1855 116.1063
18 5.4339 114.6636 116.4563 122.3963
19 5.4873 120.9466 122.7283 128.6856

Table 9. Eigenvalues of and
A

for aspect ratio a =

a = 1.0

m ^mr
. A

-tkm

0 2.2315 0. 6.7124 3.4176
1 1.3625 4.2257 8.0569 6.8013
2 1.6900 7.4024 10.1006 10.2676
3 1.8427 10.4864 12.7210 13.4966
4 1.9683 13.5853 15.4981 16.7455
5 2.0745 16.6931 18.3973 19.9653
6 2.1642 19.8081 21.3681 23.1657
7 2.2410 22.9286 24.3836 26.3529
8 2.3079 26.0532 27.4285 29.5308
9 2.3670 29.1810 30.4937 32.7019

10 2.4199 32.3111 33.5734 35.8680
11 2.4677 35.4431 36.6639 39.0302
12 2.5113 38.5766 39.7626 42.1895
13 2.5514 41.7112 42.8676 45.3463
14 2.5884 44.8467 45.9777 48.5011
15 2.6229 47.9830 49.0918 51.6544
16 2.6552 51.1200 52.2093 54.8063
17 2.6855 54.2574 55.3295 57.9572
18 2.7140 57.3953 58.4521 61.1071
19 2.7410 60.5336 61.5766 64.2561

Table 10. Eigenvalues of and for aspect ratio a = 1.
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a = 2.0

m ^nr ^mi
A

-lkm

0 2.0977 0. 6.3573 3.2066
1 1.4483 1.3091 6.7342 4.1713
2 0.6986 3.3727 7.4330 5.0061
3 0.8693 5.3170 8.3678 6.4575
4 1.0083 6.9370 9.4665 8.0450
5 1.0770 8.5070 10.6972 9.6584
6 1.1220 10.0656 12.0049 11.2637
7 1.1538 11.6212 13.3657 12.8681
8 1.1785 13.1783 14.7669 14.4674
9 1.2001 14.7376 16.2064 16.0550

10 1.2204 16.2984 17.5967 17.7126
11 1.2400 17.8602 19.0879 19.2860
12 1.2588 19.4226 20.5789 20.8724
13 1.2768 20.9855 22.0790 22.4600
14 1.2940 22.5488 23.5882 24.0469
15 1.3103 24.1125 25.1050 25.6327
16 1.3259 25.6766 26.6284 27.2172
17 1.3407 27.2411 28.1573 28.8007
18 1.3547 28.8060 29.6907 30.3832
19 1.3681 30.3713 31.2281 31.9647

_ A
Table 11. Eigenvalues of 4^, and for aspect ratio a = 2.

A

a = 0.25

m E^ E • E^ Ez,Or Ol 0 o

0 0.02746030 -0.00742569 0.02420469 -0.01724982
1 -0.00439593 0.00139250 -0.00638784 0.00015642
2 -0.00440161 0.00138201 -0.00639104 0.00018774
3 -0.00440168 0.00137866 -0.00639073 0.00019303
4 -0.00440173 0.00137780 -0.00639066 0.00019432
5 -0.00440179 0.00137757 -0.00639067 0.00019475
6 -0.00440184 0.00137751 -0.00639069 0.00019493
7 -0.00440187 0.00137751 -0.00639072 0.00019501
8 -0.00440189 0.00137751 -0.00639073 0.00019505
9 -0.00440190 O.OO13775O -0.00639074 0.00019508

10 -0.00440188 0.00137745 -0.00639071 0.00019510
11 -0.00440330 0.00138024 -0.00639210 0.00019471
12 -0.00440203 0.00137773 -0.00639086 0.00019508
13 -0.00440200 0.00137768 -0.00639083 0.00019509
14 -0.00440200 0.00137766 -0.00639083 0.00019509

Table 12. Variation of computed va lues of EQ, EQ
A

and Eq with the

number of eigenfunctions used ( g = a~ - y2" ) where the

eigenfunctions , % and have been normalised such
— A

that 4Jc - = 1 at y = 0.
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A

a = 0.5

m ^or EOt Eo Eo

0 -0.1780620 0.0523167 -0.1477422 0.0857448
1 -0.0329854 0.0113967 -0.0435282 0.0101714
2 -0.0330306 0.0112742 -0.0439423 0.0086192
3 -0.0330153 0.0112149 -0.0439156 0.0086647
4 -0.0330097 0.0111966 -0.0439069 0.0086762
5 -0.0330078 0.0111903 -0.0439038 0.0086801
6 -0.0330073 0.0111879 -0.0439027 0.0086818
7 -0.0330072 0.0111870 -0.0439022 0.0086826
8 -0.0330072 0.0111865 -0.0439020 0.0086831
9 -O.O33OO7O 0.0111860 -0.0439017 0.0086833

10 -0.0330060 0.0111844 -0.0439010 0.0086834
11 -0.0330328 0.0112234 -0.0439187 0.0086859
12 -0.0330104 0.0111907 -0.0439038 0.0086839
13 -0.0330096 0.0111895 -0.0439033 0.0086839
14 -0.0330093 0.0111891 -0.0439031 0.0086839

Table 13. Variation o f computed values of E , EQ
A

and EQ with the

number of e igenfunctions used ( g( = az - y" )•

A

a = 1.0

m E^ E • E^ E_or Ol 0 o

0 -0.155257 0.063734 -0.216068 0.048540
1 -0.197681 0.059431 -0.218273 0.011666
2 -0.196359 0.060284 -0.210219 0.093519
3 -0.195950 0.059447 -0.209833 0.091031
4 -0.195800 0.059147 -0.209773 0.090408
5 -0.195738 0.059026 -0.209747 0.090180
6 -0.195709 0.058972 -0.209734 0.090082
7 -0.195695 0.058945 -0.209728 0.090034
8 -0.195686 0.058929 -0.209724 0.090005
9 -0.195677 0.058915 -0.209719 0.089976

10 -0.195653 0.058884 -0.209704 0.089907
11 -0.196017 0.059318 -0.209929 0.090933
12 -0.195732 0.058978 -0.209754 0.090130
13 -0.195717 0.058958 -0.209744 0.090085
14 -0.195711 0.058951 -0.209741 0.090070

~ A
Table 14. Variation of computed values of E , EQ and EQ with the

. . A nnumber of eigenfunctions used ( g = a “ y" ).
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a = 2.0

m Eqt Eoi Eo
A
Eo

0 -0.743599 0.505081 -0.869939 -0.183541
1 -0.943520 0.300359 -0.825737 -0.179522
2 -1.008968 0.247698 -0.815937 -0.366162
3 -1.016348 0.252770 -0.815702 -0.389689
4 -1.013393 0.251916 -0.814255 -0.365890
5 -1.011833 0.251032 -0.813924 -0.357882
6 -1.011094 0.250568 -0.813718 -0.354684
7 -1.010689 0.250306 -0.813597 -0.353138
8 -1.010436 0.250143 -0.813518 -0.352259
9 -1.010235 0.250019 -0.813455 -0.351613

10 -1.009910 0.249841 -0.813353 -0.350630
11 -1.012082 0.250926 -0.814014 -0.357028
12 -1.010566 0.250156 -0.813550 -0.352550
13 -1.010411 0.250074 -0.813502 -0.352091
14 -1.010348 0.250039 -0.813482 -0.351903

— A
Table 15. Variation of computed values of E , EQ and EQ with the

number of eigenfunctions used ( g = a" ~ yx ).

a = 1.0

m Eor Eot Eo
A

Eo

0 -0.077629 0.031867 -0.108034 0.024270
1 -0.115210 0.032937 -0.128818 0.076875
2 -0.118142 0.034669 -0.128347 0.067918
3 -0.119055 0.034309 -0.129417 0.068204
4 -0.119479 0.034156 -0.130190 0.068676
5 -0.119719 0.034096 -0.130618 0.069002
6 -0.119869 0.034071 -0.130878 0.069224
7 -0.119969 0.034061 -0.131047 0.069378
8 -0.120039 0.034055 -0.131163 0.069487
9 -0.120087 0.034050 -0.131245 0.069561

10 -0.120113 0.034034 -0.131300 0.069588
11 -0.120355 0.034289 -0.131478 0.070235
12 -0.120213 0.034092 -0.131413 0.069809
13 -0.120223 0.034082 -0.131437 0.069814
14 -0.120235 0.034079 -0.131459 0.069831

Table 16. Variation of computed values of EQ, EQ and EQ with the 

number of eigenfunctions used ( g( =0.5 ).
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a RQ Correction to RQ

0.25 6734.035 1435.180
0.50 1654.742 675.897
0.75 1023.068 508.046
1.00 827.566 430.475
1.25 744.772 381.955
1.50 704.887 353.283
1.75 684.480 341.578
2.00 673.598 341.410
2.50 664.041 354.656
3.00 660.583 369.391
3.50 659.128 380.759

Table 17. Correction to the critical Rayleigh number RQ due to the 

introduction of the distant endwalls for various aspect ratios.
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the rigid case (curve a) with both the 'finite-roll'

(curve b) and stress-free (curves c,d,e) approximations.

Curve f indicates the limiting value as a-*oo  .
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.70,

for the aspect ratio a = 1 illustrating the Gibb's 

phenomenon.
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for the aspect ratio a = 1 and conducting
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Chapter 6 The infinite channe1: nonlinear theory for rigid sidewalls

Part 11

6.0 Introduction 
. . 2

In this chapter the y-dependent functions at order E in the 

'weakly' nonlinear expansion considered in chapter 4 for the infinite 

channel with stress-free upper and lower surfaces and rigid sidewalls, 

are determined. The reason being, from Cross et al (1983) it is known 

that in order to predict the number of rolls at the onset of 

convection in long two-dimensional boxes it is necessary to determine 

not only the first amplitude equation (obtained at order £z' and 

already derived in chapter 4), but also the higher order amplitude 

equation which is obtained due to an inconsistency in the expansion at 

order However in this chapter only the expansion at order is 

considered. The theoretical prediction of the number of rolls at the 

onset of instability in long three-dimensional boxes is investigated 

in chapter 8.

6.1 Expansion at 0(e x )

In chapter 4 the solutions for the dependent variables at order 

£ and £ are given by (4.1.2) and (4.3.9,14,18,22,23) respectively. 

It should be noted that for the purpose of finding the amplitude 

equation for A, the complementary solution of equation (4.3.8) can be 

taken to be zero. However, in order to determine the higher order 

amplitude equation, the complementary solution of (4.3.8) must be 

taken into account. Thus, the complete form of the solutions for the 

dependent variables at order £ are
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+ G-c)cc$»vl 4- iV1iy)Ujie'^C-c.c')cosTvi +~V2bAk e 4C-c) CO51TVL

)coS2R7 -GCj

+ ) Costi ve  * p

t WtelX.f ) A^-ckeS^ tW(5x^c< ) Co5TV? 4 ~

(6.1.1)

where F is given by (4.3.34) and B(X,t ) is an arbitrary amplitude

function.

At order e7" , the Boussinesq equations (3.1.16~20) and the 

boundary conditions (4.1.6) yield the equations (4.4.1~5) and the 

conditions (4.4.7). The dependent variables are determined by 

following the procedure outlined in section 4.3, where the dependent 

variables at 0(f) are determined. Thus, in section 6.2 the basic forms 

of the dependent variables are constructed; the numerical 

determination of the various unknown functions of y that occur in the 

solutions is described in section 6.3.

6.2 The basic forms of the dependent variables

As in the linear theory, by eliminating the variables in 

equations (4.4.1~5) a single sixth order differential equation for the 

temperature 63 , given by equation (4.4.8) is obtained. It should be 

noted that the terms are not relevant here and have been omitted. 

Expanding the right hand side of (4.4.8) gives

V?6- 3 - UA, IB* _ c-c -v p V b4s( Ac +c-e.)+ +< <3 4-n VAAA A^^+c -c )

■¥ \ A t> -V- C-c)J SiniTTi -r p +C-c) -V tA\5 ( A A )( A C - G )J 5! a  '5TVi
(6.2.1)

where * denotes complex conjugate and M£ i=1..15 are given in (6.2.4)-

(6.2.17) below. From the amplitude equation (4.4.33) it is known that 
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Aa = '^[c,A + ^*c 4/p + c s |p1')AIaP + Ut + Cf/P) At (6.2.2)

where i=1..7 are the amplitude coefficients which are determined 

numerically from equations (4.4.34). For convenience substituting

(6.2.2) into (6.2.1) gives

S.rTu? -V pl+ (Me - K<,*C?iP))(A?  Ale) * >AqlVe’^c c)]

■fMu(AB^ + ccVtA>-5(A8xc.c)]s,n2ztt^M,A(At'!t‘o<.VM,5UKXKe‘hc-c)]
(6.2.3)

which implies

- — c - c - - .w S-.aTti

+ "p I % CaAa J A--c ch ®rAAB</V^X+ c -g ) ■*  a-c -g ) ] Sinzrvi

A ^V®,4UV5Hc.eU ©^(AA'JlAs'^c.c 

where

t ©,=k .=-2^ ,

Ms-£rtt =

(6.2.4)

(6.2.5)

(6.2.6)

cir 1 l

(6.2.7)

(6.2.8)

(6.2.9)

\c
f - A ? - R J- 4|<)] c r. rA vo = i { (K " I' b + € 3 - U @) J

cv cb" J

,+ l^-^)l2PLVl-l-''Ux)-(l'c^)[<,t + !-pP(.1+^ uvll * (p.T.o)
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(6.2.10)

= 4 - £ u©3

p£« "2koUWl + V*  ^(UV)-’pT 1 ,

®lx-- Kz = P4«X1)\€, + trc) - 4£X^ + )

-r2KL^M£1A+ e7c) ~ JZj U^6 + ^64)] ,

I (r^“4n^-Rc^-]®>3 =k ,3 - Kiy-i (^ +1fc5) 3

(6.2.11)

(6.2.12)

(6.2.14)

(6.2.15)

I *\^-Vc  C- M jy-k?)l =M>£ - fl e 6 r e?5+zU4+ ^)] - + 2 £<^ J

4^“V^tts3 + f,5-t2£tx)-~ (£4£v^3 + 2E^e-t2£q6Yj (6.2.16)

tAfe= 2k:Pil^x-^r[3©,-t®3-£gl^-0<x)a-Ro®v-€k3Vj } (6.2.17)

and the £ 's, which are real functions of the dependent variables 

obtained at order £ and £ , are given by (El) in appendix E. $c is a 

possible complementary solution of (6.2.3) which for the purpose of 

finding the amplitude equation for B can be taken to be zero.

