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Abstract

To tackle the complex tasks required for autonomous vehicle operations, robust
perception capabilities often depend on multiple deep neural networks (DNNs).
However, the opaque nature of DNN detection algorithms presents challenges in
transparency, leading to unpredictable behaviour in critical applications, such as
scene and object recognition for uncrewed aerial vehicles (UAVs), and self-driving
cars. This research aims to bridge this transparency gap by developing explainability

methods that enhance trust in networks used on autonomous vehicles.

This study addresses three major limitations in current literature. First, state-of-
the-art object detection networks exhibit reduced performance with aerial imagery
from UAVs, highlighting the need for robust solutions. Second, most existing ex-
plainability techniques focus on image classification, rather than object detection,
leaving an important gap. Third, a lack of standardised validation methods for

explanations presents many ongoing challenges.

To address these issues, this thesis introduces three novel explainability frame-
works for deep object detection. The first framework adapts Grad-CAM for the
YOLOvV5 detector, generating explanations for class scores, objectness scores, and
bounding box coordinates, while evaluating real-time performance. Building on
these insights, the second explainer, a KernelSHAP-based framework, introduced a
model-agnostic approach to explain object detection across architectures. Finally,
the DetDSHAP framework offers a propagation-based method that, not only calcu-
lates contributions of individual pixels to a predicted bounding box, but also how
discrete units of the DNN played a role in the predictions. The DetDSHAP was

employed to optimise model performance through pruning.

Additionally, a novel ”Wrapping Game” approach is proposed to validate the
reliability of explainers in high-stakes edge cases, providing a measure for the dis-

criminative power of explanations. This work is further supported by the develop-

Xix



ment of the XI (eXplainable Intelligence) Autonomous Driving dataset, tailored to
autonomous vehicle challenges, which enables rigorous testing of explainability tech-
niques in real-world scenarios. Together, these contributions form a comprehensive
framework to enhance the interpretability of deep object detection models, ensuring

autonomous vehicle systems are both effective and trustworthy.
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Chapter 1

Introduction and Background

In this introductory chapter, the reader is provided the current context from which
this work arises. They will be made aware of modern autonomous vehicles and how
deep learning is beginning to play an important role in how Autonomous Vehicles
(AV) perceive their environment, and objects around them, in order to undertake
the tasks required of them. Within this important context, this chapter will then
present the reader with the role that explainable artificial intelligence can play in
the development of trustworthy automatic perception algorithms for autonomous

vehicles.

1.1 Motivation

Machine learning has become synonymous with high performance in numerous tasks,
driving innovation across many real-world applications. However, due to the inher-
ent ”black-box” nature of many machine learning models, particularly DNNs, their
behaviour can be difficult to predict or interpret. When failures occur, identifying
the cause is challenging, raising issues of trust and safety, particularly for deploying
DNNs in real-world scenarios. Moreover, in some settings, regulations may require
transparency in algorithmic decision-making processes [1]. Consequently, there has
been considerable growth in the field of Explainable Artificial Intelligence (XAI),
with the development of techniques that can help identify network biases [2], assist
in network debugging [3], and offer alternative evaluation methods [4].

In the UK, the Civil Aviation Authority (CAA) is drafting regulations for Un-
crewed Aerial Vehicle (UAV) operating Beyond Visual Line of Sight (BVLOS) due

to the expected rapid growth in demand for such operations. This mode of opera-



tion is a core component of a recently released strategy for the modernisation of UK
airspace [5]. The CAA’s strategy emphasises moving from segregated to integrated,
unsegregated airspace where BVLOS-capable drones will operate alongside manned
aircraft without special provisions. Currently, this integration is limited by tech-
nological gaps in collision avoidance and airspace management, and conventional
aircraft often cannot easily visually detect small UAV. Similarly, drones currently
lack the reactive capabilities of human pilots to avert certain potential collisions.
For now, segregated airspace is necessary to maintain safety.

The strategy envisions a phased approach, beginning with technology trials in
managed airspace, to address these limitations. New advancements, particularly
in detect-and-avoid systems, are prioritised to improve safety. As policies evolve
and technologies mature, unsegregated BVLOS operations are expected to become
feasible, with X Al-enhanced detection systems playing a key role in establishing the
robustness and trustworthiness needed for UAV guidance systems.

The UK Department for Transport (DfT) code of practice for automated vehicle
trials echoes these requirements, emphasising the need for intelligible data presenta-
tion [6][7]. For autonomous systems transparency in data interpretation is essential,
requiring XAI to validate and secure Al-based systems used in UAVs and ground
vehicles. The safe operation of these systems within regulatory frameworks, coupled
with accessible insights for both operators and regulators, is essential to advancing
autonomous capabilities across UK airspace and public roads.

Additionally, deep learning models face unique vulnerabilities to adversarial at-
tacks and other manipulations. These attacks exploit inputs deliberately designed
to mislead the model, which poses significant risks in high-stakes environments. As
Molnar notes in [8], machine learning models, especially DNNs, can be manipulated
by adversarial examples, underscoring the importance of interpretability in mitigat-
ing these risks. Moreover, as models become integral to safety-critical operations,
they also become entry points for cybersecurity threats, emphasising the need for
proactive interpretability measures to understand and anticipate model behaviour
under potentially adverse conditions.

While explainability is often seen as a means of improving trust and security in
machine learning models, recent research highlights that XAI methods themselves
are susceptible to adversarial attacks. Adversaries can manipulate explanations

through various means, including adversarial examples, data poisoning, model ma-



nipulation, and backdoor attacks. These attacks allow an explanation to be altered
while the model’s predictions remain unchanged, making them difficult to detect.
For instance, an adversarially modified input can mislead saliency maps into high-
lighting irrelevant regions, concealing the true reasoning behind a detection. Simi-
larly, model manipulation attacks can distort attribution methods such as SHAP or
Grad-CAM, making an inherently biased model appear fair and transparent. The
risks posed by such attacks extend beyond model auditing, as malicious actors could
exploit XAl vulnerabilities to conceal security threats in safety-critical systems, such

as autonomous vehicles or medical diagnostics [9].

Given these concerns, it is crucial to develop more robust interpretability tech-
niques, as a single explanation method can be easily manipulated. By introducing
ensemble explanations, where multiple XAI methods are cross-validated, the relia-
bility of model interpretations can be significantly improved. By leveraging multiple
saliency map methods for object detection, a more reliable and resilient understand-
ing of model behaviour can be achieved, mitigating the risks associated with adver-
sarial attacks on explanations. Additionally, standardised validation protocols and
attack-resistant benchmarks are needed to assess the robustness of explainability
methods in adversarial settings. Establishing such benchmarks is crucial to detect
and mitigate adversarially manipulated explanations, ensuring that XAI methods

remain robust under small perturbations or targeted attacks [9].

This study centres on object detection from an autonomous vehicle platform us-
ing 2D optical sensors. Object detection is critical to autonomous vehicle perception,
providing essential information for tasks like obstacle avoidance, navigation, and dy-
namic scene understanding [10][11]. Saliency maps are a form of local explanation
well-suited for image data. Saliency maps illustrate how each pixel, or group of
pixels, contributes to a specific prediction. Saliency-based explainers can be divided
into perturbation-based and propagation-based approaches. Perturbation methods,
which treat the network as a closed box, offer high portability, making it easier to
swap or modify networks. This approach ensures compatibility with any network
architecture, eliminating trade-offs between explainability and performance. In con-
trast to perturbation-based methods, propagation-based methods tend to provide
more detailed causal information from within the network, and generally provide
the explanation faster. In this thesis, both approaches will be explored and con-

trasted.



While substantial research has focused on XAI techniques for classification tasks
[12][4][13][14], object detection remains under-explored, particularly with regard to
the unique challenges posed by autonomous platforms. As previously discussed,
onboard object detection applications have grown considerably, and are vital for
bringing autonomous vehicle platforms ’into the wild’ to engage in the range of
tasks required in urban applications, and in other theatres such as search and rescue,
automatic target recognition, etc. Each of these safety-critical applications stands

to benefit from XAI advancements.

1.2 Thesis Outline

1.2.1 Objective

Beyond the initial motivations, the overarching aim of this thesis is to develop ex-
plainability techniques tailored to the unique challenges of object detection in au-
tonomous vehicle environments. These environments are characterised by cluttered,
dynamic scenes and the added complexity of perceiving small objects. The meth-
ods presented here strive to create explanations that, not only reflect the model’s
true decision-making process, but also remain interpretable and accessible to human

operators. In particular, this research has three main objectives:

1. To enhance transparency in deep neural network (DNN) object detection for
autonomous vehicles by developing and evaluating explainability methods that
improve interpretability, without compromising performance in real-time ap-

plications.

2. To address the limitations of existing explainability techniques for object de-
tection by extending current methods beyond image classification, ensuring

they are tailored to object detection networks.

3. To expand upon validation methodologies for explainability, that measure the

discriminative power and reliability of explanations under edge-case conditions.

1.2.2 Outline and Contributions

The structure of the thesis along with each chapter’s contribution are presented as

follows:



Chapter 1: Introduction and Background

This chapter establishes the motivation and context for research into XAI with a
focus on autonomous vehicle platforms, particularly drones and autonomous cars.
It reviews the role of deep learning in enabling autonomous perception, and explores
the need for transparency in Al models deployed in safety-critical scenarios. Key
theoretical concepts are introduced, including autonomous systems, Al, and object

detection, setting a solid foundation for the reader.

Chapter 2: Development of Software Tools and Datasets

This chapter details the creation and adaptation of tools and datasets tailored for the
XATI research conducted in this work. This includes the design and implementation
of a custom sensor rig for City St George’s AV platform, and a new dataset, the XAl-
AV dataset, to support object detection tasks under varied conditions. Furthermore,
it introduces the ”Wrapping Game” evaluation metric to assess the effectiveness of
explainers produced for object detection models. The chapter contributes software
and methodologies essential for validating XAI techniques on autonomous vehicle

platforms.

Chapter 3: Grad-CAM Based Explainers for Object Detection from

Drone Platforms

This chapter explores the adaptation of the Grad-CAM framework so that it can
be utilised to explain objects detected in UAV-captured imagery with the goal of
providing near real-time explanations. It includes the development of a tile-based
dataloader designed to enhance the detection of small objects. Extensive validation,
including the use of the ”Wrapping Game,” examines Grad-CAM’s effectiveness in

capturing model attention.

Chapter 4: Explainable Object Detection for Autonomous Vehicles using
KernelSHAP

This chapter presents a novel adaptation of KernelSHAP for object detection. By
addressing the challenge of portability, this approach facilitates compatibility across
diverse model architectures. Quantitative and qualitative assessments verify the

ability of this KernelSHAP adaptation to reliably allocate feature importance in



object detection, and showcases its flexibility for various deep learning models.

Chapter 5: DetDSHAP Explainable Object Detection for Autonomous

Platforms with Shapley Values

This chapter introduces DetDSHAP, an extension of DeepSHAP, specifically de-
signed for object detection tasks. The development builds upon findings in previous
chapters to develop a precise and informative explainer. Moreover, the link between

Deep network compression and Explainability is explored.

Chapter 6: Conclusion

The final chapter summarises the contributions made throughout the thesis, em-
phasising the advancements in explainability for Autonomous System perception
capabilities. A discussion of the broader implications of the research addresses the
challenges and potential in applying XAl to autonomous platforms. The chapter

concludes by outlining possible avenues for future work.

1.3 Publications and Submitted Manuscripts

Conferences

1. M. Hogan and P. N. Aouf, “Towards real time interpretable object detection
for uav platform by saliency maps,” in 2021 IEEE International Conference

on Robotics and Biomimetics (ROBIO), 2021, pp. 1178-1183

2. M. Hogan, N. Aouf, P. Spencer, and J. Almond, “Explainable object detection
for uncrewed aerial vehicles using kernelshap,” in 2022 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC), 2022,
pp- 136-141

3. M. Hogan and P. N. Aouf, “Explainable dataset for ground based drones in
urban environments,” in 2024 IEEE International Conference on Robotics and

Biomimetics (ROBIO), Accepted for publication, 2024

Journals

1. M. Hogan and P. N. Aouf, “Detdshap: Explainable object detection for un-

crewed and autonomous drones with shapley values,” Trust through eXplAlIn-



ability (XAI), Robustness and Verification of Autonomous Systems, 2025, Manuscript

in submission

1.4 Theoretical Concepts

This section introduces the fundamental concepts that underpin the contributions
made throughout this thesis. It begins by providing an explanation of autonomous
systems, focusing on mobile robots, particularly UAVs and Autonomous Driving
(AD) systems. The discussion will then lead on to automatic perception algorithms,

where it is established that the state-of-the-art are based upon DNNs.

1.4.1 Autonomous Systems

Figure 1.1: City St George’s Autonomous Drone Platform[19].

An autonomous system is a self-operating machine capable of performing tasks
without direct human intervention, relying on a combination of sensors, software,
and control algorithms to perceive its environment, make decisions, and act accord-
ingly. For mobile robots, this often includes navigating through complex environ-
ments, avoiding obstacles, and achieving specific goals, such as transporting goods,
or monitoring an area.

An example of an autonomous aerial system, otherwise referred to as an UAV,
is shown in Fig. 1.1. This quadcopter platform typically includes Global Positioning
System (GPS) and Inertial Measurement Unit (IMU) to enable basic autonomous
flight, such as way-point missions. However, due to current restrictions on BVLOS

operations, such drones are generally required to operate within Visual Line of Sight



(VLOS) operations. Without additional sensors, the platform would be limited to
basic tasks, such as package delivery.

The platform shown in Fig. 1.1 has been equipped with a sensor suite, including a
Velodyne 32-line puck LiDAR [20], and an Intel RealSense D455f RGB-Depth camera
[21]. These additional sensors enable the platform to perform more advanced tasks,
such as aerial mapping, surveillance, and search and rescue missions.

To extend the onboard computing capabilities of UAV platforms, a companion
processor can be mounted to embed more advanced guidance and control algorithms.
The platform in Fig. 1.1, utilises the Nvidia Jetson Orin Nano [22], equipped with an
Nvidia Ampere Graphics Processing Unit (GPU) featuring 1024 Compute Unified
Device Architecture (CUDA) cores and 32 Tensor Cores. This setup allows the sys-
tem to operate independently, making decisions on flight paths, obstacle avoidance,
and target detection, even in dynamic environments.

Similarly, ground based autonomous systems, such as self-driving cars, can be
equipped with comparable sensors along with advanced compute capabilities, al-
lowing them to detect road conditions, recognise traffic signals, and identify other
vehicles or pedestrians. The autonomous driving software processes this data in real-
time, enabling the vehicle to navigate safely and efficiently without human input.
An example of such a system in shown in Fig. 2.1.

Despite the recent advancements in embedded hardware, including the rapid
progress in Nvidia’s Jetson product range, the desired capabilities of autonomous
systems remain limited in terms of computational power and performance. This re-
stricts the feasibility of high-complexity computations, and is especially pronounced
in applications requiring real-time responsiveness.[23]

For the autonomous systems discussed here, they are expected to be able to han-
dle a range of scenarios and uncertainties, requiring robust perception and decision-
making, to ensure safe and reliable operation. As will be discussed in subsequent
sections, deep learning promises to vastly enhance the capabilities of autonomous

systems, if such algorithms can be deployed safely.
1.4.2 Foundations of Automatic Perception in Autonomous Sys-
tems

As established, autonomous systems like UAV and self-driving cars, rely on a combi-

nation of sensors and software to operate independently to navigate through complex
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Figure 1.2: Chronological progression of key advancements in image perception, highlighting
major feature extraction techniques and the early adoption of deep learning for classification
and object detection. This timeline focuses on foundational contributions leading to modern
deep learning approaches, which are further discussed in Section 1.5.

environments, and execute tasks without direct human input. It is not possible for
the autonomous system to infer complex information, such as the presence of an
object and its location, from raw sensor data alone. Hence, the sensor feeds of the
system will be enhanced with multiple automatic perception algorithms as part of
its software payload. Most applications use simple visual spectrum cameras due to
their low cost and wide availability. However, there are vast bodies of work that also
employ sensors of different modalities, such as thermal imagery [24], or 3D sensors
like LiDAR [25].

This section traces the historical progression of automatic perception methods,
from early human-defined feature extraction techniques to the emergence of deep
learning. The selected milestones in Fig. 1.2 highlight key transitions that shaped
modern perception systems. While not exhaustive, this timeline emphasises break-
throughs that laid the groundwork for current state-of-the-art models, which will be
explored in Section 1.5, once a solid foundation has been established for the reader.

In this section we provide the reader with It can be considered that the field of
automatic perception emerged in the 1960s, primarily relying on human-engineered
features. Early approaches, known as geometric models, represented objects as sets
of simple shapes, such as edges, lines, and polygons. These models laid foundational
work in computer vision, demonstrated in applications like fingerprint classification

[34] and satellite imagery analysis [35].



However, these models faced limitations in complex scenarios, as noted by Mundy’s
review [36]. Challenges included low contrast at object boundaries, cluttered back-
grounds, and occlusions. Zisserman et al. achieved reasonable success in multi-
object recognition within moderately cluttered scenes, by introducing class-specific
geometric constraints for feature grouping and recognition [37]. However, even with
these advancements, performance gains remained constrained by environmental vari-
ability, and the challenges posed by occlusions and viewpoint changes.

To address these limitations, appearance-based models emerged, focusing on vi-
sual features, such as texture, colour, and images gradients, to enhance robustness.
A prominent example was the Eigenfaces method for face recognition, introduced by
Turk and Pentland in the early 1990s [26]. Their approach used Principal Compo-
nent Analysis (PCA) and represented faces as linear combinations of basis images.
However, this methodology still required specific viewing conditions for accuracy.

Given the limitations of geometric and appearance-based techniques, these meth-
ods were ultimately incompatible with the demands of modern autonomous systems.
It is recognised that the modern evolution of object detection only began in the past
quarter-century, and can be divided into two eras: traditional object detection (pre-
2014), and deep learning-based detection (post-2014) [38][11].

Handcrafted feature descriptors were widely used during the traditional object
detection era. A substantial breakthrough came from P. Viola and M. Jones, who
proposed a real-time human face detection algorithm that was several orders of
magnitude faster than previous methods [27]. They employed Haar features, which
utilise rectangular regions to capture edge information across an image. Combined
with integral images, Haar features made real-time applications feasible, even with
limited computing resources.

More advanced feature descriptors followed, including the Scale-Invariant Fea-
ture Transform (SIFT), introduced by David Lowe [28], and the Histogram of Ori-
ented Gradients (HOG), developed by N. Dalal and B. Triggs [29]. These descriptors
were instrumental in object recognition, as they provided robustness to scale, rota-
tion, and moderate viewpoint changes. Both descriptors achieved prominence in the
traditional era and beyond. SIFT, for example, was proposed as part of a frame-
work for feature-based target recognition for UAVs [39]. HOG, initially developed
for pedestrian detection, played a crucial role in this application for many years

[40][41] [42][43][44].
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During this time, machine learning algorithms processed these extracted fea-
tures. Support Vector Machines (SVMs) and decision trees became standard for
classifying or detecting objects based on feature sets, providing a structured, data-
driven approach to interpretation. In particular, AdaBoost, used by Viola and Jones
in their face detection method [27], selected the most informative features, forming
an efficient cascade classifier by combining weak learners (simple classifiers) into a
robust ensemble.

The introduction of AlexNet in 2012 [30] marked a paradigm shift in object de-
tection, as convolutional neural networks (Convolutional Neural Networks (CNNs))
replaced the need for hand-engineered features. This pivotal transition is high-
lighted in Fig. 1.2 with a red marker, indicating its significance in the shift toward
deep learning-based perception. The timeline further distinguishes the evolution
of CNN-based object detection models, shown in blue, to the prevalence of such
architectures post-2012.

This innovation marked a turning point, as CNNs bypassed the need for hand-
engineered features, making object detection more scalable, accurate, and adaptable
to complex environments. From this point forward, object detection methods would
increasingly rely on deep learning to drive performance improvements. These new
techniques are indicated in the timeline with blue boxes. For the reader’s under-
standing, deep learning and machine learning will be further defined in Section
Section 1.4.3.

In the years following AlexNet, numerous CNN-based models were developed to
address both classification and localisation, transforming object detection into a field
dominated by deep architectures. Models like R-CNN (Region-based CNN), Fast
R-CNN, and Faster R-CNN, introduced frameworks for detecting and classifying
objects within an image by integrating region proposal networks. Faster R-CNN,
in particular, significantly reduced the computational overhead, allowing for even
faster object detection [31].

Another key advancement was the development of single-shot object detectors,
such as YOLO[32] (You Only Look Once) and Single Shot Detector (SSD)[33]. Un-
like the region-based approaches, these models processed the entire image in a single
pass, achieving near real-time speeds while maintaining high accuracy. YOLO’s abil-
ity to predict both bounding boxes and class labels simultaneously has made it a

widely used approach in real-time applications, especially for autonomous vehicles
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and robotics.

These deep learning-based methods marked a paradigm shift in object detection,
as they could learn complex features directly from data, handle multiple objects in
an image, and generalise across varied conditions and environments. By leveraging
large annotated datasets, deep neural networks brought unprecedented accuracy
and robustness to object detection, establishing the foundation for contemporary
autonomous perception systems. Further to the discussion here, these types of
datasets are expanded upon in Chapter 2, including the XAI-AV dataset that was
developed in the course of this thesis.

In the era of deep learning, the features extracted from images became increas-
ingly abstract, as the operations within deep learning models were concealed behind
numerous layers and complex operations. This inherent opaqueness of deep net-
works poses a significant barrier to deploying state-of-the-art perception algorithms

in safety-critical scenarios, such as those considered in this work.

1.4.3 Artificial Intelligence

The concept of Artificial Intelligence is a well-established across science, technology,
engineering, and mathematics disciplines, but has recently gained widespread atten-
tion in popular media, often in loosely defined terms. While various approaches to
defining AT have been proposed throughout history, a human-centred perspective is
arguably the most relatable - one that focuses on creating machines capable of per-
forming tasks typically done by humans, with the ultimate goal of exceeding human
performance.

In this section two branches of Al that are pertinent to the objective of this thesis
are presented. The first, Machine Learning (ML), is defined as a field of AI that
enables computers to learn from data without being explicitly programmed. In the
current era of big data, ML has become essential for processing and analysing vast
amounts of information, automating complex tasks in a wide range of applications,
from language processing, to image recognition.

The second branch, Deep Learning (DL), is a specialised subset of ML that
uses complex neural network architectures, allowing models to learn directly from
raw data. As discussed in Section 1.4.2, before deep learning architectures, such
as AlexNet[30], revolutionised the field, traditional approaches required developing

custom feature extractors for each task. In contrast, deep learning models automat-
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ically learn feature representations across multiple layers, enabling them to handle
more complex data inputs with minimal preprocessing.

Within the broader category of machine learning, Artificial Neural Networks
(ANNSs) are particularly relevant, as they serve as the foundation for deep neural
networks. Inspired by the human brain, ANNs are composed of interconnected layers
of nodes, or neurons, that process data in ways that emulate biological neurons. In
the last part of this section optimisation is defined. Optimisation is essential in Al,
particularly in training ML and deep learning models, as it underpins the learning
process itself. In the training of ANNSs, optimisation algorithms adjust the model’s
weights to reduce the error between the network’s predictions and the true output
[45].

ANNSs, with their ability to learn complex patterns from large datasets, paved
the way for modern deep learning architectures, which stack multiple layers to form
DNNs. These DNNs have driven advancements in Al by achieving high accuracy in
complex tasks, such as, image classification and object detection, tasks that previ-

ously relied on handcrafted rules and feature extraction.[30][46][47]

1.4.3.1 Machine Learning

A popular definition of machine learning is available from Tom Mitchell[48], and is
as follows: a computer program is said to learn from experience E with respect to
some class of tasks T', and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E. There exist many different kind
of machine learning which are more or less appropriate, depending on the nature of
the parameters 7', P and FE.

Machine learning methodologies can be divided into two primary categories:
supervised and unsupervised learning [49]. What separates the two is that supervised
learning methodologies seek to learn a functional relationship between inputs z and
outputs y using a labelled set of input-output pairs, D, as defined in Eq. (1.1). Here,

D represents the training set, and N denotes the number of training examples.

D= {(xs,5:)}Y, (1.1)

In the context of object detection, x is visual sensor data and y is a set of

descriptors for each object in that sensor’s Field of View (FoV), which includes
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the coordinates representing the space that the object occupies, and a class label
defining the object’s type i.e. ['car’, 'pedestrian’ ...]. Like the underlying ML model,
these descriptors are dependent on the parameters 7', P and F.

The second type of methodologies are unsupervised learning. These type of ML
attempt to directly isolate key patterns present in the input data, without access
to the output labels y, to validate its predictions. As such, this approach is often
referred to as knowledge discovery [49].

Unsupervised learning more closely resembles the way humans and animals typ-
ically learn. It is also more versatile than supervised learning, as it does not rely
on a human expert to label the data manually. Traditionally, it has been looked at
unfavourably given that labelled data can be expensive to acquire. However, since
the proliferation of many large scale datasets, this factor has become less impactful
[50][51][10]. Additionally, supervised learning typically yields very little information,

certainly not enough to reliably estimate the parameters of complex models[49].

1.4.3.2 Deep Learning

Building upon the foundational principles of machine learning, deep learning is a
subfield focused on enabling models to learn hierarchical representations from data
through deep neural networks. Unlike traditional machine learning methods, which
often require manual feature engineering, deep learning models automatically ex-
tract complex features across multiple layers, making them well-suited for high-
dimensional data, like images and language.

This approach has had a transformative impact on various fields, particularly
computer vision and natural language processing, where deep learning models achieve
impressive adaptability and performance gains [30, 47]. By allowing models to learn
directly from large amounts of unstructured data, deep learning reduces the need for
predefined feature sets, enhancing the ability to generalise across diverse datasets.

CNNs have become one of the most transformative architectures in the deep
learning landscape, and are particularly effective for image and video data process-
ing. Unlike traditional neural networks, CNNs exploit the spatial structure of data
through key principles: local connections, shared weights, and pooling layers. Each
layer within a CNN progressively learns more abstract features of the input data.
For example, the initial layers typically capture low-level features like edges, while

deeper layers assemble these into more complex motifs and object parts. This hierar-
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chical feature learning enables CNNs to recognise patterns invariant to translations

or distortions, which is essential for robust image recognition and classification tasks.

CNNs operate through multiple convolutional and pooling layers, where the con-
volutional layers detect feature patterns within local regions of the data, using filters
that slide across the input. These shared filters allow CNNs to recognise patterns
regardless of their location in the image, a property known as translation invariance.
Pooling layers further enhance this invariance by downsampling the feature maps,
reducing their dimensionality, while retaining the most salient information. These
architectural properties allow CNNs to generalise effectively across diverse applica-
tions, from facial recognition to autonomous vehicle perception, making them highly

adaptable to complex visual tasks[47].

Since the groundbreaking AlexNet model, deep networks have steadily grown
deeper, allowing them to capture increasingly complex patterns in data. A signifi-
cant advancement came with ResNet, which introduced residual blocks. These are
structures that allow information to skip layers, enabling the model to retain im-
portant features across different levels of abstraction [52]. This architectural shift
paved the way for more proposals of deep networks with non-sequential pathways,
encouraging networks to become deeper and more resilient to the vanishing gradi-
ent problem. However, as these networks grew deeper, the learned features became
more abstract and less intuitively interpretable, resulting in layers that encode unhu-
manly complex patterns. These advancements, while improving performance, have

also made understanding and interpreting these models a challenging endeavour.

Formal safety verification poses significant challenges in balancing system robust-
ness with the real-time demands of operations expected from Autonomous Systems.
Robustness is one of the key metrics to measure how stable a neural network’s out-
puts are under random noises, external perturbation, or adversarial attacks to its
inputs, a known vulnerability in neural networks that can severely impact safety in
AV systems. As noted by Chen et al.[53], developing more efficient and rigorous ver-
ification techniques is essential for progressing towards safer neural network-driven
perception systems, especially given their complexity in interpreting dynamic en-
vironments. This underscores the need for dedicated explainability techniques to

bridge the gap between model reasoning and human understanding.
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1.4.3.3 Optimisation

During the training of an ANN, optimisation algorithms make adjustments to the
model’s weights to reduce the error between the predictions and the true output.
This adjustment is achieved through iterative updates, typically guided by an objec-
tive function, or loss function, which quantifies the accuracy of the model’s predic-
tions [49]. The loss function can be defined by L(6), where 6 represents the model’s
weights.

To minimise L(6), a common optimisation method called gradient descent is
used. Gradient descent iteratively adjusts the weights in the direction of the negative
gradient of the loss function, aiming to find the values of # that minimise L(#).
Formally, gradient descent can be defined by equation 1.2. Where 7 is the learning

rate which sets how big a step is taken during each iteration.

9t+1 = 975 - T]VQL(H) (12)

Popular optimisation techniques, such as Stochastic Gradient Descent (SGD)[54],
Adam[55], and RMSprop[56], have become standard due to their effectiveness in

refining model parameters across complex, high-dimensional datasets [57].

1.5 Object Detection from Autonomous Vehicle Plat-

forms

This section broadens the scope of object detection especially for autonomous ground
and aerial platforms, and on the various state-of-the-art DNN based architectures.
The discussion of these various architectures will focus mostly on what is referred
to as the ’head’ of the detector. This is the part of the detector which synthesises
the prediction, and it is what sets it aside from other tasks of image recognition.
Hence, this is where special consideration needs to be taken when developing new
explainers.

