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ABSTRACT 

 

Photonic active devices exploit the interaction of light with other physical effects such as 

carrier, fields, power density, stress, temperature, or sound. The Stimulated Brillouin 

scattering (SBS) in optical waveguide is an important nonlinear effect results from the 

coherent interactions between optical and acoustic modes. The SBS can be considered as a 

primary obstacle effect in limiting the power scaling in many high power photonic devices 

because it normally has a lower threshold than other nonlinear effects.  

 

 However, it is also well known that the interaction of light and sound can be 

exploited in several key applications. The guiding of acoustic wave in of optical waveguides 

allow interactions of light wave with the related phenomena of Brillouin Scattering (BS), 

Stimulated Brillouin Scattering (SBS) and Guided Acoustic Wave Brillouin Scattering 

(GAWBS).  

 

 This thesis describes and studies the characteristics of different acoustic modes in 

optical waveguides by using the finite element method (FEM). A numerical approach based 

on the versatile FEM has been developed and employed for the analysis of acoustic modes in 

optical waveguides and also their interactions with optical modes. The high and low index 

contrast waveguides which can be designed, fabricated and optimized for different 

applications.  The detailed spatial variations of the transverse and longitudinal displacement 

vectors are shown for longitudinal, bending, torsional, radial and torsional-radial modes in 

these waveguides. 

 

 The vectorial acoustic modes in optical waveguides are shown for both the high and 

low index contrast silica waveguide along with their dispersion curves, the displacement 

vectors for transverse and longitudinal movements and the modal hybridness  have been 

determined and shown. 

 

 Stimulated Brillouin Scattering (SBS) frequencies are also reported here for sub-

wavelength size silica, Ge-doped rectangular and silicon slot optical waveguides. Variation 

of the displacement vectors, modal hybridness, and modal dispersion are also shown. A 

finite element based computer code is developed using a full vectorial acoustic model and 

combining this with another full vectorial optical model, the interaction between acoustic 

and optical modes are presented here and their overlap integrals have also been calculated. 
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Chapter 1 
 

Introduction 
 

This chapter commences with a basic introduction of the acoustic wave which 

describes the propagation of sound in solid and how sound is propagated inside a 

waveguide. The propagation of sound waves in dielectric waveguides with core and 

cladding materials can be classified into different varieties of waves types, such as, 

longitudinal, transverse, bending, torsional, radial and torsional-radial modes. In 

addition, the propagation of sound in such waveguides are depended on the 

wavelength, frequency, and velocity of the sound waves. Often for high optical 

power delivery through an optical waveguide, it is useful to reduce optical-acoustic 

interactions to avoid reflection of optical power. On the other hand, it would be 

useful to enhance optical-acoustic interactions for various applications, such as 

sensing stress and temperature. So, the aim of this thesis is to develop a computer 

code, so that the optical-acoustic interactions can be accurately calculated in such 

waveguides.  Further, the aim and objectives of this research will be discussed along 

with the structure of the thesis and finally this chapter concludes with a summary of 

each chapter in the thesis. 
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1.1 Introduction to Acoustic Waves 

 

Sound in general is a mechanical wave which is created by vibrating objects. The 

vibrations of the object set particles in the surrounding medium in periodic motion, 

thus transporting energy through the medium. Also, acoustic wave is based on time 

varying deformations or vibrations in materials in which, particles that contain many 

atoms will move in unison to produce a mechanical wave. Interestingly, when the 

particles of a medium are displaced from their equilibrium positions, internal 

restoration forces arise. It is therefore, these elastic restoring forces between 

particles, combined with inertia of the particles, that leads to the oscillatory motions 

of the medium. 

 

 Acoustic waves propagate due to the periodic displacement of the molecules 

inside a waveguide and are characterized by the material density, elasticity, Young 

modulus, and Poisson’s ratio [Auld, 1973].  The particle displacement can be either 

in the longitudinal direction or in the transverse plane.  In an acoustic waveguide 

when the core material is surrounded by a cladding material, the propagation of 

waves can be classified as being of the torsional, bending or longitudinal type 

[Thruston, 1978].  Further, modes can be supported, provided at least one of the 

velocities (the shear or longitudinal velocities) of the cladding exceeds that of the 

core.  In solids, sound waves can propagate in four principle modes such as 

longitudinal waves, shear waves, surface waves, and in thin materials as plate waves. 

This will be discussed in Chapter 2 but most importantly, the longitudinal and shear 

waves are the two modes of propagation most widely used in the study of wave 

theory and also in this research.  

 

1.1.1 Properties of Acoustic plane wave - Wavelength, Frequency and Velocity  

 and their interactions with optical wave 

It is important to know that among the properties of waves propagating in isotropic 

solid materials are wavelength, frequency, and velocity.  The wavelength is directly 

proportional to the velocity of the wave and inversely proportional to the frequency 

of the wave. In this thesis, propagation properties of acoustic waves in optical 
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waveguides such as, optical fibres, rectangular dielectric waveguides and slot 

waveguides will be studied. 

 

 To begin with, understanding of light guidance is important.  Light is an 

electromagnetic wave which many theories sought to describe light as a ray.  

However the simple definition of light can be described in terms of visible light in 

which it is visible to human eye and that it is also responsible for the sense of sight.  

Subsequently, the study of light and interaction of light with matter is termed as 

optics (optical wave) and that light and sound both travel as waves of energy.  

However, these waves are different and have different properties which affect their 

behaviour. 

 

 Therefore, one of the objectives is to study and exploit [Agrawal, 2007] 

interactions between acoustic and optical waves. Implicitly, the acoustic properties of 

optical waveguides allow interactions with the propagation of light through the 

related phenomena of Brillouin Scattering (BS), Stimulated Brillouin Scattering 

(SBS) and Guided Acoustic Wave Brillouin Scattering (GAWBS) [Shelby, 1985].  

Therefore, it is these properties to allow us to study the interaction between acoustic 

and optic. Most importantly, by using the SBS effect, the interaction between 

acoustic and optic is studied by calculating the phase matching and then carried out 

the overlap integral of the acousto-optic interaction.  However, in the fields of 

engineering with many effects and applications, further investigation have to be 

carried out for future work. 

 

 

1.2 Nonlinear Scattering Effects 

 

Nonlinear scattering effects in optical fibres are due to the inelastic scattering of a 

photon to a lower energy photon. The energy difference is absorbed by the molecular 

vibrations or phonons in the medium. In other words one can state that the energy of 

a light wave is transferred to another wave, which is at a higher wavelength (lower 

energy) such that energy difference appears in the form of phonons. The other wave 

is known as the Stokes wave. The signal can be considered as pump wave. Of course, 
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high-energy photon at the so-called anti-Stokes frequency can also be created if 

phonon of right energy and momentum is available. 

 

 There are two nonlinear scattering phenomenon in fibres and both are related 

to vibrational excitation modes of silica. These phenomenon are known as stimulated 

Brillouin scattering (SBS) and stimulated Raman scattering (SRS). The fundamental 

difference is that, the optical phonons participate in SRS while SBS is through 

acoustic phonons. As a result of this difference, SBS occurs only in one direction i.e., 

backward while SRS can occur in both the directions, forward and backward. 

 

 The nonlinear scattering processes cause disproportionate attenuation at high 

optical power levels. It also causes the transfer of optical power from one mode to 

other modes in forward or backward direction at different frequency. In fact the 

stimulated scattering mechanisms (SBS or SRS) also provide optical gain but with a 

shift in frequency. 

 

 

1.3 Stimulated Brillouin Scattering (SBS) and basic theory 

 

Stimulated Brillouin scattering (SBS) is well known inelastic scattering processes 

resulting from the interaction of light with matter.  Inelastic scattering of light by 

acoustic phonons was first predicted by Léon Brillouin [Brillouin, 1922] in 1922, 

who theoretically predicted light scattering by acoustic phonon with the related 

density in a medium, resulted in thermally generated sound waves. Such thermal 

agitation is capable of scattering incident lightwaves with shifted frequency of an 

acoustic wave in the medium, in which, contributed to the generation of two new 

spectral components: the Stokes and anti-Stokes waves with down and up-shifted 

frequencies.  These frequency shifts are proportional to the acoustic mode velocity 

and have been called the Brillouin frequency. This in turn resulted in the 

characterisation of acoustic and thermodynamic properties of materials e.g., sound 

velocity, sound attenuation coefficients, elasticity constants and isothermal 

compressibility. 
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1.3.1 Basic Theory 

Brillouin scattering is a nonlinear process that can occur in optical fibres at a large 

intensity. The large intensity produces compression (due to electric field also known 

as pump field) in fibre core through the process known as electrostriction [Boyd, 

1992]. This phenomenon produces density-fluctuations in fibre medium. It increases 

the material disorder, which in turn modulates the linear refractive index of medium 

and results in an electrostrictive-nonlinearity [Buckland and Boyd, 1996]. The 

modulated refractive index behaves as an index grating, which is pump-induced. The 

scattering of pump light through Bragg diffraction by the pump-induced index 

grating is called Brillouin scattering. The disorder is time dependent so the scattered 

light is shifted (Brillouin shift) in frequency by the frequency of sound wave.   

 

 Quantum mechanically, the Brillouin shift originates from the photon-phonon 

interaction and associated Doppler displacement. In this interaction either a phonon 

is annihilated (Stokes process-positive Brillouin shift) or created (anti-Stokes process 

negative Brillouin shift). 

 

Figure 1.1. Spontaneous Brillouin scattering top and Stimulated Brillouin scattering bottom 

  phenomenon [Kobyakov, 2003]. 

 

1.3.2 Physical process 

For an oscillating electric field at the pump frequency ωp, the electrostriction process 

generates a macroscopic acoustic wave (involved phonons are coherent) at some 

frequency ωB. The Brillouin scattering may be spontaneous or stimulated as shown in 
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Fig.1.1. In spontaneous Brillouin scattering, there is annihilation of a pump photon, 

which results in creation of Stokes photon and an acoustic phonon simultaneously. 

The conservation laws for energy and momentum must be followed in such 

scattering processes.  

 

 For energy conservation, the Stokes shift ωB must be equal to (ωP-ωS), where 

ωP and ωS are angular frequencies of pump and Stokes waves. Additionally, the 

momentum conservation requires kA=(kP-kS), where kA, kP and kS are momentum 

vectors of acoustic, pump and Stokes waves respectively. If vA is acoustic velocity 

then dispersion relation [Agrawal, 2001] can be written as 

sin
2

B A A A P S

B A P

v k v k k

or v k






  

     (1.1) 

where θ is the angle between the pump and Stokes momentum vectors and modulas 

of kP and kS is taken as nearly equal. From above expression, it is clear that the 

frequency shift depends on angle θ. For θ=0
°
, shift is zero i.e., there is no frequency 

shift in forward direction (no Brillouin scattering). The θ=π represents the backward 

direction and in this situation the shift is maximum. The maximum backward 

frequency shift (fB=ωB/2π) is calculated from Eq. (1.1) and the relationship 

2 /
P P

k n  as 

2


 A

B

P

nv
f

     (1.2) 

where n is the mode index. 

 

 In single mode fibres, the spontaneous Brillouin scattering may occur in 

forward direction also. The reason behind this is that there is relaxation of the wave 

vector selection rule due to guided nature of acoustic waves. This process is known 

as guided acoustic wave Brillouin scattering [Agrawal, 2001]. In this case a small 

amount of extremely weak light is generated. 

 

 When scattered wave is produced spontaneously, it interferes with the pump 

beam. This interference generates spatial modulation in intensity, which results in 
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amplification of acoustic wave by the electrostriction effect. The amplified acoustic 

wave in turn raises the spatial modulation of intensity and hence the amplitude of 

scattered wave. Again there is increment in amplitude of acoustic wave. This positive 

feedback dynamic is responsible for the stimulated Brillouin scattering, which 

ultimately, can transfer all power from the pump to the scattered wave. 

 

1.3.3 Applications of SBS Phenomenon 

In the early days of research, the propagation of acoustic waves in electromagnetic 

waveguides was studied [Kino, 1973], [Auld, 1973]. However, following that the 

interactions between acoustic and optical waves are being exploited [Lagasse, 1972], 

[Jen, 1986], [Engan, 1988], [Thurston, 1978] and [Safaai-Jazi, 1988]. More recently, 

the application of optical fibre sensors based on BS has also been explored [Yu, 

2003] and studied [Kobyakov, 2009].  

 

 Acoustic waves guided in the optical waveguide has been researched 

extensively, for example, many have examined the propagation of both optical and 

acoustic waves for sensing applications. Success of these sensors lies in lowering the 

SBS threshold to achieve low power, short fibre length and multi-Stokes line 

generation. However, problems arising in communication system in which SBS is a 

dominant nonlinear penalty. This affects applications in optical transmission systems, 

such as high power fibre lasers and amplifiers [Limpert, 2007]. Therefore, SBS is not 

desirable for high power lasers because it limits the amount of output optical power. 

Recently, SBS effects in optical fibres has resulted in a new optical transmission 

fibres and laser fibres with increasing SBS thresholds using Al/Ge co-doping in the 

fibre core [Li, 2007]. Subsequently, SBS process in optical fibre is being extensively 

investigated both in optical communication and sensor system. For examples, recent 

applications include hybrid erbium/Brillouin amplifier [Strutz, 2000], lasers [Cowle, 

1997], distributed measurement of strain and temperature [Kee, 2000]. Fibre-based 

sensing is important in several different industries, including temperature and leak 

monitoring of oil [Bao, 1995], natural gas, and other pipelines [Zou, 2006], 

distributed temperature and or fire sensing in hazardous environments that include 

mines and tunnels, power line temperatures, and point pressure sensors [Thévenaz, 

1999]. Slowlight and optical delay line [Thevenaz, 2009]. These systems may be 
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based on either stimulated Brillouin scattering [Culverhouse, 1989] and [Kurashima, 

1990] or Spontaneous Brillouin scattering [Kurashima, 1993] and [Shimizu, 1994], 

depending on the system configuration.  

 

 

1.4 Numerical methods 

 

The role of computerized modelling and simulation tools is important in reducing the 

time and costs involved in investigating phenomena for the non experimental study. 

Simulating tools play a part in optimization of the physical parameters, in 

characterization and in improving efficiency of the device. Much progress has been 

made in the field of modelling and simulation techniques in photonics. Numerical 

methods have been studied, new technique developed, and existing techniques have 

been improved. Nowadays, there are different types of numerical methods available 

to study acoustic waveguides, for examples the Finite Different Method (FDM) 

technique [Alford, 1974], or the numerical analysis on elastic waveguides by using 

mode-matching method [Lawrie, 2009] or an efficient Green’s function [Matsuda, 

2007] for acoustic waveguide. In addition, there is also a method for modelling 

sound propagation in acoustic waveguides by using a Beam propagation numerical 

method (BPM) [Laude, 2005] and [Mermelstein, 2009]. 

 

 In Beam propagation method (BPM), is the study of an evolution of an input 

field as a function of the spatial coordinates, including the propagation direction 

(taken as z direction). It is described as the marching algorithms that take the same 

steps of the field in sequence of the input device, propagate it along the length of the 

z direction. The BPM algorithm then propagates the field through the interval in the z 

direction. The field at the end of the propagation step then acts as the input field for 

the next propagation step and so on. BPM method were first proposed and used in 

optics in the 1970s by Feit and Fleck. 

 

 For Finite Different method (FDM), it involved substituting the partial 

derivatives in partial differential equation describing the physical process by an 

algebraic approximation based on simple relations between the values of the function 
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of the desired system. Due to the small finite distances between consecutive values 

of the function, this method is known as FDM. The Finite difference theory for 

general initial value problems and parabolic problems then had an intense period of 

development during the 1950s and 1960s, when the concept of stability was explored 

in the Lax equivalence theorem and the Kreiss matrix lemmas, with further major 

contributions given by Douglas, Lees, Samarskii, Widlund and others. 

 

 For the Mode Matching method (MMM), the waveguide structures can be 

viewed in terms of two basic building blocks. The building blocks are uniform 

regions of the dielectric waveguide interfaced by the dielectric step discontinuities. 

Then each block is analysed individually and combined together for the desired 

structure. Characterising the step discontinuities as transformers and the 

representation of the uniform dielectric regions as uniform transmission lines leads to 

a transverse equivalent network of the waveguide structure. In 1986, Dagli and 

Fonstad presented a modification where the continuous spectra are discretised by 

converting integrals into summations using suitable basis functin expansions rather 

than artificially bounding the structure to discretise the continuous model spectrum. 

 

 Green's function (GF) is a fundamental solution to a linear differential 

equation, a building block that can be used to construct many useful solutions. The 

exact form of the GF depends on the differential equation, the body shape, and the 

type of boundary conditions present. Green's functions are named in honour of 

English mathematician and physicist George Green (1793-1841). The GF method 

can be viewed as a restatement of a boundary value problem into integral form. The 

GF method is useful if the GF is known (or can be found), and if the integral 

expressions can be evaluated.  

 

 In this thesis use of the Finite Element Method (FEM), which is a versatile 

and powerful numerical technique for obtaining approximate solutions to a wide 

variety of engineering problems is considered. Most importantly, FEM is widely 

used in different fields of science and technology where many engineering problems 

can be defined in terms of governing equations. 
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1.5 Photonics 

 

Photonics is one of the key enabling technologies (KET) playing an important role in 

the shaping of tomorrow’s world in many areas such as in communications, energy, 

sensing, entertainment, and health and safety. Photonic active devices exploit the 

interaction of lights with other physical effects such as carrier, fields, power density, 

stress, temperature, or sound. The SBS in optical waveguides is an important 

nonlinear effect results from the coherent interactions between optical and acoustic 

modes. However, the analyses of such interactions are not trivial, especially with the 

increased complexity of modern optical waveguide structures, exemplified in 

photonic crystal fibres and sub-wavelength waveguides, such as nanowires [Dainese, 

2006].  In a way that is similar to the hybrid modes in high-index contrast optical 

waveguides, the acoustic modes in optical waveguides are also complex.  In these 

cases, a rigorous full vectorial analysis [Rahman, 1984] is required for the accurate 

characterization of optical wave propagation.  In this thesis, a numerical approach 

based on the versatile FEM has been developed and applied for the analysis of 

arbitrarily shaped acoustic waveguides and subsequently both weakly and strongly 

guiding acoustic waveguides have been studied. 

 

 

1.6 Aims and Objectives 

 

The main objective of this research is to develop a computer code based on the FEM 

to study acoustic wave guiding. In doing so, optical waveguides and acoustic 

waveguides will need to be evaluated first. Subsequently, focus will be on the more 

interesting optical wave and acoustic wave interaction in a waveguide. As SBS is an 

important parameter in acoustic waveguide, careful considerations and design 

procedures will be studied in order to design a waveguide for the optimization of the 

interaction between optical and acoustic waves.  Therefore the main aims of this 

thesis are as followed: 

  

1. To study the background literatures of acoustic wave in solid, in particular its 

physical quantities such as particle displacement, particle velocity, stress, 
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strain and elasticity. To discuss various types of waveguide modes that can 

exist in bounded media, particularly in longitudinal and shear wave. 

 

2. To develop a computer model based on the FEM, suitable to use for acoustic 

waveguide structure. Specifically, how the Hooke’s Law equation is 

incorporated into the computer model will be discussed and in particular, 

more attention will be on the stress and strain relation.  The develop computer 

code will need to be benchmarked to ensure the efficiency of the program by 

comparing the results with other published papers. 

 

3. To study the characteristic of the displacement vector profiles of the acoustic 

waves by using the FEM for both weakly and strongly guiding acoustic 

waveguides. 

 

4. To analyze the characteristics of the longitudinal, transverse, bending, 

torsional, radial and torsional-radial modes by investigating on different types 

of waveguides.  Such as, the study on a low index contrast acoustic 

waveguide form by a Germanium-doped silica (Ge doped SiO2) core with 

pure silica (SiO2) cladding, or a strongly guided rectangular silica waveguide, 

or a strip waveguide made of Porous silicon on silica buffer layer which is 

then surrounded by polymer.   

 

5. To study the propagation of the wave and classify different acoustic modes 

by  analysing the slot waveguide where light is guided in the low optical 

index slot region. The structure is made of using silica slot with two silicon 

cores on the side and silica nitride buffer layer at the bottom. 

 

6. To investigate the interactions between the acoustic and the optical modes in 

various types of waveguides such as fibre, rectangular, strip and slot 

waveguides. The effects of SBS and the associated frequency shift due to the 

interaction of these hybrid acoustic modes with the fully hybrid optical mode 

needs also to be studied. The overlap between the fundamental H
y
11 optical 
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mode with the dominant acoustic longitudinal and transverse modes needs to 

be calculated.  

 

 

1.7 Structure of the thesis 

 

The structure of this thesis aims to cover the development of the full vectorial finite 

element computer code based model by using acoustic waves. The finite element 

based computer model is allowed to study the different types of the acoustic wave of 

optical waveguide structures and to characterise the propagation of different wave 

types through various waveguide structures, such as longitudinal waves, transverse 

waves or the propagation of waves in which they can classified as being the bending 

(B), torsional (T), radial (R) or torsional-radial (TR) types. The interaction between 

acoustic and optic by using the SBS effect is also studied by calculating the phase 

matching and the overlap integral of acousto-optic interaction. 

 

Chapter 1 begins by giving an introduction to the research and presents the 

aims and objectives along with the structure of the thesis. It will briefly show that the 

propagation of the acoustic waves is due to the particle displacement, material 

density and elasticity of the molecule inside the waveguide. It will also show that 

different types of waves exist in solid in which, most importantly, the longitudinal 

and shear wave in particular will only be considered in this thesis.  

 

Chapter 2 commences to show the fundamental and background information 

on acoustic theory.  The propagation of sound wave and other physical quantities that 

are related with the acoustic waves are to be discussed here in greater detail with 

examples from published literatures. The theory behind the interaction of acoustic 

wave and optical wave in waveguides will be discussed. Different wave modes 

according to their propagation nature such as pure longitudinal mode, pure transverse 

mode, torsional mode, radial mode, torsional-radial mode, quasi-Longitudinal mode 

and quasi-transverse mode are presented here. 
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Chapter 3 describes the theory of the finite element method. Furthermore, the 

incorporation of FEM formulation with the acoustic wave theory is presented in this 

chapter. Most importantly, the validity of the developed code will be benchmarked 

with a steel rod and compares with published results [H-Hennion, 1996]. 

 

 Chapter 4 reports the analysis of silica fibre with low and high index contrast. 

The low-index contrast silica (SiO2) acoustic waveguide is studied with the SiO2 core 

doped with 7% TiO2 with pure SiO2 cladding. Although similar studies have been 

reported previously [Safaai-Jazi, 1988], in those cases the shear and transverse 

modes were decoupled.  In the present study, the co-existence of both the shear and 

the longitudinal modes is going to be considered and subsequently acoustic waves in 

a strongly guiding SiO2 nanowire waveguide will be discussed, including their 

contribution to the SBS. 

 

 Chapter 5 shows detail analysis of rectangular waveguides, the analysis of the 

high index and low-index contrast SiO2 waveguide and a strip waveguide with detail 

spatial variation of the transverse and longitudinal displacement vector will be 

carried out for the bending (B), torsional (T), radial (R) and torsional-radial (TR) 

modes. Furthermore, the weakly guiding of Ge-doped SiO2 core with SiO2 pure 

cladding along with the strongly guided of SiO2 core surrounded by Xe gas cladding 

will be studied for varieties of transverse modes such as B, T, R and TR modes. 

Additionally, the strip waveguide of PS core with SiO2 substrate layer and 

surrounded by polymer will be presented with the longitudinal and transverse mode. 

Furthermore, the variation of the displacement vectors, modal dispersion will be 

shown with the interaction between acoustic and optical mode calculates in the 

overlap integral form along with the SBS frequency shift. 

 

 Chapter 6 studies the unique feature of a slot waveguide, where light is 

guided in a low index region (which can also be air).  The study will be shown that 

dimension of such waveguide can be as low as 100 nm. As the high index contrast is 

needed to enhance the power in the slot region, the optical modes are hybrid in 

nature in which, acoustic wave velocities with the acoustic frequencies for different 

width and height will be carried out. The acousto-optic interaction in the slot 



CHAPTER 1  INTRODUCTION 

   

14 
 

waveguide will be carried out and reported in the form of overlap integral calculation 

between acoustic and optic waves.  

 

  Chapter 7 concludes with the thought that modelling a waveguide with 

acoustic wave by a newly developed acoustic FEM code can be realised.  Further, the 

acoustic FEM model corroborates with the full vectorial optical waveguide model. 

This Chapter gives summary to all the Chapters concerns and will conclude that the 

computer based acoustic wave in the optical waveguide will accurately and 

efficiently find all the acoustic wave propagation in waveguides and their 

characteristic of propagation such as longitudinal, transverse, bending, torsional, 

radial and torsional-radial modes. In addition, the analysis of acousto-optic 

interaction will be reported from the overlap integral calculation. 

 

 

1.8 Summary 

 

This chapter contains the basic introduction to the research in the field of acoustic 

wave propagation in optical waveguide, in particular to emphasize the industrial 

needs for fibre designs for high power laser with narrow linewidth and good beam 

quality to reduce the nonlinear effect such as SBS and achieve simultaneously single 

mode operation. The aim and objectives are also focused in terms of the acousto-

optic interaction to suppress the SBS threshold that are associated from the frequency 

shift due to the interaction by calculating the overlap integral ratio between acoustic 

and optic.  The structure of the thesis is also presented with a brief description on 

each chapter.  
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Chapter 2 
 

Acoustic Theory 
 

2.1 Introduction 

 

The propagation of acoustic wave must be expressed in terms of tensor quantities and 

the relation between them; in general acoustic wave propagation in solids is 

complicated by the fact that solids are not always isotropic. One may simply assume 

that the waves of interest are either pure longitudinal or pure shear waves, and that 

all physical quantities (particle displacement, particle velocity, stress, strain, 

elasticity) can be expressed in one dimensional form. However, the equation of 

motion, Hooke’s law, and the elastic parameters must be stated first, and then 

reduced them to one-dimensional terms. Further the tensor notation will be 

introduced and the reduced subscript notation will be used later on with some of the 

detailed discussions are given in Appendix A. 

 

 Later, various type of waves that can exist in isotropic media will be 

discussed, and the commonly used notation for the elastic constant in isotropic media 

will also be mentioned. The discussion of the basic concepts of reflection and 

refraction at the boundary between two media will be stated with further description 

of different types of waveguide modes that can exist in bounded media. Finally the 
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important topic of surface acoustic waves in an isotropic media will be considered 

here. 

 

 In this thesis, we have been considered acoustic wave propagation in 2 

dimension waveguide problems. We will restrict our studies to the straight 

waveguides of uniform cross sectional shape: guided wave solutions are assumed to 

have propagation dependence as e
(-jkz)

, where the waveguide is aligned along the z 

axis and k is called the propagation constant of the acoustic wave.  

 

 

2.2 Sound Wave in Nonpiezoelectric Materials: One Dimensional 

 Theory 

 

(a)     (b) 

Figure 2.1. (a) Longitudinal wave propagation; (b) shear wave propagation (full cube not  

  shown) [Auld and Kino, 1971]. 

 

There are two basic types of waves that are important in acoustic wave propagation. 