From the heat equation (4.4.5) the vertical velocity component w3

has the form 

u J3-l V4VBx ^ -c-ds.mvzv [ VlsU*?^  c.c) 4 VJ^(A A )(Ae + c-c) tVJ^ ( A^e^\c -c)+ Wq(A3e7^Ht.c)] sirvni

* I vMUx ^-c-c) * vjtl( A*A x- -c <) vvJ^tABe^’ 4C-c)-*vJ^  (A B + c-c J] Sir\zn2

4- t VI ( A <-’5 4 c.c ) -V Vl,g(AA )( c.c ) ] StGJ-nz

where

(6.2.18)

(6.2.19,20)
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vi, -1 4 4 ■j;^c,+c+|p+Cs/p1Xe-2k®,], (6.2.21)

(6.2.22)vl^= - p 4 © 4 >

Vl,,= -^-q* W4f*4M, \4,s--7[-(AV”'-^)®l!4r‘t£^-+2^,e^J (6.2.28,29)

vj „= y (4^n®®"+i'l'c4+t f”'ku@), (6.2.25)

(6.2.26,27)

and the £ ’s are given by (El) in appendix E. The form of the solution 

for the pressure p is obtained from the w momentum equation (4.4.4). 

The form of the horizontal velocity components v? and u3 can then be 

obtained using the horizontal momentum equations (4.4.3) and (4.4.2). 

Having constructed all three velocity components a consistency check 

is provided by the continuity equation (4.4.1).

Equation (4.4.4) gives

- -c-ckcsnr + [P5 (he + c<) + f?(AA +cc)+^^ CesKi

+ V P»4(a Vv^ c . <-) + P^hA*)!  Cessna -+ $(x,%x/v)

where

p5--4[p®4^®5-4P(^-o<'W5-S(-2Pk.'Ai,
‘ J Cx

+ pv4)]t

(6.2.30)

(6.2.31,32)

-i2l-i€2-5 “?^^+i€«q)-^(C?^C4|P4.Cs|Pxy-ZPUovJl'-M^6’2‘33^

(6.2.34)

Pq“ Pc.G)q * P ( dj/. 'Tf ) V4q - ~ £ 66 ) T (6.2.35)

Pio - Ro -4* z)vk. + - £16 " p ■ ^uv7 » (6.2.36)
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(6.2.37)P.,= + 7

P.i= -^r[Ro©,l+Plj^l'+c<z)W,l-El1-tfc], P,3 = "7^VP«®B+P(a^”'lrl)'^B'^is*£nT, (6-2.38,39)

(U-. ,Pis =-3Up«©1^P(^-^-^K. (6.2.40,41)

-Ejq- 2-^Zl -L^£^S +2^6£,H
e — _ p

and G is an arbitrary function of x,y,X andr .

Expanding the right hand sides of (4.4.3) and (4.4.2) gives

v3- vVjBxe^?c-c)cos^z +~pl V?(Ae*̂+c.c)+  V7(AA J(Ae^\c<) c.j -tV<j(Ae3 +Cc.c
Ccs-TT^

CcSxTI?

(6.2.42)

and

= WA8»c5Mc.cU^ + ^Uf(^tc)*U,lKRXA' Vk-c.c)*  ^(Aie^c c) * U^AV'bc.c).

- ?I U.e(AAxeife;t.c) + Uu ii\% •* c-c) + Uiat^SC -c-c) + U13 ("AB + A t) J Ccsjrr?

CcS''^.

+ elU1+(Ae -c.c)+ Uu(RA )(A'-’^‘'- cell >

where

v Aw

(6.2.43)

(6.2.44,45)

+ +2.VC^+£47))“(c3+C4^Cs]p2X?^opV}-pV), (6.2.46)

^p6 + v - j;kct^T|p)(iKPV-pV)( (6.2.47)

(6.2.48)

t ^-4«xblc=^„-. ip,o+a-8k«Vx^ y+ (6.2.49)

-?KUV) (6.2.50)

(6.2.51,52)

(6.2.53,54)

f

j
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£= +*£f"*2£®^ ’^C^C4'P+C5/p2^r'1, (6.2.57)

and v? and u? satisfy

l^-“<JU8=^k»Pe4tU'c;^C^CT/p)(p,-xkoU.-^U)], (6.2.58)

[ <X -- 11p, * f Gj 4* ^)], (6.2.59)

(6.2.60)

i^x-4 ^r3Uu = * "p Exq * *jr  f-ir , (6.2.61)

v(xkoBx-t T - C l£xS- +E?1) 3 (6.2.62,63)

V vV^kcP^-*  } "k”3^,7 = blkcp|5--*"^l£33  +^?-q

+ S-igl)”]

(6.2.64.65)

t£-58+ fe6]lAB«n Xc-c) A U?q + £e7J(AB+C.C) %)

+z^UVMAAx  e -c .c )+v Vy ^ + ^3”^;U\/]^*A x -c<) (6.2.66)

and
PVu u.3 - + vt Ext*  £?z.llk£erlk_c.c) vl Sk.U4 + -p( t7c-t fit) + +c.c)

+ [ pV^+W*££  ^-v2F2'l^XA5r + c.c)+ ||- (6.2.67)

where the £ ’s are given by (El) in appendix E. In addition v? and u3 

satisfy the two-dimensional continuity equation

- (6.2.68) 
1)X ' 2)S<

In order to complete the basic forms of the horizontal velocity

components it is necessary to determine v3 and u?. The right hand

sides of equations (6.2.66,67) suggest

v3 = -^1 Vjt (ABen^c^ c.c) + bVri lAAx <’ - c-c) 3 f (6.2.69)
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u,= Vl'Ak (UA’.e). U,e(.A*A^c.c)J  (6.2.70)

and

S ' 9t lABer^^c.c) 4 uSx(AAx^iV^lXc.c) ■+ 95(Afe*4-c.c)+  i94(A*Ax' t'c)4'V*̂/^*̂*  

where G£ i=1..4 are real functions of y. The boundary conditions on v? 

and u5 are

v^-U3-o tj = +a (6.2.72)

which from (6.2.68) are equivalent to

v? ~ 5 ~ ° ’j-z.-ta. (6.2.73)

Substituting the forms (6.2.69,70,71) into equations (6.2.66,67) gives 

[ - -zLliU(t3g^ £8j  - (6.2.74)

8fe” -4-^-^) ^U4--ztlxM-^V4 + ^(£4z+Elle)s^UV)

+ + p” ^b)- IT 4 sT,) J

where V£ 1=16,17 satisfy the conditions

9\t - V\7 - 77|^'c " - O q - ta.
«j cvj

Also

^'6- zfc L U4+i ,

Sz - Zkd' p Uyc + + aF»1 ,

S3 - "I (£s«i+ £37) dq <Mid 94.” “ L> P ~2-kt J cAj •

The overall mass flux down the channel at 

approximation is given by

(6.2.75)

(6.2.76)

(6.2.77,78)

(6.2.79)

(6.2.80)

(6.2.81,82) 

this level of
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and it is easily shown from (6.2.77,78) that i=16,17 make no 

contribution. In chapter 8 the infinite channel is considered to have 

rigid endwalls in which case the overall mass flux must be zero. 

However, there is generally a contribution to the overall mass flux
. Fo . .

from Uie unless the pressure gradient x , arising from the pressure 

at the previous order, drives a Poiseuille~type component of flow of 

sufficient strength to counteract the forcing terms that generate Utp. 

Thus

Fo= C|/X c.nsW (6.2.84)

where C is a constant to be determined, so that from (6.2.67)

p + £ 77) + S 4 iFz 4 6. (6.2.85)

It is now convenient to write

- A
U»g - -v

where
<£ _ x,

and

^’8 ' C > -c j-1 a .

(6.2.86)

(6.2.87)

(6.2.88)

The solution of (6.2.87) is obtained numerically while that of

(6.2.88) is the Poiseuille flow

Utg = o) . (6.2.89)

The constant C must be chosen as

+■ ex
C * “X f Sip Ju (6.2.90)

so that the overall mass flux (6.2.83) is zero.



The basic forms of the solutions for all the dependent variables 

have thus been obtained. By applying the Laplacian operator to the 

continuity equation (4.4.1) a consistency check for the z-dependent 

terms in the three velocity components u?,v3and w5 is obtained, and 

is found to be satisfied.

6.3 Determination of the y-dependent functions in the basic forms

(a)®  j,Vj >1,5,7,8

The y-dependent functions ©, and V, have been determined in 

section 4.3. In order to determine the y-dependent functions 

i=5,7,8 in the temperature $3, and i=5,7,8 in the horizontal 

velocity component v?, numerical methods need to be used. From 

(6.2.6,45) the coupled functions ©5,V5 are given by

©s=P(£)s and V5-PVS (6.3.1)

where

E 5V5-) - ~tlfi) tn£-0 (6.3.2)

and

(6.3.3)

-^Wl, (6.3.4)

Nt,-- (6.3.5)

Similarly from (6.2.7,46)

©,>L+P®7 and + p V7. (6.3.6)

where

, mflejho (6.3.7)

(6.3.8)

[ ,N?-, rn£(®7.,V7tc> y = (6.3.9)
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and

M7- ft>+ e5r.7 + 2lt»c+£^')l + ^.Sn*  ^6? + 1(513*  ftq)] *5Vt ^47 v £45 + H ^\°\ + )]

V€S*  ^ + 2.(^0*̂ )],  M],

H7-€tT+2-(&5-*'  £a<0] +-^UM535*£g t + ^e?)-^Ua?

4( ^H^*-^7.+1(£2 s +£64)1 t^V £41+^5^2t*̂2q 7)] ]

* +£<^7)]]

(6.3.10)

Finally, from (6.2.8,47)

®8-©?+p©g and VVg + Pv'g (6.3.11)

where

iff >^e ”cf *̂>1  0?£(.®e ,Vg)- 0 j - (6.3.12)

[ (.®f,Vek ^(A8-gM6,^-C‘iJt), cnf(®e,V6hO n=ia (6.3.14)

and

a* = V-

(6.3.15)

It should be noted that each of the matrix systems (6.3.2,7,8,9,12,14) 

is a non-homogenous form of the basic linear system (4.2.4). From 

section 4.3 and appendix D, it is known that the condition needed for 

the existence of a solution of (6.3. 2) say, is

+ c

f a (6.3.16)
vj - - C\ '“x J J

A. A

where f^and f^are solutions obtained from the matrix system 

(4.3.60). Similar conditions exist for the matrix systems 

(6.3.7,8,9,12,14). The amplitude coefficients C, and C^are given by

+ a a _ + <A

c(- J *l gHs 1 dj and c7-f [f^*-fJU  ] (6.3.17)
u - - (A u□
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Thus, it is clear that the condition (6.3.16) is satisfied and a 

solution of the system (6.3.2) exists. Similarly, the solvability 

conditions for the systems (6.3.7,8,9,12,14) can be shown to be 

satisfied. In all, the solutions of six eighth order systems need to 

be determined.

In each case a fourth order Runge-Kutta process is used to 

compute the solution from y=~a through to y=+a, following the 

procedure outlined in section 4.3. The general solution, say in the 

case of (6.3.2) is therefore given by

= (6.3.18)

. A
where the arbitrary constants qj j=1..4 are determined by applying the 

four known conditions at y=+a. This gives a non-homogenous system of 

four equations in four unknowns which can be expressed in matrix 

notation as given by (4.3.80). If E i E(ko7r), the determinant of the 

matrix f in equation (4.3.80) is non~zero and the constants q- j=1..4 

can be determined uniquely. However, if E = E(ko,Tr), as in the case 

for the matrix systems (6.3.2,7,8,9,12,14), the determinant of the 

matrix fQ is zero. In this case the value of q^(say) is assumed to be 

a known arbitrary constant, thus enabling qj j=1..3 to be determined 

using Cramers' rule. It should be noted that the solutions for 

i=5,7,8 are not unique since in each case the value of the constant q4 

is arbitrary. This non-uniqueness is equivalent to the addition of an 

arbitrary constant multiple of the basic linear solution for @ and V 

to % and v3 , which plays no part in finding the amplitude equation 

for B.

(b)€>  j ,Vj i=9..15

The y-dependent functionsi=9.. 15 in the temperature 63, and 

V{ i=9..15 in the horizontal velocity component v3 are determined
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numerically. From (6.2.9,48) the coupled functions®q ,Vq are given by

+ p

where

and \/q-Vq+PV(^ + "p Vq (6.3.19)

[ a^'£(3ke,rfl£(®sVq) ,

m £ (G)qv Vq) -0 3 - ±*>
(6.3.20)

ffl£(®„Vq)=o (6.3.21)

t_n£ ) " ^ y^la (6.3.22)

(6.3.23)

M q - - V^+ €bbW I 3k A 13 A

Fran (6.2.10,49)

= tP©,o and Vvo - i.V(o + t.pVic (6.3.24)

where

ll1-iv^.^'j£l©1o(vj = , (rf(©,o,V,o)-o J=ta,

[ Ij "E^2<]f(@AeV <2('lAo) , m£(@,o,vj = ° y=ta

(6.3.25)

(6.3.26)

/< 
H

h .«t - - su£r4«0 [V etx+ h^£,cd

+ 4kc[-icl'R«£qS-Tr(?2V. + e74li A"=3+ +*4C +f»8h »

he = A £-4<xl) tlt + i E1(+f«. * t\o * ?efe *aV,05l},

bhe ~

A __

and Vu = vVu + vPVu (6.3.28)
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where

(6.3.29)

[ Ko,if )]P(,©„,>/«) = <?Am„,n 11) , ™£(®UrV„) =0 tj= + a (6.3.30)

and

A„ = ’Vws

M ^E»i) + z-(^, + £e<''zteA^h,

M» = ^‘”4ir2’ ^4'*E 55- , ^u"'7-nA^'^^rzV'’4)- (6.3.31)

From (6.2.12,51)

and V,.!-'VF>4 (6.3.32)

where

l®n,Vlx)= , * A
rn£k , Vta.) - O 5~±a>

(6.3.33)

I ' E(^.,aK)]f (®1XfYj = £ (Hlt, , £q £^©u , ViJ - ° y-±a (6.3.34)

(6.3.35)

From (6.2.14,52)

- ©13 + P®I3 and X5=X?+PVI3 (6.3.36)

where

[ £-E^o cn£(®t7sVt?) = o (6.3.37)
CUJ -

, m£ ^®tJ,V's)a-iQ (6.3.38)

From (6.2.15,53)

and VVVp^

(6.3.39)

(6.3.40)
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where

[ r< (®,4,vj = ^4,M , so£(®,4,vj = 0 y--t«, (6.3.41)

[ V^>3n)^®^' = £?£^®l4,^lj-° = (6.3.42)

I Jj ■EC5''ol3Wfl£(©l4N<4)'^1^14 < rn£(®M?4h0 Vtrt (6.3.43)

and

*M3kj£„*e„J-^(£44 'r ,

V- J ,

M,4 - + ^tsVolf-sx + E-f'e) - S<ii )1 ,

N,« = x/ 4*  +?tr[ + 4j} . (6.3.44)

Finally, from (6.2.16,54)
n  — r-'

©15 ~ ~p an<3

where

[ “-^S3^]£t®ir,Vv5) ,

[ i@is5VlS) - ?A KvSjt^sk

^15 ~ +
z^/

(6.3.45)

rn£ teisjVis) - 0 (6.3.46)

rg£k@IS ,VIS) = o (6.3.47)

rn£(@»5,Vis) -° rtQ (6.3.48)

k\4S- [?6 *̂55  **(.£<*■  + *̂n 4 ^6?) ] T ?TrLk1^33+^qq+ z€£7.)

