

City, University of London Institutional Repository

Citation: Zoppi, T. & Popov, P. (2025). Confidence Ensembles: Tabular Data Classifiers on

Steroids. Information Fusion, 120, 103126. doi: 10.1016/j.inffus.2025.103126

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34829/

Link to published version: https://doi.org/10.1016/j.inffus.2025.103126

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1 Introduction

We are at the dawn of the fifth industrial revolution [1], where
retail and business logic are meant to synergize with sustainability
and inclusivity for building human-centered autonomous systems
to relieve the human workforce from time-consuming, laborious,
and often hazardous tasks for the social good. Examples include,
but are not limited to: fully autonomous driving, computer-guided
robotic surgery, mobile robots for inspections and surveillance,
optimized power management and generation, and manufacturing
robots. These cutting-edge innovations often require solving
classification problems by designing and training Machine
Learning (ML) algorithms that assign a discrete label to input data
with little to no misclassifications. Classifiers should solve a wide
variety of tasks processing either structured tabular data [2] or
unstructured inputs (e.g., images) [3], [4] for binary or multi-class
classification. Most applications deal with tabular data,
comprising samples (rows) with the same set of features
(columns). Tabular data is used in practical applications in many
fields, especially when stakeholders aim at monitoring the

behavior of ICT systems for the early detection of anomalies due
to errors, intrusions, or upcoming failures. Monitoring activities
generate very large amounts of (tabular) data that could be
potentially used for classification; unfortunately, such data is often
unlabeled. In this case, the classification process can only be
unsupervised, leading to well-known detrimental effects on the
overall classification performance [5], making it unfeasible apart
from very specific “corner” cases [6], [7].

Regardless of the availability of labels, analyzing such a
massive amount of tabular data is very challenging. That is why
experts and researchers keep designing new algorithms and
providing trained models that have the potential to outperform
their baseline on specific scenarios, often under the assumption of
Independent and Identically Distributed (IID) training, validation,
and test data [8], [9]. Constraining experiments behind such
assumptions may be acceptable and suitable for research purposes;
however, real systems and infrastructures are prone to
encountering unexpected operating conditions [10], [11] that
violate the above mentioned IID assumption. Classifiers for these
systems have to be designed and deployed for high accuracy, but
also to be robust to unexpected inputs, and meant to operate
reliably in the wild [8].

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

Confidence Ensembles: Tabular Data Classifiers on Steroids

Tommaso Zoppi1*, Peter Popov2
1 Department of Mathematics & Computer Science, University of Florence, Viale Morgagni 65, 50134, Florence (IT)

2 Computer Science Department, City St. George's, University of London, Northampton Square, EC1V 0HB, London, United Kingdom
Mail addresses: tommaso.zoppi@unifi.it, p.t.popov@city.ac.uk

* Corresponding author

A R T I C L E I N F O

Article history:
Submitted: 05/12/2024
Revision Submitted: 24/02/2025
Accepted: 15/03/2025

Keywords:
Confidence Ensembles
Classification Confidence
Ensemble Learning
Robust Classification
Tabular Data
Machine Learning

A B S T R A C T

The astounding amount of research conducted in the last decades provided plenty of Machine Learning
(ML) algorithms and models for solving a wide variety of tasks for tabular data. However, classifiers are
not always fast, accurate, and robust to unknown inputs, calling for further research in the domain. This
paper proposes two classifiers based on confidence ensembles: Confidence Bagging (ConfBag) and
Confidence Boosting (ConfBoost). Confidence ensembles build upon a base estimator and create base
learners relying on the concept of “confidence” in predictions. They apply to any classification problem:
binary and multi-class, supervised or unsupervised, without requiring additional data with respect to those
already required by the base estimator. Our experimental evaluation using a range of tabular datasets
shows that confidence ensembles, and especially ConfBoost, i) build more accurate classifiers than base
estimators alone, even using a limited amount of base learners, ii) are relatively easy to tune as they rely
on a limited number of hyper-parameters, and iii) are significantly more robust when dealing with
unknown, unexpected input data compared to other tabular data classifiers. Amongst others, confidence
ensembles showed potential in going beyond the performance of de-facto standard classifiers for tabular
data such as Random Forest and eXtreme Gradient Boosting. ConfBag and ConfBoost are publicly
available as PyPI package, compliant with widely used Python frameworks such as scikit-learn and pyod,
and require little to no tuning to be exercised on tabular datasets for classification tasks.

© 2025 xxxxxxxx.

mailto:tommaso.zoppi@unifi.it
mailto:p.t.popov@city.ac.uk

2

This paper proposes “Confidence ensembles”, classifiers that
are more accurate and robust than the respective baselines, and in
our judgment close the gap between what practical applications
require and what the current state-of-the-art in machine learning
offers as of today. The proposed confidence ensembles, either
Confidence Bagging (ConfBag) or Confidence Boosting
(ConfBoost), can use any existing classifier as a “base estimator”
to build an ensemble meta-classifier without requiring any
additional information compared to what the base estimator needs.
Thus, they can be applied to any existing classification task in a
way that is almost transparent to the user and requires minimal
tuning. ConfBag refines the traditional bagging [12], [13], [14], by
allowing only the most confident base learners to contribute to the
prediction, weighting their contribution to the prediction by their
confidence score. ConfBoost creates base learners that are more
and more specialized in classifying train data items for which
existing base learners cannot make a confident prediction. This is
a radically different approach from the typical boosting strategies
[15], [16], which always require a labeled training set as (weak)
base learners are subsequently trained using train data that got
misclassified by existing base learners. ConfBag and ConfBoost:
• are compatible with any existing classifier as a base

estimator, which is used to create base and meta learners;
• have a generic and quite straightforward architecture that

applies to all classification tasks and scenarios: supervised or
unsupervised, binary or multi-class;

• do not require additional input with respect to those already
needed by the base estimator;

• require little to no parameter tuning, are easy to use even by
non-experts, and are implemented in a public Python
framework that exposes interfaces that comply with the de-
facto standard libraries [17] such as scikit-learn (supervised
learning) and pyod (unsupervised learning);

• provide a significant improvement in accuracy and
robustness of classification compared to using traditional
classifiers, measured through an extensive experimental
analysis on many public tabular datasets and algorithms;

• can deal with many data types. This paper focuses on tabular
data only, but the approach is general and can be used to
instantiate classifiers of unstructured data, e.g. images [18].

The paper is organized as follows. Section 2 provides the
background and summarizes the works related to classification and
robustness to unknown input data or operating conditions. Section
3 describes the design of ConfBag and ConfBoost, their key
features, and their differences against traditional bagging and
boosting ensembles. Section 4 describes the experimental
methodology to evaluate the performance of confidence
ensembles against baselines, including standard bagging and
boosting. Section 5 presents the results from the experimental
campaigns, quantifying how confidence ensembles, and especially
ConfBoost, are more accurate and far more robust to unexpected
inputs than the base estimators. Section 6 conducts a statistical
validation to strengthen experimental findings and provide
statistically solid takeovers. Section 7 details threats to the validity
of this study, letting Section 8 conclude the paper. Moreover,
Appendix A provides a detailed description of the conf-ensemble
Python framework and how to use ConfBag and ConfBoost, with
Appendix B summarizing terms and acronyms used in the paper.

2 Background and Related Works

This section provides useful background about classifiers for
tabular data and their robustness to unexpected input data. The
terminology introduced therein is summarized in Appendix B.

2.1 Machine Learning Classifiers

Decades of research and practice on Machine Learning (ML)
provided us with plenty of algorithms that can learn how to predict
a discrete label for a data point i.e., classifiers. Supervised
classifiers [2], [16], [19], and particularly Deep Learners [3], [4],
[20] were demonstrated capable of achieving excellent
classification performance in many application domains, whereas
unsupervised classifiers are typically applied only when training
data is not labelled [21], [22].

More formally, a classifier first devises a mathematical model
from a training dataset [20], which contains a given amount of
data points. Each data point contains a set of feature values, where
each feature value describes a specific input of the classification
problem. Once the model has learned (i.e. the ML algorithm has
been trained), it can be used to predict the probabilities of the data
point belonging to each class defined for the problem domain, of
which the class with the highest probability is assigned as a label
of the new data point.

The classification performance of the classifier is usually
computed by applying the classifier to novel data points and
computing metrics such as accuracy [23], i.e., the percentage of
correct predictions of a classifier (typically on the testing dataset).

2.2 Tabular Datasets and ICT Systems

Data to be classified may result from monitoring activities of
computer systems, where features are performance system
indicators at hardware or low-level, system-level, input/sensor,
environment, application-level, or even coding-level [24], [25].
Features can be textual or numeric: textual features (e.g., the name
of a protocol) are always categorical, while numeric features may
either be categorical (the ID of a system call), or continuous,
describing a continuous ordinal range of values such as the
percentage of memory used, the number of packets received from
the network interface in a time-frame, etc. Classifiers may
compute Euclidean distance (e.g., those based on the concept of
neighbourhood as the kth nearest neighbours - kNN), which may
deliver misleading results when applied to categorical features:
there is no meaning in computing the distance between the IDs of
system calls, or between the names of network protocols. As such,
categorical features usually require pre-processing before being
fed to a classifier e.g., representing each value of a categorical
feature with a vector of floating-point numbers, or dummy
variables [26].

Datasets resulting from monitoring activities have specific
properties compared to other tabular datasets. First, features can
hardly be considered independent as they describe different
viewpoints of the same system or different areas of the same
system. This may become a problem whenever applying classifiers
that are known to perform well under the assumption of (linear)
independence amongst features. Whereas it may be possible to
eliminate or reduce collinearity in multivariate datasets using
mechanisms such as Principal Component Analysis, this is beyond
the scope of this work and will not be elaborated further. Second,

3

monitoring activities usually happen over a quite stretched
timespan: the amount of data points is far higher than those of
features, which rarely exceed hundreds. Monitoring thousands of
features may exceedingly slow down the execution of the regular
tasks of the system, which should not be negatively impacted by
monitoring and logging activities. A trade-off analysis is typically
conducted to understand the balance between the completeness of
information provided by monitored features and the resulting
computational overhead.

2.3 Machine Learning Classifiers for Tabular Data

Supervised classifiers require training data for which the label
(also called class) is known. Recent literature shows how
ensembles of decision trees as Random Forests or Gradient
Boosting classifiers can accurately and quickly extract a model
from tabular data, and are considered the recommended option or
de facto standard for classifying tabular data [2], [27], [28]. Other
works propose Deep Neural Networks that are specifically crafted
for the classification of tabular data [29], [30]. However, they do
not reliably outperform tree-based ensembles, possibly due to lack
of locality, data sparsity (missing values), mixed feature types
(numerical, ordinal, and categorical), and lack of prior knowledge
about the dataset structure [2]. This dichotomy led to a wide
variety of benchmark studies in recent years. An extensive study
[31] analyses the factors making DNN-based classifiers more
likely to outperform the gradient-boosted decision trees (GBDTs)
on tabular data. The study analyses 19 classification algorithms
and 176 datasets and provides useful insight: i) the difference
between the two classification methods is typically insignificant;
ii) tuning hyperparameters usually is more important than the
choice between the two classification methods; iii) DNNs tend to
perform better on datasets with many features, whose values are
normalized. The study also defines a new benchmark, called
TabZilla; a similar benchmark, TALENT, is presented in [32]. The
study, based on 300 tabular datasets, provides an intriguing insight
that a core set of "meta-features" can be used to identify dataset
heterogeneity, which in turn affect the classification performance.

When a labelled training dataset is not available, the only
option is to conduct unsupervised classification. These ML
algorithms model the expected (normal) behaviour of a system,
and classify any deviation from the normal behaviour as an
anomaly [33]; thus, they can only perform binary classification
(i.e., is my system behaving unusually or not?) assuming no other
information is provided. Options for unsupervised classification
include, but are not limited to, clustering, statistical, angle, density,
and neighbour-based algorithms [22]. Differently from supervised
classification, unsupervised classification of tabular data has seen
a decent usage of DNNs, namely autoencoders, that have been
shown [34], [35] to perform similarly to other unsupervised
classifiers.

2.4 Ensembles and Diversity

N-Version Programming (NVP) and design diversity have
been successfully used for many decades and enforced using
different design methods, including: programming languages,
functional diversity, different forms of testing [36], [37]. In
statistics and machine learning, ensemble methods use multiple
learning algorithms to obtain better predictive performance than
could be obtained from any of the constituent learning model alone
[38]. An ensemble is a form of NVP as it consists of a finite set of

alternative models, called base learners, orchestrated according to
a meta-learning strategy [39] acting as data fusion strategy.
Ensembles usually outperform individual ML algorithms and have
been used successfully in a variety of domains [16], [17].

The enabling condition for an ensemble to outperform the
individual classifiers is the diversity in the behaviour of the base
learners: “If perturbing the learning set can cause significant
changes in the predictor constructed, then bagging can improve
accuracy” [14]. For ensembles and meta-learning strategies as
stacking [40] that use different algorithms to create base learners,
diversity is guaranteed to some extent, but may not suffice [41].
More generally, the study [42] summarizes three different design
diversity principles: Data, Model, and Inference Diversification.
Data diversification provides different training data to many
instances of the same classifier, or single instances of many
different classifiers. This concept is widely applied in Bagging
(e.g., Random Forests) or Boosting (e.g., XGBoost) ensemble
classifiers, and makes them more accurate than their Decision
Tree, or Decision Stump, baseline. Model diversification can be
implemented either by creating different instances of the same
classifiers that are trained using different parameters (e.g., a
different k value for kNN) or by using ensembles, which create
multiple base learners from heterogeneous classifiers. Lastly,
inference diversification is concerned with obtaining multiple
outputs from each classifier, e.g. a classifier output consists of a
set of possible decisions alongside a ranking or their confidence
scores. This usually applies to object detection and recognition,
where multiple labels may be assigned to a single input, each with
a confidence score. Such a diversification, however, rarely applies
to the classification of tabular data. Sometimes, design diversity is
paired with metrics to experimentally quantify diversity [43].

2.5 Confidence and Uncertainty of Classification

ML researchers usually aim at maximizing classification
performance. However, trusting each prediction of a classifier, to
the extent that the prediction can be confidently propagated
towards the encompassing system and used in a real system, is a
different problem [44]. Confidence in classification requires
estimating the prediction uncertainty and using it to suspect if the
classifiers’ predictions are likely to be misclassifications.
Uncertainty is [45] a combination of aleatoric and epistemic
uncertainty. The former refers to the notion of randomness, that is,
the variability in the outcome of an experiment due to inherently
random effects e.g., coin-flipping. The latter describes the
uncertainty due to a lack of knowledge (i.e. in one’s knowledge)
of any underlying random phenomenon or due to methodological
errors. In other words, epistemic uncertainty refers to the reducible
part of the (total) uncertainty, whereas aleatoric uncertainty refers
to the irreducible part and cannot be reliably estimated.

(Epistemic) uncertainty can be quantified using the Bayes
theorem [46] or more complex approaches. Works as [47] estimate
the uncertainty by using ensembles of neural networks: scores
from the ensembles are combined in a unified measure that
describes the agreement of predictions and quantifies uncertainty.
In [48], authors processed softmax probabilities of neural networks
to identify misclassified data points. A new proposal came from
[49], where authors paired a k-Nearest Neighbour classifier with a
neural network to compute the prediction uncertainty. The work
[50] computed the cross-entropy on the probabilities of a neural
network and used it to detect the out-of-distribution input data

4

likely to be misclassified. Many of these approaches are used in
[51] to implement a safety wrapper.