The first is the longitudinal wave, in which the motion of the particle in the acoustic 

medium is only in the direction of propagation. Thus when a force is applied to the 

acoustic medium, the medium expands or contracts in the z direction, as shown in 

Fig. 2.1(a). The second type of wave is a shear wave, which is described as, the 

motion of a particle in the medium is transverse to the direction of propagation, as 

illustrated in Fig. 2.1(b). Shear waves are associated with the flexing or bending of a 

material (e.g. twisting a rod). Therefore, there may not be any change in volume or 

density of the material in a shear wave mode, as shown in Fig. 2.1(b). 
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 In general, the acoustic waves that can propagate through a solid medium 

may combine both the shear and longitudinal motions. However, in a crystalline 

medium with anisotropic elastic properties, the direction of propagation can be 

chosen to be along one of the principle axes of the crystal; in this case the basic 

modes can be purely longitudinal or purely shear wave. The basic wave equation for 

acoustic propagation can be defined in the longitudinal case. The results obtained are 

identical in the form of those as shear wave propagation. 

 

2.2.1 Stress 

A force, applied to a solid stretches or compresses it and the force per unit area 

applied to a solid is called the stress. In the one-dimensional case, we shall denote it 

by symbol T. First considering a slab of material of infinitesimal length L, as shown 

in Fig. 2.2. Figure 2.2(a) illustrates the application of longitudinal stress, and Fig. 

2.2(b) illustrates the application of shear stress. The stress T(z) is defined as the force 

per unit area on particles to the left of the plane z. The longitudinal stress is defined 

as positive if the external stress applied to the right hand side of the slab is in the +z 

direction, while the external stress applied to the left hand side of the slab is -T in the 

-z direction. If the stress is taken to be positive in the transverse +x or +y directions, 

then these definition also apply to shear stress. The net difference between the 

external stresses applied to each side of the slab is  



T

z
L . Thus the net force 

applied to move the unit volume of the material relative to its centre of mass is 
T

z



 . 

 

(a)     (b) 

Figure 2.2. (a) Stress in the longitudinal direction for a slab of length l, (b) stress in the  

  shear direction [Auld and Kino, 1971]. 
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2.2.2 Displacement and Strain in One Dimensional 

Suppose that in the one-dimensional case, the plane z in the material is displaced in 

the z direction by longitudinal stress to a plane z'=z+u, as shown in Fig. 2.1(a). The 

parameter u is called the displacement of the material and in general, it is a function 

of z. At some other point in the material z+L, the displacement u changes to u+δu. If 

the displacement u is constant throughout the entire material, then the material has 

simply undergone a bulk translation. Such gross movements are of no interest to us 

here. However, we are only interested in the variation of particle displacement as a 

function of z. 

 

 By using a Taylor expansion, the change in u in a unit length L in the first 

order is δu, where, 

 




 


u
u L SL

z
    (2.1) 

 

 The fractional extension of the material is defined as: 

 

u
S

z





     (2.2) 

and the parameters S is called the strain. 

 

 The same treatment used for the longitudinal motion can also be used in the 

case of the shear wave. We can define a shear strain as 
 


 u u

L z
S . Here the 

difference is that the displacement u is in the x or  y direction, perpendicular to the 

propagation direction. 

 

 The diagram in Fig. 2.1(b) shows that there is no change in the area of the 

rectangle as shear motion distorts it. Longitudinal motion, however, changes the cube 

volume by δuA, in which A is the area of x, y face. Thus the relative change in the 

volume is .V uA u

V A L L
S  


    
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 Hooke’s law and elasticity states that for all small stresses applied to a one-

dimensional system, the stress is proportional to the strain, or, 

 

T cS      (2.3) 

where c is the elastic constant of the material. The parameters T and c would be 

tensors in the general system, but can be represented by one component for one-

dimensional longitudinal or shear wave propagation. This is because it is easier to 

bend a solid than to stretch it, the shear elastic constant is normally smaller than the 

longitudinal elastic constant. 

 

2.2.3 Equation of Motion 

The equation of motion is described as a point in material when a small time-variable 

stress is applied to it. From this Newton’s second law, the force per unit area applied 

to the material is  



T

z
L , so the equation of motion will be, 

 

. .

,

 







 

  




  


 





 



F ma a v

F
v

F
v

x y z

F
as T so

x y

T
v

z

T
v u

z

V V

V

    (2.4) 

where V is the volume, m is mass, u  is the displacement, v  is the velocity, a is the 

acceleration, ρ is its mass density and dot on the top identifies its time derivative. 

 

 

2.3 Tensor Notation and Constitutive Relations Materials 

 

In all the cases, when referring to shear or longitudinal waves, we will describe wave 

interactions in a one dimensional form: provided that the propagation of the wave of 
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interest is along an axis of symmetry of a crystal. However, to carry out quantitative 

calculations, we must first state the equation of motion, Hooke’s law, and the elastic 

parameters of the crystal, and then reduce them to one dimensional term. Tensor 

notation will be introduced; to simplify the resulting equations, we also introduce 

reduced subscript notation. Some of the notations used are given in Appendix A. 

 

2.3.1 Displacement and Strain 

In general, the displacement is a vector u with three Cartesian components ux, uy and 

uz, each of which can be a function of the three Cartesian components x, y, and z of 

the position R. Thus, in general, S will be a tensor with nine components with the 

variation of Ui with j as the Cartesian coordinate, as example. 

x

xx

u
S

x





     (2.5) 

and 

1

2

yx

xy

uu
S

y x

 
  

  
    (2.6) 

where by using symmetry notation of the crystal form, Sxy=Syx with Sxx, Sxy, Sxz, Syx, 

Syy, Syz, Szx, Szy and Szz defined similarly. For pure one-dimensional motion, however, 

we can represent S by only one component (e.g., Sxx or Szz for one dimensional 

longitudinal strain and Sxy for one dimensional shear strain). The symmetry of Eq. 2.6 

shows that Sxy=Syx. 

 

2.3.2 Stress in a Rectangular Cube 

Next the stress on a cube of volume δx δy δz is considered and illustrated in Fig. 2.3. 

 

Figure 2.3. Application of general stress components [Auld, 1973]. 
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 The force applied to the left-hand surface δx δy given by a shaded area, is 

called the traction F, where the stress on a cube of volume is given as δx, δy, and δz. 

The force applied to this surface has three components: -Fx and -Fy both parallel to 

the surface, and -Fz, perpendicular to the surface. The opposite traction force applied 

to the surface has components Fx+δFx, Fy+δFy, and Fz+δFz. 

 

 In Section 2.2, the parameter L is equivalent to δz and by carrying out a 

Taylor expansion to first order in δz, this traction force has components of 

Fx+((∂Fx)⁄∂z), Fy+((∂Fy)⁄∂z), and Fz+((∂Fz)⁄∂z), in the z direction. The stresses on a 

surface perpendicular to the z axis can be defined as follows: 

 

Shear stress: x

zx

F
T

x y 
     (2.7) 

Shear stress: 
 


y

zy

F
T

x y
    (2.8) 

Longitudinal stress: z
zz

F
T

x y 
     (2.9) 

 

 The first subscript of the tensor T denotes the coordinate axis normal to a 

given plane; the second subscript denotes the axis to which the traction is parallel. 

There are nine possible stress components: in which the terms Txx, Tyy and Tzz are 

longitudinal stress components, while the terms Txy=Tyx, Txz=Tzx, and Tyz=Tzy are 

shear stress components and they are equal in pairs, because internal stresses can 

give no net rotation of the body. So the initial 9 elements reduce to 6 independent 

values. 

 

1

2

1 6 5

3

6 2 4

4

5 4 3

5

6

 
 
    
    

       
        
 
  

xx xy xz

yx yy yz

zx zy zz

T

T
T T T T T T

T
T T T T T T T

T
T T T T T T

T

T

   (2.10) 
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 The force per unit volume in the z direction is the net resultant of the force 

per unit volume applied to an infinitesimal cube, that is, 

 

 
  

  

zyzx zz
z

TT T
f

x y z
    (2.11) 

 

 It follows from Eq. 2.11 that the equation of motion in the z direction is, 

 

 
 

   
  

zyzx zz
z z

TT T
u v

x y z
   (2.12) 

with corresponding equations for the other components of u and v. This is discussed 

more in depth in Appendix A. 

 

 By adding all the forces terms, the equation of motion in the z direction in full 

tensor form is, 

 

2

2

zyzxz zz
TTu T

x y zt


 
  

  
    (2.13) 

 

 In reduced notation, Eq. 2.13 may be written in the form of, 

 

2

5 34

2

z
T Tu T

x y zt


  
  
  

    (2.14) 

 

 Similar relations for the equations of motion in the y and x directions can also 

be obtained. 

 

 It is often convenient to use the symbolic notation [Auld, 1969], which is 

discussed more fully in Appendix A, and written as, 

 

            

        
         xy yx yy yz zyxx xz zx zz

T T T T TT T T T

x y z x y z x y z
T x y z  (2.15) 
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 This may be written compactly as: 

 

( )i ij

j j

T T
u


 


      (2.16) 

where i, j=x, y, z. 

 

 The translation equational of motion in rectangular Cartesian coordinates is: 

 

2

2

ij i

i

j

T u
F

u t


 
 

 
    (2.17) 

where Fi is the external force and in this case it is taken as zero. 

 

2.3.3 Hooke’s Law and Elasticity 

In its simplest form Hooke’s law states that for small elongation of an elastic system 

the stress is proportional to the strain. In general the term of components with respect 

to an orthonormal basis, the generalized form of Hooke’s law is written as: 

 

ij ijkl klT c S      (2.18) 

 

in which the tensor c (cijkl) containing 81 9 9  elastic coefficient must be defined to 

link the stress tensor T (Tij) and the strain tensor S (Skl) both with 9 components. The 

tensor c is called the stiffness tensor. However, the symmetry condition reduces 9 

components of T and S to only 6 components and allow us to write the stress-strain 

relations in a more compact from as [T] = [c][S]: 

 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

41 42 43 44 45 46 44

51 52 53 54 55 56 55

61 62 63 64 65 66 66

, ,
2

2

2

T c c c c c c S

T c c c c c c S

T c c c c c c S
T c S

c c c c c c ST

c c c c c c ST

c c c c c c ST

     
     
     
     

       
     
    
    

        





 (2.19) 
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 The relation between Txx and the applied strains Sxx and Syy is given as: 

 

xx xxxx xx xxyy yyT c S c S       (2.20) 

 

 The relation between Txz and the applied strain Sxz is, 

 

2

xz xzxz xz xzzx zx

xzxz xz

T c S c S

c S

 


     (2.21) 

where Sxz=Szx and cxzxz=cxzzx, due to symmetry. In each of these cases, the first two 

subscripts of the elastic tensor correspond to the subscripts for the stress tensor, and 

the last two subscripts correspond to those for the strain tensor. 

 

2.3.4 Tensor Notation 

A simpler notation, described more fully in Appendix A, can be used to denote the 

components of the vectors and tensors involved. This thesis has used the subscripts i, 

j, and k to denote any one of the x, y, and z axes of the interest tensor components. 

Similarly, the tensors denote stress and strain are Tij and Sij, respectively. Hooke’s 

law in Eq 2.18 shown that k and l are floating subscripts indicating summation over k 

and l, where i and j indicate the stress components required. Since both Tij and Skl are 

symmetric, this symmetry is reflected in cijkl, which is also symmetric, in which: 

 

  ijkl jilk ijlk jilkc c c c     (2.22) 

and, 

ijkl klijc c      (2.23) 

 

 These symmetry operations reduce the number of independent constants from 

81 to 36 to 21 for crystals of different symmetries. For isotropic solids it has already 

been demonstrated that there are only two independent elastic constants. In fact it is 

well known that for an isotropic solid the reduced notation of the stiffness matrix will 

be used. Although, there can be 81 terms for [c], but given in Eq. 2.19, in reality 

these [T] and [S] had only 6 independent terms. Due to the symmetry of the stress 

tensor, strain tensor, and stiffness tensor, only 21 elastic coefficients of [c] are 
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independent. As stress is measured in unit of pressure and strain is dimensionless, the 

entries of cijkl are also in the unit of pressure. 

 

2.3.5 Reduced Subscript Notation 

As Tij=Tji and Sij=Sji, there are actually only six independent tensor quantities. The 

subscripts i, j, and k will be used to denote the tensor components of interest in what 

is called the reduced form. Hence TI is a component of the stress tensor, which 

replaces the longer unreduced notation Tij, and SI is a component of a strain tensor, 

which replaces the longer reduced notation Sij. Table 2.1 summarizes how this 

notation is used, by taking the strain tensor, and the stress tensor as examples. It also 

gives notation describing the stress and the strain tensors in non reduced form in 

Table 2.2. 

 

Table 2.1. Tensor and vector components. 

Stress or vector 

component 

 

Example 

 

Meaning 

Strain, SI S1  (I=1) = Sxx Longitudinal strain in x direction 

 S2  (I=2) = Syy Longitudinal strain in y direction 

 S3  (I=3) = Szz Longitudinal strain in z direction 

 S4 (I=4) = 2Syz Shear strain, motion about x axis; shear in y and z 

directions 

 S5 (I=5) = 2Sxz Shear strain, motion about y axis; shear in x and z 

directions 

 S6 (I=6) = 2Sxy Shear strain, motion about z axis; shear in x and y 

directions 

Stress, TI T1  (I=1) = Txx Longitudinal stress in the x direction 

 T2  (I=2) = Tyy Longitudinal stress in the y direction 

 T3  (I=3) = Tzz Longitudinal stress in the z direction 

 T4  (I=4) = Tyz Shear stress about x axis 

 T5  (I=5) = Txz Shear stress about y axis 

 T6  (I=6) = Txy Shear stress about z axis 

 

Table 2.2. Example of the reduced tensor notation. 

Elastic constant Meaning 

Reduced 

notation 

Standard 

notation 

 

cIJ cijkl The ratio of the I th stress component to the J strain component 

c11 c1111 The longitudinal elastic constant relating longitudinal stress 

and strain components in the x direction 

c44 c2323 The shear elastic constant relating shear stress and strain 

components in the 4-direction (motion about x axes) 

c12 = c21 c1122 = c2211 cIJ = cJI 
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 When the material is not piezoelectric, we can write, 

 

I IJ JT c S      (2.24) 

or, the relations of the stress-strain of the material properties are usually expressed in 

matrix from, referring stress and strain components to some appropriate basis. The 

general relationships look like this (ignoring temperature changes and initial stress, 

for simplicity) and most importantly to remember the factor of 2 in the shear strains.  

 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

2

2

2

T c c c c c c S

T c c c c c c S

T c c c c c c S

T c c c c c c S

T c c c c c c S

T c c c c c c S

     
     
     
     

     
     
     
     
          

  (2.25) 

 

 Original 9x9 [c] matrix can be reduced to a 6x6 [c] matrix as shown in Eq. 

2.25, by using the reduced notation. However, all of these 36 elements are not 

independent. Generally, there are 21 independent elastic constants (cIJ=cJI), but these 

reduce to far fewer independent terms in crystals with certain symmetries. In a cubic 

crystal, for instance: c11=c22=c33, c12=c21=c13=c31=c23=c32, and c14=c15=c16=0, 

c24=c25=c26=0, c34=c35=c36=0. Thus there are only three independent constants: c11, 

c44, and c12. If the material is isotropic, it can be shown that, 

 

11 12 442c c c       (2.26) 

 While for the isotropic case, 

 

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

   

   

   







 
 


 
 

  
 
 
 
  

IJc   (2.27) 

 

where λ and μ are the Lame coefficients which will be discussed later in Section 2.4. 
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2.4 Waves in Isotropic Media 

 

2.4.1 Lamé Constants 

In Appendix A it is shown that, due to symmetry of the crystal, the number of 

independent elastic constants in an isotropic medium reduces to two. These two 

independent constants are called the Lamé constants, λ and μ. These parameters are 

useful for determining the total stored energy of the system and are related to the 

elastic constants already defined, as follows: [Royer, 2000] 

 

11 22 33 2c c c          (2.28) 

 

12 13 23 21 31 32c c c c c c          (2.29) 

and 

11 12

44 55 66
2

c c
c c c 


        (2.30) 

 

 All other off-diagonal terms are zero. The parameter μ is known as the shear 

modulus, or the modulus of rigidity. 

 

 The general relationship between the speed of sound in a solid and its density 

and elastic constants is given by the following equation: 

 




ijc
V      (2.31) 

where V is the speed of sound, c is the elastic constant, and ρ is the material density. 

This equation may take a number of different forms depending on the type of wave 

(longitudinal or shear) and the particular elastic constants that are need to be used. 

 

 It must also be mentioned that the subscript ij attached to c in the above 

equation, is used to indicate the directionality of the elastic constants with respect to 

the wave type and direction of wave travel. In isotropic materials, the elastic 

constants are the same for all directions within the material. However, most materials 

are anisotropic and the elastic constants differ with each direction. 
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2.4.2 Shear and Longitudinal Waves 

The shear wave velocity Vs determined from the effective elastic constant for shear 

waves, is defined as  

 

44

s

c
V


       (2.32) 
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then 

11

l

c
V


       (2.34) 

 

 When calculating the velocity of a longitudinal wave, Young's Modulus and 

Poisson's Ratio are commonly used. When calculating the velocity of a shear wave, 

the shear modulus is used. It is often most convenient to make the calculations using 

Lame's Constants, which are derived from Young's Modulus and Poisson's Ratio.  

 

Table 2.3. Relations between the various elastic constants and Poisson’s ratio  for an 

  isotropic solid. 
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 Alternatively, an isotropic solid can also be equally well characterized by an 

alternative pair of parameters, the Young’s modulus, E: proportionality constant 

between uni-axial stress and strain, Bulk modulus, K: a measure of the 

incompressibility of a body subjected to hydrostatic pressure and the Poisson’s ratio,

 : the ratio of radial strain to axial strain, instead of the elastic constants c11 and c12 
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or the Lamé constants λ, μ: material constants that are derived from Young's 

Modulus and Poisson's Ratio. The relation between these coefficients is shown in the 

Table 2.3. 

 

 

2.5 Refraction and Snell’s Law 

 

When an acoustic wave passes through an interface between two materials at an 

oblique angle, and the materials have different indices of refraction, both reflected 

and refracted waves are produced. This effect is similar as for light, which is why 

objects seen across an interface appear to be shifted relative to where they really are. 

 

 Refraction takes place at an interface due to the different velocities of the 

acoustic waves within the two materials. The velocity of sound in each material is 

determined by the material properties (elastic modulus and density) for that material. 

In Fig. 2.4, a series of plane waves are shown travelling in one material and entering 

a second material that has a higher acoustic velocity. Therefore, when the wave 

encounters the interface between these two materials, the portion of the wave in the 

second material is moving faster than the portion of the wave in the first material. It 

can be seen that this causes the wave to bend. 

 

 Snell's law describes the relationship between the angles and the velocities of 

the waves. Snell's law equates the ratio of material velocities V1 and V2 to the ratio of 

the sine's of incident (θ1) and refracted (θ2) angles, as shown in the following 

equation. 

 

Figure 2.4. The diagram of reflected and refracted longitudinal (VL) wave. 

 

 Note that in Fig. 2.4, there is a reflected longitudinal wave (VL1') shown. This 

wave is reflected at the same angle as the incident wave because the two waves are 
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travelling in the same material, and hence have the same velocities. This reflected 

wave is unimportant in our explanation of Snell's law, but it should be remembered 

that some of the wave energy is reflected at the interface. 

 

 When a longitudinal wave moves from a slower to a faster material, there is 

an incident angle that makes the angle of refraction for the wave 90°. This is known 

as the first critical angle. The first critical angle can be found from Snell's law by 

putting in an angle of 90° for the angle of the refracted ray. At the critical angle of 

incidence, much of the acoustic energy is in the form of an inhomogeneous 

compression wave, which travels along the interface and decays exponentially with 

depth from the interface. This wave is sometimes referred to as a "creep wave." 

Because of their inhomogeneous nature and the fact that they decay rapidly, creep 

waves are not used as extensively as Rayleigh surface waves. However, creep waves 

are sometimes more useful than Rayleigh waves because they suffer less from 

surface irregularities and coarse material microstructure due to their longer 

wavelengths. 

 

2.5.1 Plane Wave Reflection and Refraction 

 

Figure 2.5. Longitudinal wave incident on a free surface. There are two reflected waves:  

  "longitudinal wave" and "shear wave". 

  

The reflection of an infinite plane wave at a free surface has to be considered. If a 

plane longitudinal or shear wave is normally incident on a surface, the reflected wave 

will also be a wave of the same type and of equal amplitude. The boundary condition 

is that the normal component of stress at the surface is zero. More generally, if a 

longitudinal wave is incident in the x-y plane on a free surface y=0 at an angle θli to 

the normal, as illustrated in Fig. 2.5, it will give rise to a reflected longitudinal wave 

at an angle θlr to the normal and a reflected shear wave at an angle θsr to the normal. 
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The displacement associated with this shear wave will have a component in the 

vertical direction, so we call it a shear vertical wave. 

 

 The longitudinal wave can be represented in terms of a potential ∅, which 

varies as exp ljk r where the vector r is the direction of wave. The incident 

longitudinal wave potential ∅li, in the coordinate system of Fig. 2.5, is defined as, 

 

( sin cos )l li lijk x y

li liA e
   

     (2.35) 

 

 In the same way, there must be a reflected longitudinal wave ∅lr of the form, 

 

( sin cos )l lr lrjk x y

lr lrA e
   

     (2.36) 

and, in general, a reflected shear wave Ѱsr of the form 

 

( sin cos )s sr srjk x y

sr srA e
  

      (2.37) 

where the potential Ѱsr is a vector in the z direction. Any other components in Ѱsr 

would give rise to additional components of T and u, and thus would not satisfy the 

boundary conditions. 

 

 The boundary condition at the surface is that the total normal component of 

stress must be zero. Therefore, as shown in Section 2.3 and Appendix A, the stress 

components at the surface are, 

 

2 0yyT T        (2.38) 

 

and 

6 0xyT T        (2.39) 

 

 These stress components are derived as sums of the components of the 

longitudinal and shear waves. Thus, to satisfy the boundary conditions at any point 

along the surface y=0, all components of longitudinal and shear waves must have the 

same phase variation along the surface. 
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 This implies, from Eqs. 2.35 - 2.37, that, 

 

sin sin sinl li l lr s srk k k       (2.40) 

 

 This can be concluded that the angle of incident equals to the angle of 

reflection for the longitudinal waves, similar to the reflection of electromagnetic 

(EM) waves, or, 

 

li lr       (2.41) 

 

 This also arrives at the condition that, 

 

sin

sin 2

sr l s

li s l

k V

k V

 

  
  


    (2.42) 

 

 This condition is similar to the Snell’s law for the reflection of EM waves and 

is based on the same considerations. As Vs<Vl in all isotropic solids, the reflected 

shear wave propagates at an angle closer to the normal than the reflected longitudinal 

wave. 

 

Figure 2.6. Shear wave incident on a free surface. 

 

 If we consider the opposite case of excitation by a shear vertical wave, we 

can conclude that by using the same type of notation as illustrated in Fig. 2.6: 

 

sin 2

sin

lr s l

si l s

k V

k V

  

 


       (2.43) 
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2.6 Modes of Sound Wave Propagation 

 

In air, sound travels by the compression and rarefaction of air molecules in the 

direction of travel. However, in solids, molecules can support vibrations in other 

directions, hence, a number of different types of sound waves are possible. Waves 

can be characterized in space by oscillatory patterns that are capable of maintaining 

their shape and propagating in a stable manner.  The propagation of waves is often 

described in terms of what are called “wave modes.” 

 

 In solids, sound waves can propagate in four principle modes that are based 

on the way the particles oscillate. Sound can propagate as longitudinal waves, shear 

waves, surface waves, and in thin materials as plate waves. Longitudinal and shear 

waves are the two modes of propagation most widely used. The particle movement 

responsible for the propagation of longitudinal and shear waves is illustrated below. 

 

Figure 2.7. Longitudinal and shear wave direction of propagation. 

 

 As mentioned previously, longitudinal and transverse (shear) waves are most 

often used for wave inspection.  However, at surfaces and interfaces, various types of 

elliptical or complex vibrations of particles make other waves possible. Some of 

these wave modes such as Rayleigh and Lamb waves are also useful for the 

inspection. Table 2.4 summarizes many, but not all, of the wave modes in solids. 
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Table 2.4. Summarized possible wave modes in solid. 

Wave Types in Solids Particle Vibrations 

Longitudinal Parallel to wave direction 

Transverse (Shear) Perpendicular to wave direction 

Surface - Rayleigh  Elliptical orbit - symmetrical mode  

Plate Wave - Lamb Component perpendicular to surface (extensional 

wave)  

Plate Wave - Love Parallel to plane layer, perpendicular to wave 

direction 

Stoneley (Leaky Rayleigh Waves)  Wave guided along interface 

Sezawa Antisymmetric mode 

 

 Longitudinal and transverse waves were discussed earlier, so the surface and 

plate waves are described in the following sections. 

 

 Surface (or Rayleigh) waves travel along the surface of a relatively thick 

solid material penetrating only to a depth of one wavelength. Surface waves combine 

both a longitudinal and transverse motions to create an elliptic orbit motion. The 

major axis of the ellipse is perpendicular to the surface of the solid this is because as 

the depth of an individual atom from the surface increases the width of its elliptical 

motion decreases. Surface waves are generated when a longitudinal wave intersects a 

surface near the second critical angle and they travel at a velocity between 0.87 and 

0.95 of a shear wave. Rayleigh waves are useful because they are very sensitive to 

surface defects (and other surface features) and they follow the surface around 

curves. Because of this, Rayleigh waves can be used to inspect areas that other waves 

might have difficulty reaching. 

 

 Plate waves are similar to surface waves except they can only be generated in 

materials a few wavelengths thick.  Lamb waves are the most commonly used plate 

waves.  Lamb waves are complex vibrational waves that propagate parallel to the test 

surface throughout the thickness of the material. Propagation of Lamb waves 

depends on the density and the elastic material properties of a component.  They are 

also influenced a great deal by the test frequency and material thickness. Lamb 

waves are generated at an incident angle in which the parallel component of the 

velocity of the wave in the source is equal to the velocity of the wave in the test 

material. Lamb waves can travel several meters inside the steel and so are useful to 

scan metal plate, wire, and tubes. 
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 With Lamb waves, a number of modes of particle vibration are possible, but 

the two most common modes are symmetrical and asymmetrical. The complex 

motion of the particles is similar to the elliptical orbits for surface waves.  

Symmetrical Lamb waves move in a symmetrical fashion about the median plane of 

the plate.  This is sometimes called the extensional mode because the wave is 

“stretching and compressing” the plate along the direction of the wave motion.  

Wave motion in the symmetrical mode is most efficiently produced when the 

exciting force is parallel to the plate. The asymmetrical Lamb wave mode is often 

called the “flexural mode” because a large portion of the motion moves in a normal 

direction to the plate, and a little motion occurs in the direction parallel to the plate. 

In this mode, the body of the plate bends as the two surfaces move in the same 

direction. 