- T^^5A£q3+2A6Jr7Ae^ 5

^\5" 3TT 'ko);-^ V^6+^5-f + U€q-r^5^J r *6>S f £&?)] 4 ^3 V1^A?4’ ^6^ 7

Ml5z-t^x-^)[^+efcs+^+£66)]^^rVko(^ETq^)--^(s45^q5^(£\8 + ^t))] ,

CqJlL

Q_
-4KX-Vo) [ €fc*€ S5 +*Uq+S 5e)] ,

-r- ~ k2 K ^65 +rl€T.i+^£^) J -v 3Xfho(?33+ ^q-* 
dJ

(6.3.49)
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In all, the solution of fourteen eighth order systems need to be 

determined. In each case a fourth order Runge-Kutta process is used to 

compute the solution from y=-a through to y=+a, following the 

procedure outlined in section 4.3. The general solution, say in the 

case of (6.3.41) is therefore given by

where the arbitrary constants qj j=1..4 are determined from the 

boundary conditions at y=+a. In contrast to the solutions for 

i=5,7,8 the solutions for i=9..15 are unique since E 4 E(ko,Tt),

thus the arbitrary constants qj j=1..4 can be determined uniquely (see 

section 4.3).

It should be noted that a comparison of the matrix systems

(6.2.33,34,37,38) with the systems (4.3.75a,75b,76a,76b) respectively,

shows that

and ©,3-=Z©3 ; . (6.3.51)

(c) Vl6,,T

From (6.2.74,75) the y-dependent functions and in the

horizontal velocity component v3 satisfy the matrix systems

respectively. The two fourth order systems (6.3.52,54) are solved

(6.3.52)

where

(6.3.53)

and

(6.3.54)

where

"^42"%) (6.3.55)
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using a fourth order Runge-Kutta process. In contrast to the eighth 

order systems considered above, here only two complementary solutions 

need to be computed. The general solution for (6.3.52) say, is 

therefore given by

£ + ?rWJ (6.3.56)

where the arbitrary constants qj j=l,2 may be determined uniquely from 

the boundary conditions at y=+a. A comparison of the matrix system 

(6.3.52) with the system (4.4.83) shows that

(6.3.57)

(d) The other dependent variables

Having numerically computed i=l,5,7,8..15 in the temperature

9-5 and i=l,5,7,8.. 15 in the horizontal velocity component v? , the 

y-dependent functions i=l,5,7,8..15 that appear in the vertical 

velocity component w3, may be obtained from the relationships

, (6.3.58)

\JS- Vl5- " i (6.3.59)
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-- i w„+f w„ --t ®„ ■*-  4 * i „ - ■*  £ 1,

-1-1$- -rW VM+J,

(6.3.64)

(6.3.65)

(6.3.66)

(6.3.67)

and

(6.3.68)

which are obtained from equations (6.2.19~29). The y-dependent 

functions i=l,5,7,8.. 15 in the horizontal velocity component u^may

be obtained from the second order differential equations below. From 

(6.2.55) Uj satisfies the second order differential equation

From (6.2.56)

Us=‘l ?Us (6.3.70)

where

Ct .
(6.3.71)

From (6.2.57)

= 11U}*  put .+ j  Ui] (6.3.73)
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where
A ,2 lX^8+ *54  + ^u>+£s«0']- U£»*€fc4)  + 11^23 + *6«)]]

(6.3.74)

(-Ur , _ (6.3.75)
U.4-0 4 - + a

From (6.2.58)

11$ - uiUg, v P 11 gj (6.3.77)

where
* * ,.r * + LM ^Ur 5 J--ta (6.3.78)

^•u« V° r-t*-
Li

(6.3.79)

(6.3.80)

where

£56]

€Vo)}$. U^-0 VjxlQ^
(6.3.81)

[-
X

est)}5 Vo y,ta (6 3 82)

From (6.2.60)

UK-- Uto+P^o (6.3.84)

where

y£. -^<Kr) (9|C~ EkoV^x 4°*  )f<^ + Skcfqcj-£|6- £42. fioxj

and

♦ r F'ov' ^'40<1,4n- R.£,e *w(8ka\„*£«*  fT4-^Aj] (6.3.85)
*
lA\o" — i ex
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(6.3.86)

From (6.2.61)

Qu- Uu+-PUu (6.3.87)

where
[T/‘'"d«.r--^£-««*£f/ 4n*>W3 +P-A] * *̂€,5  *

and

A

z£ 5 3=-a (6.3.88)

Uu - o y c la • (6.3.89)

From (6.2.62)

where

UlQ.” t P Ua-2. ) (6.3.90)

,X A
(6.3.91)

and

[- -V<x]Uii-( Ulx-0 r- tcX.
(6.3.92)

From (6.2.63)

ll»3 - O . (6.3.93)

From (6.2.64)

where

~ tA PU14 ■*" p (6.3.94)

[^^U,<--^{Ro©,4-^-^r®,4+^-c'^4-iS4)-f,B-p4^+E- (6.3.95)

lU-o y - 5
-^Nfs’^)}, V-c j=t« (6.3.96)

and

£ V <w’] A 1 ®'«_ 1V ' 4" *
A q A- A

U.4-0 y--t«. (6-3.97)

Finally, from (6.2.65)

Ui$ •' t(Q\5 + PQ|5 + 'ffQts') (6.3.98)
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where

pl -<ve-kni<=
L Ayx

(^_,0 (6.3.99)

-j£{R»®,s-(^-«tK-ky ®,s +^.;^T‘MKc’fs.r2(f^f5gyjy6-3-10°) 

and LGs - o y = + ca

"^<^-^©,5 A^ + ts+MUT + StJJl (6.3.101)

-+ £53 $ U15 ' ° 3 ' - a -

Alternatively, the y-dependent functions i=l,5,7,8,9,10,12,14

and 15 may be obtained from the relationships

(6.3.102) 

(6.3.103)

c^'l (6.3.104)u, 4(u t *p«^u ,)= fcl
+ u-pVtv1tlrW5-|£-u,Ji

Ue=<-U£+PU8h-fji.V9+TTW?-(rUll +^4. v£+lrvif -U(l,l, (6.3.105)

UH = ^u^PU, + ^Uq) = ^Jii^w<1h£liv<I^wli] + ^-p[ivq^wq]) (6.3.106) 

IA,O= io+pU,c- ^.c + xn-Wu:] ^[ztico + ^Vw+OT-Wu], (6.3.107)

U,^ ^V„ +2v W,Jt
(6.3.108)

and
U1S = 'h^'*' 5'‘”T^'5J* ?£l^is + 3l'^'5] (6.3.110)

+ ^tl9+3rrH15J

which are obtained from the continuity equation (4.4.1). In practice

both methods were used and good agreement of the results was obtained.

The y-dependent functions U,t and Ul7_ that appear in u^may be 

obtained from the relationships (6.2.77,78), while U,8 is determined

by solving the system (6.2.87-90). Having obtained all three velocity 

components u3,v5and w5 a consistency check for the z-dependent terms
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is provided by the continuity equation (4.4.1), which is found to be

satisfied. The y-dependent functions 1=1,5,7,8,15 and i=1..4 in

the pressure p may be obtained from the equations (6.2.31-41) and
3

(6.2.79-82).

. . X
The solutions for all the dependent variables at order f have 

thus been obtained.
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Chapter 7 The infinite channe1: nonlinear theory for rigid sidewalls

Part III

7.0 Introduction

The results of chapters 4 and 6 enable the higher order amplitude 

equation for the infinite channel with stress-free upper and lower 

boundaries and rigid sidewalls to be determined in this chapter. It 

arises at order E? due to an inconsistency in the 'weakly' nonlinear 

expansion and enables the question of wavenumber selection to be 

investigated, which is considered in chapter 8.

7.1 Amplitude equation for B

At order £3 , the Boussinesq equations (3.1.16)—(3.1.20) become

a3 (7.1.1)

l,u4+ £>«■-- --U-j -f?A3-r3u.-p5lXli (7.1.2)

(7.1.3)

Lj ^4 I4 ~ PRc 84 - " vj  3 - - Pg vJj + P8% (7.1.4)

V?, ©4- ~ " - (7. 83 ~ V4 ~ (7.1.5)

where

yr = \_-tp —* u,. v i

r 4- An
'z|- 1 bx - - Sx b

^-1p£ - t us.y +- (7.1.6)

and the operators L( and L2are those defined in section 2.1. The

boundary conditions from (4.1.6) are

(7.1.7a,b)
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From equations (7.1.1 )~(7.1.5) the conditions on the top and bottom

boundaries (7.1.7b) are equivalent to

6a= e*'  Z-o,l. (7.1.7c)

By elimination of variables in equations (7.1.1)-(7.1.5) a single

sixth order differential equation in (94 is obtained:

Ptv‘-RoVileA= Pv,'(rse, + i;^ + rxe3)-vV<fVuJl*r 3wz+r1vj5)+^[^;(q'A^r3uzxqKl3]

+ + V, v3q + (pvl, + * p e2 ■ (7.1.8)

It should be noted that the ££ terms are not relevant here and have

been omitted. Since not all the conditions on the sidewalls are in

terms of 6^, the following equation relating and is also

required:

Pt-7'2 4'^- -pv1 + r4ez t  rxe3) ♦ Q uj, + r3 + J

(7.1.9)

Following the procedure by which the amplitude equation for A was 

obtained in section 4.4, the amplitude equation for B is now obtained

by expanding the right hand sides of equations (7.1.8,9) and assuming

This gives the equations

A.

A , - .

and v4 " t +c-c + -- (7.1.10)

A _ A

V%X,T)sinn"£ + ) (7.1.11)

St (7.1.12)

A

for 6^ and v4 where

~ + I'Aao^xx Jr MidA' B + ^2.7. A 8 + •Ar? BT -t + bAis Axxx"

+ A/ -vtAziA A*

(7.1.14)
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Az- + rA^-cBxx +- NXJA^ B+tki A B 4- i4x 3Bt  + Uz4 Ax * N^Axxx
-v HiJAf'Ax + rU-i-A A*  ^-bksA^7-1-^)

4 ^4
A3 = Z fetXti) SinrrtT? and A4- £ $n(X ,t ) (7.1.16)

*1-2 n-z

For the purpose of finding the amplitude equation for B, the unknown 
A _

functions ^(X,^) and ^n(X,T) do not need to be determined explicitly 

(see below). It should be noted that other terms with x dependencies
izikcK +4lkcx

of the form 1,C ,e and also exist in 6^ and v^_.

However, these play no part in obtaining the amplitude equation for B. 

The functions M^,N£ i=19..28, which depend on y and the Prandtl number 

P, are

M^Pt^-k’o)©, (7.1.17)

Kto’ P i ko) e10 - H- ( eiq + exa) -ir P( 41 - «^U, * KP|,oP, , (7.1.18)

tAxl = P(. 4ya,-k.*)«.,  ■'"!«»+ ?xq), (7.1.19)

= p^sL,-* 1)2^ -Tr(eil + e^)t

P^-^e -Vf^-«)e,4-<eit+e,'5)v

(7.1.20)

(7.1.21)

MrA--Plf<^e4-(^-k<‘)e15-Tr(e,I + e',)-Tr^.-^W5*lP(r- li:)l9i (7.1.22)

= P(r,x-‘<l''*-e 5-^_^)e,4-Tr(e„+eU) , (7.1.23)

M16 = “Tet + (7.1.24)

M„-- -(^-W)e>t-wUx^e;4)-K(i:x-<’-)U7--n-i.k.pTj (7.1.25)

a  <t ) , (7.1.26)
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Nj .5 = - P(^- es + 4 , »Jx4, - -P(£ - jg e6 * 'is +ir e3? , (7-1-33,34)

^=-P(£^«x)^T + e<'<,+-"'i:34 , - (7.1.35,36)

The functions e^(y) i=1..36, which are either purely real or purely

imaginary are

-L(I)4* ’T(I>'X3 , 4s *4  + 4-8 ,

-"Zl Uo z->
V ”®5 , e5r- -t©, , e6-^z46vkc^ph©2-u©3+4lt@j,

ef- eq-- ,

eB= f’(tf+4uWl), %’=44€+2^o-<l!51 , »

^15 - _2,ihcPv/g ? e,4- -(pU,, e«-

^^Vc+0p“^( + ^5 + 7l'iW^^v|oU\<--2hc.p'rv^)5 elTcw7 e^'vU.-2hePVI6),

C25 - p Ghc ^^2.+ ^UUz^^iV.cf’|j-^3 , e2l- -U 5 €24 - k<A p^»+^cU$),

e,q- eM = e2r- * <M,

C22 - 2.hc ^5 5 ei3r -l LU,( ez4-vM/l*4sd 3s+pl(i(li* 2^4’-'^('u4],

€34“ i\v+k,-(l3x4^’4x+p^v^^v^^+kUV3“2^PV7), e35 = V,

e2f-p(-M+ih<,v1)) ei9 5 0?c- 4'57 4r<t)ax“^ze’V 4'41 »

z e3z= e-5^4?^^Ks+i’35 + ^p^u^^^'2uV4-4kcrVq.)?

(7.1.37)

where the functions y^(y) i=1..58 (i^l3,34), (which are either purely

real or purely imaginary) are given by (Fl) in appendix F.

A comparison of the coupled functions i=19,20,23 given by

(7.1.17,27), (7.1.18,28) and (7.1.21,31), with the coupled functions

M^jN^ i=5,6,8 given by (4.4.12,17), (4.4.14,18) and (4.4.16,20), shows
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that

Imm,h w )=(m5(i4s ) , and  K,As M»A8,H?). (7.1.38)

Since it is known from chapter 6 that

%.^2.©z t vU=2-Ua, i'U^=2Uz,

©,•5" 2@3 T Vj|S~2V/-5T ^,5'2^3, Uv3~° , ''Ag ~2\/^ t|»6='2-^A 9 (7.1.39)

a comparison of MXj 5 N^v given by (7.1.19,29), with M7,N^given by

(4.4.15,19) gives

(MbMH;,!!,). (7.1.40)

Similarly

U?.) " y (K-z3 , Hzt) (7.1.41)

where the coupled functions Mxa,NiT are given by (7.1.20,30).