2.6 Unexpected Inputs and Robustness

Even when estimating confidence, there is the risk of having
classifiers that: “[...] produce almost always high confidence
predictions far away from the training data” [52]. This is a
relevant concern as a classifier deployed in its operational
environment is likely to face input data that does not belong to the
distribution used to train the classifier. Unexpected or non-IID
inputs may be due to a wide variety of reasons, mostly
environmental changes, distribution shifts, anomalous, Out-Of-
Distribution (OOD) data, or adversarial attacks [53], [54]. OOD
and adversarial data were primarily deemed relevant for computer
vision and image classification. Recently, these sources of
unknown inputs become of concern for tabular data [54], alongside
with: i) novel or unplanned interactions between subsystems or
interfaces, generating behavioural anomalies [33], ii) distribution
and concept drifts [55], iii) the occurrence of previously unseen
events (i.e., zero-day attacks in security [6]). Industrial standards
such as the SOTIF (ISO/PAS 21448 – Safety Of The Intended
Functionality [56]) recognize performance limitations of ML-
based software due to these unknown inputs, concluding that the
frequency of misclassifications due to these events should be
reduced until it is considered acceptable.

Straightforwardly, the impact of unexpected input data must
be considered when evaluating the performance of a classifier [6],
[57], [58], [59], quantifying what is generally referred to as
robustness. In [59], the authors review existing datasets and
classifiers for attack detection. Amongst other findings, they
conclude that classifiers may have the problem of adapting to new
attacks, raising many false alarms, or having poor accuracy in the
process. The study [58] applies the kNN classifier to a dataset of
system calls and measures a clear degradation in the detection
performance of kNN, whose Recall drops from 100% to 75% in
the presence of unknown inputs. The study [6] measures the
impact that zero-day attacks have on supervised and unsupervised
classifiers and concludes that when the likelihood of zero-day
attacks becomes very high, the performance of unsupervised
intrusion detectors may become superior to supervised
alternatives. Last, the work in [57] trains different classifiers with
the CICIDS17 tabular dataset and evaluates them using an unseen
dataset, measuring a clear drop in accuracy due to the trained
model being neither general nor robust enough to unknown test
data from a similar but different dataset.

The occurrence of unexpected inputs has a noticeable impact
on classification performance, especially of supervised classifiers.
A possible solution may be to pair supervised classifiers with
unsupervised ones as suggested in [21], [60]. However, most of
these solutions are very problem-specific and are difficult to
generalize: combining the two approaches itself is not trivial, does
not always improve performance, and can even have detrimental
effects as argued in [41].

3 Confidence Ensembles

In this section we describe ConfBag and ConfBoost
ensembles, which use the concept of prediction confidence for
building the ensemble model.

3.1 Preliminaries and Notation

Confidence ensembles are created from a base estimator,
which is used to derive k base learners bli, 1 ≤ i ≤ k within the
training process of each confidence ensemble. The base estimator
can be any existing classifier clf that implements the following
functions.

fit: this function trains the classifier clf using a specific train set.
The training can be supervised (with labelled training data) or
unsupervised. The fit function generates a model and makes clf
ready for prediction: unfitted classifiers cannot predict anything.
The syntax of using the “fit” function is as follows:

clf.fit(train features) - for a unsupervised classifier, and
clf.fit(train features, train labels) – for a supervised classifier.

predict_proba: given an input data data, it predicts a probability
distribution in the form of an array of probabilities prob = {pi, 1 ≤
i ≤ |c|, 0 ≤ pi ≤ 1} for a given set c of classes c. Probabilities in the
prob array should sum up to 1, i.e. ∑ 𝑝𝑝𝑖𝑖

|𝑐𝑐|
𝑖𝑖=1 = 1 and represent the

likelihood that the data item submitted for classification belongs
with probability pi to class i.

prob = clf.predict_proba(data) (1)

predict_confidence (optional): this function quantifies the
confidence 0 ≤ conf ≤ 1 in a specific prediction for a given input
data data, with the following signature.

conf = clf.predict_confidence(data) (2)
Whenever this function is not provided (nor implemented), the

confidence will be derived as the maximum probability from
predict_proba as in the following Equation (3).

conf = max{pi ∈ clf.predict_proba(data), 1 ≤ i ≤ |c|} (3)

3.2 Confidence Bagging: ConfBag

Confidence Bagging (ConfBag) is described below and is
depicted in Figure 1.

3.2.1 Basics of Bagging

Bagging was first proposed by Breiman [14]. It creates k sets
where nbag data is drawn with or without replacement from the
training set of n data points. Then, it uses these sets to train k base
learners which are instances of the same base estimator trained
using different training sets. Once all base learners are trained the
prediction for a new input data is exercised as an “average over
the versions when predicting a numerical outcome and a plurality
vote when predicting a class” [14].

3.2.2 Training ConfBag

The training of ConfBag follows the proposal of Breiman [14]
with a small adjustment, as it selects a subset of both training data
points and features to train the base learners. More precisely, it
randomly draws (without replacement) a subset of nbag < n data
points, each with fbag ≤ f features that will be used by a base learner
i.e., each base learner will see only a fraction of the training set
composed of nbag items and fbag features.

3.2.3 Predictions with ConfBag

The prediction (inference) phase is very different from the
original bagging [14]: ConfBag predicts a label by using the
confidence scores in two different ways.

Confidence for selecting base learners. Each base learner knows

5

the confidence in their prediction through the predict_confidence
function. This may range from no uncertainty (high confidence) to
high uncertainty (low confidence). Allowing the base learners with
low confidence in their predictions to take part in the final decision
may negatively affect the quality of the final decision. In ConfBag,
the predictions of “uncertain” base learners are discarded as their
opinion may not be trustworthy. Predictions of a base learner bli,
1 ≤ i ≤ k, will contribute to the output of ConfBag only if the
confidence by the base learner exceeds a given threshold:

confi = bli.predict_confidence(data) ≥ confthr (4)
Clearly, the threshold confthr in Equation (4) is essential and its

value must be chosen with care as it may dramatically alter the
prediction result. In cases when the optimal confthr is difficult to
derive, ConfBag may be configured to operate differently, e.g., the
user may specify a number bln or the fraction blfrac of base learners
which should contribute to the final decision of the ConfBag.
Then, ConfBag will compute an array of confidence scores,
ordered by value, scs as in the following Equation (5).
scs=sort_descending({bli.predict_confidence(data), 1 ≤ i ≤ k}) (5)
For each prediction, a dynamic confthr will be derived as the blfrac
(or bln / k) percentile of scs, or rather the value for which the
exactly bln (or blfrac * k) base learners predict with confidence
greater than confthr. Overall, the threshold is computed as in
Equation (6).

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟, 𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑝𝑝 𝑢𝑢𝑖𝑖𝑝𝑝𝑝𝑝

𝑖𝑖𝑐𝑐𝑖𝑖[𝑏𝑏𝑏𝑏𝑛𝑛], 𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑛𝑛 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑝𝑝
𝑖𝑖𝑐𝑐𝑖𝑖[𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖], 𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖 = �𝑏𝑏𝑏𝑏𝑓𝑓𝑟𝑟𝑓𝑓𝑐𝑐 ∗ 𝑘𝑘�, 𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑓𝑓𝑟𝑟𝑓𝑓𝑐𝑐 𝑝𝑝𝑏𝑏𝑖𝑖𝑝𝑝𝑒𝑒ℎ𝑝𝑝𝑝𝑝𝑝𝑝

 (6)

Confidence to weight predictions. Traditional bagging averages
of probabilities. A ConfBag conf_bag_clf computes probabilities
cb_prob for a data point data as shown in Equation (7).
cb_prob = conf_bag_clf.predict_proba(data) =

 1
𝑏𝑏𝑏𝑏𝑛𝑛

∑ 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑝𝑝𝑝𝑝𝑐𝑐𝑏𝑏𝑖𝑖(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) 𝑘𝑘
𝑖𝑖=0

𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 (7)
ConfBag also offers the option to weighting the predicted

probabilities with the confidence of each base learner, see
Equation (8).
cb_prob = conf_bag_clf.predict_proba(data) =
 ∑ 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑝𝑝𝑝𝑝𝑐𝑐𝑏𝑏𝑖𝑖(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) ∗ 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖)𝑘𝑘

𝑖𝑖=0
𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟

cb_prob = cb_prob / sum(c_prob) (8)

3.2.4 Parameters

ConfBag is configured via a set of parameters.

• base_estimator (classifier object): this is the classifier to be
used to create base learners.

• k (integer ≥ 2): the number of base learners; for compliance
with the existing libraries, k may be referred to as
n_estimators.

• f_bag (0 < float ≤ 1): the proportion (as a percentage of
features of the full training set) of training features to be
provided to each base learner when learning its model.

• sampling_ratio (0 < float ≤ 1): the percentage of the items of
the training set to be provided to each base learner in training
(used to compute nbag)

• weighted_pred (a Boolean value): true if the final prediction
has to be computed as the weighted average, false if only a
simple average is used.

• conf_thr (0 < float ≤ 1): the value to be used as a confidence
threshold for judging whether the prediction of each base
learner is made with sufficiently high confidence or not.

• bl_n (0 < integer ≤ k): the number of base learners that will
contribute to the final prediction by the ConfBag classifier.

• bl_perc (0 < float ≤ 1): the proportion of base learners that
will contribute to the final prediction by ConfBag classifier.

Only one of the last three parameters is used: if conf_thr is
provided, bl_n and bl_perc values will be ignored; otherwise,
bl_perc will be used only if bl_n is missing.

3.3 Confidence Boosting: ConfBoost

Confidence Boosting (ConfBoost) is described below and is
depicted in Figure 2.

3.3.1 Basics of Boosting

ConfBoost builds upon the proposal of Shapire [61], which
introduced boosting as an ensemble of weak learners, where each
base learner “is only required to perform slightly better than
random guessing”, building “as strong as a model in which the
learner's error can be made arbitrarily small”. Base learners are
created sequentially and are specialized to classify areas of the
input space for which existing base learners output
misclassifications. Consequently, boosting is a supervised process
that assumes knowledge of the labels to understand if a data point
is misclassified by a base learner. This information is then used to
prepare the training dataset for the next base learner. Boosting
works well when using decision stumps as base estimators:
decision stumps are shallow decision tree regressors that have
constrained learning capabilities and work well as weak-learners.

Figure 1: Train (left) and test (right) schemas for Confidence Bagging (ConfBag) at a glance.

Train set of n items
belonging to m classes,

each with f features

Base Estimator
(used to train k
base learners)

k feature sets
composed of

nbag < n items with
fbag < f features each

Models of base
learners to be used

for prediction
bl1 bl2 . . .

Models of k base
learners to be used

for prediction bl1

bl2

blk

Data point composed of f features

. . .

Is bli confident
enough?

Is ci >= confthr?
?

c1

(Weighted) Average
of Probabilities

..

pr
ob

1

?

c2..

pr
ob

2

?

..

pr
ob

k

ck

(Weighted) Average of
probabilities from

confident base learners pclassm. . .pclass2pclass1

6

3.3.2 Training ConfBoost

The biggest innovation of ConfBoost is to use confidence
scores of base learners instead of their predictions to influence how
data is sampled for training the next base learner. Instead of
making misclassified training data more likely to be chosen for
training the next base-learner, we target training data for which the
existing base learners cannot output a confident prediction, no
matter if it is correct or not. The training process of a base learner
bli, 1 ≤ i ≤ k, works as follows.
• Draw nboost ≤ n data points from the training dataset ts

according to their weights at step i-1. For bl1 (first base-
learner), weights are uniformly distributed: w = {wj = 1/n, 1
≤ j ≤ n}. This creates a training sub-dataset tsi ⸦ ts.

• Train a copy of the base_estimator using tsi. The resulting
model will be referred to as the bli model.

• Score the confidence confi of the bli model on each data point
in the full training dataset ts. Then, update the weights w of
the training dataset according to the rule in Equation (9)
below.

𝑒𝑒𝑗𝑗 = �
𝑒𝑒𝑗𝑗 ∗ 𝑏𝑏𝑝𝑝, 𝑖𝑖𝑐𝑐 𝑐𝑐𝑗𝑗 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟

𝑒𝑒𝑗𝑗
𝑏𝑏𝑝𝑝 𝑐𝑐𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝

, 1 ≤ 𝑗𝑗 ≤ 𝑐𝑐

𝑒𝑒 = { 𝑤𝑤𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤) , 1 ≤ 𝑗𝑗 ≤ 𝑐𝑐} (9)
• This increases the weights of the data points in the training

dataset tsi for which bli is not confident enough. The update
speed is regulated by a parameter lr (learning rate): the higher
the value of this parameter, the faster the weights will
increase or decrease. After updating the weights, the array w
gets normalized to sum up to 1.

These steps train the base learner bli and prepare for sampling the
next training dataset tsi+1, and train the next bli+1, thus iterating
over all k base learners until the training process ends.

3.3.3 Predictions with ConfBoost

As it was originally proposed [15] - and applied to almost all
known boosting algorithms to date [16], [17] - ConfBoost
computes the final probabilities (and thus the predicted class) by
averaging the probabilities computed by each base learner.
Depending on the specific implementation, boosting algorithms
may compute the final prediction as a weighted average of the base
learners’ predictions using different measures (e.g., the accuracy
of a base learner on the validation/training dataset) as weights.

Similarly to ConfBag, ConfBoost may perform a weighted
average of probabilities using the confidence in the predictions of
each base learner as weight.

3.3.4 Parameters

ConfBoost is configured via the following parameters.
• base_estimator(object): this is the classifier to be used to

create base learners.
• k (integer ≥ 2): the number of base learners; for compliance

with the existing libraries, k may be referred to as
n_estimators.

• sampling_ratio (0 < float ≤ 1): the percentage of items of the
training dataset to be sampled and used for training each base
learner (used to compute nboost).

• lr (float > 1): the learning rate, or rather the speed for which
weights are updated. The bigger the lr, the faster the value of
weights increases/decreases.

• weighted_pred (a Boolean): true if the final prediction by
ConfBoost is computed as a weighted average, false - if only
a simple average is used.

• conf_thr (0 < float ≤ 1): the value to be used i) as threshold to
consider updating the sampling weights of the training set,
and ii) for judging whether the prediction of each base learner
is made with sufficiently high confidence or not.

• bl_n (0 < integer ≤ k): the number of base learners that will
contribute to the final prediction by the ConfBoost classifier.

• bl_perc (0 < float ≤ 1): the proportion of base learners that
will contribute to the final prediction by ConfBoost classifier.

Differently from ConfBag, conf_thr is mandatory as it is
needed both in the training and inference phase. Should the user
provide bl_perc or bl_n inputs, these will be used to recompute the
confidence threshold to be used for inference (not for training)
according to the formula in Equation (6).

3.4 Discussion and Issues of Confidence Ensembles

ConfBag and ConfBoost have a generic formulation that
makes them applicable to any type of classification problem: they
apply to both supervised and unsupervised classification problems,
whereas traditional boosting is supervised by design. Also, they
rely on a very basic formulation of confidence (i.e., the highest
probability predicted for a given class) that can be extended at will
depending on the needs, knowledge, and expertise of the user (e.g.,

Figure 2: Train (left) and test (right) schemas for Confidence Boosting (ConfBoost) at a glance.

Train set of n items belonging to
m classes, each with f features

Base Estimator
(used to train k
base learners)

. . .

Models of base
learners to be used

for prediction
bl1 bl2 blk

. . .