 

 

2.7 Surface Waves 

 

Since the different types of waves that can exist in a solid medium of finite width are 

discussed. In this section, more attentions are devoted to Rayleigh waves. Rayleigh 

waves exist only near the surface of a semi-infinite medium.  For this reason such 

waves are called surface waves. A familiar example of a surface wave is one that 

propagates along the surface of water. In this case, the wave motion is strong at the 

surface of the water and falls off very rapidly into its interior. In a water wave, the 

inertial forces are associated with the mass of the water and the restoring forces are 

due to gravity, rather than Hooke’s law. 

 

 When an observer analyzing seismic motions of the earth, three distinct 

events can occur due to a distant disturbance. The first is a result of longitudinal 

waves propagating through the interior of the earth. The second due to shear waves, 

which, because they propagate at a slower velocity than longitudinal waves, they 

reach the observer at a later time. Finally, a third disturbance, due to a wave 

propagating along a curve surface of the earth, reaches the observer; this surface 

wave disturbance is the strongest of the three. 
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 Lord Rayleigh [Rayleigh, 1904] proposed a theory for the surface wave, 

which shows that it consists of a mixture of shear and longitudinal stress 

components. This is because there is no restoring force at a surface of a solid 

medium, any force normal to the surface must be zero. Thus the boundary condition 

at the surface is that the normal components of stress must be zero. If a wave 

propagating in the z direction exist in a semi-infinite medium, the total energy per 

unit length in the wave must be finite. This, in turn, implies that the field components 

associated with the wave will decay exponentially into the interior of the medium. It 

is possible to obtain a mathematical solution that satisfies the boundary conditions. 

 

 Surface acoustic waves are technically important because their energy is 

concentrated in a relatively small region, approximately one wavelength deep, near 

the surface. The waves are therefore accessible from the surface. Thus Rayleigh 

waves produced by seismic disturbances are the one most easily detected by sensors 

on the surface of the earth. 

 

2.7.1 Rayleigh Wave in an Isotropic Medium 

Consider a medium that is semi-infinite in the -y direction with a free surface at y=0 

and particle displacement only along the y and z axes, as illustrated in Fig. 2.8. 

 

Figure 2.8. Configuration for acoustic surface wave analysis. 

 

 The Rayleigh wave dispersion relation can be written as a cubic equation in 

β
2
. Then the dispersion relation can also be written [Lagasse, 1973] in terms of the 

Rayleigh wave velocity VR=ω/β, in the form of, 

 

6 4 2 2 2

8 3 2 16 1 0s sR R R

s s l s l

V VV V V

V V V V V

          
               
           

  (2.44) 

where Vs, Vl and VR are the shear wave velocity, the longitudinal wave velocity and 

the Rayleigh wave velocity respectively. 
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 This dispersion relation has a real root, the Rayleigh root, which can be stated 

in the approximate from, 

 

0.87 1.12

1

s R

s

k V

V



 


 


    (2.45) 

 

 The Rayleigh wave is a non dispersive wave, with VR varying from 0.87Vs to 

0.95Vs as Poisson’s ratio varies from 0 to 0.5. A plot of VR/Vs as a function of Vs/Vl 

is compared with approximate solution in Fig. 2.9. 

 

 Note that the two other roots of the dispersion relation are neglected. These 

correspond to waves propagating from y=-∞, which are reflected from the surface. 

 

Figure 2.9. Isotropic Rayleigh wave velocity VR as a function of the bulk shear wave  

  velocity Vs and the bulk longitudinal wave velocity VL. 

 

 The Rayleigh wave velocity VR is always less than the shear wave velocity Vs 

or the longitudinal wave velocity Vl. This is necessary for the waves to fall off in 

amplitude exponentially into the interior of the medium, and hence kr>kl and kr>ks. 

The shear wave velocity is always less than the longitudinal wave velocity. 

Consequently, the Rayleigh wave velocity must always be considerably less than the 

longitudinal wave velocity but only slightly less than the shear wave velocity. This is 

because the Rayleigh wave velocity is closest to the shear wave velocity, most of the 

stored energy in the medium is associated with the shear wave components, rather 

than the longitudinal ones; thus in many respects the Rayleigh wave behaves like a 

shear wave. 
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2.8 2D Acoustic Waveguide 

 

Next, we focus on guidance in a 2D waveguide, as our objective is to study the 

interaction of acoustic wave and optical wave in optical waveguides. Acoustic waves 

propagate due to the periodic displacement of the molecules inside a waveguide and 

the wave guidance is more complex and also determined by the material density, 

elasticity, Young modulus, and Poisson’s ratio of the constituent materials.  These 

acoustic modes can be guided, provided at least one of the velocities (the shear or 

longitudinal velocities) of the cladding exceeds that of the core.  The particle 

displacement can be either in the longitudinal direction or in the transverse plane and 

propagation of the waves can be classified as longitudinal, torsional, bending or 

flexural modes. 

 

 The 2D acoustic waveguide consisted of core and cladding material, in order 

to guide the light through the guided core, this material has to have the lower wave 

velocity. This is analogous to having acoustic index of the clad lower than that of the 

core. This lower velocity is due to higher acoustic index inside the core hence where 

the acoustic mode will be guided. In optical waveguide, such as in an optical fibre, 

core or clad is doped such that refractive index of the core is higher than that of the 

clad to confine light in the core. The doping material will be considered differently 

depended on the type of doped, it could cause the acoustic velocity in the core higher 

or lower. Figure 2.10 illustrates waveguide can be in different shape and form. 

 

(a)    (b) 

Figure 2.10. The 2D acoustic waveguide with the propagation direction (a) rectangular and  

  (b) circular. 

 

 The propagation direction will be similar to the one directional dimension 

whereas longitudinal along the z axis and the shear wave will be perpendicular to the 

direction of propagation. 
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 The propagation of an acoustic wave along the z direction may be associated 

with the molecular displacement and for a time harmonic wave, the displacement 

vectors, Ui, can be written in the following form [Geoffrey, 1973]: 

 

    , , exp
i

U x y zu u u ju j t kz     (2.46) 

where the angular acoustic frequency, ω, denotes the time dependence; the 

propagation constant, k identifies the axial dependence of the acoustic wave and ux, 

uy and uz are the particle displacement vectors along the x, y and z directions 

respectively, seen through the stress-displacement equation (if needed other 

orthogonal coordinate system can also be considered). For a loss-less system, uz (the 

longitudinal component) is 90 degrees out of phase with the two transverse 

displacements, ux and uy, components. In this case, by defining uz as an imaginary 

component, as shown in Eq. 2.46, the system equation can be simplified to a real 

eigenvalue equation. A similar approach has been considered for loss-less optical 

waveguides to transform an otherwise complex eigenvalue problem to a much 

simpler real symmetric eigenvalue equation [Rahman, 1984]. The deformation in an 

acoustically vibrating body can be described by the strain field, S, given by: 

 

S u      (2.47) 

 

 The elastic restoring forces can be defined in terms of the stress field, T and 

the inertial and elastic restoring forces in a freely vibrating medium are related 

through the translational equation of motion where: 

 

2

2

u
T

t



 


     (2.48) 

where ρ is the density of the material. 

 

 Hooke’s Law states that the strain and stress are linearly proportional to each 

other and are given by: 

 

, , , , ,  ;  ij ijkl klT c S i j k l x y z     (2.49) 
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 Here, the microscopic spring constants, cijkl, are called the elastic stiffness 

constants. The compliance and stiffness tensors can be denoted in the matrix form: 

 

    T c S      (2.50) 

in which cijkl is the fourth order tensor which obeys the symmetry condition and 

hence can be represented by using two suffix notations.  Furthermore, the elastic 

stiffness constants are related to the shear and longitudinal velocities. 

 

 Classically, in the finite element method for a solid structure, the 

displacement field, u, can be written with the interpolation shape function, [N], and 

of the vector of the nodal values of the displacement field U where: 

 

 u N U      (2.51) 
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 (2.52) 

 

 The general system of equations associated with this problem can be written 

as detailed derivation will be given in Chapter 3: 

 

    2 L M U F     (2.53) 

where [L] is the stiffness matrix, related to strain energy and [M] is the mass matrix 

related to the kinetic energy. These matrices are generated for a given acoustic 

propagation constant, k. The column vectors, F, contain the nodal values of the 

applied forces, which in this case are taken to be equal to zero. Solving this 

generalized eigenvalue equation of the system yields the eigenvalue as ω
2
, where ω 
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is angular frequency and the eigenvector U, the displacement vector. From the given 

input k and output ω, phase velocity of the acoustic wave, v, can be calculated from: 

 

v
k


       (2.54) 

 

 However, if it is required to calculate the propagation constant for a given 

frequency, a simple iterative approach can be considered. Numerically efficient 

computer code has been developed by using the sparse matrix solver along with the 

versatile mesh generation for an arbitrary shaped waveguide and results of an 

analysis are presented in this thesis for a range of acoustic and optical waveguides.  

 

 For two-dimensional analysis, cross-section of the waveguide is meshed by 

using many first order triangular elements. All three components of the magnetic 

fields are represented by piece-wise polynomials within the elements. However, this 

will be discussed more fully in the Chapter 3 for the Finite Element Method. 

 

 

2.9 Properties of Waves in Waveguide 

 

The acoustic plane waves are of either longitudinal (compressional) or shear nature; 

in combination, they form specific types of frequency-dependent wave motions, with 

their own individual propagation properties, for the corresponding structural 

waveguide. These modes in waveguide have higher order spatial variations which 

increases with the frequency, and they only exist beyond their cut-off frequencies. 

The frequency dependence of these wave modes can be calculated with dispersion 

curves, showing, for example, the phase velocity and group velocity. 

 

 In this project the guided wave technique has been used for different optical 

waveguides. In each of these cases, the wave motion can be categorised into families 

of wave modes according to their propagation nature. The similar type of waveguides 

such as fibre, square, rectangular and slot waveguides have given a similar modes 

result, and thus share the same families of wave modes, whereas the rectangular and 
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slot waveguide with the unequal width and height have given the non-degenerate 

modes. 

 

(a)     (b)   

Figure 2.11. Wave motion of guided waves in plates for (a) symmetric mode and  

  (b) antisymmetric mode [Fong, 2005]. 

 

 

(a)   (b)   (c) 

Figure 2.12. Wave motion of guided waves in bars or pipes for (a) longitudinal mode,  

  (b) flexural mode and (c) torsional mode. [Fong, 2005]. 

 

 For the wave modes, they are either symmetric or antisymmetric along the 

mid plane through the thickness as shown in Fig. 2.11, which is the characteristic 

used to group them into the corresponding families. The wave modes in general are 

divided into three families, namely the longitudinal modes (a purely axially 

symmetric wave motion), the flexural modes (an asymmetric mode involving a 

bending motion along the propagation direction) and the torsional mode (a twisting 

motion along the centre axis), as shown in Fig. 2.12.  The torsional mode can also be 

of the radial mode (a mode radially outwards or inwards from the center axis), and 

the torsional-radial (a squeezing motion from the side of the core and spread to the 

centre). 
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2.10 Mode Classification 

 

Mode in bulk homogeneous materials are more simple in nature, and these modes 

can be grouped easily. However, modes in acoustic waveguide, particularly in optical 

waveguides are more complex. They have all the longitudinal and transverse 

displacement components. However, initially these are grouped in pure longitudinal 

modes and pure transverse modes and later on we will discuss about more general 

hybrid modes. The following sections show the results obtained from the numerical 

simulations for various waveguides, carried out here. 

 

2.10.1 Pure Longitudinal Mode 

In this thesis we have considered z as the propagation direction. For the pure 

longitudinal mode in the general structure of the waveguide only  Uz exists, whereas 

Ux and Uy components are equal to zero. The transverse components can be taken as 

r, and   axis, to be more suitable to treat circular waveguides. On the other hand, 

Cartesian x and y axes can also be considered, which is more suitable for general 

shapes of acoustic waveguides and adopted here. The acoustic fibre are also similar 

to the normal waveguide also for the pure longitudinal propagation direction in the z 

direction Uz (r, ). However, it will be shown later on that often modes are more 

complex with all the components being present. The fundamental mode, L01 has Uz 

profile Gaussian in shape and is shown in Fig. 2.13. 

 

Figure 2.13. Uz profile of the longitudinal L01 mode or Uz mode. 
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 The longitudinal L01 mode is one of the most important one, which has the 

dominant Uz mode with the maximum intensity in the z direction as shown in Fig. 

2.13. Later on in this thesis the studies of acousto-optic interaction by using the 

acoustic mode of the longitudinal L01 mode to calculate the overlap interaction with 

the optical modes, will also be shown. 

 

 For higher order ( , )zU r  modes, for the variations in the transverse plane, 

notation similar as the Lmn modes used for optical fibres can be considered. On the 

other hand for Cartesian coordinate systems, notation used for integrated optics such 

as x

mnH  or y

mnH can be considered, where H
x
 or H

y
 are dominant field component and 

m and n are related to their spatial variations. 

 

 Beside the fundamental L01 mode shown in Fig. 2.13, however, there are also 

higher order longitudinal mode with more rapid spatial variation, some of them are 

shown below; 

 

(a)     (b) 

Figure 2.14. Higher order longitudinal (a) L11 (b) L21 of the Uz modes. 

 

 The higher order Uz variation of the longitudinal mode is shown in Fig. 

2.14(a), the longitudinal L11 shown the variation of one negative and one positive 

peak in the Uz direction, whereas the longitudinal L21 in Fig. 2.14(b) shown the four 

spatial variation of two positive and two negative Uz displacement in the opposite 

direction in the waveguide cross-section. 
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2.10.2 Pure Transverse Modes 

For the transverse wave the displacement is in the transverse plane, perpendicular to 

z direction, and the Uz has zero displacement. There can be many different 

combinations of Ux and Uy components. In this thesis if Ux>Uy then, this is identified 

as the U
x
 mode. In the case when the waveguide has 90 degree rotational symmetry, 

such as square or circular waveguide, then U
x
 and U

y
 modes are degenerate in nature.  

 

(a) 

 

(b)    (c)   

Figure 2.15. Fundamental shear S01 along y-axis for the Uy displacement (a) U
y
 mode 

  (b) Uy displacement (c) propagation in the y direction in fibre. 

 

 The dominant transverse U
y
 mode (or can also be called shear S01 mode), its 

U
y
 displacement profile is shown in Fig. 2.15(a), this shows the U

y
 contour profile is 

nearly Guassian in shape. Figure 2.15(b) shows the displacement is only in the y 

directions, so the waveguide bends in the +y direction. However, as the time varies, it 

periodically changes its sign, so the waveguide bends in upper and lower y-direction 

as shown in Fig. 2.15(c) in which volume remains the same. 
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(a)     (b) 

Figure 2.16. Fundamental shear S01 for the Ux displacement (a) U
x
 mode, 

  (b) the displacement in the x direction in fibre along x-axis. 

 

 On the other hand, a pure U
x
 mode will have dominant U

x
 component, and 

the fundamental mode may have its U
x
(x,y) profile similar to the Gaussian profile as 

shown in Fig. 2.16(a) with the displacement is in the x direction as shown in Fig. 

2.16(b). However, if a structure has 
090  rotational symmetry then both U

x
(x,y) and 

U
y
(x,y) will be equally present. Their vector combination of S01 mode is also shown 

here which is the summation of the Ux and Uy modes. 

 

Figure 2.17. Fundamental shear S01 for the vector plot t x yU U U  . 

 

 The vector plot of S01 is shown in Fig.2.17 which indicates the displacement 

vector is rotated 
045  to the axis for the fundamental S01 mode. This clearly shows 



CHAPTER 2  ACOUSTIC THEORY 

   

47 
 

waveguide bends in the x-y plane in the diagonal direction. Similarly these transverse 

mode can be higher order transverse modes and some spatial variations of the U
x
 and 

U
y
 are shown in Fig. 2.18(a) and (b): 

 

Torsional Mode 

For the higher order S11 mode, the displacement in the Ux and Uy direction are shown 

in Fig. 2.18(a) and (b), respectively. The Ux profile shows 2 peaks, one positive and 

another negative, placed in the upper and lower part of the waveguide as shown in 

Fig. 2.18(a). On the other hand, Uy profile shows 2 peaks placed on the left and right 

of the waveguide as shown in Fig. 2.18(b).  

 

(a)     (b) 

Figure 2.18. Shear S11 for the Torsional mode (T) (a) Ux (b) Uy displacement in fibre. 

 

 The combination of these Ux and Uy displacement vectors is shown in Fig. 

2.18 for the S11 mode which yields the vector plot as anticlockwise rotation as this is 

shown in Fig. 2.19(a), which can also be identified as a Torsional mode. 
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(a)    (b) 

Figure 2.19. Shear S11 for the Torsional mode (T) (a) vector plot t x yU U U  , 

  (b) the rotation of the twist in the fibre. 

 

 In the next half of the period as sign of both Ux and Uy changes, the direction 

Ut will become clockwise. So along the axial direction is this periodic twists in 

clockwise and anticlockwise directions as shown in Fig. 2.19(b) where the volume 

remains the same.  

 

Radial Mode 

However, there is a possibility of different displacement vector combination for the 

S11 mode and one such example is shown in Fig. 2.20. 

 

(a)     (b) 

Figure 2.20. S11 for the Radial mode (R) (a) Ux (b) Uy displacement in fibre. 
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 The similarity of displacement between the radial mode and the torsional 

mode happened for the displacement in the Ux and Uy where in Fig. 2.20 shows the 

one positive and one negative peak with the different rotation from the x-axis. It is 

shown in Fig. 2.20(a) that the Ux displacement profile shows one positive and one 

negative on the left and right of the waveguide. However for the Uy displacement, 

the profile is placed in the upper and lower of the waveguide as shown in Fig. 

2.20(b) in which it is rotated by 90 degrees. The combination of Ux and Uy shown in 

Fig. 2.20 can yields the vector plot of Ut as shown in Fig. 2.21. 

 

(a) 

 

(b)    (c) 

Figure 2.21. S11 Shear mode for the Radial mode (R) of the (a) vector plot t x yU U U  , 

  (b) the characteristic of the Radial mode propagation, 

  (c) the periodic displacement of Radial mode.  

 

 Here, particles appear to move outwards, or as if its radius is increased as 

shown in Fig. 2.21(a). In the next half of the period, Ut will be inward radius and it 

will reduce therefore its periodic will increase and reduction of its radius, as if 

periodically ‘breathing’ in and out are shown in Fig. 2.21(b) and (c) as being called 

radial mode. In this case as the waveguide cross-sectional area changes, the density 

along the waveguide is also changed. 
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Torsional-Radial Mode 

Next, another interesting shear mode (S11) is shown, where this yield to a Torsional-

Radial mode (TR) as shown in Fig. 2.22.  

 

 Figure 2.20 shown the shear mode of S11 radial mode (R) (in which, the 

profiles of Ux and Uy displacement vectors have shown two peaks, one positive and 

one negative). The displacement vector of the torsional-radial mode (TR) as shown 

here in Fig. 2.22 (a) that its profile is similar to that in the radial mode of the Ux and 

Uy profiles shown in Fig. 2.20.  

 

(a) 

 

(b)    (c) 

Figure 2.22. The transverse S11 mode of the Torsional-Radial mode (TR) (a) the vector plot 

  t x yU U U   (b) the characteristic of the torsional-radial mode propagation 

  (c) the periodic displacement of the TR mode. 

 

 The vector plot Ut in Fig. 2.22(a) is the combination of the Ux and Uy profile 

modes were similar to that of Radial mode (R) as shown in Fig. 2.20, but 90
o
 out of 

phase in time axis (and these are not shown here). It could be noticeable that the 

vector is spread from the inner of the core and squeeze to the side. In the next half Ut 

will be reduced from both sides and expand it on the other, so periodically like the 
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rotation of the wave with its twisted and then squeezed and expanded its shaped 

every half wavelength of the wave as shown in Fig. 2.22(b) and (c). 

Next the higher order mode of S21 is shown in Fig. 2.23. 

 

(a)     (b) 

Figure 2.23. Shear S21 for (a) Ux (b) Uy displacement in fibre. 

 

 The higher order spatial variation for two positive and two negative 

displacement vectors facing opposite to each other is shown in Fig. 2.23. 

 

Figure 2.24. The shear S21 mode of t x yU U U  . 

 

 The resultant vector displacements is shown in Fig. 2.24, the different angle 

of the vector plot illustrates that it has been moving from one corner to another 

corner. Therefore the vector plot is repeatedly expanded and squeezed from one side 

to another and rotated to all the corners, this happened because from the combination 

of the Ux and Uy displacement vectors as shown in Fig. 2.23.  Figure 2.24 also shows 
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that at the interface of positive and negative of the displacement field profile, the 

field is close to each other and is stretching and compressing along the direction of 

wave propagation. 

 

2.10.3 Quasi-acoustic Modes 

It was mentioned that modes in acoustic waveguides with sub-wavelength dimension 

are neither pure longitudinal nor pure transverse, but actually hybrid modes, where 

all the Ux, Uy and Uz components are present. 

  

Quasi-Longitudinal 

In the case if Uz >> Ux, Uy then this can be called quasi-longitudinal modes. In this 

case it has been observed that non-dominant components have higher order spatial 

variations than the dominant component. 

 

(a)      (b) 

 

(c) 

Figure 2.25. Quasi-longitudinal L01 mode, for the displacement vectors (a) Uz (b) Ux and (c) Uy. 
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The degeneration occurred for the longitudinal mode in fibre.  Figure 2.25(a) 

shows the maximum intensity value of the fundamental Uz displacement of the L01 

mode. It should be noted that non-dominant displacement vectors have higher order 

spatial variations as shown in Fig 2.25(b) and (c), in which it shows one positive and 

one negative peak of the Ux and Uy displacement with lower intensity value than in 

the dominant Uz displacement profile. 

 

Quasi-Transverse 

The hybrid transverse modes are shown in Fig. 2.26 in contrast to the quasi-

longitudinal mode shown earlier. In this case for the Uy has higher intensity than Uz 

displacement and we can call this as a quasi-transverse mode.  

 

(a)    (b) 

 

(c) 

Figure 2.26. Transverse U
y
 mode (a) Uy (b) Ux (c) Uz displacement in Silica slot waveguide. 
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 The fundamental U
y
 mode is shown in Fig. 2.26(a) with its maximum 

intensity and usually it will have the dominant in the Ux or Uy displacement 

direction. However in these cases shown, the fundamental U
y
 mode in the slot 

waveguide were studied, it will be explained in detail later in Chapter 6. The next 

displacement field profile mode shown one positive and one negative peak in Fig. 

2.26(b) of the Ux displacement and Fig. 2.26(c) shown the Uz vector displacement of 

the non-dominant mode.  

 

(a)    (b) 

 

(c) 

Figure 2.27. Longitudinal L01 for (a) Uy (b) Ux (c) Uz displacement in acoustic Ge-doped Silica 

core rectangular structure. 

 

 Quasi-transverse mode in Fig. 2.27(a) shows the dominant in the Uy 

displacement for the U
y
 mode with its highest intensity. The mode are non-

degenerate due to the structure of the waveguide has an unequal width and height. In 
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Fig. 2.27(b) the mode is rotated 45 degree from the the x-axis with the minimum 

field value in the middle and Fig. 2.27(c) shows the one positive and one negative on 

the upper and lower of the waveguide. The Ux, Uy and Uz displacement vectors 

shown here are analogous to the Hy fields for optical modes in a rectangular optical 

waveguides. 

 

 

2.11 Summary 

 

In this Chapter, we have introduced the stress and strain notation to form the acoustic 

wave equation for instance the equation of motion and Hooke’s law. These are the 

two basic fundamental acoustic wave equations in this thesis to form the acoustic 2 

dimension waveguide. The longitudinal and shear wave velocity formulation have 

been shown with the relations between the various elastic constants for an isotropic 

solid. Modes of sound wave propagation has been explained in the last section of this 

chapter such as longitudinal, transverse, surface wave, plate wave and the 2D 

acoustic waveguide with mode classification of pure longitudinal, pure transverse 

and quasi-acoustic modes shown by using the illustration displacement field profiles 

and their vector plots. 
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Chapter 3 
 

Finite Element Method 
 

3.1 Introduction  

 

The finite element method (FEM) is a versatile and powerful numerical technique for 

obtaining approximate solutions to a wide variety of engineering problems. The FEM 

first introduced in 1960, when it was used by Clough to describe the new technique 

for plane stress analysis [Clough, 1960]. The applied mathematicians were concerned 

with boundary value problems of continuum mechanics; in particular, they wanted to 

find approximate upper and lower bounds for eigenvalues. The effort from these 

different groups resulted in distinctly different viewpoints. In 1965 the FEM received 

an even broader interpretation when Zienkiewicz and Cheung [Zienkiewicz, 1977] 

reported that it is applicable to all field problems that can be cast into a variational 

form. 

 

 The FEM is widely used in different fields of science and technology. Many 

engineering problems can be defined in terms of governing equations. The finite 

element represents an approximate numerical solution of a boundary-value problem 

described by a differential equation. The finite element discretization procedures 

reduce the problem to one of a finite number of unknowns by dividing the solution 

region into elements and by expressing the unknown field variable in terms of 
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assumed approximating functions within each element. The approximating functions 

(sometimes called interpolation functions) are defined in terms of the values of the 

field variables at specified points called nodes or nodal points. Nodes usually lie on 

the element boundaries where adjacent elements are considered to be connected. In 

addition to boundary nodes, an element may also have a few interior nodes. The 

nodal value of the field variable and the interpolation functions for the elements 

completely define the behaviour of the field variable within the elements. For the 

finite element representation of a problem the nodal values of the field variable 

become the new unknowns. Once these unknowns are found, the interpolation 

functions define the field variable throughout the assemblage of elements. 

 

 Element properties can also be determined by the more versatile and more 

advanced variational approach. The variational approach relies on the calculus of 

variations and involves extremizing a functional. Knowledge of the variational 

approach is necessary to work and to extend the FEM to a wide variety of 

engineering problems. 

 

 The solution of a problem by the FEM always follows an orderly step-by-step 

process. All steps will be listed to summarize how the FEM works and it will be 

developed in detail later. 

 

1. Discretization the continuum. The first step is to divide the continuum or 

solution region into elements. In this thesis, the 2-dimensional waveguide cross-

section domain will be divided into an assemblage of triangular elements. 

 

2. Select interpolation functions. The next step is to assign nodes to each 

element and then choose the type of interpolation function to represent the variation 

of the field variable over the element. Often, although not always, polynomials are 

selected as interpolation functions for the field variable because they are easy to 

integrate and differentiate. The degree of the polynomial chosen depends on the 

number of nodes assigned to the element, the nature and the unknowns at each node, 

and certain continuity requirements imposed at the nodes and along the element 

boundaries. 
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3. Find the element properties. Once the finite element model has been 

established (that is, once the elements and their interpolation functions have been 

selected), we are ready to determine the matrix equations expressing the properties of 

the individual elements. For this task we use the variational approach. that is often 

the most convenient, but for any application the approach used depends entirely on 

the nature of the problem.  

 

 

3.2 Variational Formulations  

 

The formulation of the FEM depends on the variational method whereas the 

variational approach is more advantageous as especially only one global parameter 

such as the propagation constant is needed to solve for the final solution. However, 

in this thesis’s work, the variational method has been used for the implementation of 

acoustic waveguide with the FEM. 