7.2 The computer program

The procedure by which the functions e^ i=1..36 in (7.1.37) are 

coded onto the computer involves four steps which are as follows: 

Step 1_ Coding the dependent variables

The names of all the dependent variables obtained at order £c, 

£ and f1 are stored in a vector called NAME say. The index of the 

vector is used as the unique integer to identify a particular 

dependent variable. For instance, in example (7.2.1) below V2 would be 

identified by the integer '3'. In addition a two-dimensional vector 

called FORM say, is used to store firstly the Prandtl dependence of 

the dependent variables (for example from section 4.3 it is known that
A —

= V2 + PVX), secondly whether the dependent variable is purely real 

of purely imaginary and thirdly the integer associated with the 

permanent file in which the computed values of the dependent variable 

are stored.
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FOP.K

« . NAME i 2. 3 4 5 6 7
»nd(>x ______

t © i 0 X X 0 44 i
2 u 2 0 s' X X 0 44 1

3 Vx 3 o + 1 X X 0 44 2

4 Uk 4 0 +1 X X 0 44 2

5 ©i 5 0 + 1 X X 0 44 2

Ua 6 o X X X 0 44
I

—----------- -v-----—-------------

Praacttl dependence O~n?a\ Mo- ^+«n*\5

O-xpc,*^p‘ , -» = P”, iXtmag. coae

/ = net

Step 2_ Coding the functions^ given by (Fl) in appendix F

It should be noted that each function consists of one or 

more terms and each term is a product of two dependent variables. Each 

function^ is coded using the following format:

(1) Name of (the integer i is used)

(2) Number of terms

(3) For term 1: the names of the two dependent variables,

the Prandtl coefficient, the numerical coefficient, 

coefficient real or imaginary, order of derivative 

of each of the two dependent variables

(4) Repeat line (3) for the remaining terms.

In the case of say, the following code would be generated:

1

3

, -1, -1, 0, 0, 0

, -1, , 0, 0, 0

, -1, -k0, 0, 0, 0 (7.2.2)

Step 3 Manipulation of the code generated by step 2

The coded form for each^)£ is used as input to a subprogram, 

which together with the information stored by step 1, would in the 

case of produce the code
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F0Rt41

PrandtL C

(7.2.3)

cceff.

IfAuj marij .

mterk□
(.3,4)]- associated. <adVi dependent

C L, (5,t) ] " Onter of derivoJwe .

U t5 Cf ,£) j - ¥x\e ccAes.

o 7. s o o 44 4T
-1 o t 4 0 o 44 44
- \ o 1 G o o 44 43

UuiYxericat coeff.

\janaVAes.

The information stored in the two-dimensional vector FORMlis now 

further processed by a complicated subprogram, which using the 

information stored in FORM determines the Prandtl dependence of the 

function^ and whether is purely real or purely imaginary. The 

results are stored in a three-dimensional vector PFORM say. In the 

case of it is determined that

<£>.= <£. + (7.2.4)

where

<V-U(iV jU2® and (7.2.5)

The information stored in PFORM can be made readily avaiable for 

future use by writing it onto a permanent random file, the integer 

variable NAME1 being used as the unique record number.

Step 4 Coding the functions e^ in (7.1.37)

The vectors NAME and FORM in step 1 are extended to include the 

functions^ i=1..58 (i+13,34) and their corresponding Prandtl forms. 

Repeating steps 2 and 3 with replaced by e^ enables the Prandtl 

dependence of the function e^, and whether e^ is purely real or purely 

imaginary, to be determined. Two problems arise. Firstly, the functions 

do not have a related file code and secondly not every term in the 

functions e^ is a product of two functions. The former problem is 

overcome by introducing a dummy file code which is also used as an
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indicator to distinguish a function from a dependent variable. The 

latter problem is solved by introducing a dummy variable D where

D -\ > tyla and n>/L . (7.2.6)

This enables the functions e^ to be expressed in the form required by 

step 2. For example ej would now be written as . It is

determined that

A A I
ezt- p«i ,

A ,
' e5+ i

e5- ’), es - ee i

£ vo “ Pc^c ,
A 1 r-> A > z~'

e,4=
e,5=Uels + Pe,5t^e15]1, «>i-i-Ult+Pelb*

e,g = Ue(g + Pe,6)t a  i- o
e%c+ p ,

A j z~»
23 - vf C23 y

. , A - i 7 \
Ctl - * p ^2-1 , e2q= v(eM+Pe2^-p^J

V \ A.
e2T= t(e2^pe2-?), ^■2.8 -P^2p y

A 1 '

p- , t32.-tP^3-2 y

+ PVsJ, (7’2'7)

The functions e^, e^ and e^ in (7.2.7) are real and independent of P. 

Their explicit forms are not given here due to their complexity and 

the fact that, in any case they are determined directly from (7.1.37) 

by the computer program outlined above.

By further extending the vectors NAME and FORM in step 1 above, 

to include the functions e^ i=1..36 and their corresponding Prandtl 

forms, the Prandtl dependencies of the functions M^N^ i=19..28 may be 

determined by following a slightly modified form of steps 2 and 3. It 
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is also determined whether the functions M£,N^ i=19..28 are purely 

real or purely imaginary. As expected from (4.4.12,14~20) and 

(7.1.38,40,41), it was determined that

A — . <~> A _ (
Ku - Mu •+ PMZ1 4- - 5 H2i - bhi-v Phu  * -p i

bA 22 ’ MiiK PM7?y p b^/i, ^2Z*  Pd224 'pdXI M23-VA2^ + PK2X H«=l4, (7.2.8)
’ 7 * * *■ -> 2 “5 73

A A — —
where M . 0, , N „ , M _ , N and M „ , N are real

and independent of P. A comparison with (4.4.12,14-20) provided a 

check that the computer program was correct. In addition it was 

determined that

bAjs ~ L PMts 1 - vpbl 25 5

bi 2'4- = t\ bUf 4- Pbli7.4- (7.2.9)

A A — — <-> '~J
where M , , N , M , N and M , N , _ are real

2.6..Zf’ 26 --it ’ 24”2-8 ZA-’-XP 26,zt -

and independent of P. Their explicit forms are not given here due to 

their complexity and the fact that they are determined directly from 

(7.1.17-36) by the computer program.

7.3 Determination of the coefficients of the amplitude equation

Applying the conditions (7.1.7a,7c) to (7.1.10) gives

A A A
- v 3 -±a (7.3.1a,b)

The z solvability condition for the system (7.1.11,12) and (7.3.1) is

] ^Sin-nidi = f = y2i (7.3.2a)
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and
» x x *
t v4 + -- J 5<nv?d?(7.3.2b)

7zo 
A

=
Expanding (7.3.2a,2b) using (7.3.1b) and repeated integration by parts

gives

fl [ = 4 A,
iLzC

and

(7.3.3a)

(7.3.3b)
1-c

By defining

I
and Pj V4CosiVZ^

Z=o
(7.3.4)

equations (7.3.3a,3b) become

(7.3.5a)

i

and
a

(7.3.5b)

which together with the boundary conditions

4= = V =0 y = +-« (7.3.6)

can be expressed in matrix notation as

I ,V4)^ (y Au) T rn£ (e4,V4) =o (7.3.7)

From section 4.3, the condition needed for the existence of a solution

of (7.3.7) is

J Jtj = o

where

-?4a ,

(7.3.8)

(7.3.9)

A A
and f^ and f^are solutions obtained from the matrix system (4.3.60) 

given by (4.3.74).
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Expanding (7.3.9) shows that the condition (7.3.8) is only 

satisfied if the amplitude function B satisfies the equation

MHbJxx s  bJd a 2b\

+ +bt7 A*xx  )^A\ A*  + ) A Ay (7.3.10)

■*■  ( biq^b^c/P) j

where the amplitude function A satisfies equation (4.4.33). The 

amplitude coefficients i=1..20 are independent of P and are given 

by

b^ - H 7 , d 2») 7 bg - pl'Aij v H-n) * b^-H(fAzx5U2<i)t

= V\tt4iz5 H22) , b<a- UIMzz, N21) 5 bq- ^3,^2-5)5 blc-P (^2-5, dzb) ,

bv.= HIM!?, ^25)5

b>3 = b t n \z |, 9 blz^) b(4~ VA iKzt> M2t) j b|5 - VA t^-zt) b,^ - H (H-27 5 )

bn^^M„r (si^) 5 b^r.$ bj^-blH2E5r42e)9 b,.c-h (^^8>.v 4z p) (7.3.11)

where

4-<*
ubA) -J_ [^s+ dj . (7.3.12)

7.4 Details of the numerical calculations

For a given aspect ratio a, in order for the dependent variables 

at order £ to be evaluated by a fourth order Runge-Kutta process (as 

outlined in section 4.3) using 161 points (which corresponds to a step 

size of a/80), the dependent variables at order £° need to be 

evaluated at 321 points. This presents no problems since the variables
0

at order 8 and their derivatives may be evaluated from (4.1.3) at any 

given value of y such that |y\ 4 a. Function values of all the 

dependent variables at order £ and E were evaluated at 161 points and 

stored in permanent random files on the computer. This enables the 
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dependent variables at order t to be evaluated by a fourth order 

Runge-Kutta process (as outlined in section 6.3) using 81 points (step 

size of a/40), without using any interpolation techniques. It should 

be noted that the values of the derivatives of the dependent variables
0

at order £ and £ were also evaluated at 161 points using the 

necessary equations from chapter 4 and stored, so that when evaluating 

the dependent variables at order € any derivative of the variables at 

order £ and £ that may be required is available without further 

numerical approximation. Function values of all the dependent
2.

variables at order £ were evaluated at 81 points and stored in 

permanent random files. Values of the derivatives of the variables at 

order t were also obtained using the necessary equations from chapter 

6 and stored, so that the functions e^ i=1..36 given in (7.1.37) could 

be evaluated at 81 points without any further numerical approximation. 

Having evaluated all the functions e^, e^ and e^ in (7.2.7) at 81 

points their function values are stored.

The amplitude coefficients b^ i=1..2O can now be determined. For 

example, the amplitude coefficient b^is determined as follows. From 

equations (7.1.18,28),(7.2.7) and (7.3.11,12)

(7.4.1)

where

and

(7.4.2)

+ <X

J

+irfe»R] * . (7.4.3)

— = A
In order to evaluate b2 and b^he derivatives of the functions ei , 

eto and e2g, which have not been computed, are needed. Approximating 

them using finite difference techinques over the entire range y=~a to 

y=+a can be avoided by expanding b and using repeated integration
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by parts. In the case of ba this gives

5 {«■'

(7.4.4)

4°.n p # a  a
where —n=1..4 and n=l,2,3 may be determined from fA and fft, djn 4 V

which are solutions obtained from the matrix system (4.3.60) given 

analytically in (4.3.74). The first and second derivatives of et at 

y=-a can be obtained by approximating the function e, near y=~a by the

cubic

Hence

and A

(7.4.5)

(7.4.6)

The real coefficients g£ i=0..3 are determined from the matrix system

e4 (yo)

e< (y4 ) 

e« (yx )

e, (y3)

where y0=-a and

1,

1,

1,

1,

yj = + ja/40

yo , yo > yo yc

y, , y,z, y* y.

y, , \ , yx y,

2. ,_3
y3, y3, y3 y> (7.4.7)

yo j=l,2,3. The first and second

derivatives of e4at y=+a can be obtained similarly. It should be 

noted that the third derivative of e,at y=ia does not need to be
A

determined, since it is known from (4.3.62) that f = 0 at y= a. In
. . . . . . . A —this way integrals involving derivatives of the functions e, , e,cand 

eZg can be reduced to integrals involving only the functions e! , elc 

and exp. These can be easily evaluated using Simpsons' rule (81 

points) as the functions e, , eto and e2R have been computed at 81 

points and stored in permanent random files on the computer. Thus, the 
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coefficient b^is determined. The coefficients i=l,3..2O are 

determined similarly. For the aspect ratios a = ^,^,1 and 2 the 

amplitude coefficients b^ i=1..2O are displayed in table 18. It should 

be noted that in section 4.4 the method used to determine the 

coefficients i=1..7 in the amplitude equation for A, would 

correspond to determining the coefficient b^directly from (7.4.1,2,3) 

by computing the derivatives of the functions et, e)O and e20 from the 

necessary equations in chapter 6. It should be noted that in table 18 

the amplitude coefficients b^ i=3..8,11..16 for the aspect ratio a = 2 

may be inaccurate due to numerical error in the Runge-Kutta scheme 

used to determine various dependent variables at order E and 

These coefficients have been marked by an asterisk.

Table 18. The amplitude coefficients b^ i-1..2O ( E n denotes 10n)

bi a = % a = a = 1 a = 2

1 1.17356E-1 2.98550E 0 6.66208E 2 2.35883E 7
2 6.82607E 1 8.17819E 2 1.16230E 5 3.26386E 9
3 -1.81022E 4 -7.76529E 4 -6.25224E 6 -1.60040E11 *
4 -1.18181E 3 -6.21610E 3 -5.19836E 5 -8.66427E 9 *
5 -9.23709E 2 -6.33480E 3 -6.23720E 5 -1.12505E10 *
6 -9.05108E 3 -3.88264E 4 -3.12612E 6 -8.00250E10 *
7 -5.90903E 2 -3.10804E 3 -2.59917E 5 -4.22758E 9 *
8 -4.61854E 2 -3.16740E 3 -3.11860E 5 -5.76471E 9 *
9 -1.26669E 1 -1.82351E 2 -3.14470E 4 -1.04976E 9

10 -1.25O73E 1 -1.77438E 2 -3.04607E 4 -1.04380E 9
11 -2.60452E-2 -8.13816E-1 -1.74901E 2 -3.70855E 6
12 -9.68575E-2 -5.82072E 0 -4.60229E 3 -4.24332E 8
13 3.52319E 3 1.97157E 4 1.31542E 6 8.97646E 8 *
14 2.99373E 2 3.71255E 3 2.78021E 5 2.60400E10 *
15 7.87173E 2 4.74106E 3 3.50963E 5 2.08587E10 *
16 4.76464E 2 1.37257E 3 -3.70624E 5 -3.92738E10 *
17 -1.50959E 1 1.40592E 3 1.27473E 5 2.70132E10 *
18 5.84465E 2 3.32658E 3 2.95692E 5 2.27685E10 *
19 1.34766E 0 1.36785E 1 8.87639E 2 -7.97468E 7
20 1.41038E 0 1.68378E 1 1.92113E 3 -7.7118OE 7

From equations (7.1.38,40,41) it is expected that

bf= C£ i=l,2, bp 2b£ + 3 = 2q i=3,4,5 bp q and b,o= q. (7.4.8)

A comparison of the coefficients b^ i=l,2,6..10 in table 18 with the 
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coefficients i=1..7 in table 7 show good agreement. The reason they 

are not identical is that the b coefficients and the C coefficients 

are determined using different techniques (see above).

The relationships (7.4.8) arise because the linear terms 

involving B in (7.3.10) are equivalent to an expansion of the leading 

amplitude function A in the form

A(Xrt) - + 8 BtX.x) + • • ' (7.4.9)

r->
where A and B are arbitrary amplitude functions. Substituting (7.4.9) 

into the amplitude equation for A and equating ascending powers of £ 

gives

+ + lC3+C4jp + C5/pzHA\ Av ^C^C^P) A= = o (7.4.10)

and
C,B +(C-; + C4|P^Cs|p2)(^fB + AT) + (C(,+C7/p)B=r.o- (7.4.11)

Comparing the equations (7.4.10),(7.4.11) with (4.4.33) and (7.3.10) 

gives the relationships (7.4.8).