Object detection and recognition in computer vision is the multi-goal task of
both classifying and localising objects within the field of view of an imaging sys-
tem. Typically, object detection is not used as a standalone solution but rather
plays a critical role within the broader perception pipeline of an autonomous sys-

tem. Tasks such as obstacle avoidance, and scene understanding rely on accurate
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object detection to interpret the environment effectively. Similarly, effective path
planning is essential for autonomous systems operating in complex settings, where
object detection enables the generation of safe and efficient route decisions [58][59].
Object detection has also been proposed on autonomous aerial platforms for tasks
such as agriculture [60], search and rescue [61], and defence applications, including
Automatic Target Recognition (ATR) [25]. Given its broad applicability, developers
often treat object detection as a discrete component, focusing on its optimisation
and integration within larger autonomous systems.

In the Visdrone-DET 2018 results paper [62], some of the most effective algo-
rithms used Feature Pyramid Networks (FPN) [63]. This type of feature extractor
produces multi-scale feature maps using a bottom-up and top-down pathway. The
bottom-up pathway is the standard convolutional neural network (CNN) feature
extractor—as feature maps propagate, semantic richness increases, but spatial reso-
lution decreases. The top-down pathway consists of reconstruction layers and lateral
connections to earlier parts of the network. The reconstruction layers perform up-
sampling, while the lateral connections merge upsampled high-level features with
low-level feature maps, preserving both semantic meaning and spatial details. The
result is a hierarchical feature pyramid, which enhances detection across various ob-
ject sizes. The challenge coordinators speculate that this property makes FPN well
suited for detecting objects of diverse scales.

A further extension of FPN is the Panoptic Feature Pyramid Network (PFPN)
[64], which enhances the feature pyramid structure for segmentation tasks. While
standard FPN is primarily used for object detection, PFPN integrates instance
and semantic segmentation to achieve panoptic segmentation—a unified framework
for detecting both countable objects (e.g., cars, people) and uncountable regions
(e.g., roads, sky). PFPN incorporates an additional segmentation branch, enabling
pixel-wise predictions alongside bounding box detections, making it particularly
effective for dense scene understanding. However, despite its advantages, PFPN
has computational drawbacks that may limit its applicability in real-time systems,
such as autonomous vehicles[65][66].

At the time You Only Look Once (YOLO) was first introduced by Redmon
et al.[32], the typical approach used by developers was to take an existing DNN-
based classifier and perform multiple inferences on snippets of the entire image

- such as a sliding window [67], or region proposal [68]. These approaches were
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slow and inefficient as multiple inferences had to take place before the entire image
had been evaluated. Moreover, these pipeline-based approaches had two further
downsides. Firstly, it was hard to optimise because each component needed to be
trained individually. Secondly, the classifier had the disadvantage of not having
access to contextual information in the entire image.

YOLO was proposed as the first unified model approach where a single CNN is
used to predict numerous bounding boxes and the class probabilities simultaneously.
Being capable to perform detections in such a manner makes YOLO a very fast
algorithm. Moreover, a unified model means that training is much simpler, and the
detection performance can be optimised directly. Because the algorithm utilises the
entire image, it can take advantage of contextual information, which the developers
suggest allows the algorithm to make fewer false positives.

There have been subsequent releases of YOLO in [69], [70], [71] and [72]. These
works presented some enhancements to the model that improved the detection per-
formance. The most significant will be summarised here, as well as how the detection
layers of YOLOVS5 from Jocker et al.[72].

In [69], Redmon et al. modified YOLO to an anchor box approach, which is
still used by YOLOv5. Anchor boxes - sometimes referred to as prior boxes - are
essentially predefined blueprints of bounding boxes that the network will predict
offsets from. A detection layer will split the image into NbyN cells. Each cell is
responsible for detecting an object if the centre of that object is within that cell. For
each anchor box, a cell will predict a set of class scores, and an ’objectness’ score,
which can be used to distinguish between a true and false positive. In addition, the
network will also predict two other properties of the box. Firstly, the offset between
the bounding box centre and the top left corner of the cell. Secondly, horizontal and
vertical scaling factors, which are used to re-scale an anchor box to fit an object.
The most state-of-the-art version of YOLO use multiple detection layers which are
responsible for making detections from multiple different scales. This allows the
network to be better at detecting a larger span of object sizes. This approach is
similar to Feature Pyramid Network (FPN), as such, there have been more YOLO
style submissions to the recent Visdrone competitions.

SSD is not a popular algorithm in the Visdrone competitions. Nevertheless it
is covered here as Hideomi et al.[73], proposed an XAI framework specific to this

algorithm which will be discussed in a later section. SSD can be considered somewhat
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similar to YOLO based architectures, as it is also built on top of a single convolution
network, uses anchor boxes, and also requires post-processing with non-maximum
suppression to remove duplicate boxes. What distinguishes SSD from YOLO is that
it has two output layers that fork, with one for performing classification, and the
other for performing localisation. Another distinction is that SSD uses VGG-16 [74]
as a backbone. Whereas, YOLO networks use Darknet [71], which is a much more
modern architecture.

There are many object detectors that are extensions of the DNN known as
Region-based Convolution Network (R-CNN). This network was first introduced
by Girshick et al.[68], as an alternative to the typical sliding window approach that
was employed at the time. They proposed the use of a selective search algorithm to
generate region proposals - subsections of the image - which could then be given a to
classifier. Their technique would extract 2,000 regions that may contain an image.

There are two main problems with vanilla R-CNN. The first issue is that the
classifier has to run 2,000 times, which results in long training times and real-time
inference being unreachable. Secondly, the search algorithm is a fixed algorithm,
therefore, may not be optimised for a given application. These issues lead Girshick
et al.[75] to propose Fast R-CNN. This introduced the Region of Interest Pooling
layer which takes a feature map from the last convolutional layer, and a list of region
proposals, to produce a feature vector which is then refined using the Fast R-CNN
head to yield the bounding boxes and class scores. The Fast R-CNN consists of two
fully connected layers, one to manage each task, in a similar manner to SSD. The
convolution operation only needs to be run once, resulting in sped up training and
shorter inference time.

The downside of Fast R-CNN is that it still uses the selective search algorithm.
Ren et al.[31] proposed Faster R-CNN which does away with the selective search
algorithm. Instead, a separate Region Proposal Network (RPN) is used to predict
the region proposals with various scales and aspect ratios. This new RPN has two
main advantage. Firstly, the convolutional layers are shared across both the RPN
and the Fast R-CNN head, resulting in a large speed boost. Secondly, the RPN
allows Faster R-CNN to be trained end-to-end which makes training simpler, and
allows the region proposal task to be optimised for the given dataset.

Despite recent advancements in algorithm design that emphasise speed, deploy-

ing deep detection networks on resource-constrained autonomous vehicle platforms
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remains challenging [11]. In a comprehensive study, Huang et al.[76] explored the
complexities of balancing speed, memory, and accuracy in convolutional object de-
tection systems. Common strategies to optimise these models include simplifying
the network by reducing input image size, decreasing the number of regional pro-
posals (or anchor boxes), and employing simpler feature extractors. However, these
adjustments often compromise performance, especially for small object detection,

where finer details and higher resolution are essential for accurate inference.

However, Huang et al.[76] also identify pruning as a promising technique for
achieving a balance between speed and accuracy, which could make deep object
detectors more feasible on embedded systems. The authors highlight the need for
further research into structured pruning techniques specifically tailored to object
detection architectures, to address the computational constraints of autonomous
platforms. This perspective is reinforced by Abhishek et al.[11], who emphasise that
reducing network complexity is essential for real-time applications in autonomous
vehicles, where constraints on latency, energy consumption, and processing power
are significant. By removing less impactful weights, or entire filters, pruning allows
for efficient inference, reducing both model size and computational demands, making
it particularly advantageous for automotive edge devices. This thesis explores the

intersection of pruning and explainable Al in Chapter 4.

The integration of machine learning and deep learning techniques in the percep-
tion and control of vehicular subsystems has led to a strong dependence on data
from external systems and sensors. However, even minor uncertainties in this input
data can result in unintended outcomes, compromising vehicle performance, and
potentially leading to severe consequences. Developing automatic perception meth-
ods and control algorithms that are robust to these uncertainties is critical. In this
context, XAl becomes essential - by enhancing the transparency of machine learn-
ing and deep learning models, XAl provides insights into a model’s decision-making
process, allowing developers to detect vulnerabilities, address biases, and improve
reliability. This transparency not only aids in diagnosing performance issues caused
by data uncertainties, but also contributes to safer, more dependable autonomous

Systems.

20



1.6 Transparency and Explainability in Deep Learning

In the context of deep neural networks, transparency refers to the ability to under-
stand and explain the model’s internal workings and decisions in human-comprehensible
terms. As Molnar [8] suggests, models that are transparent offer greater “translu-
cency” into their mechanisms, allowing for visibility into the relationships that drive
predictions. However, DNNs are typically opaque due to their complex, layered
architecture, making transparency difficult to achieve. This lack of transparency
is especially concerning in safety-critical systems like autonomous vehicles, where
interpretability becomes a necessity. As Doshi-Velez and Kim highlight in [77],
interpretability serves as a critical safeguard, enabling users to verify a model’s rea-
soning, even in “complex applications” where exhaustive testing is impractical. For
such applications, transparency allows for human oversight, ensuring that a model’s
predictions align with ethical and safety standards, and addresses the “incomplete-
ness” inherent in scenarios where every possible outcome cannot be fully accounted

for.

In the context of XAI, an explanation will illustrate how specific input features
of the data relate to the network’s prediction on that data, in a manner that is
comprehensible to a human. An explainer is the algorithm that generates these
explanations [8]. In this scenario, the network whose behaviour will be explained is
referred to as the explicant, and the recipient of the explanation is the explainee.
While the explainee will typically be a human agent, in some cases the explainee
might be a software system. Such a software system may use the explanation for

objectives like error detection [78].

Explanations can be either global or local. Global explanations aim to com-
prehend the model as a whole by examining all of its features and learned weights.
However, such explanations can fall short for models that behave differently for vari-
ous feature combinations, as they may not represent local behaviour well [79]. Local
explanations, in contrast, examine individual instances, making them effective for
understanding complex behaviour on a case-by-case basis.

The terms interpretability and explainability are often used interchangeably in
the literature, but recent works have highlighted important distinctions. Gilpin et
al. [80] define interpretability as the science of understanding what a model does

to reach a prediction, focusing on finding causal attributions of a prediction. In
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contrast, explainability is the process of selecting and summarising the most relevant
causes. Nielsen et al. [81] further clarify that interpretability is a passive quality of
the model, referring to its intrinsic ability to attach human-understandable causes
to outputs. Explainability, however, is an active characteristic, designed to clarify a

machine learning model’s inner workings for a human observer.

1.6.1 Properties of Explanations

This section will review works presenting the properties of an explanation. The pur-
pose is to investigate what would be considered a good explanation, and how humans
formulate explanations for other humans. The differences between interpretability
and explainability will also be addressed in this section.

Miller [82] proposes that the ongoing development of explainable artificial in-
telligence would greatly benefit from building upon the vast pre-existing research
in philosophy, psychology and cognitive science. To that end, they conduct an in-
depth review of existing literature in the social sciences on the properties of ”good”
explanations. Their finding are summarised in the following paragraphs.

Good explanations are contrastive, in that they are sought in response to partic-
ular counter-factual cases. Miller states that when humans provide an explanation
of a given event, they provide the cause relative to some other event that did not
occur. This is a counterfactual explanation, which describes a causal situation in
the form: "How does the prediction change if input X had been different?”. This
finds relevance in deep learning, as developers often care more about cases in which
their algorithms contested the groundtruth, as opposed to cases when they are error-
free. However, this may also present a challenge for XAl as a human might simply
question "why X?” - leaving the counterfactual scenario unstated. Consequently, in
some cases, the counterfactual scenario may have to be inferred by the explainer.

Explanations are often selected in a biased manner as humans do not typically
provide all causes for an event as an explanation; Miller states that a human can’t
simulate back through all possible causes and evaluate their counterfactual cases.
Humans will instead select what they believe are the most relevant causes through
cognitive biases. Millers states that these cognitive biases can arise from how easily
a human can mutate the cause to create the counterfactual scenario.

A cause’s mutability can depend on its abnormality, its responsibility, the time

it occurred in relation to the event, and its controllability. An abnormal cause is a

22



cause that had a small probability, but nevertheless happened, and eliminating it
would greatly change the output. Abnormal causes are typically considered more
relevant than normal causes, even if a normal cause might have greater than, or
equal influence, on the event.

Miller argues that applying the aforementioned cognitive biases in selecting ex-
planations from causes can improve human interactions with XAI. In a machine
learning context, this means that features with the greatest influence might not be
the best indicator for a good explanation - at least from the user’s standpoint. This
author’s standpoint is that it will require the explainer, not only to appropriately
identify causal information correctly, but then also to be able to generate a report
presenting the causes that would make good explanations to the human.

Explanations are social, in that they are a transfer of knowledge, presented as
part of an interaction between the explainer and explainee. The level of explanation
provided is dependent on the domain for which the explainer is operating in, and
the prior knowledge of the explainee. A good explainer should be able to be queried,
should the explainee not be happy with the provided explanation. This ties in with
another point from Miller, where they state that using statistical generalisation to
explain why events occur to a human, can be unsatisfactory. Instead, statistical
analysis would be best used to back up a causal explanation in the dialogue with
the explainee.

In the context of XAl this will require an explainer to provide two key functions.
The first is to be queried by the explainee - such as producing a new explanation
based on a hypothetical counterfactual example produced by the explainee. The
second function requires the explainer to produce the appropriate level of detail to
match the explainee’s level of experience. In some situations, sparse explanations -
explanations that use few features - may be superior when ’socialising’ with the lay
user. Whereas, a technical person may prefer statistical or empirical evidence from
the explainer. This notion is shared by Chu et al.[83], who found that saliency maps
alone can be unsatisfactory for many users.

Neilsen et al.[81] have produced a tutorial on gradient-based explainers that
produce saliency maps. Saliency maps will be discussed in greater depth in the
subsequent sections. Part of the tutorial by Neilsen et al. focused on best practices
when selecting an explainer and what attributes they believe should be addressed.

Unlike Miller’s study, they stay within the realm of deep learning research.
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The first attribution they identify as important for an explanation is faithfulness.
This is the measure of how well the explainer is an accurate proxy of the model’s
decision-making process. This attribute is linked with that of fidelity which will be
revisited here in section 1.7 and refers to how well the explainer is able to identify
feature relevance. Secondly, they identify robustness, this is related to the stability
of a saliency map against small perturbations in the input that might be present for
natural reasons, but also might be the result of an adversarial attack.

They also identify attributes that one would accredit to the explainer rather than
the explanation itself. The first is efficiency, which can be considered as the number
of passes through the network required to synthesise the explanation. The second
attribute, is that of implementation invariance, i.e. the explainer must produce the
same explanation for two functionally equivalent models on the same input.

An effective explanation must not only clarify high-confidence predictions, but
also illuminate lower-confidence instances where a model’s decision-making may be
less certain. Molnar [8] highlights that explainers must perform well across diverse
model outputs, as low-confidence predictions are often where interpretability is most
critical. In such cases, explanations can help detect potential model uncertainties
and errors, offering insights into when and why a model’s predictions may be less re-
liable. These instances are particularly valuable because, in real-world applications,
lower-confidence predictions may represent cases with unusual or challenging data,
where model missteps could have significant consequences. Therefore, for a robust
Al system, the explanation framework should be equipped to handle and reveal in-
sights across the full spectrum of model confidence levels, ensuring transparency and

trustworthiness, even in challenging cases.

1.6.2 Local Explanations with Saliency Maps

In this thesis, the focus is on the domain of object detection on 2D images. As
such, this section will discuss explainers that generate local explanations for image
recognition algorithms. A common format for an explanation of a prediction inferred
by an image recognition algorithm is a saliency map, also known as an attribution
map. These types of local explanations show how each pixel, or group of pixels, con-
tributed to a specific prediction. Hitherto, the majority of these types of explainers
have primarily focused on the image classification task, with very few branching out

into other tasks [84][73].
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In addition to saliency-based approaches, alternative explanation strategies have
also been explored for aerial images. For example, the work by [85] investigated fea-
ture visualisation techniques that generate images representing the learned features
of a network unit—whether a single neuron or the entire network—by maximis-
ing the mean activation of that unit. However, these visualisations tend not to be
human-friendly and fail to provide the localisation information that is critical for
detection tasks [86].

Saliency maps have been used to analyse a classifier’s localisation ability, which
has been revealed to be learned implicitly. Indeed, Lai et al. [87] have used saliency
maps to perform weakly supervised object detection. In contrast, object detection
algorithms explicitly predict the localisation of objects as part of their output. One
might assume that exploring the model’s attention is unnecessary; however, Petsiuk
et al. [84] have found that DNN-based object detectors can be reliant on contextual
information present outside the bounding box. This finding demonstrates that a
predicted box’s causation and its location are not strictly linked. Hence, it remains
pertinent to study a detector’s saliency for this reason. Moreover, understanding
which parts of an object within the bounding box are more and less important to a
network can provide deeper insights into model behaviour.

Beyond addressing contextual dependencies, saliency maps are particularly well-
suited for object detection as they align with the spatial nature of the task. Unlike
classification networks, which produce a single label per image, object detectors
simultaneously classify and localise multiple objects. Saliency maps provide an in-
terpretable means of examining which regions within and beyond bounding boxes
contribute to a detection, making them a natural choice over alternative explain-
ability methods that do not capture spatial dependencies [88]. Furthermore, by
revealing how detectors leverage background context, saliency maps help identify
biases where models rely on spurious correlations, such as road texture in vehicle
detection or sky colour in aeroplane detection.

Another key advantage of saliency maps is their ability to provide fine-grained
explanations of model decisions, making them particularly useful for object detection
tasks where precise feature-level understanding is essential. Unlike feature attribu-
tion techniques that operate at a high level, saliency maps reveal which specific
pixels or object parts contributed to the model’s confidence in its predictions. Si-

monyan et al. [89] demonstrated that saliency maps can highlight low-level edges and
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textures, as well as high-level semantic features, providing an interpretable bridge
between raw image input and model decisions. More recent studies [90][87] have re-
inforced this idea, showing that saliency-guided learning improves object detection,
particularly in weakly supervised settings where bounding box annotations are lim-
ited. These fine-grained explanations are crucial not only for verifying correct object
detection but also for diagnosing model errors, such as over-reliance on irrelevant
background features or failure to focus on critical object parts, which can degrade
model robustness [91].

Saliency maps also serve as a valuable diagnostic tool for validating model de-
cisions and uncovering failure modes in detection networks. They allow researchers
to verify whether an object detector is making decisions based on intrinsic object
features rather than misleading elements in the background. For instance, if a detec-
tor highlights only shadows or reflections instead of object edges, this could indicate
overfitting to non-robust features, leading to poor generalisation [91]. This capability
is especially crucial in safety-critical applications, such as autonomous driving and
medical imaging, where misinterpretations could lead to significant consequences.

There are two varieties of explainers that can be used to generate a saliency
map. The first variety consists of perturbation-based explainers. These are model-
agnostic techniques that treat the network as a closed box and only require access
to the input and output of the network to produce explanations. The second variety
consists of backpropagation-based explainers. These are not model-agnostic, as they
require direct access to the model’s layers. In some cases, the latter type of explainer
imposes architectural constraints, necessitating modifications to the network before
they can be utilised.

In the following two subsections, a review of explainers belonging to both vari-
eties is provided. While most explainers have been designed for image classifiers,
adaptations have been proposed for object detection. These adapted explainers
focus on explaining individual detections rather than entire images, ensuring that

explanations remain interpretable at the instance level.

1.6.3 Perturbation Based Explainers

This section will discuss the perturbation approach to generating saliency maps. The
benefit of these type of explainers is that they only need access to the inputs and

outputs of a model to provide the explanation. This means any model can be used
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regardless of the architecture or components used. As will be discussed, this is not
always the case when using backpropagation based explainers. This methodology
treats the explicant as a closed box. Therefore, in this section the model being
explained will be referred to as the closed box model. Here, three techniques are
presented in detail: LIME [92], RISE [12] and KernelSHAP [93].

Local Interpretable Model-agnostic Explanations (LIME), from Ribeiro et al.[92],
can be used to provide insights from any type of classifier - even those not based on
DNNs. Their method works by training a surrogate interpretable model to represent
a single instance. This surrogate model is trained on a new dataset consisting of
perturbed samples. These perturbed samples are given to the closed box model and
the prediction is used as the label. The way that the sample is perturbed depends
on the type of data. For images, a method of perturbation for LIME might be to
set groups of pixels to a uniform colour.

The problem in LIME that can arise with having fixed groups of pixels is that
particular features can be missed. Randomised Input Sampling for Explanation
(RISE) was proposed by Petsiuk et al.[12], in their approach they perturbed the
images using randomly generated masks as a means to overcome the issue present
with LIME. The final Saliency map is created using a weighted average of the random
masks. Here, the weights are the output probabilities for the target class predicted
by the closed box model. They evaluate their method using their Deletion and
Insertion metrics, which will be discussed in detail in section 1.7. They use these
metrics to support their method’s ability over LIME and Grad-CAM [4].

RISE was adapted to D-RISE by Petsiuk et al.[84] to be used with detection style
architectures. Their intention was to create an explainer to synthesise a saliency map
that shows the influence of each pixel on the model in predicting a given box. Their
method is consistent with RISE, except the weights for the weighted average are
calculated using a new similarity metric. This similarity metric is meant to measure
how different a bounding box predicted from a perturbed image is to the originally
predicted bounding box. This metric takes into account not only the difference in
class scores, but also the difference in location and shape.

SHapley Additive exPlanations (SHAP) was proposed by Lundberg et al.[93]. In
their paper, they proposed several methods for estimating Shapley values from [94].
Shapley values come from coalition game theory, and represent how each feature

(the player) contributes to the prediction (the payout). Shapley values have four
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properties that make it the only attribution method that satisfies the definition of
a fair payout [8].

The first property is efficiency, which guarantees that the contribution to the
prediction is fairly distributed among the features. The second property is that of
symmetry, which states if two features always contribute equally to every coalition,
then they should receive the same payout. Third is the property of dummy - or the
dummy player - which states that if a given feature does not change the prediction
value, the shapley value is 0. The fourth property is that of additivity which consid-
ers a complex system that has multiple agents. The agents’ payouts in each coalition
should be the sum of the payments they would have received for that coalition if
there was a separate game for each agent.

Molnar [8] conducted a review of many of the methods that are covered in this
chapter. They state that due to the efficiency property of Shapley values, it may
be the only metric that could provide a full explanation. They assert for situa-
tions where the law requires explainability, Shapley values may be the only legally
compliant method.

In this report, two methods from [93] will be discussed, KernelSHAP and DeepSHAP.
KernelSHAP uses the perturbation method to estimate the Shapley values, and thus
will be covered in this section. KernelSHAP combines Shapley Values and LIME,
where KernelSHAP represents Shapley value explanation as a linear model g, given
by Eq. (1.3). Where M is the maximum coalition size and the number of features,
and ¢; is the Shapley value for a given feature j. 2’ is the coalition vector and
is described by Eq. (1.4), where 0 indicates an absent feature, and 1 indicates the

feature is present.

M
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What separates KernelSHAP and LIME is the weighting of the instances in
the regression model. In KernelSHAP, the sampled coalitions are weighted such
that large coalitions (where few features are removed) and small coalitions (where
few features are present) have the largest weights. The rationale is that more can

be learned about the contribution of individual features when they are studied in
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isolation. To achieve this weighting, Lundberg et al.[93] propose the SHAP kernel,
defined in Eq. (1.5). The SHAP kernel is the sample weight given to each binary

vector 2/ € {0,1}™ which represent whether a feature is present or not. The term
M

|2’| is the number of ones in 2/, and (‘Z,‘) is the number of ways to choose a subset

of features of that size.
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As has been established, perturbation approaches only require access to the
input and output of the network to generate a saliency map. It is very easy to
deploy these types of explainers for a novice user, or anyone who has trained a model
through an Abstract Programming Interface (API). It can be deployed quickly when
experimenting with new architectures without needing to adapt them. It can also
be used to investigate why an event occurred in a system that has already been
deployed. However, these methods cannot be used to produce explanations in real
time, for instance, in a way which would be beneficial to a remote pilot. Moreover,
perturbing the input can risk introducing unwanted information which could produce

misleading saliency maps.

1.6.4 Backpropagation-Based and Gradient-Based Explainers

Backpropagation-based explainers can be further divided into gradient based ex-
plainers, and attribution propagation based techniques. Gradient based explainers
compute the gradient of the prediction with respect to the input features, and can
be distinguished by how the gradient is computed. Here various explainers that
use gradients are introduced. For each explainer provided there is a definition and
an outline of the developer’s motivation, accompanied by any weaknesses that have
been expressed in other reviews.

Vanilla Gradients was introduced by Simonyan et al.[89] in 2013. It is one of
the earliest of the saliency map methods; sometimes in the literature, it is referred
to simply as ’saliency maps’. However, later gradient methods have been able to
produce more concise and less noisy maps. That being said, this method has the
practical benefits of being simple to implement, and the explanations produced can
be quickly synthesised. Moreover, more recent state-of-the-art methods are often

susceptible to other issues which will be discussed later in this section.
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SmoothGrad from Smikov et al.[95] reduces noise by averaging over many saliency
maps synthesised from copies of the same input with added Gaussian noise. Since
SmoothGrad requires multiple forward propagation to generate the final saliency
map, it can be considered that technique is a hybrid between perturbation and gra-
dient based approaches. The fact it requires multiple inferences means that, like
other perturbation approaches, it is slower and less efficient to produce an explana-
tion.

The downside of most gradient-based approaches is that they are prone to the
phenomenon of saturation. To understand saturation, consider the Rectified Linear
Unit (ReLU) activation function, once the input is less than zero, the function will
always output zero, regardless of how large the negative value is. Therefore, satu-
ration could cause the explainer to underestimate the importance of input features
[96].

Integrated Gradients (IG) was a technique presented by Sundararajan et al.[97],
it is somewhat similar to Deeplift, another algorithm that will be discussed towards
the end of this subsection. In order to overcome the phenomenon of saturation,
both these explainers use a baseline to ’compare’ a given instance to synthesise the
explanation. Informally, IG calculates the average of all gradients, and then takes
the element-wise product of this with the original image. Formally, IG uses a finite
number of samples to approximate the integral. Another method that has been
proposed to improve the sharpness of the saliency map, and overcome the problem
of saturation, is Gradient*Input [98]. This is simply the element-wise product of the
input and the gradients.

Adebayo et al.[99] conducted a review of saliency methods, in which they con-
ducted a sanity check to establish each method’s sensitivity to the learned weights
and biases of the model. One such sanity check required comparing the saliency
map of a trained model to that from a model where the weights had been randomly
generated. They observed that, despite visual changes in the masks obtained from
Gradient*Input and IG, the input structure was still clearly prevalent. They state
that an analyst could mistake the patterns in the maps as legitimate. Nielsen et
al.[81] define this phenomenon as input dominance.

Input dominance can occur with techniques that leverage the information present
in the input features to synthesise the explanation. As the name suggests, this is

when the saliency map relies too heavily on the input which does not depend on the
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network. While this may produce more human interpretable explanations, it would
not capture how the network processed the input to make its prediction [99].

In their tutorial on Gradient-Based explainers, Nielson et al. [81] found that
many state-of-the-art gradient based techniques were prone to failure due to class
agnostic behaviour. This is a phenomenon when there is very little difference in the
generated maps for different class labels for the same image. Of the methods they
examined, Grad-CAM was the only one not class insensitive.

Influenced by Class Activation Mapping (CAM) from [14], Selvaraju et al.[4] in-
troduced Gradient-weighted Class Activation Mapping (Grad-CAM). In their paper,
they demonstrate Grad-CAM, not only on image classification, but also on Image
captioning and Visual Question Answering. The main advantage Grad-CAM has
over CAM is that CAM can only be deployed on certain architectures which use
Global Average Pooling (GAP) layers. They further analyse their methods using an
automatic metric known as the ”Pointing Game”, which will be discussed further
in section 1.7. Using this, they argue their method outperforms vanilla gradients
in terms of interpretability and visualisations. Furthermore, They also performed
human trials to show that Grad-CAM was able to discriminate between classes well
- a finding also shared above by [81].

The main difference that distinguishes Grad-CAM and vanilla gradients is that
the gradients are not computed all the way to the input. Instead, the gradient is only
backpropagated to the last convolutional layer. The motivations the authors provide
is twofold. Firstly, they state that the deeper layers in DNNs capture higher-level
visual constructs with reference to [100][101]. Secondly, spatial information that
is otherwise lost in the fully connected layers - of classifiers - is preserved by the
convolutional layers. Hence, the last convolutional layer, before the fully connected
layers, should be the best compromise between high-level semantics and spatial
information.

Attribution propagation based explainers work by overriding the backpropaga-
tion protocols with their own ruleset. These include techniques such as Layer-wise
Relevance Propagation (LRP), DeepLIFT[96] and DeepSHAP[93]. The literature
surrounding attribution propagation will often refer to the magnitude of pixels in
the saliency map as the 'Relevance’ of a given pixel, and is used interchangeably
with ’importance’.