 

 Once the formulation is chosen, it can be converted into a standard 

eigenvalue problem through the application of FEM in the form of: 

 

     2L u M u      (3.1) 

where [L] is complex symmetric and [M] is real symmetric sparse matrices, and [M] 

is also the positive definite matrix, and the eigenvalue ω
2
. Once ω is obtained for a 

given acoustic propagation constant, k, then acoustic wave velocity, V can be 

obtained from:  

 

k
V


      (3.2) 

 

 Here V is the velocity (m/s) of the acoustic wave.  The eigenvector {u} 

represent the unknown values of the nodal displacement vectors. Equation 3.1 is the 

canonical form, as it allows for a more efficient solution and useful to solve for, by 

employing one of the standard subroutines to obtain different eigenvectors and 

eigenvalues. 
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3.2.1 Generalization of an Element 

The basic idea of the FEM is to divide the solution domain into a finite number of 

subdomains (elements). These elements are connected only at node points in the 

domain and on the element boundaries. In this way the solution domain is discretized 

in Fig. 3.1 and represented as a patchwork of elements. Frequently the boundaries of 

the finite elements are straight lines or planes, so if the solution domain has curved 

boundaries, these are approximated by a series of straight or flat segments or even by 

using isoparametric elements. 

 

 In the finite element procedure once the element mesh for the solution 

domain has been discretized, the behaviour of the unknown field variable over each 

element is approximated by continuous functions expressed in terms of the nodal 

values of the field variable and sometimes the nodal values of its derivatives up to 

certain order. The function defined over each finite element are called interpolation 

functions, shape functions, or field variable models. The collection of interpolation 

functions for the whole solution domain provides a piecewise approximation to the 

field variable. 

 

 

3.3 Discretization of the Problem  

 

Figure 3.1. Two-dimensional domain divided into triangular elements. 

 

To illustrate the nature of this approximation we consider the representation of a two-

dimensional field variable, ϕ(x,y). We will show how the nodal values of ϕ can 
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uniquely and continuously define ϕ(x,y) throughout the domain of interest in the x-y 

plane, and we will introduce the notation for an interpolation function. 

 

 The domain is shown in Fig. 3.1, and can be discretized it into triangular 

elements with nodes at the vertices of the triangles. With this type of domain 

discretization can allow field variable ϕ to vary linearly over each element and the 

spatial domain, which is illustrated in Fig. 3.2 by green triangle.  In Fig. 3.2 it is also 

shown a plane (with blue triangle) passing through the three nodal values of ϕ to 

illustrate the spatial variation of the field. 

 

Figure 3.2. Subdivided into piecewise linear solution surface ϕ(x, y). 

 

 

3.4 Interpolation Functions and the Shape Function 

 

The continuous field function ϕ(x, y) in the domain problem may be replaced by a set 

of discrete values {ϕe, where e=1, 2, 3, ..., m), where m is total number of nodes. The 

complete representation of the field variable over the whole domain is given by, 

 

     
3

1 1
, , ,

m

e e i ii i
x y x y N x y  

 
      (3.3) 

where, ϕi are the nodal field values. 

 

 In general, the function Ni are called shape functions or interpolation 

functions, and it is the most important in the FEM analysis. (Here the Ni are linear 

interpolation functions for the three-node triangular element.) 
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 Equation 3.3 can also be expressed in the matrix from, 

 

     
1

2 1 2 3

3

,e iN N N N



 



 
 

  
 
 

  (3.4) 

 

      
1

1 2 3 2 1 1 2 2 3 3

3

,e e ex y N N N N N N N



     



 
 

     
 
 

 (3.5) 

where [N] is the shape function matrix and the column vector {ϕe} is the vector 

corresponding to the element nodal field values. 

 

 The particular interpolation function (linear) and a particular element type 

(three-node triangle), have been shown in Eqs. 3.3 and 3.5. The complete solution of 

the nodal value ϕ can represent the solution surface ϕ(x,y) as a series of 

interconnected, triangular elements. 

 

 This many-faceted surface has no discontinuities or “gaps” as inter-element 

boundaries because the values of ϕ at any two nodes defining an element boundary 

uniquely determine the linear variation of ϕ along the boundary, where the shape 

functions can be defined as, 

 

1 2 3( , ) ( , , )i i iN f x y f L L L      (3.6) 

in which Ni, i=1,2,3… have to be chosen to give the coordinate and the appropriate 

nodal field values. The first degree polynomial can be described as (a+bx+cy) and 

such polynomial is used for the first order triangular elements over each element. 

 

 Now we define the simplest representation, the first order polynomial is: 

 

, 1,2,3
2Δ

 
 n n n

n

a b x c y
N n    (3.7) 

where, Δ is the area of the triangle. 
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 Having defined the displacement field within an element, for this linear 

representation these shape functions are simply the area coordinates. 

 

, 1,2,3i iN L i       (3.8) 

 

 

3.5 Triangle Coordinates in Two dimensions 

 

The development of natural coordinates for triangle elements, the goal is to choose 

coordinates L1, L2, and L3 to describe the location of any point xp within the element 

or on its boundary as shown in Fig. 3.3. The original Cartesian coordinates of a point 

in the element should be linearly related to the new coordinates in which: 

 

1 1 2 2 3 3

1 1 2 2 3 3

x L x L x L x

y L y L y L y

  

  
    (3.9) 

 

 We imposed a third condition requiring that the weighting functions sum to 

be unity, 

1 2 3 1L L L       (3.10) 

 From Eq. 3.10 it is clear that only two of the natural coordinates can be 

independent, just as in the original coordinate system, where there are only two 

independent coordinates. 

 

Figure 3.3. Three node triangle element with global coordinates (xp, yp) defining some point  

  within the element. 
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 Inversion of Eqs. 3.9 and 3.10 gives the natural coordinates in terms of 

Cartesian coordinates. Thus, 

 

 

 

 

1 1 1 1

2 2 2 2

3 3 3 3

1

2

1

2

1

2

L a b x c y

L a b x c y

L a b x c y

  


  


  


    (3.11) 

where, 

1 1

2 2

3 3

1

2 1 2(

1

x y

x y area of triangle 1 - 2 - 3)

x y

     (3.12) 

 

1 2 3 3 2 1 2 3 1 3 2

2 3 1 1 3 2 3 1 2 1 3

3 1 2 2 1 3 1 2 3 2 1

, ,

, ,

, ,

a x y x y b y y c x x

a x y x y b y y c x x

a x y x y b y y c x x

     

     

     

   (3.13) 

 

 From the linear interpolation function over triangle, that is Ni = Li for the first 

order linear triangle. Figure 3.4 shows the natural coordinate, often called area 

coordinates, are related to the area. 

 

Figure 3.4. Area coordinates for triangle. 

 

 As shown in Fig. 3.4, when the point (xp, yp) is located on the boundary of the 

element, one of the area segments vanishes and hence the appropriate area coordinate 
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along that boundary is identically zero. As an example, if xp and yp is on side 1-3, 

then: 

 

2

2 20 since 0
A

L A  


      

 

 Interpreted the field variable ϕ as a function L1, L2, and L3 instead of x, y, 

differentiation becomes: 

 

31 2

1 2 3

31 2

1 2 3

LL L

x L x L x L x

LL L

y L y L y L y

   

   

    
  

      

    
  

      

   (3.14) 

where, 

, , 1,2,3
2 2

i i i iL b L c
i

x y

 
  

   
   (3.15) 

 

 The formula for integrating area coordinates over the area of a triangle 

element is defined as, 

 

 
1 2 3

! ! !
2

2 !

     

  
 

   e

e

A
L L L dA    (3.16) 

where ! is the factorial. 

 

 

3.6 Implementation of the Acoustic Waveguide Code with FEM 

 

The theoretical formulation for a waveguide with the incorporation of the FEM is 

presented in this Chapter. The problem concerned is reduced to a two-dimensional 

problem, where only the cross-section of the guide is meshed by using finite 

elements. After the validation of the method for simple cases, a steel rod is studied, 

and the finite element results are then compared to the numerical ones [Hennion, 
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1996] to demonstrate the accuracy of the model. Further, the method is extended to 

study a circular waveguide and slot optical waveguide.  

 

 The mathematical model for the case of a waveguide is presented here, the 

waveguide which is uniform and infinite in the z-direction, is set in the xy plane. An 

acoustic wave characterized by its propagation constant k, is propagating along the 

waveguide. The displacement field vector u is written as: 

 

 

 

 

,

,

,

 
 

  
 
 

x

jkz

y

z

u x y

u u x y e

u x y
    (3.17) 

where the time dependence e
-jωt

 is implicit in the equation. 

 

 The problem can be solved by using FEM triangular elements and by 

applying a specific phase relation between the nodes of end surfaces. The acoustic 

wave varied in the z-direction but it is possible to solve the problem with the help of 

a bi-dimensional mesh and to reconstitute the whole solution. A unit length of the 

waveguide is meshed with the help of the finite element method connected by nodes. 

The general system of equations associated to this problem is in Eq. 3.1: 

   2[ ] [ ]L u M u where [L] is a stiffness matrix related to the strain energy, where 

as [M] is the mass matrix. 

 

 In this thesis, the nodal values of the applied external forces are equal to zero 

(however, if needed when an external force is applied on an acoustic waveguide, this 

can be considered). By modal analysis, the solution of the system gives ω, the 

angular frequency, and U, the vector of the nodal values of the displacement field. 
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3.6.1 Finite Element Formulation 

Classically, in the FEM for solid structure, the displacement field vector u can be 

written in the help of the interpolation function [N] and of the vector of the nodal 

values of the displacement field U where: 

 

    

 

1

1

1

2
1 2 3

2
1 2 3

2
1 2 3

3
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0 0 0 0 0 0
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                   
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 
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x

y
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x x

y y

z z

x

y

z

u N u

u

u

u

u N N N u

u u N N N u

u N N N u

u

u

u
 (3.18) 

 

 It should be noted nodes on the x-y plane can have displacement along x, y 

and z directions given by ux, uy and uz and their values at 3 nodes of a triangle is 

given by the column vector of Eq. 3.18. 

 

3.6.2 Generalised Coordinate and the Order of the Polynomials 

The order of the polynomial use to represent the field variable within an element 

depends on the number of degrees of freedom we assign to the element. The number 

of coefficients in the polynomial should equal to the number of nodal variables 

available to evaluate these coefficients.  The linear polynomial series given in Eq. 3.9 

with the coordinate in two dimensions and the natural coordinates L1, L2, and L3, 

which are the interpolation functions for linear interpolation over triangle (that is Ni 

= Li for the linear first order triangle) will be used in here. 

 

 The FEM equations for a continuum problem can be derived from variational 

principles to the formula as shown in Eq. 3.16. 



CHAPTER 3  FINITE ELEMENT METHOD 

  

67 
 

 In the case of an infinite uniform waveguide, the three components of the 

displacement field u of Eq. 3.17, in the x, y and z directions are expressed with the 

help of the interpolation functions as: 

 

 

 

 

,

,

,

   
 

    
     

jkz

x

jkz

y

jkz

z

N x y e U

u N x y e U

j N x y e U

    (3.19) 

where Ux, Uy, and Uz are the vectors of the nodal values of the displacement field in 

the x, y and z directions, respectively. Introducing the unit of imaginary number j in 

the expression of Uz allows one to obtain real symmetric matrices for the final system 

of equations. 

 

 Hooke’s Law states that the strain is linearly proportional to the stress. The 

mathematical form of the component of stress (elastic restoring force) as a general 

linear function of all the strain component is: 

 

 , , , , ,ij ijkl klT c S i j k l x y z     (3.20) 

where T is the stress matrix, S is the strain matrix and cijkl are called elastic stiffness 

constants (see Chapter 2 for the acoustic theory). The transformation regarding the 

stress and the strain field: 

 

    T c S     (3.21) 

 

 For the stiffness matrix that needs the strain tensor, it is expressed as:  
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  (3.22) 
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I Ij jS u       (3.23) 

 

 From the strain-displacement relation, SS u  , in which the subscript s (for 

symmetric) is the gradient symbol; the symmetric gradient operator in Eq. 3.23 will 

be  Ij =  S thus has a matrix representation. 
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    (3.24) 

 

 The elastic restoring forces were defined in terms of the stress field T(uj,t). 

The relation between the inertial and elastic restoring forces (or stresses) are related 

through the translational equation of motion. 

 

 The translational equation of motion for a freely vibrating medium is: 

 

2

2

u
T F

t



  


    (3.25) 

and when the applied force, F is zero, reduces to: 

 

2

2

u
T

t



 


     (3.26) 

 

 The stress matrix is symmetric in this work, the abbreviated subscript 

notation introduced in strain component in Eq. 3.22 can also be used to describe the 

following:  

 



CHAPTER 3  FINITE ELEMENT METHOD 

  

69 
 

1

2

1 6 5

3

6 2 4

4

5 4 3

5

6

 
 
    
    

       
        
 
  

xx xy xz

yx yy yz

zx zy zz

T

T
T T T T T T

T
T T T T T T T

T
T T T T T T

T

T

   (3.27) 

 

 The spatial variance of T is given by the divergence of T for the translational 

equation of motion in Eq. 3.27 and can be written in terms of abbreviated subscripts 

as: 
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    (3.28) 

and this may be expressed as a matrix operator multiplying the stress column matrix: 
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3.6.3 Effect of Crystal Symmetry on Elastic Constants  

The effect of crystal symmetry on elastic constants, valid for all solids [Royer, 2000], 

can be written in the matrix notation as c c  . The 6x6 matrix of the coefficient 

cαβ is therefore symmetric about its main diagonal, so that: 
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  (3.30) 
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 The crystals system property reduces the number of independent components 

to 21. From the system; a centre of symmetry imposes no restriction, all these crystal 

systems have 21 independent elastic constants. First we consider the properties of an 

isotropic solid, which has the highest symmetry possible. 

 

 The properties of an isotropic solid are specified by two independent 

constants, such as the Lame constant λ and μ used here. Assigning values 1 to 6 to 

the pairs (ij) and (kl) gives: 
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    (3.31) 

 

 The other twelve of moduli cijkl are zero since they have an odd number of 

distinct indices, for example c25 = c2213.  Expressing all the components in terms of 

c11 and c12 the matrix cαβ takes the following form: 
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  (3.32) 

and in the FEM, it is related to the vector of the nodal values of the displacement 

field U by the [B] matrix: 

 

 BS U      (3.33) 

  

 The expression for u in the Eq. 3.19 is incorporated in Eq. 3.22 and the strain 

vector S of the acoustic strain-displacement, in this thesis will be represented as: 

 

  uS B u      (3.34) 
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 It could be noted that    u sB  in this thesis and we can write it in the form: 
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  (3.35) 

 

 Now equation is expressed in the terms of {u} displacement field for the 

corresponding strain displacement.  

 

           2TT T
u c u u u B B    (3.36) 

 

 Using the FEM procedure with the acoustic translation equation of motion in 

Eq. 3.28 and incorporate with Hooke’s law in Eq. 3.21 of the stress and strain 

relation will give: 

 

                   2T T TT T
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or 

                   2 0
T T TT T

u N c N dV u u N N dV u  B B  (3.38) 

  

 The [B] matrix, appears in the expression for the stiffness matrix [L]: 

 

         
T T

L N c N dV  B B    (3.39) 

  

 Here [c] is the matrix of the elastic stiffness constant, dV is the volume of 

solid structure, T denotes transposition and where [L] is the stiffness matrix, related 

to strain energy and [M] is the mass matrix related to the kinetic energy. These 

matrices are generated for a given propagation constant, k. By minimising the energy 
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functional given in 3.38 with respect to all the nodal displacement variables {u}, it 

will reduce to a generalized eigenvalue equation of the system yields the eigenvalue 

as ω
2
, where ω is the angular frequency and the eigenvector {u}, the displacement 

vector. 

 

 The mass matrix is classically written as: 

 

     2 T
M N N dV     (3.40) 

where ρ is the density of the solid with the symmetry condition of the crystal 

properties, the mass matrix becomes: 
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
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T

V

M N x y N x y dV   (3.41) 

 

 The general system of equations associated with this problem in Eq. 3.1 can 

be written as: 

 

   2 L U M U F    (3.42) 

where [L] is the stiffness matrix, related to strain energy and [M] is the mass matrix 

related to the kinetic energy. These matrices are generated for a given acoustic 

propagation constant, k. The column vectors, F, contain the nodal values of the 

applied forces, which in this case are taken to be equal to zero. Solving this 

generalized eigenvalue equation of the system yields the eigenvalue as ω
2
, where ω

 

is the angular frequency and the eigenvector U as the displacement vector. 

 

 From the given input k and output ω, phase velocity of the acoustic wave, v, 

can be calculated from Eq. 3.2. However, if it is required to calculate the propagation 

constant for a given frequency, a simple iterative approach can be considered.  

 

 Numerically efficient computer code has been developed by using the sparse 

matrix solver along with the versatile mesh generation for an arbitrary shaped 
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waveguide and results of an analysis are presented here for a range of acoustic and 

optical waveguides.  

 

 For the analysis of light guidance a full-vectorial FEM is used. The FEM, 

based on the vector-H-Field formulation, has been established as one of the most 

accurate and also numerically efficient approaches to obtaining the modal field 

profiles and propagation constants of the fundamental and higher-order quasi-TE and 

TM modes. The full-vectorial formulation is based on the minimization of the full H-

field energy functional, 
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   (3.43) 

where H is the full vectorial magnetic field, * denotes a complex conjugate and 

transpose, ω
2
 is the eigenvalue where ω

 
is the optical angular frequency of the wave 

and ε and µ are the permittivity and permeability, respectively. In here, two-

dimensional cross-section of the waveguide is meshed by using many first order 

triangular elements. All three components of the magnetic fields are represented by 

piece-wise polynomials within the elements. 

 

 

3.7 Benchmarking - Steel Waveguide 
 

Table 3.1. Material properties of steel and xenon gas used in this work [Warlimont, 2005]. 

Material 

Velocity (m/s) Density (kg/m
3
) Elastic Stiffness (GPa) 

VL VS ρ c11 c12 c44 

Steel 5797.4978 3098.8923 7850 263.8462 113.0769 75.3846 

Xenon 22303.7 15472.2 5.8971 2.93 1.89 1.41 

 

Initially to benchmark the finite element code developed, a steel waveguide of square 

cross-section (1cm×1cm) has been considered (originally the waveguide is in the 

vacuum form [Hennion, 1996], however, Xenon is considered here for benchmarking 

because this gas supports both the longitudinal and transverse modes). The material 

data of the mild steel assumed in this study are taken as follows: mass density 

(ρ=7850 kg/m
3
) and elastic stiffness given by c11=263.8462 GPa, c12=113.0769 GPa, 
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and c44=75.3846 GPa. Subsequently the shear and longitudinal velocities in bulk 

steel were calculated as 3098.89 m/s and 5797.49 m/s, respectively and these data are 

shown in Table 3.1. 

 

3.7.1 Comparison of the FEM Numerical Results 

The convergence of the solutions has also been studied by using three successive 

mesh divisions with the Atkin's extrapolations [Rahman, 1986] to see the accuracy of 

our numerical method when compared to published result [Hennion, 1996]. The 

study is done by increasing the mesh size in a geometrical proportional ratio and then 

using Atkin's extrapolation formula, which is given as: 

  
 

2

3 2

3

3 2 12


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 

f f
f f

f f f
    (3.44) 

where f1, f2 and f3 represents modal solutions using three meshes with geometric ratio 

and f∞ represents the extrapolated value. Here f3 represents the finest mesh used. 

 

Table 3.2. The eigenfrequency of the first two Steel waveguide modes with Atkin’s 

extrapolation calculation and comparison with references papers. 

Propagation 

constant (m
-1

) 

 

Mode 

Mesh  

Atkin 

 

H.Hennion 18˟18 36˟36 72˟72 

200 bending 68.4983 66.9905 66.7021 66.6339 64.84 

 Torsional 101.5596 99.6967 98.9221 98.3708 94.66 

400 bending 165.0203 163.9391 163.4915 163.1752 166.45 

 torsional 192.0114 189.6773 188.6422 187.8174 189.43 

600 bending 264.45 262.2535 261.2946 260.5516 269.33 

 torsional 285.030 281.1514 279.3516 277.7936 285.23 

 

 Table 3.2 presents the first two eigenfrequencies obtained by the three 

sucessive meshes used, and for three different values of the propagation constants, k, 

200 m
-1

, 400 m
-1

 and 600 m
-1

, respectively. This table also shows the Atkin's 

extrapolation from the three geometric variations of meshes and its comparison with 

the published work [H-Hennion]. From the table, each particular propagation 

constant have shown two frequencies where the first frequency correspond to a 

bending wave propagation along the waveguide whereas the second frequency 

corresponds to a torsional wave propagation along the waveguide. The numerical 
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computation is shown here in Table 3.2 that has proven our numerical calculation 

method is given similarly results to that of [Hennion, 1996]. 

 

Figure 3.5. Variation of the phase velocity with the propagation constant for the bending  

and torsional modes with three different meshes. 

 

 The dispersion curves illustrating the variation of the phase velocity for the 

bending and torsional modes with of the propagation constant are shown in Fig. 3.5. 

This graph shows the variation for three different meshes of 18˟18, 36˟36 and 72˟72 

from the lowest propagation constant of 200 m
-1

 to 3000 m
-1

.  It can be noticed that 

the bending mode of the three difference mesh have the same characteristic when the 

propagation constant is increased the velocity is also increased. In contrast, for the 

torsional mode the graph shown that at the lower propagation constant the velocity is 

gradually increased and become stable at the propagation constant 500 m
-1

. 

 

 In this benchmark worked, it has been decided to use around 60x60 mesh 

divisions, which yields 7200 first order triangles. For most of the work, 7200 first 

order unequal sized triangles have been used to represent the whole structure in the 

simulation. For this structure, at a given propagation constant, k, the first frequencies 

correspond to a degenerate bending mode and the second frequency corresponds to a 

torsional mode propagating along the waveguide and these are studied here. The 
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dispersion curves illustrating the variation of the phase velocity for the bending mode 

and torsional mode as a function of the propagation constant are shown in Fig. 3.6.  

 

Figure 3.6. Variation of the phase velocity with the propagation constant for the bending  

and torsional modes (mesh 60x60). 

 

 A schematic of the steel acoustic waveguide is shown as an inset in Fig. 3.6 

also.  It can be observed that as k is increased, the velocity of the torsional mode, 

shown by a red dashed line, is reduced rapidly to a minimum value and then it 

reaches, asymptotically, the value of the Rayleigh velocity (VR) (2894 m/s) of the 

steel.  At lower values of k, the acoustic wave spreads well into the cladding and its 

velocity rises rapidly and the mode enters into the cut-off mode region.  For the 

bending mode, its dispersion curve is shown by a black solid line.  There are two 

degenerate bending modes for a square waveguide and this degeneracy is lifted when 

its width and height are unequal.  At a lower frequency, the phase velocity is a linear 

function of the square root of the frequency, in a way similar to that reported earlier 

[Fahy and Gardonio, 2007].  At sufficiently high frequencies (or values of the 

propagation constant) the bending wave resembles more closely to a pure transverse 

shear wave and the phase velocity approaches asymptotically the Rayleigh velocity. 
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Figure 3.7. Variation of the phase velocity with the frequency for bending and torsional modes. 

 

 The variation of the phase velocity with the frequency as shown in Fig. 3.7 is 

of similar in nature to that shown in Fig. 3.6.  The similarity between Fig. 3.6 and 

Fig. 3.7 concluded that the wavenumber is increased linearly and the frequency 

varies directly to each other. From the relation of 
2


f

v
k , the graphs shown that 

when frequency is increased the velocity of bending mode is increased as a function 

of square root of frequency. Meanwhile, the velocity of torsional mode is decreased 

as the frequency is increased.   
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3.7.2 Bending Mode 

Figure 3.8 shows the dominant mode of Ux displacement vector for the bending 

mode U
x
 mode at propagation constant 200 m

-1
. It can be observed that the 

displacement is maximum in the middle of the waveguide.  

 

 
Figure 3.8. The contour plot of Ux displacement vector of the bending mode at  k=200 m

-1
.  

 

 

Figure 3.9. Variation of the Ux displacement vector of bending mode at k=200 m
-1

 along x  

and y axes. 

 

The variations of the Ux displacement vector of the bending U
x
 mode along 

the x and y axes are shown in Fig. 3.9. It can be noticed that the mode is confined in 
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the middle of the core as shown by a black solid line along the x-axis with a small 

negative peak near the interface. The variation of Ux vector of the bending mode 

along the y-axis is shown by a red dashed line, which is symmetric along the 

waveguide. However, as the waveguide is a squared shape, its Ux and Uy mode are 

degenerate and their slight combination can rotate the eigenvector profile as shown 

in Fig. 3.8. 

 

The lowest order bending and torsional modes corresponded to a 

wavenumber of 200 m
-1

 with their eigenfrequencies being 66.7021 kHz and 98.9221 

kHz respectively. Two degenerate bending modes have dominant Uy or Ux 

displacement vector and its maximum value is inside the core.  The torsional mode 

will be explained in detail in the later Torsional Mode section from Figs. 3.14-3.19. 

 

 
Figure 3.10. The contour plot of Uy displacement vector of bending mode at k=200 m

-1
.  

 

The dominant displacement vector Uy of the U
y
 bending mode has similar 

characteristic to the Ux variation of the U
x
 mode. The Uy displacement vector profile 

is rotated 90 degree from the y-axis as shown in Fig. 3.10 with its maximum in the 

middle of the core with the maximum magnitude of one. 
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Figure 3.11. Variation of U

y
 bending  mode at k=200 m

-1
 along x and y axes. 

 

 Figure 3.11 shows the variations of the U
y
 displacement vectors of the U

y
 

bending mode at k=200 m
-1

 along x and y axes. The observation of U
y
 mode shows 

by the black solid line plot along x-axis has the dip at the centre. The U
y
 mode along 

the y-axis is shown in this figure with the red dash line. From this figure, it shows 

that the U
y
 mode along the y-axis is more confined inside the core with a negative 

dip outside the core become larger, and closer to the interface. It can be notice that 

the U
y
 mode along the x and y axes are symmetric and well confined in the core 

region. 

 

Figure 3.12. The vector displacement fields t x yU U U  of the acoustic waveguide of the 

bending mode at k =200 m
-1

. 
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The superposition of these two bending modes yields a transverse 

displacement Ut is oriented at 45° to the x-axis as shown in Fig. 3.12. As the 

resultant displacement vector moves in the transverse plane, it represents a 

microbend which periodically changes its direction along the propagation direction z. 

 

Figure 3.13. The contour plot of Uz displacement vector of the bending mode at k =200 m
-1

. 

 

 It should be noted that this bending mode had either Ux or Uy as the dominant 

displacement (for a transverse mode), however, its longitudinal displacement, Uz was 

not zero as shown in Fig. 3.13. The Uz displacement vector shows one positive and 

one negative peak with the magnitude of 80% of the dominant mode. 
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3.7.3 Torsional Mode 

Two degenerate bending modes shown previously were the fundamental transverse 

modes. Follow this, a higher order transverse mode is shown next. This mode 

represents a torsional mode which corresponding to a wavenumber of 200 m
-1

 with 

its eigenfrequency of 98.9221 kHz, which is shown in this section.   

 
Figure 3.14. The contour plot of the Ux displacement vector of torsional mode at k=200 m

-1
. 