It should be noted that the purely imaginary terms in (7.3.10) 

are linearly dependent because

C, A+CiAxJ v(C3-rC4|P-+CjJpx)AlAl + tC^ + C^/p)Af-o . (7.4.12)

Thus

Am = -^[c,fcx-*(C3tC 4|P*C^)UA x-\A4AiA2) + (C<7)p)A--3. (7-4.14)

Therefore the amplitude coefficients b^ i=l1..20 are not unique in 

(7.3.10). A more useful form of (7.3.10) is, replacing A^xx by 

(7.4.14),

-v (b3vV4|P-'-k5|pi) |a V"B + + b?|pX)A B

+koiP)A?i]“-o,

(7.4.15) 
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where

t>£ i=ll..20 are not.

l -

and Cz

£• = I; - SsB V — 10 • • 7-0 • (7.4.16)

A
The coefficients b^ i=ll,13..2O are 'unique', whereas the coefficients

A useful consistency check on the numerical evaluation of b£ 

i=11..2O is provided by making use of the arbitrariness in the 

definition of the dependent function ©, in the solution for Gq 

together with the corresponding terms in uz, vz, w^and p . In section 

4.3(2) is determined uniquely by the condition

= 0 at y = 0, (7.4.17)

which fixes the otherwise arbitrary component of ® in the solution.
A

It leads to the 'unique' set of amplitude coefficients b^ i=ll,13-.2O 

above.

Now suppose that is replaced by ®.. defined by the new

condition

= d at y = 0, (7.4.18)

in place of (7.4.17). This implies that

(7.4.19)

and in general it can be expected that this will lead to a new set of
A

amplitude coefficients b^ i=l1,13..20 say, in place of b^. However
r—'

there is a connection between b^ and b^ which can be found as follows.

Since the overall solution for based on the use of must be the 
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same as the original solution, the new amplitude function B 

associated with 'Jv, and satisfying

+ +^+b,/P+le|px)A1B')’'+

must be related to the original amplitude function B by

B - B + i d Ax * (7.4.21)

Substituting (7.4.21) into (7.4.15) and comparing with (7.4.2) gives

A
k’U L = iq?2O

and
A z—'
U " k; + 2dCl-is/cz (7.4.22)

The consistency check outlined above was used to validate the 

numerical results obtained for the amplitude coefficients b^ i=1..2O 

and was found to be satisfied for all the aspect ratios considered 

(ie. %, 1 and 2). Table 19 shows two sets of amplitude coefficients

corresponding to the different conditions (7.4.17) and (7.4.18), 

clearly related by the relations (7.4.22), for the aspect ratio a=l.
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Table 19. Two sets of non-unique (b^ and bp and unique (b^ ancj

i bi

Aspect Ratio a = 1
A
bi bi bi

1 6.66208E 2 - 6.66208E 2 -
2 1.16230E 5 - 1.16230E 5 -
3 -6.25224E 6 - -6.25224E 6 -
4 -5.19836E 5 - -5.19836E 5 -
5 -6.23720E 5 - -6.23720E 5 -
6 -3.12612E 6 - -3.12612E 6 -
7 -2.59917E 5 - -2.59917E 5 -
8 -3.11860E 5 - -3.11860E 5 -
9 -3.14470E 4 - -3.14470E 4 -

10 -3.04607E 4 - -3.O46O7E 4 -
11 -1.74901E 2 -1.48521E 2 -2.06231 E 2 -1.48521E 2
12 -4.60229E 3 - -1.00682E 4 -
13 1.31542E 6 1.06785E 6 1.60944E 6 1.06785E 6
14 2.78021E 5 2.57437E 5 3.02466E 5 2.57437E 5
15 3.50963E 5 3.26266E 5 3.80295E 5 3.26266E 5
16 -3.70624E 5 2.33468E 9 -7.75631E 5 -1.04642E 6
17 1.27473E 5 1.94272E 8 9.37987E 4 7.12839E 4
18 2.95692E 5 2.33239E 8 2.55289E 5 2.28277E 5
19 8.87639E 2 -3.57551E 2 2.36649E 3 -3.57550E 2
20 1.92113E 3 7.14993E 2 3.35360E 3 7.14994E 2

amplitude coefficients corresponding to the different conditions

(7.4.17) and (7.4.18) where the unknown constant d = 0.08824115.
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Chapter 8 Phase-winding solutions for the long box

8.0 Introduction

Recent theoretical work concerned with the effect of lateral 

walls parallel to the axes of two-dimensional rolls has shown that in 

the absence of any forcing effects the wavelength of the roll pattern 

can be altered significantly from its critical value only when the 

Rayleigh number exceeds its critical value by an amount order L ' 

where 2L is the distance between the lateral walls. The theoretical 

description of the flow (Cross et al 1980, 1983, Daniels 1981, 1984) 

requires a subdivision of the flow field into a core region -L<x<L 

and double-structured end regions near the lateral walls at x=iL. It 

also requires the determination of the first and second amplitude 

equations equivalent to those now obtained (chapters 4,6 and 7) for 

the full three-dimensional flow with stress-free upper and lower 

boundaries. In this chapter these results are used to obtain the 

stationary phase-winding solutions for the long three-dimensional box 

with rigid, perfectly conducting sidewalls at y=ta and rigid, 

perfectly conducting (or insulating) endwalls at x=-L. The solutions, 

equivalent to the two-dimensional ones originally obtained by Cross et 

al (1980), provide a prediction of the change in wavelength with 

increasing Rayleigh number and the results, for different Prandtl 

numbers and aspect ratios, are compared with experimental observations 

of roll pattern adjustments in long boxes.

8.1 Amplitude equations

The results of chapters 4 and 7 show that if

R-Ro+r (8.1.1)

where RQ is the critical Rayleigh number for an infinite channel of 
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aspect ratio 2a and E << 1, the solution for the temperature can be 

expanded in the form

E C 4- oc]

+ Ajxp)®^) + v •• •] (8.1.2)

+ - - -
where

X=Ex , (8.1.3)

kQ is the critical wavenumber corresponding to RQ,©(y) is normalised 

such that

(8.1.4)

and ®i is uniquely specified by

Then, for steady flow, AQ and A( (which here replace A and B of 

chapters 4,6 and 7) satisfy the amplitude equations

(8.1.6)

and

A«xa + di A. - Ui'''A5|p + (Lj{>i)(2l A,+ Ao A, ) -

iA <kA0* •¥ Ao*--  - U?+ djKA\2|p2)^6A l(8-l-7)

where the coefficients d^ i=1..12 depend only on the aspect ratio a

and are given for various values of a by table 20. It should be noted

that

i=l

i=2. .6 p4 t<5 , pt - (8.1.8)

i=7..12

where b^ are the amplitude coefficients given by table 18.
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Table 20. The 'normalised' amplitude coefficients.

di a = % a = a = 1 a = 2

1 1.7192E-3 3.6506E-3 5.7318E-3 7.2271E-3
2 1.3260E 2 4.7476E 1 2.6896E 1 2.4519E 1 *
3 8.6566E 0 3.8004E 0 2.2362E 0 1.2953E 0 *
4 6.766OE 0 3.873OE 0 2.6831E 0 1.7662E 0 *
5 3.8155E-4 9.9511E-4 1.5048E-3 1.1362E-3
6 1.4189E-3 7.1174E-3 3.9596E-2 1.3001E-1
7 5.1614E 1 2.4108E 1 1.1317E 1 2.7503E-1 *
8 4.3857E 0 4.5396E 0 2.3920E 0 7.9783E 0 *
9 1.1532E 1 5.7972E 0 3.0196E 0 6.3908E 0 *

10 6.9801E 0 1.6783E 0 -3.1887E 0 -1.2033E 1 *
11 -2.2115E-1 1.7191E 0 1.0967E 0 8.2765E 0 *
12 8.5623E 0 4.0676E 0 2.5440E 0 6.9760E 0 *

* Indicates that the result for the aspect ratio a = 2 may be

inaccurate (see section 7.4).

Here it is convenient to make the transformations

f/ch 5 x_ x/jj

and

- _ / ch__________\/z

+ 5 ■

so that

R - -v i 5

9<x r'/2x

and

^oxx "V ho " Ao\Ac| - o ?

(8.1.9)

(8.1.10)

(8.1.11)

(8.1.12)

(8.1.13)

^'xx "+■ h\ _ 2. \ AtA Ao Ai ~

where

t V ki Aox + Aoxxx - i Ao\ A^x ~ ^4 Ao Aox 1

- I chc+ <A»xJpx) | (cA7 4 •

(8.1.14)

(8.1.15)
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The steady form of the solution (8.1.2) is now given by

& ~ + d^|px) ’{t E4 AO(X) -*£ AAX) * * ’ '1 ©t'j)Svoir? -v c-c

+ L^CX C-C a - - ] -V * . (8.1.16)

In their complete forms, the equations (8.1.13,14) govern the 

flow in boundary-layer regions near each end of the box where 

x± L = 0(H). Since it is subsequently assumed that

€ = O(.L"j (8.1.17)

the length of these regions is small compared to the total length of 

the box, 2L. Between the boundary-layer regions, the core zone is 

defined by the longer x scaling, x = 0(L) = 0(f"‘), so that X 

derivative terms in (8.1.13,14) are appropriately higher order. 

Finally, there are linear end regions where x ± L = 0(1) immediately 

adjacent to each end wall where the solution is based on that 

developed in section 5.4.

8.2 Core region
A.

A core variable X is defined by

^-El<x<£t) (8.2.1)

and the solution expanded in the form

At order E*4 it is found that

+ OCE)} -

A A A 7.

Ao - AO\A0l - O (8.2.3)

so that

(8.2.4)

where the (real) phase function is as yet undetermined. At order
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(8.2.5)
K * \ A f a X A*
A,= 2 M Aol + Ao A,

and this implies

V- (8-2-6)

where rt is real. The results (8.2.3) and (8.2.5) are appropriately
s/x .

reduced forms of (8.1.13) and (8.1.14). At order £ it is expected 

that
A A A A.l A-it- A2. A A 7. A-2^*  T*  A lA
A-2.+ Ao ££ — 2. Ao I Aj I — Ao A J — 2. A r^_ IA o • ~ Ao A-J_ — K 3 Ac I Ac I

C" A A .7 . r ~ A
-R6Ao 1Ao I -tl R(Aox _R3'^o I Aqx  'R/j Ao Ao ^ J-o * (8.2.7)

Here the nonlinear terms involving the real coefficients k^and k^are

of higher order than those in (8.1.13) and (8.1.14) but, along with
A2 A .1

those involving At and |AJ , can be expected to arise at this stage in

the expansion (c.f. Cross et al 1983, Appendix E). Now let

V '-xlx)e^t><) (8.2.8)

where r-x is not assumed real. Then from (8.2.7)

“2r?+ r»2 -2rx -r2*-k s -Kg 4(kt-k3 + h4) -0 (8.2.9)

and from the imaginary part of this equation it follows that

Thus

$xx ■

<£ = tx + c

(8.2.10)

(8.2.11)

VA

where Q and C are 'known constants. A non-zero value Qf Q is equivalent 

to an adjustment in the wavelength of the roll pattern from the 

critical value associated with RQ (see below).

8.3 Boundary layer regions

A boundary layer variable X,, for the region near the wall x=~L,
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is defined by

= 8 'A' X, (8.3.1)

and the solution is expanded in the form

6= d^p + d^lP1) [^’AC^C -vc.c''A^ ®tV)))-e sirnv-2

-V c«c -v 0<£)L (8.3.2)

The equations for AQ and At follow directly from (8.1.13) and (8.1.14) 

as

Aox5 + =0 , (8.3.3)

\xtx\ -a - A, - 2 I AoI A, - Ao A, -

tL Ao^ + kx Ao~ k3\Ao\ AOxt - Ao ^ox( 1 * (8.3.4)

The solution for Ao that vanishes at X, =0 is

Ao- ^‘Uv (8.3.5)

r*-*
where is a real constant. The general solution for A that avoids

t—-'
exponentially large behaviour as X^oo is then

Av - € '{c\v Sech-~ + t[ ~^) 4'Cj^k A\v~-+X(Xv)3 } , (8.3.6)

where at, bt, c\ are real constants and

I(x) = K + (8.3.7)

where

K>= ~ irix - ^6*3-*%)  ,

K,= -Ikx*  • (8.3.8)
'12.

Corresponding solutions for the boundary-layer region near the 

wall x = L are given by
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(8.3.9)

(8.3.10)

where , ax, bx, and are real constants and

■x-L = f '*• Xx . (8.3.11)

Matching between the core and boundary-layer solutions requires

V-'V-'L, <8-3-12)
and

. (8.3.13)

8.4 End-wall regions

The endwall regions where x ± L = 0(1) are governed by the linear 

equations to leading order and provide boundary conditions for the 

boundary-layer amplitude functions AQ and Ar For the boundary layer 

at x=-L it is required that

Ao = 0 ( Xt = 0 ), (8.4.1)

which has already been applied in order to obtain the solution 

(8.3.5). The end-region solution is then generated by the form of AQ^ 

as Xt-> 0 and this leads to a condition for A, of the form

A,*«<*A O- „fAet=o at £ = O. (8.4.2)

Hereandare complex constants whose values are obtained as 

follows.

In the end-region where

xt = x + L = 0(1) (8.4.3)
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the solution for the temperature generated by Ao^ (0) has the form

+

A
oc

St<VT?-
J (8.4.4) 

oir11)

where ^o(y) -®(y). Here E and Em (m^ 0) are complex constants while
A — A _

Em and Em are real constants. The eigenfunctions v|/~ and
A —

eigenvalues km, km, k^ (m^O) are those determined in chapter 5; only

the even eigenfunctions are included since the entire solution is

generated by the eigensolution @ (y), and its k derivative - , which

are both even functions of y. The odd part of the spectrum for 9 is
A _

redundant. The eigenvalues ikm and ikm are purely real and negative 

while the eigenvalues km are complex with Im(km) > 0 (m^,l). It should 

be noted that the solution associated with the constant E in (8.4.4)

arises because at R = RQ3 k = kQ is a repeated eigenvalue. This 

solution was discarded in chapter 5 where the end-region solution was 

forced by a non~zero heat transfer at x = -L; here the end-region 

solution is smaller (by order?*)  than that in the core (and boundary 

layers) and specification of the constant E replaces the forcing 

effect at x( = 0, where it is assumed that the end wall is rigid and 

either perfectly conducting or perfectly insulating:

\A - V - _ q  0 — c or T11 - q  (■x, ' c ) .
■fry.