. . .

Random sampling of
nboost < n items

according to weights

Compute confidence
confi of base-learner

bli on train data

Weights w Update
according to confidence

confi and threshold
confthr

confs1 confs2 confsk-1

. . .
Models of k base

learners to be used
for prediction

bl1
bl2

blk

Data point composed of f features

. . .

(Weighted) Average
of Probabilities

pr
ob

1

pr
ob

k

(Weighted) Average
of probabilities from

base learners
pclassm. . .pclass2pclass1

pr
ob

2

7

entropy of probabilities [71] or more complex confidence
computations [44], [51]). The cognitive complexity for learning
how to use confidence ensembles is very low and becomes
negligible if the confidence ensembles are configured to use with
default parameters. Given that confidence ensembles can virtually
use any classifier as a base estimator, it is rather easy to quantify
the improvements in classification performance when running a
base estimator as a standalone classifier or when using it for
building a confidence ensemble.

The downside of any ensemble method is bringing more
complexity to the table: regardless of the implementation, the
training and prediction times of confidence ensembles will be
higher than those of the base estimator. While the former concern
(setting up the ensemble) is a one-off overhead, the overhead due
to generating multiple predictions cannot be avoided but can also
be minimized by adequate multithreading programming and
hardware support. Another potential concern may be related to the
design of ConfBoost, which follows a boosting process but does
not strictly require the base estimator to be a weak learner: the base
estimator could even be a very heavy neural network which is far
from being a weak learner according to its definition [61]. As per
Shapire’s definition, this may threaten the performance of
ConfBoost, as base learners using strong base estimators may
converge to the same model, learning the same things and thus
providing very similar results, making ensembles ineffective. To
tackle this, we remind how the study [42] highlights Data and
Model Diversification as pillars of any classification ensemble.
Confidence ensembles have their way of implementing data
diversity, as they train the base learners using different subsets of
the training set (and even subsets of features for ConfBag). The
size of these subsets can be tuned: the smaller the subsets, the less
overlap between different subsets and the less data a base learner
would rely upon to learn its model. Considering very similar
subsets may lead to crafting very similar base learners and be
detrimental to the overall classification performance. Regarding
model diversification, each base learner is an instance of the same
base estimator (i.e., implements the same ML algorithm), but since
it is trained using different portions of the training dataset, it
should end up with a diverse (or unstable, using the terminology
in [14]) behaviour.

3.5 Confidence as a Building Block

Last, but not least, we would like to emphasise the way the
confidence is used for creating classifiers in this study, and why,
to the best of our knowledge, this differs from the existing studies
in literature. The confidence in classification is typically provided
in the studies by others as an additional output to complement the
class prediction, i) quantifying a margin [62] and understanding if
a prediction should be rejected or should be trusted instead [63],
ii) driving the selection of those classifiers that actually contribute
to the inference process from a large classification ensemble
(ensemble pruning, [64], [65]), or iii) crafting weights for
weighted fusion of base-learners opinions to improve ensemble
performance [64], [66], [67], [68].

Confidence ensembles build on these concepts as follows.
ConfBag and ConfBoost have a weighted_pred parameter which,
if true, makes different base-learners contribute to the final result
according to the prediction confidence they have: those that are
more confident will contribute more towards the ensemble
prediction. Ensemble pruning techniques are integrated by design

in both ConfBag and ConfBoost, and can be easily tuned via the
parameters bl_n, bl_perc and conf_thr in both approaches.
Importantly, the study [64] performs ensemble pruning exercising
base-learners on a labelled pruning set (different from training and
test sets), collecting their predictions, computing accuracy on the
pruning set, and allowing only base-learners with high accuracy to
take part in the ensemble prediction. Whereas this technique may
be very useful, it has two important drawbacks: i) it needs a
labelled pruning set, i.e. be applied to supervised learning only,
whereas confidence ensembles may even work in unsupervised
learning scenarios, and ii) tends to prune the same base-learners,
if the pruning set does not vary, resulting in a static subset of base-
learners that contribute to the decision, whereas confidence
ensembles perform pruning at prediction level (i.e., different base-
learners may contribute to each prediction). Regarding prediction
rejection, confidence ensembles do not embed any mechanism to
do so, as it happens in decision schemes such as recovery blocks
[69] or delegating [70], but provide enough information for
crafting such strategies.

Noticeably, all the mechanisms above assume that base-
learners are already trained, and that the confidence is used only
afterwards to fine-tune the fusion of the ensemble predictions. The
most important innovation of ConfBoost is that the confidence is
used to learn the model itself as an essential part of the training
phase, altering the likelihood of data items to be selected for
building the training set of the base-learners that are created
iteratively. The only technical report (still unpublished) that uses
confidence in learning the model is [18], which presents an
approach that iteratively creates a chain of DNNs trained
sequentially using only a subset of the training dataset for which

Table I. Comparison of classifiers and fusion strategies with
respect to the role of confidence in predictions. Ticks are starred
when a capability depends on the parameter setup. The “static”

tag is assigned to mechanisms that do not dynamically adapt
decision-making to each individual prediction.

Classifier /
Fusion Strategy

Fi
ts

 U
ns

up
er

vi
se

d
L

ea
rn

in
g

C
on

fid
en

ce
 U

se
d

du
ri

ng
 T

ra
in

in
g

W
ei

gh
te

d
C

on
tr

.
of

 B
as

e-
L

ea
rn

er
s

E
ns

em
bl

e
Pr

un
in

g

B
ui

lt-
in

 P
re

di
ct

io
n

R
ej

ec
tio

n

Bagging [13], [14] ✓ ✓*
Boosting [16], [73] ✓*

EP-CC [75] ✓(static) ✓(static)
EP-WL-CC [75] ✓(static)
EP-WV-CC [75] ✓(static)

Bayesian Voting [77] ✓ ✓*
Recovery Blocks [79],

Delegating [80] ✓ ✓* ✓

Cascade Generalization [79] ✓ ✓*
Stacking [40] ✓ ✓* ✓*

CEnsemble [18] ✓ ✓*
Pruning Individual
Contribution [76] ✓(static) ✓(static)

Learn++ [78] ✓(static) ✓(static)
ConfBag (weighted=True) ✓ ✓ ✓
ConfBag (weighted=False) ✓ ✓

ConfBoost (weighted=True) ✓ ✓ ✓ ✓
ConfBoost (weighted=False) ✓ ✓ ✓

8

there is not enough confidence in predictions. ConfBoost,
however, uses a different strategy to update the likelihood of the
data points to be sampled for training base learners, allowing all
data points (with non-uniform distribution) to take part in the
learning process. The prediction mechanism of ConfBoost, too, is
completely different from the proposal in [18].

These considerations are summarized in Table I above which
shows the differences between confidence ensembles and the other
known studies relying on confidence. Overall, confidence
ensembles are designed to maximise the usage of confidence at
inference time for optimal data fusion, even in unsupervised
scenarios. In the case of ConfBoost, confidence is used also for
learning the models of each base-learner in the ensemble, thus acts
at both training and test time.

4 Experimental Campaign

This section describes the experimental analysis to answer the
research questions stated in Section 4.1. The experimental
methodology is outlined Section 4.2. Details on the experiments,
assumptions, and inputs are detailed in Section 4.3 to Section 4.6.

4.1 Research Questions

RQ1. Do confidence ensembles outperform base estimators used
for supervised or unsupervised classification of tabular data?

RQ2. Do confidence ensembles outperform traditional bagging
and boosting ensemble classifiers, ideally using a restricted
number of base learners?

RQ3. What is the impact of hyper-parameter values on the
classification performance of confidence ensembles?

RQ4. What is the time overhead of confidence ensembles in
comparison with base estimators?

RQ5. How do confidence ensembles compare with base estimators
when dealing with unexpected inputs? Are they robust?

4.2 Methodology

Our experimental methodology had been deployed according
to the following 4 steps.
S1. Select a set of supervised and unsupervised classifiers to

compare against confidence ensembles. Unsupervised
classifiers can only perform binary classification: when
dealing with a dataset having data points of multiple classes,
a conversion from a multi-class to a binary (normal vs others)
label is needed to enable unsupervised classification.

S2. Prepare different instances of ConfBag and ConfBoost
ensembles, varying their parameters to assess their
capabilities on a range of configurations. These use
supervised and unsupervised classifiers from step S1 as base
estimators. For further comparisons, we crafted traditional
bagging and boosting ensembles using the same base
estimators and parameters as ConfBag and ConfBoost.

S3. Gather tabular datasets suitable for classification in real ICT
systems. These could be datasets with either a binary or multi-
class label.

S4. Create variants of datasets to evaluate the robustness of the
classifiers to unexpected inputs (e.g. non-IID data points
distributed differently from those in the training dataset).

Experiments have been conducted on a Dell Precision 5820
Tower with an Intel Xeon Gold 6250, GPU NVIDIA Quadro

RTX6000 with 24GB VRAM, 192GB RAM and Ubuntu 18.04,
NVIDIA driver 450.119.03 with CUDA 11.0.

Confidence ensembles are implemented in the library conf-
ensembles, which is publicly available on GitHub
(https://github.com/tommyippoz/confidence-ensembles [72]) and
on PyPI (https://pypi.org/project/confidence-ensembles/). The
usage of the library is detailed in Appendix A, and has interfaces
similar to those of the well-known scikit-learn and pyod libraries.

4.3 Supervised and Unsupervised Classifiers

We selected 8 supervised classifiers that are widely used in the
literature: 3 statistical classifiers as Naïve Bayes, Linear
Discriminant Analysis, Logistic Regression and 5 tree-based
classifiers that were benchmarked in [17]: Decision Trees,
Random Forests, Extremely Randomized Trees, Logit Boost, and
XGBoost. These are very diverse among themselves: some are
ensembles, and others rely on very fast (but often unreliable)
statistical mechanisms to predict classes. All classifiers are
implemented in scikit-learn (https://scikit-learn.org) or in specific
libraries whose interfaces comply with scikit-learn’s.

Additionally, we selected 5 unsupervised classifiers that are
implemented in pyod (https://pyod.readthedocs.io/, [73]):
Histogram-based outlier score (HBOS), Isolation Forests, Cluster-
Based Local Outlier Factor (CBLOF), Principal Component
Analysis (PCA) and Isolation-based Anomaly Detection Using
Nearest-Neighbor ensembles (INNE). Amongst the many
alternatives from the library, we chose these since they rely on
different heuristics, with some of them (Isolation Forest and
INNE) being ensembles themselves.

This experimental evaluation aimed at benchmarking
confidence ensembles against existing classifiers rather than
reaching the best classification performance on a specific dataset.
A preliminary and informal exploration did not reveal any major
impact on the difference in performance between classifiers and
confidence ensembles while varying classifiers’ parameters. Thus,
all classifiers/base estimators were run using their default
parameters. As a special case, Logistic Regression provided
multiple alerts of failed convergence during training, which we
minimized using the following combination of parameters: solver
= ’sag’, max_iter = 1000 and tol = 0.001.

4.4 Confidence Ensembles

The 13 classifiers above will be used i) in isolation and as base
estimators to build ii) confidence ensembles and iii) traditional
bagging and boosting ensembles.

When crafting confidence ensembles, we varied the number of
estimators (5, 10, 20), and the weighted_pred (true or false). For
ConfBag, we set f_bag to (0.3, 0.5, 0.7), and bl_perc to (0.3, 0.5).
For ConfBoost, we set the lr to 2, sampling_ratio (0.5, 0.3, 0.2),
and make conf_thr range as (0.9, 0.8, 0.5). This choice was not
arbitrary: it came after preliminary sensitivity analyses in which
we found that assigning some parameter values always worsened
classification performance. This happens when using conf_thr
values below 0.5, when using exceedingly small subsets of the
training set (f_bag below 0.3 or sampling_ratio below 0.2), or
when the data for training base learners is not diverse enough i.e.,
f_bag above 0.7, sampling_ratio above 0.5). Regarding the
number of estimators, we did not go beyond 20 as even a small
number of base learners can build confidence ensembles that
outperform other classifiers. All these setups will be applied for

https://github.com/tommyippoz/confidence-ensembles
https://scikit-learn.org/

9

each of the 13 base estimators from the previous section, resulting
in a total of 13*162 = 2106 configurations of ConfBag and 13*54
= 702 of ConfBoost. We used the same parameters for training
traditional bagging and boosting ensembles (BaggingClassifier
and AdaBoostClassifier from scikit-learn) using the 13 classifiers
as base estimators as this is required to answer RQ2. Noteworthy,
confidence-related parameters as conf_thr, weighted_pred are not
relevant for traditional ensembles and thus were not used there.
Also, the AdaBoostClassifier could not be applied to unsupervised
classifiers nor the supervised LDA due to bugs in the library (i.e.,
pyod classifiers are missing some required attributes to be used in
some of the scikit-learn’s function).

4.5 Error, Attack and Failure Datasets

We selected 23 datasets for this study: 12 datasets of network
traffic to be used for intrusion detection, 5 hardware monitoring
datasets for failure prediction, and 6 datasets about error and
anomaly detection in IoT and Industrial Control systems.

Table II summarizes the 23 datasets, reporting the domain,
name, year, number of data points, number of features, and
categories of anomalies, errors, or attacks. All datasets were
labelled, structured in CSV format, and cropped to contain 200 000
data points at most, to speed up the evaluation. Datasets are
publicly available and can be downloaded using the provided
references.

4.5.1 Network Intrusion Detection (NIDS)

We selected labelled datasets on network intrusions looking at
surveys, Kaggle, UCI, Zenodo, IEEEDataport and other online
portals. Our selection process resulted in the following datasets:
ADFANet [74], AndMal17 [75], BAIoT Doorbell [76], CICIDS17
[77], CICIDS18 [77], CIDDS [78], IoT Network [79], ISCX12
[80], NSLKDD [81], SDN20 [82], UGR16 [83], UNSW-NB15
[84]. All those datasets included records of normal traffic and
records collected while the system was under attack. Features are
mostly numeric, extracted by monitoring the network traffic in
packets (e.g., bytes received per second, number of packets).

4.5.2 Hardware Failure Prediction

We gathered datasets related to monitoring hard disks, where
the performance indicators and the status (failed or not) of a hard
drive are logged as data points. The BackBlaze [85] manufacturer
made many years of hard drive data available to the public.
Another source of hard drive data came from the BAIDU [86]
competition whose input datasets are still available.

4.5.3 Error/Anomaly Detection

The last group of datasets we considered came from
monitoring IoT or industrial control systems (ICS): a distributed
control systems of a power plant controlling a turbine [87], [88],
malfunctions of metros in Portugal [89], railroad trucks equipped
with sensors to monitor brake pressure [90], an edge device
monitored for errors [91], the mechanical failure of electrical
machinery in power plants [92].

4.5.4 Creating Datasets Variants

The RQ5 is devoted to quantifying the robustness of classifiers
to unexpected inputs (see Section 2.6). Robustness is usually
difficult to quantify but at the same time one of the most desirable
properties of classifiers, especially those that may be deployed in

real environments.
In our experiments, unexpected inputs are anomaly, error, or

attack categories that only appear in the test set. This makes the
non-IID with respect to training data. We simulated unexpected
inputs by removing specific categories from the training set of
each dataset that has more than a single “anomalous” class. This
allowed for the creation of as many training variants as the
categories of anomalies (see Table II) contained in each dataset.
The label used for training variants is always binary (normal vs
anomaly): it will not be possible to have correct multi-class
misclassification of a data point belonging to a class that does not
appear in the training set. Importantly, the test set remains
unchanged: classifiers trained on different training sets or training
variants of a specific dataset will be validated using the same test
set, in which unexpected inputs may be present, labelled as
anomalies. This is similar to the process followed in [6].

