IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Chaudhary, S., Budhiraja, |., Chaudhary, R., Kumar, N. & Biswas, S. (2025).
Asynchronous Federated Learning Technique for Latency Reduction in STAR-RIS enabled
VRCS. Paper presented at the IEEE International Conference on Communications, 8-12
June 2025, Montreal, Canada.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34792/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Asynchronous Federated Learning Technique for Latency
Reduction in STAR-RIS enabled VRCS

Shivam Chaudhary*, Ishan Budhiraja*, Rajat Chaudhary*, Neeraj Kumar', and Sujit Biswas?
*School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India
TComputer Science & Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab
iCybersecurity and FinTech, Computer Science Department, City, University of London, and Research Associate (Honorary)
at CBT, University College London (UCL), UK
Emails: €22s50ep0063 @bennett.edu.in, ishan.budhiraja@bennett.edu.in, rajat.chaudhary @bennett.edu.in,
neeraj.kumar @thapar.edu, sujit.biswas@city.ac.uk

Abstract—With the advent of smart and autonomous vehicles,
a number of novel data-intensive and latency-critical vehicular
communication applications have emerged. However, dynamic
vehicular mobility and urban environments introduce severe
propagation challenges, leading to increased latency. In order
to reduce latency in Vehicle Road Cooperative Systems (VRCS),
this research introduces a unique architecture that combines
Asynchronous Federated Learning (AFL) with Simultaneously
Transmitting and Reflecting Reconfigurable Intelligent Surfaces
(STAR-RIS). The proposed system leverages a Markov Decision
Process (MDP)-based optimization framework to minimize la-
tency by jointly optimizing STAR-RIS elements and offloading
decisions. Our approach allows vehicles to asynchronously up-
date global models, ensuring robust learning while adapting to
dynamic network conditions. The simulation results show that
the recommended strategy provides at least a 20% reduction in
latency in AFL when compared to FL.

Index Terms—Latency Reduction, STAR-RIS, VRCS, V2X, AFL.

I. INTRODUCTION

The need for quick and low-latency communication is
essential in the rapidly developing field of intelligent trans-
portation systems (ITS). However, The quality of the propa-
gation in Vehicle to everything (V2X) communication links is
frequently degraded as a result of the channels’ rapid varying
by the high versatility of vehicles and the intricacy of the cities
communication environment, like high structures obstructing
the channels [1]. New technologies like STAR-RIS offer a
novel approach to improving vehicular communication net-
work propagation quality. The ability of STAR-RIS to control
electromagnetic waves in a dynamic manner improves signal
strength, coverage, and reduces latency [2]. Autonomous driv-
ing, collision avoidance, and traffic management all rely on
real-time data exchange, so this capability is especially useful
in VRCS. In VRCS, federated learning (FL) opens the door
to minimizing latency [3].

FL enables decentralized data processing and model training
across multiple edge vehicles, in contrast to conventional cen-
tralized machine learning techniques. This not only preserves
data privacy but also mitigates the need for extensive data
transmission to a central server, thereby significantly reducing

latency [4]. FL makes it possible for vehicles and roadside
units to work together to learn and improve system perfor-
mance in the context of vehicular networks by facilitating the
local updating and aggregation of models [5].

The integration of STAR-RIS with FL in VRCS addresses
a synergistic way to deal with latency minimization. The
proposed framework aims to improve communication effi-
ciency and decrease latency by utilizing STAR-RIS’s signal
propagation enhancement capabilities and FL’s decentralized
nature.

A. Related Work

Recent research has explored the synergy between STAR-
RIS and FL to address latency issues in vehicular networks.
The authors in [6],[7] enhance the UAVs’ transmission power
via intelligent reflecting surfaces for V2X Communication.
The authors in [8] demonstrated that deploying STAR-RIS
in urban scenarios significantly improves signal propagation,
resulting in reduced end-to-end communication delays. The
STAR-RIS is crucial in modifying hybrid users’ decoding
sequence for effective interference reduction and omnidirec-
tional coverage extension with federated learning [9]. In order
to solve the issues of resource scheduling and transmission
mode selection for the STAR-RIS infrastructure for virtual
reality surveillance installed on drones, the authors offer a
collaborative optimisation approach.