(8.4.5)

Matching with the boundary-layer solution (8.3.2) requires that

e e = Aojjo) (8.4.6)

and also gives

(8.4.7)

It is noted that the terms in (8.3.2) and (8.4.4) that involve (gq
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match automatically.

The solution (8.5.4) and the corresponding solutions for u,v and 

w must satisfy the four boundary conditions (8.4.5) and this leads to
a  —

a set of equations for the unknown coefficients Em, Em and Em 

(m=0,l,..) i-n terms of the (assumed known) coefficient E. The 

collocation method of chapter 5 is used, with the terms involving E 
*. . . . .and E m (8.5.4) essentially replacing the known forcing term in the 

earlier analysis. Thus, using a truncation m=moo, the real and
A —

imaginary parts of Em and the real values of Em and Em are expressed 

as linear combinations of E and E :

r _ . r r * (8.4.8)

(8.4.9)

, (8.4.10)

where the complex coefficients and are to be

determined. For a perfectly conducting endwall, substitution into 

(8.4.4) and setting x, = 0 gives

m = fAcc ■ A ~ i
-cOjjjxSL p*  (8.4.11)

and three similar equations are obtained from the boundary conditions 

on the velocity components. The real and imaginary parts of each of 

these then constitute eight y-dependent equations for the eight set of 

unknowns, which are the real and imaginary parts of and

8^ . These are found as the solutions of a complex matrix equation of 

order 4(l+m00) resulting from application of the collocation method of 

chapter 5. Tables 21-24 show the values of the coefficients oG and

Po associated with the leading eigenfunction for increasing

levels of truncation up to mco = 14 and for various aspect ratios. In
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A _ A
table 23 and °<o are also shown, where the eigenfunctions and 

are normalised to the value one at y = 0. Results for the 

perfectly insulating case are shown in tables 25~28 and it is 

interesting to note that the value of the imaginary part of c<o is 

independent of the thermal boundary condition at the wall.

a = 0.25

m or o< .OL r or -Poi

0 -0.012236 -0.057030 0.012236 0.099086
1 -0.011226 -0.050827 0.011164 0.101649
2 -0.011183 -0.050303 0.011074 0.101397
3 -0.011187 -0.050232 0.011071 0.101369
4 -0.011183 -0.050219 0.011073 0.101368
5 -0.011189 -0.050216 0.011074 0.101367
6 -0.011190 -0.050216 0.011075 0.101368
7 -0.011191 -0.050219 0.011076 0.101374
8 -0.011190 -0.050218 0.011076 0.101371
9 -0.011191 -0.050220 0.011076 0.101375

10 -0.011190 -0.050218 0.011075 0.101372
11 -0.011217 -0.050227 0.011104 0.101377
12 -0.011193 -0.050220 0.011078 0.101374
13 -0.011192 -0.050220 0.011078 0.101373
14 -0.011192 -0.050220 0.011078 0.101374

Table 21. The coefficients o(o and for conducting endwalls.

a = 0.5

m or oi £ or - ^oi

0 -0.029254 -0.037892 0.029254 0.100502
1 -0.024807 -0.023977 0.024662 0.110099
2 -0.024867 -0.022911 0.024653 0.109801
3 -0.024937 -0.022716 0.024699 0.109724
4 -0.024960 -0.022672 0.024718 0.109709
5 -0.024968 -0.022662 0.024725 0.109706
6 -0.024972 -0.022660 0.024730 0.109708
7 -0.024975 -0.022662 0.024734 0.109714
8 -0.024975 -0.022662 0.024734 0.109712
9 -0.024977 -0.022663 0.024736 0.109717

10 -0.024973 -0.022659 0.024731 0.109712
11 -0.025024 -0.022739 0.024798 0.109779
12 -0.024982 -0.022674 0.024744 0.109724
13 -0.024981 -0.022671 0.024742 0.109722
14 -0.024980 -0.022671 0.024742 0.109723

Table 22. The coefficients o and po for conducting endwalls.
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a = 1.0

m or oi P*  or -Poi

0 -0.090577 0.050197 0.090577 0.085885
1 -0.052390 0.069680 0.051668 0.097039
2 -0.053244 0.070932 0.052842 0.097300
3 -0.053669 0.071285 0.053248 0.097221
4 -0.053812 0.071403 0.053377 0.097165
5 -0.053860 0.071443 0.053419 0.097140
6 -0.053883 0.071458 0.053440 0.097132
7 -0.053898 0.071469 0.053455 0.097133
8 -0.053880 0.071468 0.053456 0.097126
9 -0.053906 0.071477 0.053462 0.097129

10 -0.053896 0.071487 0.053448 0.097115
11 -0.053918 0.071266 0.053540 0.097320
12 -0.053906 0.071436 0.053474 0.097162
13 -0.053908 0.071445 0.053473 0.097154
14 -0.053909 0.071449 0.053473 0.097152

A A
m °<Or <x •Ol

o< or °<oi

0 0.000000 -0.081321 0.000000 -0.054761
1 0.000181 -0.088562 0.010431 -0.133350
2 0.000740 -0.090305 0.009615 -0.134346
3 0.000852 -0.090234 0.010143 -0.133480
4 0.000898 -0.090180 0.010319 -0.133274
5 0.000912 -0.090165 0.010376 -0.133204
6 0.000916 -0.090158 0.010396 -0.133193
7 0.000918 -0.090152 0.010407 -0.133168
8 0.000919 -0.090152 0.010408 -0.133171
9 0.000920 -0.090150 0.010418 -0.133165

10 0.000924 -0.090154 0.010444 -0.133178
11 0.000855 -0.090135 0.009940 -0.133047
12 0.000908 -0.090149 0.010328 -0.133138
13 0.000911 -0.090148 0.010348 -0.133139
14 0.000912 -0.090150 0.010354 -0.133154

Table 23. The coefficients o<o;i £o,o<o and o(o for conducting endwalls.
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a = 2.0

m C< or o( .
Ol

p or -Poi

0 0.022420 -0.008699 -0.022420 -0.024584
1 -0.123722 0.280327 0.072242 0.096090
2 -0.126383 0.305405 0.065819 0.105767
3 -0.125189 0.305029 0.067530 0.105960
4 -0.125369 0.305033 0.067784 0.105738
5 -0.125479 0.305020 0.067889 0.105611
6 -0.125559 0.305024 0.067933 0.105538
7 -0.125626 0.305044 0.067949 0.105478
8 -0.125642 0.305020 0.067961 0.105451
9 -0.125685 0.305040 0.067978 0.105432

10 -0.125690 0.305004 0.068006 0.105410
11 -0.125470 0.305292 0.067712 0.105617
12 -0.125633 0.305097 0.067914 0.105461
13 -0.125655 0.305074 0.067942 0.105444
14 -0.125668 0.305070 0.067953 0.105438

Table 24. The coefficients <X o and p o for conducting endwalls.

a = 0.25

m O< or c< .Ol £ or -*oi

0 -0.745832 -0.043813 -0.628043 -0.259214
1 0.104943 -0.051684 0.106600 0.168038
2 0.104727 -0.050466 0.106247 0.167548
3 0.104660 -0.050270 0.106213 0.167446
4 0.104646 -0.050227 0.106210 0.167427
5 0.104640 -0.050216 0.106209 0.167420
6 0.104640 -0.050213 0.106210 0.167421
7 0.104643 -0.050216 0.106216 0.167428
8 0.104641 -0.050214 0.106213 0.167424
9 0.104644 -0.050216 0.106217 0.167431

10 0.104641 -0.050213 0.106213 0.167424
11 0.104666 -0.050294 0.106264 0.167493
12 0.104644 -0.050222 0.106219 0.167432
13 0.104643 -0.050220 0.106218 0.167431
14 0.104644 -0.050220 0.106218 0.167431

Table 25. The coefficients 0 and for insulating endwalls.
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a = 0.5

m ot
or

o( .
O1 B r or ^oi

0 1.022300 -0.077113 0.934897 0.636327
1 0.169933 -0.026134 0.178932 0.228910
2 0.169349 -0.023458 0.178398 0.228197
3 0.168981 -0.022866 0.178310 0.227791
4 0.168870 -0.022714 0.178297 0.227671
5 0.168831 -0.022667 0.178293 0.227629
6 0.168819 -0.022653 0.178297 0.227618
7 0.168820 -0.022650 0.178308 0.227623
8 0.168814 -0.022648 0.178304 0.227615
9 0.168817 -0.022646 0.178311 0.227621

10 0.168806 -0.022633 0.178297 0.227604
11 0.169005 -0.022935 0.178509 0.227899
12 0.168839 -0.022684 0.178334 0.227653
13 0.168832 -0.022675 0.178328 0.227644
14 0.168831 -0.022672 0.178327 0.227643

Table 26. The coefficients <o and for insulating endwalls.

a = 1.0

m o( or o< •Ol P or ^oi

0 0.097998 0.032430 0.237246 0.205737
1 0.185082 0.070619 0.244730 0.226801
2 0.181739 0.069691 0.244810 0.226852
3 0.180377 0.070823 0.244854 0.225613
4 0.179898 0.071221 0.244837 0.225140
5 0.179712 0.071374 0.244815 0.224950
6 0.179631 0.071439 0.244811 0.224868
7 0.179595 0.071474 0.244820 0.224836
8 0.179568 0.071485 0.244808 0.224803
9 0.179553 0.071510 0.244811 0.224792

10 0.179511 0.071559 0.244762 0.224739
11 0.180198 0.070876 0.245317 0.225536
12 0.179657 0.071406 0.244891 0.224910
13 0.179624 0.071433 0.244872 0.224874
14 0.179615 0.071443 0.244866 0.224863

Table 27. The coefficients Q and p>0 for insulating endwalls.
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a = 2.0

m or °<oi P or -Poi

0 0.228290 -0.060247 0.117552 0.141379
1 0.121483 0.243907 0.280908 0.204912
2 0.124657 0.306112 0.280213 0.217900
3 0.129446 0.304991 0.283698 0.220118
4 0.128367 0.304628 0.283365 0.219192
5 0.127826 0.304833 0.283068 0.218782
6 0.127542 0.304928 0.282938 0.218574
7 0.127368 0.304997 0.282845 0.218448
8 0.127265 0.304999 0.282784 0.218357
9 0.127178 0.305030 0.282756 0.218293

10 0.127082 0.305003 0.282717 0.218192
11 0.127857 0.305443 0.282835 0.219074
12 0.127300 0.305151 0.282740 0.218449
13 0.127241 0.305115 0.282740 0.218380
14 0.127210 0.305108 0.282739 0.218354

Table 28. The coefficients *0 and po for insulating endwalls.

The equation (8.4.2) now follows from (8.4.6,7,8) by setting

- - “X*  ■= - y (8.4.12)

and

- -xvhcL 
pe say.

(8.4.13)

(8.4.14)

The solution in the endwall region near x=+L can be formulated in 

a similar way and further numerical calculations are not required. 

Here it is found that

(8.4.15)

as assumed for the solution (8.3.9), and that

A, - (8.4.16)- c

The result (8.4.16) can be deduced from the endwall solution at x=~L 

by the transformation x—> ~x2, E-»~E and Eo~*~  EQ where xx = x - L.
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From (8.4.2,16) and the solutions

a,- i-Tz k * -
_ <£ - B*  e-x’u^

p

where

io - = M kKx

(8.3.6,10), it follows that

, (8.4.17)

, (8.4.18)

(8.4.19)

and the real and imaginary parts of the equations (8.4.17,18), 

together with (8.3.12,13) now constitute eight equations for the eight
z-*z  S'-*  ,

unknowns Q, C, a( , az, and . In fact the equations are

identical with those derived for the two-dimensional model by Cross et 

al (1983) apart, of course, from the numerical values of the 

coefficientsc(andp determined by the end-region problem and the
• • r""/ •

coefficients kt, k2, k^and k^that arise from the second order 

amplitude equation.

8.5 The phase-winding solutions
• • • •

Elimination of at b( z and from the equations

(8.3.12,13), (8.4.17,18) leads to the two classes of phase-winding 

solutions found by Cross et al (1980,1983). The type 1 solutions 

satisfy the equation

2-cv- - [5 - l-'f (pi - %)] (8.5.1)

for q where

,[ ? l_ , C - n"vr | 2 (n=^t\+e^er) (8.5.2)

are the physical parameters that occur in the core solution 

(8.2.3,11). Here

, (8.5.3)

is a function of both aspect ratio a and Prandtl number P. It has the 
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form

& = ( d, * dz/p + Pa) I i d3/P + d4jp'2)

where

dp " °^L — 2.^2- ? <d| = <do + "z(^^+dto)j

dz,~ do$7 (. dg +d^) ? d^ ~ dod^_ + 2_( dq-1" du) « (8.5.4)

Z-V>

The coefficients i=l,2,3 and d^|i=3,4,5 depend solely on the aspect 

ratio a and are given for various values of a in table 29. The other

Conducting Endwalls

a = \ a = a = 1 a = 2

IP( 1.O1977E-1 1.12477E-1 1.10896E-1 1.25439E-1

d, -0.68837E 1 -0.12936E 1 -O.16O75E 1 -0.38477E 1 *

dz -0.27977E 1 0.19937E 1 0.12728E 1 0.82346E 1 *

3, 0.82009E 1 0.37751E 1 0.22160E 1 0.68296E 1 *

30 -2.72864E-1 -2.98820E-1 -2.10882E-1 8.28457E-2

Insulating Endwalls

a = k a = % a = 1 a = 2

IP' 1.98281E-1 2.89175E-1 3.32450E-1 3.57239E-1

dt -0.68837E 1 -0.12937E 1 -0.16077E 1 -0.38467E 1 *

d2 -0.27977E 1 0.19337E 1 0.12728E 1 0.82347E 1 *

0.82009E 1 0.37751E 1 0.22160E 1 0.68297E 1 *

do -2.72864E-1 -2.98821E-1 -2.10888E-1 8.28835E-2

Table 29. The parameter |$ and the
X* 7

coefficients d^ i==0,1,2 and 3.

parameters in (8.5.1) are which depends only on the aspect ratio

(see table 29) and X which from (8.4.14) is given by

X' 7-o -'ikoL (8.5.5)
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where 7^ also depends only on the aspect ratio. Only four values of n 

represent distinct solutions in (8.5.1) since an increase in C by 2vr 

has no effect on (8.2.4). The n = 0 and n = 2 solutions are equal and 

opposite flows with an even number of rolls while the n = 1 and n = 3 

solutions are equal and opposite flows with an odd number of rolls. It
r~*

should be noted that in table 29 the values of d^ i=l,2,3 for the 

aspect ratio a = 2 may be inaccurate (see section 7.4) and have been 

marked with an asterisk.

The type 2 solutions satisfy

2^- y + , £ = ^/e L (tn=\aVe3er) (8.5.6)

with

X-J +MTT - - (8.5.7)

so that for fixed q the corresponding range of values of EL is 

restricted to

+ | (8.5.8)

and is traversed as the value of C varies by ir/2. These solutions 

connect the even and odd branches of the type 1 solutions and for a 

given integer m (ie. a given value of q) there are four distinct 

solutions corresponding to the four possible ways of connecting the 

two even branches of the type 1 solution with the two odd branches for 

the given value of q.