4.6 Performance Metrics

The classification performance of classifiers is usually
measured through the confusion matrix and the compound metrics
derived from it such as accuracy i.e., the fraction of correct
predictions over all predictions.

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

However, accuracy may deliver misleading results when
datasets are unbalanced [93], which happens frequently in
anomaly, error and intrusion detection: therefore, we mostly relied
upon the Matthews Correlation Coefficient (MCC),

𝑀𝑀𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

which was primarily developed for binary classification but
adapts well to multi-class classification. The MCC quantification

Table II. Name, release year, number of attack types, number of
portions, and the amount of ordinal features f of used datasets.

D
om

ai
n

D
at

as
et

N

am
e

Y
ea

r

C
at

eg
or

ie
s o

f
A

no
m

al
ie

s

Fe

at
ur

es

N
um

be
r

of

D
at

a
Po

in
ts

N
et

w
or

k
In

tru
si

on
 D

et
ec

tio
n

ADFANet 2015 5 3 132 002
AndMal17 2017 4 75 100 522

BAIoT Doorbell 2018 5 115 75 165
CICIDS17 2017 4 75 200 000
CICIDS18 2018 5 75 200 000

CIDDS 2015 4 7 200 000
IoT Network 2019 9 8 210 425

ISCX12 2013 4 6 200 000
NSLKDD 2009 4 37 148 517

SDN20 2020 5 78 205 128
UGR16 2016 5 7 207 256

UNSW-NB15 2015 8 38 165 461

H
W

M

on
ito

r BackBlaze 2017 2017 1 50 32 678
BackBlaze 2019 2019 1 44 47 525
BackBlaze 2021 2021 1 37 44 950
BackBlaze 2023 2023 1 35 70 512

BAIDU 2017 1 12 186 049

Er
ro

r /
 A

no
m

.
D

et
ec

tio
n

Arancino Device 2023 9 119 154 000
HAI Pressure 2019 1 54 200 000

HAI ICS 2023 1 224 54 000
Mechanical Failure 2018 1 18 7 906

Metro PT 2022 2 20 173 824
Scania Trucks 2016 1 170 76 000

10

allows for discussing RQ1, RQ2 and RQ3. For completeness, we
report results using other well-known metrics for classification
(i.e., Accuracy and F-Measure, or F1) in Appendix C.

To answer RQ4, we kept track of the training and the test time
(in milliseconds) needed by each classifier, and of the size of the
resulting model. Regarding RQ5, we computed the MCC of all the
models learned using variants of the training set used to simulate
the occurrence of unexpected inputs. Then, we quantified the
recall, or coverage of unexpected inputs being correctly detected
as a metric for robustness. We call this metric rec-unk.

𝑝𝑝𝑝𝑝𝑐𝑐 − 𝑢𝑢𝑐𝑐𝑘𝑘 =
𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑏𝑏𝑏𝑏 𝑐𝑐𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝 𝑢𝑢𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑖𝑖𝑐𝑐𝑝𝑝𝑢𝑢𝑡𝑡𝑖𝑖

𝑐𝑐𝑐𝑐 𝑢𝑢𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑖𝑖𝑐𝑐𝑝𝑝𝑢𝑢𝑡𝑡𝑖𝑖

5 Results, Analysis, and Discussion

This section presents and discusses the results of our
experimental campaign in light of the research questions RQ1 to
RQ5 from Section 4.1.

5.1 RQ1 - Classification Performance of Confidence
Ensembles

RQ1 aims to assess if the confidence ensembles outperform the
base estimators when performing supervised or unsupervised
classification.

5.1.1 Comparison against other Classifiers in the Study

Table III summarises the findings for each of the 13 classifiers
in our experiments, and of ConfBag and ConfBoost ensembles
using those classifiers as base estimators. Quantities in the table
are an average of the maximum MCC score obtained on each
dataset by base estimators and confidence ensembles, respectively,
after trying all the possible parameters’ combinations. For a fair
comparison of unsupervised and supervised classifiers, the scores
in the table refer to a binary classification, i.e. normal vs anomalies
in all datasets. On the right-hand side of the table, we report the

gain in MCC when using a confidence ensemble in comparison
with a base estimator: the red background of cells points to a
negative gain (i.e., a reduction of classification performance),
while the green cells highlight the combinations for which the
confidence ensembles provide an actual improvement in
classification performance.

Looking at unsupervised classifiers in the top half of the table,
it is quite clear that the confidence ensembles are a direct upgrade
to base estimators. This is especially evident for ConfBoost,
whereas ConfBag does not always show visible improvements
(i.e., ConfBag has worse MCC than the base estimator PCA).
ConfBoost, on the other hand, provides an outright improvement
over the unsupervised classifier. This is a significant result as
unsupervised classifiers are usually known for their poor
classification performance: finding a generic solution that flat-out
improves them is of utmost importance.

For supervised classifiers in the second (lower) half of Table
III, there is a clear distinction between simple classifiers as Naïve
Bayes, LDA, Logistic Regression, Decision Trees and ensemble
methods LogitBoost, ExtraTrees, RandomForest and XGBoost.
ConfBag often struggles to match the performance of ensemble
methods: see negative gains in the bottom 4 rows of the table.
Conversely, ConfBoost always outperforms the base estimator by
a fair – and sometimes huge – amount. We note that tree ensembles
are considered top choices for the classification of tabular data:
thus, improving classification scores of Extra Trees, Random
Forests, or XGBoost even by a small amount is still an important
achievement.

More in detail, a ConfBoost of Decision Trees scored the
highest average MCC of 0.805 over all classifiers, outperforming
Random Forests (0.796) and XGBoost (0.791), and even their
ConfBoost variants (MCCs of 0.798 In both cases). Tree
ensembles are based on multiple decision trees (Extra Trees,
Random Forests) or stumps (LogitBoost, XGBoost), which are
created according to well-known procedures that for boosting
heavily rely on labels. As Table III suggests, using confidence in
predictions allows ConfBoost to have more discriminative power

Table III. Comparison of classification performance of supervised and unsupervised classifiers against ConfBag and ConfBoost ensembles
using classifiers as base estimators. Bolded numbers highlight the highest MCC for a specific base classifier and corresponding ensembles.

Classifier

Av
er

ag
e

M
C

C
 o

f B
as

e
Es

tim
at

or
 a

nd
 C

on
fid

en
ce

 E
ns

em
bl

es

B
as

e
E

st
im

at
or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

M
C

C
 G

ai
n

of
 C

on
fid

en
ce

 E
ns

em
bl

es
 w

.r.
t.

Ba
se

 E
st

im
at

or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

U
ns

up
er

vi
se

d CBLOF 0.232 0.225 0.233 0.279 0.286 -0.007 0.001 0.047 0.054
Isolation Forest 0.250 0.251 0.265 0.320 0.317 0.001 0.015 0.070 0.067

INNE 0.165 0.217 0.201 0.269 0.224 0.052 0.036 0.104 0.059
HBOS 0.215 0.221 0.222 0.281 0.283 0.006 0.006 0.065 0.067
PCA 0.288 0.265 0.267 0.311 0.303 -0.023 -0.021 0.023 0.015

Su
pe

rv
is

ed

GNB 0.415 0.459 0.463 0.507 0.517 0.045 0.048 0.093 0.102
Logistic Regression * 0.281 0.259 0.256 0.424 0.427 -0.022 -0.025 0.142 0.145

LDA 0.447 0.462 0.448 0.604 0.604 0.015 0.001 0.157 0.158
Decision Tree 0.747 0.805 0.795 0.805 0.802 0.058 0.046 0.058 0.054
Logit Boost 0.753 0.746 0.75 0.765 0.768 -0.007 -0.003 0.012 0.015
Extra Trees 0.773 0.762 0.772 0.778 0.782 -0.011 -0.001 0.005 0.009

Random Forest 0.796 0.762 0.779 0.798 0.795 -0.034 -0.017 0.002 -0.001
XGBoost 0.791 0.756 0.767 0.798 0.796 -0.035 -0.026 0.007 0.005

Averages 0.473 0.476 0.478 0.534 0.531 0.003 0.005 0.060 0.058
* Logistic Regression delivered multiple alerts of failed convergence in many datasets regardless of the combination of parameters we tried.

11

than its competitors, making it applicable also to scenarios where
labels are not available.

5.1.2 Benchmarking using TALENT

Our experimental analysis already includes many datasets and
many classifiers to be used individually and as base estimators for
confidence ensembles. However, in recent years there has been a
quick development of benchmarking frameworks for classification
and regression tasks for tabular datasets that cannot be ignored.
Thus, we benchmarked confidence ensembles, both ConfBag and
ConfBoost, within one of these frameworks, LAMDA-TALENT
[32], which is available at https://github.com/qile2000/LAMDA-
TALENT. The exact steps we followed to perform the benchmark
are detailed in the conf-ensembles repository [72], which contains
all the additional configuration files and scripts we crafted to
exercise confidence ensembles within LAMDA-TALENT. In
short, we extended the base classes to craft new classifiers, adding
default configuration parameters and those that are selected in the
optimization phase through grid searches, which are automatically
executed within the framework. Also, the current version of the
framework misses a script for plotting the figures that are in the
paper [32], thus we logged metric scores for classifiers and
datasets as CSV files, and edited them as Excel worksheets for data
cleaning and plotting. Out of all the datasets available in the
benchmark, we filtered out those related to regression tasks, and
those that were triggering issues while training some classifiers
(likely due to imperfect management of categorical features and
missing values), which are only a few.

The results are shown in Figure 3, which plots scores of
different classifiers, averaged across all datasets in the benchmark.
Mimicking the documentation of LAMDA-TALENT, on the
horizontal axis we report the MCC rank (i.e., rank i means that the
classifier has the i-th best MCC on a dataset), where a lower rank
indicates better performance, while the vertical axis shows the
average training time in seconds, on a logarithmic scale. The
results obtained for the benchmark are consistent with the results
from Section 5.1.1: for some base estimators as Decision Tree
(DT), Logistic Regression (LR), Naïve Bayes (GNB), both
ConfBag and ConfBoost provide a far better classification
performance (i.e., depicted closer to the left) than base estimators.
For stronger learners as XGB and RF, ConfBoost allows for faster
training times for either the same or a slightly improved
classification capability. DNNs are behind in the benchmark,
requiring more time to train and also having worse classification

performance.

5.2 RQ2 – Comparison with other Bagging and Boosting
Ensembles

The results in the previous section suggest that confidence
ensembles have the potential to improve classification
performance against existing classifiers but does not show how
they compare against alternative existing bagging and boosting
ensembles. When analysing any ensemble learner, it is important
to focus on the number k of base learners that are trained and then
used at inference time, slowing down inference. Table IV
quantifies the MCC of confidence ensembles and regular bagging
/ boosting ensembles for supervised base estimators, varying the
amount of base learners k. We left unsupervised base estimators
out of the comparison as it is not possible to apply traditional
boosting techniques to unsupervised classification by design, thus
we would have missed the AdaBoostClassifier scores.

First, we can observe how confidence ensembles outperform
traditional bagging and boosting ensembles in the vast majority of
cases. Starting from the top of the table, the GNB classifier has an
average MCC of 0.415 (the column with k=1, or single learner, has
the same value as the “base estimator” in Table III), with
traditional bagging it goes up to 0.469, with boosting it stops at
0.462, with ConfBag goes to 0.470, and with ConfBoost reaches
0.516. Furthermore, in general for the GNB, Logistic regression,
LDA, Decision Tree classifiers we observe that:
• all ensembles outperform their base estimator;
• ConfBag has scores similar to the traditional

BaggingClassifier;
• ConfBoost clearly outperforms traditional boosting, and it is

almost always the top performing ensemble.
Second, we read the table as follows: the more a “best” score

leans towards the right side, the more base learners are needed and
thus the more time and resource intensive the classification
process will be. The MCC scores on the bottom right of the table
are those of supervised ensembles Logit Boost, Extra Trees,
Random Forests, XGBoost that we ran with default parameter
values, which is k=100 base learners. These supervised ensembles
are considered the top performing classifiers and have average
MCC as high as 0.796 (Random Forest with 100 base learners, see
second-last row on the extreme right of Table IV). The reader
should notice how ConfBag and ConfBoost ensembles of Decision
Trees reach and even exceed this MCC score using only k=10 base
learners (4th column, 20-21th rows of the table), and further

Figure 3: Results using the TALENT benchmark: ConfBag (blue dashes) and ConfBoost (orange circles) are exercised alongside non-DNN

(green squares) and DNN (light-blue triangles) classifiers. The plot shows the MCC rank against training time, averaged across 100+ datasets.

ConfBoost(DT)

ConfBoost(LR)

ConfBoost(NB)

ConfBoost(RF)
ConfBoost(XGB)

dummy

DT

KNNLR

NB

NCM

RF
SVM

XGB

ConfBag(NB)

ConfBag(RF)

ConfBag(DT)

ConfBag(LR)

ConfBag(XGB)

mlpresnet

tabcaps
tabnet

node
danets

switchtab

realmlp

modernNCA
excelformer

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m

e(
se

c)

Average MCC Rank

ConfBoost
non-DNN
ConfBag
DNN

Optimum

https://github.com/qile2000/LAMDA-TALENT
https://github.com/qile2000/LAMDA-TALENT

12

improve with k=20 (5th column, same rows), reaching an average
MCC of 0.804. This confirms the view that confidence ensembles
are more accurate than the existing classifiers, and that they also
require crafting significantly fewer base learners, which is a huge
achievement as the resulting model will require far less resources
than those needed by the existing supervised ensembles.

5.3 RQ3 – Impact of Hyper-Parameters

This section illustrates how different values assigned to hyper-
parameters affect the performance of confidence ensembles.
Parameters such as k, conf_thr, f_bag and weighted_pred, may
have an impact to ConfBag, while k, conf_thr, sampling_ratio and
weighted_pred have a significant impact on ConfBoost.

We quantify and depict the impact of the various parameters
in Figure 4, which plots the average MCC achieved by ConfBag
(left) and ConfBoost (right), respectively, while varying the values

of hyper-parameters listed above. Down-facing black arrows in
each plot point to the highest column, corresponding to the best
overall classification performance. For ConfBag (left of Figure 4),
we observe bars that are progressively growing from front to
bottom: the first three lines of bars correspond to a conf_thr = 0.5,
while the farther ones correspond to conf_thr = 0.7. Also, bars in
the middle of the plot (k=10) are higher than those on the left (k =
20) and on the right (k=5); having a weighted_pred = True (see
where black arrows point to) usually allows for an additional slight
improvement of classification performance. Overall, we conclude
that ConfBag ensembles of k=10 base learners with
weighted_pred=True and conf_thr ≥ 0.7 should be preferred over
other combinations.

For ConfBoost (right of Figure 4), we observe slightly
different trends. First, the biggest impact on classification
performance is due to the number of base learners. From front (k
= 5) to bottom (k = 20) of the plot, we can notice bars becoming
higher and higher, with major jumps between the second (orange-
patterned cylinders) and third (striped parallelepipeds) series, and
from the fourth (yellow cylinders) to the fifth (blue
parallelepipeds) series; these mark the increases from 5 to 10 and
from 10 to 20 base learners. Using a weighted_pred = True does
not seem to have a major impact: the 1st, 3rd, 5th series (non-
weighted prediction) are almost on par compared to the others
using weighted predictions. The sampling_ratio has also a
noticeable effect: if low (0.1, see right of the plot), it has a very
detrimental impact. However, there are no major differences when
using a sampling ratio of 0.3 or 0.5 (middle and left of the plot).
Overall, we conclude that ConfBoost ensembles of k ≥ 20 base
learners with sampling_ratio ≥ 0.3 should be preferred over others.