As stated, LRP works by overriding the backpropagation protocols and imple-
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menting its own ruleset. LRP was first introduced by Sebastian et al.[102]. How-
ever, subsequent works have introduced new rules in order to produce higher quality
saliency maps including [103], [104], [105] and [73]. LRP uses the model’s weights,
and the neural activations created by the forward pass, to propagate relevance back
from the output. It is important to understand the conservation property that LRP
is subject to. This states that, whatever relevance is allocated to a given neuron,

must be redistributed to the lower layer in equal amount.

The generic expression for calculating the relevance of a given neuron R; is
shown in Eq. (1.6), where Ry is the relevance of a neuron from the succeeding
layer - the layer closer to the output. The determining factor for how the relevance
is redistributed is z;;, this can be considered a placeholder for whichever rule is

applied. The denominator serves to enforce the property of conservation.
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To convey an understanding of some of the LRP rule system, outlined here are
three rules that were employed in [105] to explain an image classifier - VGG-16
[74]. LRP —0[102] is the simplest rule (Eq. (1.7)), zj; is the activation of neuron j,
denoted by aj, multiplied by the weight between neurons j and k. If this rule were
applied to the entire network it is equivalent to Gradient*Input. They apply this
rule on the deepest layers of VGG-16 - near the output - as they require a rule that
is close to the function and its gradient. This is because the many concepts forming
the different classes are entangled, due to the small number of neurons per class at

these layers.

Z Za]wjk (1.7)

0,j Wik

The middle layers are characterised as having a more disentangled representation,
but also spurious variations due to the stacking of many layers and weight sharing.
Hence, they employ LRP — € [102], denoted by Eq. (1.8), which add a small positive
term (e) in the denominator to absorb some relevance when the contribution of
a succeeding neuron is weak, this results in only the most relevant factors being
retained. Finally, in the shallowest layers - near the input - they use their own

rule LRP — v (Eq. (1.9)) which favours the effect of positive contributions over
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negative. Their reasoning is that this makes the explanation more human-friendly,
by spreading relevance uniformly to an entire feature, rather than capturing the

contributions of every pixel.
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Tsunakawa et al.[73] introduce Contrastive Relevance Propagation (CRP), an
extension of LRP, which they developed to provide the causal attribution for the
detections made by SSD trained on the Pascal VOC 2012 dataset. As discussed in
section 1.5, SSD has one fork for predicting the class, and one for predicting offsets
for a set of predefined bounding boxes. To account for this, they have selected
different propagation rules for each fork.

For the classification fork, they use the 2 —rule, from Eq. (1.10), where x; is the
activation in the [-th layer and w™ is the layer weights that are positive. Since this
is an output layer, R,(glﬂ) is the class vector with zero for all classes, except for the
target class. This rule will apply more relevance to units that positively contribute

to x;. ¢
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The localisation layers of SSD can predict both positive and negative offsets.
Therefore, Tsunakawa et al. use sign based rule switching. If the prediction is
positive then they apply the 2t — rule (Eq. (1.10)). Otherwise, they apply another
rule which they define as defined as the 2~ —rule. Shown in Eq. (1.11), this rule works
contrary to 2T — rule by instead applying more relevance to units that negatively
contribute to x;.

Karasmanoglou et al.[106], later applied LRP to explain detections made by
YOLOvV5. They propose preprocessing the prediction prior to backpropagation to set
the initial relevance. This preprocessing involves removing non-relevant information

using max class selection, localisation by the bounding box, localisation by object
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confidence, and then discarding the bounding box’s dimensional data. This results
in a single vector containing the class scores for the class of the object of interest
for the cells where that object could be located.

Returning to Tsunakawa et al., they identify an issue that they describe as indis-
tinguishable heatmaps, which arise when standard propagation rules are applied to
SSD. This phenomenon is where the saliency maps for objects belonging to different
classes look identical. Such a characteristic is unfavourable and makes the explainer
untrustworthy. CRP will use a baseline in the middle layers where high-level features
are stored. This baseline is acquired by repeatedly propagating the relevance from
the classification layer for all classes, and then taking the average. The problem
with this approach is that it makes CRP not very efficient.

The use of a baseline is not new and is often used to overcome the problem
of vanishing gradients. This is the case in DeepLIFT (Deep Learning Important
FeaTures) which was introduced by Shrikumar et al.[96]. In their work they refer to
the baseline as the reference. The references for all neurons is based on a reference
input that is propagated through the network. This input is selected based on the
domain, and it is good practice to use multiple references to investigate a given
prediction.

For example, they use a black - all zero - image as a reference for images in
the MNIST [107] and the CIFAR10 [108]. While this worked well for MNIST, the
saliency maps for CIFAR10 were challenging to interpret. As a counter-suggestion
they suggested using a blurred version of the image which required more passes.
Therefore, the effectiveness of DeepLIFT requires a designer to make careful con-
sideration for the reference to produce ’'good’ explanations. To some degree this
characteristic of DeepLIFT breaks the requirement for the explainer to be consis-
tent, and can cause it to fail when exposed to new data.

Lundberg et al.[93] were able to exploit DeepLIFT to create DeepSHAP, a fast
approximation algorithm for Shapley values. The benefit of using Shapley values
has been stated above. If the model is fully linear, then the explainer produces the
exact Shapley values. This explainer has already been applied by He et al.[109] to
provide explanations for a DNN based autonomous navigation algorithm. With this
explainer, they were able to produce saliency maps that illustrated features present
in images from the 2D camera that were important to the network’s decision making.

The challenge with using attention propagation based explainers is that they
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require a user to rework the backpropagation protocols of a given deep learning
framework to implement. This makes them less useful to a broader audience, such
as those accessing a model through an API, or the lay-user who may not have the
required knowledge to interpret information about the internal workings of DNNs
[110]. Moreover, networks that are non-linear or have complex pathways - as is often
the case with detection algorithms - will often break the rules required by these kinds
of explainers.

Nonetheless, unlike perturbation based approaches, there are backpropagation
based approaches that only require a single and forward pass to generate the saliency
map. Hence, techniques like Grad-CAM could feasibly be used to perform real-time
explanations, and this has been achieved by Young Jin k. et al.[111] for fire detection.
Moreover, as has been stated, attribution propagation based explainers can be used
to provide importance scores for units within the network which can be useful to an

experienced developer.

1.6.5 SHAP and DeepSHAP

This section provides a concise overview of SHAP as introduced by Lundberg et
al. [93]. They propose that any explanation for a model’s prediction can be con-
ceptualised as a surrogate model. This surrogate model serves as an interpretable
approximation of the original model. As illustrated in Eq. (1.12), this surrogate
model can be represented as a linear model g. In this expression, 2’ is a feature
vector of size M of a given instance and the weights ¢, are the contribution of each
feature to a given outcome. Features may include elements from a table, pixels from

an image, or units within a deep learning network.

j=1
9(2) =do+ Y _ ;2] (1.12)
M

Lundberg et al. introduce KernelSHAP, this method is characterised as a perturbation-
based technique that creates a dataset indicating the presence or absence of a specific
feature z} , along with the corresponding predictions made by the network for each
combination of features. The surrogate model utilised in this approach is a linear
model that is trained using the dataset produced.

Lundberg et al.[93] successfully utilised DeepLIFT to develop DeepSHAP. They

argue that incorporating an input can be interpreted as assigning it its actual value
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rather than its reference value. Consequently, DeepLIFT can be regarded as an
efficient approximation technique for the SHAP values ¢. Chen et al.[112] propose
using a background distribution to represent the reference value. They do this by
obtaining SHAP values for each baseline in a group of samples and average over the
resultant attributions. In [112], they prove that this method results in estimated
SHAP values closer to the true SHAP values.

DeepSHAP has already been applied for UAV applications by He et al.[109] to
provide explanations for a DNN based autonomous navigation algorithm. With it,
they are able to produce saliency maps that illustrate what features that are present
in images from the 2D camera are important to the deep network. Moreover, they
are able to investigate how different units in their network influence the network

outcome.

1.7 Evaluating Explainers and Explanations

This section addresses the challenges of evaluating explanations produced by XAI,
drawing attention a recurring problem tackled in this thesis. As discussed briefly
in section 1.6.1 an explanation can be considered a summary of relevant causal
attributes. However, there is much debate over how to determine if what the saliency
map is highlighting has actual causal significance, let alone if it can constitute an
explanation. In addition, it is often quite challenging to disentangle errors made by
the model from the errors made by the explainer during validation [97].

A significant defilement to the development of saliency map explainers is that
design decisions are often made based on visual appeal on the image data. This issue
was the motivation behind a recent study conducted by Adebayo et al.[99]. They
found that some existing explainers produced saliency maps that were independent
of the model’s learned parameters and the input data. This would suggest that
any such method would not be able to identify causal information in the input,
and therefore not be adequate for synthesising explanations. They proposed several
sanity checks for designers to perform to verify their saliency methods.

The first sanity check which they presented is what they refer to as the Model
Parameter Randomisation Test. The test involves comparing the output of the
saliency explainer on a trained model, with the output of the saliency method on a

randomly initialised untrained model. The purpose of the test is to investigate the
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sensitivity to the model’s learned weights, if this is indeed the case, the two outputs
should be substantially different.

The second sanity check is what they refer to as the Data Randomisation test.
In this test a second model of the same architecture is trained on a dataset where the
labels have been randomly re-assigned. They present the hypothetical scenario that,
if an explanation did not change after randomly assigning diagnoses to CT scans,
then the explanation failed to relate features within the CT scan to the correct
diagnosis. Therefore, for an explainer to pass this check, it is expected that the
saliency map generated on the second model will be significantly different to one
generated on the control.

Tomsett et al.[110] were inspired by the sanity checks paper by Adebayo et al.[99]
to investigate the reliability of current saliency metrics. They specifically focus on
the property of fidelity - the ability for an explainer to appropriately discriminate
between more and less relevant features in the input. To put it another way, fidelity
is how well the explainer agrees with the way a model actually works. They point
out that a major issue with most proposed metrics is that they only access the
fidelity of individual explanations, as is the case in [99].

Most metrics to evaluate fidelity of individual saliency maps have hinged on using
the saliency map to perturb the input while the researcher observes changes to the
output [113][114]. Petsiuk et al.[12] proposed the Deletion and Insertion metrics to
evaluate how well their method identifies the true cause of a deep classifier’s decision,
and later in [84] for deep detectors.

Deletion sequentially removes pixels, starting from the maximum value of the
saliency map, while measuring how quickly the network’s output deviates from the
original prediction. It is expected that if the explainer does correctly allocate impor-
tance, the prediction will diverge quickly and then plateau when pixels become less
important. Contrarily, Insertion measures how much the output converges as pixels
are added back into the image. Here, the opposite effect is expected - that the pre-
diction will approach the original prediction quickly as more more pertinent pixels
are added back, and then plateau. The results are plotted and the final metrics are
obtained from the Area Under Curve (AUC). Therefore, a low AUC for Deletion,
and a high AUC for Insertion, are desired.

Tomsett et al.[110] state that, to be useful, metrics should have high statistical

validity. However, this is not possible without groundtruth references - which there
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are none for explanations [8].

Therefore, they present the following recommendations: New metrics should be
compared directly with previous metrics that measure the same, or similar, proper-
ties. If a metric can be implemented in different ways - for example, pixel pertur-
bation - then these metrics should be analysed under different implementations to
establish their effects. Metrics should be analysed for how they might be ”tricked”
in different contexts. They tested a similar technique to Deletion, and found that
it gave a high explainability score to maps produced by Sobel edge detection, de-
spite not having any dependence on the explicant’s processes. Finally, they state
that metric developers should encourage their users to investigate and understand
sources of variance in the metric scores. This should influence decisions about which

saliency methods are appropriate for a particular model.

Other modes of assessment include validating the explainer by comparing it
to human-annotated groundtruth. The theory is that a 'good’ explanation should
indicate that the model’s attention aligns with a human’s preconception. This type
of assessment was employed by [115], and they refer to it as the 'Pointing Game’. To
‘play’ the Pointing Game, one must extract the maximum point in the saliency map.
This point is then compared to the human groundtruth label. A ’hit’ is considered if
this maximum point is within the groundtruth, otherwise, it is considered a 'miss’.
The Pointing Game accuracy is then calculated using Eq. (1.13). This methodology
does not require the method to highlight the full extent of the object - such as is the
case in the task of segmentation - and does not account for the model’s classification

accuracy.

#Hits

Acc =
e #Hits + #Misses

(1.13)

The Pointing Game was extended by the creators of Grad-CAM [4] to also con-
sider the classification accuracy. This is achieved by generating the maps for the
top-5 class predictions, and adding the opportunity to reject any of these predictions
below a given threshold. A hit is now considered if the visualisation correctly rejects

the predictions which are not part of the groundtruth.

Zhang et al.[115] state the Pointing Game is designed to evaluate the discrim-
inativeness of the explainer. However, this is incorrect, as a single point does not

heavily support the notion that the explainer is capable of making fine distinctions.

38



Furthermore, since it relies on a human groundtruth, it also introduces other issues.
Firstly, the test is reliant on the model’s performance. Consequently, an instance is
counted as a ’'miss’ if the model disagrees with the groundtruth. This would be un-
fair to the explainer, as it may still be correctly allocating correct causal information
for the prediction.

The second issue with relying on the human groundtruth is that it may penalise
the explainer for highlighting contextual information outside of the groundtruth [97].
The significance of contextual information in object recognition tasks, including ob-
ject detection and semantic segmentation, has been established in [116][117]. Indeed,
the authors of D-RISE found that on occasion, DNNs can utilise contextual regions

outside of a bounding box when predicting that box.
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Chapter 2

Development of Software Tools

and Datasets

This chapter reviews the datasets relevant to this PhD thesis, beginning with an eval-
uation of existing datasets based on two key criteria: whether they provide examples
from aerial or ground-based drone perspectives, and their suitability for explainable
Al evaluation. The chapter then presents a novel dataset - the XI Autonomous
Driving dataset - specifically developed to assess explanation techniques in 2D object
detection from a ground-based drone in an urban environment. Additionally, it out-
lines the technical tools, software packages, and sensor rig used for data acquisition
and processing of this dataset. Finally, the chapter introduces the "Wrapping Game’,

a novel approach for evaluating the explainers proposed in this work.

2.1 Introduction and Motivation

Datasets are essential, not only for evaluating algorithms, but also for training deep
learning models to perform effectively in real-world applications. In deep learning,
a dataset is more than a collection of isolated, random pieces of information, it is
a structured assembly of interconnected components that should accurately reflect
the environment where the algorithm will be deployed. Machine learning algorithms,
especially Deep Learning models, have become integral to AD systems, where they
support critical tasks in perception [118], guidance [119], and odometry [120]. The
recent advancements in AD systems owe much of their success to large-scale image

datasets, which provide the rich data needed to train models that can generalise well
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Figure 2.1: Figure of the capture vehicle - a Renault Twizy. The sensors utilised include;
left and right thermal cameras, a 32 channel Lidar, and an active RGBD camera.

across varied conditions.

With the rapid adoption of machine learning in safety-critical fields, and the
increasing complexity of these systems, there has been a growing emphasis on ex-
plainability to illuminate the inner workings of learned models. This, among other
factors, has driven substantial growth in post-hoc explanation methods for deep
learning aimed at image understanding [99][121][122]. The XI Autonomous Driving
dataset proposed here is specifically designed for autonomous systems and captures
diverse scenarios that mimic real-world complexities, such as environmental vari-
ability, lighting changes, and object diversity. By incorporating these real-world
elements, this dataset offers a comprehensive foundation for both training and eval-
uation, while enhancing the robustness and interpretability of models in complex
and dynamic scenarios.

The wider community has made claims that explanations may be used to po-
tentially satisfy regulatory requirements [123][124], assist practitioners debug their

model [125], and search for biases or irregular behaviour in their algorithms [126][16].
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In the fields of image processing, pattern and object recognition, pixel attribution
- or saliency maps methods - are a popular approach to investigating contextual
information behind a prediction made by a DNN. Nonetheless, Adebayo et al.[99],
found that some existing explainers produced saliency maps that were independent
of the model’s learned parameters and the data. This would suggest that any such
method would not be able to identify causal information in the input, and therefore
not be adequate for synthesising explanations.

Often decisions made by developers are based on pre-existing assumptions lacking
empirical basis - a significant obstacle to the development of genuine Explainable Al
Without a means to effectively evaluate these explainers, they undermine the core
concept of explainability, risk misleading development, and exacerbate the dangers
of deploying DNNs in the wild. To meet this goal, within this chapter, is proposed
the very first dataset aimed at the development and validation of explainable scene
and object recognition for autonomous ground based vehicles.

While there do exist metrics to access the quality of a given explanation tech-
nique, there is no strong consensus in the literature on which approach should be
used for a definitive assessment. Tomsett et al.[110] investigated the property of
fidelity in XAI - the ability for an explainer to appropriately discriminate between
more and less relevant features in the input. Most metrics to evaluate fidelity of in-
dividual saliency maps have hinged on using the saliency map to perturb the input
while the researcher observes changes to the output[113][114]. Petsiuk et al. pro-
posed the Deletion and Insertion metrics to evaluate fidelity of XAI approaches, for
use in classification[12], and object detection tasks[84]. Other modes of assessment
include validating the explainer by comparing it to human-annotated groundtruth.
This type of assessment was employed by [115], and they refer to it as the "Pointing
Game’.

The aforementioned techniques will be applied, where best appropriate, in subse-
quent chapters for the purpose of evaluating the explainers that are proposed in this
thesis. In addition, in this work the concept of explainability is introduced directly
into AD at the dataset level. To the best of this author’s knowledge, there does not
exist a work that utilises attempts to provide a groundtruth for explainability on
real-world data. Instead, the standard approach is to generate a synthetic dataset
where the causal information is selected a-priori [127][128][129][130]. Therefore, the

datasets used in these works are not representative of realistic image dataset.
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Section 2.2.1 contains a literature review of existing X Al-based datasets, in which
two main approaches that authors currently take were identified. The first is to pro-
vide a human-annotated 2D localisation label that can be used with techniques, such
as the Pointing Game. The second is provide a means to intentionally bias the data
to cue the explainer. The second approach has only really been applied to tabular
data. Here, in addition to a major object class label, there are ADLs provided, these
can be used to create purposely biased image sets to evaluate new vision-based ex-
plainers. In addition these ADLs, provide users with a better understanding of the
proposed dataset, and make developers aware of biases in the data.

In addition to object detection, this dataset will support the task of end-to-end
planning for autonomous driving agents. This is a crucial area that attracts a lot of
research interest, and presents significant challenges. Conducting real-world training
for self-driving agents is unsafe and expensive, which is why many researchers choose
to experiment in simulated environments. Although these experiments have yielded
promising results, there is always a performance gap due to the difference on the in-
put representation between simulator and the real world. The dataset proposed here,
aims to bridge this gap by providing data for sim-to-real scene understanding. Ex-
isting datasets for autonomous driving include semantic segmentation information,
allowing vision models to understand the scene. However, these datasets describe
each individual class of objects, which is beneficial for semantic segmentation tasks,
but not optimal for sim-to-real applications. The complexity of the real world and
simulation environments differs significantly.

This issue is considered here by abstracting complex real-world scenes into driv-
able lanes, non-drivable lanes, and obstacles with explainable information. These
are all critical elements that self-driving algorithms rely on. This abstraction pro-
vides an efficient way for sim-to-real scene understanding, utilising methods such
as contrastive learning. Focusing on these essential components can improve the
transferability of models trained in simulation to real-world scenarios.

Section 2.2.1 contains a brief literature review of currently available datasets,
comparing them to the one proposed here. It was found that there is a significant
lack of AD datasets featuring the London metropolitan area, despite Transport for
London (TfL) releasing a statement in support of the capital as a global testbed
for autonomous vehicle innovation, and expressing its commitment to engaging with

AD deployment within the city [131]. To address this gap, a bespoke platform was
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developed to gather new data. The platform, shown in Fig. 2.1, is discussed in detail
in the central part of this chapter.

To address the limitations of the Pointing Game, this chapter introduces the
Wrapping Game as a validation procedure. For this method, semantic segmentation
datasets can be used to evaluate how discriminative a proposed explainer can be of
the object of interest. Here, the Wrapping Game is used to assess and compare the
proposed DetDSHAP explainer to another explainer based on LRP introduced by
Karasmanoglou et al.[106]. The DetDSHAP explainer will be introduced in Chapter
5.

2.2 Available Datasets

2.2.1 Existing XAI Datasets and Validation Procedures

Recent works have approached the validation of saliency methods by using the pix-
els’ relevance as an object detection signal [115][130]. Arras et al. [130] propose
CLEVR-XALI, a synthetic visual question-answering dataset with generated masks
representing the explanation groundtruth. The mask is generated solely on the tar-
get’s pixels, while the rest are defined as background. They also introduce two met-
rics that utilise the generated masks to evaluate a given saliency method: Relevance
Mass Accuracy, and Relevance Rank Accuracy. The first is computed as a ratio of
the sum of relevance within the groundtruth over the total relevance across the en-
tire input. The latter is the number of high relevance scores within the groundtruth,
divided by the area of the groundtruth.

The ADL approach proposed here is inspired by OpenXAlI, introduced by Agar-
wal et al. [127] as a package to evaluate the quality of explanations generated by
attribution-based explanation methods. They provide eleven evaluation metrics,
some taken from [132] including six that can be used within their synthetic dataset,
which are explained here. These metrics compute the fraction of top-K features
common between the explanation and the groundtruth (similar to Relevance Rank
Accuracy in [130]), considering their ranking order, sign agreement, and correlation.
While they cover a broad range of applications, their approach is limited to tabular
datasets for both discrete and continuous problems, and they do not extend their
approach to the computer vision domain. Therefore, it would not be possible to

apply their techniques directly to image data.
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Mir‘o-Nicolau et al. [128] extended the work performed in [127] to image pro-
cessing without moving into the real domain. Their data is very simple, consisting
of generated images containing basic patterns and shapes. Most of the synthetic
datasets that were investigated in this study only considered relatively easy tasks,
which could provide misleading validation results. To ensure that real data can
be used in the same validation procedures as Agarwal et al. and Mir‘o-Nicolau et
al., ADLs was used so that the data could be represented in a tabular format with
human-friendly image descriptors.

In contrast to these synthetic datasets, Kim et al. [133] utilised a subset of
the Berkeley DeepDrive dataset (BDD-X) to generate textual explanations for au-
tonomous driving decisions. This real-world dataset provides human-annotated driv-
ing behaviours, such as identifying why a vehicle slows down at a red light. While
this method grounds explanations in the internal reasoning of the model, it lacks the
relevance to object detection tasks, which are the focus of the evaluation methods
proposed here.

Localisation-based evaluations alone may be misleading, as they assume the
model’s decision is based solely on the object itself, not its context or background,
which cannot always be ensured in real-world image datasets [130]. On the other
hand, applying synthetically weighted datasets provides no guarantee that models
trained on synthetic data will adhere to groundtruth explanations [127][134]. To
properly vet an explainer, it must be evaluated using more than one procedure.
Therefore, as part of the proposed dataset, both semantic segmentation and ADLs
are provided to broaden the possible avenues for validation.

This section will present an analysis of other datasets that are intended to be
utilised by autonomous and unmanned vehicles in urban environments, and establish
what the special requirements are for datasets covering this modality. In Table 2.1, a
summary of both large and small scale datasets within this criteria is made available.
The main focus of the dataset proposed in the latter sections of this chapter is on
object detection, and drivable lane recognition. In the proposed dataset access to
a GPS/IMU system, LiDAR, and thermal cameras, is also made available. These
additional sensors make it possible to expand into other tasks in the future, such as
Visual odometry, Simultaneous Localisation and Mapping (SLAM), 3D estimation,
and multi-model detection. Hence, datasets considering these applications will also

be addressed to a limited degree.
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Dataset #Cat | Occ Sem Ori AD Dataset Size Data
1bl 1bl 1bl Pers Collection
Method

VisDrone[62] 10 v 10,209 RGB images by
UAV

LabelMe[135] 183 11,845 Crowdsourced
via web-based
tool

ETHZ 1 v 2,293 Vehicle-mounted

Pedestrian stereo cameras

[136]

Cocol[50] 80 v v 328,000 Crowdsourced
via web-based
tool

Daimler[137] 1 v v 15,560 (pedes- | Vehicle-mounted

trian samples) camera

Caltech 1 v v 250,000 frames Vehicle-mounted

Pedestrian[138] camera

ACDCJ139] 19 v v v v 4006 Vehicle-mounted
camera

EPFL 20 v 2000 Controlled

Multi-view indoor settings

Car[140]

CityScapes[141] 30 v v v v 25,000 Vehicle-mounted
camera

Kitti 8 v v v v 14,999 Vehicle-mounted

Detection[51] stereo cameras
and LIDAR

BDD100K[142] 10 v v v 100,000 (video | Collected via

clips) dashboard
cameras

Proposed 5 v v v v 10,000 Vehicle-mounted

Dataset camera, stereo
thermal, and
LIDAR

Table 2.1: The above table shows a comparison of similar object detection datasets, con-
sidering: the number of object categories (#Cat), presence of occlusion labels (Occ 1bl),
availability of semantic labels (Sem 1bl), inclusion of orientation labels (Ori 1bl), relevance
to autonomous driving (AD Pers), total dataset size, and the data collection method which
include the types of sensors used where applicable.

The task of object detection requires both the localisation and classification of
objects within a scene. It is a trending topic in the computer vision community, and
has various industrial applications such as autonomous driving, anomaly detection,
face detection, and behavioural recognition. The PASCAL VOC dataset [143][144] is
one of the pioneering works in generic object detection, which is designed to provide a
benchmark for multiple tasks beyond object detection, as well as image classification,
object segmentation, person layout, and action classification. The dataset contains
20 object classes and 21,738 images. ImageNet [145] builds upon the PASCAL
VOC dataset, scaling up the number of object classes and images by several orders

of magnitude, with 1,000 object classes and 1,431,167 annotated images. The MS
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Figure 2.2: This figure shows the bounding box statistics for the coco dataset. The left
subplot shows the width and height distribution of the bounding boxes as a percentage of
the image dimensions. The right subplot shows the centroid location distribution of bounding
boxes in pixels. Histograms in both subplots provide additional insight into the frequency of
widths, heights, and locations.

COCO dataset from Lin et al. [50], contains more than 328,000 images with 2.5
million manually segmented object instances. It has 91 object categories with an

average of 27.5k instances per category.

From Fig. 2.2b, it is evident that the size and shape of the bounding boxes in
this dataset are generally spread out. That being said, the majority of the bounding
boxes are under 120 pixels across the diagonal, with an average value of 101.5 pixels.
From Fig. 2.2a, it can be seen that the centroids are generally distributed around
the images. However, the majority are clustered around the centre of the image,

and more are found in the upper area of the image than in the lower portions.

For comparison, within Fig. 2.3 and Fig. 2.4 is plotted the bounding box char-
acteristics for the classes of ”Car” and ”Pedestrian” in the Kitti dataset. The most
notable characteristic is that all the objects are located between 150 and 350 pixels
from the top of the image. This is because the objects of interest would not be found
in the sky, or too close to the capture vehicle. This information reveals that models
trained on generic datasets will, more than likely, be less suited for deployment with
AD perspectives. Moreover, as most object detectors have used these datasets as a

benchmark, the architectures themselves may not be optimised for the application.

It is important to note that, other than KITTI, many of the datasets in Table 2.1

that were acquired in outdoor environments used fewer than six sequences and at
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Figure 2.3: This figure shows the bounding box statistics for the instances of ”Car” the
Kitti dataset. The left subplot shows the width and height distribution of the bounding boxes,
whereas, right subplot shows the centroid location distribution of bounding boxes. Histograms
in both subplots provide additional insight into the frequency of widths, heights, and locations.

most contained 6.4 km of acquisition. The Ford Campus dataset [146] employed a
modified F-250 truck and included Lidar and visual data. Similar to the proposed
dataset, the Ford Campus dataset used two sequences and included a distance of
5.1 km, which is comparable to the distance captured in the proposed work. The
proposed dataset includes two different sequences with loop closure (which can be
split into more sub-sequences) and provides access to 10,136 frames across the two

sequences.

Looking to the number of categories used in object detection, the current datasets
vary between relatively few, into the hundreds. The proposed dataset uses five pri-
mary categories of objects [”Drivable lane”, ”Non-drivable terrain”, ”Static obsta-
cle”, "Pedestrian”, ”Car”]. This is more than the number released in the initial
version of KITTI and in the datasets proposed by [147], [137] and [136]. The latter

three are only concerned with pedestrian detection.

Similar to the work by Mustafa et al. [140], the proposed dataset includes labels
that indicate the facet of the vehicle being viewed by the observer. Their dataset
consists of 2,000 images covering 20 different car models, with the 360-degree view
divided into classes representing approximately 3 to 4 degrees each, resulting in
roughly 100 facet classes per car model. In contrast, the proposed dataset represents
vehicle facets with only eight possible classes, as higher fidelity is not necessary at

this stage. A key difference is that the dataset presented here was not gathered
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Figure 2.4: This figure shows the bounding box statistics for the instances of ” Pedestrian”
in the Kitti dataset. The left subplot shows the width and height distribution of the bounding
boxes, whereas, right subplot shows the centroid location distribution of bounding boxes.
Histograms in both subplots provide additional insight into the frequency of widths, heights,
and locations.

in a controlled environment like theirs, which was acquired at a car show. This
controlled, indoor setting enabled Mustafa et al. to achieve such fine granularity
more easily, whereas the proposed dataset had to contend with the challenges of
real-world, less controlled conditions.