Authors in [10] took this a step further by integrating
FL with RIS, showing that this combination can optimize
both communication latency and model training efficiency.
STAR-RIS assisted offloading scheme based on non orthognal
multiple access (NOMA) can effectively reduce the latency
compared with benchmark schemes [11]. The authors in
[12],[13] takes into consideration a STAR-RIS assisted mobile
edge computing(MEC) system and formulate a problem for
the minimization of communication latency and weighted-sum
computing in order to optimize the volume of offloading data,
servers’ edge computing resources. In [14],[15] researchers
have looked into a number of strategies to deal with latency
and energy management in integrated systems, such as re-



source allocation algorithms and adaptive beamforming, which
allow STAR-RIS to dynamically modify its configuration in
response to changes in the environment .

B. Motivation and Contribution

The reduction of latency, which is essential for real-time
applications like collision avoidance and traffic management,
faces new challenges when STAR-RIS is implemented in
vehicular networks. Federated Learning (FL), with its decen-
tralized nature, offers an expected arrangement by empowering
vehicles to cooperatively gain proficiency with a common
model while keeping their data local. This lowers latency
and protects data privacy by requiring fewer frequent data
transmissions to a central server.

e A latency-minimization strategy that takes into account
the reconfigurability of the STAR-RIS and the dynamic
nature of the vehicular network is incorporated into the
framework. This procedure guarantees that the communi-
cation links are optimized and streamlined continuously,
addressing the latency issues basic for V2X applications.

e The federated learning model is adjusted to the vehicu-
lar scenario, considering the versatility of vehicles, the
varying network conditions, and the presence of STAR-
RIS. The model empowers vehicles to cooperatively
train on their local data, diminishing the requirement for
centralized data aggregation and thus minimizing latency.

C. Organization

This research article is organized as: System model is
described in Section II. The problem formulation and MDP
formation is described in section III and Section IV describes
proposed solution using federated learning. Section V repre-
senting the results and discussion, while the proposed article
is concluded in Section VI.

II. SYSTEM MODEL

In this section, K = {ki,ks,...,kx} is the set of MEC
servers. Set of STAR-RIS is given by J = {j1,J2,...,47}
We analyse an STAR-RIS-equipped multi-vehicle scene where
m vehicles are served by MEC-driven base station (BS) with
help from STAR-RIS as shown in fig. 1. At time slot t, the
m-th vehicle’s trajectory coordinate is G,,, = (i, j.. ). While
moving, the vehicle can select its offloading method. Vehicles
with a maximum communication distance of xy can commu-
nicate with the STAR-RIS. Vehicle d will not communicate
with STAR-IRS if it exceeds xg. Directly from vehicle m
to the MEC server (MS), the channel vector is represented
as g, k, Which comprises Non-Line-of-Sight (NLoS) gnl\sz;cos
and Line-of-Sight (LoS) gL‘?,f [16].
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where g;-°7 represents ULA’s array response, X stands for
the Rician factor, v for the factor of distortion, p = -4 for the
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Fig. 1: System model.

fading factor of the path, and g%{;ﬂ"s stands for the Complex

Gaussian distribution with zero mean and unit variance. We
can make every effort to address the aforementioned building-
related signal fading issues with the use of STAR-RIS. From
vehicle m to the MS, the channel vector g, is expressed as