As a final remark in this section, we acknowledge that these
findings are based on the “average case”: the optimal performance
in specific case studies may be reached using different
combinations of parameters. Nevertheless, the results in Figure 4
are useful to derive general guidelines and for setting up default
parameters for confidence ensembles.

5.4 RQ4 – Time Overhead

The main downside of ensemble learning is that resulting
models are more complex and thus always require more time than
individual non-ensemble classifiers. Confidence ensembles are no
different: the higher the k, the more base learners are used in the
ensemble, the more time is needed for their training. We note that

Table IV. Average MCC of confidence ensembles against
supervised ensemble classifiers varying the number k of base

learners.
k (# base learners) 1 5 10 20 100

GNB

 ←
 M

C
C

 u
sin

g
de

fa
ul

t e
st

im
at

or
s=

10
0

(s
ee

 T
ab

le
 II

I) BaggingClassifier 0.415 0.469 0.468 0.469
AdaBoostClassifier 0.415 0.422 0.425 0.462

ConfBag 0.415 0.464 0.470 0.467
ConfBoost 0.415 0.464 0.496 0.516

Logistic Regression
BaggingClassifier 0.281 0.310 0.299 0.308

AdaBoostClassifier 0.281 0.271 0.277 0.291
ConfBag 0.281 0.325 0.315 0.291

ConfBoost 0.281 0.362 0.397 0.425
LDA

BaggingClassifier 0.447 0.445 0.441 0.443
AdaBoostClassifier n.a. n.a. n.a. n.a.

ConfBag 0.447 0.456 0.444 0.449
ConfBoost 0.447 0.542 0.589 0.609

Decision Tree
BaggingClassifier 0.747 0.768 0.784 0.791

AdaBoostClassifier 0.747 0.754 0.768 0.769
ConfBag 0.747 0.775 0.796 0.804

ConfBoost 0.747 0.782 0.799 0.803
Ensembles

Logit Boost 0.715 0.733 0.743 0.753
Extra Trees 0.756 0.763 0.769 0.773

Random Forest 0.776 0.782 0.789 0.796
XGBoost 0.717 0.752 0.777 0.791

Figure 4: Variation of MCC scores for different combination of hyperparameters for ConfBag (left) and ConfBoost (right) ensembles.

0.420

0.430

0.440

0.450

0.460

0.470

0.480

20-False 20-True 10-False 10-True 5-False 5-True

Av
er

ag
e

M
CC

k - weighted_pred

0.7-0.7

0.7-0.5

0.7-0.2

0.5-0.7

0.5-0.5

0.5-0.2

conf_thr
- f_bag 0.450

0.460

0.470

0.480

0.490

0.500

0.510

0.520

0.9-0.5 0.8-0.5 0.9-0.3 0.8-0.3 0.9-0.1 0.8-0.1

Av
er

ag
e

M
CC

conf_thr - sampling_ratio

5-False

5-True

10-False

10-True

20-False

20-True

k -
weighted_pre

d

13

training a classifier is typically considered a one-off overhead
which, even if significant, may be acceptable. The need to retrain
a classifier may occur, but is rare, e.g. to respond to new classes,
or to match distribution shifts, which may emerge after the
classifier has been deployed.

Figure 5 shows the train times required for a Decision Tree
(DT) and for ConfBag and ConfBoost ensembles built using DT
as a base estimator. We choose DT as it resulted in the highest
MCC in Table III and Table IV: the expectation is that this trend
will hold in terms of the relative increase in training time when
changing the base estimator. The average time needed to train a
DT in the 23 datasets in this study is 563 ms (left of Figure 5): a
rough expectation could then be that confidence ensembles of size
k will require k*563 ms for training i.e., if k=20, the train time may
be 20*563 = 11260 ms. However, we can observe that ConfBoost
ensembles with k=20 base learners (see labels over the x-axis)
have a training time that ranges between 5000 and slightly over
8000 ms. This is because parameters f_bag and sampling_ratio
affect the amount of data used to train each base learner, and thus
the overall training time. Another important observation is that the
times shown in Figure 5 were computed running experiments as a
single-thread process, blocking parallelization. Training of
ConfBag base learners can be parallelized which can lead to
significant reduction of the overall time on training the base
learners depending on the capabilities of the specific machine used
for training.

The most significant overhead of using ensembles, and
confidence ensembles in particular, is the one that occurs during
inference. Similarly to training, this is proportional the number of
base learners in the ensemble. However, the discussion of RQ2
(Section 5.2) suggests that the usage of a limited number of base
learners may still be sufficient to provide improved classification
capabilities of confidence ensembles, generating less overhead and
requiring fewer resources than other ensemble classifiers.

5.5 RQ5 – Robustness to Unexpected Inputs

The last research question concerns the robustness to non-IID
data or unexpected inputs of confidence ensembles. We quantified
that by training and testing all classifiers in our study, including
the confidence ensembles, using the dataset variants as defined in
Section 4.5.4. We aggregated the scores obtained on all dataset
variants and all classifiers in Table V, which reports rec-unk scores

of base estimators (one per row) and confidence ensembles.
Unsupervised classifiers (base estimators in the first half of the

table, 2nd column) have a better rec-unk than the supervised
classifiers even with lower classification performance overall (see
Table III). This confirms the results of field studies [4], [5],
pointing to a better capability of dealing with unknowns of
unsupervised classifiers than supervised counterparts.

Deploying ConfBoost ensembles over supervised base
estimators makes for a significant increase of rec-unk. This
improvement is significant for Decision Trees (0.426 to 0.667),
ensembles as Random Forests (0.424 to 0.658) and XGBoost
(0.434 to 0.644). A ConfBoost with Decision Trees as base
estimator has an average rec-unk of 0.667, meaning that exactly
two-thirds of unexpected inputs are being correctly classified. This
is a very significant improvement from the 4 out of 10 (rec-unk of
0.426) obtained by using decision trees alone.

Throughout years, researchers struggled to combine
supervised and unsupervised classification mechanisms to obtain
a unique complex classifier with optimal classification
performance (that unsupervised classifiers do not achieve, when
labels are available) and high robustness (which supervised
classifiers often lack) [60], [41]. However, there is still no solution
that is easy to deploy without excessive complexity and that
consistently outperforms its competitors. Our results clearly
suggest that ConfBoost ensembles create both more accurate and
more robust classifiers thanks to their training process that relies
on the concept of confidence in the classifier’s predictions.

Figure 5: Variation of Train Time for different instances of

ConfBag (down in the figure) and ConfBoost (up) built over
Decision Trees as base estimator (DT, middle of the plot)

Table V. Comparison of rec-unk of supervised and unsupervised
classifiers against confidence ensembles in the presence of

unknowns. The numbers in bold highlight the highest rec-unk for
a specific base estimator and corresponding confidence

ensembles.

Classifier

B
as

e
E

st
im

at
or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

U
ns

up
er

vi
se

d CBLOF 0.461 0.466 0.464 0.486 0.427
Isolation Forest 0.464 0.416 0.430 0.442 0.451

INNE 0.457 0.464 0.469 0.490 0.508
HBOS 0.425 0.372 0.393 0.413 0.405
PCA 0.430 0.427 0.414 0.422 0.432

Su
pe

rv
is

ed

GNB 0.441 0.536 0.555 0.583 0.579
Logistic Regression * 0.253 0.288 0.265 0.510 0.514

LDA 0.326 0.433 0.480 0.598 0.599
Decision Tree 0.426 0.512 0.490 0.667 0.661
Logit Boost 0.434 0.480 0.483 0.562 0.585
Extra Trees 0.412 0.480 0.481 0.622 0.631

Random Forest 0.424 0.485 0.487 0.640 0.658
XGBoost 0.434 0.491 0.495 0.599 0.644

* Logistic Regression delivered multiple alerts of failed
convergence in many datasets regardless of the combination of

parameters we tried.

14

6 A Statistical Validation using Confidence Intervals

This section provides a statistical validation of the
performance of confidence ensembles and their base estimators.

6.1 Computing Confidence Intervals

Rather than using the measured MCC value, as is done in the
previous section, we account for the uncertainty attached to these
point estimates, which is due to randomness in the training and
testing processes. The analysis is based on confidence intervals
computed for each point estimate of MCC. Confidence intervals
were computed using the code used in [94] (available at
https://github.com/yukiitaya/MCC) which computes Simple,
Fisher and Zou confidence intervals [95] for a given confusion
matrix (from which MCC point estimates have been computed) at
a given confidence level. As suggested in [96], “when the means
of two independent samples are to be presented (graphically), it is
a common practice to accompany the two points by error bars
giving the 95% confidence intervals for each mean”. Thus, we set
a 95% confidence level and computed the confidence interval for
all classifiers and all datasets as a range

𝐴𝐴𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 = [𝑀𝑀𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝 −
𝑐𝑐𝑖𝑖𝑛𝑛𝑡𝑡

2 ; 𝑀𝑀𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝 +
𝑐𝑐𝑖𝑖𝑛𝑛𝑡𝑡

2]

where MCCpe is the point estimate of an MCC score calculated in
classifier’s testing, and cint is the tightest of the three confidence
intervals above. The resulting CIMCC range will contain the “true
MCC value” with a probability of 95%.

6.2 Possible Outcomes of the Analysis

For each combination of 23 datasets and 13 base estimators,
we computed the confidence interval i) using the MCCpe of the
base estimator CIMCC(base), and ii) using the highest MCCpe of
ConfBag and ConfBoost in that combination i.e., CIMCC(ens).
Comparing CIMCC(base) against CIMCC(ens) may result in one of
the following outcomes.

There is no statistically significant difference between MCC
scores of the base estimator and confidence ensembles when
CIMCC(base) and CIMCC(ens) intervals overlap. With the chosen
confidence level of 95%, the null hypothesis “the two-point
estimates are identical” is statistically significant in this case.
Conversely, CIMCC(base) and CIMCC(ens) may not overlap, leading
to reject the null hypothesis. Confidence ensembles are better than
the base estimator whether the interval CIMCC(ens) occupies a
range of values that are strictly greater than the values occupied by
CIMCC(base). The opposite happens when CIMCC(ens) occupies
values strictly smaller than those of CIMCC(base); here, confidence
ensembles are worse than the base estimator.

These 3 cases are illustrated in Figure 6 with examples from
the study. From the left of the figure, applying CBLOF as the base
estimator and for creating confidence ensembles in the ADFANet
dataset resulted in overlapping CIMCC(ens) and CIMCC(base)
intervals. The difference between the respective MCC point
estimates is not statistically significant: there is no evidence that
the confidence ensembles outperform the base estimator. The
example in the middle of Figure 6 shows that confidence
ensembles, built using PCA as a base estimator perform better than
the base estimator, while the opposite is depicted on the right of
the figure, where the base estimator Extra Trees has better
classification performance than confidence ensembles on the

ARANCINO dataset.
Considering all the combinations of datasets and base

estimators in our experimental study, we obtain the following:
• there is no statistically significant difference between the

confidence ensembles and the base estimator in 53 out of 285
(18.6%) combinations.

• Confidence ensembles are better than the respective base
estimators in 222 out of 285 (77.9%) combinations.

• Confidence ensembles are worse than the base estimators in
only 10 out of 285 (3.5%) combinations.

These results show further evidence of the superiority of
confidence ensembles over the respective base estimators. The
benefits are evident not only via the experimental MCC point
estimates from Section 5, but also after accounting for the
uncertainty in the MCC scores. In the vast majority of the cases
(96.5%) the confidence ensembles are not worse than the
respective base estimators and in a significant proportion of
combinations (~78%) offer an outright benefit.

6.3 Impact of Confidence Ensembles on Base Estimators

As a last contribution, we analyse the statistical improvement
of confidence ensembles over individual base estimators, depicted
in Figure 7. From top to bottom of the bar chart, we depict red
slices when the base estimators are statistically better than
confidence ensembles, light-grey slices when there is no

Figure 6: Examples of possible outcomes of the statistical
validation: i) no statistical difference (left), ii) confidence

ensembles are better than the base estimator (center), and iii) the
base estimator is better than confidence intervals (right).

No Statistical
Difference

Confidence
Ensembles are Better

Base Estimator
is Better

CIMCC(base)

ADFANet dataset,
CBLOF estimator

CIMCC(ens)

Outcome:

ADFANet dataset,
PCA estimator ARANCINO dataset,

ExtraTrees estimator

CIMCC(base)
CIMCC(base)

CIMCC(ens)

CIMCC(ens)

Figure 7: The bar chart shows the percentage of cases in which

confidence ensembles are statistically better (green), worse (red),
no statistical difference (light-grey) against base estimators.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

O
ve

ra
ll

CB
LO

F

Is
ol

at
io

n
Fo

re
st

IN
NE

HB
O

S

PC
A

GN
B

Lo
gi

st
ic

Re
g * LD

A

De
ci

si
on

Tr
ee Lo

gi
t

Bo
os

t
Ex

tra
Tr

ee
s

Ra
nd

om
Fo

re
st

XG
Bo

os
t

Confidence Ensembles are Better no statistical difference Base Estimator is Better

SupervisedUnupervised

https://github.com/yukiitaya/MCC

15

significant statistical difference, and green slices when confidence
ensembles are better than the base estimators.

The overall bar on the left of the chart summarizes the overall
behaviour reported at the end of Section 6.2. When unsupervised
classifiers are used as base estimators, the green slice grows more,
simultaneously reducing the light-grey area. However, the most
outstanding results can be observed for GNB, Logistic Regression,
LDA, Logit Boost, Random Forests, and XGBoost base
estimators, for which confidence ensembles are never statistically
worse than base estimators and still being beneficial in most of the
cases (i.e., no red slice). This is a critical improvement as decision
tree ensembles as Random Forests and XGBoost are the de-facto
standard for classification in tabular data [2], [16], [17], [27], [28]
as they typically outperform their competitors. The two bars on the
extreme right of Figure 7 show that confidence ensembles of
Random Forests or XGBoost can further improve the performance
of these two top-notch base estimators, with no drawbacks.

7 Threats to Validity and Reproducibility

We report here possible limitations to the validity and the
applicability of our study.

7.1 Internal Validity

Internal validity is concerned with factors that may have
influenced the results, but they have not been thoroughly
considered in the study.

First, classifiers have hyperparameters whose tuning critically
affects the classification performance: as explained in Section 4.3,
this is not relevant for the base estimators, but it is for ConfBag
and ConfBoost. Therefore, we exercise confidence ensembles
under different parameters’ combinations and discuss the results
of these sensitivity analyses in Section 5.3 (RQ3). We discuss our
plans for future work on confidence threshold in section 8 below.

Second, each classifier may encounter a wide variety of
problems during training (e.g., under/overfitting, poor quality of
features, feature selection to leave out noisy features, etc.). These
problems may have a noticeable impact on the classification
performance of a classifier. The use of multiple tabular datasets
with different features helped us mitigate this problem, as the
envisaged problems are unlikely to affect all datasets. In cases
where we found that these problems were recurring consistently,
we made sure to find solutions through a careful tuning of hyper-
parameters, as with Logistic Regression.