 

 The Ux profile of the torsion mode at k=200 m
-1

 has one positive and one 

negative peaks at the upper and lower interface of the waveguide is shown in Fig. 

3.14 with the magnitude of being 80%. 

 
  

Figure 3.15. Variation of U
x
 torsional mode at k=200 m

-1
 along y-axis. 
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Variation of the Ux displacement vector of the torsional U
x
 mode along the y-

axis is shown in Fig. 3.15. It can be observed that one negative and one positive 

peaks exist along the y-axis with magnitude being normalized to unity at k=200 m
-1

.   

 

Figure 3.16. The contour plot of the Uy displacement vector of torsional mode at k=200 m
-1

. 

 

 The Uy displacement vector profile of the torsional mode at k=200 m
-1

 is 

shown in Fig. 3.16. This has a similar characteristic with the Ux displacement mode, 

as shown in Fig. 3.14, but this has one positive and one negative peak on the left and 

right side of the waveguide, which is 90 degrees rotated from that shown in Fig. 3.14. 

 
Figure 3.17. Variation of U

y
 torsional mode at k=200 m

-1
 along x-axis. 
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 The variation of the Uy displacement of the torsional U
y
 mode along the x-

axis is shown in Fig. 3.17. It can be observed here that the graph shows one positive 

and one negative peak which is similar to that of the torsional U
x
 mode. However, 

the contrast here is that the rotation in the Uy displacement has shown the positive 

peak before the negative one.  

  

Figure 3.18. The vector fields t x yU U U   of the torsional mode at k =200 m
-1

. 

 

On the other hand, in Fig. 3.18, it can be seen that the displacement 

parameters Ux and Uy combine to give a rotational displacement vector which results 

into a torsional mode, periodically twisting the fibre clockwise, then anti-clockwise 

as it propagates along and both the modes also have associated Uz components.   

 

Figure 3.19. The Uz displacement fields profile of the torsional mode at k =200 m
-1

. 
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As the width and height of the waveguide were equal, the torsional modes 

were degenerate and the magnitude of the Ux and Uy values were equal. The Uz 

profile of torsional mode in fig. 3.19 shown the higher order spatial variation with 

four pairs of positive and negative peaks paring together around the core of the 

waveguide. 

 

3.7.4 Hybridness 

To measure the strength of the longitudinal component, a further parameter such as 

the hybridness, has been evaluated. The concept of modal hybridness has been used 

in the optical waveguide, which is important to calculate the polarization cross-talk 

[Somasiri, 2003] and also in the design of the polarization rotators [Rahman, 2001].  

 

 In this work, the hybridness of a mode at a particular frequency is defined as 

the ratio of the maximum value of the non-dominant displacement vector to the 

maximum value of dominant displacement vector. 

 

 For a transverse mode with Ux as the dominant displacement vector the 

hybridness, Hbx can be expressed as:  

 

_ max

_ max

U
Hb

U


z

x

x

    (3.45) 

where Uz_max and Ux_max are the maximum values of the displacement vectors along 

the z and x-directions respectively. 

 

 On the other hand, for a longitudinal mode with a dominant Uz displacement 

vector, the hybridness, Hbz can be expressed as: 

 

_ max

_ max

U
Hb

U


x

z

z

    (3.46) 

where Ux-max and Uz-max are the maximum values of the displacement vectors along 

the x and z-directions respectively. It has been observed for this acoustic waveguide 

that at a higher propagation constant or frequency, the parameter, Hbx, is 

approximately 0.5 for both the bending and torsional modes.  Furthermore, it has 
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been noted that since the width is equal to the height of the waveguide, Hbx = Hby 

(where Hby is the hybridness for a Uy dominant mode). As the propagation constant 

decreases (k<1000 m
-1

), the hybridness decreases for the torsional modes but 

increases for the bending modes.  The dispersion graph shown in Fig. 3.6 agrees well 

with the eigenvalues reported earlier [Hennion, 1996]. 

 

 We have also benchmarked our code with the acoustic modes in a multimode 

optical fibre, and our results agree well with the published results and these are 

shown in Chapter 4.2.2. 

 

 

3.8 Summary 

 

The implementation of FEM with acoustic wave theory was shown in this chapter. 

The combination of the full vectorial FEM with full vectorial acoustic wave was 

developed and studied with different acoustic modes in a high index contrast 

waveguide. In this Chapter, the computational results obtained shown the transverse 

acoustic modes of bending and torsional modes with their vector plot. Furthermore, 

the benchmark of the Steel waveguide shown the accuracy of the result. Finally, this 

Chapter also presented a detailed displacement vector profiles for the bending and 

torsional modes displacement vector, modal hybridness, modal displacement and 2D-

line plot are also shown. 
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Chapter 4 
 

Silica Fibres 
 

4.1 Introduction 

 

In this chapter, a numerical approach based on the versatile FEM has been applied 

[Koshiba, 1987], [Lagasse, 1973], [Stone 1973] for the analysis of an acoustic 

waveguides and subsequently both weakly and strongly guiding acoustic waveguide 

have been studied [Safaai-Jazi, 1986], [Jen, 1986], [Jen 1990]. 

 

 In the first section, a low-index contrast silica acoustic waveguide has been 

analyzed using the FEM where a doped silica core, surrounded by a pure silica 

cladding is studied and the characteristics of the shear and longitudinal modes are 

determined and presented.  Although similar studies have been reported previously, 

in those cases the shear and transverse modes were decoupled [Safaai-Jazi, 1988], 

[Jen, 1986], [Shibata, 1989]. In the present study, the co-existence of both the shear 

and the longitudinal modes has been considered and the last section guidance of 

acoustic waves in a strongly guiding silica (SiO2) nanowire waveguide have been 

discussed, including their contribution to SBS. 
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4.2 Weakly Guiding Silica Fibres 

 

In this section, initially a weakly guiding SiO2 fibre has been analyzed by assuming 

(1) VL of the TiO2 doped silica core and pure silica cladding are equal and then, (2) 

VS of the core and cladding are equal to isolate the pure longitudinal and transverse 

modes. Table 4.1 gives the parameters considered for the first two cases above. 

Subsequently, a more general situation which is more realistic, Case (3), is 

considered when both VL and VS are unequal for core and cladding regions. 

 

Table 4.1. Material properties of a silica waveguide used in this work [Safaai-Jazi, 1986]. 

 

Doped SiO2 

Velocity (m/s) Density (kg/m
3
) 

 ρ 

Elastic Stiffness (GPa) 

VL  VS c11 c12 c44 

Case 1 Core 5933 3625 2202 77.5115 28.9357 19.6401 

Clad 5933 3764 2202 77.5115 31.1973 15.1169 

Case 2 Core 5736 3764 2202 77.4495 10.0549 31.1973 

Clad 5933 3764 2202 77.5115 15.1169 31.1973 

 

4.2.1 Case 1: Shear Modes 

Firstly, a shear mode of a weakly confined multimode optical fibre is investigated. 

The normalized frequency, fa, in this and other figures, is given in units of μm.GHz 

(which is the product of frequency, f, of the acoustic mode with radius, a=175 μm, of 

the fibre core).  Its cladding radius was taken as 400 μm with ∆VS/VS ≈ 0.036.  The 

material contrast is small and therefore, it becomes a weakly guiding waveguide for 

the shear modes. As mentioned in Section 3.7.1, a 60x60 mesh division is also used 

here for these simulations. 

 

 Figure 4.1 illustrates the variation of the phase velocity with the normalized 

frequency, fa, for several lower order shear modes. Here Snm notation, similar to the 

LPmn notation for optical waveguides, has been adopted for the group of shear 

modes.  The structure is rotationally symmetric. Similar to the degenerate optical 

H
x
11 and H

y
11 modes in optical fibres, its acoustic modes are also degenerate, with 

both the Ux and Uy being dominant. 
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Figure 4.1. Phase velocity characteristics for lower order shear modes in a fibre acoustic  

  waveguide. 

 

 It can be seen that as the frequency is reduced, the modal phase velocity has 

increased from the VS value of the core to VS of the cladding and approaches the cut-

off.  All the acoustic shear modes have non-zero cut-off frequencies.  Thus for 

single-mode operation, the normalized frequency should be higher than 3.5 μm.GHz 

in order to have efficient excitation of the S01 (F11) mode, but lower than the 

normalized cut-off frequency of the next higher mode, the S11 mode, at 7.0 μm.GHz.  

The corresponding cut-off frequencies for S01 and S11 are 20 MHz and 40 MHz 

respectively for the TiO2 doped optical fibre with its radius, a=175 μm is considered 

here. 

 

 The displacement vector Ux profiles of the fundamental S01 mode, which is 

also called the Flexural F11 mode (equivalent to HE11 in the optical waveguide) for 

k=0.055 μ.m
-1

 and fa=5.18 μm.GHz are shown in Fig. 4.2. The S01 (F11) mode has a 

dominant transverse displacement, compared to that of its longitudinal component.  

The 3-D contour plot of the parameter Ux, given in Fig. 4.2(a), shows the maximum 

Ux displacement is at the centre of the core. This value reduces monotonically as the 

radial distance is increased from the core, as shown in Fig.4.2(b). 

 



CHAPTER 4  SILICA FIBRES 

   

90 
 

 
(a)      (b) 

Figure 4.2. The transverse S01 mode for (a) the 3-D plot and (b) 2-D plot of the  U
x
 at 

  fa=5.18 µm.GHz. 

 

 
(a)      (b) 

Figure 4.3. The S01 mode (a) the Uy contour plots (b) its line plot at fa=5.18 μm.GHz of the  

  transverse S01 mode. 

 

 The displacement vector, Uy profile and magnitude shown in Fig. 4.3 which 

is similar to that of the Ux profile shown in Fig. 4.2. Its contour profile is shown in 

Fig.4.3(a) and its variation along the y-axis is shown in Fig.4.3(b). This displacement 

is in the y direction, that is rotated at 90° with respect to the horizontal axis. In 

optical fibre, the similar fundamental L01 mode as shown here, consist of degenerate 

H
x
11 and H

y
11 modes. 
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 As the magnitudes of Ux and Uy are equal, the resultant vector displacement 

plot, Ut is oriented at 45° to the horizontal axis and the combined displacement in the 

transverse plane, Ut is shown in Fig. 4.4(a).  The contour profile of Uz of the S01 

mode shown in Fig. 4.4(b) demonstrates a higher order spatial variation with positive 

and negative peaks on two sides of the core.  Its magnitude is much smaller than that 

of the transverse displacements with Hbx=0.10. 

 
 (a)      (b) 

Figure 4.4. The transverse S01 mode of (a) t x yU U U  , (b) Uz at fa=5.18 μm.GHz. 

 

 The combination of both the longitudinal and transverse displacements of S01 

(F11) shown in Figs. 4.2 to Fig. 4.4 results into a bending deformation (or flexural 

mode). It should be noted that the fundamental optical mode of a low index contrast 

multimode fibre has a similar large Gaussian shaped transverse field component and 

a very small longitudinal component with higher order spatial variations. 

 

 The family of higher order S11 modes were also studied.  The contour plots of 

both Ux and Uy have one positive and one negative peak as shown in Figs. 4.5(a) and 

(b). However, their vector plots fall into the following classification:  Torsional mode 

T01, Axial Radial mode R01, and Torsional-Radial TR21 modes.  The mode TR21 has 

also been referred to as the Flexural F21 [Shelby, 1985], [Safaai-Jazi, 1986]. The 

TR21 and R01 modes are of particular interest as they cause GAWBS.  The vector 

displacement plots of the R01 mode is shown in Fig. 4.5(c) for fa=5.838 μm.GHz.  It 

can be observed that for R01, the Ux and Uy displacement vectors both act 
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simultaneously in a direction which is radially outwards (or inwards), resulting in a 

periodic expansion and contraction in the radial directions.   

 

(a)     (b) 

 
                                                           (c)      

Figure 4.5. Radial mode (a) Ux (b) Uy contour plot and (c) vector Ut plot for the axial radial  

  mode of R01 at fa=5.838 μm.GHz. 
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(a)     (b) 

 

(c) 

 

(d) 

Figure 4.6. Torsional-Radial mode (a) Ux and (b) Uy displacement (c) vector Ut plot and (d) the 

  periodic displacement of Torsional-Radial at fa=5.838 μm.GHz. 
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 By contrast, in the case of TR21, the Ux and Uy displacements are not in phase 

as shown in Fig. 4.6(a) and (b).  Hence for TR21, the unequal modal transverse 

displacements along the X and Y axes result in a periodic elliptical deformation of 

the SiO2 fibre as shown in Fig. 4.6(c) where the periodic displacement is shown in 

Fig. 4.6(d) and hence this induces optical birefringence, resulting in a depolarized 

GAWBS.  For the R01 mode, the displacement is in the radial direction and hence the 

rod expands and contracts periodically but maintaining a circular-shaped cross-

section, which corresponds to the polarized GAWBS.  Both of these modes have a 

longitudinal displacement comparable to the transverse displacement and their 

corresponding hybridness, Hbx, increases with the frequency. 

 
(a)      (b) 

Figure 4.7. Uz distribution of S11 at (a) fa=5.838 μm.GHz and (b) at fa=28.374 μm.GHz of  

  the R01 mode. 

 

 Figure 4.7(a) shows the Uz distribution of the R01 mode at fa=5.838 μm.GHz. 

It can be observed that the Uz has a near Gaussian profile with its maximum value 

located at the centre of the core with the hybridness value, Hbx is close to 0.5.  Figure 

4.7(b) shows the Uz field of the R01 mode at a higher frequency, fa=28.374 μm.GHz 

and it can be seen that although Uz has its maximum value at the centre, it shows a 

higher order spatial variation along the radiation direction. It has been noted that the 

hybridness reduces from 0.47 to 0.10 as the value of fa increases from 5.838 to 30 

μm.GHz.  Hence this mode may cause both GAWBS, due to its modal transverse 

displacement and SBS in the backward direction because of its relatively large 

longitudinal modal displacement, more particularly at a lower frequency.  Among the 

higher order modes, the families of the TR2m modes have been reported to cause 
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Forward Guided Brillouin scattering [Shelby, 1985].  However for these modes, with 

m≥1, the associated Uz field profiles have faster spatial variations and hence may not 

be suitable for the generation of SBS. 

 

4.2.2 Case 2: Longitudinal Modes 

For longitudinal modes, the longitudinal velocity of the core VL (core) needs to be 

smaller than that of the cladding with VL (core)<VL (clad).  In this case core radius 

was taken as 175 μm, and the cladding radius was to be very large.  The variations of 

the phase velocity with the normalized frequency (fa in μm.GHz) for various 

longitudinal Lnm modes are shown in Fig. 4.8.  For a larger fa value, all the acoustic 

modes are well confined in the core and their phase velocities are close to those of 

the bulk longitudinal velocity of the core (of doped silica glass), which is 5736 m/s.  

It can be observed that as fa is reduced, for any given mode, initially the phase 

velocity increases slowly and then more rapidly to reach its cut-off value of 5933 

m/s, the value of the bulk longitudinal wave velocity in the cladding.  It can be noted 

that the higher order modes approach their cut-off at higher fa values.  These results 

agree well with those reported by Jen et al. [Jen, 1986]. 

 
Figure 4.8. Phase velocity of the longitudinal modes in a fiber acoustic waveguide. 

 

 All modes, with the exception of the L01 mode shown by solid circles, have 

non-zero cut-off frequencies. Thus, for single-mode operation, the normalized 

frequency should be lower than 9 μm.GHz (or f<51.4286 MHz), the cutoff frequency 
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of the next higher mode, L11, in order to have efficient excitation of the L01 mode as 

the only guided mode. Figure 4.9(a) shows the longitudinal displacement, Uz, 

contour plot of the L01 mode which is dominant whilst the corresponding Ux and Uy 

distributions have a positive and negative displacement peak but with a smaller 

magnitude. 

 

(a)      (b) 

Figure 4.9. Uz distribution of (a) the L01 Mode and (b) the L11 Mode at k = 0.06 μm
-1

. 

 

 For longitudinal modes, Uz is dominant and the modal hybridness, Hbz, 

increases from 0.16 to 1.1 as the fa increases from a value of 5.0 μm.GHz to 30.0 

μm.GHz.  This is one of the modes that introduces SBS due to the associated high 

magnitude of Uz with a Gaussian profile, which has a higher overlap with the optical 

mode [Li, 2007].  Figure 4.9(b) shows the Uz profile of the L11 mode and it should be 

noted that the longitudinal Lmn modes are not degenerate. 

 

4.2.3 Case 3: ∆VL/VL ≪1 and ∆VS/VS ≪1 

In the work described in the previous sections, either VL or VS had been considered 

to be identical for both the core and the cladding to isolate the longitudinal and 

transverse modes.  However, in a real weakly guiding fibres, both the shear and 

longitudinal velocities for the core and cladding are unequal, i.e., ∆VL,S ≠ 0 but their 

differences are small ∆VL/VL≪1 and ∆VS/VS ≪1.  In this section, the effect of 

different core and cladding velocities is considered.  When ∆VS=0, this situation was 

identical to Case 2 and it was shown earlier. 
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 (a) 

 
  (b) 

Figure 4.10. (a) Variation of phase velocity and (b) Hybridness of the L01 mode with the ΔVS  

  from Case 2. 

 

 However, in the case when ∆VS ≠ 0, the variation of the phase velocity with 

∆VS is shown in Fig. 4.10(a).  In this case, a fibre which is similar to that in Case 2 

has been considered but additionally VS of the core has been reduced progressively 

from 3764 m/s to a value of 3625 m/s, while the VS of the cladding is kept constant 
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at 3764 m/s.  This introduces additional shear modes into the core, as well as the 

longitudinal modes shown earlier in Case 2.  In addition to that, as the shear velocity 

in the core slowly deviates more from that of the cladding, the phase velocity of the 

longitudinal, L01 is also affected progressively and starts to decrease.  The reduced 

velocity could be due to the enhanced modal confinement, besides a fixed ∆VL, the 

value of ∆VS is also progressively increased. It can be noted that the dispersion curve 

appears to show some discontinuity near ∆VS = 20 m/s. This has not been thoroughly 

investigated here but this may be due to the presence of some non-physical modes. 

 

 It has also been observed that VS affects the strength of Uz as an increase in 

∆VS encourages longitudinal displacement. Figure 4.10(b) shows that the hybridness, 

Hbz of L01 (at fa=10μm.GHz; a=175μm, f=57.1429MHz) rises rapidly when the 

difference, ∆VS, exceeds 2% and encourages the propagation of longitudinal modes.  

 

 Further, the fibre mentioned in Case 1 was considered again, but additionally 

VL of the core was reduced progressively from 5933 m/s to the value of 5736 m/s, 

while the VL of the cladding remains at 5933m/s. The variation of the phase velocity 

with the additional changes in the shear velocity difference between the core and 

cladding, ∆VL, for a fixed ∆Vs = 139 m/s, is shown in Fig. 4.11(a). When ∆VL = 0, 

this case is identical to that of Case 1. However, it can be observed that as ∆VL is 

increased, the phase velocity of the S01 mode reduces uniformly as the modal 

confinement increases. The resulting variation of the hybridness, Hbx, with ∆VL is 

shown in Fig. 4.11(b) for the S01 mode, which increases progressively.  Hence it can 

be seen that the modal properties for Case 3 are different from what is seen in Cases 

1 and 2, as both ∆VL and ∆VS are non-zero and they become more hybrid in nature 

with both transverse and longitudinal displacement vectors, as shown in Figs 4.10-

4.11(a) and (b). 
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 (a) 

 
  (b) 

Figure 4.11. (a) Variation of phase velocity and (b) Hybridness of the S01 mode with the ΔVL  

  from Case 1. 
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4.3 Silica Nanowires 
 

4.3.1 Silica Nanowire with an Acoustic Low Index Cladding 

Over the last decade, sub-wavelength SiO2 and silicon (Si) optical waveguides have 

been demonstrated for visible and infrared wavelengths, and these can be fabricated 

by using various taper-drawing techniques [Brambilla,  2004], [Chen, 2006].  Such 

waveguides operating in the single mode regime, have a wide range of applications 

in sensing and also exploit the optical nonlinearities.  In these high-index contrast 

optical waveguides, where the light is strongly confined in the core, such optical 

waveguides can also confine both the shear and longitudinal acoustic modes which 

results in the formation of hybrid modes similar to those discussed earlier.  In this 

study, an analysis of some of the acoustic modes in SiO2 nanowires, surrounded by 

noble gases, has been carried out.  The noble gas Xenon (Table 4.2) has been chosen 

here as the cladding material as it supports both transverse and longitudinal modes, 

compared to the situation experienced with air as the cladding material. 

 

Table 4.2. Material properties of silica and xenon waveguide. 

Material 

Velocity (m/s) Density 

(kg/m
3
) 

 ρ 

Elastic Stiffness (GPa) 

Longitudinal, 

VL 

Shear, 

VS c11 c12 c44 

SiO2 5736 3764 2202 72.4495 31.1973 10.0549 

Xenon 22303.7 15472.2 5.8971 2.93 1.89 1.41 

 

 The analysis of the SiO2 nanowires for the acousto-optic interaction has 

divided into three parts. Firstly, the study of the optical waveguide to find the 

minimum value of the optical spot-size to achieve the strong guiding from the 

minimum radius at R=0.6 μm is in Section 4.3.2. Secondly, continue with the study 

of acoustic waveguide to find the suitable acoustic mode for the interaction between 

acoustic and optic is shown in Section 4.3.2 and the last part of Section 4.3.3 is to 

calculate the acousto-optic interaction by using phase matching and calculating the 

overlap integral of the SBS [Li, 2007]. 
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4.3.2. Studied of the Optical Waveguide for the Designs of Acousto-optic 

 Interaction 

Initially, for this optical waveguide, the optical modes are analyzed by using a full-

vectorial H-field formulation [Rahman, 1984] to determine the most suitable acoustic 

designs for the opto-acoustic interaction.  The variations of the optical effective 

index and the optical spot-size area with the SiO2 nanowire radius, R, are shown in 

Fig. 4.12.  In this simulation, the refractive indices of the SiO2 core and Xenon 

cladding are taken as 1.4651 and 1.0, respectively, for the operating wavelength, 

λ=1.55 μm. 

 
Figure 4.12. Variation of effective index and spot size area with the radius for silica   

  nanowire at λ=1.55 μm. 

 

 In this work the spot-size area is defined as the area where the Poynting 

vector is more than 1/e
2
 of its maximum value for a given mode.  It can be observed 

that the spot-size decreases with reducing radius and reaches a minimum value 

around R=0.6 μm.  Correspondingly there is a high confinement of the optical power 

for this radius.  A further decrease in the radius results in the rapid expansion of spot-

size where a higher proportion of the optical field leaks into the air cladding as the 

mode approaches its cut-off condition. 
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4.3.3 The Analysis of the Acousto-optic Interaction with Waveguide Mode at 

 Radius, R=0.6 μm 

Subsequently, a value of the radius where R=0.6 μm has been considered for the 

analysis of the acoustic waves, as this corresponds to the minimum of optical spot-

size to achieve possible stronger optical-acoustic wave interaction. The longitudinal 

and shear velocities of silica are taken as 5736 and 3625 m/s, respectively. Figure 

4.13 shows three lower order acoustic modes guided at radius R=0.6 μm.  The solid 

red line shows the bending mode, F11, and at a lower propagation constant its phase 

velocity increases monotonically with the propagation constant until it reaches the 

saturation value of Rayleigh wave velocity, VR=3565 m/s.  The other two modes 

shown here are torsional-radial (TR21) and axial radial (R01) modes and their phase 

velocity reduces as propagation constant (or frequency) increases, which is similar to 

that shown for a steel waveguide in Chapter 3.7 [Hennion, 1996], [Thurston, 1987] 

and [Fahy, 2007]. 

 
Figure 4.13. Variation of phase velocity with respect to the wavenumber for the bending,  

  torsional-radial and radial modes in a silica nanowire. 

 

 In a way it is also similar to that seen with the optical field, the acoustic 

waves also spread both in the core and cladding and they can be classified as surface 

acoustic waves as both modes originate from the coupling of the shear and the 

longitudinal velocities, and appear to be concentrated near the boundary at a higher 

frequency as the modes transform to Rayleigh modes guided along the solid 
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interfaces.  The TR21 and R01 are of particular interest as they cause GAWBS 

[Shelby, 1985].  It has also been observed that when the frequency decreases, the 

modal transverse field profile becomes more confined towards the centre of core for 

both the R01 and TR21 modes.  As a results, the GAWBS can be effectively supported 

only at a lower value of the propagation constant (below k=10 μm
-1

).  In this regime, 

the effective phase velocity seems to deviate from VS due to the coupling with VL. 

 

(a)      (b) 

Figure 4.14. Contour plot of (a) Ux and (b) Uy displacement at k = 10μm
-1

 of R01 mode. 

 

 In the case of the R01 mode, the value of Uz is large enough to cause SBS 

over a wide range of values of k.  The hybridness (Hby=Uzmax/Uymax) is 0.7 at k=10 

μm
-1

 and it increases up to a value of 0.9 as the propagation constant reduces to a 

value of 2 μm
-1

.  All the three components of the displacement field plot of R01 mode 

has shown in Fig. 4.14. The displacement vector of Ux and Uy have one positive and 

one negative peak facing in the opposite direction and both have the similar intensity 

of 1.0, as shown in Fig. 4.14(a) and (b), respectively.  

 

 Figure 4.15 shows the vector plot t x yU U U  of the Radial mode from the 

combination of the Ux and Uy displacement shown in Fig. 4.14(a) and (b). It can be 

observed that the vector plot is shown the radially outwards direction and 

periodically reverse its direction. It can also be noted that the maximum particle 

displacement is near the waveguide boundary. 
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Figure 4.15. The Ut vector plot of the Radial mode (R01) at k=10 μm
-1

. 

 

 The dominant displacement Uz shown in Fig. 4.16(a) can be observed that the 

maximum value is outside the core region. Figure 4.16 (a) also shown the variation 

of Uz displacement which has the minimum value in the middle and Fig.4.16(b) the 

2D Uz plot along the x-axis for the R01 mode at a propagation constant, k=10μm
-1

, 

illustrates the rapid variation of Uz at the interface which changes sign and have a 

relatively flat displacement inside the core. Mesh divisions were limited due to the 

computer resources available. It appears to have some higher field near the material 

interface for a high index contrast guide. Similarly, localization of field (U values) at 

the interfaces has been observed when index contrast is higher (see Fig. 5.24).  

 
(a)      (b) 

 
Figure 4.16. Uz profiles of R01 mode at k=10 μm

-1
 (a) Uz displacement (b) Uz along with the  

  contour plot of Uz. 
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4.3.4 Stimulated Brillouin Scattering (SBS) Generation 

An intense light beam passing through an optical waveguide with a small cross-

section, such as the nanowire shown here, produces an acoustic vibration due to 

electrostriction process resulting from the high electrical field of the optical wave.  