Russell et al.[135], introduce LabelMe which includes an image dataset for object
detection and recognition. For some of their objects they have also provided addi-
tional contextual labels. However, these are generated by a user on the fly, hence
their labels are less specific, and there is no consistency across the dataset. This will
make it much more challenging to extract specific clusters of image data.

Of the Datasets listed in Table 2.1, only the proposed dataset contains a signifi-
cant sample from a major British city. Indeed, because there does not exist a great
abundance of data collected within the London metropolitan area in existing works,
there is a greater need for data acquired within this environment, particularly with
the presence of the traditional London Taxi and New Routemaster buses. This data

is provided by this work.

2.2.2 The VisDrone Dataset

This section introduces the VisDrone detection dataset[148][10], a dataset which is

used extensively throughout this thesis to evaluate the developed explainers on aerial

49



200000
0
350
L ]
300 . .
L ]
e ®
250 .0....~o .00.0.
[ ..~‘¢: o: .
o3 e .
. ¢ o 1
Height 200 45’! '.'gi.'. e . °
o et
150 .3 " oo
*,
oy ®
100 Tt :
H ’, .
[ 1) . [ ]
50 e ' .
3 N o . .
0
0 100 200 300 0 100000
Width

Figure 2.5: Scatter plot showing the width and height of the bounding boxes in the VisDrone
training set in pixels. The top histogram shows the occurrences of a given width, while the
right side histogram shows the occurrence of a given height. The plot is limited to 400 pix,
although there are some boxes wider than this

imagery. The VisDrone competition was initiated in response to the lack of large-
scale datasets featuring drone-captured scenes. Their detection dataset comprises
10,209 static aerial images from various cities across China [10]. Each image has
been manually annotated with bounding boxes for 10 predefined classes: [pedestrian,
person, car, van, bus, truck, motorbike, bicycle, awning-tricycle, and tricycle]. A key
challenge of this dataset is the prevalence of small objects, as illustrated in Fig. 2.5,
where most bounding boxes measure under 50x50 pixels. Additionally, objects are
often occluded by background elements like buildings or foliage, or by other objects
of interest. The images are also densely populated, containing numerous objects.

As is the case with imagery from the perspective of an autonomous road ve-
hicle, performing object detection on images captured from the perspective UAV
adds unique challenges, including viewpoint change, dynamic scales, occlusion and
background clutter[10][149][148][150]. To illustrate this, some samples have been
provided in Fig. 2.6 where it can also be seen that this dataset also contains night-
time conditions.

This dataset presents two challenges for attention based explainers that tradi-
tional saliency approaches will likely struggle to overcome. Firstly, the size of the

objects in the image means that only a small amount of pixels are used to represent
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Figure 2.6: Examples from the VisDrone Detection Dataset[148]

a single object, and thus a saliency method may struggle to convey the importance
of these small features. Secondly, the density of the objects within the image, which
can often be found clustered together as seen in Fig. 2.6, will make it more challeng-
ing for an explainer to effectively disentangle causal information for neighbouring

objects.

2.3 Sensor System Architecture and Software Tools

This section provides an overview of the sensor setup and custom software solutions
developed to manage data collection and annotation. This setup, shown in Fig. 2.1,
integrates multiple synchronised sensors. To handle the unique data requirements
of these sensors, custom software solutions were developed: the Capture Software
(Section 2.3.2) manages real-time data synchronisation across sensors, while the XAI
Labelling Software (Section 2.3.3) provides a semi-automated platform for human

agents to refine Al-generated annotations. Together, these tools enable efficient data
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Batteries and Power Distribution

Intel NUC capture PC
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Camera Camera

Figure 2.7: Overview of the sensor system architecture, showing the Intel NUC capture PC
connected to various sensors, including thermal cameras, LiDAR, RGBD camera, and IMU.
Additional power was required for some sensors, this is indicated in the diagram, others were
able to powered from USB connection to the Capture PC.

capture and consistent labelling, forming a robust foundation for the dataset.

2.3.1 Sensor Rig

Figure 2.1 shows the placement of the sensors on the vehicle used for the data
collection. There is also available a functional diagram in Fig. 2.7. While the main
focus in this work is explainability on visible light imagery, additional sensor data
was collected, all of which were synchronised at 10 frames per second. The developed
rig included an ouster OS1 32 channel Lidar, two Flir Vue Pro R thermal cameras,
an intel realsense D4351 RGBD camera, and a high-resolution Inertia Measurement
Unit. Figure 2.8 shows an instance from the available dataset with all the perception
sensor data. The Flir Vue Pro R cameras have a FoV of 69° x 56° and operate in
the Spectral Band 7.5 — 13.5um. These required additional hardware including a
frame-grabber for each camera to capture 690 x 490pix images from these thermal
cameras on the analogue video output at 10H z.

From the Intel Realsense camera both Depth and RGB images are made avail-
able, within Fig. 2.8b is shown frames from both these sensor modalities. The Depth
module is a stereoscopic sensor that uses an active IR emitter, has a FoV of 87° x 58°,
while the maximum range of the depth image is 3m - hence the requirement of a
LiDAR. This camera was configured to output normalised 1280 x 720piz Depth im-
ages at 30Hz. The RGB camera has a FoV of 69° x 42° and a sensor resolution of
2MP. The LiDAR is a 32 Channel Ouster OS1 rev D, which is configured with a

horizontal resolution of 1024. The point clouds are stored in csv format: [x,y, z].
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(a) Ouster LiDAR sensor data with the top-down view of the point cloud displayed in the left plot and the
depth image created from that same point cloud displayed in the right plot. The colour bar along the side
of the right plot shows the distance in meters.
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(b) Data available data in the proposed dataset from the Intel Realsense camera. These include the RGB
image and the Depth image. Note that the maximum range of this sensor is 6m and as such may not be
sultable for many AD activities. This made it necessary for the inclusion of the LiDAR in our sensor suite.
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(c) Demonstration of thermal images available in the proposed dataset from the left and right Flir cameras.

Figure 2.8: This illustration shows the visual sensor data available in the proposed dataset.
All the sub-figures show sensor feeds taken from the same frame in time.
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Figure 2.9: Functional overview of the software threads, in which each cycle is composed of
three steps. Step 1: the central thread sends a trigger message to all sensor threads simultane-
ously. Step 2: Each thread will take the most recent frame and save it to the filesystem. Step
3: The threads send a message back to the central thread to notify that the save is complete.

2.3.2 Capture Software

Effectively integrating the sensors presented a significant challenge due to variations
in their driver packages, and the unique data handling mechanisms implemented
by each driver. Another challenge was managing the substantial sensor payload,
particularly from the 32-channel Lidar, which generates 6,464 bytes per packet [151].
These inconsistencies and data demands required a robust solution that could handle
each sensor’s data stream independently, while maintaining synchronisation across
the entire system.

To address this, the capture software was developed in C++ to leverage its
performance capabilities and support multi-threading, which was essential given the
lack of hardware synchronisation among the sensors. Multi-threading enables each
sensor’s data stream to be processed in real-time and independently, minimising
latency and ensuring that each frame is captured simultaneously across sensors. This
approach mitigates issues of time drift and data misalignment, which are essential
for creating coherent multi-modal datasets.

As shown in Fig. 2.9, the software’s functional overview illustrates the multi-
threaded approach for capturing synchronised frames from each sensor in the rig.
Each sensor operates within its own dedicated thread, enabling continuous data

capture without blocking other processes. The Central Control Thread initiates
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each capture cycle by sending a trigger message to all sensor threads simultaneously,
ensuring synchronisation across all devices. Following this, each sensor thread saves
its most recent frame to the File System, and then sends a completion message
back to the Central Control Thread. This coordinated cycle allows the system to
handle high data rates and maintain precise synchronisation, crucial for generating
accurate, multi-modal datasets.

The capture times are recorded in the IMU data text files, and Fig. 2.10 shows
the plotted sample times. While the sample interval does occasionally deviate from
the target 10 Hz, with the worst instances reaching up to three seconds between
samples, the vast majority of samples are consistently captured within the targeted
100 ms interval. For both summer and winter captures, the average sample interval
was 112 ms and 123 ms, respectively, which is within acceptable limits for our
purposes. The larger delays are attributed to instances when the buffer for saving

files fills up, causing a temporary pause in data capture.

2.3.3 XAI Labelling Software

This section outlines the procedure for creating the semantic labels required for the
proposed dataset and introduces the tool developed to facilitate this process. The
tool was developed as a web-accessible platform using the open-source Django frame-
work[152] to facilitate collaborative labelling among multiple human agents. This
design choice allows for remote access and supports a consistent labelling process
across users. The tool operates in a semi-automated fashion, where Al-generated
labels are provided as initial predictions that human agents then refine, ensuring
accurate and contextually appropriate annotations. Figure 2.11 illustrates the la-
belling interface, which incorporates features to streamline the workflow, enhance
consistency, and maintain data quality across contributors.

The labelling process operates in a semi-automated fashion. Initially, each image
is processed by an Al agent, which produces an initial guess of the semantic labels.
The AI agent in this case is a Panoptic Feature Pyramid Network (PFPN)[64],
a model previously discussed in Section 1.5. As detailed in that section, PFPN
extends the Feature Pyramid Network (FPN) architecture by integrating instance
and semantic segmentation, enabling panoptic segmentation—a unified approach
to detecting both objects and amorphous background regions. While PFPN has

computational constraints that may limit its real-time applicability in autonomous
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Figure 2.10: This figure shows the timing characteristics of the developed capture software.

vehicles, its high-resolution segmentation capability makes it well-suited for gener-
ating precise semantic labels in offline annotation tasks. In this labelling workflow,
the model is pretrained on the COCO dataset[50] and implemented using Detec-
tron2[65]. The Al-generated labels are then meticulously reviewed and refined by

human agents to ensure accuracy for the specific classes of interest.

Figure 2.12 illustrates the semantic labelling interface of the developed web plat-
form. The figure highlights the typical corrections a human agent might be required
make to the Al-generated initial labels. These corrections include splitting labels
where multiple objects have been erroneously grouped, completing labels that are
missing parts of an object, removing false positives, and identifying objects that

were initially missed. Additionally, the human agent is responsible for distinguish-
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Figure 2.11: This diagram outlines the process flow for labeling datasets using the developed
software. It covers the stages from inputting RGB images, processing through AI and human
agents, to the final output of labels which are stored in XML format.
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Figure 2.12: This figure demonstrates the interface for creating the semantic labels on a given
instance. The left image shows the initial guesses produced by the AI agent in white. The
right image shows the refined labels by the human agent. Also indicated are some corrections
that are typically required to be made by the human.

ing between drivable and non-drivable terrain, a task the Al is unable to perform.
A finalised segmentation label is presented in Fig. 2.13, from which 2D bounding

boxes are generated using the extreme points of the semantic regions.

Once the semantic labels are finalised, the next step is for the human agent to
select the ADLs. This is done through the interface shown in Fig. 2.12. Each label
has a corresponding list of options available via drop-down menus. As illustrated
in the figure, not all labels apply to every object. For example, 'Static obstacle
class” and "Traffic light state’ are irrelevant for an object classified as a 'Car’. After
finalising the ADLs, all relevant data is stored in an XML file for future use by

practitioners, with a backup in a Structured Query Language database.

Developing this proprietary software was necessary to meet the specific require-
ments of the proposed dataset, particularly for generating the ADLs. This approach
also centralised the dataset, simplifying data management, and enabling remote ac-
cess to the interface. As a result, human agents do not need to install any specialised

software, and there is no need to transfer large amounts of data to the users.
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Figure 2.13: On the left portion of this figure is an image taken from our sensor rig while
the right side shows the semantic label for this image.

U White v |
Current state:

S Mot Applicable W
EITEEIE Mot Applicable v

Figure 2.14: This figure shows an extract from the page that the human agent uses to set
the ADLs. In this example the user is labelling the white van marked with the orange box. A
full overview of the available labels are shown in Fig. 2.16.

2.4 XAI dataset for Ground-based Drones

2.4.1 Environment

Two different collections were conducted, one under warm weather conditions, and
one under winter conditions with snow present. The two routes taken are shown in
Fig. 2.15a and Fig. 2.15b. Both depict scenes from an urban environment in central-
North London. The sequence taken in warm weather conditions was collected in
an area around a university and small business district. In contrast, the second
sequence was captured in an area around a park in a residential district, with visible

snow on most surfaces including vehicles.
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Figure 2.15: This figure shows the routes taken during data acquisition where the green
marker indicates the starting location and the red the finish. These have been produced using
OpenStreetMap[153]
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Figure 2.16: This figure shows a tree diagram which illustrates the links of the our ADLs.
Each ADL is indicated in green. The class labels belonging to 'Body Shape’ and ’'Vehicle
Colour’ and their distribution can be found in Fig. 2.17. The Class labels for Observable Facet
and their distribution can be found in Fig. 2.18.

2.4.2 Additional Descriptive Labels

The tree diagram in Fig. 2.16 shows the connections of the proposed Additional
Descriptive Labels. While there are only seven primary classes in the proposed
dataset, when considering the possible ADL amalgamations there are up to 10,762
unique label combinations. When considering this, the proposed dataset would be at

the top of all the examples shown in Table 2.1 in terms of the number of categories.

Here, as in other works such as [51], [137], and [154], an occlusion label is provided
to indicate how much of an object is obscured by other objects, or the background.
This label is typically used to highlight challenging objects when evaluating a de-
tector’s performance. In this work occlusion is of particular interest, not only for

identifying difficult cases, but also for how it affects the appearance of the object,
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Figure 2.17: This matrix shows the distribution of the vehicle descriptions.

which is a key focus in generating the ADLs.

For the class of vehicles, there are five ADLs attached: ’Colour’, ’Observed Facet’,
"Body Shape’, ’Current State’ and ’Occlusion’. These additional criteria allow for the
objects in the class to be better distinguished based on their visual characteristics.
The matrix in Fig. 2.17 shows the distribution of the vehicle shape and colour in the
proposed dataset. The ADL of ’Observed Facet’ describes another important visual
concept, which is the side of the given vehicle being observed, Fig. 2.18 shows the
distribution of the nine classes of facet.

The ADL of ’Current State’ is used to describe whether the current action or
inaction of a given vehicle. This ADL describes whether or not said vehicle is in
motion, and provides insights into that motion which could be pertinent to an AD
system. In conjunction with this ADL and the ’Observed Facet’ can hypothetically
be used as part of a AD system in order to understand the behaviour of a given
vehicle.

From examining the ADLs, it can be seen that within the vehicle class the top
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Figure 2.18: This graphic shows the distribution of observable vehicle facets in our dataset.
The label of 'Not Applicable’ refers to situations where there is too much occlusion or the
vehicle is too far away for the observer to determine.
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Figure 2.19: This graphic shows the states of the Traffic lights in our dataset.

appearances are 'Black Hatchback’ and "White Van’. It is also found that the most
observed facets seem to be the front and rear of the vehicles. This bias would
otherwise be hidden despite being critical information to a developer.

The dataset also includes the current state of the traffic lights captured during
data collection, the distribution of which is found in Fig. 2.19. This information adds
significant value to both autonomous vehicle navigation and advanced driver assis-
tance systems (ADAS). Accurate detection and interpretation of traffic signal states
are crucial for autonomous vehicles to navigate intersections safely and respond
appropriately to changing traffic conditions. By leveraging this data, autonomous
systems can make informed decisions about stopping, proceeding, or yielding to

pedestrians.
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Figure 2.20: Comparison of bounding box sizes for the ’Vehicle’ and ’Pedestrian’ classes in
the proposed dataset. The left subplot shows the width and height distributions for vehicles,
while the right subplot shows the same for pedestrians. Histograms along the top and right
provide further detail on the occurrences of specific width and height values.

Similarly, in ADAS, the labelled traffic light data can be used to provide drivers
with real-time alerts about upcoming traffic signals, or changes in signal states,
enhancing driver awareness and responsiveness. The inclusion of pedestrian signals,
along with the ability to detect malfunctions (e.g., ”Not working, or not visible”)
adds the potential for an extra layer of safety, ensuring that vehicles can handle a

variety of complex traffic scenarios effectively.

2.4.3 Bounding Box Distribution

There are two design requirements that belong to this proposed dataset. Firstly,
the dataset will be used to develop systems that will ultimately be deployed in
the real-world. Secondly, the dataset is intended to be as transparent as possible
to potential users. Given these requirements it is pertinent to provide a thorough
understanding of the localisation, relative size and density of the objects of interest
in the images. As such, this section will enlighten the reader by presenting the
dimension and location of the bounding boxes within the images for the primary
classes of interest: ["Vehicle”, ”Pedestrians”, ” Traffic Light”]. This information will
also be used in later discussion when evaluating the proposed XAI methodologies.
Figure 2.20a and Fig. 2.20b illustrate the size distribution of bounding boxes
for the ’Vehicles’ and "Pedestrians’ classes respectively. For comparison, Fig. 2.3a

and Fig. 2.4a show the bounding box sizes for 'car’ and ’pedestrian’ in the KITTI
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Figure 2.21: Comparison of bounding box centroid locations for the 'Vehicle’ and ’Pedestrian’
classes in the proposed dataset. The left subplot shows the distribution of centroid locations
for vehicles, while the right subplot shows the same for pedestrians. Histograms provide insight
into the frequency of centroid locations along the width and height of the image.

dataset, providing a relevant autonomous driving perspective. Notably, both the
data here, and the KITTI dataset, share a similar trend, characterised by relatively
small object sizes compared to those in more generic object detection datasets, such
as COCO. The diagonal lengths of a bounding box representing a vehicle have a
mean value of 95 pixels, and a median of only 58 pixels, while pedestrian bounding
boxes have a mean diagonal length of 49 pixels, and a median of 35 pixels. From
the scatter plot in Fig. 2.20b, it is evident that bounding boxes for pedestrians tend
to be taller than they are wide, which aligns with the data observed in the KITTI
dataset. Conversely, Fig. 2.20a reveals that bounding boxes for vehicles exhibit a
broader range of aspect ratios, reflecting a trend consistent with autonomous driving

datasets.

Figure 2.21a and Fig. 2.21b present scatter plots showing the centroid locations
of objects within the image frame. The accompanying histograms on the right
side of these plots indicate that the majority of objects are situated midway down
the images. This distribution aligns with expectations given that the data was
captured using a front-facing camera. Most objects, such as vehicles and pedestrians,
naturally appear on or alongside the roadway, rather than in the upper part of the
image, which represents the sky, or the lower part, where objects would be too close
to the capture vehicle to be fully visible. This pattern is consistent with typical

autonomous driving data, emphasising the focus on objects within a practical field
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Figure 2.22: This figure shows the bounding box statistics for instances of Traffic Light in the
proposed dataset. The left subplot shows the width and height distribution of the bounding
boxes in pixels. The right subplot shows the centroid location distribution of bounding boxes.
Histograms in both subplots provide additional insight into the frequency of widths, heights,
and locations.

of view for navigation and safety.

The top histogram in Fig. 2.21a shows that most vehicles are located between
250 and 500 pixels from the left side of the image frame, forming an "M’ shape with
a dip near the centre. This pattern reflects the real-world environment: the left peak
represents vehicles directly in front of the capture vehicle or parked on the left side
of the street, while the right peak corresponds to vehicles in the oncoming lane or
parked on the right side. This distribution is similar to that observed in Fig. 2.3b,
except for a notable horizontal shift to the right in the proposed dataset. This shift
is attributed to the data collection taking place in a country where driving on the
left side of the road is standard, whereas the KITTI dataset was collected in a region
where driving is on the right.

A similar pattern is evident in Fig. 2.21b, which shows the centroid locations of
pedestrians in the proposed dataset. Although the overall distribution mirrors that
of vehicles, it is broader, with large clusters of pedestrian around 200 and 475 pixels
from the left side of the image frame. This wider spread can be attributed to the
frequent presence of pedestrians on pavements, rather than in roadways, aligning
with the typical environmental context of urban and suburban driving scenes.

In addition to the classes that have already been discussed, Fig. 2.22 presents the
bounding box statistics for the "Traffic Light’ class. While there are publicly available

datasets that include this class, it is notably absent from the KITTI dataset. The
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Value

Mean 9.674361
Standard Deviation | 5.139993

Lower Quartile 6
Median 9
Upper Quartile 12
Max 33

Table 2.2: Descriptive statistics for number of labelled objects per image.

inclusion of "Traffic Light’ in the proposed dataset provides valuable information
for tasks related to autonomous driving. The scatter plot in Fig. 2.22b shows that
traffic lights are almost exclusively located in the top portion of the image frame.
This distribution aligns with real-world positioning, as traffic lights are typically

mounted on poles or overhead structures.

Table 2.2 summarises the object distribution statistics within the proposed dataset.
Notably, the table highlights that, on average, there are 9 to 10 unique objects per
image. This density of objects is significant for training object detection models, as
it ensures diverse and complex scenes that mimic real-world driving environments.
Furthermore, many images contain over 20 objects, presenting additional challenges
and opportunities for models to detect and differentiate between multiple items
within crowded scenarios. Such variety is crucial for developing robust detection

algorithms that can handle real-world complexity and clutter.

While these characteristics result in a more challenging dataset, it also aligns
with the operational needs of drones in urban environments, where detecting distant
and densely positioned objects is essential. These challenging elements are not
the primary focus of large-scale, generic image datasets, like COCO. The routes
shown in Fig. 2.15 were carefully selected with the intention of capturing complex
and realistic scenes. These characteristics were confirmed to be present by the
investigation provided in this section. The proposed dataset offers an invaluable
resource for developing and testing detection models tailored to the specific demands

of autonomous vehicle and drone operations.
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2.5 Deep Object Detection Evaluation

In this section an evaluation of the object detection capabilities of several state-of-
the-art object detectors was conducted using the proposed dataset. This included
YOLOv5[72], YOLOv8n and YOLOvVS8s[155], and Faster R-CNN[31]. Given that the
intent is to develop deep learning for onboard intelligence, the choices were based
on ease of embeddability. For the YOLO models, the same training pipelines were
utilised that were proposed by the developers, including their tile data augmentation
approach[72][155]. On the other hand, the training pipeline for the Faster R-CNN
model used in this study is simpler - the only data augmentation that was applied
was random translation and colour jitter.

It is possible, using the proposed ADLs, to reconfigure the classes to more options
than just the base classes. Hence, in this section it is opted to use the following
class labels for evaluating object detection: ["Vehicle”, ”Pedestrian”, ”Motorbike”,
"Cyeclist” and ”Traffic Light”]. It is important to note that there are only limited
instances of ”Motorbike” and ”Cyclist” in this set, only 858 and 338 respectively.
Whereas, the occurrences of all other classes number in the thousands.

For an added dimension, only images from the summer collection are utilised
for training, while the validation set consisted of the winter collection, providing a
robust basis for evaluation across varied seasonal conditions. Table 2.3 reports the
typical object detection performance metrics for all the deep networks used in this
study, including the top F1 score, precision, recall, mAP@50, and mAP.

Given the large class imbalances, the mAP for the individual classes is reported
in Table 2.4. YOLOvV5 generally performs better across most categories, especially in
overall performance, car detection, pedestrian detection, and traffic light detection.
Nonetheless, both of the YOLOv8 models show competitive results, achieving the
highest m AP when considering all labels combined, and also the highest for classes of
”Vehicle”, ”Pedestrian” and ”Motor”. The class that all networks generally perform

poorest on is ”cycle”, this is not surprising, given the aforementioned class imbalance.

2.6 Wrapping Game Analysis

In this section, the Wrapping Game is introduced as a means to evaluate the dis-
criminatory capabilities of the object detection explainers proposed in this thesis.

Here the early usage of the Wrapping Game analysis is presented. The Wrapping
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Model F1 | Precision | Recall | mAPQ50 | mAP@(0.50 — 0.95)
YOLOv5s 0.317 0.698 0.581 0.601 0.359
YOLOv8n 0.265 0.598 0.476 0.529 0.330
YOLOvS8s 0.265 0.670 0.536 0.586 0.379
Faster R-CNN | 0.297 0.623 0.567 0.617 0.395

Table 2.3: COCO Performance metrics on the Winter set, from deep object detectors trained
on the summer dataset.

Model MAPyen, | MAPyeq | MAPyot0r | MAPyqe | MAPP L
YOLOv5s 0.707 0.441 0.321 0.062 0.261
YOLOv8&n 0.687 0.368 0.388 0.025 0.184
YOLOvVS8s 0.723 0.448 0.368 0.025 0.184
Faster R-CNN | 0.752 0.511 0.326 0.000 0.387

Table 2.4: This table presents the m AP calculated for the range of IoU between 0.50—0.95 on
each class used in this evaluation. mAPr, 1, refers to average precision on the class of 'Traffic
Light’.

Game draws inspiration from the Pointing Game proposed by Zhang et al.[115]. A
demonstration of this pointing analysis is available in Chapter 4, where it is used to

evaluate the proposed KernelSHAP based framework.

Zhang et al. intended to utilise their proposed evaluation procedure as a tool
for examining the discriminatory effectiveness of explainers in image deep network
classifiers. In their framework, the most prominent pixel, identified as the highest
contributor from a given attention map, is extracted. Subsequently, it is assessed
whether this pixel resides within a human-annotated groundtruth represented by a
2D bounding box. A ’hit’ is recorded if the pixel is contained within the groundtruth;
otherwise, it is classified as a 'miss’. The overall score is calculated by dividing the
number of ’hits’ by the total of ’hits’ and 'misses’. The Pointing Game inherently
lacks the necessity for a comprehensive explanation to elucidate the complete context
of the object in question. Consequently, it can only assess discrimination capabilities
to a somewhat restricted extent. In the proposed assessment methodology a mask
is derived from the explanation map, which can then be compared to an instance
segmentation groundtruth using IoU; this will yield a more definitive evaluation of

the explainer’s discriminativeness.

The human-annotated groundtruth is used to guide both the Pointing Game
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Figure 2.23: These plots show the outcome of the Wrapping Game analysis on the DetDSHAP
explainer developed in this study.

and Wrapping Game analyses. Reliance on groundtruth to guide the methodology
can introduce biases stemming from the performance of the deep network, which
is not ideal. Although Zhang et al. [115] did not address this issue, this study
explores instance segmentation performance by examining various ranges of model
confidence. A prediction threshold is established by selecting a value between two
specified bounds, and the Wrapping Game is applied to all instances where model
confidence falls within this threshold. This approach provides a more comprehen-
sive understanding of the explainer’s discriminatory power, while also considering
the impact of the deep network detector model’s performance on the explanations

generated by the proposed method.

The mask is created from the attention map in two steps. Firstly, the contribu-
tion of each pixel of the input image is generated. Secondly, Sklansky’s Algorithm
[156] - defined in Algorithm 1 - is then applied to all the pixels with contributions
above a given threshold to yield a convex hull. In this algorithm, V; is a vertex
with coordinates (z;,y;). The algorithm identifies the extremal vertices (leftmost,
rightmost, top, and bottom points) and sorts the vertices in a counter-clockwise
order, starting from the leftmost vertex. It then iteratively constructs the convex
hull by ensuring that the last three points on the boundary maintain convexity, and

by removing any non-convex points as needed. This process results in a minimal
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DetDSHAP
Model confidence above 0.95 0.746
Model conf €]0.30,0.35) 0.274

All instances 0.579

Table 2.5: This table shows the peak average IoU scores for three different scenarios in
the Wrapping Game analysis. The top row shows the score for instances where the model’s
confidence is above 95%. The second row shows the score for instances where the model’s
confidences are between 30% and 35%. The final row shows the score for all instances with
model confidence over 30%.

enclosing convex polygon around the relevant pixels.

The threshold used to select the pixels for Sklansky’s Algorithm is given as a
percentage of the most pertinent pixel, and is labelled as exp_thr in the plots. In
the analysis shown in Fig. 2.23, the average IoU changes as this threshold value is
increased. The IoU score increases, until it reaches a peak as the mask approaches
the ideal shape, whereupon it will then begin decreasing. The final metric is taken

as the peak IoU value.

Algorithm 1 Sklansky’s Convex Hull Algorithm

1: Input: A set of vertices P = {Vi, Vs, ..., V,,} representing a simple polygon.

2: Output: The convex hull CH(P).

3: Identify the extremal vertices: leftmost, rightmost, top, and bottom points.

4: Sort vertices in a counter-clockwise order, starting from the leftmost vertex.

5: Initialise an empty stack H to store the convex hull vertices.

6: for each vertex V; in the sorted list do

7:  while H contains at least 2 vertices and the last 3 points in H do not form a
convex angle do

8: Remove the second-to-last vertex from H.

9: end while

10:  Push V; onto H.

11: end for

12: return H as the set of vertices forming the convex hull CH(P).

The evaluation procedure is intended to be utilised with the proposed dataset,
although the procedure was developed prior to the proposed dataset being com-
pleted. At this point, the semantic labels were not yet available in the proprietary
dataset. Hence, the instance segmentation set from the Kitti dataset[157] is utilised
in the evaluation as the semantic labels. Moreover, The analysis was applied with
a YOLOv5s model trained to detect the single class of *Vehicle’ on a subset of the

proprietary self-driving dataset.
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The Wrapping Game analysis was conducted on the proprietary DetDSHAP that
will be presented in chapter 5. The outcome from this analysis is shown in Fig. 2.23.
In addition to plotting the entire analysis, presented in Table 2.5, are pertinent
scores for three scenarios investigated in the Wrapping Game analysis. The first
two rows show the peak IoU when considering only instances with very high or very
low model confidence. Also reported is the peak IoU score for all instances in the
set across the possible prediction thresholds. The DetDSHAP explainer achieves a
reasonable score in this latter scenario, indicating that it performs well for the vast
majority of instances.