7.2 External Validity

We cannot claim validity of this study for classifiers and domains
other than those that we used in this study. One of the authors of
this paper already conducted a preliminary analysis [18] using a
technique similar to ConfBoost, and applying it using DNN base
estimators for image classification. One of the major limitations
was that the number of (DNN) estimators needed to be kept very
low to avoid incurring in lack of resources or unfeasibly lengthy
training and inference times. Since tree-based classifiers typically
outperform or at least have comparable classification performance
with DNNs for tabular data classification [2], [27], [28], [31], [32],
there was no need to deploy confidence ensembles over DNNs.
Indeed, confidence ensembles are agnostic to the base estimator
by design, provided that there is a way to estimate the confidence

in a specific prediction. Building confidence ensembles with
DNNs as base estimators will result in resource-hungry classifiers
that would limit their applicability in resource-constrained
systems, which is a frequent condition in embedded or IoT
systems, to name a few. Therefore, confidence ensembles using
DNN base estimators should be used only in domains, mostly
computer vision as image classification, where DNNs are clearly
outperforming other competitors.

Theoretically, confidence ensembles may also be generalized
to regression problems, but this process will require domain-
specific knowledge of regression problems and is outside the
scope of this paper.

7.3 Reproducibility

The usage of public data and public frameworks to build
classifiers was a prerequisite for our analysis to enable the
reproducibility of the analysis and scrutiny of the findings. All
software used to obtain results presented therein is publicly
available on GitHub [72] and PyPI, including the scripts to
reproduce the experiments (see Appendix A for further
descriptions). The framework does not include the datasets we
used due to IP constraints; however, the manuscript provides the
reader with references to all datasets, which are available to
download at the owner/publisher’s websites.

8 Conclusions and Future Work

This paper introduced confidence ensembles, ensembles of
Machine Learning classifiers that use confidence in predictions
within the training process to learn their model. Confidence
ensembles craft their base learners as multiple instances of an
existing classifier, (i.e., base estimator), without requiring any
additional input by the user. Confidence estimation is considered
model-agnostic, enabling the application of confidence ensembles
to any classification task. The confidence ensembles ConfBag and
ConfBoost stem from traditional bagging and boosting,
respectively, but their behaviour is noticeably different compared
to baselines due to employing confidence in learners’ predictions.

After designing ConfBag and ConfBoost, we set up an
experimental campaign that uses more than 20 public datasets
collected by monitoring real or simulated ICT systems and
infrastructures. Our studies include many supervised and
unsupervised classifiers used for processing tabular data, a
common data type in real-world applications, despite the
formulation of confidence ensembles makes them applicable also
to other classification (e.g., image) tasks. After discussing research
questions RQ1 to RQ5, we found that:
• (RQ1) confidence ensembles are typically more accurate than

the base estimators they are derived from. Especially,
ConfBoost is a flat-out upgrade for any unsupervised
classification task and allows also to improve the
performance of tree-based supervised classifiers, which are
the preferred choice for tabular data classification.

• (RQ2) compared to traditional bagging and boosting
ensembles, ConfBag and ConfBoost require fewer base
learners to provide improved classification performance. This
is critical from an implementation standpoint, as it allows for
more efficient usage of resources as fewer inference
processes have to be carried out simultaneously.

16

• (RQ3) despite having many hyper-parameters that could
affect the classification performance, only a few of them may
be worth subjecting to tuning, which may be optional in some
cases.

• (RQ4) the time - and complexity - overhead of using
confidence ensembles over base estimators is linearly
dependent on the number of base learners.

• (RQ5) confidence ensembles and especially ConfBoost are
much more robust to unexpected inputs (i.e., non IID,
belonging to distributions other than those used in training
and validation) than the base estimators.

• An additional validation of experimental results using
confidence intervals demonstrates how confidence ensembles
are statistically better in more than half of the cases, and that
confidence ensembles using LDA Logistic Regression, LDA,
Logit Boost, Random Forests, and XGBoost are never
statistically worse than base estimators, still being beneficial
in most of the cases.

Wrapping up, we have both experimental and statistical
evidence that ConfBag and, even more, ConfBoost have a clear
potential to improve any classifier in terms of both accuracy and
robustness of classification, with little to no drawbacks aside from
the increased complexity. Confidence ensembles can be applied to
a wide range of problems and can be deployed over many
classifiers. The Python framework publicly available on GitHub
and PyPI [72] makes them easy to use, mimicking interfaces from
well-known frameworks as scikit-learn.

Among the directions for future work, our activities will
mostly be devoted to the following aspects.

Confidence Thresholds and Optimization. We acknowledge the
possibility to consider alternative ways of using confidence
thresholds in our approach. Currently, this threshold is defined as
a hyperparameter, and its value is expected to come from the user
of our methods (a default value if also defined in the respective
classes). An alternative approach would be to consider whether an
optimal value of the confidence threshold can be automatically
sought during the training process. We have conducted
preliminary studies and established that the value of the threshold
impacts the classification accuracy, thus this machinery has high
potential. However, we realise that seeking an optimal threshold
value in training, which defines tighter decision boundaries, may
negatively affect the capability of confidence ensembles of dealing
with unexpected inputs (as discussed in section 5.5). The
optimization will depend on a train/validation set, which may not
be distributed the same as test data, likely dropping classification
performance in case of unknown, non IID inputs.

Usage of a Set of Base Estimators. Widespread and proven-in-
use fusion and ensemble techniques as Bagging and Boosting
assume that base-learners are created as variants of the same ML
algorithms: this is also the case of confidence ensembles. The
usage of different ML algorithms for crafting base learners found
application in many techniques as stacking, cascading, cascade
generalization, delegation, recovery blocks as it promotes
diversity, which is the enabling condition [14], [38] for ensemble
learning to outperform individual classifiers. When drafting
confidence ensembles at a first stage, we were initially thinking of
using different base estimators. The problem we found is that each
classifier has their own probability distribution of predictions: the
usage of a unique confidence threshold did not allow to fully take
advantage of the diversity of base estimators. A possible solution

could be to allow only perfectly, or semi-perfectly calibrated [97]
classifiers to be used as base estimators, alleviating this issue.
Calibration should make predicted probabilities comply to a
common distribution, making them behave properly against the
confidence threshold used by the confidence ensemble.

Framework refinement. The framework for confidence
ensembles is publicly available at [72] and fully operational.
However, there are ongoing coding optimizations and others to be
made for increasing the quality of the code and its speed, relying
on GPU supports whenever available.

Acknowledgments

This work was supported in part by the 202297YF75 PRIN
2022 project S2 under the MUR National Recovery and Resilience
Plan funded by the European Union - NextGenerationEU. The
CogniSafe3D EUROSTARS 3.6 project funded by the EU, and by
the AUAS Project, funded by the EU ECSEL Programme (Grant
Agreement 737475).

The authors are grateful to the editor and the anonymous
reviewers for the thorough reviews and the numerous useful
suggestions for improvements of the paper.

References

[1] Coelho, P., Bessa, C., Landeck, J., & Silva, C. (2023). Industry 5.0: the
arising of a concept. Procedia Computer Science, 217, 1137-1144.

[2] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you
need,” Information Fusion, vol. 81, pp. 84–90, May 2022, doi:
10.1016/j.inffus.2021.11.011.

[3] S. Tan, Q. Li, L. Li, B. Li, and J. Huang, “STD-NET: Search of Image
Steganalytic Deep-Learning Architecture Via Hierarchical Tensor
Decomposition,” IEEE Trans Dependable Secure Computing, pp. 1–18,
2023, doi: 10.1109/TDSC.2023.3267065.

[4] H. Zhang, H. Xu, X. Tian, J. Jiang, and J. Ma, “Image fusion meets deep
learning: A survey and perspective,” Information Fusion, vol. 76, pp.
323–336, Dec. 2021, doi: 10.1016/j.inffus.2021.06.008.

[5] R. Sathya and A. Abraham, “Comparison of Supervised and
Unsupervised Learning Algorithms for Pattern Classification,”
International Journal of Advanced Research in Artificial Intelligence, vol.
2, no. 2, 2013, doi: 10.14569/IJARAI.2013.020206.

[6] T. Zoppi, A. Ceccarelli, T. Puccetti, and A. Bondavalli, “Which algorithm
can detect unknown attacks? Comparison of supervised, unsupervised,
and meta-learning algorithms for intrusion detection,” Computers and
Security, vol. 127, 2023, doi: 10.1016/j.cose.2023.103107.

[7] M. Catillo, A. Pecchia, and U. Villano, “CPS-GUARD: Intrusion
detection for cyber-physical systems and IoT devices using outlier-aware
deep autoencoders,” Computers and Security, vol. 129, p. 103210, Jun.
2023, doi: 10.1016/j.cose.2023.103210.

[8] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in 2010 IEEE
Symposium on Security and Privacy, IEEE, 2010, pp. 305–316. doi:
10.1109/SP.2010.25.

[9] X. Ma, J. Zhu, Z. Lin, S. Chen, and Y. Qin, “A state-of-the-art survey on
solving non-IID data in Federated Learning,” Future Generation
Computer Systems, vol. 135, pp. 244–258, Oct. 2022, doi:
10.1016/j.future.2022.05.003.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans
Dependable Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004, doi:
10.1109/TDSC.2004.2.

[11] Z. Xu and J. H. Saleh, “Machine learning for reliability engineering and
safety applications: Review of current status and future opportunities,”

17

Reliability Engineering and System Safety (RESS), vol. 211, p. 107530,
Jul. 2021, doi: 10.1016/j.ress.2021.107530.

[12] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 Eighth
IEEE International Conference on Data Mining, IEEE, Dec. 2008, pp.
413–422. doi: 10.1109/ICDM.2008.17.

[13] L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32,
2001, doi: 10.1023/A:1010933404324.

[14] L. Breiman, “Bagging predictors,” Mach Learn, vol. 24, no. 2, pp. 123–
140, Aug. 1996, doi: 10.1007/BF00058655.

[15] Y. Freund, “Boosting a Weak Learning Algorithm by Majority,”
Information and Computation, vol. 121, no. 2, pp. 256–285, Sep. 1995,
doi: 10.1006/inco.1995.1136.

[16] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA: ACM,
Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

[17] S. González, S. García, J. Del Ser, L. Rokach, and F. Herrera, “A practical
tutorial on bagging and boosting based ensembles for machine learning:
Algorithms, software tools, performance study, practical perspectives and
opportunities,” Information Fusion, vol. 64, pp. 205–237, Dec. 2020, doi:
10.1016/j.inffus.2020.07.007.

[18] R. Rosales, P. Popov, and M. Paulitsch, “Evaluation of Confidence-based
Ensembling in Deep Learning Image Classification,” Mar. 2023,
https://arxiv.org/abs/2303.03185.

[19] S. Dey, Q. Ye, and S. Sampalli, “A machine learning based intrusion
detection scheme for data fusion in mobile clouds involving
heterogeneous client networks,” Information Fusion, vol. 49, pp. 205–215,
2019, doi: https://doi.org/10.1016/j.inffus.2019.01.002.

[20] M. A. Souza, R. Sabourin, G. D. C. Cavalcanti, and R. M. O. Cruz, “A
dynamic multiple classifier system using graph neural network for high
dimensional overlapped data,” Information Fusion, vol. 103, p. 102145,
2024, doi: https://doi.org/10.1016/j.inffus.2023.102145.

[21] X. Mao, H. Yang, S. Huang, Y. Liu, and R. Li, “Extractive summarization
using supervised and unsupervised learning,” Expert Systems and
Applications, vol. 133, pp. 173–181, Nov. 2019, doi:
10.1016/j.eswa.2019.05.011.

[22] M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsupervised
Anomaly Detection Algorithms for Multivariate Data,” PLoS One, vol.
11, no. 4, p. e0152173, Apr. 2016, doi: 10.1371/journal.pone.0152173.

[23] J. Lever, “Classification evaluation: it is important to understand both
what a classification metric expresses and what it hides,” Nat Methods,
vol. 13, p. 603+, 2016, [Online]. Available:
https://link.gale.com/apps/doc/A459507798/HRCA?u=anon~f33228a3&
sid=googleScholar&xid=ceaf5104.

[24] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards Automated Log
Parsing for Large-Scale Log Data Analysis,” IEEE Trans Dependable
Secure Computing, vol. 15, no. 6, pp. 931–944, Nov. 2018, doi:
10.1109/TDSC.2017.2762673.

[25] P. P. do Nascimento, P. Pereira, J. M. Mialaret, I. Ferreira, and P. Maciel,
“A methodology for selecting hardware performance counters for
supporting non-intrusive diagnostic of flood DDoS attacks on web
servers,” Computers and Security, vol. 110, p. 102434, Nov. 2021, doi:
10.1016/j.cose.2021.102434.

[26] P. Rodríguez, M. A. Bautista, J. Gonzàlez, and S. Escalera, “Beyond one-
hot encoding: Lower dimensional target embedding,” Image and Vision
Computing, vol. 75, pp. 21–31, Jul. 2018, doi:
10.1016/j.imavis.2018.04.004.

[27] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models
still outperform deep learning on typical tabular data?,” Adv Neural Inf
Process Syst, vol. 35, pp. 507–520, 2022.

[28] T. Zoppi, S. Gazzini, and A. Ceccarelli, “Anomaly-based error and
intrusion detection in tabular data: No DNN outperforms tree-based
classifiers,” Future Generation Computer Systems, vol. 160, pp. 951–965,
Nov. 2024, doi: 10.1016/j.future.2024.06.051

[29] S. Ö. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular
Learning,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 8, pp. 6679–6687, May 2021, doi:
10.1609/aaai.v35i8.16826.

[30] S. Popov, S. Morozov, and A. Babenko, “Neural Oblivious Decision
Ensembles for Deep Learning on Tabular Data,” in International

Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=r1eiu2VtwH

[31] McElfresh D, Khandagale S, Valverde J, et al. When do neural nets
outperform boosted trees on tabular data?. Advances in Neural
Information Processing Systems, 2024, 36.

[32] Liu, S. Y., Cai, H. R., Zhou, Q. L., & Ye, H. J. (2024). TALENT: A
Tabular Analytics and Learning Toolbox. arXiv preprint
arXiv:2407.04057.

[33] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a Survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009, doi:
10.1145/1541880.1541882.

[34] G. Li and J. J. Jung, “Deep learning for anomaly detection in multivariate
time series: Approaches, applications, and challenges,” Information
Fusion, vol. 91, pp. 93–102, 2023, doi:
https://doi.org/10.1016/j.inffus.2022.10.008.

[35] L. Erhan et al., “Smart anomaly detection in sensor systems: A multi-
perspective review,” Information Fusion, vol. 67, pp. 64–79, 2021, doi:
https://doi.org/10.1016/j.inffus.2020.10.001.

[36] P. Popov and B. Littlewood, “The effect of testing on reliability of fault-
tolerant software,” in International Conference on Dependable Systems
and Networks, 2004, IEEE, 2004, pp. 265–274. doi:
10.1109/DSN.2004.1311896.

[37] M. R. Lyu and A. Avižienis, “Assuring Design Diversity in N-Version
Software: A Design Paradigm for N-Version Programming,” 1992, pp.
197–218. doi: 10.1007/978-3-7091-9198-9_10.

[38] D. Opitz and R. Maclin, “Popular Ensemble Methods: An Empirical
Study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–198,
Aug. 1999, doi: 10.1613/jair.614.