 

 The propagation of the generated acoustic wave is associated with the 

periodic distortion of the waveguide along the axial and transverse directions. This 

creates a periodic grating due to the material deformation and also the associated 

elasto-optic effects. This moving Bragg grating reflects the light – however since the 

acoustic wave is also travelling, the light is subject to a Doppler shift. For the R01 

mode, its Ux and Uy profiles were although dominant, but asymmetric so, its overlap 

with dominant optical field were small. Its Uz profile of the R01 mode was very 

similar to the modal field profile of the fundamental optical mode, so their overlap 

was significant. Subsequently, the SBS frequency can be calculated using k=2β’ (the 

Bragg condition) [Agrawal, 2007], [Li, 2007], [Laude, 2005] where β’ is the 

effective propagation constant of the fundamental optical mode. 

 

  Figure 4.17(a) shows the SBS frequency shift that would be obtained for the 

fundamental optical mode, for different radii of silica nanowires and operating at 

λ=1.55 μm, through the interaction of the R01 mode. The calculated values shown 

here do not correspond to those of the SBS observed in bulk SiO2 which is closed to 

11 GHz.  Instead they arise due to the propagation of the surface acoustic wave 

(SAW) at the silica surface with phase velocity closely related to shear wave velocity 

over a much lower frequency range, given by 5.4-6.6 GHz.  A similar frequency has 

been reported for photonic crystal fibres [Dainese, 2006] with small core diameters. 

 

 The existence of GAWBS and SBS together may cause a phenomenon 

defined as ‘GAWBS in the backward direction stimulated by Brillouin scattering’, 

which has previously been reported in optical fibres [Tanaka, 2004]. Here, ij is the 

normalized overlap integral between the optical and acoustic fields, where Hi(x,y) is 

the optical field associated with the fundamental mode, and Uj(x,y) is the j 

component displacement vector. 
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 (a) 

 
 (b) 

Figure 4.17. (a) The SBS frequency shift by the R01 mode, (b) The overlap between the  

  acoustic and optical mode for different core radii. 

 

 The equation 4.1 shown the overlap integral equation where the overlap 

integral can be controlled by fibre refractive index profile design and acoustic 

velocity profile design. 
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 The overlap between the optical and the acoustic modes plays a dominant 

role in the generation of the SBS power and this overlap in the SiO2 nanorod has also 

been calculated from that reported in [Li, 2007] and this is shown in Fig. 4.17(b).  It 

can be observed that as the radius has increased from 0.6 to 1.5 μm, the overlap ratio 

decreases from its highest value of 0.44 (at a radius of 0.6 µm) and this gradually 

reduces to 0.030 (at a radius of 1.5μm).  For a higher core radius, the optical mode is 

more confined but the acoustic mode shows a minimum in the core and their overlap 

decreases. 

 

 

4.4 Summary 

 

In this Chapter, we presented numerically simulated results for the weakly and 

strongly guiding acoustic modes in optical waveguides. In Section 4.2, the 

numerically simulated results of shear and longitudinal modes are shown by dividing 

them into three cases. In Case 1, we have shown the purely transverse modes with 

the condition of the longitudinal velocity of the core is equal to that of the cladding. 

Case 2 showed the longitudinal mode by avoiding the mode being couple to each 

other. This was achieved by setting the shear velocity of the core equal to that of the 

cladding. In the last case studied Case 3, the effects of different core and cladding 

velocities were considered. When the ∆Vs and ∆VL are not equal to '0', the result of 

the variation of the phase velocity of ∆Vs and ∆VL are shown. In Section 4.3, the 

strong acoustic guiding silica fibre has shown the numerical results for the optical 

spot-size and acoustic modes such as bending, torsional, radial and torsional-radial. 

In this section, the acoustic and optical overlap interactions with the Radial mode 

(R01) for Uz vector displacement are also studied. The SBS frequency shift and the 

overlap integral calculations are also shown.  
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Chapter 5 
 

Silica Rectangular 

Waveguide 
 

5.1 Introduction 

 

Acoustic waves propagate in a medium due to the periodic displacement of the 

molecules inside the waveguide, and this being characterized by parameters such as 

the material density, elasticity, Young modulus, and Poisson ratio [Love, 1906], 

[Timoshenko, 1951], [Auld, 1973], [Mason, 1956], [Warlimont, 2005], [Levy, 2001] 

and [Ledbetter, 2001]. The particle displacement can be in the longitudinal direction 

or also in the transverse plane. When the core material in a waveguide is surrounded 

by a cladding, the propagation of the waves can be classified as being of the 

torsional, bending, flexural or longitudinal type [Thurston, 1978], [Bhaskah, 2003], 

[Engan, 1988] and [Safaari-Jazi, 1988]. The modes can be supported, provided at 

least one of the velocities (the shear or longitudinal velocities) of the cladding 

exceeds that of the core. 

 

 It is well known that the acoustic properties of optical waveguides allow for 

an interaction with the propagation of light through the related phenomena of 
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Brillouin scattering (BS), SBS and GAWBS [Agrawal, 2007], [Yu, 2003], [Shelby, 

1985], [Dainese, 2006], [Li, 2007], [Liang, 2011] and [Chen, 2010]. Also. Analysis 

of such interactions is not trivial with the increased complexity of modern optical 

waveguide structures, exemplified by photonic crystal fibres and sub-wavelength 

waveguides, such as nanowires. In a way similar to the hybrid modes in high-index 

contrast optical waveguides, the acoustic modes in such optical waveguides are also 

complex. In these cases, a rigorous full-vectorial analysis [Koshiba, 1987], [Lagasse, 

1987], [Stone, 1973] and [Vincent, 2005] is required for the accurate characterization 

of the acoustic wave propagation.  In this chapter, the development of an approach 

based on the versatile FEM is reported and numerically simulated results of acoustic 

wave guiding in silica waveguides are also presented here. 

 

 

5.2 Weakly Guiding SiO2 Rectangular Waveguide 

 

In this section, we have chosen a doped silica core surrounded by a pure silica 

cladding as a low-index contrast SiO2 acoustic waveguide and this is studied by 

using the FEM to analyze the characteristics of the shear and longitudinal modes. 

The acousto-optic interaction has been studied and shown in the form of overlap 

integral calculation between acoustic and optic waves. The SBS frequency can be 

calculated by using k=2β’ (the Bragg condition) where β’ is the effective propagation 

constant of the fundamental optical mode. 

 

Table 5.1. Material properties of silica with 3% Ge doped silica. 

 Velocity (m/s) Density (kg/m
3
) Elastic Stiffness (GPa) 

Material Longitudinal, VL Shear, VS Ρ c11 c12 c44 

3% Ge 5933 3677 2202 77.5115 15.117 31.1972 

SiO2 5933 3764 2202 77.5115 17.968 29.7718 

 

 The rectangular waveguides studied here would support non-degenerate 

modes resulted from the unequal width and height considered for these waveguides. 

Material data has been taken from [Jen, 1986] for pure silica cladding with its 

longitudinal velocity VL is taken as 5933 m/s, shear velocity, VS as 3764 m/s and the 

density, ρ, as 2202 kg/m
3
 and for 3% Ge-doped core, these are taken as longitudinal 

velocity, VL=5806 m/s, shear velocity, VS=3677 m/s and density, ρ=2244 kg/m
3
. 
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However, in this case study; it has been assumed that the longitudinal velocity of the 

core and cladding are equal to avoid the longitudinal modes in order to prevent 

coupling between the longitudinal and transverse modes. Therefore, material data has 

been taken from Table 5.1. 

 

5.2.1 The Comparison of Two Different Dimensions of Waveguides 

In this section, rectangular waveguides with height:width ratio of 1:2 have been 

considered. Two different waveguides have also been selected and the waveguide 

with height 1 µm and width 2 µm is identified here as H1W2 and with height 2µm 

and width 4 µm is identified here as H2W4. 

 

Figure 5.1. The variation of acoustic wave velocities with the acoustic frequencies for H1W2 

  and H2W4 waveguides. 

 

 Firstly, two dominant transverse modes have been studied here. The mode 

with dominant Ux displacement vector is identified as the U
x
11 mode and similarly 

fundamental mode with dominant Uy displacement vector is identified as the U
y
11 

mode. It can be observed that for both waveguides (H1W2 and H2W4) and for both 

the modes (U
x
 and U

y
 modes) as the frequency is reduced the velocity of the acoustic 

waves are increased. It is also shown for the H1W2 waveguide that the velocity 

reduced rapidly from the cladding to the core velocity of 3677 m/s, while for the 

H2W4 waveguide velocity gradually reduced inside the core of the Ge-doped. It can 
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be noted that for both the waveguides velocity of the U
x
11 mode is a bit lower than 

that of the U
y
11 mode, as the width of the waveguide were larger than the height. For 

higher frequency, which most of the power is confined in the core, the wave velocity 

approached that of GeO2-doped silica. On the other hand as frequency is reduced the 

velocity becomes more stable as shown in Fig. 5.1. For both the H1W2 and H2W4 

waveguides, the velocity slowly decreased and then remains almost constant when 

the frequency reaches 25 GHz.  At all the frequencies, H1W2 waveguide has higher 

shear wave velocity than the H2W4 waveguide.  

 
 (a)      (b) 

 

(c) 

Figure 5.2. The contour plots of the displacement vectors for the U
x
11 mode of the H2W4, (a) 

Ux, (b) Uy and (c) Uz displacement vector at the wavenumber k=11 μm
-1

. 
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 The dominant Ux displacement vector contour plot of the U
x
11 mode for the 

H2W4 rectangular waveguide is shown in Fig. 5.2(a) when k=11 μm
-1

. This mode 

has the maximum field value in the core and gradually decreased to the cladding. It is 

shown in Fig. 5.2(b) that the displacement profile of the non-dominant Uy has higher 

order spatial variations with four peaks at the four corners, but with a smaller 

intensity of 0.005. Figure 5.2(c) shows the Uz displacement vector plot which has the 

one positive and one negative peak at the left and right vertical interfaces. Its 

maximum magnitude is 0.05. 

 

 To display their spatial variation more clearly their variation along the 

transverse axes are shown next. 

 

Figure 5.3. Variation of the Ux displacement vector of the U
x
11 mode along the x-axis at k=15 

  μm
-1

 and k=36 μm
-1

. 

 

 Figure 5.3 shows the variation of Ux displacement vector of the U
x
11 mode 

along the x-axis for two different propagation constants. It can be observed that 

normalized maximum value is at the centre of the core for both the propagation 

constants, k=15 μm
-1

 and k=36 μm
-1

. From the graph it can be noticed that at the 

lower propagation constant k=15 μm
-1

, the Ux vector reduces slowly and spreads 

wider than at the higher propagation constant of k=36 μm
-1

.  The full mode width 

along the x-axis, where the field decays to 1/e of its maximum value is 2.0067 μm 
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and 1.67021 μm, at the propagation constants, k=15 and 36 μm
-1

, respectively. At a 

lower propagation constant, the U
x
11 mode approaches its cut-off and the mode shape 

expands and as the propagation constant becomes higher, the mode is more confined 

inside the core of the waveguide. 

 

Figure 5.4. Ux displacement of the U
x
11 mode along the y-axis at k=15 μm

-1
 and k=36 μm

-1
. 

 

 Variation of the dominant Ux vector along the y direction is shown in Fig. 5.4 

for the U
x
11 mode. It can be observed that, for k=15 μm

-1
, as shown by a solid line, 

the mode spreads more into cladding. In contrast, for a higher propagation constant, 

k=36 μm
-1

, shows by a dash line the mode is more confined inside the core of the 

waveguide. The full mode width along the y-axis, where the field decays to 1/e of its 

maximum value is 1.37098 μm and 0.96971 μm, respectively at the propagation 

constants, k = 15 and 36 μm
-1

. 

 

 Contour plots of the Ux, Uy and Uz displacement vector components of the 

U
y
11 mode are shown in Fig. 5.5 for the H1W2 waveguide at k=11 μm

-1
. The 

displacement vector Uz of the U
y
11 mode given in Fig. 5.5(a) shows a higher order 

spatial variation with one positive and one negative peak at the upper and lower 

horizontal interfaces. The intensity of Uz displacement is 100 times lower than that of 

the U
y
 displacement shown in Fig. 5.5(c). It is also shown that the maximum value of 

the U
y
 displacement vector is inside the core with maximum intensity of the U

y
 is 
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normalised to 1. The Uy displacement vector of the U
y
11 mode has the highest 

intensity and the mode shape spreads more into the clad near the cut-off. The Ux 

displacement is elliptical shape with the four peaks at 4 corners of the waveguide as 

shown in Fig. 5.5(b). The magnitude of this Ux displacement vector  is 0.006, which 

shows the lowest intensity of all the U
y
 mode at the propagation constant k=11 μm

-1
.  

 
(a)      (b) 

 
(c) 

Figure 5.5. The displacement contour plot of  U
y

11 mode in H1W2 waveguide (a) Uz (b) Ux and 

  (c) Uy displacement vectors at k=11.0μm
-1

.  
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Figure 5.6. The Uz displacement vector of the U
y
11 mode of H1W2 guide at k=15.0μm

-1
  

  and k=36.0μm
-1

. 

 

 Variations of the Uz vector along the vertical direction with two different 

propagation constants are shown in Fig. 5.6 for the U
y
11 mode of the H1W2 

waveguide. For the lower k of 15.0 μm
-1

 the mode is expanded more in the cladding 

with two different polarity, one positive and one negative as shown by a solid blue 

line in Fig. 5.6. When the propagation constant is increased to k=36 μm
-1

, the Uz 

displacement is more confined in the core of the waveguide as shown by the dashed 

line. Its magnitude is also reduced as the propagation constant is increased. 

 

 When the propagation constant increases the shape of non-dominant 

displacement vector transforms. The non-dominant Ux displacement vector of the 

U
y
11 mode at propagation constants  k=11, 20 and k=30 μm

-1
 of H2W4 are shown in 

Fig. 5.7. As the propagation constant is gradually increased the mode gets more 

degenerated. Mode degeneration appears when two different modes may have similar 

eigenvalues (here same velocity for a given k value). 



CHAPTER 5  SILICA RECTANGULAR WAVEGUIDE 

  

116 
 

 
(a)      (b) 

 
(c) 

Figure 5.7. The contour plots of Ux displacement vector at (a) k=11 μm
-1

, (b) k=20 μm
-1

 and (c) 

  k=30 μm
-1

 of the U
y

11 mode for the H2W4 guide. 

 

 The Ux displacement vector plot shows the higher spatial variations with four 

peaks at the four corners of the waveguide and as the propagation constant increases, 

mode starts transforming and starts merging to two peaks at two corners, as shown in 

Fig. 5.7(a) for k=11 μm
-1

 and in this case its maximum magnitude was 0.006. When k 

is increased further, the mode is gradually spread out to the corner of the waveguide 

at k=20.0 μm
-1

 as shown in Fig. 5.7(b) and its maximum magnitudes is increased to 

0.008. At the wavenumber of k=30.0 μm
-1

, the vector displacement is transformed 

further and retained its rectangular shape and the mode is confined inside the core 

and its maximum magnitude is increased to 0.013, as shown in Fig. 5.7(c). The 
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increasing of the propagation constants will also increased the magnitude of the non-

dominant component.  

 

Figure 5.8. The hybridness of the rectangular acoustic waveguide with H1W2 and H2W4. 

 

 It is shown here that, for these transverse modes all the three components of 

its displacement vectors are present, so these are not ‘pure’ transverse mode. Modal 

hybridness is an important modal parameter, defined as the ratio of the non-dominant 

displacement vector (here Uz) over the dominant vector. Figure 5.8 shows the 

variation of different modal hybridness with the acoustic waveguide propagation 

constant of H1W2 and H2W4. The hybridness variation of the U
x
11 and U

y
11 modes 

of the H1W2 and H2W4 waveguides are shown here. The maximum magnitudes of 

the U
x
 and U

y
 eigenvectors for U

x
11 and U

y
11 modes are taken as 1. The hybridness of 

the Hbx is identified as the maximum value of the Uz displacement vector over U
x
 

vector for the U
x
11 mode. It is similar for the Hby mode also the Uz displacement 

vector over U
y
 vector for the U

y
11 mode. It should be noted that the Hby hybridness is 

higher than the Hbx for the same guide and hybridness for smaller H1W2 guide is 

higher than that of the H2W4 guide. It can be noticed that U
x
11 mode of H1W2 and 

U
y
11 mode of H2W4 guides have similar hybridness. This could be due to the x side 

of H1W2 and y side of H2W4 being similar. Further investigation with a longer 

H4W8 guide was undertaken but in this case these two modes were degenerate (as 

dimension was large) and this reason could not be fully verified.  
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5.2.2 Effect of the Width Variation 

The effect of the width of the rectangular waveguide but keeping the aspect ratio 

constant at 1:2 for a fixed k=25.0 μm
-1

 is studied in this section.  

 

Figure 5.9. The displacement plots of U
x
 and U

y
 modes at k=25.0 μm

-1
 by varied width from 

  2 to 4 μm. 

 

 Variation of the phase velocities of both the U
x
11 and U

y
11 modes with the 

waveguide width are shown in Fig. 5.9. It can be observed here that as W is 

increased the wave velocity decreases and approaches that of 3677 m/s, the shear 

velocity of the core. Similarly, as width is reduced the velocity is approached that of 

the cladding velocity of 3700 m/s. However, as the dimension increased velocities 

for the U
x
11 and U

y
11 modes are more closer, which maybe equivalent to the 

reduction of birefringence of optical waveguides. Their velocity ratio of the U
x
11 

mode over U
y
11 mode at width 2 μm and 4 μm are 99.98% and 99.996%, 

respectively. 
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5.2.3 Variation of the Waveguide Widths with Different Frequencies 

The variation of wave velocities at three frequencies of f=10 GHz, f=15 GHz and 

f=20 GHz with the width have been studied for the U
x
11 mode but with fixed aspect 

ratio of 1:2. 

 

Figure 5.10. Variation of the phase velocity of the U
x

11 mode at three frequencies of 10 GHz, 

 15 GHz, and 20 GHz with the width varied. 

 

 Figure 5.10 shown the variations of the phase velocity of the U
x
11 mode at 

three frequencies with various widths. The width is varied from 2 μm to 4 μm, but 

keeping their aspect ratio fixed at 1:2. At the minimum frequency value of 10 GHz 

and with the minimum width of 2 μm, the velocity is 3714 m/s, as this is very close 

to shear velocity of the cladding and gradually decreased to the shear wave velocity 

of the clad 3692 m/s when width is at 4 μm. It can be noticed that when the width is 

increased, velocities for all the three frequencies are decreased. Similarly, at lower 

frequencies, velocities are increased. 
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 Next the effect of the waveguide width on the modal hybridness is studied.  

 

Figure 5.11. The hybridness of the three different input frequencies at f=10 GHz, f=15 GHz  

  and f=20 GHz. 

 

 The hybridness of the U
x
11 mode is shown in Fig. 5.11 for three different 

frequencies, 10 GHz, 15 GHz and 20 GHz. It can be observed that as the width is 

decreased, the modal hybridness for this U
x
11 mode increases. It is also shown here 

that modal hybridness decreases when operating frequency is increased. The solid 

line shows the maximum hybridness is 0.062 at the acoustic f=10 GHz, on the other 

hand the dash line shows the hybridness value of 0.05 at the acoustic f=15 GHz and 

the lowest hybridness of 0.042 when the acoustic f=20 GHz, as shown by a pink 

chained line. When width of the waveguide is at its smallest at 2 μm, it shows the 

highest hybridness values for all frequencies and when the width of the waveguide is 

increased, the hybridness is reduced linearly for all three frequencies. 
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5.2.4 Results of the Overlap Between Optical and Acoustic Modes 

Next, optical modes of these silica waveguides are studied by using the H-field 

formulation. In here, the effective area, effective index of Ge-doped optical 

waveguides are shown and later on the calculation of the SBS frequency shift of the 

acoustic mode (by using k=2β) and the acousto-optic overlap calculation between 

acoustic and optical modes are also presented in the last section. Firstly, refractive 

indices of the Ge-doped silica core and pure silica cladding are taken as 1.44836 and 

1.44, respectively [Laude, 2012], for an operating wavelength, λ=1.55 μm. 

 

 Optical mode are classified as quasi-TE or quasi-TM modes as they have all 

the six components of the H and E fields. The H and E field components in the x, y 

and z direction for the fundamental quasi-TE (H
y
11) mode is shown next: 

 

   (a)      (b) 

 

(c) 

Figure 5.12. The optical mode of H5W10 (a) Ex (b) Ey and (c) Ez field plots of the H
y11

 mode. 
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 It can be seen that the Ex electric field component is dominant for this quasi-

TE (H
y
11) mode with its value normalized at 1 which is shown in Fig. 5.12(a), with 

its maximum field in the middle of the waveguide. The Ey field profile has four 

smaller peaks at the four corners of the rectangular waveguide as shown in Fig. 

5.12(b) and with the smallest magnitude of 10
-4

. The Ez field shown in Fig. 5.12(c) 

shows one positive and one negative peaks at the left and right vertical interfaces 

with its maximum value was 0.02. 

 

(a)      (b) 

 

(c) 

Figure 5.13. The magnetic field (a) Hy (b) Hx and (c) Hz field profiles for the quasi-TE mode of 

H5W10. 

 

 The dominant Hy magnetic field profiles of the quasi-TE (H
y
11) mode shown 

in Fig. 5.13(a), which shows a Guassian shaped profile with maximum field in the 

middle of the waveguide. Figure 5.13(b) shows the spatial variation of the non-
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dominant  Hx field and clearly shows four peaks at the four corners of the waveguide 

with the smallest magnitude of 1.5˟10
-4

. The Hz profile is shown in Fig. 5.13(c) 

which illustrates the Hz displacement has peaks at upper and lower horizontal 

interfaces with the magnitude of 10
-3

 time of the dominant Hy field. 

 

 Variations of the effective index of the fundamental quasi-TE and TM modes 

are shown in Fig. 5.14, the effective index, neff  can be defined as: 

 

0

0

effn
k


      (5.1) 

where β0 is the propagation constant of a given mode and k0 is the free space 

wavenumber, defined as: 

 
1

2
0 0 0

2
k


  


      (5.2) 

In this case, ε0 is the free space permittivity, µ0 is the free space permeability 

of the medium and ω is the angular (radian) frequency. 

 
Figure 5.14. The neff variation of the quasi-TE and TM modes with the width of the waveguide. 

 

 It can be observed that as the width is increased, the effective index for both 

quasi-TE and TM modes are also increased as shown in Fig. 5.14. It can also be 

observed that the effective index of the quasi-TE mode, shown by a solid line is 

lower than that of the quasi-TM mode. 
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Figure 5.15. The Aeff variation of TE and TM modes with the width of the waveguide.  

 

Next, the variation of the mode area, given here as effective area is studied. 

Mode size area or effective area is an important design parameter for various 

applications and Fig. 5.15 shown the variation of the effective area (Aeff) with the 

waveguide width for both quasi-TE and TM modes.  Following the second moment 

of intensity distribution (recommended by ISO Standard 11146), the definition of Aeff 

[ISO 11146, 2005] can be given by: 

 

 
2

2

4

t

eff

t

E dxdy
A

E dxdy









       (5.3) 

where Et is the transverse electric field vector and the integration is carried out over 

the whole cross-section of the waveguide, Ω. 

 

It can be observed in Fig. 5.15 that as the width is reduced, the effective area, 

Aeff, is reduced initially, however, further reduction of width resulted the effective 

area being increased as mode approaches its cutoff condition and spreads more into 

the cladding. 
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For the two degenerated U
x
11 and U

y
11 modes, their dominant Ux or Uy 

displacement vector profiles were very similar to the modal field profile of the 

fundamental optical mode, so their overlaps were significant. The SBS frequency can 

be calculated using k=2β’ (the Bragg condition) [Agrawal, 2007 and Bhaskah, 2003] 

where β’ is the effective propagation constant of the fundamental optical mode.  

Figure 5.16 shows the SBS frequency shift that would be obtained for the 

fundamental optical TE mode, for different width of Ge-doped SiO2 and operating at 

λ=1.55 μm, through the interaction of the U
x
11 and U

y
11 modes. 

 

Figure 5.16. The SBS frequency of the acoustic waveguide U
x
11 mode when k=2β of the quasi-

TE optical mode. 

 

 The SBS shift has shown that the maximum value of the frequency shift is at 

its smallest width of the waveguide at 4 μm and frequency is rapidly decreased while 

the width of the waveguide is gradually increased as shown in Fig. 5.16. When the 

width is larger than 10 μm, the SBS frequency is nearly constant at 6.8655 GHz. It 

can be noticed that by increasing the waveguide width, it will increase the neff.  Also 

the optical β0 and phase match acoustic propagation constant (ka) will increase which 

in turn will decrease the SBS frequency. 
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 (a) 

 
  (b)  

Figure 5.17. Variation of the overlap integral of the optic quasi-TE mode with the acoustic U
x
11 

  and U
y
11 modes of (a) overlap

x
 with acoustic U

x
11 mode and (b) overlap

y
 with  

  acoustic U
y

11mode of the Ux and Uy displacement vectors with width. 

 

Although the SBS frequency will tell us the results of the optical-acoustic 

interaction, however, their strengths are depended on the overlap between modes. 

Overlap
x
 is the overlap of the Ux displacement vector of the U

x
11 mode with the Hy 

field of the quasi-TE mode and similarly overlap
y
 is the overlap of Uy displacement 
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vector of the U
y
11 mode. The overlap interaction of the transverse mode of the U

x
11 

of the Ux displacement vector shown here as the propagation of the shear mode is 

perpendicular to the z-axis.  The overlap integral calculation of the acousto-optic 

interaction is shown in Fig. 5.17(a), it represents the overlap interaction of the Ux 

displacement vector. It can be observed that as the width of the waveguide is 

increased the overlap integral also increases monotonically. Figure 5.17(b) shows the 

overlap integral with the Uy displacement vector with the dominant optical TE mode. 

It can be noticed that the overlap shown in Fig. 5.17 (a) and (b) the characteristic of 

the graph shows the similarity between overlap
x
 and overlap

y
, in which when the 

width is increased the overlap is increased. This implied that the mismatch between 

acoustic and optical mode is minimum as the width is increased. 

 

 As the dominant displacement vector component of the U
y
11 or U

x
11 modes 

and that of the quasi-TE or TM modes were similar, interactions between these 

modes, both their overlap integral or SBS frequencies were not only higher but also 

similar. Therefore, the overlap integral represented the match between acoustic and 

optical modes. If the overlap integral approaches to a value of 1 then the match 

between acoustic and optical modes is at the maximum. In contrast, if the overlap 

integral is quite low it indicates that the mismatch between acoustic and optical 

modes are quite high as shown in Fig. 5.17(a) and (b).  

 

  



CHAPTER 5  SILICA RECTANGULAR WAVEGUIDE 

  

128 
 

5.3 Strongly Guiding Silica Rectangular Waveguide 

 

The acoustic modes of strongly guided structure are studied in this section. 

 

5.3.1 Waveguide Structure 

Silica (SiO2) is the most widely used material for optical waveguides because of its 

extremely low loss value and in this study a simple strongly guiding rectangular 

planar SiO2 waveguide is considered and its longitudinal and shear velocities are 

taken as 5736 m/s and 3625 m/s, respectively. A low acoustic index material (with 

larger acoustic velocities) is needed as the surrounding cladding material for the 

guidance of both the longitudinal and shear modes. In this case, the well-studied 

example of xenon gas is considered, which is closed to air, but as this is known to 

support both the longitudinal and transverse modes. The longitudinal and shear wave 

velocities in xenon are taken as 22303 m/s and 15472 m/s, respectively. Any optical 

material with similar higher longitudinal and shear velocities is expected to give 

similar acoustic modes. The horizontal (Width) and vertical (Height) dimensions of 

the SiO2 waveguide are taken as 1.5 μm and 1.2 μm, respectively. 