The examination detailed in Fig. 2.23 and Table 2.5 reveals a distinct relation-
ship between the performance of the model and the IoU score. It is apparent that
the explainer demonstrates enhanced scores in contexts where the model displays
elevated confidence levels. This finding is consistent with the premise that a model’s
confidence is intrinsically linked to its ability to differentiate a particular instance
from its surrounding environment. However, this pattern indicates that the ex-
plainer may struggle to clarify the causal elements influencing predictions when the
model operates at lower confidence levels.

As stated, the Wrapping Game will be used to evaluate other explainers that
were developed in this work, and so will be discussed further in later chapters. In
these later chapters it was found that the shape of the plot also revealed qualitative
information about the XAI method being evaluated. For example, a broader curve
is more desirable than a narrow peak as it indicates a more detailed explanation.
Narrow peaks might indicate a certain feature in the image which is the principal
attribute behind a particular decision. In object detection however, this instead
tends to be the object’s centre, as this is important for the placement of the bounding
box. This is a known characteristic of object detectors, particularly YOLO-based

detectors, and thus not strictly pertinent information to provide in the explanation.

2.7 Summary

This chapter serves as a review of the datasets that currently exist in the literature
which are used for developing deep object detection algorithms for autonomous and
unmanned vehicles, and others that are used for evaluating XAl in other domains.

Some of these are utilised throughout this thesis. However, it was determined that a
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new dataset was needed to fulfill the requirements of this work. As such, this chapter
also serves as an introduction to this new dataset, and the tools that were developed
to collect and label the data. Finally, the Wrapping Game was introduced as a
method to evaluate the discriminative ability of deep object detection explainers.
The Wrapping Game analysis will be discussed further in subsequent chapters where
it will be used, as intended, with the full proprietary dataset introduced earlier in

this chapter.
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Chapter 3

Grad-CAM Based Explainers
for Object Detection from

Drone Platforms

This chapter presents two key contributions aimed at enhancing object detection
algorithms for drone-based platforms. The first is a Tile Dataloader designed to im-
prove the performance of object detectors on aerial drone imagery, particularly in
cluttered outdoor scemes commonly encountered by drones. The second is a Grad-
CAM-based Ezxplainer, which generates saliency maps to highlight image regions that
contribute to a deep detector’s class scores, thereby improving the transparency of
the detection process. Both works are evaluated for their real-time capabilities, with
a focus on improving detection performance and interpretability in dynamic envi-

ronments.

3.1 Introduction

As first identified in section 2.2.2, Autonomous drone-based platforms encounter
unique challenges in object detection. Aerial images often feature small, densely
packed objects and complex, cluttered backgrounds that differ significantly from
the datasets typically used for training detection models. As discussed in Chapter
1, DNNs are inherently opaque, thereby raising critical issues of trust and inter-
pretability in safety-critical applications. Building on that background, this chapter

presents two key innovations specifically tailored for drone imagery.
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Firstly, a Tile Dataloader is introduced, designed to enhance the detection of
small objects. By partitioning high-resolution aerial images into smaller, manage-
able tiles without downscaling, the proposed method preserves crucial object de-
tails—thereby overcoming the limitations of conventional scaling approaches and
boosting detection performance.

Secondly, an adaptation of Gradient-weighted Class Activation Mapping (Grad-
CAM) for YOLOV5 is proposed. This novel approach generates near real-time
saliency maps that reveal the regions of an image most influential in the network’s
detection decisions. By focusing the explanation on specific detection layers and in-
corporating object-specific constraints, the adapted Grad-CAM not only facilitates
debugging but also enhances trust in the DNN’s decision-making process.

As noted in Chapter 1, in their tutorial on Gradient-Based explainers, Nielson
et al. [81] found that many state-of-the-art gradient-based techniques were prone to
failure due to class agnostic behaviour—a phenomenon in which the generated maps
show little difference across different class labels for the same image. Grad-CAM was
selected for its efficiency in generating near real-time saliency maps, as it requires
only a single forward and backward pass, and notably, it was the only method in
their study that did not exhibit class insensitivity.

Notably, YOLOv5 was chosen as the detection framework for this study because,
at the time the work was conducted, it represented the most state-of-the-art solu-
tion in real-time object detection. Although more recent iterations have since been
developed, YOLOV5 offered a competative balance between detection accuracy and
computational efficiency required for UAV platforms.

Subsequent sections detail the design and implementation of both the Tile Dat-
aloader and the Grad-CAM-based explainer. The particular challenges presented
by drone-captured images are outlined, followed by a description of the methodol-
ogy—including the modifications necessary to address the multiple detection layers
of YOLOvV5. The proposed approaches are evaluated on the VisDrone dataset, with
both quantitative metrics and qualitative analyses demonstrating improvements in
detection performance and interpretability.

By addressing the limitations posed by small objects in drone-captured imagery,
the novel Tile Dataloader and adapted Grad-CAM framework provide a robust so-
lution for achieving real-time, transparent object detection on UAV platforms. The

methodologies and evaluations presented in this chapter set the stage for subsequent
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sections, where further refinements and deeper analyses of network reasoning and

detection performance will be explored.

3.2 Methodology

In this chapter two pieces of work are proposed, the first is the Tile Dataloader,
and the second is the suggested use of Grad-CAM to explore and understand the
behaviour of YOLOvV5. As such, the section is split into three parts: The first of these
will cover the Tile Dataloader. The second and third will discuss two methodologies
for using Grad-CAM with YOLOv5. The first of these methodologies demonstrates
how to deploy Grad-CAM in much the same way it was intended, which is to produce
a map showing the class activations. The second methodology was developed later
using the proprietary dataset proposed in chapter 2, and uses the predicted box to

constrain the Grad-CAM to just focus on a specific detection.

3.2.1 Tile Dataloader for Small Object Detection

The Tile Dataloader was designed to enhance small object detection by splitting
large aerial images into smaller, high-resolution tiles. This ensures that small ob-
jects retain their detail, avoiding detection failures caused by downscaling during
processing. This method ensures that the network receives input images with im-
proved object visibility, thereby boosting performance in scenarios involving dense
or distant objects. The tiling process is automated, ensuring adaptability to different
image sizes.

Here, the tile size is defined as t; X tg pixels, with t; = 512 in this work. The
subdivision calculation is performed as follows: given an input image of size H x W,
the number of tiles along each dimension is computed using Eq. (3.1) and Eq. (3.2),
ensuring at least a 20% overlap between adjacent tiles to prevent objects from being
cut at tile boundaries. In addition to tiling, a rescaled version of the entire image

(ts X ts) is processed to preserve global context.

H
Nyg=|——"7-7-— 3.1
= ts — 0.2 X g (3.1)
_ W -
Ny = 3.2
W ts — 0.2 X tg (3.2)
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Figure 3.1: Illustration of an image with the tiles overlaid, numbered 0 to 5. The groundtruth
bounding boxes are shown as solid, slightly transparent, rectangles.

An example of an image split into tiles is illustrated in Fig. 3.2, where a 1360 x 765
image is split into six 512 x 512 tiles. During inference, a batch containing all tiles
and a resized copy of the full image is simultaneously passed to the DNN. Tile
offsets from the top-left corner of the image are applied to reconstruct bounding box
coordinates, and non-maximum suppression (NMS) is used to remove duplicates.

The Tile Dataloader was evaluated with both Yolovs and CentreNet. Both
models were retrained from scratch on images from the VisDrone 2020 training set.
The base dataset was enlarged by splitting the raw images into tiles of t5 X t, pixels
using the method described above. K-means clustering was used to select 30 prior
boxes from the new training set for the YOLO algorithm.

The Tile Dataloader was evaluated with both Yolovs and CentreNet. Both
models were retrained from scratch on images from the VisDrone 2020 training set.
The base dataset was enlarged by splitting the raw images into tiles of 512by512
using the method described above. K-means clustering was used to select 30 prior

boxes from the new training set for the YOLO algorithm.

3.2.2 Grad-CAM with YOLOv5

An overview of the proposed explainer framework can be seen in Fig. 3.3. Normally,
when using Grad-CAM in a classification network, the gradient is set to the pre-

SoftMax layer as a one-hot encoding of the target class, and then backpropagated
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Figure 3.2: Illustration of an image with the tiles overlaid, numbered 0 to 5. The groundtruth
bounding boxes are shown as solid, slightly transparent, rectangles.

until the last convolutional layer. However, more attributes are available from detec-
tion networks, and therefore a different approach is required. Firstly, the detections
with low objectness scores are suppressed, followed by all the bounding box features
and class scores, apart from the class for which the saliency map is being generated.
As a result, what remains is a single vector containing the scores for the target class
that pertain to valid objects in the image. This method was developed experimen-
tally by suppressing different parts of the output with different rules, and observing

the resulting saliency maps.

The original implementation of Grad-CAM focuses on using the final convolu-
tional layer in the network to generate the saliency map. In their findings, the
authors claimed that the best-looking visualisations are often obtained at the deep-
est convolutional layer, and the localisation gets progressively worse at the shallower
layers. However, YOLOvV5 has three detection output layers that make detections at
different scales. As such, in the proposed implementation, three different convolution

layers are utilised, each one proceeding a detection layer.

The generated saliency maps from the proposed method can be observed in
Fig. 3.4, where the images were created when overlaying the saliency maps for ‘car’
over the original image. Figure 3.4a shows the car bounding boxes produced by the
first detection layer, and it can be observed that at this layer the very distant cars

have been detected. In contrast, it can be seen in Fig. 3.4b that some of the distant
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Figure 3.3: Illustration of the proposed Grad-CAM based algorithm to generate heatmaps
from a Yolovs model. Step 1: The input image and target class are selected a priori. Step
2: Network conducts a forward pass on the input image to produce predicted boxes, at the
same time feature maps from each detection layer are stored. Step 3: Backpropagation occurs

from the encoded predictions and Gradients are calculated. Step 4: Heatmaps are generated
for each detection layer from the stored feature maps and calculated gradients.
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cars are no longer detected. Furthermore, Fig. 3.4c, reveals that very few of the
distant cars are detected by the final detection layer, indeed only one car is detected
in the top third of the image. Each saliency map can indicate to the explainee where
in the image the algorithm is paying attention, even when no bounding boxes are
present.

More information can be extracted from the network by generating a saliency
map that can highlight pixels pertinent to the objectness score. To do so, the
bounding box features and all the class scores were suppressed, leaving a vector
containing the objectness scores. Figure 3.5 shows an instance where this is useful,
where it suggests that the reason the trucks along the top and bottom were not
detected is due to the network believing them to be background, as indicated by
Fig. 3.5b.

3.2.3 Detection Constrained Grad-CAM with YOLOv5

In the previous subsection, the approach taken was constrained to analysing the
class and objectness scores predicted by the network. This resulted in feature maps
that are not necessarily relevant to any object in particular. In this section, the

motivation for this was to investigate whether Grad-CAM could be used to provide
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(a) Shallowest Detection Layer (b) Middle Detection Layer (c) Deepest Detection Layer

Figure 3.4: Saliency maps generated from the convolution layers prior to each detection layer.
The explicant in this case was YOLOvV5! trained on the VisDrone dataset. The target class
was ‘car’.

' T. '||";;|Tii|~iﬁ'"
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Figure 3.5: Saliency maps for the ‘Truck’ class score, and objectness score for the final
detection layer. Seven trucks were detected on this layer, these have been identified by the
black bounding boxes.

additional context behind predicted boxes made by a YOLOv5 model trained on
the XAI-AV dataset (introduced in Chapter 2). The dataset change is necessary to
enable the use of the Wrapping Game analysis, which offers a qualitative evaluation

of the proposed explainer.

A modification was required to the prediction encoder in order to restrain the
Grad-CAM calculation to a single predicted box. This was achieved by suppressing
boxes that had a poor IoU with the target box of interest. The output from each
detection layer is treated independently, this is the same as the approach outlined
in the previous section. In addition, a saliency map is generated for each individual

object. These can be analysed independently, such as the examples shown in Fig. 3.6.
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Figure 3.6: This figure illustrates the individual saliency maps that can be generated with the
bounding box-constrained Grad-CAM. The maps for the vehicles are shown along the bottom,
and the maps for the Pedestrians are shown along the right side.

Alternatively, the feature maps may be combined for each detection layer, as
seen in Fig. 3.7. This is achieved by normalising each map and then summing them
together. This creates a map that shows which pixels were pertinent to the network’s

reasoning specifically related to the bounding box location and dimensions.

3.3 Aerial Object Detection Results

3.3.1 VisDrone Challenge Metrics

When this work took place, the VisDrone competition had already closed, so it was
not possible to receive feedback on the performance of the network on the official

test set. However, the organisers released a test-dev set that can be considered
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Figure 3.7: Detection restrained Saliency maps showing the attention of the deep network.
These Saliency Maps are created by summing the maps for the individual objects. The right
column displays raw maps from the shallow, middle, and deep detection layers, while the left
column shows these maps overlaid on the input image.
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Models AP | AP50 | AP75 | AR1 | AR10 | AR100 | AR500

DroneEye2020 34.57 | 58.21 | 35.74 | 0.28 1.92 6.93 52.37

YOLOvV5 with
Tile Loader

PG-YOLO 26.05 | 49.63 | 24.15 1.45 9.2 33.65 42.63

CenterNet with
Tile Loader

32.36 | 53.92 | 33.59 | 2.01 | 13.47 41.59 44.53

14.62 | 29.45 1.35 1.83 8.83 23.03 27.6

Table 3.1: Table showing the VisDrone competition metrics achieved by the YOLOv5 and
CenterNet algorithms using the proposed Tile Dataloader. Also shown are the scores achieved
by DroneEye, which was the top-scoring network in precision, and PG-YOLO, the top-scoring
YOLO network entered in the competition. The Average Precision (AP) is calculated over
multiple Intersection over Union values of [0.50:0.05:0.95]. The Average Recall (AR) is calcu-
lated given a maximum of 1, 10, 100, and 500 detections per image.

representative. As such, this set was used to evaluate the performance of the model
developed here. The competition metrics were based on average precision and recall
at different thresholds of IoU. Precision is given by Eq. (3.3) which is the network’s
ability to correctly classify detected objects. Recall takes into account false positives
produced by the network and is given by Eq. (3.4). A false positive is when the

network mistakenly detects an object when there is only background.

true positives

precision = (3.3)

true positives + false positives

true positives

recall = (3.4)

true positives + false negatives

Guided by the performance of the YOLOv5 algorithm with the proposed Tile
Loader on the test-dev set, it may have placed 5th, if it were possible to submit it
to the VisDrone competition. Table 3.1 shows the results of the networks that were
developed in this study, alongside two other networks which were entered into the
competition. One can see that the YOLO network proposed here outperformed the
YOLO network that was entered into the competition in all categories, and even

achieved higher scores than the top scorer for precision in three of the recall metrics.

3.3.2 Tile Loader Appraisal

This section provides a comparison of the performance of YOLOv5 and CentreNet-
ResNet50 with the Tile Loader, using the plain model as a control. The intention
is to gauge the performance increase of each model when utilising the Tile Loader.

Both algorithms were evaluated on the test-dev set from the VisDrone2020 detection
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Figure 3.8: Plots to show the performance of YoloV5 at different object scales.
dataset.

To validate the claim made here, that the Tile Loader improves the performance
of small objects, the number of correct detections depending on the bounding box
size is investigated. The histograms in Fig. 3.8 and Fig. 3.9 show how many boxes
the model was able to correctly allocate when considering the diagonal length of the
bounding box.

It was found that with the use of the Tile Loader, the networks were able to
detect and correctly classify many more small objects. The plots in Fig. 3.8a and
Fig. 3.9a show that when the networks were used alone, there were a substantial
number of missed detections with smaller boxes. However, when using the Tile
Loader, the performance on small objects is much improved, as can be seen by
Fig. 3.8b and Fig. 3.9b. The most significant improvement is in the boxes smaller
than 24 pixels across, where there is an improvement of 179% for YoloV5 and 168%
for CenterNet.

Figure 3.10 shows the performance of YoloV5 without the Tile Loader across
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Figure 3.9: Plots to show the performance of CenterNet-ResNet50 at different object scales.

all the classes. The classes with the highest missed detections are those that tend
to contain relatively smaller objects, including ’pedestrian’, 'people’, bicycle’ and
‘motor’. Those with the least amount of missed detections include classes of four-
wheeled vehicles including ’car’, van’ and 'bus’.

There is also a noted improvement in the performance across all classes when
using the Tile Loader, as seen by the high scores across the diagonal in Fig. 3.11.
On the other hand, these results also revealed an increased percentage of misclas-
sifications, particularly members of the class 'van’ being allocated as a member of
"car’, and ’bicycle’ being allocated as 'motor’. Therefore, despite the use of the Tile
Loader leading to significant gains in terms of small object detection, it does not
necessarily improve the classification performance of the model.

To better understand these classification errors, we analyze the confusion ma-
trices in Fig. 3.10 and Fig. 3.11, which provide insight into the primary sources of
misclassification. While the Tile Loader improves small object detection, it does not

significantly enhance classification accuracy. Many misclassifications occur between
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Figure 3.10: Confusion matrix illustrating the model’s performance without the Tile Loader.

visually similar classes, such as 'van’ being classified as ’car’ and ’bicycle’ as 'motor’.
This suggests that the model relies heavily on global shape features—such as overall
object contour and silhouette—rather than finer local details, which may lead to

misclassification among visually similar categories.

Although the Tile Loader improves the detection rate of smaller objects, their
misclassification rates remain high. This is likely due to the lack of detailed features
in low-resolution instances, making it difficult for the model to distinguish between
closely related categories. Additionally, occlusion and background clutter may intro-
duce ambiguity, particularly in urban environments where objects frequently over-
lap. A potential future improvement is to incorporate the Tile Dataloader with a

higher-resolution feature extractor to enhance fine-grained classification, such as a

PFPN.
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Figure 3.11: Confusion matrix illustrating the model’s performance with the Tile loader

3.3.3 Timing Characteristics

The goal of this particular work was to be able to detect objects and provide ex-
planations in real-time. As such, this section investigates the achievable Frames per
Second (FPS) of the trained YOLOV5! on its own, as well as with the Tile Loader,
and the achievable FPS when creating a saliency map. To do so, the time was mea-
sured for how long it took for each detection algorithm to process an image. The
time was measured from immediately after the image had been opened, and existed
in memory, to when the predicted bounding boxes were available. For Grad-CAM,
the time measured was from when the image was loaded until the saliency map was
available, this was recorded for all classes, and the objectness score. The timings
were recorded for all samples in the VisDrone test-dev set.

The results are shown in Table 3.2, and it can be seen that using the Tile Loader
has a significant handicap to the processing rate. The majority of the processing

time is taken up by post-processing the larger number of potential bounding boxes.
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YOLOv5 with  YOLOv5 Grad-CAM
Tile Loader

Mean 17.98 38.7 4.983
Median 19.83 38.8 4.972
Standard Deviation 4.05 0.3176 0.517

Table 3.2: FPS stats recorded for each process on the test-dev set.

This could also contribute to the high standard deviation, along with the fact that
the images in the test-dev did not have a fixed dimension, and thus each sample
may have a different number of tiles which the deep network needed to process.
That being said, the FPS is still above 15 FPS, which is acceptable. This could be
improved when embedded, and using a fixed image size.

The Grad-CAM was used in conjunction with the plain model. It can be seen
that there is an even greater handicap to the processing rate as the average FPS
is below five frames. Nonetheless, this is near real-time, and may also be improved
with embedding, and further optimisation, to achieve a higher FPS which would be

more user-friendly to an operator.

3.4 Validation of Grad-CAM Based Explainer

In validating the Grad-CAM-based explainer, a series of tests are employed to en-
sure the reliability and interpretability of the generated saliency maps. Section 3.4.1
presents the Model Dependency Test, which examines the sensitivity of the saliency
method to the learned parameters of the model. This test involves comparing out-
puts from a trained model with those from a model whose parameters have been
randomised. The goal is to confirm that the saliency outputs differ significantly,
indicating that the explainer is dependent on the model’s learned weights. A lack of
sensitivity suggests that the explainer may be insufficient for model debugging and
interpretation tasks.

Section 3.4.2 discusses the Data Dependency Test, inspired by the methodology
outlined by Fong and Vedaldi[13]. This test evaluates whether the explainer accu-
rately captures the true data-label relationship by adding noise to the input image
using the saliency map as a guide. If the saliency map effectively highlights influ-

ential regions, the model’s prediction should significantly diverge from the original
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Figure 3.12: Table showing the Cascading randomisation on YOLOv5.

prediction when noise is applied to these areas. This test ensures that the explainer
identifies parts of the input that are genuinely important for the model’s predictions,
confirming its relevance and robustness in representing data-label associations.
Section 3.4.3 utilises the Wrapping Game, previously introduced in this thesis, to
evaluate the explainer’s ability to discriminate the object of interest effectively. This
method, while also revealing information about the sensitivity of the explainer to
the model, focuses on how the model’s confidence affects the explainer’s discrimina-
tive power. This analysis highlights the explainer’s capability to identify the most
relevant image regions for the detected object, and its responsiveness to varying

confidence levels.

3.4.1 Model Dependency Test

The Model Dependency Test, motivated by the work of Adebayo et al., was designed
to assess the sensitivity of the Grad-CAM explainer to the learned parameters of the
model and robustness to input dominance[110]. The procedure involved sequentially
randomising the weights of each convolutional layer in the network, and generating
corresponding saliency maps, which were then compared to those produced by the
original, unmodified model using the same input data. This step-by-step approach
highlighted how the explainer’s output changes with parameter modifications, re-
vealing its dependence on specific model features.

Figure 3.12 presents the results of this test, showcasing saliency maps for the ’'car’

class across the first, second, and third detection layers in the initial column. This
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is followed by maps generated after progressively randomising the weights of deeper
convolutional layers from left to right. It can be observed that the saliency maps
shift noticeably when the weights of the first few layers are randomised, indicating
that these layers have a significant influence on the visual explanations. However,
randomising the weights of layers deeper than the first and second detection layers
has a less pronounced effect on the generated saliency maps from these same lay-
ers. This outcome aligns with expectations, as the information does not propagate
backwards to these layers, but only forward to detection layers further down the
chain. Consequently, the explainer passes the test, confirming that it is sensitive
to the model’s learned weights, and capable of reflecting meaningful changes in the

network’s learned parameters.

3.4.2 Data Dependency Test

In order to evaluate the Grad-CAM explainer’s ability to select important pixels, a
perturbation-based approach was devised - motivated by [13]. The first step was to
use the generated saliency map to perturb the image. This was done by overlaying
the image with Gaussian noise, where the magnitude of the noise was related to the
magnitude of importance from the saliency map. An example of this is shown in
Fig. 3.13.

The next step was to run an inference on the perturbed image, and then attempt
to match predicted boxes made on both the original and perturbed images. If the
boxes had an IoU higher than 0.5 it was considered a match. For the matched boxes
the change in the confidence score was recorded. The number of boxes that could
no longer be matched was also recorded as this meant that the object was no longer
considered valid by the detector, and can be considered a false negative.

This was done for all object classes on every image in the VisDrone test set. In
the findings, it was discovered that around 38% of the boxes could not be matched.
This is likely because the perturbation caused the network to predict the new boxes
in different locations, or with different dimensions. In either case, this could result in
a low IoU which would result in a mismatch. Therefore, key features that had allowed
the network to make the original prediction were obscured by the perturbation.

Of the boxes that could be matched, the average confidence score by YOLOv5
dropped by 77.52% across the entire set. Fig. 3.15 shows the distribution of the drop

in confidence across all the matched objects in the test set. The drop in confidence
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Figure 3.13: Top row: Grad-CAM feature maps for ‘car’ on the three detection layers.
Bottom row: Images that were masked using the Grad-CAM maps to obscure important
features.

also suggests that the perturbation which was applied obscured the features that

assisted the model in its prediction.

3.4.3 Wrapping Game Analysis

In this section, the results of the Wrapping Game analysis on the bounding box-
constrained Grad-CAM will be discussed. The Wrapping Game was previously
introduced in Section 2.6. This is an evaluation methodology intended to validate
XAI techniques that provide a saliency map for individual detections. Hence, in
this section the analysis was not conducted on the unconstrained Grad-CAM. This is
because the saliency maps produced by that methodology will show the contribution
to the class scores, or objectness scores, of all the detected objects in the image,
rather than one detection individually.

Comparisons will be drawn between the results in this section and the plots in
section 2.6. It is important to note, that these other results were obtained with
slightly different data, so these are not strictly methodologically appropriate. How-
ever, further discussion is made in subsequent chapters where the Wrapping Game
is deployed with the same deep network and training data.

The entire Wrapping Game analysis was applied using both the summer set,
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Figure 3.14: The Graph shows the number of matched boxes in blue, and the number of
unmatched boxes in red, for each class after salience-weighted perturbation is applied.

shown in Fig. 3.16, and the winter set, shown in Fig. 3.17. The analysis is split
into two settings. For the first setting, the Wrapping Game analysis is applied
to all objects, regardless of the network’s confidence score in the detected objects.
Whereas, for the second setting, the Wrapping Game analysis is applied while also
considering the network’s confidence. The second setting is shown in Fig. 3.16b and
Fig. 3.17b, in these plots the different coloured lines represent a different threshold

of the prediction confidence.

In all the figures, apart from Fig. 3.16a, there is an abnormal spike early in
the analysis. This is not observed when applying the same analysis with the other
explainers presented in this thesis. From observing the plots in Fig. 3.16b and
Fig. 3.17b, it can be seen that the spikes in the IoU scores are attributed to the
instances where the model has high confidence in the detection. When investigating
this further, it is found that when the model had high confidence, the saliency maps
were more focused near the centre of the object. Given that YOLO-based detectors
predict the centre coordinate of the bounding box, the centre region would be the
most important. This phenomenon can be seen in Fig. 3.7, and unfortunately, does

result in less attractive and uninformative saliency maps for the user.

When evaluating all instances, regardless of the model’s confidence, the maxi-

mum IoU achieved in the Wrapping Game on the summer set is 0.355. This IoU
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Figure 3.15: Change in confidence score due to salience-weighted perturbation.

score is obtained when the mask is generated using pixels from the saliency map that
exceed 42% of the maximum value. Using this same threshold, and disregarding the
peak in Fig. 3.17a, a similar IoU score is achieved on the winter set. However, if the
peak generated by the spike is taken into account, the IoU score for the winter set
slightly improves to 0.37. Therefore, the spike has ultimately a negligible effect on
the final metric.

Changing the discussion to the second setting, it can be seen that the lines
representing model confidence € (30,85) have less variance when compared to the
plot in Fig. 2.23. This observation, coupled with the fact that the IoU does not reach
zero until nearly 100% of the pixels have been removed, indicates that the explainer
is less susceptible to the model’s performance, except for the aforementioned spike.

Based on the outcomes of the Wrapping Game, it can be inferred that the pro-
posed Grad-CAM explainer demonstrates reasonable discriminativeness. However,
when comparing the outcome of this analysis to the performance of DetDSHAP
in Fig. 2.23, Grad-CAM comes off much poorer. Firstly, the maximum IoU score
for Grad-CAM achieved in any scenario is 0.528, whereas in previous experiments
DetDSHAP achieved a top score of 0.746. Secondly, the aforementioned spikes are
a result of much of the attention being wasted on the centre mass of the detected

objects, making Grad-CAM less descriptive. Further comparisons with this Grad-
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Figure 3.16: Plots showing the Wrapping Game analysis of the proposed Grad-CAM frame-
work with YOLOv5 on the summer set. (a) analysis across all instances in the dataset. (b)
analysis considering the model’s confidence in a given instance.
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Figure 3.17: Plots showing the Wrapping Game analysis of the proposed Grad-CAM frame-
work with YOLOv5 on the winter set. (a) analysis across all instances in the dataset. (b)
analysis considering the model’s confidence in a given instance.

CAM based explainer, and other novel explainers that are proposed as part of this

thesis, will be discussed in the subsequent chapters.

3.4.4 Diagnosing Deep Detector Reasoning with Grad-CAM

The analysis in this section is conducted on a YOLOv5 model that was trained
on the XAI-AV dataset that has previously been introduced in Chapter 2. Two
samples from the summer set are selected, and saliency maps are generated for
all objects detected by the network in these samples, and displayed. These two
samples are shown in Fig. 3.18. The first sample was taken as the collection vehicle
was driving down a straight road, with vehicles parked along the side of the road,
and pedestrians walking along the pavement. The second sample taken from when
the capture vehicle was stopped at a traffic light, contains more classes of objects,

including a motorbike, and some instances of traffic light.
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Figure 3.18: This figure shows the two samples used in the diagnosis of the deep detector’s
reasoning which was conducted using Grad-CAM. The bounding boxes predicted by the deep
network have been plotted.

In each figure where the saliency maps have been plotted, both the raw saliency
map, and the input image with the saliency map superimposed over the top, are
available. The images with the map superimposed over the top are referred to as
the ’overlay’. The first row of each figure displays the overlaid maps from the shallow,
middle, and deep detection layers, while the second row shows the corresponding raw
maps. In each overlay, there are the detections that were made by a given detection
layer. In this section, the dark red parts are the most salient, whereas, the dark blue

parts are the least salient.