[39] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier, “Meta-Learning by
Landmarking Various Learning Algorithms.,” in ICML, 2000, pp. 743–
750.

[40] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2,
pp. 241–259, Jan. 1992, doi: 10.1016/S0893-6080(05)80023-1.

[41] S. Džeroski and B. Ženko, “Is Combining Classifiers with Stacking Better
than Selecting the Best One?,” Mach Learn, vol. 54, no. 3, pp. 255–273,
Mar. 2004, doi: 10.1023/B:MACH.0000015881.36452.6e.

[42] Z. Gong, P. Zhong, and W. Hu, “Diversity in Machine Learning,” IEEE
Access, vol. 7, pp. 64323–64350, 2019, doi:
10.1109/ACCESS.2019.2917620.

[43] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Classifier
Ensembles and Their Relationship with the Ensemble Accuracy,” Mach
Learn, vol. 51, no. 2, pp. 181–207, 2003, doi: 10.1023/A:1022859003006.

[44] H. Jiang, B. Kim Google Brain, M. Y. Guan, and M. Gupta Google
Research, “To Trust Or Not To Trust A Classifier.” [Online]. Available:
https://github.com/google/TrustScore

[45] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: an introduction to concepts and methods,” Mach
Learn, vol. 110, no. 3, pp. 457–506, Mar. 2021, doi: 10.1007/s10994-021-
05946-3.

[46] W. J. Krzanowski, T. C. Bailey, D. Partridge, J. E. Fieldsend, R. M.
Everson, and V. Schetinin, “Confidence in Classification: A Bayesian
Approach,” J Classif, vol. 23, no. 2, pp. 199–220, Sep. 2006, doi:
10.1007/s00357-006-0013-3.

[47] D. Hendrycks and K. Gimpel, “A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks,” Oct. 2016.

[48] J. R. Fonseca, M. I. Friswell, J. E. Mottershead, and A. W. Lees,
“Uncertainty identification by the maximum likelihood method,” J Sound
Vib, vol. 288, no. 3, pp. 587–599, Dec. 2005, doi:
10.1016/j.jsv.2005.07.006.

[49] Z. Bilgin and M. Gunestas, “Explaining Inaccurate Predictions of Models
through k-Nearest Neighbors,” in Proceedings of the 13th International
Conference on Agents and Artificial Intelligence, SCITEPRESS - Science
and Technology Publications, 2021, pp. 228–236. doi:
10.5220/0010257902280236.

[50] Z. Xiao, Q. Yan, and Y. Amit, “Likelihood Regret: An Out-of-
Distribution Detection Score For Variational Auto-encoder.”

[51] T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Ensembling Uncertainty
Measures to Improve Safety of Black-Box Classifiers,” 2023. doi:
10.3233/FAIA230635.

https://openreview.net/forum?id=r1eiu2VtwH

18

[52] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why ReLU Networks
Yield High-Confidence Predictions Far Away From the Training Data
and How to Mitigate the Problem,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2019.

[53] J. Guerin, K. Delmas, R. Ferreira, and J. Guiochet, “Out-of-Distribution
Detection Is Not All You Need,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 12, pp. 14829–14837, Jun. 2023,
doi: 10.1609/aaai.v37i12.26732.

[54] K. He, D. D. Kim, and M. R. Asghar, “Adversarial Machine Learning for
Network Intrusion Detection Systems: A Comprehensive Survey,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, pp. 538–566, Oct.
2023, doi: 10.1109/COMST.2022.3233793.

[55] L. Xu, X. Ding, H. Peng, D. Zhao, and X. Li, “ADTCD: An Adaptive
Anomaly Detection Approach Toward Concept Drift in IoT,” IEEE
Internet Things J, vol. 10, no. 18, pp. 15931–15942, Sep. 2023, doi:
10.1109/JIOT.2023.3265964.

[56] Sina Mohseni, Mandar Pitale, Vasu Singh, and Zhangyang Wang,
“Practical Solutions for Machine Learning Safety in Autonomous
Vehicles,” SafeAI workshop @ AAAI, 2019.

[57] M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano, “Transferability
of machine learning models learned from public intrusion detection
datasets: the CICIDS2017 case study,” Software Quality Journal, vol. 30,
no. 4, pp. 955–981, Dec. 2022, doi: 10.1007/s11219-022-09587-0.

[58] Y. Liao and V. R. Vemuri, “Use of K-Nearest Neighbor classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439–448,
Oct. 2002, doi: 10.1016/S0167-4048(02)00514-X.

[59] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of
intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, p. 20, Dec. 2019, doi: 10.1186/s42400-019-
0038-7.

[60] T. Zoppi and A. Ceccarelli, “Prepare for Trouble and Make it Double.
Supervised and Unsupervised Stacking for Anomaly Based Intrusion
Detection,” arXiv. 2022. doi: 10.48550/arxiv.2202.13611.

[61] R. E. Schapire, “The strength of weak learnability,” Mach Learn, vol. 5,
no. 2, pp. 197–227, Jun. 1990, doi: 10.1007/BF00116037.

[62] Bartlett, P., Freund, Y., Lee, W. S., & Schapire, R. E. (1998). Boosting
the margin: A new explanation for the effectiveness of voting methods.
The annals of statistics, 26(5), 1651-1686

[63] Zhang, X. Y., Xie, G. S., Li, X., Mei, T., & Liu, C. L. (2023). A survey
on learning to reject. Proceedings of the IEEE, 111(2), 185-215.

[64] Li, L., Hu, Q., Wu, X., & Yu, D. (2014). Exploration of classification
confidence in ensemble learning. Pattern recognition, 47(9), 3120-3131.

[65] Lu, Z., Wu, X., Zhu, X., & Bongard, J. (2010, July). Ensemble pruning
via individual contribution ordering. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data
mining (pp. 871-880).

[66] Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In
International workshop on multiple classifier systems (pp. 1-15). Berlin,
Heidelberg: Springer Berlin Heidelberg.

[67] Parikh, D., & Polikar, R. (2007). An ensemble-based incremental learning
approach to data fusion. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 37(2), 437-450.

[68] Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine learning,
41, 315-343.

[69] Randell, B., & Xu, J. (1995). The evolution of the recovery block concept.
Software fault tolerance, 3, 1-22.

[70] Ferri, C., Flach, P., & Hernández-Orallo, J. (2004, July). Delegating
classifiers. In Proceedings of the twenty-first international conference on
Machine learning (p. 37).

[71] P. E. Hart, “Entropy and Other Measures of Concentration,” J R Stat Soc
Ser A, vol. 134, no. 1, p. 73, 1971, doi: 10.2307/2343975.

[72] T. Zoppi, “confidence-ensembles GitHub ,”
https://github.com/tommyippoz/confidence-ensembles.

[73] Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python Toolbox for Scalable
Outlier Detection,” Journal of Machine Learning Research, vol. 20, no.
96, pp. 1–7, 2019, [Online]. Available: http://jmlr.org/papers/v20/19-
011.html

[74] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-based
benchmark data sets for intrusion detection,” 2017.

[75] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward
Developing a Systematic Approach to Generate Benchmark Android
Malware Datasets and Classification,” in 2018 International Carnahan
Conference on Security Technology (ICCST), IEEE, Oct. 2018, pp. 1–7.
doi: 10.1109/CCST.2018.8585560.

[76] B. Meidan Yair and A. Shabtai, “detection of IoT botnet attacks N BaIoT.”
2018.

[77] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie, “Generating realistic
intrusion detection system dataset based on fuzzy qualitative modeling,”
Journal of Network and Computer Applications, vol. 87, pp. 185–192, Jun.
2017, doi: 10.1016/j.jnca.2017.03.018.

[78] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization,” in Proceedings of the 4th International Conference on
Information Systems Security and Privacy, SCITEPRESS - Science and
Technology Publications, 2018, pp. 108–116. doi:
10.5220/0006639801080116.

[79] H. Kang, D. H. Ahn, G. M. Lee, J. Do Yoo, K. H. Park, and H. K. Kim,
“IoT network intrusion dataset.” IEEE Dataport, 2019. doi:
10.21227/q70p-q449.

[80] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
May 2012, doi: 10.1016/j.cose.2011.12.012.

[81] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, IEEE,
Jul. 2009, pp. 1–6. doi: 10.1109/CISDA.2009.5356528.

[82] M. S. Elsayed, N.-A. Le-Khac, and A. D. Jurcut, “InSDN: A Novel SDN
Intrusion Dataset,” IEEE Access, vol. 8, pp. 165263–165284, 2020, doi:
10.1109/ACCESS.2020.3022633.

[83] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro,
and R. Therón, “UGR‘16: A new dataset for the evaluation of
cyclostationarity-based network IDSs,” Computers & Security, vol. 73,
pp. 411–424, Mar. 2018, doi: 10.1016/j.cose.2017.11.004.

[84] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), IEEE, Nov. 2015, pp. 1–6. doi: 10.1109/MilCIS.2015.7348942.

[85] BackBlaze, “BackBlaze HDD Data,” https://www.backblaze.com/cloud-
storage/resources/hard-drive-test-data.

[86] Baidu Inc, “Baidu HDD - Baidu SMART Dataset for Seagate
ST31000524NS drive model,”
https://www.kaggle.com/datasets/drtycoon/hdds-dataset-baidu-inc.

[87] W. C. S. Y. J.-H. Shin Hyeok-Ki; Lee and B.-G. Min, “HAI security
datasets.” 2023. [Online]. Available: https://github.com/icsdataset/hai

[88] H.-K. Shin, W. Lee, J.-H. Yun, and H. Kim, “HAI 1.0: HIL-based
Augmented ICS Security Dataset,” in 13th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 20), USENIX Association,
Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/cset20/presentation/shin

[89] N. Davari, B. Veloso, R. P. Ribeiro, P. M. Pereira, and J. Gama,
“Predictive maintenance based on anomaly detection using deep learning
for air production unit in the railway industry,” in 2021 IEEE 8th
International Conference on Data Science and Advanced Analytics
(DSAA), IEEE, Oct. 2021, pp. 1–10. doi:
10.1109/DSAA53316.2021.9564181.

[90] “APS Failure at Scania Trucks.” 2017 [online]
https://www.kaggle.com/datasets/uciml/aps-failure-at-scania-trucks-
data-set.

[91] T., Zoppi, G. , Merlino, A. , Ceccarelli, A. , Puliafito, and A. Bondavalli,
“Anomaly Detectors for Self-Aware Edge and IoT Devices,” in 2023
IEEE International Conference on Software Quality, Reliability and
Security (QRS), IEEE, 23AD.

[92] A. Agarwal, “Machine Failure Prediction.” Kaggle, 2018. [Online].
Available: https://kaggle.com/competitions/machine-failure-prediction

[93] D. Chicco and G. Jurman, “The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi:
10.1186/s12864-019-6413-7.

19

[94] Itaya, Y., et al. (2024) Asymptotic Properties of Matthews Correlation
Coefficient. arXiv.stat.ME 24 DOI: 10.48550/arXiv.2405.12622

[95] Zou, G. Y. (2007). "Toward using confidence intervals to compare
correlations." Psychological Methods Vol 12 (4): 399-413.

[96] Goldstein, H., & Healy, M. J. (1995). The graphical presentation of a
collection of means. Journal of the Royal Statistical Society: Series A
(Statistics in Society), 158(1), 175-177.

[97] Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J., &
Schön, T. (2019, April). Evaluating model calibration in classification. In
The 22nd international conference on artificial intelligence and statistics
(pp. 3459-3467). PMLR.

20

Appendix A

Structure of the Framework

The framework that implements ConfBag and ConfBoost is
called confidence-ensembles and is publicly available on GitHub
(https://github.com/tommyippoz/confidence-ensembles [72]) and
on PyPI (https://pypi.org/project/confidence-ensembles/).

Appling the framework includes the following steps:
• Define a base class Classifier which provides the definition

of the main interfaces and provides compatibility with scikit-
learn and PYOD frameworks. Thus, confidence ensembles
can be used in scikit-learn Pipelines, GridSearchCV for
parameters, or make them part of complex estimators such as
StackingClassifier or VotingClassifier without any issue.

• Define a class ConfidenceBaggingClassifier for ConfBag and
a ConfidenceBoostingClassifier for ConfBoost. These inherit
their type from Classifier and thus benefit from the features
of the superclass.

Shared Methods

Confidence ensembles classes, either
ConfidenceBaggingClassifier or ConfidenceBoostingClassifier,
have their own constructors, which we detail in the next
subsection. The classes also have the following additional
methods:

fit(self, X, y=None)
This function is used for training a classifier using a training
feature set (X) and labels(y), that are optional and set to None by
default. The training feature set can be a 2D matrix (either
numpy.ndarray or pandas.DataFrame) for tabular datasets, or an
array of images for image classification. Calling this function is
mandatory for calling any other function on the objects.

predict_proba(self, X)
This function returns a 2D numpy.ndarray of probabilities,
composed of as many rows as the items in X, and as many columns
as the classes of the problem (minimum of 2). Each row of the
ndarray describes probabilities that an item in the test set belongs
to a particular class, thus each row of probabilities sums up to 1.
The highest value in each row of probabilities correspond to the
class predicted for a specific item.

predict(self, X)
This function returns a numpy.ndarray of predicted classes
composed of as many predictions as the items in X. Each item
describes the class assigned by the classifier to each item in X.

predict_confidence(self, X)
This function returns a numpy.ndarray of floating point values
where each value describes the confidence that the classifier has in
each prediction for the items in X. The higher the floating point
value, the more confident the classifier. Ideally, these floating
point values should range from 0 (complete lack of any
confidence) to 1 (certainty in the classification).

classifier_name(self)
Returns the name of the classifier as a string.

get_diversity(self, X, y, metrics=None)
This function outputs the value of all diversity metrics specified in
metrics. To compute them, both a feature set X and associated

labels y are needed, regardless of the type of learning (supervised,
unsupervised) applied to the problem. Diversity metrics are
implemented in the metrics.DiversityMetric class of confidence
ensembles and use the metrics defined in [43]. The function
outputs a dictionary of pairs (metric name, value).

Constructor and Parameters of ConfBag

Creating a Pyton object implementing the ConfBag classifier
requires a set of different parameters to be specified, which map
those defined in Section 3.2.4.
• clf: specifies the algorithm to be used for creating base

learners (base_estimator in Section 3.2.4).
• n_base (int): number of base learners (k in Section 3.2.4).
• max_features (float): specifies the percentage of features to

be used at each iteration (f_bag in Section 3.2.4),
• sampling_ratio (float): specifies the percentage of the dataset

to be used at each iteration (sampling_ratio in Section 3.2.4).
• conf_thr (float): defines the a floating point value to be used

as a threshold used to distinguish between “confident
enough” and “not confident enough” predictions (conf_thr in
Section 3.2.4).

• perc_decisors (float): specifies the percentage of base
learners to be used for prediction (bl_perc in Section 3.2.4).

• n_decisors (int): specifies the number of base learners to be
used for prediction (bl_n in Section 3.2.4).

• weighted (bool): True if prediction has to be computed as a
weighted sum of probabilities of base learners or False
otherwise (weighted_pred in Section 3.2.4).