Stability arguments (Daniels 1981) show that all of the type 2 

solutions are unstable and so of relatively minor physical 

significance, while half of the type 1 solutions are unstable. The two 

types of solution (8.5.1) and (8.5.6) are most easily displayed by a 

graphical construction (figure 26) with 2q as abscissa Stationary 

solutions correspond to points of intersection of the sinusoidal 
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curves (type 1 solutions) or vertical lines (type 2 solutions) with 

the sloping line representing the value of 2q/*E  L. For fixed L, the 

gradient of this line decreases from infinity to zero as the Rayleigh 

number increment £ increases from zero through values of order L"' . 

The stable type 1 solutions are those for which the gradient of the 

sinusoidal curve is negative.

a = 0.25

Insulating EndwallsConducting Endwalls

p s 1 ipl
0.1E-3 0.1212E 1 0.1188E 2 0.1212E 1 0.6112E 1
0.1E-2 0.1210E 1 0.1187E 2 0.1211E 1 0.6105E 1
0.1E-1 0.1194E 1 0.1171E 2 0.1194E 1 0.6021E 1
0.1E 0 0.9047E 0 0.8872E 1 0.9047E 0 0.4563E 1
7.1E-1 0.5683E-1 0.5573E 0 0.5683E-1 0.2866E 0
0.1E 1 0.7009E-2 0.6873E-1 0.7009E-2 0.3535E-1
0.1E 2 -0.5115E-1 -0.5016E 0 -0.5115E-1 -0.2580E 0
0.1E 3 -0.5120E-1 -0.5089E 0 -0.5190E-1 -0.2617E 0
0.1E 4 -0.5191E-1 -0.5091E 0 -0.5191E-1 -0.2618E 0

178.0E 1 -0.5191E-1 -0.5091E 0 -0.5191E-1 -0.2618E 0
0.1E 5 -0.5191E-1 -0.5091E 0 -0.5191E-1 -0.2618E 0

Table 30. The parameters 5 and & at various Prandtl numbers.

a = 0.5

Insulating EndwallsConducting Endwalls

P ”5 s llp\
0.1E-3 0.9747E 0 0.8666E 1 0.9747E 0 O.3371E 1
0.1E-2 0.9743E 0 0.8662E 1 0.9743E 0 0.3369E 1
0.1E-1 0.9691E 0 0.8616E 1 0.9691E 0 0.3351E 1
0.1E 0 0.8379E 0 0.7450E 1 O.8379E 0 0.2898E 1
7.1E-1 0.1488E 0 0.1323E 1 0.1488E 0 0.5145E 0
0.1E 1 0.8115E-1 0.7215E 0 0.8115E-1 0.2806E 0
0.1E 2 -0.2206E-1 -0.1961E 0 -0.2206E-1 -0.7629E-1
0.1E 3 -0.2680E-1 -0.2383E 0 -0.2680E-1 -0.9268E-1
0.1E 4 -0.2720E-1 -0.2419E 0 -0.2720E-1 -0.9408E-1

178.0E 1 -0.2722E-1 -0.2420E 0 -0.2722E-1 -0.9414E-1
0.1E 5 -0.2724E-1 -0.2422E 0 -0.2724E-1 -0.9422E-1

Table 31. The parameters and oC /p>\ at various Prandtl numbers.
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a = 1.0

Conducting Endwalls Insulating Endwalls

p O<

0.1E-3 0.8259E 0 0.7447E 1 0.8259E 0 0.2484E 1
0.1E-2 0.8257E 0 0.7445E 1 0.8257E 0 0.2484E 1
0.1E-1 0.8229E 0 0.7420E 1 0.8229E 0 0.2475E 1
0.1E 0 0.7328E 0 0.6608E 1 0.7328E 0 0.2204E 1
7.1E-1 0.1295E 0 0.1168E 1 0.1295E 0 0.3896E 0
0.1E 1 0.5913E-1 0.5332E 0 0.5912E-1 0.1778E 0
0.1E 2 -O.5371E-1 -0.4843E 0 -0.5372E-1 -0.1616E 0
0.1E 3 -0.5924E-1 -0.5342E 0 -0.5924E-1 -0.1782E 0
0.1E 4 -0.5972E-1 -0.5385E 0 -0.5972E-1 -0.1796E 0

178.0E 1 -0.5974E-1 -0.5387E 0 -0.5974E-1 -O.1797E 0
0.1E 5 -O.5977E-1 -0.5389E 0 -O.5977E-1 -0.1798E 0

Table 33. The parameters and /\$\ at various Prandtl numbers.

Table 32.
fj

The parameters << and S /|p\ at various Prandtl numbers.

a = 2..0*

Conducting Endwalls Insulating Endwalls

P o< S/Ipl

0.1E-3 0.3867E 1 0.3083E 2 0.3867E 1 0.1082E 2
0.1E-2 0.3869E 1 0.3084E 2 0.3869E 1 0.1083E 2
0.1E-1 0.3879E 1 0.3093E 2 0.3879E 1 0.1086E 2
0.1E 0 0.3557E 1 0.2835E 2 0.3557E 1 0.9956E 1
7.1E-1 O.7136E 0 0.5689E 1 O.7136E 0 0.1998E 1
0.1E 1 0.4067E 0 0.3242E 1 0.4067E 0 0.1139E 1
0.1E 2 -0.1198E 0 -0.9554E 0 -0.1198E 0 -0.3354E 0
0.1E 3 -0.1535E 0 -0.1223E 1 -0.1534E 0 -0.4295E 0
0.1E 4 -0.1566E 0 -0.1248E 1 -0.1565E 0 -0.4382E 0

178.0E 1 -0.1567E 0 -0.1250E 1 -O.1567E 0 -0.4386E 0
0.1E 5 -0.1569E 0 -0.1251E 1 -0.1569E 0 -0.4391E 0

* It should be noted that the results for the aspect ratio a = 2 

may be inaccurate (see section 7.4).

8.6 Results

The results displayed graphically in figures 26~30 show the two 

distinct situations that can arise. If the sinusoidal curves lie 

wholly below or above the horizontal axis (corresponding to°</ipl < -1 

or«x/|p| > 1) then the number of rolls in the box, given approximately
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by the formula

(8.6.1)

must change as the Rayleigh number increases. Alternatively, if the 

sinusoidal curves intersect the horizontal axis (~1 1) the

number of rolls can remain the same as the Rayleigh number increases. 

The results shown in figure 30 correspond to the former case and are 

for P = 0.166, a = 1 and conducting endwalls. The length of the box is 

taken as 2L = 10 and the number of rolls, which decreases as the 

Rayleigh number is raised, is labelled accordingly. Figures 31~35 show 

details of flow patterns predicted by a composite expansion for the 

vertical velocity w. This is constructed from the solutions in the 

core, boundary-layer and endwall regions and has the form

(8.6.2)

A —
for x < 0, where m and m are the vertical velocity

A __

eigenfunctions corresponding to the terms m, m and in the 

solution for the temperature (8.4.4). Vertical velocity contours based 

on only the linear end-region solution and given in figures 36~40, 

show the flow near the endwall x=-L in greater detail. These flow 

patterns, and those of figures 31—35 correspond to the various points 

labelled in figure 30 and depict the transition in roll pattern. The 

solutions at A,B,C and D are stable and would be expected to be 

observed in the transition from 7 to 6 and then to 5 rolls as the 

Rayleigh number is gradually increased. The solution at E is unstable 

but is included for comparison. It corresponds to the situation where 

6 rolls no longer fit comfortably into the box, with the two outermost 
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rolls about to disappear. In practice the solution at E is avoided 

since a gradual increase in Rayleigh number is accompanied by the 

(time-dependent) transition from 6 rolls to 5 rolls at the point D 

(see Daniels (1984)).

Generally speaking, the results for given in tables 3O~33

(for various aspect ratios) predict that roll transitions occur for 

fluids of small Prandtl number and not for fluids of large Prandtl 

number, irrespective of the aspect ratio, and in cases where 

transitions occur, the number of rolls decreases with increasing 

Rayleigh number. Results for a = 2 are an exception, where an increase 

in the number of rolls is actually (marginally) predicted at large 

Prandtl numbers, but this may be due to difficulties associated with 

the accurate computation of i=1..4 at this comparatively large 

value of a (see section 7.4).

Results for the two-dimensional model (Cross et al (1983)) and 

experiments and numerical predictions by Oertel (1980) both indicate 

roll transitions at small Prandtl numbers and not at large Prandtl 

numbers, in line with the general trend of the present results. In 

Oertel's experiments it was observed that in a long rigid box (a=2 and 

L=5) containing silicone oil (P=1780) and with conducting lateral 

walls, the numbers of rolls remained constant as the Rayleigh number 

increased above it critical value of about 1800. When the silicone oil 

was replaced by nitrogen (P=0.71) the number of rolls decreased from 

10 to 9 to 8 to 7 at values of R given by 2300, 5650 and 8900 

respectively. Unfortunately, a proper comparison with Oertel's results 

is not possible for several reasons. Firstly, it has not been possible 

to obtain realiable results at the large values of a usedin his 

experiments. Secondly, even if this had been possible, it seems likely 

that the present theory requires a«Hin which case a different 
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approach is required at large values of a, unless £ is extremely 

small. Thirdly, of course, the present work is based on the assumption 

of stress-free horizontal boundaries, in contrast to the rigid 

boundaries of Oertel's experimental and numerical work. It is thought 

that some of these limitations can be removed in future work, but 

that, nevertheless the present results provide the first realistic 

predictions of wavelength selection in real three-dimensional flows. 

The general prediction of roll transitions at the smaller Prandtl 

numbers is encouraging and it is interesting to observe the borderline 

nature of the prediction in air (P=0.71) where roll transitions appear 

to be critically dependent on the value of the aspect ratio a.

Results for nitrogen (P=0.71) and silicone oil (P=1780) for a 

long box with a = 1 and L = 5 are shown in figures 26~29. For the 

conducting case, roll transitions in nitrogen (figure 26) are 

predicted to occur at values of the Rayleigh number given in table 34.

Table 34. Roll transition in nitrogen, P = 0.71, a = 1.0, L = 5.0.

No. of rolls e R = Ro + E /d, R/Ro

Ro 7 0. 827.6 1.

■ 1st transition 6 8.5 2310.5 2.79

2nd transition 5 41.0 7153.1 8.64

It is believed that the present approach can be extended to the 

fully rigid case by a numerical treatment of the eigenvalue problem in 

the y,z plane and realistic comparisons with experiments would then be 

possible for long boxes with a£ 1. The results described here for the 

stress-free case should provide a useful method of testing the 

numerical scheme.
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Figure 36. Contours of the vertical velocity component w at point A

in figure 30, near the endwall x,=0 based on the linear end-region

solution for w.
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Figure 37. Contours of the vertical velocity component w at point B

in figure 30, near the endwall x, =0 based on the linear end-region

solution for w.
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Figure 38. Contours of the vertical velocity component w at point C

in figure 30, near the endwall x, =0 based on the linear end-region

solution for w.
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Figure 39. Contours of the vertical velocity component w at point E

in figure 30, near the endwall at x, =0 based on the linear end-region 

solution for w.
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Figure 40. Contours of the vertical velocity component w at point D

in figure 30, near the endwall x^ =0 based on the linear end-region

solution for w.
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Appendix A: Cardin’s formula for the solution of a cubic equation

Consider the general form of a cubic equation, which is

y2 v -t r - o • (Al)

By substituting into equation (Al), it is reduced to the form
1 3

q3 +- Kq + g 5 O vAiere •> + 24 r ' (A2)

The roots are given by

+ , (A3)

<lx,q,= -i-(E+ + E-)t^E*-E-) (A4)

where

When (Al) is given by the characteristic equation (2.2.12) where

|> = - , q- R) aaA r-_ - (o<6- r )

this implies that

y--«< f -nSr1R.

(A5)

(A6)
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Appendix B: Nonlinear solutions at order £ for the infinite

stress-free channel

The complete solutions for all the dependent variables at order 

£, for the infinite stress-free channel are stated below:

(1) The velocity component wx satisfies the sixth order differential 

equation

U = -L2^4- { •L y -py
’7 +c.c] +fo<3^<Xzip-}CBBKJccs^ V[^-r^pJIABC + c<W =-r C’C a

— .«- - iAbO"hi) _.
+-f C(7-Jr^gfii A B € A-C-CJ Cos

and the coefficients are

<KX- \oe n'fk1 } C<5- tR0-?D2/a.25o(tx az ,

0^" (c8TTq C>2U + l|^)/ c(5 - 3ko-?jc<2 ,

(Bl)

where

D^U-7/dx)X

4T>2 + tt "2 / «2 ■
(Bia)

+ Ccs^ -+[o(5+ y ][ A8eV^° + ¥c g

ilko-kdx
■+C-C

jstnrn^ + 'T Uc(xtT)^'^c.<)+(D(x>r)el^c-c)ccs?fJ^ATr

and the coefficients are

*1=t^5X(£+TrZ)Mx</>

0^ = 3TVSRe
(B2)

z 3lT5’Ro/^</i| ,

5 >

where

(Uk?- \Uh?+-n-x)? , Ro -u^h+'/i2)\ 
a (B2a)
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(2) The temperature

m + 7 IB V^c-cl* »*] c« T * 1 * T If ABeafeo+kie.c] cos7

+ fjf,+ &][ AbV^' ^c .c ] Cos V

+ e ^’-c.clce5 - + V c c] + T c-c] cor^- hn-rr^t

and the coefficients are

5»- i «x= ^xsk?/4«^3,

<5- ? 5^.= (

5S“ 3iT3t\-o)^ / , <<(, -

5^- 3TV^(i -+d )4^/zcf^ , \ -3rrA| , tf.o’ -3^/8 ,

(B3)
Sit - 4^oj3TVx?

(3) The pressure

<4X - 4vh, jsTT^.

I UX^ + ^sPUbV^c -c ] + f^e+^TPlCBB’jcos2^+[s<,8+o(iqp][ ASe + c.c j cos^ 

+ t°<2o + °<2>Pl( AbV^’ ^e-clcos^ 4 ro(ii + ^Pj[AA*] + [«^-t<KxyP][6B‘JJ CosiHl

* Cosirt -v F(x ,^?,t )

and the coefficients are

.Xlb -- (4t V/8) - (lT-TV4Dx(f.<,-'t>Tr‘'(\ + >|air^8ftl(/>4)! <Xn= -3*Vft<.b*A|»  )/ </>j ,

<?-. (ht 4o -o)|8)-(^’rt («<>-#), 

<XM = 1(4,-<£?)/4-^<j>J ?