Im = Im,k + H(Dgs,k (3)

where the channel gain between STAR-RIS and vehi-
cles is represented by H = zf, .. The gain of the
channel under Rayleigh fading is represented by g, i,
which is given by I/xﬁ%qu\myk. The distance between
the mth vehicle and the MS is given by xz,,; . The
coefficient matrices at the STAR-RIS are denoted by
" = diag(\/N] exp?®T, \/A exp’®2, ...\ /NG expi¥F), v €
{S,F} where ¢% € [0,2m)Ve € {1,2,3,..., E} represents
the phase shift for the e-th element. The array STAR-RIS
is made up of e x e reflecting components. S is the region
consists of vehicles in transmission region and F is the region
consists of vehicles in reflection region. The gain in the
channel between STAR-RIS and the MS is denoted by g
and is given by g, 1 = xfj » Where x ;. is the distance between
MS and STAR-RIS. The overall duration for the MS execution
includes processing and offloading tasks and transmission
delays. The rate of transmission is provided by

Rm,k)(t)
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where the combined data rate from the vehicle to the STAR-
RIS is indicated by R,, x. The beamforming vector is denoted
by v (t) (e.g., v (t)vr(t) = 1). The variance of the Gaussian
noise is og, and its mean is zero. The bandwidth between
vehicle m and the MS is represented by W, j(1).



A. Execution Model

Vehicles must send vehicular tasks via STAR-IRS to the
MS before the MS can begin executing the r-th partial task
Y. The delay in transmission is provided by

Yo ()

*ol0 = R
The following represents the overall execution time:
Yo i (£)O(t)
mee — s Lm - t Lpast 6
m,r Us(t) + ke, ( )J’_ ( )

where O represent calculation density, us is the speed of
MS at time t. The task data offloading is the primary cause
of the overall delay for MS, as can be shown from the above
calculations. Because the input is much higher compared to
the output of task offloading, the return delay L% of the
results is quite small [17].
Assume that the task carried out in vehicle m has a data size
of Ymﬂ«(t). The computational resources for local execution
are represented by (), and the time of local execution is

provided by

lco __ }/mﬂ“(t)O(t)
Lm,r - n (t) (7)

III. PROBLEM FORMULATION AND MDP FORMATION

The complete execution delay to compute offloading and
wireless communication for every vehicle to carry out tasks
at time slot t is provided by

W  pra
= Z Z ﬁm,r(t)LirCL?r(t) + (1 - 6m,r(t))L%,cre(t) ()
m=1r=1

where pra denotes the total number of task portions. Therefore,
the overall delays in the wireless communication and compute
offloading life cycle are as follows.
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Taking (10) into consideration the following optimization
problem is formulated:

P.F.

min L
pra

> Bmr €40,13,
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(11
s.t. Xl

Our objective is to reduce the latency L from (11). The
discrete variable [ in constraint X1 makes problem (11) a
non-convex optimisation problem. The power of the channel

gm between the MS and the vehicle is kept under the maxi-
mum power (4, by constraint X2. Constraint X 3 ensures
that, over the course of the vehicle’s life, the bandwidth of the
channel W,, ;. between the MS and the vehicle m does not
exceed the maximum bandwidth W, ...

A. Markov Decision Process

o State Space: The state space at time slot t con-
sists of the vehicle’s trajectory location G(t), vehi-
cle connection B(t), and vehicle velocity C(t). G(t)=
(64, 50), o (i3] B(E) = [Bult)s.... Bu(t)](ie
C(t) = O indicates that the vehicle is not connected
to the STAR-RIS, C(¢) = 1 denotes that the vehicle
connects to the STAR-RIS at time slot t). C(t) =
[C1(t),Ca(t),...,Cn(t)]. So, the state space is S(t) =
19(t), B(t),C(1)].

o Action Space: The selective action of the vehicle range
is [0, 1] as indicated by the action a,,; at time slot t.
The vector A = (B1,4, 52,4, --,0m,) gives the action
set 2, and the action /3, is taken by the agent. where
B1,t = 0 indicates the task is carried out locally by the
vehicle, while f3,, ; = 1 suggests that the task should be
transmitted to the MS.