 

 The most important modal parameter, the modal dispersion properties of an 

acoustic waveguide show the relationship between the frequency or the angular 

frequency, propagation constant and phase velocities. Variations of the modal phase 

velocities with the frequency for the first 5 modes are shown in Fig. 5.20. These are 

identified as the Bending 1 (B1), Bending 2 (B2), Torsional (T1), Radial (R1) and 

Torsional-Radial (TR1) modes [Thomas, 1979 and Bhaskar, 2003]. Their detailed 

mode profiles are shown later. It can be observed that for the two bending modes as 

the modal frequency is increased, their phase velocities increase and approach the 

Rayleigh wave velocity asymptotically. Later it will be shown that as the 

wavenumber or the frequency is increased, the modal material displacements move 

closer to the interfaces. These surface waves propagating along the interface of a 

solid are also known as Rayleigh waves. On the other hand for the torsional, radial 

and torsional-radial modes, as the modal frequency is increased, their phase 

velocities decrease and asymptotically reach the Rayleigh wave velocity. The 

waveguide cross-section is also shown in Fig. 5.18 as an inset. 
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Figure 5.18 Variations of the phase velocities with the frequency for acoustic modes.  

 

 It can be observed that the phase velocity of the B1 mode is lower than that of 

the B2 mode for a given propagation constant, k. In this case, the width (W) of the 

waveguide was taken as being larger than its height (H) and the B1 mode with the Uy 

displacement vector as the dominant component: this can also be called U
y
11 mode, 

whereas for the B2 mode with its Ux displacement vector as the dominant 

component, this can be called as the U
x
11 mode. The ‘11’ subscript identifies them as 

the fundamental modes and these numbers are related to their spatial variations, 

which will be shown later on. In this case, as their width and height were not equal, 

the U
x
11 and U

y
11 modes were not degenerate and it was possible to isolate them 

when the full structure was considered in the simulations. However, in the case when 

the height and the width of a waveguide are identical, these two B1 and B2 modes 

will be degenerate and in that case, the symmetry condition can be imposed along the 

vertical and horizontal axes (through the centre of the waveguide) to isolate these 

two degenerate modes. 

 

 For this waveguide, with W = 1.5 μm and H = 1.2 μm, and the propagation 

constant, k = 2.0 μm
-1

, the frequency of the B1 or U
y
11 mode was 0.8716 GHz and 

that of the B2 or U
x
11 mode was 0.9362 GHz. However, if the waveguide height and 

width are identical, the U
x
 and U

y
 modes will be degenerate, so for W = H = 1.2 μm 
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and k = 2.0 μm
-1

, both the frequencies have been calculated as 0.880 GHz and for the 

same value of k, this parameter will be 0.929 GHz when W = H= 1.5 μm. This 

indicates that the frequency of the fundamental U
y
 mode is more related to the 

waveguide height and that of the fundamental U
x
 mode is clearly related to its width.  

 

  (a)      (b)   

 

(c) 

Figure 5.19. The contour plots of (a) Uy (b) Ux, and (c) Uz displacement vector components of 

  the B1 mode (U
y

11) at k = 1.5 µm
-1

. 

 

 The full-vectorial mode profile of the B1 mode is shown in Fig. 5.19, when 

k=1.5 μm
-1

. For this mode the dominant displacement vector was the Uy and its 

spatial variation in the x-y plane is shown in Fig. 5.19(a). It can be observed that the 

Uy profile is strongly confined inside the waveguide with almost a constant value and 

this reduces monotonically in the cladding.  As the spatial variation is of the lowest 
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order, similar as used in integrated optics ‘11’ is used here to identify 1 half wave 

variation in the x and x directions. Its detailed variation along the transverse 

coordinates will be shown later. The variation of the non-dominant Ux profile across 

the waveguide cross-section is shown in Fig. 5.19(b). It can be observed that its 

magnitude is relatively small, at only 6% of the dominant Uy displacement vector, 

and clearly shows a higher order spatial variation at the four corners of the 

waveguide. The spatial variation of Uz vector for this mode, B1, is shown in Fig. 

5.19(c), which clearly shows both positive and negative peaks along the upper and 

lower horizontal side walls. The waveguide outline is also shown in these figures by 

dashed lines. The mode profiles are similar as shown in section 5.2 for low index 

contrast waveguide, but the detailed spatial variation shown later will demonstrate 

some clear differences. 

 

 The magnitude of the Uz displacement vector is considerable at about 60% of 

the dominant Uy vector. It is well known that in optical waveguides with a strong 

refractive index contrast, all the 6 components of the electric and magnetic fields 

exist and a similar feature for an acoustic waveguide with a strong material contrast 

is also demonstrated here. It should be noted that for the quasi-TE mode of an optical 

waveguide [Leung, 2010], its Hy field was shown in Fig. 5.13(a), is the dominant 

component and is primarily confined inside the waveguide core. For the smaller non-

dominant Hx field, this is mainly located around the four corners of the waveguide 

with higher order spatial variations as shown in Fig. 5.13(b). The parameter Hz has a 

relatively higher magnitude but with its peaks along the upper and lower dielectric 

interfaces as shown in Fig. 5.13(c), this strongly correlates with the eigenvector 

shown in Fig. 5.19 for the U
y
11 mode. 

 

 The B2 mode has the Ux component as its dominant displacement vector and 

Fig. 5.20(a) shows its profile which is similar to that of the Uy profile for the U
y
11 

mode (or B1 mode), (which is shown in Fig. 5.19(a)). Similarly, the non-dominant 

Uy component of this B2 mode (with Ux dominant) shown in Fig. 5.20(b) has higher 

order spatial variations at the waveguide corners with only 6% of the magnitude. Its 

Uz profile is also similar as the Uz profile of the B1 mode (with Uy dominant), which 

is shown in Fig. 5.20(c), but for this profile it is rotated by 90 degrees, with its 
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positive and negative peaks along the left and right vertical interfaces of the 

waveguide. Its maximum magnitude is about 60% of that the dominant Ux 

component. For this U
x
11 mode (or B2 mode) with the dominant Ux vector, strongly 

correlates to the eigenvector profile of the fundamental H
x
11 (quasi-TM ) mode in an 

optical waveguide with a strong index contrast, such as Si nanowires. 

 

(a)      (b) 

 

(c) 

Figure 5.20 The U
x

11 Bending mode (B2) at k0=1.5 μm
-1

 of (a) Ux, (b) Uy and (c) Uz 

displacement vector. 

 

 Next, to illustrate the spatial variations of the displacement vectors, their 

variations along the transverse directions are also shown. Variations of the Uy 

displacement vector for the U
y
 mode (B1) and the Ux displacement vector for the U

x
 

mode (B2) along the x-axis are shown in Fig. 5.21, when k = 1.5 μm
-1

. The Uy profile 
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inside the core, shown by a dashed line, is nearly flat inside the core but with small 

ripples and a smaller peak at the centre (shown in the inset) and its value reduces 

rapidly outside the core. On the other hand, the Ux profile, shown by a solid line, is 

also nearly flat inside the core but with a small dip at the center (shown in the inset) 

and outside the core its value reduces more rapidly and is associated with the small 

negative values. Similar profile was also observed for a strong index contrast steel 

waveguide which was shown in section 3.7 in Chapter 3. 

 

Figure 5.21. Variations of Ux and Uy displacement vectors along the x-axis for B1 and B2 modes, 

  respectively at k =1.5 µm
-1

. 

 

 For this waveguide, as the material contrast was very high, the modal 

eigenvectors shows strong confinement inside the core. For a smaller index contrast, 

such as with a Ge doped SiO2 waveguide with SiO2 cladding, (as shown in section 

5.2) that the variations of Ux and Uy along the transverse directions are slower and 

can be close to a Gaussian profile in shape. 

 

 The variation of the Uy displacement vector for the U
y
11 mode (B1) along the 

y-axis is associated with a small negative dip outside the core (similar to the Ux 

profile of the U
x
11 mode (B2) along the x-axis as shown in Fig. 5.21). Similarly, the 

variation of the Ux displacement vector for the U
x
 mode along the y-axis is 

monotonic without changing its sign, in a way similar to the Uy profile along the x-
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axis (as shown in Fig. 5.21) for the U
y
 mode. So the dominant Uy and Ux profiles of 

the U
y
11 and U

x
11 modes reverse the nature of their variations along the x and y 

directions. When the waveguide width and height are equal, the U
x
 and U

y
 modes are 

degenerate. As a result, the modes can easily exchange power between them. For two 

degenerate modes with the magnitudes of Ux and Uy being equal, their resultant 

displacement vectors would be oriented at 45 degree to the two perpendicular axes. 

 

(a)      (b) 

Figure 5.22. The vector plot of (a) U
y
 B1 mode and (b) U

x
 B2 mode at k =1.5 µm

-1
. 

 

 Figure 5.22 shows total transverse displacement for the non-degenerate mode. 

The vector plot of the U
y
11 (B1) mode is shown in Fig. 5.22(a), a combination of the 

Ux and Uy displacement vector which are perpendicular to the x-axis. Whereas in Fig. 

5.22(b) the U
x
11 (B2) mode is horizontally directed along the x-axis. As the axial 

propagation constant, k, increases, these mode shapes transform slowly and get more 

confined and the magnitudes of the non-dominant components also increase. The Ut 

vectors perturb a bit near the corner of the waveguides due to the presence of 

stronger non-dominant components. 
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Figure 5.23. Variation of Uy of the Bending modes, B1(U
y
) mode along y-axis for 

  k = 1.5 µm
-1

 and k = 2.0 µm
-1

. 

 

The Uy profiles along the y-axis for the U
y
 mode (B1) are shown in Fig. 5.23, 

for two different k values. It can be observed that when the propagation constant is 

increased, the field outside the core reduces more rapidly, the negative peak gets 

slightly larger, but it moves closer to the boundary, as shown by a solid line. A larger 

dip at the centre of the waveguide exists (not clearly visible here) for the larger k 

value, given by k = 2 μm
-1

. Similarly, its (Uy) variation along the x-axis also becomes 

faster outside the core when the propagation constant, k, is increased, but this is not 

shown here. As the value of k is increased, the non-dominant displacement vector, Ux 

for the B1 mode also gets more confined near the 4 corners and its magnitude is 

increased, as is seen for example from 6% at k = 1.5 μm
-1

 to 10% when k = 4.0 μm
-1

. 
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Figure 5.24. Variation of the Uy of B1 mode along y-axis at k = 4.0 µm
-1

 and k =10.0 µm
-1

. 

 

 Variations of the Uy profile along the y-axis for two even higher values of the 

propagation constant, k = 4.0 and k= 10.0 μm
-1

 are also shown in Fig. 5.24, for the 

B1 mode. It can now be observed that as k value is increased, the dip at the centre is 

increased further and now the eigenvector is more confined along the upper and 

lower horizontal interfaces of the waveguide. The negative dip outside the core also 

becomes slightly larger, sharper and closer to the waveguide interfaces. 

 

 The transverse variation of the displacement vector, Uy, of the U
y
 mode (B1) 

across the waveguide cross-section is shown in Fig. 5.25 (a), when k = 10.0 μm
-1

. It 

can be observed that the profile of Uy displacement vector for the B1 mode at k = 

10.0 µm
-1

 as shown here is quite difference from the Uy profile at k = 1.5 µm
-1

, 

which was shown in Fig. 5.19(a). It can be ntoiced that the displacement profile is 

more confined along the upper and lower interfaces and its variation along the x-

direction is relatively flat. For this higher propagation constant, the magnitude of the 

non-dominant Ux displacement vector of this B1 mode as shown in Fig. 5.25(b), 

increases significantly to about 40%, but their displacements are mainly confined at 

the four corners of the waveguide. 
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(a)      (b) 

Figure 5.25 Uy profile of the Bending mode (B1) (a) Uy and (b) Ux displacement at k=10.0 µm
-1

. 

 

 

Figure 5.26. Variation of Uz along y-axis of the B1 mode(U
y
) at k = 1.5 µm

-1
 and k = 4.0 µm

-1
. 

 

 The variations of the axial displacement vector, Uz for the B1 (U
y
11) mode 

along the y-axis for k = 1.5 and 4.0 μm
-1

 are shown in Fig. 5.26. It can be observed 

that as the propagation constant is increased, the displacement vector Uz becomes 

more narrowly confined along the upper and lower horizontal interfaces and its 

magnitude also slightly increases. 
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 The detailed spatial variations of all the three displacement vector 

components for this B1 (U
y
11) mode are shown in Figs. 5.19 to 5.26. For the B1 (or 

U
y
 mode), the displacement vector has the dominant Uy component and the resultant 

structural deformation will be in the vertical direction, particularly for lower 

propagation constants (or lower frequencies). However, for higher frequencies, as the 

magnitude of the Ux displacement also increases to nearly 40% of the Uy 

displacement, the profile of their combined transverse displacement vector (Ut = xUx 

+ yUy) will modify considerably, particularly near the four corners. The signs of the 

displacement vectors will change after every half-wavelength and repeat after every 

wavelength and this will produce a periodic structural bending along the vertical 

axis. Similarly, for the B2 mode, the periodic displacement along the x-axis will 

cause this mode to periodically bend the waveguide along the x-axis. 

 

 It should be noted that for the B1 mode although the dominant displacement 

is in the y-direction, it also has a significant Uz displacement. The variation of Uz 

along the transverse plane is more complicated with its positive and negative values 

at the upper and lower horizontal interfaces. The total displacement will vary 

periodically along the axial direction. As k increases, both the dominant Uy and the 

next significant component, Uz, are confined mainly along the upper and lower 

horizontal interfaces, and like a surface mode confined along the material interfaces, 

its velocity approaches that of the Rayleigh waves, which was demonstrated in Fig. 

5.18. 

 

 The modal properties of other modes are of interest and are presented briefly. 

The torsional mode, labeled T1 (can also be called U
y
21) in Fig. 5.27, has nearly 

equal Ux and Uy displacement vectors. The Ux, Uy and Uz profiles for this mode at k 

= 1.5 μm
-1

 are shown in Fig. 5.27.  
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(a)      (b) 

 

(c) 

Figure 5.27. Displacement vector profiles (a) Ux (b) Uy, and (c) Uz of the T1 U
y
21 mode at 

   k=1.5 μm
-1

. 

 

 It can be observed that the more dominant displacement vector, Uy shows its 

maximum values along the left and right vertical interfaces, as shown in Fig. 5.27(b). 

On the other hand the horizontal displacement vector, Ux shows its maximum value 

along the upper and lower horizontal interfaces, as shown in Fig. 5.27(a). As the 

height and width of the waveguide were not equal, the torsional modes were not 

degenerate and the magnitudes of the maxium Ux values was about 60% of the 

maximum Uy displacement. Since the spatial variation of the dominant component 

(U
y
) mode is 2 and 1 half-wave along the horizontal and vertical directions this has 

also been labelled here as the U
y
21 mode. The Uz profile of this torsional mode (T1) 
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is shown in Fig. 5.27(c), which exists mainly at the four corners with higher order 

spatial variations. For this k value, its magnitude was 20% of the dominant Uy 

components, and this shows that the relative magnitude of the longitudinal 

displacement vector, Uz, is lower than that of the B1 and B2 modes. This mode with 

asymmetric Ux and Uy displacement vectors and the Uz displacement vector with 

very small magnitude of 0.2 will have a smaller interaction with the more symmetric 

fundamental optical mode. 

 

Figure 5.28. The variation of the Ux along x-axis of Torsional mode (T1) at k = 1.5 µm
-1

. 

 

 Variation of the Ux displacement vector of this Torsional mode (T1) along the 

y-direction is shown in Fig. 5.28. It can be clearly observed here that it has positive 

and negative peaks at the upper and lower interfaces with the magnitude of 0.8.   

 

The combined transverse displacement vector, Ut in the transverse plane for 

this torsional mode, T1, is shown in Fig. 5.29, when k = 1.5 μm
-1

. This clearly shows 

a twist in the transverse plane due to the combination of the x and y displacement 

vectors, which were shown in Fig. 5.27(a) and (b), respectively. Every half-

wavelength the sign of the displacement vectors (and direction of twist) will change. 

This will give the periodic clockwise and anticlockwise twists in the transverse plane 

along the waveguide. 
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Figure 5.29. The vector displacement, Ut plot of the Torsional (T1) or U
y
21 mode at k = 1.5 µm

-1
. 

 

 

(a)      (b) 

 

(c) 

Figure 5.30. The displacement vector plots of (a) Ux (b) Uy and (c) Uz components of the R1  

  (U
y

12) mode at k = 10.0 µm
-1

. 
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 By contrast, the radial mode R01 labelled as R1, shows considerable 

magnitude of all the three displacement vectors. This mode is very similar as the 

Torsional mode but is variation along x-and y-direction are slightly different. The Ux, 

Uy and Uz profiles for this mode at k = 10.0 μm
-1

 are shown in Fig. 5.30. 

 

 It can be observed that the dominant displacement vector, the Uy profile 

shown in Fig. 5.30(b), is mainly confined to the upper and lower horizontal 

interfaces. It has 1 and 2 half wavelength variations along the x and y-directions, and 

can also be identified as U
y
12 mode. On the other hand, the Ux displacement vector, 

shown in Fig. 5.30(a), is mainly confined along the left and right vertical interfaces 

with its maximum magnitude being about 80% of the maximum Uy displacement. 

However its Uz profile, given in Fig. 5.30(c), clearly shows its confinement along all 

the four interfaces with the sharp peaks at the four corners. It changes its sign at the 

interfaces and sustains a smaller but relatively constant magnitude inside the core. Its 

maximum magnitude is 80% (of that of the dominant Uy displacement vector) at the 

four corners, about 50% along the four interfaces and about 25% inside the core. Due 

to the symmetric nature of the Uz profile, this mode is expected to have a 

considerable overlap with the fundamental optical mode. This Uz profile of this mode 

(R1) is very different than that of the T1 mode.  
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 (a) 

 

 (b) 

Figure 5.31. The variation of (a) Uy along y-axis and (b) Uz along x-axis of the R1 (U
y

12) mode  

at k = 10.0 µm
-1

. 

 

 Variation of the Radial mode (U
y
12) of Uy displacement vector profile along 

the y-axis at k=10μm
-1

 shows in Fig. 5.31(a). The Uy displacement vector profile 

shows negative and positive peaks at the lower and upper interfaces with the 

magnitude of 1. The Radial mode in Fig. 5.31(b) shows the Uz displacement vector 
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profile with the negative at the centre and is increased further with the positive at 

both side on the upper interfaces with the maximum magnitude of 0.5.  

 

(a)      (b) 

Figure 5.32. Vector plot Ut of (a) Radial mode (R1) (b) Torsional-Radial more (TR1)  

  at k = 10.0 µm
-1

. 

 

 Figure 5.32(a) shows the resultant Ut vector profile in the transverse plane for 

the R1 mode when k =10 μm
-1

. In this case, the dominant Uy has positive and 

negative peaks at the upper and lower interfaces, as shown in Fig. 5.30(b) and Ux had 

negative and positive peaks along the left and right interfaces as shown in Fig. 

5.30(a). The resultant Ut vector shows a displacement which moves radially outward 

but is periodically reversing its direction so expanding and contracting its dimension 

along the propagation direction. However, its changing cross-section remains 

rectangular in shape.  R1 would perturb the refractive index profile radially without 

changing the polarization of the guided wave. The combination of transverse and 

longitudinal displacements can give rise to nonlinear optical effects such as SBS and 

polarized GAWBS [Shelby, 1985 and Tanaka, 2004]. 

 

 The Ux and Uy profiles of the TR21 mode labelled as TR1 mode were similar 

to that of the R1 mode as shown in Fig.5.30, but π radians out of phase in the time 

axis (and these are not shown here). However, their out of phase combination yields 

the Ut profile, which is shown in Fig.5.32(b). This shows the maximum displacement 

in the four quadrants of the core. The vector displacement shown in this figure will 

cause the guide to expand along the vertical axis and squeeze along the horizontal 
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axis. This produces a deformation of the waveguide which also reverse its shape 

periodically and hence induces additional optical birefringence. 

 

Figure 5.33. Uz profile of the Torsional-Radial mode (TR1) at k = 10.0 µm
-1

. 

 

 The profile of the longitudinal vector, Uz, of this TR1 mode is shown in Fig. 

5.33, which shows that the displacements are primarily confined along the four 

interfaces and their sign changes in the adjacent sides. In this case the longitudinal 

displacement inside the core is nearly zero. Its maximum magnitude at the interfaces 

was about 60% of that of the dominant Ux displacement vector. As its Ux and Uy 

profiles induce optical birefringence which will contribute to depolarized GAWBS 

[Shelby, 1985]. 

 

 The acoustic modes presented here are not purely transverse or longitudinal 

but exist with all the three components of the displacement vectors being present. 

Their spatial variation are shown and their evolution with the frequency are also 

shown. In this work, the structural symmetry along the two transverse axes was not 

exploited or enforced but the full-vectorial displacement vectors clearly show their 

symmetry and asymmetry along these two axes for different modes. 
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5.4 Acousto-optic Interaction 

 

In this section we have studied the interaction between acoustic and optical mode by 

using k=2β to calculate the SBS frequency shift in the acoustic waveguide and  

afterwards the overlap integrals of the acousto-optic interaction are shown [Li, 2006], 

[Mermelstein, 2009 and Zoe, 2008]. 

 

 The electric and magnetic field components in the x, y and z direction for the 

optical quasi-TE mode are shown next: 

 

(a)      (b) 

 

 

(c) 

Figure 5.34. The magnetic field of (a) Hy (b) Hx and (c) Hz field plots of the quasi-TE mode. 
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 The dominant Hy field is shown in Fig. 5.34(a) with its maximum value at the 

centre of the core with the maximum magnitude of 2. The spatial variation of the 

non-dominant Hx fields shows four peaks at the corner as shown in Fig. 5.34(b) with 

the lowest magnitude of 0.11 and the Hz field shows one positive and one negative 

peak along the upper and lower interfaces as shown in Fig. 5.34(c) with their 

magnitude of 0.6. 

 

(a)      (b) 

 

(c) 

Figure 5.35. The electric field variation of (a) Ex (b) Ey and (c) Ez field plots of the quasi-TE 

mode. 

 

 The dominant electric field Ex is shown in Fig. 5.35(a) with the maximum 

value at the middle of the core with its magnitude of 6. The higher spatial variation 

of the non-dominant Ey field shows four peaks at the four corners of the core as 

shown in Fig. 5.35(b) with the lowest magnitude of 0.7 and one positive and one 
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negative peaks along vertical interfaces for the Ez displacement in Fig. 5.35(c) with 

its magnitude of 1.8. 

 

5.4.1 Study of the Waveguide when Height (H) is Varied 

In this section, the effect of the waveguide height is studied to calculate the SBS 

frequency shift and the overlap between optical and acoustic waves. In this case the 

waveguide width is kept constant at 1.5 μm. 

 

Figure 5.36. Variation of the neff by varied the height of SiO2 waveguide. 

 

 Variation of the effective index of the SiO2 waveguide with the waveguide 

height, H is shown in Fig. 5.36. It can be observed that the effective index is 

increased as the height of the waveguide is increased. When the waveguide height is 

very low, the guide is unable to support any optical mode as it approaches modal cut-

off. It can also be observed that as the height is larger than the width, which is fixed 

at 1.5 μm, effective index of the quasi-TE mode is larger than that of the quasi-TM 

mode. 
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Figure 5.37. Variation of the Aeff with the height of SiO2 waveguide. 

 Variation of the effective area, Aeff, with the waveguide height for both the 

quasi-TE and TM modes are shown in Fig. 5.37. In this case, it can be observed that 

as the height is reduced, initially Aeff reduces, then achieves a minimum value and 

for further reduction of the height, it increases, as the quasi-TE and TM modes 

approach their cut-off. It can be noticed that at the lowest height of Aeff the quasi-TM 

mode is higher than that of the quasi-TE mode as shown as 3.4 μm
2
 and 1.9 μm

2
, 

respectively. 

 

Figure 5.38. Variation of the SBS frequency shift for TE and TM modes with waveguide height. 
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 The calculation of the SBS frequency of the acoustic mode is carried out by 

using k=2β. The variation of the SBS frequency shift with the waveguide height is 

shown in Fig. 5.38. It can be observed that as the height is reduced initially, SBS 

frequency is decreased and then approaching the cut-off.  Further decreases of height 

of the waveguide results the SBS frequency being increases as shown in the figure 

for both quasi-TE and TM modes.  

 

A mentioned before SBS frequency tell us the resulting frequency shift due to 

the optical-acoustic interaction, however, their strength depends on the overlap 

between these modes. The overlap interaction of the transverse Radial (R1 or U
y
12) 

mode with its Uz displacement vector is shown here.  The variation of overlap 

integral values of the acousto-optic interaction is shown in Fig. 5.39. This represents 

the overlap interaction of the Uz displacement vector with the dominant optical field. 

For quasi-TE mode, overlap integral was carried out with the H
y
11 field, but for 

quasi-TM mode, it was with the H
x
11 field.  

 

Figure 5.39. The overlap integral between acousto-optic interaction calculation. 

 

In this figure, the overlap calculation of the Uz displacement vector profile of 

the radial mode will introduce GAWBS and SBS into the core of the waveguide and 

creates the interaction between acoustic and optical called acousto-optic interaction. 

The graph shows that maximum overlap is achieved when the height is 1 μm and 
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1.15 μm for the quasi-TE and TM mode, respectively, and further increases of height 

will reduce the overlap integral. Therefore, the mismatch between acoustic and 

optical mode is higher when height is increased. 

 

5.4.2 Study of the Waveguide when W is Varied 

In this section the effect of the width of the SiO2 waveguide is studied on the SBS 

frequency shift and the overlap between the acoustic and optical waves. To achieve 

that, first the optical modes are studied. To obtain the SBS frequency shift, it is 

essential to calculate the propagation constant, which is related to the effective index 

of a mode. 

 

Figure 5.40. Variation of the neff of TE and TM modes with the width of the SiO2 waveguide. 

 

Variations of the effective index with the waveguide width are shown for 

both quasi-TE and TM modes in Fig. 5.40. It can be observed that as the width is 

reduced modal effective index is reduced, and when the width reduced to 0.3 µm, 

their cut-off condition approaches. It can also be observed that when the width is 

larger than 1.2 µm, neff of the TE mode is higher than that of the TM mode. 
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Figure 5.41. Variation of the Aeff of the quasi-TE and TM modes with the width of the SiO2  

  waveguide. 

 Variation of the effective area, Aeff, with the waveguide width for both the 

quasi-TE and TM modes are shown in Fig. 5.41. In this case, it can be observed that 

as the width is reduced, Aeff reduces initially, then achieves a minimum value. 

Further reduction of width will increase the effective area, as the quasi-TE and TM 

modes approaches their cut-off.  

 

Figure 5.42. Variation of the SBS frequency shift for quasi-TE and TM modes with waveguide 

  width. 
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 The variation of the SBS frequency shift with the waveguide width, W, is 

shown in Fig. 5.42 for both quasi-TE and TM modes. It can be observed that as the 

width is reduced, the SBS frequency shifts for both the polarized modes are reduced. 