The first class discussed is 'vehicle’. Saliency maps for this class were generated
for both samples and are displayed in Fig. 3.19 and Fig. 3.20. In Sample 2, the
model’s lower detection layer did not detect any vehicles; thus, no saliency maps are
shown for that layer. Analysing both sets of saliency maps, it is evident that the
model’s attention is primarily focused around the central regions of the bounding
boxes. Additionally, the Shallow and Middle Layers in both figures allocate some
attention to areas along the bottom left and right edges of the image, outside of the

roadway.

However, an exception is noted in Fig. 3.20a, where the attention appears more
diffusely spread throughout the image. This could indicate that the network’s atten-
tion has 'wandered’. In reality, this dispersion is due to the deep network predicting

a significantly lower class score for this instance, resulting in a reduced backpropa-
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gated value, and a smaller class activation. Given that this bounding box is detected
by the top layer with higher certainty, it is likely that it would have been rejected
during the NMS post-processing step.

As previously discussed for the class of ’vehicle’, the shallow and middle layers
allocate some attention to the roadway, while the deep layer also focuses on the road
surface, particularly towards the centre, rather than the edges. This pattern could
suggest that the network leverages contextual information from the road surface to
aid in the detection of these vehicles.

Juxtaposed, Fig. 3.21c and Fig. 3.21f illustrate an example of where the network’s
attention appears misplaced, potentially indicating confusion. In these saliency
maps, a significant amount of attention is directed toward the sky and bright re-
flections at the top of a building, areas where no relevant objects are present. This
could suggest that the network is misinterpreting bright reflections, or high-contrast
areas, as cues for object presence, which could lead to false positives. Such behaviour
underscores a limitation, where the model may struggle to differentiate between con-
textual cues that support correct detections, and those that introduce ambiguity.

Figure 3.23 illustrates how the proposed Grad-CAM framework can be valuable
for investigators who lack access to the original dataset. The saliency maps for the
class ’traffic light” show that the model’s attention is predominantly concentrated
in the top portion of the image. Notably, Fig. 3.23a shows a distinct boundary
across the image around 220 pixels down, suggesting that the model’s focus is biased
towards this upper area. This observation aligns with the distribution of traffic
lights, as shown in Fig. 2.22b. Indeed, for many of the saliency maps shown in
figures 3.19, 3.20, 3.21, 3.22, and 3.23, the regions highlighted by Grad-CAM closely

align with the object distributions presented in Section 2.4.3.

3.5 Summary

On-board object detection is a crucial requirement for UAVs when performing tasks
such as obstacle avoidance, search and rescue, and automatic target recognition.
One of the main challenges of conducting object detection for a UAV is that ob-
jects of interest appear very small in images captured from higher altitudes, making
detection more difficult. This chapter presents a solution to address this challenge,

while also meeting two additional criteria essential for the deployment of artificial
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intelligence on UAVs: real-time operational capability; and user trust in the ex-

plicant’s predictions. To tackle the challenge of small object detection, an image

Tile Loader was introduced to enhance the capabilities of DNN-style detectors while

minimising processing time.

In addition, a Grad-CAM-based framework was employed to provide near real-

time visual explanations, enhancing the transparency of the deep object detectors

analysed in this chapter. This framework highlights which parts of the input image

contribute most significantly to the model’s decisions, facilitating clearer insight

into model behaviour during operation. This capability is vital for applications that

require immediate insights, such as autonomous navigation, and real-time decision-

making.
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Figure 3.19: Saliency maps showing the attention of the deep network on sample 1 high-

lighting the network’s attention for the class "Vehicle’.
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Figure 3.20: Saliency maps showing the attention of the deep network on sample 2 high-
lighting the network’s attention for the class "Vehicle’.
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Figure 3.21: Saliency maps showing the attention of the deep network on sample 1 high-
lighting the network’s attention for the class 'Pedestrian’.
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Figure 3.22: Saliency maps showing the attention of the deep network on
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Figure 3.23: Saliency maps showing the attention of the deep network trained on sample 2.
The first row displays the overlaid maps from the shallow, middle, and deep detection layers,
while the second row shows the corresponding raw maps, highlighting the attention for the

class 'Traffic Light’.
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Chapter 4

Explainable Object Detection

for Autonomous Vehicles using

KernelSHAP

This section will outline how a permutation style explainer, KernelSHAP was
adapted so that it could be used with detection style architectures. When given an
image I, a detection network f, and a target bounding box T, the explainer produces
a saliency map that indicates how the f relates I to T. Images from both aerial
and ground-based robotic platforms were used to showcase the effectiveness of the

explainers.

4.1 Introduction and Motivation

Previously, Chapter 3 presented a gradient-based explainer for interpreting YOLOVS5,
which generated saliency maps by propagating gradients to the final convolutional
layer. Although effective for certain tasks, this approach requires direct access to
the network’s internals and is thus less portable when comparing different archi-
tectures. To ensure consistency with that earlier work and to provide a coherent
baseline across this thesis, YOLOv5 is maintained as the main detection model of
interest. In contrast, perturbation-based methods treat the network as a closed box,
making them applicable to a wide range of models without necessitating architec-
tural modifications. Furthermore, KernelSHAP computes Shapley values to fairly

distribute feature contributions, ensuring that both positive and negative influences

99



are accurately captured.

In this chapter, KernelSHAP has been adapted for detection-style networks. The
proposed framework extracts image features using superpixel segmentation via Sim-
ple Linear Iterative Clustering (SLIC), thereby generating interpretable segments
from the input image. These superpixels serve as the basis for evaluating feature
contributions: by computing Shapley values for each segment, the method produces
"SHAP maps” that visually represent the influence of different regions on the pre-
dicted bounding boxes. Figure 4.1 shows an example of a saliency map that the
method can produce.

A key motivation for the approach in this chapter is to improve upon methods
like D-RISE. Petsiuk et al.[84] propose D-RISE, which aims to generate saliency
maps for detection networks by perturbing the entire image. However, when deal-
ing with aerial imagery, where the majority of objects are small, focusing on the
entire image may dilute the explanation. In contrast, the approach presented here
concentrates on a subsection of the image that contains the object of interest. Such
conditions demand an explainer that can accurately capture low-resolution features
and disentangle overlapping contributions—a need that is addressed by the proposed
KernelSHAP framework.

Both D-RISE and RISE[12] rely on randomly generated masks to perturb the
image and then produce a weighted average of these masks as the final saliency
map. For RISE, the weights are derived from the target class score, while D-RISE
employs a similarity metric that evaluates how different a bounding box predicted
from a masked image is from that of the original image. A notable limitation of these
methods is that they do not guarantee a fair distribution of contributions among
features. By leveraging Shapley values, which possess the property of efficiency [§],
the proposed KernelSHAP adaptation guarantees that the total score from a given
instance is fairly distributed. An additional advantage is its ability to identify image
regions that have a negative contribution, thereby providing enhanced investigatory
power.

D-RISE typically treats each pixel as the fundamental unit of explanation, a
granularity that does not align well with human perception [83]. Here, the aim is
to extract features that could be more easily understood by a human agent. This
drove the choice of extractor that is outlined in section 4.2.1.

The main contributions of this chapter are as follows:
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(a) Input image with the target bounding box
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(b) (L) Saliency Map over the original image.
(R) The saliency map alone with the scales shown.

Figure 4.1: An example of the KernelSHAP explanation. (a) Shows the image with the
target bounding box in blue. (b) Shows the saliency map that indicates the important parts
of the object that caused the network to predict this box.

e A novel adaptation of KernelSHAP that integrates SLIC-based segmenta-
tion with detection outputs to generate SHAP maps, offering a robust and

architecture-independent explanation framework.

e A qualitative demonstration of the explainer’s effectiveness, including its abil-
ity to identify artificially introduced bias, thereby providing deeper insights

into the network’s decision-making.

e A comprehensive quantitative evaluation employing metrics such as the Point-
ing Game, Deletion, and Insertion protocols, which collectively assess the ac-
curacy of the explainer in capturing feature contributions across both aerial

and ground-based images.
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The following sections detail the methodology behind this adaptation—including
feature extraction, Shapley value computation, and the mapping process for creating
SHAP maps—and present experimental results that underscore its effectiveness.
This work demonstrates that the adapted KernelSHAP framework offers a significant
improvement over existing methods such as D-RISE, particularly in the challenging

context of aerial object detection.

4.2 Methodology

The objective of this piece of work is to adapt the vanilla KernelSHAP such that,
when given an image I, a detection network f, and a target bounding box T, the
explainer produces a saliency map that indicates how the f relates I to T. As
stated, KernelSHAP estimates the Shapley values of each feature value of an in-
stance. KernelSHAP represents Shapley value explanation as a linear model g,
given by Eq. (4.1). Where M is the maximum coalition size and the number of
features, and ¢; is the Shapley value for a given feature. 2z’ is the coalition vector
and is described by Eq. (4.2), where 0 indicates an absent feature, and 1 indicates

the feature is present.

M
9(2) = do+ > _ ;7 (4.1)

=1
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(a) Feature (b) (L) Feature selection
Boundaries (R) example of masking

Figure 4.3: (a) shows the feature boundary in white for the bounding box for the bus in
yellow. (b) shows the features that are extracted using SLIC on the left, and an example of a
perturbed image on the right.

e {0, M ke {1,.., M} (4.2)

KernelSHAP will sample coalitions of the features using the coalition vector.
Each sample is converted to the original feature space, and then given to the network
to compute the weight of a given z;. This new data is used to fit the linear model and
return the Shapley values. Therefore, to adapt KernelSHAP, this method needed to
extract the features from the image I, remove features based on z, — which will be
achieved by masking - before passing the masked image to the detection network.
Lastly, it needed to be able to calculate the scores for a given masked image which

will be used to fit the linear model. The full framework is shown in Fig. 4.2.

4.2.1 Extracting Features

The first step is to define the features of the instance. The feature extraction pro-
cess involves segmenting the input into interpretable parts, such as object patches
or super-pixels, which are analysed to determine their contribution to the overall
prediction. While increasing the number of features allows more detailed informa-
tion to be extracted from an instance, it also increases the computational burden

and variance in the estimated Shapley Values. To manage this, the feature selec-
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tion is limited to only the parts of the image contained within the bounding box
and some areas immediately surrounding it. An example of this boundary is shown
in Fig. 4.3a, where the original bounding box is enlarged by 50%. Analysing the
entire image would be inefficient, as distant regions are expected to have minimal
contribution and would require a significantly higher number of features.

Super-pixels are extracted from within the boundary using Simple Linear It-
erative Clustering (SLIC) [158] to perform pseudo-clustering. Super-pixels group
perceptually similar pixels, effectively preserving object boundaries and reducing
image complexity. Unlike fixed grid-based methods, super-pixels adapt to the un-
derlying image content, ensuring that segments align with natural structures within
the image. In the proposed framework, SLIC was chosen for its balance between
performance and efficiency [159]. Additionally, the flexibility in controlling the com-
pactness of super-pixels allows the explainer to be fine-tuned, yielding more inter-
pretable and visually coherent explanations.

Other region-based clustering approaches, such as watershed segmentation and
k-means clustering, were considered but found to be less suitable for this task. Wa-
tershed segmentation tends to over-segment images, producing highly fragmented
regions that do not align with object boundaries, while k-means clustering lacks
spatial awareness, leading to irregular segment shapes. In contrast, SLIC efficiently
balances spatial compactness and colour similarity, making it more effective for gen-
erating meaningful feature groupings in the context of explainable object detection.

The aim is to group similar pixels based on their colour and location, while
also keeping the number of pixels in each group fairly balanced. Removing a larger
group of pixels would cause the image to change drastically, which could mislead
the explainer into attributing the group with a bigger contribution than it deserved.
Figure 4.3b shows the segments that were extracted from the bus.

With the features selected a mask can be generated using a given coalition vector
to remove them from the image. An absent feature is replaced with the average pixel
value of the image. Figure 4.3b shows an example of such masking applied to the
image of the bus, where a random selection of features have been removed.

Further examples of masked images are available in Fig. 4.4. In clockwise order,
and starting in the top left, the first image shows when the full mask is applied and,
in this case, a completely different object is detected. The second image shows when

no masking is applied with the original box. In the third image, the first half of the
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Figure 4.4: Examples of masks applied to the image with the nearest matched bounding box.

feature vector is obscured which has resulted in the top portion of the object being
masked. This leads the network to make two mistakes: the object is misclassified as
awning-tricycle’, and the bounding box is misplaced. The final image was created
when a random sample of the features was turned off, much like it would be during
evaluation. In this scenario, despite the network placing the box very similarly to

the original box, the object was misclassified as 'truck’.

4.2.2 Similarity Metric

KernelSHAP requires a method to score how well a given bounding box, K, from
a masked image matches the target bounding box, 7. This scoring is essential
for calculating the weights used to fit the linear model, g(Eq. (4.1)). The metrics
outlined in [84] are adopted to assess the similarity between bounding box dimensions
and class scores.

The bounding box similarity score Sy, is computed using Intersection over
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Union (IoU), which measures the area of overlap divided by the total area covered

by both bounding boxes:

o |Tboz N Kboa}|

Sboz = IOU(Tbo:m KbOCC) B m
0T ox

(4.3)

where Ty, and Kp,, represent the bounding box coordinates for the target and
predicted boxes, respectively.
The class probability similarity, S5, is computed using cosine similarity, which

measures the alignment between two class probability vectors:

Tcls : Kcls

Seps = e
“ ||Tcl8||HKcl8H

(4.4)

where T,;; and K denote the probability distributions over the class labels for
the target and predicted bounding boxes, respectively.

For networks such as YOLOvS5, which also produce an objectness score, we in-
troduce an additional term, S;, which evaluates the relative objectness confidence

between the target and predicted bounding boxes:

K .
Sobj = min ( obj 1) (4.5)
Tobj
where T,,; and Kp; represent the objectness scores of the target and predicted
bounding boxes, respectively. The score is capped at 1 to prevent excessive scaling.

The final similarity score, .S, is computed as the product of the three metrics:

S = Sbox X Scls X Sobj (4.6)

This combined metric ensures that the generated saliency maps incorporate both
classification and localisation information, providing a comprehensive assessment of

feature importance.

4.2.3 Creating the Saliency Map

After the Shapley values have been obtained, the saliency map is created by mapping
these values to the image space using the segmentation map. Figure 4.5 shows the
final saliency map of the bus from Fig. 4.3a. The network pays particular attention
to the roof of the bus. This makes sense since the images of the buses in the dataset

will be taken from an overhead perspective. Thus, this is the component that the
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Figure 4.5: Saliency Map created using the proposed method showing the regions of the bus
that are important to the DNN.

network would distinguish as separate from the background.

4.3 Experimental Setup

The experimental results presented in this chapter aim to thoroughly evaluate the
proposed explainability framework across multiple settings, using a variety of mod-
els and datasets. These experiments are structured to assess both the qualitative
and quantitative aspects of the explainer’s performance, ensuring a comprehensive
understanding of its strengths and limitations.

Most of the experiments presented here utilise a YOLOv5I model trained on the
VisDrone dataset. In these tests, a deliberate bias was introduced to evaluate the

explainer’s ability to detect unnatural correlations in the dataset, following a similar
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Figure 4.6: Loss plots for the training and validation sets during training of the biased and
control model. Only the training set for the biased model contained the artificial bias, although
both models were evaluated on the same validation set.

approach to [84]. A marker was artificially placed at the centre of every bounding
box for the 'car’ class, as shown in Fig. 4.7. A new model with the same architecture
was trained on the biased dataset, defined as the biased network. A control network
was re-trained on the default dataset with the same hyper-parameters in order to
compare the saliency maps from the two. The goal was to simulate a real-world

scenario where a dataset might unintentionally contain biased features.

Two types of quantitative analyses were conducted on the models trained on the
Visdrone dataset. First, the Pointing Game from [115] was employed to evaluate the
discriminative power of the explainer. This method measures how accurately the
explainer identifies important pixels related to the network’s predictions. Second,
the Deletion and Insertion metrics from [12] were used to assess the explainer’s ability
to capture the true cause of the network’s decisions by incrementally removing or
inserting information in the saliency maps. Given the computational cost of applying
this explainer, a random subset of 10% of the VisDrone test-dev set was used in
these analyses. Although this limited number of data can restrict us from being

fully conclusive, the full dataset was used in the rest of the thesis.

Figure 4.6 shows the loss plots from training the biased and control models.
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Figure 4.7: An example from the biased dataset showing the marker over the top of cars.
Note the black van on the right side of the image does not have a marker.

At each epoch, both models were evaluated on the default Visdrone validation set,
which was left unbiased and remained the same for both models. Figure 4.6a and
Fig. 4.6b show the loss curve for the two networks on their respective datasets. Based
on these plots alone, one might incorrectly assume the biased model is superior, as
it reaches a lower loss value. However, the plots in Fig. 4.6¢c and Fig. 4.6d, reveal
that the loss on the validation set diverged for the biased model. This behaviour
is expected when a natural bias exists in the training set, but not in the validation
set. The intended outcome was achieved, indicating that the biased network has
overfitted to the biased marker. With this insight, the explainer will be applied to
determine if it appropriately identifies the bias.

In addition to models trained on the Visdrone dataset, models that were trained
on the proprietary dataset introduced in Chapter 2 are also utilised to validate the
explanation framework introduced in this chapter. SHAP maps were generated from
detections made by the Faster R-CNN and YOLOv5 models that were introduced in
the aforementioned chapter for comparison. Moreover, from the same chapter, the
Wrapping Game analysis was applied to yield a deeper examination of the explainer’s

effectiveness across different model architectures and confidence levels.

109



The semantic labels are not available in the current VisDrone dataset and, as
such, the Wrapping Game could not be applied to this dataset. However, since
the bias was introduced programatically, a similar analysis was still possible. It is
important to confirm that the bias is detectable in aggregate data, not just in the
examples used in the qualitative analysis. Therefore, an analysis was designed to
leverage prior knowledge of the bias by measuring the IoU between the bias and
the highest contributing feature in each instance. The IoU was calculated for all
the samples within the utilised test-dev subset, providing a more comprehensive

measure of the explainer’s ability to detect the bias across a broader set of data.

4.4 Qualitative Analysis

This section evaluates the quality of the SHAP maps generated by the proposed
methodology, with a focus on interpretability and effectiveness in highlighting key
features. SHAP maps were visualised for both the biased and control models to as-
sess how the introduced bias impacts model decision-making. Additionally, SHAP
maps were generated for different model architectures, specifically YOLOv5 and
Faster R-CNN, to compare how each architecture highlights important image re-

gions.

4.4.1 Identifying the Deliberate Bias in SHAP Maps

Figure 4.8 shows the input image used to investigate how the bias impacted both
the biased and control models. When the bias was present, both networks produced
a bounding box similar to the groundtruth shown. Figure 4.9 shows the saliency
map which explains the box predicted by the biased network. It can be seen that
the bias shows up in dark red, which is the expected response. Figure 4.10 shows
the saliency map for the control network. Unlike the biased network, much more of
the car is indicated as having a positive contribution, particularly the parts around
the front bumper and roof. The bias appears light blue, which indicates that it is
causing the network some confusion - an appropriate response since it was trained
on a dataset where the bias was never present.

When the bias was not included in the image, the biased network no longer la-
belled the object as a car, instead detecting it as a 'van’. By applying the method, it

is possible to ask the network 'why’ this distinction was made, as shown in Fig. 4.11.
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Figure 4.8: Input image with the groundtruth bounding box in orange, with the marker
present.

Similarly, when provided with the groundtruth, the network’s response to 'why not’
resulted in the saliency map in Fig. 4.12, highlighting the absence of the bias as
the key reason for predicting ’van’ instead of ’car’. The SHAP maps consistently
pointed to the region where the bias marker would have been, confirming that the

network relied on the marker for its prediction.

4.4.2 Identifying Failure Modes

This experiment is to place the bias in a location where the biased model does not
expect it, causing the model to be misled. The method will then be applied to
diagnose the failure - this will be done by generating the saliency maps from the
groundtruth. As was shown previously, using the groundtruth, instead of a predicted
box, can reveal the parts of the image that are causing the network to be misled.
Figure 4.13 shows the saliency maps that were generated from the biased model.
When the bias is absent, the biased network can correctly predict the object as
a ‘bus’. From Fig. 4.13b it can be seen that the network was able to find a strong

relationship between the front and roof of the bus and the groundtruth. This is
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Figure 4.9: SHAP map generated for the biased model of a car with the bias present.

the same when the bias is present in Fig. 4.13a, even though the network miss-
classified the bus as a car. Nevertheless, the saliency map has picked out the bias
as problematic, as indicated by the darker blue colour. This would indicate to a

developer that this was the reason behind the failure.

4.4.3 Comparing Model Behaviours

Next, the analysis is extended to examine how YOLOvV5 and Faster R-CNN highlight
important regions in the input image. Both models were trained on the proprietary
dataset introduced in Chapter 2, and SHAP maps were generated to identify the re-
gions each model considers critical for object detection. These visualisations provide
a comparison of how the two architectures prioritise key features, offering further
insight into their decision-making processes.

The image used in this analysis is shown in Fig. 4.14, featuring a black sedan
in front of the capture vehicle. The SHAP maps for both models are presented in
Fig. 4.15. While the models predicted similar, though slightly different, bounding
boxes for the object, resulting in marginally different SLIC segmentation, several key
regions of the scene are highlighted by both models. Notably, both models agree
on the importance of the area near the top right of the rear window, parts of the

roadway beneath the right side of the rear bumper, and sections of the right facets
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Figure 4.10: SHAP map generated for the control model of a car with the bias present.

of the vehicle partially exposed to the camera.

However, the SHAP maps also reveal differences in how the models process the
scene. YOLOv) appears to rely more heavily on the left side of the vehicle, as
indicated by the darker red patches along the left part of the rear window, the left
side of the trunk, and especially the left brake light. There is also glare on the rear
window behind the driver, and interestingly, the SHAP map suggests that YOLOv5

is negatively affected by this glare.

4.5 Quantitative Evaluation

While the qualitative analysis provided valuable insights by focusing on individual
samples, a broader quantitative analysis is required to validate the robustness of the
explainer on a larger scale, and ensure that the insights gained are not isolated to
specific examples. Moreover, qualitative metrics are necessary in order to objectively
compare different explainers. This section will outline the experiments conducted

and present the results of the quantitative analysis.
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Figure 4.11: Saliency maps generated from the biased model on the predicted bounding box
without the bias present in the input.

4.5.1 The Pointing Game

The Pointing Game was briefly discussed in Chapter 2. This protocol compares the
explanation to a human-annotated bounding box - the groundtruth bounding box.
A ’hit’ is defined as an instance where the maximum point of the saliency map lies
within the groundtruth bounding box. A ’miss’ is an instance where the maximum
point lies outside the groundtruth bounding box. The localisation accuracy is then
defined using Eq. (1.13). The investigation conducted here led to the development
of the Wrapping Game that was proposed in Chapter 2.

This protocol has been applied in [4] and [12] to examine saliency maps created
for classification algorithms. In these scenarios, the performance of the model may
have an impact on the outcomes of the analysis. On the other hand, given that
the explicant in this case is a detection network, the model’s performance - as it
was found to be the case - is almost certainly to influence the outcome of the vanilla
Pointing Game. In order to mitigate this influence in the evaluation here, in addition
to the groundtruth, the Pointing Game metric is also determined for the predicted
box and the bias marker. The bias marker was utilised since it is known to have a
significant influence on the biased model.

Table 4.1 shows the results from the Pointing Game study. When applying

the protocol to the groundtruth and predicted boxes, the saliency maps generated
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Figure 4.12: Saliency maps generated from the biased model on the groundtruth bounding
box without the bias present in the input.

from the control network were used to gauge the accuracy on natural images. On
the other hand, the bias network was used when applying the protocol to the bias

maker, which can only be applied to the class ‘car’.

As can be seen, the explainer achieved an accuracy of 75% on the groundtruth
boxes, which is much lower than what is achieved on the other two targets. This can
be attributed to three situations: Firstly, the network picked up on some objects
that the human agent did not, which meant there would be no box to hit. Secondly,
there were situations where the human and the network placed the bounds slightly
differently. Thirdly, there may be instances where contextual information outside
of the box was more important to some predictions - this may not be the preferred
behaviour from the network, nonetheless, it would be inappropriate to attribute this

negatively to the explainer.

On the other hand, the high Pointing Game score on the predicted box indicates
the proposed explainer can discriminate the part of the image where one might
expect the network’s attention to be. In addition, the high score on the bias marker
suggests the explainer can also discriminate the feature that is known to have a

significant impact on the biased network.
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Figure 4.13: The saliency maps generated of an object of class ’bus’ using the groundtruth
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Groundtruth | Predicted Bias
Box Box Marker
Accuracy 75% 98% 92%

Table 4.1: Pointing Game accuracy under various different targets.

4.5.2 Evaluation of Bias Detection

Here, the ability of DetDSHAP to discriminate the deliberate bias in groups of data
is assessed. This assessment is conducted in four steps using the subset from the
test-dev set. In the first step, the saliency map was generated for the biased model
with the bias present in the data. Secondly, the segment of the SHAP map with
the highest contribution is extracted from each sample. In the third step, the IoU
of this feature and the bias marker is calculated. With the IoU calculated for all
instances of the bias, the fourth and final step is to calculate the accuracy using
Eq. (1.13). Unlike the vanilla Pointing Game, a ’hit’ is now considered if a feature
has an IoU value over a given threshold, instead of just a single point. This was
performed using IoU thresholds from 0.05 to 0.95 at intervals of 0.05. This is the

same methodology used for calculating the precision of deep object detectors.

One of the ambitions of this work is to develop explainers aimed at explaining
object detection algorithms to be deployed on aerial drone platforms. Given that

objects in aerial images appear very small, since the images are often captured at

116



Figure 4.14: Image with the groundtruth bounding box used to compare the behaviour of
different architectures.

higher altitudes, it is pertinent to include this consideration in evaluation. Hence, the
evaluation was performed on boxes split into different sizes, and shown in Fig. 4.16.
In this plot, boxes are considered ’small’ when they are under 27 pixels across,
‘medium’ if they are between 27 to 45 pixels, and ’large’ if they are above 45 pixels.

What this plot revealed is that, while the proposed framework is effective on
the vast majority of instances, it is approaching the limit of its effectiveness on the
small boxes. This is evident when considering the loU threshold of 0.5, for which the
accuracy on medium and large boxes is 70%, whereas for smaller boxes, this same
threshold yields an accuracy of only 52%. This is a significant drop, prompting
the need for further investigation of the framework’s performance on small objects

during the Deletion and Insertion analyses.

4.5.3 Deletion and Insertion

Deletion sequentially removes pixels, starting from the maximum value of the saliency
map, while measuring how quickly the network’s output deviates from the original
prediction using 4.6. It is expected that, if the explainer does correctly highlight
the contribution, the prediction will diverge quickly and then plateau when pixels

become less important. Contrarily, Insertion measures how much the prediction
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(c) Raw SHAP map, YOLOV5 (d) Overlay SHAP map, YOLOv5

Figure 4.15: SHAP map comparison for Faster R-CNN and YOLOv5. The first row displays
raw and overlay SHAP maps for Faster R-CNN, and the second row shows the corresponding
maps for Yolov5.

converges as pixels are added back into the image. The opposite is expected here -
the prediction will approach the original prediction quickly, as more pixels are added
back and then plateau. The results are plotted and the final metrics are obtained

from the AUC. A low AUC for Deletion and a high value for Insertion is desired.

Figure 4.17a shows the average trend for Deletion on all the objects in the subset
of the Test-dev set. As can be seen, when the first 5% of pixels are removed, there
is a sharp drop in the similarity of about 0.3. The similarity continues to drop until
around 40% of the pixels have been removed, at which point the trend begins to
level off. Figure 4.17b shows the trend for the Insertion protocol. This shows that
there is a sharp improvement in the similarity as the first 20% of pixels are added
back in, this then levels off at between 20% to 60%, and continues to improve, albeit

at a lower rate.

Since one of the more challenging aspects of aerial imagery is that objects appear
small in the image, we calculated the Deletion and Insertion metrics for ’small’,
‘medium’ and ’large’ boxes. This is shown in Table 4.2, from this, we can see that
the explainer achieves better scores for larger boxes. Fewer pixels make up small
objects, hence, they are represented by low-resolution features which are challenging

to discern.

The sharp drop in similarity during Deletion, and the sharp rise during Insertion,
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Figure 4.16: Plot showing the accuracy of the KernelSHAP framework at identifying the
bias when considering different IoU thresholds, and three scales of bounding boxes

1.0
0.8
0.8
0.6
—_ 0.6
o AUC = 0.167 >
K] 8 AUC = 0.709
Eos =
@ 0.4
0.2
0.2
0.0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Pixels Removed % Pixels Included %
(a) Deletion plot (b) Insertion Plot

Figure 4.17: Plots showing the similarity in relation to (a) the amount of pixels removed
from the image, and (b) the amount of pixels added back to an image.

strongly supports the assertion that the explainer can correctly allocate the contri-
bution of the image pixels. In addition, the AUC was 0.709, which is a good score if
compared to D-RISE, which achieved 0.562 reported in [84]. The AUC for deletion
was 0.167, which is near the scores reported by [12] for classification explainers,
but not as close to D-RISE which achieved 0.044. However, it is hard to make an
avid comparison, since the investigation here is using a different, more challenging

dataset, with much smaller objects than the datasets used by these other works.
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Bounding box Size | Deletion Insertion
Small 0.181 0.659
Medium 0.165 0.720
Large 0.153 0.742

Table 4.2: This table shows the Deletion and Insertion scores for different sized bounding
boxes. Boxes are considered ’small’ when they are under 27 pixels across, 'medium’ if they are
between 27 to 45 pixels, and ’large’ if they are above 45 pixels.