<<„= -•5tt 4M'-i>)</>+/(£i ,

o(M =

<X-n- "5 Ro/8 1
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the

Hs; -

<rn'4!e < °Gs - 3Ro/It ,

o^27 = -irrrih, , «<18 = -Mir3/! . (B4)

oU6 = -»^vho ?

In order to obtain the arbitrary function F, it is necessary to know 

z independent terms on the right hand side of (3.1.41) which are 

- X e  (g c.c) + 4-g r i s .a
ck  a  (B5)

-V L(\+D)(ABeL^+^c-c)+c *c )J

and

Nu
2ti { MaV^oc P ^AbV1'!'*  cc)b- h - os j2) 

z
h r ( ^lin vlko-+U,)x uihc-hd^ \1 Try 7

4.*2[  G+o) (ABe. -c-c) + W (AB €

Thus, from (3.1.45) the particular solution Fp for F is

Fp - ^(AV^OC). cc)b- ^+Cc^)

+ K O+d )(AB<? + C c)+i\-oKAB*e v^° ^oc)] Cos < 

(B6)

(B7)

(4) The velocity component in the y direction

vx={^c *r^. +^1llA8eLlfe’+h'le.c]S.^ + W^ ^JIABV^xJS1-

]* CoSJTT? + { <X751 ByC^C-c] S.n * <*36 [ pt^'* «] S’n t LcS~Z

1

and the coefficients are

o(X4 = "3irVR<Jzat|>4 > <50 = +

0(32- -X^^U-D)|za^ , C(?3= -3TV4Rt,(| + o)/a<|i1 t

1 (X <S4^ -

2TF V) J 5-ca  ^2 y

(B8)

(5) The velocity component in the x direction

U1 - {neV^c-c A6eateo+-oc]^f * r%+ V11 AB>ellhc_-•*!

+ ^Lce^-.cl

<1

+ C^EO^Vc] Cos^ } Us-"4

XUi^ocV 'W8xt
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and the coefficients are

- 2^4 i,k| j Zci3^> 3 * W6LkAk^-TT2)/ax<£3 ,

o(3£| r Ck0Rc| a2 <£( 9 d4o = iT-TT^tko </>+ / a*  <^$ ,

<*ZV  - , ^4<L~ ^^cko^./a2^

<^43 " ^_U^/h  ) -*■  SV (/4Ar (-izk?|k ) + (B9)

°<45 " S-n-'iXo ? - 3Wtkt .
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Appendix C: Nonlinear expans ion for the rigid channel

Expanding the four nonlinear terms on the right hand side of 

equation (4.3.7) gives

Mi.Vuj j - [ A e •+ cc) + A )]

if &(sbp Cc$2K£ + oUtyilUV^c-c)

(Cl)

(C2)

(C3)

and
u, .Vvj - cosiTri*  (A^e2^'

where

H-IA®-t V^'+tt W®] ?

<X3=i[-iAW -vVVJ‘ + irVAJ] , 

^--^J"UW+VU‘+ k W^1 , 

kt -uV-^W'-v T-wV] 

°<c| - UV 4- VV1 -v tt VJV 3 5

where @,V,W and U are given by

4- C-C ) 4- [cf^CvpCasiTpZr -+ oGoVjfR^A A*)  (C4)

<xz=r iu® +v©'+^we]$

d4 = f [uw-^vw’ + ^ww] $

= iirJ-ut^viC-uwm 5

o(g^ + VV' -4TWV] ,

4- VV' -TrWV]

(C5)

.1.3) and prime denotes .

The column vector on the right hand side of (4.3.57a) is

£ StU), S7U),S3(a), SA(a)]

where

5j(a) - asinUTjA * 5zW0-kc£ asinhrj a y

S led -7.hoi coshrjev + ^f^£(cc5ba(A + c<<\s^h<Xa) - X- coshr\a.
3 j=t (tf-oC) <*
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In equations (4.4.15,18) the y-dependent functions e£(y) i=1..12 are

= - 3t£2U(E)2* + 20$) - ®3)J + V(lt!>z +2©5)-^TrW^©2^2®)^

f4= t(+Pf4= +2<)-^W(V2V3)j +£[^^,*¥^42^) -zirWlv^zV,)] ?

f5-L+P£5-= -5[ho©(^-2«4) + ©/[V2+2'/5-2V4l] -£[Vc,@U2*-® ,(V2+ZV5)] ,

Ek= Pf*-p?t-  [ ¥©(.'*'<'■' + 5©tVJi+2-W?)] t

tvE>PE> -k[h«W^U4)^'( 4 [fc.VIV W'(V2V?)] ,

Eg’VkV v *f[^ w(vk+xu,)],

S<-£,-tP&---KU(Ux*2U Ab k'(^-2V3 + 2Y4y]-4tuu2*
Re Rq

E.,--Vpt -- iiMtu^ivuVv\\/2^v4nv7)T+£[koVuI+vXv2w-V,)](

c\ud . .

(C7)
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Appendix D: The generalized solvability condition

Let f be a column vector of eight elements and let E be an 8 x 8 

matrix the elements of which may depend on the real variable y. 

Suppose that the problem

where
0
- ?

0
- I

(DI)

14

has just one non-trivial solution. Then it can be shown that the

adjoint problem

where
k
m

(D2)

also has

1a ,

0 >

just one non-trivial solution. A condition is required for

the problem

(D3)

m
0

0

0

>

5

J

A p

to have a solution. Premultplying equation (D3) by ftr and adding to 

the transpose of equation (D2) post-multiplied by f qives
, A"tr A-tr

f]=f 1
(D4)

which implies
+c\ A + r-Atr f a TV

(D5)

But the first four components of ftr and the last four components of f

a.are zero at y =1 a. Hence

Ah-
o - j £ . (D6)

This is a necessary condition for (D3) to have a solution
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Appendix E: Higher order nonlinear terms

In chapter 6 the y-dependent functions i=l.. 10,14.. 106 are as

follows:

?3,4 xll + ■*  V®! +TrWIly

E5$g  - " I "*  U©!*  2V@2 + +P[ + U&2+zV@2 y

^58-£?jg+pf7i8 - [ + + P[ ? u©2 + 1V@2-W@2’]t

S??c =?m,ic  + P^t io - [yV®^±TT\M©?-] +P[± v®4 ?

A

^J4,«5- Pv4i‘S + + +TrW 1 ,

~x I- V iUw^vC/j +TTWUz]+y [^uwx+1 vvl1+irww2]rA j '”'
£»60<1" £|F5^+ PC'8>»c ’

£xZ,U3-f'zi1i3 + |£72>23 = [ -'n‘V/W3] + p [ | V Vl3 fn'WW3]j

tz^,2f>-r ^Z45XS - 2^1 +h +VU +u’W^l 7

^Zfc,27" ^U,Z7 = ZfcjL +VU y

P2BO1S ' - Z VU( + >• Wl\J $

£32,33 - £32,33 + P^32,33 = [ IUU-A 7VU2 + k vjU/j + P[+Udx^ 7 V U2 * "^VjUa’] ,

£34,35-= P74,3S + P^34,?5' ' +UU2 A- UU^*  ^-VlU + VU^ * U VIU2I + P [ + \fUz+ 3VU2 -TVVI 

£31,37-^,37 = H + UV + VV/a-tt V4V3?

2 54



e = L„ „ = H*uv+vv'--"-wvi

?40,4,= p^o.4> = -VV.'-irVIV,],

<VT \ * UVx*  i VV2' + TTVJVJ * P[ +u V 4 TV WV7 ] t

e4t,„= +f 1 ZI^M'X -*•  wvxl+p[?UV -TVj 1,

E48t44= +-^V31 + P^VV3 ±1TWV,],

fw,sl = L,s.= U ^@U + ®'v*ir®Vll  = £,,□. ,

£«,F3 = p^,55= -^®U' + ®'V'+K®W‘] .

?S4,5S = ^!?s+Pf34,5s-^*k°®Ui  + © V2 + "®U2] + i[;L®W14©'V2*Tr®W 2])

^8,54= ?5e,s4 + pfss,s-<1x 7Li® V,+ '>®w3]+ £[ i®/Vj + T-©WJ]

A
^,6i = = H ;wu +vj 'v +kvi t ] = sl40S ?

^2,63^ P^2y63 " £[ 1 kc WU.^X+TMUj,] ?

et>4^s - ^4,65 +p^4>ts = i[ + k>WUz-hV|,v2+'n-Wvi2H|[+^ov7u2-»-v4,V2+TrUVlz’]

A

Ea>,w= E(,t,6-,4PEUlt4ci[ik>VIU242k<1VIU4-U'v242W'V44TrV4\4I)4iLtfe<WUi-w'V^-irWvJx])

£(,8,M -- m * p£«,M = % v i w' V3 + vvlvj,] * |[*VI  7, +Trw^3 ]f

p - e , = 5T V-lCtu'v+TniW]
t7-o$T» " 2|<o t

A A
^7O ’

A A
?7l"” ?25T „

57

£12,73 = U,„ = A A

£>Z~
A *<
VTT -" $21 1

P14 ,15 ' P£t 4,TS - Z U^' + he U V, +
1- • 
ho■^UVk] 5

> ?

£32,73 = ^C,17 =
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eT8)7q= *48,^ p*78,„=U-uu2t tu'Vzt'E uw2] 4 £[-uu24_ tu'V- foww2] f

*80,8.’ W+ p*8o, 8l = H-UW2 -2UU41 W'V 2 U v4) 4 £ uvU 4 £.£-^4. ^u'v2 7 * u^31

*82,83 = U18!<l6i-- Fbo Vu'v31 Tvuvla 4^-J u'v, 4^,] t

*84,85 = ^84,85 - z t + + V V 47TV\V J •= £36,77 ,

%8,«q= PW<- H^-Viv v'v, -^VW.] ,

Sqo.q, -- l%l<|14ltl'»'WV, --^VU.],

*42,<i7 = *42,45 +p£q2,q5' 2 U k0VUi4 V V2 't"irVu/2j + q * V Yi + TTVUIz^ T

EqA,qs = £q4,<)5‘-Ffq4,qs=^+h.YUz+2koVUA4V,V2*2V ,VA.--nVW2K£pkcVU2-tV'v2-vVvJz]i,

- fqt,q7 + p£u,q7 = 2 [ V'V3 tirV^Tl 4 £ [ V'V, + F\/Vi3^ ,

E(,£=^84PSqe = ®24p®2 ,

S\OC - " vL+ pu 2 , A A
Vo\ " Kc\ - ,

A
£ \O2 - £\02 - UVJ t

A

f toy - IIc<j - UV 5 A - A —
‘‘dot - €»o 6-*■  P£Vo6 = V^ + PVi

(El)

where ’ denotes d_ 
dj . It should be noted that -£io(, have been 

introduced for programming purposes.
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Appendix F: Infinite rigid channel: expans ion at order

The y-dependent functions i=1..58 (i f 13,34) in (7.1.37) are 

=7[-U©2 + ^©U2-Uo  U4@l,

<k= u4®,l,
= ■pdV®2.~5V!.@ + -KW®x+^rV42©] v

<fe1-i[x -~trW©3+

-iv1©>v4®t'--n-w,®z+3rw2®.] s
&= [ tv,®; - kv,®; w3®,i,
^^[-foUVIa^U2W-U4W], 

fc ^[PUAVlUxM, -u4Vl,], 

$s = [ zVWx “ Vx \a | + ^V4Vl " V VJV'L] r 

$lo= I 7VVI-3 _ rp V3VJ - VIU 3 ] $

=vLz V»vU ~£pVzVl| + p - 2? VI, Wzl r

41z = Z V, Vi-5 " V3VI1 ~ "2 V1j U33 ,

v-i t-Wx - w4 +1 vu'- s
/ ( t r~ P

<^l5- p[-koU,Ux-*k<,U(U 4-»- + V4U, --fWxU,3,

= |[ 4M - U4U + + VU'4 --n-wiu] ,

4>tq - I " TVh^35
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0IO= pl-^2-iviv4-^u1V-M+v]j

<f)„ = + W4 + | V2V'+ V4V'-'n-WV2-^'v42V]i

-iCiVV, +tVJv'-TrWV3

^-- Ht V,v ' +VlV; + |vX + -^WaV,],

<ks -- i Civ.v;+i V3V,' -^,v3 - u3v, 3,

'kt' pIU®<o+1 V®lo + 3:V®u "‘irW®lo-TTW@|j

<Pz? = •prU®r2.-»-£V®,':! +jv®4 -irH@,x-TTW@ n5 J $

‘Azg = -p [ 2 V®\7 " 77 ^®I3 15

^q " p t “Z V®„ ,

^50 - [UU,0^^VW/o + ~ V\j' --rrklkl -^WUh ]j $

- [ UWi2 ^2 VW,2 + 7 yWt3 -vVjVj,^ -irUW^l,

$32 - [ 2 VVJ13 ~ 77 WW|3] 7

<f>33 = r-^VWn ^tt ^Uh]5

p[ uuvc.+ 2UQv?l +-VU.o + ^VUn +VU|7 +vu{8

^3G- p + 2111(4^-A- ^Vuu * iVuIj+ Wu^ -TVUlUlz-TTV4Un] y

4*38  " pUVU'n + VUjg -

03q - p ruVlo+ivuV|T+ lyv/o + 2 Vv/ ^iVV/t - -‘n'U Vlc
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■pl'zWh +lrWV11],

V ®U»■ T ®w iK®U>8-L®'vle- k@-V„4L® VV®(vVWH)J 

<^44-- P [ To®«.t- t  ®Ul?+ko®U,6-i ©V^®'V13*®'v, b4^®(vJll+vJ„)l,

?['^®UMtik>©Qie4(3)'vli -Sew,,],

k vk^47-= M ~ WU|0' T VjU“~L^^u'7+l^Vjv\„-^\Aj'V,0-^w,'/„ + i'WlVi7+1|r’w(w.c4Viu|j 

= M rWUa-7 wuB+^wu1(1-ivj'vl2-iw'v,3+w'v1<, + ia>vj^,i4vjl3)]5

^4q- p[ -jW'Vtj +"^>VlVl1jlJ

= p[-^ Wu«*̂ ’WUi8 + £w%-'fw,1‘], ■

- ?Huu 10-1uuh  -Wh -uu 184u/v ,o + ^u 'v,, ♦guGAo-w.,)], 

= p[-juu--4uu'3-tuu,t-^uX24^u<Vi<LUVit+gu(Wvi_Wi;)^

= pfxUU.jt^u1^- ~jf UW1$1,

4s= = p["rVu.0+T VV„-vk<>VU,7nhoViA,1. + iv,vlc+^vV„+vV'v|^-1tfV(wlc+w,1)]

^s?1 p t z" 5 V’Vij VWt3l,

^t= "pt TiVy,2+TVu'3+boVU1£+^V'v,l+LW.^ + V'V.t-^VtWu^W.j)],

^8=?r V VUH*U ’<.vut8-iV'Mll4-lVv/|l3} (Ft)

^kere dtnoVes i- •
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