Listing A.1. Usage of ConfBoost for supervised learning.

import numpy
import sklearn.metrics as metrics
from sklearn.discriminant_analysis
 import LinearDiscriminantAnalysis
from src.classifiers.ConfidenceBoosting
 import ConfidenceBoosting

Load dataset in the typical way,
splitting in train (x_train y_train)
and test (x_test, y_test) sets

Creating classifiers
classifier = LinearDiscriminantAnalysis()
cb_clf = ConfidenceBoosting(clf=classifier,
 n_base=10,
 learning_rate=2,
 sampling_ratio=0.5,
 conf_thr=0.8)

Exercising Classifier
classifier.fit(x_train, y_train)
clf_pred = classifier.predict(x_test)

Exercising ConfBoost
cb_clf.fit(x_train, y_train)
cb_pred = cb_clf.predict(x_test)

print('LDA has accuracy of %.3f, whereas the
 ConfBoost(LDA) has accuracy of %.3f' %
 (metrics.accuracy_score(y_test, clf_pred),
 metrics.accuracy_score(y_test, cb_pred)))

https://github.com/tommyippoz/confidence-ensembles
https://pypi.org/project/confidence-ensembles/

21

Constructor and Parameters of ConfBoost

Creating a ConfBoost object requires a set of different
parameters to be specified, which map those defined in Section
3.3.4.
• clf: specifies the algorithm to be used for creating base

learners (base_estimator in Section 3.3.4).
• n_base (int): defines the number of base learners (k in Section

3.3.4).
• learning_rate (float): defines how fast weights of items of the

training set are being updated (lr in Section 3.3.4).
• sampling_ratio (float): defines the percentage of the dataset

to be used at each iteration (sampling_ratio in Section 3.3.4).
• conf_thr (float): defines the a floating point value to be used

as a threshold used to distinguish between “confident
enough” and “not confident enough” predictions, and update
the weights of the training set accordingly (conf_thr in
Section 3.3.4).

• perc_decisors (float): specifies the percentage of base
learners to be used for prediction (bl_perc in Section 3.3.4).

• n_decisors (int): specifies the number of base learners to be
used for prediction (bl_n in Section 3.3.4).

• weighted (bool): True if the prediction has to be computed as
a weighted sum of probabilities of base learners
(weighted_pred in Section 3.3.4) and False otherwise.

Usage Examples

We show the usage of the library for two simple analyses in
Listing 1 and Listing 2, respectively. For both libraries, we assume
that the dataset gets loaded according to user’s preferences and
show how to instantiate an object of respective classifier type, train
it, and predict using the respective confidence ensemble. Listing 1

refers to supervised learning, while Listing 2 shows the usage of
confidence ensembles for unsupervised learning.

Repeatability of Experiments

All experiments reported in this paper can be reproduced by
calling specific scripts available in the library. Each script sets a
random seed at the beginning to avoid the nondeterminism due to
pseudo-randomness; this makes the execution fully deterministic
and repeatable. Results in the paper can be obtained using the
following scripts:
• tests/rq1-2.py contains the script used to generate the data

needed to answer RQ1 and RQ2. The script generates a large
CSV file that can be then used to compute averages, produce
plots, and to compute additional statistics.

• tests/rq3.py contains the script used to generate the data
needed to answer RQ3, including the generation of the
dataset’s variants and the computation of rec-unk. The script
generates a large CSV file that can then be used to compute
averages, produce plots, and to compute additional statistics.

The XLSX file contains the results of these scripts, including
the plots and tables presented in this paper, can be found in the root
folder of the GitHub repository.

Listing A.2. Usage of ConfBoost for unsupervised learning.

import numpy
import sklearn.metrics as metrics
from pyod.models.pca import PCA
from src.classifiers.ConfidenceBoosting
 import ConfidenceBoosting

Load dataset in the typical way,
splitting in train (x_train y_train)
and test (x_test, y_test) sets

Creating classifiers
classifier = PCA(contamination=an_perc)
cb_clf = ConfidenceBoosting(clf=classifier,
 n_base=10,
 learning_rate=2,
 sampling_ratio=0.5,
 conf_thr=0.8)

Exercising Classifier
classifier.fit(x_train)
clf_pred = classifier.predict(x_test)

Exercising ConfBoost
cb_clf.fit(x_train)
cb_pred = cb_clf.predict(x_test)

print('PCA has accuracy of %.3f, whereas the
 ConfBoost(PCA) has accuracy of %.3f' %
 (metrics.accuracy_score(y_test, clf_pred),
 metrics.accuracy_score(y_test, cb_pred)))

22

Appendix B

8.1 Definitions

This section reports the table of terms that are used throughout
the paper, associated with the meaning they have within the
manuscript.

Table B.I: terms used throughout the manuscripts.

Term Meaning within the manuscript

System
Indicator

A performance indicator (e.g., memory usage,
bytes received from the network, number of

opened files) of a target system.
Feature A System Indicator to be monitored for analysis

Feature Value The value of a Feature gathered at a specific
time instant or when specific events occur

Data Point A collection of Feature Values of different
Features for the same Target System

Tabular Data
Structured data comprising of multiple Data
Points (rows) containing values of multiple

Features (columns)

Label A class (categorical value) associated to a Data
Point.

ML Algorithm
An algorithm that can learn classification or

regression tasks from data and generalize their
findings to unseen data.

Classifier A ML algorithm that performs classification

Training Data Collection of Data Points used for training a
classifier

Inference The process of assigning a label to a data point.

Model An object containing what a classifier learns
after training. It can be used for inference.

Prediction
The Label result of the inference of a classifier,
i.e., the output of a Model when a Data Point is

fed into it.
Unexpected

Input
Data point to be classified that does not belong
to the distribution of data points in training data

Supervised
Classifier A classifier whose training data is labelled

Unsupervised
Classifier A classifier whose training data is unlabelled

Base Learner Classifier exercised within an ensemble
classifier

Base Estimator
The classifier used to craft base learners. It is

instantiated with different parameters or training
set to create diverse base learners.

Uncertainty The epistemic uncertainty to be estimated using
different techniques.

Confidence Floating point value that quantifies the
Uncertainty in a Prediction

Confidence
Ensembles

Either Confidence Bagging or Confidence
Boosting

confidence-
ensembles

The GitHub framework that implements
Confidence Ensembles, available at

https://github.com/tommyippoz/confidence-
ensembles and on PyPI at

https://pypi.org/project/confidence-ensembles/

8.2 Table of Acronyms

This section summarizes the acronyms used in this paper.

Table B.II: Table of acronyms.

Term Meaning within the manuscript
ICT Information and Communication Technology
ML Machine Learning

DNN Deep Neural Network
IID Independent and Identically Distributed

OOD Out-Of-Distribution

PCA
Principal Component Analysis (mostly referred to as

a classifier, but also as and a dimensionality reduction
technique in Section 2.2)

HBOS Histogram-based outlier score
CBLOF Cluster-Based Local Outlier Factor

INNE Isolation-based Anomaly Detection using Nearest-
Neighbor ensembles

kNN k-th Nearest Neighbour
SOTIF Safety Of The Intended Functionality
GNB Gaussian Naïve Bayes
LDA Linear Discriminant Analysis

XGBoost eXtreme Gradient Boosting
ConfBag Confidence Bagging

ConfBoost Confidence Boosting
PyPI Python Package Index
MCC Matthews Correlation Coefficient

https://github.com/tommyippoz/confidence-ensembles
https://github.com/tommyippoz/confidence-ensembles

Appendix C

The paper mostly relies on the Matthews Correlation Coefficient (MCC) to quantify classification performance. For completeness, this section
reports tables and plots discussed in Section 5.1 in which we present Accuracy and F1 (F-Measure) scores instead of MCC values. The reader
may observe that changing the metrics does not change the takeovers of the paper. Note that results of the benchmark with LAMDA-TALENT
are also available at the public GitHub [72], folder ‘benchmark’.

Results using the TALENT benchmark using Accuracy - Figure C.ACC (left) – and F-Measure – Figure C.F1 (right).

CBoost(DT)

CBoost(LR)

CBoost(NB)

CBoost(RF)

CBoost(XGB)

dummy

DT

KNN
LR

NB

NCM

RF

SVM
XGB

CBag(NB)

CBag(RF)

CBag(DT)

CBag(LR)

CBag(XGB)

mlp
resnet

tabcaps
tabnet

node
danets

switchtab
realmlp

modernNCA

excelformer

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m

e(
se

c)

Average ACC Rank

ConfBoost

Classic

ConfBag

DNN

Optimum CBoost(DT)

CBoost(LR)

CBoost(NB)CBoost(RF)
CBoost(XGB)

dummy

DT
KNN

LR

NB
NCM

RF

SVM
XGB

CBag(NB)

CBag(RF)

CBag(DT)

CBag(LR)

CBag(XGB)

mlpresnet

tabcaps

tabnet
node

danets
switchtab

realmlp

modernNCA
excelformer

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Ti
m

e(
se

c)

Average F1 Rank

ConfBoost
Classic
ConfBag
DNN

Optimum

Comparison of classification performance of classifiers against ConfBag and ConfBoost ensembles using classifiers as base estimators using
Accuracy (Table C.ACC, up), and F-Measure (Table C.F1, down).

 Classifier

Av
er

ag
e

AC
C

 o
f B

as
e

Es
tim

at
or

 a
nd

 C
on

fid
en

ce
 E

ns
em

bl
es

B
as

e
E

st
im

at
or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

AC
C

 G
ai

n
of

 C
on

fid
en

ce
 E

ns
em

bl
es

 w
.r.

t.
Ba

se
 E

st
im

at
or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

U
ns

up
er

vi
se

d CBLOF 0.790 0.814 0.812 0.829 0.839 0.024 0.022 0.039 0.049
Isolation Forest 0.746 0.793 0.795 0.798 0.800 0.046 0.048 0.051 0.054

INNE 0.737 0.771 0.770 0.783 0.764 0.034 0.033 0.046 0.027
HBOS 0.747 0.791 0.791 0.802 0.805 0.044 0.044 0.054 0.057
PCA 0.762 0.818 0.816 0.796 0.798 0.056 0.053 0.034 0.036

Su
pe

rv
is

ed

GNB 0.733 0.842 0.839 0.899 0.877 0.109 0.106 0.165 0.144
Logistic Regression * 0.858 0.875 0.869 0.926 0.926 0.018 0.011 0.069 0.068

LDA 0.909 0.911 0.911 0.942 0.941 0.002 0.002 0.033 0.032
Decision Tree 0.968 0.975 0.976 0.975 0.975 0.007 0.008 0.008 0.007
Logit Boost 0.961 0.962 0.963 0.964 0.964 0.000 0.001 0.002 0.002
Extra Trees 0.974 0.974 0.974 0.975 0.975 0.001 0.000 0.001 0.001

Random Forest 0.974 0.974 0.974 0.975 0.975 0.000 0.000 0.002 0.002
XGBoost 0.971 0.970 0.971 0.973 0.973 0.000 0.000 0.002 0.002

 Average 0.856 0.882 0.882 0.895 0.893 0.026 0.025 0.039 0.037
* Logistic Regression delivered multiple alerts of failed convergence in many datasets regardless of the parameters we tried.

Classifier

Av
er

ag
e

F1
 o

f B
as

e
Es

tim
at

or
 a

nd
 C

on
fid

en
ce

 E
ns

em
bl

es

B
as

e
E

st
im

at
or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

F1
 G

ai
n

of
 C

on
fid

en
ce

 E
ns

em
bl

es
 w

.r.
t.

Ba
se

 E
st

im
at

or

C
om

fB
ag

(w

ei
gh

te
d=

Fa
ls

e)

C
om

fB
ag

(w

ei
gh

te
d=

T
ru

e)

C
on

fB
oo

st

(w
ei

gh
te

d=
Fa

ls
e)

C
on

fB
oo

st

(w
ei

gh
te

d=
T

ru
e)

U
ns

up
er

vi
se

d CBLOF 0.511 0.521 0.522 0.550 0.556 0.010 0.011 0.039 0.045
Isolation Forest 0.498 0.528 0.538 0.549 0.551 0.030 0.040 0.051 0.053

INNE 0.451 0.493 0.491 0.515 0.492 0.042 0.040 0.064 0.040
HBOS 0.481 0.518 0.519 0.525 0.532 0.037 0.038 0.044 0.051
PCA 0.525 0.547 0.547 0.547 0.542 0.022 0.022 0.022 0.017

Su
pe

rv
is

ed

GNB 0.574 0.668 0.663 0.730 0.727 0.094 0.089 0.156 0.153
Logistic Regression * 0.570 0.601 0.596 0.694 0.694 0.031 0.027 0.125 0.124

LDA 0.678 0.691 0.694 0.780 0.778 0.014 0.016 0.102 0.100
Decision Tree 0.857 0.890 0.893 0.896 0.896 0.033 0.036 0.039 0.039
Logit Boost 0.827 0.825 0.829 0.844 0.838 -0.003 0.001 0.016 0.011
Extra Trees 0.868 0.876 0.868 0.881 0.881 0.008 0.000 0.013 0.013

Random Forest 0.876 0.879 0.877 0.889 0.888 0.003 0.000 0.013 0.012
XGBoost 0.862 0.855 0.857 0.878 0.877 -0.007 -0.005 0.017 0.016

 Average 0.660 0.684 0.684 0.714 0.712 0.024 0.024 0.054 0.052

	1 Introduction
	2 Background and Related Works
	2.1 Machine Learning Classifiers
	2.2 Tabular Datasets and ICT Systems
	2.3 Machine Learning Classifiers for Tabular Data
	2.4 Ensembles and Diversity
	2.5 Confidence and Uncertainty of Classification
	2.6 Unexpected Inputs and Robustness

	3 Confidence Ensembles
	3.1 Preliminaries and Notation
	3.2 Confidence Bagging: ConfBag
	3.2.1 Basics of Bagging
	3.2.2 Training ConfBag
	3.2.3 Predictions with ConfBag
	3.2.4 Parameters

	3.3 Confidence Boosting: ConfBoost
	3.3.1 Basics of Boosting
	3.3.2 Training ConfBoost
	3.3.3 Predictions with ConfBoost
	3.3.4 Parameters

	3.4 Discussion and Issues of Confidence Ensembles
	3.5 Confidence as a Building Block

	4 Experimental Campaign
	4.1 Research Questions
	4.2 Methodology
	4.3 Supervised and Unsupervised Classifiers
	4.4 Confidence Ensembles
	4.5 Error, Attack and Failure Datasets
	4.5.1 Network Intrusion Detection (NIDS)
	4.5.2 Hardware Failure Prediction
	4.5.3 Error/Anomaly Detection
	4.5.4 Creating Datasets Variants

	4.6 Performance Metrics

	5 Results, Analysis, and Discussion
	5.1 RQ1 - Classification Performance of Confidence Ensembles
	5.1.1 Comparison against other Classifiers in the Study
	5.1.2 Benchmarking using TALENT

	5.2 RQ2 – Comparison with other Bagging and Boosting Ensembles
	5.3 RQ3 – Impact of Hyper-Parameters
	5.4 RQ4 – Time Overhead
	5.5 RQ5 – Robustness to Unexpected Inputs

	6 A Statistical Validation using Confidence Intervals
	6.1 Computing Confidence Intervals
	6.2 Possible Outcomes of the Analysis
	6.3 Impact of Confidence Ensembles on Base Estimators

	7 Threats to Validity and Reproducibility
	7.1 Internal Validity
	7.2 External Validity
	7.3 Reproducibility

	8 Conclusions and Future Work
	Acknowledgments
	References
	Appendix A
	Structure of the Framework
	Shared Methods
	Constructor and Parameters of ConfBag
	Constructor and Parameters of ConfBoost
	Usage Examples
	Repeatability of Experiments

	Appendix B
	8.1 Definitions
	8.2 Table of Acronyms

	Appendix C