4.5.4 Wrapping Game Analysis

This final analysis in the chapter applies the Wrapping Game, a novel evaluation
method introduced in Chapter 2. The Wrapping Game is designed to assess the
effectiveness of the explainer in distinguishing the object of interest from background
clutter. The primary purpose of this analysis is to evaluate how discriminative the
explainer is when isolating relevant objects, as discriminative explanations are more
valuable to human users. Additionally, the analysis investigates how the model’s
confidence levels affect the descriptiveness of the explainer, providing insight into
how well the explainer performs under different predictive conditions.

For this evaluation, two deep networks that were trained on the proprietary
XAI-AV dataset introduced in Chapter 2, are analysed - YOLOv5 and Faster R-
CNN. The outcomes from YOLOv5 and Faster R-CNN are shown in Fig. 4.18 and
Fig. 4.19. From the shape of the plots and the maximum IoU scores in Fig. 4.18a and
Fig. 4.19, it can be seen that the explainer performs very similarly on both networks.
This consistent performance across different network architectures suggests that
the explainer is well-suited for comparative evaluations of various deep networks,
providing reliable insights regardless of architectural differences.

Notably in Fig. 4.18b, the plots reveal considerable volatility, with frequent and
irregular oscillations compared to similar analyses conducted on other explainers in
Fig. 2.23, Fig. 3.16b and Fig. 3.17b. This volatility likely stems from KernelSHAP’s
approach of treating groups of pixels as a single feature rather than as individual
features, which differs from other methods discussed in previous chapters.

Despite this variability, the KernelSHAP framework demonstrates strong per-
formance in the Wrapping Game, achieving significantly higher scores than Grad-
CAM in both evaluation settings. Comparing the performance of explainer on the

same YOLOvVS, even the lowest score observed in the KernelSHAP evaluation in
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Figure 4.18: Plots showing the Wrapping Game analysis of the proposed Kernel SHAP frame-
work with YoloV5. (a) analysis across all instances in the dataset. (b) analysis considering
the model’s confidence in a given instance.

Fig. 4.18b surpassed the scores obtained from the Grad-CAM analysis shown in
Fig. 3.16b. This result underscores the effectiveness of KernelSHAP in providing
discriminative explanations that align well with the object of interest, reinforcing

its value for applications requiring detailed, interpretable insights.

4.6 Summary

This chapter introduced a novel adaptation of KernelSHAP, enabling its use for gen-
erating local explanations in detection-style algorithms, independent of architecture.
The effectiveness of this approach has been demonstrated in identifying visual biases
within detection algorithms, as well as in accurately assigning feature contributions
through Deletion and Insertion protocols. This explainer provides developers with
a reliable tool for understanding the limitations of their algorithms, aiding in the

planning of necessary safeguards.
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Figure 4.19: Plot showing the Wrapping Game analysis of the proposed KernelSHAP frame-
work, with Faster R-CNN for all instances in the dataset.

122



Chapter 5

DetDSHAP: Explainable Object
Detection for Uncrewed and
Autonomous Platforms with

Shapley Values

This chapter presents DetDSHAP, a method for quickly approximating the SHAP
values that elucidate the casual factors behind a deep object detector’s decision mak-
ing. DetDSHAP can calculate the contribution of every unit of a deep detector to
its detection via backpropagation. In addition, the contribution scores produced by
DetDSHAP are used in a novel pruning technique to achieve high performance with
reduced computational complezity. Finally, the performance results of the DetD-
SHAP as an explainer and effective pruning criterion is demonstrated on multiple
dataset including real data collected from drone-based cameras and publicly bench-

mark datasets.

5.1 Introduction and Motivation

This chapter introduces DetDSHAP, a novel method for rapidly approximating
SHAP values to elucidate the causal factors behind a deep object detector’s de-
cisions. DetDSHAP generates detailed “SHAP maps” that explain both the classi-
fication and localisation of detected objects by efficiently propagating contribution

scores via a DeepSHAP-inspired backpropagation procedure. Notably, the approach
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not only provides high-fidelity explanations but also serves as an effective pruning
criterion. By quantifying the contribution of individual network units, DetDSHAP
enables the systematic removal of redundant components, thereby enhancing com-
putational efficiency without significant performance loss.

The explanation methods introduced in Chapters 3 and 4 provided different lev-
els of fidelity. DetDSHAP offers distinct advantages over the previously introduced
Grad-CAM and KernelSHAP approaches. While Grad-CAM provided useful in-
sights, its explanations tended to be somewhat blurry and lacked the fine-grained de-
tail necessary for interpreting complex object detection tasks. KernelSHAP, though
more precise, was computationally expensive and relied on SLIC segmentation as a
preprocessing step, grouping pixels in a way that resulted in a loss of detail. Further-
more, neither approach evaluates the entire deep network to assess the contribution
of individual units, rendering them unsuitable for use as pruning criteria. In con-
trast, DetDSHAP not only generates more detailed explanations but also measures
the contribution of individual units across the network, thereby serving as an ef-
fective pruning criterion. As in Chapter 4, the term “SHAP maps” is employed to
describe the visual representations of feature importance produced by these explain-
ability frameworks.

Furthermore, the decision to continue using YOLOv5 throughout this thesis is
intentional. Despite the advent of more modern YOLO versions, YOLOv5 remains a
robust and widely adopted detection framework with well-documented performance.
Maintaining consistency by using YOLOv5 across Chapters 3, 4, and this chapter
enables a coherent comparison of explainers. Moreover, the ensemble of explainers
proposed in this thesis—combining gradient-based, perturbation-based, and DetD-
SHAP methodologies—offers enhanced resilience against adversarial attacks, as the
complementary strengths of these methods can help mitigate the vulnerabilities of
any single approach [9].

A major obstacle to the advancement of XAI is the absence of established
benchmarks and a lack of consensus within the academic literature regarding the
evaluation of novel explanation techniques. Numerous studies assess the effec-
tiveness of their methods by comparing the generated explanations with human-
annotated bounding boxes [12, 16, 84, 115]. Here, the following axiom is surmised:
a propagation-based XAI method that offers a robust criterion for pruning must

also allocate causal information correctly. Specifically, the contribution scores de-
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Figure 5.1: The domain of the present work. While literature exists on one or the intersection
of two domains represented by each circle, this study introduces a connection between all three.

rived from the DetDSHAP framework not only serve as an effective pruning criterion

but also validate that DetDSHAP accurately allocates causal information.

The intention is to propose a solution for object detection that emphasises both
explainability and pruning, addressing the diverse requirements of drones function-
ing in urban settings. This initiative is motivated by the current deficiency of ex-
plainable algorithms capable of achieving state-of-the-art performance across a wide
array of datasets [160]. To that end, the explainability and pruning techniques are
evaluated using two datasets derived from different drone platforms. Additionally,
an evaluation on the COCO2017 [161] dataset is included to facilitate comparisons

with future research endeavours.

Previous studies have introduced explainers specifically designed for deep object
detectors, and other literature has suggested the application of XAl as a criterion for
pruning in a broader context. However, there is a notable absence of research that
has explored the convergence of these two areas. Consequently, this chapter aims
to contribute to the field by examining this intersection (Fig. 5.1). By addressing
the dual challenges of interpretability and resource constraints, DetDSHAP offers a
robust framework that bridges the gap between explainability and model optimisa-
tion. The following sections detail the methodology behind DetDSHAP—including
the computation and aggregation of SHAP values—and present experimental re-

sults on various datasets, demonstrating its efficacy in both explaining deep object
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detections and guiding effective pruning of the underlying network.

The main contributions of this chapter are as follows:

e A new explainable artificial intelligence (XAI) framework for object detection
has been developed, aimed at querying bounding boxes that were either pre-

dicted or overlooked by the chosen YOLO-based detector architectures.

e A presentation of the DetDSHAP framework for accurately attributing the
contributions of individual neurons within the DNN and the corresponding
input image. This presentation includes DNNs trained on the proprietary self-

driving car dataset, as well as the VisDrone and COCO2017 public datasets.

e A novel framework for pruning DNN detectors utilising the contribution met-
rics provided by DetDSHAP as a criterion. This approach significantly en-
hances the efficiency of the YOLOvV5 detector while maintaining minimal per-

formance degradation.

e A comprehensive quantitative examination of the impact of the proposed
methodology on the efficiency and quality of the deep object detection sys-

tem.

5.2 Related Work

This section explores the current landscape of explainability and pruning in deep
object detection, focusing on methods that aim to generate interpretable saliency
maps and utilise explainability as a pruning criterion. This discussion expands on
the works introduced in Chapter 1 by providing a deeper understanding of the typ-
ical deep network pruning framework and reviewing studies that have attempted
pruning guided via XAI, which are particularly relevant to the work conducted in
this chapter. The framework developed herein is compared closely to Layer-wise
Relevance Propagation (LRP), a propagation-based explainer that has been applied
to detection-style architectures. As discussed in Chapter 1, LRP has been applied
to detection-style architectures in [73] and [106]. In [73], the authors proposed Con-
trastive Relevance Propagation (CRP) to provide explanations for detections made
by SSD models. Because SSD models are generally weaker than more modern de-

tectors [71, 106], Karasmanoglou et al. [106] expanded on this work to develop an
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Figure 5.2: Generalised pruning framework [162]

LRP framework for YOLOv5. Although both methods produce visually appeal-
ing saliency maps, neither formally quantifies the fidelity of the explanations, as
emphasised in [106]. Moreover, as a gradient-based method, LRP is susceptible to
model saturation [96], whereby the importance of certain features is underestimated,

leading to uncertainty in the explanations.

In [162], a comprehensive review of existing pruning techniques was conducted,
culminating in the proposal of a generalised pruning framework, as illustrated in
Fig. 5.2. The authors identify four essential components within such a framework:
model training, objective selection, the pruning process, and subsequent tuning.
During the training phase, the foundational network architecture f is optimised
by adjusting its weights W until convergence is achieved. Objective selection then
involves determining the criteria for halting the training process—such as achieving
a desired level of model compression, decreasing inference time, or maintaining an
acceptable threshold for performance loss. Within the set of weights W, a subset
of redundant components, denoted as w, is identified to fulfil these objectives. In
the pruning phase, these redundant components are eliminated to meet the specified
pruning goals. The methodologies for pruning differ mainly in their strategies for
selecting components to prune, the criteria used, the scheduling of the pruning

process, and the decision to implement fine-tuning afterward.

Yeom et al.[163] introduced the use of LRP as a criterion for model pruning.
Their research validates this approach across multiple scenarios, offering valuable
insights into the pruning of deep networks, albeit with a focus primarily on classi-
fication tasks. The authors demonstrated that the LRP criterion can achieve en-

hanced compression performance across various datasets in comparison to conven-
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tional methods. However, it is important to note that LRP may exhibit tendencies
toward over-saturation, which is not ideal for a pruning criterion. Furthermore, this
work presents evidence suggesting that LRP may not be appropriate for deep object
detection tasks, indicating that DeepSHAP serves as a more effective criterion.

An alternative approach to LRP is proposed by Sabih et al. [160] , who advocate
for the utilisation of DeepLIFT (Deep Learning Important FeaTures) as a criterion
for model pruning. DeepLIFT, developed by Shrikumar et al.[96], addresses the
challenge of model saturation that affects LRP and other gradient-based techniques.
However, DeepLIFT relies on comparing each neuron’s activation to a reference
activation. Establishing a reference point for DeepLIFT poses challenges due to
its significant impact on the quality of the generated explanations. This particular
trait of DeepLIFT somewhat undermines the necessity for the explainer to maintain
consistency, potentially leading to failures when it encounters unfamiliar data.

Both, Sabih et al.[160] and Yeom et al. [163] implement their criteria within a
global pruning framework. In contrast, Lundstrom et al.[164] restricts pruning to
the dense layers of their network, where the majority of parameters are concentrated.
Lundstrom et al. utilise Integrated Gradients as a criterion for pruning. The target
network employed in their study is AlexNet [30], which has been trained on a dataset
derived from the Mars Rover [165].

Unlike global pruning, local pruning involves applying pruning techniques to
specific sections of the model, such as individual layers or uniformly across each
layer, which generally results in less effective pruning outcomes [166], [167]. The
findings of Lundstrom et al. [164] indicate that critical neurons tend to specialise
in particular classes. This specialisation likely explains why Yeom et al. [163]
observed that employing positive relevance to determine their criterion yielded the
most favourable results.

The primary objective of pruning is typically to facilitate the compression of deep
networks for deployment on hardware systems. Nevertheless, the studies discussed
in this section do not adequately assess their criteria within a practical context
involving portable robotic platforms. Only the work by [164] utilises a dataset
obtained from a machine vision platform, yet it employs an outdated architecture.
The framework proposed in this chapter is destinguished from the established work
from demonstrating prune deep object detectors using realistic data collected from

both ground-based and aerial drones.
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Figure 5.3: Example of SHAP map generated using the approach introduced in this work
with an image in the proprietary dataset. (L) The input image with the predicted box. (C)
The SHAP map superimposed over the input image. (R) The SHAP map and the colour bar.

5.3 Methodology

This section outlines the primary principles of this chapter: Firstly, DetDSHAP is
proposed, an explanatory model designed to generate SHAP values, which eluci-
date the causal information associated with individual bounding boxes generated by
architectures based on the YOLOv) detector. Secondly, this explanatory model is
utilised to develop an innovative pruning framework aimed at optimising our trained

models.

5.3.1 DeepSHAP for Object Detection (DetDSHAP)

This section presents DetDSHAP as an explanation method for Deep Object De-
tectors. When provided with an image I, a deep detection network f, and a target
bounding box T', the explainer generates a SHAP map that illustrates the relation-
ship between I and T as interpreted by f. Notably, the bounding box T is not
restricted to those predicted by the model; it can also be the groundtruth bounding
box or any hypothetical box specified by the developer. This flexibility significantly
enhances the developer’s ability to investigate and analyse their network.
Algorithm 2 provides a comprehensive overview of the DetDSHAP algorithm,
which is structured into three primary phases. The initial phase involves execut-
ing a forward pass through the detector deep network, during which the forward
activations are recorded. The second phase entails the initialisation of the forward
pass output to eliminate information that is irrelevant to T', a process that is elab-
orated upon in this section. The concluding phase, which results in the generation
of the SHAP map, consists of a backward pass that utilises the backpropagation

rule set of DeepSHAP. Additionally, this framework is enhanced with a proprietary
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backpropagation rule, which will be detailed later in this section..

Algorithm 2 DetDSHAP Framework

Input: Fully trained deep network F', Target bounding box 7', Image 1.
Output: SHAP Map ¢
Step 1: Forward Pass
for layer in F do
x; = layer(zi—1)
if layer is type activation then
save(x;—1,x;)
end if
end for
Step 2: Initialise prediction based on T’
@' = Initialise(x;, T)
Step 3: Backwards pass
for layer in reversed(F') do

@' = apply_rule(layer, ¢*)

end for
o=
return ¢

Object detectors differ from image classifiers in that they must identify and lo-
calise one or more objects within an image, rather than merely assigning a class
score. In the context of YOLOvVS, the task 1" encompasses a class score ¢, a bound-
ing box represented as b = [z,y,w,h], and an objectness score o. To refine the
prediction P generated by the function f, it is necessary to preprocess this informa-
tion to eliminate any irrelevant data, which is categorised as attribution noise. This
preprocessing phase is referred to as the initialisation step, resulting in the initial
contribution denoted as ¢’. Here, two approaches are applied depending if the task
is a single-class detection or multi-class detection problem.

In the context of a single-class detector, the primary objective is to ascertain the
elements that influence the predicted bounding box. To achieve this, we begin by
initialising P through the selection of boxes that exhibit a high degree of similarity
to the target box. The similarity between the target box Ty, and the predicted box
Py, is quantified through a specific calculation of IoU (Eq. (5.1)).

The initial contribution of each box, denoted as gbé-, is assigned using Eq. (5.2),with
the threshold parameter thr ranging from 0 to 1. In this work, thr = 0.7 was found
to be effective in the majority of scenarios. The initial contribution for the P is
then calculated by Eq. (5.3), where k is the number of predictions. Subsequently,

the initial contribution for P is determined through Eq. (5.3), where k represents
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Figure 5.4: This figure illustrates the SHAP maps that can be generated for individual
objects in the input image. The maps for the vehicles are shown along the bottom and the
maps for the Pedestrians are shown along the right side.

the total number of predictions. The resulting SHAP values illustrate the units that
significantly impact the localisation of 7', as exemplified in Fig. 5.3. There is also
provided an example of multiple SHAP maps generated by the proposed methodol-
ogy in Fig. 5.4.

Area of Overlap of (Tyor, Bbox)
Area of Union of (Thox, Box)

IOU(Tboxa Bboa:) =

Bjs 10U (Thons P por)) > th
i oxs £'(j,box)) = LAT

0, otherwise
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Figure 5.5: An example of multi-class explanation. (a) Shows the image with the target
bounding boxes of a person and a motorcycle. (b) Shows the area of interest around the
bounding box, (¢) The SHAP map generated for the motorcycle, (d) map for the rider.

¢'=> ¢l (5.3)

For multi-class applications the initialisation needs to also account for the pre-
dicted class scores. The same steps that are applied in a single class method to
localise the SHAP calculation are applied for multi-class applications. Following
this, the objectness score and the score for the target class to one. The resulting
SHAP values represent units that are not only heavily influencing the localisation

of T', but also of the class that T' belongs to.

Figure 5.5 illustrates an instance of the SHAP maps produced through this
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Figure 5.6: This figure shows an overview of the YOLOvVS5 architecture. The figure also shows
various SHAP maps extracted at different layers.

Bottleneck C3

Detect

methodology. This particular example demonstrates the explainer’s ability to dif-
ferentiate between a rider and their motorcycle. In Figure Figure 5.5¢, the map
pertains to the ”"motorcycle” class, highlighting that the focus of attention is pri-
marily on the vehicle. Conversely, in Figure Figure 5.5d, which corresponds to the
"person” class, it is evident that the silhouette of the rider plays a more significant
role in the detection process.

After the initialisation phase, it is possible to perform backpropagation utilising
the rules established by DeepSHAP. In the course of backpropagation, the influence
of each unit in the network is assessed. Should the user focus solely on the input’s
contribution to the prediction, they have the option to omit this data to save memory.
Nevertheless, this information can be leveraged to illustrate the attention of specific
layers, as demonstrated in Fig. 5.6.

YOLO-based detection networks generate predictions of offsets relative to prede-
fined anchor boxes, which may be either positive or negative. In instances where an
offset is negative, a higher value of ¢ should be assigned to the weights that influence

the negativity of that offset. To address this requirement, a specific rule is proposed
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for implementation in the final convolutional layers preceding the detection layer, as
illustrated by the green arrows in Fig. 5.6.

YOLO-based detection networks predict offsets from predefined anchor boxes,
which can be positive or negative. Hence, in a situation where one of the offsets is
negative it would be prudent to apply a greater contribution is applied to weights
that contribute to the negativity of that offset. Here, a unique rule is proposed which
is applied to the final convolutional layers before the detection layer, as indicated
by the green arrows in Fig. 5.6.

The rule under consideration is articulated in Eq. (5.4), drawing inspiration from
the LRP-ab rule as outlined by [102]. In this equation, the term a; - wj; represents
the degree to which filter j influences the relevance of filter k. The expression
a; ~wjk corresponds to the positive contribution, while a; Wy indicates the negative
contribution. The denominator normalizes the relevance assignment, ensuring that
the total amount of relevance remains conserved according to the LRP framework.

The variable ¢ denotes the relevance score assigned to neuron k in the next layer,
which is propagated backward. The rule distinguishes between positive and negative
activations of neuron k (denoted by ai). When aj > 0, relevance is redistributed
according to positive contributions, while for ai < 0, relevance is redistributed
according to negative contributions.

The summation term 207 ; ensures proper normalization across all neurons con-
tributing to £, thereby preserving the conservation principle of LRP. Finally, T'¢;

represents the transformed relevance assigned to neuron j after redistribution.

5.3.2 DetDSHAP Pruning Framework

In this section, an innovative framework is proposed, designed for the pruning of the
YOLOvV5 detector architecture. This pruning framework is intended to prune the
architecture of the detector rather than pruning the explainer that will be applied to
the pruned network. Here, the emphasis is on the global pruning of individual filters
within the network. The generalisation of the framework is shown in Algorithm

3. Throughout the pruning procedure, the model is systematically reduce by a
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specified quantity until a designated pruning objective, denoted as O, is achieved.
Each iteration in this process is termed a pruning step, during which filters are
evaluated and ranked based on our established criterion, leading to the removal of
those with the lowest rankings. Following each pruning step, the model undergoes

fine-tuning to recover any potential decline in performance.

Algorithm 3 Pruning Framework

Input: Fully trained deep network F, training data x, pruning objective O , mag-
nitude of pruning step r.
Output: Optimised deep network F
for batch b in x do
Step 1: generate SHAP values for this sample
for x; in b do
compute SHAP ¢; values w.r.t x; for F
end for
Step 2: Identify redundant units and remove them:
Compute filter rank ¢p = Zf:o |pil, k = len(b).
Remove r lowest contributing units from F
Step 3: fine-tuning F on x fine tune F on x
Step 4: Evaluate model - determine if more pruning is desired.
if O is True then
break
end if
end for
return F

In accordance with the pruning criterion, the contribution scores generated are
by the DetDSHAP explainer, as detailed in Section 5.3.1. Consequently, at the ini-
tiation of the pruning process, a batch of samples are selected from the dataset and
their SHAP values of a batch of samples (b) are calculated. Each sample consists of
an image paired with its corresponding label, which encompasses the 2D coordinates
and class labels for all objects present in the image. Although this label typically
reflects the model’s prediction, the benefit of the approach used here is that the
groundtruth label can be used to calculate the SHAP values. This capability en-
hances the proposed framework, enabling the pruning process to be based on the
groundtruth rather than the model’s predictions, which is a common limitation in
conventional pruning methods.

After generating the SHAP values for each image within a batch, the subsequent
task involves determining the rankings of the filters. Research indicates that neurons
exhibit a tendency to specialise, suggesting that the negative SHAP values associated

with one instance may also be relevant to a nearby instance. Consequently, filters
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are ranked according to the magnitude of their contributions, with lower rankings
assigned to those filters whose SHAP scores are nearest to zero. The ultimate filter
rank, denoted as ¢y, is computed by aggregating the absolute SHAP values |¢;| from
each individual sample .

After calculating the ranks of the filters, the filters that can be eliminated have
been identified. In this study, structural pruning is applied to the individual filters.
In the PyTorch framework, the process of pruning a single filter entails modifying
a specific convolutional module by decreasing the number of output channels by
one and transferring the remaining weights accordingly. This adjustment is then
mirrored in the subsequent layer, where the number of input channels is similarly
reduced. This task is complex, particularly because information in contemporary
deep network architectures often flows in a non-linear manner, as illustrated by the
red connections in Fig. 5.6. Consequently, we have developed a custom framework to

identify these types of connections, enabling us to effectively restructure the network.

5.4 Experimental Results

This section presents the results of the performance analysis of our DetDSHAP-
based explainer and pruning frameworks. The analysis begins by evaluating the
discriminative ability of the proposed explainer using the Wrapping Game analysis
and the dataset introduced in Chapter 2. After assessing DetDSHAP’s effectiveness
as an explainer, the focus shifts to evaluating the pruning framework. The primary
goal was to assess the feasibility of a DeepSHAP-based pruning method in compar-
ison to a previously developed LRP-based pruning approach. Given the need for
computational efficiency, the experiment was designed to be low-cost. To that end,
we pruned simple neural networks trained to cluster 2D points, following an experi-
mental setup similar to that of [163]. Three distinct 2D datasets were generated for
the experiment.

After demonstrating the feasibility of DeepSHAP as a pruning criterion using
simple experiments on 2D datasets, the evaluation moves to the primary focus of
this work: object detection. Table 5.1 illustrates the models employed in each
experiment, along with the corresponding datasets on which they were trained. For
the Visdrone dataset, which presents significant challenges, YOLOv5] was utilised.

In contrast, the self-driving dataset required only YOLOv5s. Additionally, for the
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Coc02007 dataset, a pretrained YOLOv5m sourced from [72] was implemented to
ensure reproducibility. was implemented to ensure reproducibility. Fig. 5.7 presents
samples of each dataset employed in this study.

The recently developed Wrapping Game is initially employed to assess the dis-
criminatory effectiveness of the DetDSHAP explainer in comparison to the LRP-
based method proposed by Karasmanoglou et al. [106]. For this specific experiment,
YOLOv5s, trained on the self-driving car dataset, is exclusively utilised to reduce

the computational expenses associated with preliminary analysis.

Model

Experiments

YOLOvV5s YOLOvV5! | YOLOv5m
Dataset Simple AD dataset | Visdrone Coco2017
Wrapping Game* v
Pruning Trends v v v
Post Pruning Performance v v v
Pruning Vs Design v

Table 5.1: This table shows the models and datasets used in our experimental evaluation.
*The Wrapping Game utilises the full and final AD dataset introduced in Chapter 2.

The subsequent sub-sections examine the efficacy of the Det DSHAP-based prun-
ing framework. Initially, trends in pruning performance are explored, illustrating the
impact of increasing pruning magnitude on the quality and efficiency of the pruned
deep model. For comparative analysis, the effectiveness of pruning is also assessed
using the LRP-based explainer as described in [106]. Three pruned networks are
selected and subjected to additional training, with their detection performance sub-
sequently compared to that of their unpruned equivalents.

The study concludes with an examination of the deep learning-based detector
networks following the pruning process. All networks utilised in this study are
based on the YOLOvV5 architecture and have been trained on a proprietary self-
driving car dataset, as well as two publicly accessible datasets: Visdrone [62] and
COCO2017 [161]. The efficiency of the deep network is assessed through two distinct
metrics. The first metric involves the count of network parameters, which evaluates
the extent of compression achieved by the pruning framework. The second metric
pertains to the number of Floating point OPerations per Second (FLOPs) required

for conducting an inference. Enhancements in both metrics are illustrated, and the
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Simple AD Visdrone C0OCO2017

Figure 5.7: Examples from the three datasets used in the experiments: Simple AD (left),
Visdrone (center), and COCO2017 (right). The COCO2017 images show objects of interest
for this study.

final results are presented as detailed in Eq. (5.5).

. P 1 Score on pruned Model (5.5)
improvement = 1 — .
P Score on original Model

In this research, the efficacy of the deep networks is assessed based on their
detection capabilities. To quantitatively evaluate the performance of the pruned
networks, four widely recognised metrics are employed: MAP@0.5, MAP@0.5-0.95,
Average Recall (AR), and F1 Score. Initially, precision is determined using the
formula presented in Eq. (3.3), where a detection is classified as a true positive
if the classification is accurate and the IoU between the predicted bounding box
and the groundtruth exceeds a specified threshold. Specifically, a true positive is

identified when there is an IoU of 50% between the predicted box and the actual
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groundtruth. Precision is subsequently averaged across all classes to derive the
mean average precision (MAP). The second metric, MAP@0.5-0.95, follows a similar
methodology but considers a range of IoU values between 50% and 95%. The IoU has
been previously defined in Eq. (5.1). . Additionally, the average recall is reported,
calculated as the ratio of true positives to the total number of groundtruth boxes.
The final metric, the F1 score, is computed as outlined in Eq. (5.6), incorporating

both recall and precision into its evaluation.

F1_ o, Precision recall

(5.6)

precision + recall

5.4.1 Wrapping Game Analysis

The DetDSHAP explainer proposed in this chapter was initially applied in Section
2.6 to demonstrate the Wrapping Game for a single-class detection setting on a
subset of the XAI AD dataset. In this section, results are presented from assessing
the discriminatory performance of the DetDSHAP-based explainer alongside the
LRP-based explainer developed by Karasmanoglou et al. [106], designated as YOLO-
LRP. Moreover, the evaluation is conducted in a multi-class detection setting using
the full dataset. The conditions for this analysis are the same as those used in
Sections 3.4.3 and 4.5.4, ensuring consistency, and enabling direct comparison.

For clarity, a brief reminder is available here:

e Points in the SHAP map are selected based on a contribution threshold that

ranges from zero to the maximum SHAP value.

e Using the selected points, a mask is created, which is then compared to the
human-annotated groundtruth to calculate the Intersection over Union (IoU)

score.
e The analysis is performed using two distinct approaches:

B Confidence-Agnostic Analysis: All detected objects are considered, re-
gardless of model confidence, to assess the explainer’s performance across

all predictions.

B Confidence-Based Analysis: This setting filters objects based on varying
confidence thresholds, allowing the analysis to account for the influence

of model confidence on detection quality.
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Figure 5.8: Plots showing the Wrapping Game analysis of the proposed DetDSHAP frame-
work with YoloV5 for the Summer Set. (a) analysis across all instances in the set. (b) analysis
considering the model’s confidence in a given instance.

The Wrapping Game analysis of DetDSHAP reveals that the explainer’s perfor-
mance across the two sets was nearly indistinguishable for YOLOv5 (Fig. 5.8 and
Fig. 5.9), with only minimal differences observed as a first key observation. From
the Confidence-Agnostic Analysis, shown in Fig. 5.8a and Fig. 5.9a, the plots ap-
pear virtually identical, with the maximum average IoU achieved at a contribution
threshold of approximately 25%. This maximum average IoU was similarly close for
both sets, reaching approximately 0.585.