+ Reward: At time slot t, when the agent is in the states
S, the reward for selecting the action (; is given as
R(S(t), 5())-

In order to minimize latency, we convert the optimisation prob-
lem into a joint optimization of the STAR-RIS components
and offloading decision. We reframe the delay minimization
problem as an agent reward R maximisation challenge. As a
result, the reward function for the T time slots is provided as

R—TIEEJZL

IV. PROPOSED SOLUTION USING FEDERATED LEARNING

12)

FL is a procedure that permits Al models to be produced
jointly by scattered devices while maintaining the secrecy
of data [18]. Updating models using centralised data isn’t
always appropriate when working with massive amounts of
data. During the learning process, FL shares the parameters
of the machine learning model (such as gradient) rather than
gathering data. The global model is created by the central
server by combining the model update parameters from all
of the clients. The global model is provided to each client,
which then uses its own data to improve it. The central server
combines and weighs in an adaptive manner successively as
they get new models from other devices, according to an
asynchronous updating technique provided in [19]. The FL
framework Flower [20], which we utilised to complete our
work, offers an abstraction of the gRPC-based communication
capabilities.

A. Architecture for Decentralized system

Since asynchronous decentralised algorithms need not rely
on a centralised server, they can have any kind of connection



topology and do not require centralised communication. Fur-
thermore, the asynchronous progress of learning rounds elim-
inates latency resulting from imbalanced computer resources.
A server-client interaction exists in centralised FL, where
clients acquire knowledge (improve) and the server compiles.
Every device in decentralised FL is in charge of both aggrega-
tion and learning. In this instance, we investigate the arbitrary
arrangement of aggregation and learning in asynchronous
decentralised FL. In order to accomplish aggregation and
learning in that sequence, we create AsyFL(Algorithm 1).

B. Algorithm proposed

For each vehicle, the rounds run asynchronously, and all
algorithms are applicable to vehicle m. M is the total number
of vehicles, D,,, is the vehicle m’s local data, vehicle m’s total
local data quantity is represented by n,, and E,, , represents
the model parameters for device m at the conclusion of round
r — 1. Consequently, Ej ., stands for the most recent model
parameters for vehicle m at that time. Finetune (E,,, D,,)
indicates that E,, used D,, to learn on vehicle m. AsyFL is
shown by Algorithm 1. For each vehicle, we start the model
with the same set of parameters. Every round consists of two
steps: Using the amount of data as weights, we first aggregate
the models with the connected vehicles by calculating model
weighted average.

We then carry out learning using local data. Expanding upon
AsyFL, we further suggest algorithms uAsyFL (Algorithm
2), which include model aggregation through update history
derived from BrainTorrent [21]. In this step, aggregation is
limited to models changed since the previous round. It is
anticipated that this strategy will stop the model’s quality from
declining as a result of reaggregating with previous models.
U,, is a vector that shows the connected vehicles’ version
information for vehicle m at the end of the preceding round.
An increment of one in the vehicle version number is indicated
by increment u"™(m).

C. Learning Process

It is expected that every vehicle has local data and a
local model. The following steps are involved in the learning
process as shown in fig 2:

o Ask the linked vehicles for model specifications and
version details.

o Get model specifications and version data from the vehi-
cles that are connected.

o Use the version information to aggregate the models.

« Utilising local data, update the local model.

V. RESULTS AND DISCUSSION

All of the simulation’s algorithms are run in a Python
simulation environment. Table I displays the specific pa-
rameter settings. The evaluation PC is equipped with an
NVIDIA RTX3090 GPU, 64GB GB of RAM and an Intel
i7@ 3.60 GHz CPU. When the edge computing capability
us grows in the range [1 x 1019 4 x 10%cycles/s, as shown
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Fig. 2: Learning Process.