When comparing to the previous explainers that have been proposed in this
thesis, DetDSHAP performed similarly to that of KernelSHAP, and much more
superior than Grad-CAM. Indeed, the highest average loU scored in these scenarios
is almost twice that achieved by the Grad-CAM framework in the same scenarios
reported in Chapter 3.

Figure 5.10 illustrates the Wrapping Game analysis for the LRP-based frame-
work. Initially, this explainer appears superior due to its performance in the Confidence-
Agnostic Analysis Fig. 5.10a. However, Fig. 5.10b, reveals that the explainer’s dis-
criminative ability diminishes significantly on instances where the model’s confidence
is low. This limitation is critical, as understanding the model’s decision-making pro-
cess becomes even more essential in low-confidence scenarios, where explanations are

especially valuable.

5.4.2 Pruning Toy Models

This section will discuss the findings from applying the chosen pruning criterion on

toy models. The motivation here is to investigate the properties and effectiveness
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Figure 5.9: Plots showing the Wrapping Game analysis of the proposed DetDSHAP frame-
work with YoloV5 for the Winter Set. (a) analysis across all instances in the set. (b) analysis
considering the model’s confidence in a given instance.
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Figure 5.10: Plots showing the Wrapping Game analysis of the proposed YOLO LRP frame-
work with YoloV5 for the Summer Set. (a) analysis across all instances in the set. (b) analysis
considering the model’s confidence in a given instance.

of SHAP values as a criterion in a computationally inexpensive manner. Yeom
et al[163] use this same procedure to demonstrate the superiority of their chosen
criterion, LRP, over traditional pruning criterion. Here, the proposed criterion is
evaluated, and the effectiveness is gauged compared to LRP as established by Yeom
et al.

The experiment is set up similar to [163], where a simple model is trained to
cluster 2D points. Three simple 2D datasets are generated, and the training and
test sets for each dataset are shown in Fig. 5.11 and Fig. 5.12 respectively. The
simple model is a fully connected neural network consisting of three layers with 1,000

neurons in each. The first row of Table 5.2 shows the pre-pruning class accuracy of

the models on each dataset.

There is no fine tuning applied, and all the pruning is conducted in a single step.
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Figure 5.11: Toy training sets used to fit the simple model. The decision boundaries are
superimposed over each plot.
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Figure 5.12: Toy validation sets used to evaluate the toy models after pruning.

In [163], the author’s experiments involved pruning a third of the total neurons and
then inspecting the change of decision boundaries, and the classification accuracy,
on both the test and validation sets. To extend the analysis in this work, a second

experiment is also conducted where half of the neurons are pruned.

At 33% pruning, there was no significant difference in the decision boundaries of
the network pruned with the SHAP criterion (Fig. 5.13) compared to LRP(Fig. 5.14).
However, at 50% pruning, it was observed that the network’s performance was more
effectively maintained when using SHAP values as the pruning criterion. This can
be seen in Fig. 5.15. On the other hand, the LRP criterion failed to maintain the
network’s decision boundaries, as can be seen in Fig. 5.16. The final scores are
recorded in Table 5.2. The SHAP criterion performed better in all scenarios, apart
from on the 33% pruning on the moon dataset. This is shown by a lower drop in

the class accuracy after pruning when using the SHAP criterion.

The results suggest that SHAP values are an effective pruning criterion, pre-
serving network performance better than LRP, particularly at higher pruning mag-

nitudes. These findings support the viability of further developing a SHAP-based
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Figure 5.13: DeepSHAP pruning at 33%.
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Figure 5.14: LRP pruning at 33%.

pruning framework, as it maintains accuracy with substantial model compression,

offering a promising approach for efficient deep networks.

5.4.3 Pruning Performance

In this section the performance of the proposed pruning framework when using
DetDSHAP as criterion is presented and compared to with using LRP as criterion.

The proposed framework is used to prune various deep detector networks and the

Circle Moon Multi

Pre-pruning Accuracy 100%  90%  80%
33% pruning using LRP 100%  90%  75%
33% pruning using DeepSHAP | 100%  90%  80%
50% pruning using LRP 60%  50%  65%

50% pruning using DeepSHAP | 100%  90%  80%

Table 5.2: This table contains the accuracy achieved by the simple fully connected models
trained to cluster 2D points, both before and after pruning was applied.
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Figure 5.15: DeepSHAP pruning at 50%.
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Figure 5.16: LRP pruning at 50%.

change in the performance quality against the structural efficiency are plotted. These
plots are shown in Fig. 5.17 to Fig. 5.22. Each figure contains two plots, with the left
plot shows the network’s performance against the reduction in GFLOPS, and the
right shows the network performance against the percentage of parameters pruned.
When pruning deep network classifiers, the authors of [163] prune 5% of their deep
network’s parameters and fine-tune for 10 epochs each pruning step. Here, different
parameters are chosen for each dataset to achieve the best performance for each
scenario.

In the initial scenario, pruning is implemented on the YOLOv5s model, which
has been trained using data collected from the self-driving car platform. During
each pruning iteration, a batch of 10 samples is selected to establish the filter rank-
ings, and 2.5% of the total filters are subsequently pruned, followed by 10 epochs
of fine-tuning after each pruning step. This process is executed utilising the DetD-
SHAP method to derive the filter rankings. For comparative purposes, the same
methodology is also applied using the LRP explainer as referenced in [106]. The
results of this analysis are illustrated in Fig. 5.17 and Fig. 5.18, respectively.

The analysis indicates that the application of DetDSHAP enables the pruning
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Figure 5.17: This figure displays the pruning trend when using DetDSHAP as a criterion to
prune YOLOv5s trained on proprietary self-driving car dataset.

of approximately 95% of the parameters while maintaining relatively stable per-

formance in the deep detection model. This results in a reduction of around 80%

in floating point operations per second (FLOPs). In contrast, the implementation

of layer-wise relevance propagation (LRP) leads to an immediate decline in perfor-

mance. Although instances of performance improvement are observed—attributable

to adjustments made during the pruning process—this approach ultimately fails to

exceed 50% of the initial performance level. Notably, when 80% of the parameters

are pruned, the model’s performance is entirely compromised.

Figure 5.19 and Fig. 5.20 illustrate the results of pruning the YOLOv51 model,

trained on the VisDrone dataset. Due to the substantial size of the detector network
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Figure 5.18: This figure displays the pruning trend when using LRP as a criterion to prune

YOLOv5s trained on the proprietary self-driving car dataset.

and the variety of objects present in each image, the pruning rate was elevated to 10%

for each iteration, while maintaining a consistent batch size relative to the samples.

The VisDrone dataset presents a greater challenge compared to the dataset utilised

in the initial scenario, as it encompasses multiple object classes and exhibits a wider

range of bounding box dimensions.

It is evident from Fig. 5.19, that with DetDSHAP as a pruning criterion, more

than 60% of the parameters in the deep detector can be pruned without signifi-

cantly affecting performance. This results in a 22% decrease in Giga Floating Point

Operations Per Second (GFLOPS). Furthermore, performance degradation remains

minimal until the proportion of pruned parameters exceeds 93%, corresponding to
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Figure 5.19: This figure displays the pruning trend when using DetDSHAP as a criterion to
prune YOLOWVS5I trained on the Visdrone dataset.

a 60% reduction in GFLOPS.

Adopting LRP as a criterion may yield greater success in multi-class scenarios.
This assertion is supported by a comparison of the trends observed in the single-class
dataset (refer to Fig. 5.18) with those from the Visdrone 10-class dataset (Fig. 5.20).
The findings suggest that the underlying explainer exhibits a bias towards the class
score. Although LRP demonstrates enhanced performance, an initial decline in the
network’s quality is notable. Consequently, the overall quality throughout the sub-
sequent pruning process remains inferior compared to when employing DetDSHAP

as the criterion.

In the concluding scenario, the pruning efficacy of the DetDSHAP method is as-

147



0.40

0.351

0.30

0.25

Network
Quality

0.20

0.151

0.10+

0.051

0.00

0.40

0.351

0.301

0.251

Network
Quality

0.201

0.151

0.10

0.05

0.00

0 20 40 60 80 100
GFLOPS reduction in %
0 20 40 60 80 100

% of Parameters Pruned

F1
mAP@0.5
mAP@0.95
Recall

F1
MAP@0.5
mAP@0.95
Recall

Figure 5.20: This figure displays the pruning trend when using LRP as a criterion to prune
YOLOv5] trained on the Visdrone dataset.

sessed using the Coco2017 dataset. A pruning rate of 5% is applied to the YOLOv5m

model, accompanied by 10 tuning epochs. To achieve a more equitable distribution

of pruning across the various classes, the number of samples per pruning iteration

is increased to 100. This adjustment is necessary due to the dataset comprising

80 distinct object classes, with each sample averaging 7.2 objects, many of which

belong to the same class.

The trend observed in the final scenario is illustrated in the plots presented in

Fig. 5.21. In this scenario, the decline in performance is more pronounced. Specifi-

cally, when 50% of the parameters have been pruned, each quality metric experiences

a reduction of approximately 40%. However, it remains feasible to prune roughly
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Figure 5.21: This figure displays the pruning trend when using DetDSHAP as a criterion to
prune YOLOv5s trained the Coco2017 dataset.

25% of the parameters, which corresponds to a 10% enhancement in GFLOPs, while

exerting minimal impact on the performance quality of the deep network detector.

Using LRP as a criterion may yield more favourable outcomes in multi-class
scenarios. This is particularly evident when contrasting the trends observed in the
single-class dataset (as illustrated in Fig. 5.18) with those from the Visdrone 10-
class dataset. These observations suggest that the underlying explainer exhibits a
bias towards the class score. Although LRP demonstrates enhanced performance,
a significant initial decline in the network’s quality is noted. Consequently, the
quality throughout the subsequent pruning process remains inferior compared to

when DetDSHAP is employed as the criterion. This pattern is similarly reflected
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Figure 5.22: This figure displays the pruning trend when using LRP as a criterion to prune
YOLOvV5s trained the Coco2017 dataset.

in Fig. 5.22. Furthermore, this latter scenario indicates that pruning can extend

beyond DetDSHAP levels when using LRP as the criterion; however, this extension

is limited to approximately 10% beyond DetDSHAP, at which point the original

performance of the network is severely compromised, likely rendering it unusable.

5.4.4 Post-Pruning Network Performance Quality

In this sub-section, a thorough examination is conducted on the impact of the prun-

ing framework on the performance quality of the YOLOv5 detection models used in

this research. Three deep detection models were selected for further development

during the pruning process, with each pruned model undergoing an additional fine-
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Figure 5.23: This figure depicts the precision-recall curves before and after pruning for the
YOLOvV5s that was trained on the self driving dataset.

Self-driving car data
YOLOvV5s YOLOvV5s % Change
pruned
mAPso_os5 70.7 68.8 -2.69
mA Py 94.7 94.8 +0.11
Params (M) 7.01 1.30 -81.46
GFLOPss512 10.08 5.91 -41.36
Infer Time(ms) 1.62 1.22 -25.0%

Table 5.3: The performance comparison between the unpruned and pruned YOLOv5s model
trained on data gathered from the proprietary Self-Driving car dataset.

tuning phase for 200 epochs. The quality of the final networks, along with mean
average precision (mAP) values and efficiency scores, within Table 5.3, Table 5.4 and
Table 5.5. These efficiency scores encompass not only the number of parameters and
floating-point operations per second (FLOPs) but also inference times measured on
an NVIDIA GeForce RTX 2060S. To enhance the analysis, Precision-Recall (PR)
curves are presented for the models trained on the three datasets used in this study.
This graphical representation of precision against recall serves as a critical evalua-
tion of the performance quality of the object detection models. A deep detection
network is deemed effective if it maintains high precision as recall increases.

In Table 5.3, the final results are reported of the pruned YOLOv5s model which

has been developed for the proprietary self-driving car dataset. It can be seen that
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Figure 5.24: This figure depicts the precision-recall curves before and after pruning for the
YOLOv5m that was trained on the Coco2017 dataset. The solid lines denote the average trend
for all classes in their respective dataset, and the dotted lines represent the best and worst
cases across all classes.

Visdrone Dataset
YOLOvV51 YOLOv51 % Change
pruned
mAPsy_os 23.1 922.1 -3.90
mA Psg 39.6 38.6 -2.52
Params (M) 46.3 23.9 -48.38
GFLOPss512 69.4 58.2 -16.14
Infer Time(ms) 6.40 5.67 -11.4%

Table 5.4: The performance comparison between the unpruned and pruned YOLOv5] model
trained on the Visdrone dataset.

following the additional fine tuning there is only a minor drop in the mAP@0.5-0.95
score and even a slight improvement in the mAP@Q.5. This is despite a reduction
of over 80% of the parameters and 40% the GFLOPS. Moreover, Figure 5.23 shows
the PR curves for the models trained on the proprietary self-driving car dataset.
It can seen that there is very little change in the PR curve between the unpruned
and pruned models. This is despite the large reduction in parameters and FLOPs
that were reported in Section 5.4.3. As previously addressed, the self driving car
dataset used here is relatively simple when compared to the other datasets used in
this study making pruning more challenging in the others, and the results shown

here reflect that.
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Figure 5.25: This figure depicts the precision-recall curves before and after pruning for the
YOLOVS5I that was trained on the Visdrone dataset. The solid lines denote the average trend
for all classes in their respective dataset, and the dotted lines represent the best and worst
cases across all classes.

The results seen Table 5.4 that show that it is possible to produce a similar
outcome for a network trained on the more challenging dataset of Visdrone. It can
be seen that the number of parameters of the YOLOvV5I network was reduced by al-
most 50% and the GFLOPs by 16% without significantly reducing the performance.
Figure 5.24 shows the PR curve of the model developed for the Visdrone dataset.

In the context of Visdrone, confusion matrices obtained from the unpruned mod-
els is illustrated in Fig. 5.26, and after pruning has been applied to the same model
in Figure 5.27. The predominant class detected in this dataset for both models is
"car,” which exhibits the least decline in the true positive rate and is the most fre-
quently occurring class within the dataset. However, a significant drawback of the
pruned model is the increased proportion of false negatives, as depicted in Fig. 5.27.
This indicates a decline in recall performance; nevertheless, an evaluation of the PR
curve in Fig. 5.24 suggests that this decline is not substantial.

Table 5.5 presents the outcomes of pruning the YOLOv5m model, trained on
the COCO2017 dataset. Additionally, Fig. 5.25illustrates the precision-recall curves
for both the pruned YOLOv5m model and the unpruned version. This analysis also
includes the PR curve for a YOLOv5s model trained on the same dataset. The data
indicates that, unlike other scenarios discussed in this section, there is a notable
decline in the network’s performance, with a reduction exceeding 10% in mAP at
the 0.5-0.95 threshold. Nevertheless, the PR curves depicted in Fig. 5.25 reveal that

the pruned YOLOv5m model outperforms the YOLOv5s model on average across
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Figure 5.26: Confusion matrix of the unpruned YOLOvV5! network trained on the Visdrone
Dataset.

all classes. However, it is important to note that performance diminishes in the class
with the lowest performance. This trend is also evident in Fig. 5.24 and is likely
attributable to class imbalance, which affects the filter rankings. These rankings are
crucial as they determine which components of the network should be pruned, and
in the proposed methodology, they are derived from samples taken from the dataset.
Future research could explore more advanced sampling techniques to mitigate the

bias in filter rankings towards any specific class.

That being said, from PR curves in Fig. 5.25, it can be seen that generally the
PR curve for the pruned YOLOv5m is equivalent to the curve for YOLOv5s. This
indicates that one can produce a high performing object detector by starting with
a larger one and pruning rather than developing a smaller one from scratch. This

will be discussed in further detail in the following section.
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Figure 5.27: Confusion matrix of the YOLOv5] network trained on the Visdrone Dataset
after pruning has been applied.

5.4.5 Pruning Verses Design

A frequently neglected aspect in the existing literature is the comparative effective-
ness of pruning versus beginning with a more straightforward architecture. This
section explores this issue by contrasting the pruned YOLOv5m, trained on the
COCO02007 dataset, with YOLOv5s trained on the same dataset. For this analysis,
the focus is restricted to publicly available pretrained models from [72] to eliminate
any biases that might arise from custom implementations.

The bar graph in Fig. 5.28 illustrates the comparative performance of the pruned
YOLOv5m against its unpruned counterpart and YOLOv5s. Performance metrics
for the unpruned models are sourced from [72]. Initially, YOLOv5m comprised 21.2
million parameters, which were subsequently reduced to 6.5 million through pruning.
This parameter count is significantly lower than that of YOLOv5s. Furthermore,
the pruned YOLOv5m demonstrates superior performance in both mAP metrics.

YOLOv5s demonstrates superior performance in GFLOPS compared to the
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Coco2017 dataset
YOLOv5m YOLOv5m % Change
pruned
mAPso_os5 44.1 39.1 -11.90
mAPsg 63.5 58.6 -7.71
Params (M) 21.2 6.5 -69.34
GFLOPs512 48.9 33 -32.52
Infer Time(ms) 5.38 4.38 -18.59%

Table 5.5: The performance comparison between the unpruned and pruned YOLOv5m model
trained on the Coco2017 dataset.

pruned YOLOv5m. This discrepancy can be attributed to the pruning criterion,
which predominantly emphasised the upper layers nearer to the model’s output.
However, if the objective of pruning is to minimise the FLOPs required during
inference, it would be more advantageous to concentrate on pruning the lower lay-
ers closer to the model’s input. Future research will aim to modify the pruning
framework to prioritise these layers, thereby enabling a more aggressive reduction

of FLOPs.

5.5 Summary

This chapter illustrated the intersection of explainability and pruning within the
YOLOv5 framework. The DetDSHAP methodology was proposed as a means to in-
vestigate a neural network, thereby enhancing comprehension of its decision-making
processes and enabling designers to identify the constraints of their deep learning
models. This concept was further developed by showcasing DetDSHAP as a viable
criterion for pruning, resulting in the removal of a substantial portion of the pa-
rameters from deep networks with negligible impact on performance—nearly 50%
on the Visdrone dataset and over 80% on the single-class self-driving car dataset.
Additionally, the pruning framework presented in this chapter demonstrated that a
large network could achieve greater memory efficiency compared to a similarly per-
forming smaller network. Ultimately, through the analysis of the Wrapping Game
and the demonstrated efficacy as a pruning criterion, it can be confidently asserted

that DetDSHAP accurately allocates causal information.
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Figure 5.28: This plot shows the performance quality and structure efficacy of the pruned
YOLOv5m model compared to two other models released by [72]. Training and evaluation are
conducted on the COCO2017 dataset.
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Chapter 6

Conclusion

6.1 Overview

This study is focused on exploring the application of explainable Al for the percep-
tion capabilities of drones, a domain that pushes the challenge of object detection to
its very limits. By leveraging explainability methods, the research addresses critical
concerns regarding the transparency and reliability of deep learning models deployed
on autonomous platforms. In scenarios where confidence is paramount, such as in
autonomous navigation, automatic target recognition, and obstacle avoidance, it is
essential to understand the factors influencing model predictions. This study not
only proposes several novel frameworks to improve explainability for detection sys-
tems, but provides extensive testing and verification of the proposed frameworks
using established approaches, and proposes new testing methodologies for new ex-
plainers. Fundamentally, the work aims to bridge the gap between complex model
outputs and human understanding, ensuring that autonomous vehicles operate in a

safe, predictable, and accountable manner.

6.2 Summary and Discussion

In Chapter 1, the goal of this thesis is formulated, and this is revisited here. The key
contributions have been to develop several novel explainer frameworks for the task
of object detection. It was established that the effectiveness of explanations in Al
relies on several key properties that enhance interpretability and trust. Explanations
are most valuable when they are ’contrastive’, addressing why one outcome occurred

over another, and ’selective’, focusing on the most relevant causes. Explanations also
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hold social and adaptive aspects: they must convey information from the explainer to
the explainee in a way that aligns with the explainee’s prior knowledge and context.
Tailoring explanations to an audience’s expertise ensures the level of complexity is
appropriate. Finally, faithfulness and robustness are essential: ’faithful’ explanations
accurately reflect the model’s decision-making, and ’robustness’ ensures stability
against minor data variations, thereby, enhancing reliability in practical applications.
Taken together, these properties shape effective, transparent Al explanations.

Chapter 2 extended the review of currently available literature, particularly on
the subject of datasets. Here, the existing datasets that are proposed for the use
of object detection and XAI validation are thoroughly investigated. Following the
review, a new dataset was proposed that would exploit the lack of overlap between
these two applications. The proposed dataset is intended to complement other works
to accelerate the deployment of explainable deep learning based ADL systems.

The work in Chapter 3 aimed at contributing to the area of object detection from
a UAV platform. The focus is on improving performance for small object detection,
and also improving model explainability. Results have been provided that justify the
use of the Tile Loader to improve the detection of small objects while still operating
in the real-time domain. This component was combined with YOLOvV5 in order to
create an algorithm which can achieve reasonable results on the VisDrone test-dev
set.

In this work several different explainers using contrasting approaches were inves-
tigated for the task of object detection, and these were covered in detail in Chapters
3,4 and 5. The primary aim, across all methods, was to produce heatmaps showing
how the input image influenced predictions made by a deep detection model. Each
method was designed with unique goals or specific requirements in mind, addressing
various challenges associated with explaining complex detection models.

The first explainer that was investigated was Grad-CAM in chapter 3. The
proposed methodology was introduced as a fast and efficient means to extract addi-
tional information from YOLO-style algorithms. This information could be helpful
to a developer, or an operator, in understanding failure modes and was capable of
running in near real time. The heatmaps produced by Grad-CAM proved reason-
ably discriminative of the target object and passed Model Dependency and Data
Dependency Tests.

The drawback of Grad-CAM was that it was not well suited to the architectures
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that were investigated. The heatmaps did not reveal a lot of information about spe-
cific objects, and in this approach the output features are treated independently. As
such, further progression was centred on two core developments. Firstly, develop-
ing methodologies that produced more concise explanations for individual objects.
The second development, was to produce explainers yielding explanations that were
dependent on both the localisation and classification predictions.

Chapter 4 introduced a novel adaptation to KernelSHAP - a perturbation-based
explainer designed to operate effectively across diverse model architectures. This
approach offers a distinct advantage over other explainers explored in this work, such
as DetDSHAP and Layer-wise Relevance Propagation (LRP), which often require
custom implementations tailored to specific model architectures. By contrast, the
KernelSHAP explainer can be quickly and efficiently deployed to investigate various
architectures, even those not based on neural networks. This flexibility enables
robust comparative analyses across models, providing a valuable tool for evaluating
architectures that might otherwise lack support for explainers.

The proposed KernelSHAP framework was evaluated with multiple methodolo-
gies. Firstly, it demonstrated effectiveness in identifying visual biases within images.
Following this, the method demonstrated its ability to allocate causal information
correctly in the Deletion and Insertion protocols which were applied. Finally, its dis-
criminative ability was analysed with the Wrapping Game. The outcomes of these
experiments provide strong evidence that the KernelSHAP framework is faithful to
the explicant.

Beyond this, the KernelSHAP framework provides enhanced social and adaptive
aspects to the explainee. Its visual maps are more descriptive than those produced
by the Grad-CAM framework, and by allowing the explainee to input hypotheti-
cal predictions, it creates an interactive ’dialogue’ between the explainee and the
explainer.

The final explainer that was proposed in this thesis is DetDSHAP in Chap-
ter 4. Building on insights from previous chapters, DetDSHAP provides detailed,
instance-level explanations, allowing developers to better understand how various
image regions contribute to the model’s predictions in object detection scenarios.
Additionally, this chapter explores the intersection between model interpretabil-
ity and network compression, demonstrating how explainability insights can inform

network pruning without sacrificing performance. This contribution expands the
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toolkit available for deploying and refining explainable Al on autonomous platforms,
ensuring robust performance and accountability in real-world, safety-critical envi-
ronments.

In each chapter where an explainer was proposed, the Wrapping Game was
used to evaluate it. This methodology was proposed in Chapter 2 and intended
to evaluate the discriminativeness of the explainer on the target object. Unlike
contemporary metrics, like the Pointing Game, the proposed approach allows for a
more comprehensive evaluation measure, especially for images with multiple objects
or complex scenes, where simply noting the highest point may misrepresent the
saliency map’s quality.

Discriminativeness is valued by the human for interpretability of the provided
explanation. While the Wrapping Game does yield some information about the ex-
plainer’s faithfulness to the explicant, faithfulness is not the main focus of the the
Wrapping Game analysis. As such, the Wrapping Game should not be used exclu-
sively to analyse new explainers. The Wrapping Game will also take into account
how well the explainer’s discriminativeness aligned with the model’s performance.
This is important, given that when a model predicts with low confidence, under-
standing its decision-making process can be more challenging - yet this is precisely
when explanations are crucial. Therefore, the limitations of the explainer on these
edge cases needs to be understood. In such cases, explanations can help detect po-
tential model uncertainties and errors, offering insights into when and why a model’s
predictions may be less reliable.

In Chapter 5 DetDSHAP was compared to the LRP framework proposed in [106].
In these investigations, LRP proved more discriminative on instances where the
model had high confidence in its predictions, but struggled heavily on the instances
of low confidence, where the Det DSHAP explainer did not. Moreover, in this same
chapter, the LRP framework was less capable as a pruning criterion when compared
to DetDSHAP. This indicates a lower faithfulness to the model’s processes.

Ultimately, the proposed explainers equip developers with advanced tools to
identify model limitations, inform model improvements, and implement appropriate
safeguards in autonomous system designs. This work provides a foundation for fu-
ture advancements in XAl for autonomous vehicles, where both transparency and
reliability are essential. Moving forward, the potential exists to combine local expla-

nations to achieve global insights, and further expand the applicability of explainers
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in multi-object scenes, thereby broadening the understanding and utility of XAI in
the autonomous systems domain.

While the Grad-CAM-based framework proposed in Chapter 3 offers a computa-
tionally lightweight solution, enabling near real-time explanations, the SHAP-based
frameworks introduced in Chapters 4 and 5 require significantly higher computa-
tional resources. This is due to the need for perturbation-based sampling, where
numerous background samples are evaluated to determine the model’s reliance on
different input features. Despite this computational overhead, these methods offer
superior fidelity and faithfulness, ensuring that explanations accurately reflect the

true decision-making process of the model.

6.3 Future Work

This research proposed several saliency map based approaches to disentangle pre-
dictions made by 2D object detectors. The ultimate goal of XAI is to improve the
performance and capabilities of the network being investigated. So far, only the
work with DetDSHAP has yielded new networks with better capabilities. Currently
for Grad-CAM and KernelSHAP, this thesis only presented examples of their usage
in small, controlled experiments, so their usefulness in realistic settings is as yet
unproven. Beyond this there are several other open challenges and opportunities

that are presented below.

6.3.1 Extending the XAI-AV Dataset

This work will continue beyond this thesis to adapt with future needs over time. This
includes expanding the volume of collected data, and the supported applications
beyond object detection. As has been established, the current dataset contains a
bias of "White Van’ and 'Black Hatchback’; while this bias may be representative
of what can be found on the streets that were surveyed, this may not always be
the case. Hence, progress will involve collecting sufficient samples to balance the

distribution of type and colour of vehicles.

6.3.2 Local to Global Explanations

Saliency maps explain the behaviour of a model for a single test point, such an

explanation may be too fragile and could lead one to a false conclusion about the
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model’s strategy [168]. To get a holistic view of the model’s strategies, one would
need to review many points in the dataset. However, screening through a large
number of individual explanations can be too intensive, especially on larger datasets.

An open research question is: can local explanations be joined together to build
a globally interpretable model? Lapuschkin et al.[103] also took the approach of
joining together multiple local explanations - this time from LRP - to create a global
perspective of the DNN’s behaviour. They propose Spectral Relevance Analysis
(SpRAy), which detects typical and atypical behaviour as frequently reoccurring
patterns in the saliency maps via eigenvalue-based spectral clustering. This can then
be presented to a human in a concise and interpretable manner using t-Stochastic
Neighbourhood Embedding (t-SNE).

The essential foundations have already been put in place for providing Global
Explanations in Chapter 5. Individual explanations were joined together to calculate
the weight of individual units in the network for pruning. They were joined simply by
averaging all the scores for a particular unit. Like the work in [103], what is needed
is to employ an unsupervised learning approach to isolate key patterns present in

the saliency maps, or from within the network itself.

6.3.3 Advancing Pruning Framework

Improvements can be made to the existing pruning framework to enhance the quality
of models following the pruning process. In a manner akin to the findings of Yeom
et al. [163], the DetDSHAP pruning criterion proposed here emphasises layers that
are situated closer to the network’s output. This is because, in both approaches, the
contribution is distributed evenly backwards through the network and thus becomes
more diffused in the layers closer to the input. This distribution diminishes the
criterion’s effectiveness in minimising the number of Floating-Point Operations Per
Second (FIOPS) which are more concentrated in those layers. Future work could
adjust the framework to specifically target the layers nearer to the input, thereby
enhancing the improvements in inference speed achieved through pruning. Moreover,
further modifying the selection process for samples used in determining filter ranks,
could lead to a reduced decline in performance after pruning. This could involve
strategies, such as ensuring a balance in class labels among the samples, as well as

considering the positioning and dimensions of the bounding boxes in the samples.
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