Algorithm 1 AsyFL

1: Set up local models first { Ep, 0} _,

2: for every iteration, r = 0,1, ... do

3: Ep < . B

4: N +— nm

5: for b € {connected vehicle indexes} do
6: Ep + Em +np.Ey,ry

7: N < N+ ny

8: end for

9: E,, + %

10: E.n,r+1 < Finetune(E,,, Dy,)

11: end for

Algorithm 2 uAsyFL

1: Set up local models first { E,, M

0fm=1
2: Set the version vectors {um}ﬁle to their initial values.
3: for every iteration r = 0,1,... do
4: Uprevious < Um
5: Uypdated < Obtain variants for each and every other vehicle
6: E. < B
7: N < nmg,
8 for b € {connected vehicle indexes} do
9: if u'lz:pdated > ulz)n‘evious then
10 Em + Em + ny.Ep
11: N <+ N +ny
12: end if
13: end for
14: E,, %
15: E,n,r+1 < Finetune(E,,, Dy,)
16: u™ 4 Uypdated
17: Increment u" (m)
18: end for

—¥— Edge,FL
—O— Edge,AFL 1

Edge and Local,FL
—B— Edge and Local, AFL 1

Latency(ms)

100
0 2 4 6 8

Edge Computing Performance u s(1e9 cycles/sc)

Fig. 3: Latency versus edge computing capability wu
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the range [0, 30] dBm, but only marginally when Pt rises in
the range [30, 50] dBm. Additionally, when Pt increases, the
latency differences between the schemes utilising FLL STAR-
RIS and AFL STAR-RIS get less. Fig. 5 illustrates how
effectively the suggested ELAFL functions in low transmission
power scenarios.

The total number of STAR-RIS elements varies in Fig. 6.
Note that the schemes with AFL have decreasing latency as
the number of STAR-RIS elements rises, but the schemes
with FL do not vary in latency. When the number of STAR-
RIS elements increases in the range [20, 50], the latency is
significantly decreased, but only a small as the number of
STAR-RIS elements increases in the range [1, 20], a reduction
in latency may be observed. Additionally, when E increases,
the latency differences between the schemes using FL. STAR-
RIS and AFL STAR-RIS gets more.

Fig. 5: Latency versus Transmitting power P,

in Fig. 3, the latency is greatly reduced; however, a slight
reduction is also visible when wu, increases in the range
[4 x 1010, 8 x 1019]. This is because, for small u,, the latency
imposed by edge computing predominates, whereas, for big
us, the latency imposed by communication does.

According to Fig. 4, ELFL (Edge Local Federated Learn-
ing) and ELAFL (Edge Local Asynchronous Federated Learn-
ing) are observed to drop proportionately to u% Nevertheless,
even with the increase in w;, EFL (Edge Federated Learn-
ing) and EAFL (Edge Asynchronous Federated Learning )stay
the same. This is due to the fact that the latency of shifting
all computing tasks to the edge is unaffected by changes in
the local computing capacity.

The transmission’s power P, is adjusted within the range of
[0, 50] dBm in Figure 5. Note that when transmission power
increases, the delay associated with each method decreases.
Moreover, the delay decreases significantly when Pt rises in

TABLE I: Parameters for Simulation

Parameters Values
Cellular cell’s Radius 500m
Size of task data 400 KB
Carrier Frequency SMHz
The MEC server’s frequency 8GHz
BS transmission power 5W
computation density 1000 cycle/bit
The channel’s bandwidth 180 KHz
Channel Power Gain -30dB
maximum power used for transmission 1KW
Path loss exponent 4
frequency of local computing 1 GHz
Learning Rate 0.001
Small-batch Size 32
Factor of Discount 0.9
Starting Exploration 1
Ending Exploration 0.01
Total steps of exploration 1000
Capacity for replay storage 1000
Step Count for Every Epoch 20
Episodes 100




VI. CONCLUSION

In this research, we have created a unique framework
for VRCS latency reduction by merging AFL with STAR-
RIS. Our approach makes use of STAR-RIS’s dynamic re-
configurability to optimise the propagation environment and
boost signal strength and coverage. AFL lowers latency and
delays related to synchronous communication and data aggre-
gation by enabling vehicles to update the global model asyn-
chronously. Our system tackles the unique challenges posed by
vehicle networks, including the requirement for high mobility,
variable network circumstances, and real-time responsiveness.
Our thorough simulations validate the effectiveness of the
strategy, showing that it outperforms current decentralised
solutions.
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