It can also be noticed that as the width is increased, the SBS frequency is increased 

of both quasi-TE and TM modes, as it approaches the maximum width the quasi-TE 

mode has higher SBS frequency than that quasi-TM mode of 5.98 GHz and 5.85 

GHz, respectively. 

 

Figure 5.43. Variation of the Uz overlap integrals between acoustic and optical interaction  

with waveguide width. 

 

 Figure 5.43 shows the overlap integral between the acoustic radial mode (R1) 

of its Uz displacement vector with the fundamental quasi-TE and TM optical modes 

with the waveguide width. It can be observed that as the width of the guide is 

increased the overlap increases rapidly and reaches its maximum value, then reduces 

as width is increased further. When the width is at its maximum the overlap ratio 

between acoustic and optical modes is at its minimum. In contrast, higher overlap 

ratio is shown to be 0.438 and 0.40 at 1.1 μm and 1.15 μm, respectively, for the 

quasi-TE and TM modes. It can be observed that the mismatch between acoustic and 

optical waves is quite high when width is increased. 
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5.5 Strip waveguide  

 

Conventionally, silica fibres are widely used in backbone and metro area networks. 

Although, polymer optical waveguides are being researched and developed at all 

over the world due to their advanced characteristics. Current semiconductor 

fabrication technology is thought to be complicated and expensive process, but it 

guarantees high accuracy. And therefore, it is still thought to be the best method for 

producing conventional polymer optical waveguides as well as silica optical 

waveguides. However, other research groups [Wright, 1971], [Fan, 2002], and 

[Doghmanel, 2006] have implemented a new replication process to realize both low 

cost and simple polymer optical waveguide.  In our studies, the information provided 

from these research groups will be used and analysed in this section. 

  

5.5.1 Study of Longitudinal modes in Porous Silicon Waveguide 

In this section a Porous Silicon (PS) on SiO2 buffer layer which surrounded by 

polymer will be studied where, the acoustic mode will be guided in the PS region 

that have the higher acoustic index. The strip waveguides studied here would support 

non-degenerate modes resulted from unequal width and height of the waveguide. 

Material data has been taken from [Fan, 2002], [Doghmanel, 2006] and [Jen, 1986] 

and for porous silicon cladding, the longitudinal velocity VL is taken as 1675.59 m/s, 

shear velocity, VS as 1170.28 m/s and with the density 460 kg/m
3
. From glassy 

polymer core these are taken as longitudinal velocity VL=3033 m/s, shear velocity, 

VS=1388 m/s and material density ρ=1190 kg/m
3
. For pure silica, the materials were 

taken as cladding, for the longitudinal velocity VL is taken as 5933 m/s, shear 

velocity, VS as 3764 m/s with the material density 2202 kg/m
3
. 

 

Table 5.2. Material properties and elastic stiffness constants for the strip waveguide. 

Material 

Velocity (m/s) Density  

(kg/m
3
) 

 ρ 

Elastic Stiffness (GPa) Refractive index 

n 

VL VS c11 c12 c44 

SiO2-7940 5933 3764 2202 77.5115 15.1169 31.1973 1.44 

Porous Silicon 1675.5920 3764 2202 6.1824 56.2112 31.1973 3.43 

Glassy Polymer 3033 1388 1190 10.9470 6.3618 2.2912 1.59 
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 However, in this case; it has been assumed that the transverse velocity of the 

core and cladding of silica and porous silicon are equal to avoid the transverse modes 

in order to prevent coupling between the longitudinal and transverse modes. Here for 

pure silica cladding the longitudinal velocity VL is taken as 5933 m/s, shear velocity, 

VS as 3764 m/s with the material density 2202 kg/m
3
. For porous silicon (PS) core 

these values are taken as longitudinal velocity VL=1675.5920 m/s, but adopted its 

shear velocity, VS=3764 m/s and material density ρ=2202 kg/m
3
 as given in Table 

5.2. 

 

Figure 5.44. The Porous Silicon (PS) waveguide. 

 

The PS strip waveguide is shown in Fig. 5.44 where the width of the guide 

has been varied from 0.8-2.0 μm with a constant height of 0.26 μm, along with the 

lower glass buffer layer height of 1.0 μm thick. The longitudinal acoustic mode in the 

acoustic waveguide is studied first.  Figure 5.45 shows the variation of the acoustic 

velocity with the frequency for the longitudinal L01 U
z
 mode with width equals to 0.6 

μm and height equals to 0.26 μm. For the longitudinal mode the dominant Uz 

displacement vector will play an important role for the acousto-optic interaction as 

shown in this section. 

 

 It can be observed that the velocity of the longitudinal L01 (U
z
) mode 

decreases monotonically from the glass polymer velocity of 3033.3 m/s to the the 

core velocity of porous silicon (PS) at 1871 m/s. From the relation of the 

wavenumber (k=ω/V), the frequency is increased as the phase velocity reduced as 

shown in Fig. 5.45. At a higher frequency, the acoustic mode is more confined in the 

waveguide region of the PS core, whereas at a lower frequency, the wave spreads 

more into the cladding and its velocity is of the cladding velocity. 
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Figure 5.45. Variation of longitudinal L01 mode velocity with frequency of the acoustic 

waveguide H0.26W0.60 μm. 

  
(a)     (b) 

Figure 5.46. The contour plots of (a) Uz and (b) Uy displacement vector of longitudinal L01 mode 

at k=17.2343 μm
-1

. 

 

 The contour plot of the displacement vector Uz of the longitudinal L01 or (U
z
) 

mode is shown in Fig. 5.46(a). This shows that the maximum displacement is at the 

centre of the core with the magnitude of 0.85. The U
z
 profile of this mode is near 

Gaussian in shape. However, in Fig 5.46(b) the non-dominant Uy displacement 

eigenvector plot of the U
z
 mode is shown, which has a higher order spatial variation 

with one positive and one negative peaks and confined in the core with the 

magnitude of 0.5. The Ux displacement eigenvector of this U
z
 mode is close to zero. 
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5.5.2 Study of Overlap Between Optical and Acoustic Modes 

The optical modes of these PS waveguides are studied by using the H-field 

formulation. In here, the effective area, effective index of PS optical waveguides are 

shown and later on the calculation of the SBS frequency shift of the acoustic mode 

are also shown. But first we need to calculate the propagation of the optical mode to 

estimate the acoustic frequency by using k=2β and then the acousto-optic overlap 

integral calculation will be calculated from both the acoustic and optical mode 

profiles. We are also showing the interaction between acoustic and optical in the last 

two sections of the longitudinal and transverse modes strip waveguide.  

 

(a)     (b) 

 

(c) 

Figure 5.47. The quasi-TE mode of (a) Hy (b) Hx and (c) Hz field profiles of PS waveguide 

H0.26W0.60μm. 

 

 Optical mode are classified as quasi-TE or quasi-TM modes as they have all 

the six components of the H and E fields. The electric and magnetic field 



CHAPTER 5  SILICA RECTANGULAR WAVEGUIDE 

  

158 
 

components in the x, y and z direction for the fundamental quasi-TE (H
y
11) mode are 

shown.  All three components of the H-field profile of the quasi-TE (H
y
11) modes for 

the PS strip waveguide are shown in Fig. 5.47. The dominant Hy field component of 

H
y
11 mode is shown in Fig. 5.47(a) illustrates that the maximum field profile is at the 

middle with the maximum magnitude of 4. The non-dominant Hx field profile is 

shown in Fig. 5.47(b) with its higher order spatial variation shows four peaks at the 

four corners of the waveguide with the highest magnitude of 0.4. The Hz field profile 

shows one positive and one negative peak along the upper and lower horizontal x-

axis with the magnitude of 1.5. It can be noted that for this mode the maximum value 

of the Hz field is about 37.5% of the maximum value of Hy field and that of the Hx 

field is 10% of the Hy field. So the optical mode is highly hybrid in nature. 

 

(a)     (b) 

 

(c) 

Figure 5.48. Contour plots of the quasi-TE mode of (a) Ex (b) Ey and (c) Ez profiles of PS strip  

  waveguide. 
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 The electric field profile of the quasi-TE modes for the PS strip waveguide is 

shown in Fig. 5.48. Here, the Ex component of the E field is dominant with the 

magnitude of 4.5 shown in Fig.5.48(a) at the centre of the core of PS. The higher 

order spatial variation of the non-dominant Ey field profile with four peaks at the four 

corners of PS rectangular waveguide shown in Fig.5.48(b) has the smallest 

magnitude of 1.5. The Ez profile shows one positive and one negative peaks in the 

waveguide region at the left and right interfaces. However, the mode shown in Fig. 

5.48(c) has moved to the interface of the waveguide with the maximum magnitude 

value of 2.  

 

Figure 5.49. The quasi-TE variation of effective index (neff) and the area effective (Aeff) with 

width of PS waveguide. 

 

 Variation of the effective index and effective area with the waveguide width 

for the quasi-TE mode is shown in Fig. 5.49. The neff is increased with the width of 

the PS waveguide as shown in Fig. 5.49. It can be observed that at the lowest width it 

shows the lowest neff values and as the width is increased the neff is also increased. As 

the width is reduced Aeff reduces and reaches the smallest value at 0.5μm and 

afterwards the Aeff increased as the width of the waveguide is reduced further. At the 

minimum value of the Aeff which achieved the maximum power density intensity of 

the mode can be obtained as shown in Fig. 5.49. It can be noticed that when the 
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width is increased, it will also increase the confinement of the waveguide with the 

increasing of the neff and Aeff.  

 

 In this section we have studied the interaction between acoustic and optical 

mode by using k=2β to calculate the SBS frequency shift in the acoustic waveguide 

and also shows the overlap integral of the acousto-optic interaction [Bhashar, 2003]. 

Figure 5.50 shows the variations of the SBS frequency and the overlap interaction 

between quasi-TE optical mode with the longitudinal L01, U
z
 mode with width of the 

waveguide.  

 
Figure 5.50. Variation of the SBS frequency shift and the overlap

z
 of the L01 or (U

z
) mode 

between acoustic and optical modes with waveguide width. 

 

 The variation of the SBS frequency shift with width in Fig. 5.50 shows the 

SBS frequency is increased with width of the waveguide, its lowest SBS frequency is 

at width of 0.4μm. The overlap
z
 between quasi-TE H

y
11 optical mode and dominant 

U
z
 longitudinal acoustic mode are calculated and shows that the overlap is decreased 

as width increases. As the width is increased, the overlap
z
 shows that its maximum 

values is of 0.9 at width 0.8 μm, as the width is increased further, the overlap
z
 is 

reduced to 0.3 at width 1.2 μm. In contrast, it can be noticed that SBS frequency shift 

is increased as the width is increased.  
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5.5.3 Study of Shear modes in Silicon Strip Waveguide 

In this section, some of the parameters shows in Table 5.3 are different to those 

shown in Table 5.2, with the aim to study only shear mode. Material data has been 

taken from [Fan, 2002], [Doghmanel, 2006] and [Jen, 1986] for porous silicon 

cladding, the longitudinal velocity VL is taken as 1675.59 m/s, shear velocity, VS as 

1170.28 m/s and the density 460 kg/m
3
. From glassy polymer core these are taken as 

longitudinal velocity VL=3033 m/s, shear velocity, VS=1388 m/s and material density 

ρ=1190 kg/m
3
. For pure silica cladding the material data were taken as, the 

longitudinal velocity VL as 5933 m/s, shear velocity, VS as 3764 m/s and the material 

density 2202 kg/m
3
. 

 

Table 5.3. The material properties of the waveguide. 

Material 

Velocity (m/s) Density 

(kg/m
3
) 

 ρ 

Elastic Stiffness (GPa) Refractive 

index 

n VL VS c11 c12 c44 

SiO2-7940 5933 3764 2202 77.5115 15.1169 31.1973 1.44 

Porous Silicon 1675.5920 1170.2842 460 1.2915 0.0315 0.630 3.43 

Glassy Polymer 3033 1388 1190 10.9470 6.3618 2.2912 1.59 

 

 The variation of the shear velocity of the transverse U
x
 mode with the 

propagation constant is shown in Fig. 5.51.  This is shown for the acoustic porous 

silicon waveguide of H=0.26μm and W=0.60μm with a silica buffer layer and 

surrounded with polymer. The variation of the velocity with frequency of the shear 

U
x
 mode is also shown here. For this transverse modes, the component of Ux, Uy and 

Uz displacement vector profiles are shown in Fig. 5.52, where the dominant 

displacement vector is mostly confined inside the core of the PS, in which it has the 

highest acoustic index. 
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Figure 5.51. Variation of the transverse velocity of the U

x
 mode with propagation constant  

(k, μm
-1

) and frequency (f, GHz) of the PS waveguide at H0.26W0.60um. 

 

 Variations of the velocity of the transverse U
x
 acoustic mode with the 

propagation constant (k, μm
-1

) and frequency (f, GHz) are shown in Fig. 5.51. It can 

be noted that the shear velocity in the PS layer is taken as a lower value, to 

encourage formation of the shear modes. The width and height of the PS are taken as 

0.6 μm and 0.26 μm, respectively. This figure shows the velocity is decreased as the 

propagation constant is increased. It can be observed that velocity of the transverse 

U
x
 profile is decreased with the frequency is increased. It is also shown in Fig. 5.51 

that by increasing in frequency and propagation constant, the velocity of the mode 

decreases. This shows that the cladding velocity of PS decreases from 1400m/s to the 

core of PS velocity of 1170m/s, as an effect, this shows that the confinement in the 

core of the waveguide will be higher with increasing frequency and propagation 

constant.   

 

 In this section, the displacement vectors of the transverse U
x
 mode are shown 

in Fig. 5.52. For this waveguide, as its width and height were not equal, the 

fundamental U
x
 and U

y
 modes were not degenerate. 
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(a)     (b) 

 
(c) 

Figure 5.52. Contour profiles of the transverse U
x
 mode of (a) Ux, (b) Uy and (c) Uz displacement 

vector at k=18.50 μm
-1

 of PS waveguide H0.26W0.60μm. 

 

 The contour profile of the dominant transverse U
x
 displacement vector 

presented in Fig. 5.52(a), shows the maximum U
x
 profile. It also shows the 

maximum normalised magnitude value of unity in the core of the waveguide. The 

variation of the Uy displacement vector profile shows that it has one positive and one 

negative peaks on the left and right near the interface of the PS waveguide with the 

lowest magnitude of 5% of U
x
 profile. The displacement vector Uz profile is also 

shown in Fig. 5.52(c) in which there is one positive and one negative peak inside the 

core of the PS waveguide on the left and right side of the core with the magnitude of 

25% of the dominant U
x
 displacement vector. 
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5.5.4 Study of the PS Waveguide when Width (W) is Varied 

 

In this section, the width of the PS waveguide is varied to study the SBS frequency 

shift and the overlap between acoustic and optical waves. To achieve that, first the 

optical modes of these guides are studied. In this section part the effective area (Aeff), 

effective index (neff) of PS optical waveguides are shown and later on the calculation 

of the SBS frequency shift of the acoustic mode by using k=2β and the acousto-optic 

overlap calculation between acoustic and optical is also presented in the last section. 

To obtain the SBS frequency shift, it is essential to calculate the propagation constant 

of the optical mode, which is related to the neff of that mode (Eq. 5.1). 

 

Figure 5.53. The variation of effective index (neff) and the Aeff of Porous Silicon with the width 

of the waveguide. 

 

Variations of the neff and Aeff with the width of the PS waveguide are shown 

in Fig. 5.53. It can be noticed that neff and Aeff increase with the width of the 

waveguide.  It is shown here that when the waveguide width is small, the guide is 

unable to support any of the optical modes as it approaches modal cut-off. At the 

smallest width (0.5 μm), neff is the lowest, in which case the confinement is also low.  

However, when the width is at its maximum, neff is high with the higher mode 

confinement inside the core of the waveguide. From the graph, Aeff also increases 

when the waveguide width increases.  
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Figure 5.54. Variation of the SBS frequency and overlap
x
 with width of PS waveguide. 

 

Variations of the SBS frequency and overlap with the width of PS waveguide 

are shown in Fig.5.54. In this figure it is shown that the SBS frequency is increased 

monotonically when the width of the waveguide is larger and its value is 4.02 GHz 

for width 5 μm. The overlap between acoustic and optical modes is reduced when the 

width of the waveguide is increased as shown here. It can be noticed that the overlap
x
 

between acoustic and optical is at its maximum at the lowest width of the strip 

waveguide. On the contrary, the mismatch between acoustic and optical modes is 

high at a larger width of the waveguide than the lower width, however, their 

variations are small. 

 

The overlap integral presents the matching ratio between the acoustic and 

optical mode profile. In Fig. 5.54, the overlap
x
 is calculated between Hy field of the 

quasi-TE H
y
11 and the Ux displacement vector of the transverse U

x
 acoustic mode. 

The overlap
x
 shown the mismatch between acoustic and optical mode is quite high 

when the width of the waveguide is increased. In contrast, the mismatch is minimum 

when width of the waveguide is narrower as shown in Fig. 5.54. This figure also 

shown that the highest value of overlap
x
 is 0.945 at the lowest SBS frequency. 
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5.6 Summary 

 

A group of planar rectangular waveguides have been studied in this chapter. First, a 

class of weakly guiding acoustic guide with Ge-doped SiO2 core was studied as 

reported in Section 5.2. Next a strongly guiding acoustic guide with SiO2 core was 

presented in Section 5.3 and finally acoustic mode of a strip waveguide is given in 

detail in Section 5.5.  

 

 Detailed displacement vectors for several fully hybrid acoustic modes with 

both transverse and longitudinal displacement vectors have been obtained, their 

profiles were shown and are discussed for a high index contrast acoustic SiO2 

waveguide. Unlike in a weakly guiding SiO2 waveguides, the transverse and 

longitudinal displacements are strongly coupled in the high index contrast SiO2 

waveguide. Section 5.2, for the weakly guiding showed the transverse U
x
 and U

y
 

modes with their displacement vector profiles shown Gaussian in shape. Section 5.3, 

the strong guiding of SiO2 core showed the variation modes of B, T, R and TR with 

their spatial variation of Ux, Uy and Uz displacement vectors. In the last Section 5.5, 

showed the strip PS waveguide with their longitudinal U
z
 and transverse U

x
 modes. It 

was also shown here that their displacement vector profiles continuously evolve as 

the frequency or propagation constant increases and becomes increasingly confined 

along the waveguide interfaces. For some of these structures the interaction between 

acoustic and optical modes were also shown. 
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Chapter 6 
 

Slot Waveguide 
 

6.1 Introduction 

 

The analysis of acoustic modes in slot optical waveguides and also their interactions 

with optical modes is reported in this chapter. Slot waveguide, is a unique structure 

where light is guided in a low-index region [Almeida, 2004 and Leung, 2012], which 

can also be air.  The acoustic wave propagation of the displacement molecule inside 

a waveguide is depended on the properties of the material such as density, elasticity, 

Young modulus, and Poisson's ratio. These include acoustic shear velocity and 

longitudinal velocity of the core and cladding materials [Safaai-Jazi, 1988], [Lagasse, 

1973] and [Stone, 1973]. These acoustic modes can be guided, provided at least one 

of the velocities (the shear or longitudinal velocities) of the cladding exceeds that of 

the core.  The particle displacement can be either in the longitudinal direction or in 

the transverse plane and propagation of the waves can be classified as longitudinal, 

torsional, bending or flexural modes.  
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6.2 Analysis of the Slot Waveguide 

 

The slot waveguide [Almeida, 2004] and [Leung, 2012] is a unique structure in 

which light is guided in a low-index region due to the continuity of the normal 

component of the Electric Flux Density (D) at the dielectric interfaces (which makes 

En higher in low index area), which open up new opportunities for sensor design 

[Wang, 2013] and [Dell'Olio, 2007] where the slot can be filled with an active or 

functional material to create devices such as high-speed modulators [Baher-Jones, 

2008], amplifiers [Robinsor, 2008] or nonlinear devices [Wang, 2013] by accessing 

higher field readily accessible in the slot region. The slot waveguide is a waveguide 

where light can be guided in a low index region, whereas, for most of the optical 

waveguides light is guided in a high index region. Sound can be guided in this slot 

region with silica (SiO2), as it has higher acoustic index than the surrounding silicon 

(Si) layer. This results in the possibility of sound-light interactions in a silica filled 

slot waveguide. 

 

 In this study, to isolate the acoustic wave in the slot region a low index for 

(both optical and acoustic) Silica Nitride (Si3N4) layer, a popular insulating layer in 

Si-based electronics, is considered here which will isolate both optical and acoustic 

waves. 

 

6.2.1 Waveguide Structure 

A typical slot waveguide structure is shown in Fig. 6.1. For optical guidance, a 

typical waveguide width, W around 200 to 300 nm, slot width, Ws, between 50 to 

200 nm, and its height H around 200 to 300 nm are often used. 

 

Figure 6.1. Schematic diagram of a Slot waveguide. 
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 Initially, the slot waveguide structure considered here with the dimension of 

SiO2 slot width Ws=150 nm and slot height H= 220 nm with Si width W=300 nm on 

the side and Si3N4 base B=1000 nm buffer layer at the bottom of the slot to prevent 

the leakage of the slot mode to the lower substrate layer, to study various acoustic 

modes. The material properties and elastic stiffness constants are given in Table 6.1. 

 
Table 6.1. Material properties and elastic stiffness constants for the slot waveguide. 

Material 

Velocity (m/s) Density (kg/m
3
) 

ρ 

Elastic Stiffness (GPa) 

VL VS c11 c12 c44 

SiO2-7971 5736 3625 2213 72.8115 14.6511 29.0802 

Silicon 8433 5845 2330 165.6 63.9 79.6 

Si3N4 10611.6332 5956.4114 3440 387.3672 143.2728 122.0472 

Xenon 22303.7 15472.2 5.8971 2.93 1.89 1.41 

 

 The relation between v = ω/k can be used for the plotting the acoustic wave 

phase velocity versus wavenumber or frequency, and we can also relate the 

parameter frequency/propagation constant (f/k) with velocity, as this parameter is 

also directly proportional to the velocity of the wave. In our work, some of them are 

considered. 

 

Figure 6.2. Variation of the velocity of the acoustic U
y
 mode with the frequency for a  

  vertical slot waveguide.  
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 Variation of the phase velocity with frequency is shown in Fig. 6.2 for the 

dominant U
y
 mode. It can be observed here that, as f increases, the velocity of the 

slot guide is decreased from the cladding velocity of 4800 m/s to the core velocity of 

3625 m/s. The observation of this range, the fa/ka ratio is reduced from 0.77 to 0.55 

with the operating frequency of the acoustic phase velocity is reduced to the cut-off 

and towards a velocity which is related to the slab acoustic mode of the Si layer. 

Similarly as the frequency is increased the mode asymptotically reaches a value for a 

very well confined mode in the SiO2 slot region. 

 

6.2.2 Study of Slot Waveguide Acoustic Modes 

The full-vectorial displacement vector profile of this U
y
 mode is shown in Fig. 6.3 at 

propagation constant k equal to 20 μm
-1

. For this mode, Uy displacement vector is 

dominant and this is normalised to its maximum value of 1 and its profile is shown in 

Fig. 6.3(a). The positions of Si waveguides and slot region are shown by red solid 

and dashed lines. It can be observed that Uy profile is symmetric along the horizontal 

direction and its peak value is located inside the slot region. Its profile along the 

vertical direction is not symmetric, as material properties in the upper and lower 

sides were different. 

 

 The non-dominant Ux profile of this U
y
 mode is shown in Fig. 6.3(b). It can 

be observed that this vector is asymmetric with a higher order spatial variation in the 

lateral direction, very similar to the non-dominant field of a Si waveguide [Leung, 

2010]. Its maximum magnitude is about 20% of the maximum value of the dominant 

Uy displacement vector. It can be noted that its maximum value is along the upper 

interface where acoustic index contrast was higher. 

 

 Next, contour profile of another non-dominant Uz (x,y) vector is shown in 

Fig. 6.3(c). It can be observed that this vector also shows higher order spatial 

variation, but in the vertical direction. This profile is symmetric along the horizontal 

direction but highly non-symmetrical in the vertical direction. Its highest value is 

about 55% of that of the dominant Uy displacement vector and located at the upper 

slot interface where material contrast was higher. Later on, variation of some of these 

displacement vectors along the horizontal and vertical directions will be shown. It 
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should be noted here that, for this mode, although a transverse displacement vector 

(Uy) was dominant, however, magnitude of the longitudinal displacement vector (Uz) 

was also considerably high (50%), so this mode cannot be considered as a pure 

transverse mode, but a highly hybrid mode. 

 
(a)      (b) 

 
(c) 

Figure 6.3. The displacement vector plots of the U
y
 mode in a slot waveguide (a) Uy (b) Ux  

  and (c) Uz displacement vector profiles at k = 20 μm
-1

 for W = 300 nm, 

  Ws= 150 nm and H = 220 nm. 

 

 In Fig. 6.2, it was shown that as the operating frequency (or correspondingly 

its propagation constant, k) was reduced the mode approached its cut-off. To study 

this, next contour plot of the dominant displacement vector Uy profile is shown in 

Fig. 6.4, for a lower propagation constant value, k = 11.0 μm
-1

. The height of the 

waveguide and its full width (WT = W + Ws + W) are shown by two arrows. It can be 

observed here that the mode has expanded well inside the two adjacent Si layers on 

the sides and also into the Si3N4 layer at the bottom. As the mode profile moves away 
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from the central slot region into lateral Si regions or lower Si3N4 layer, the contour 

profile of the displacement vector clearly shows distinct changes in its profile. 

However, it can be observed that the Uy profile penetrates more into these Si and 

Si3N4 regions compared to the upper cladding which has a much lower acoustic 

index. 

 

Figure 6.4. The Uy displacement vector profile of the U
y
 mode at k=11.0 μm

-1 

  
for W = 300nm, Ws= 150nm and H = 220nm. 

 

Figure 6.5. Variation of the displacement vector Uy along the x-axis for the U
y
 mode in a  

  slot waveguide at k=20.0 μm
-1

 and k=40.0 μm
-1

.  

 

 The contour profile of the dominant Uy displacement vector was shown in 

Fig. 6.3(a) To observe its transverse variation more clearly, next, its lateral and 
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vertical variations are shown. Variations of the Uy displacement vector along the 

horizontal direction for two different propagation constants are shown in Fig. 6.5. It 

can be observed that the profiles are symmetric in nature. However, it can also be 

observed that for a higher frequency the mode profile is more confined, as shown by 

a red dashed line for propagation constant, k = 40 μm
-1

. The full mode width, where 

field decays to 1/e of its maximum value is 180 nm and 132 nm respectively, at 

propagation constants, k = 20 and 40 μm
-1

. The spread of the displacement vector 

inside the cladding (1/e
th

 decay from the interface) are 100 nm and 40 nm for k = 20 

and 40 μm
-1

, respectively. 

 

 Variations of the dominant displacement vector Uy of the U
y
 mode along the 

vertical direction are shown in Fig. 6.6 for two different propagation constant, k 

values. It can be observed that the Uy profile is not symmetric but tilted. As this 

profile is non-symmetric, instead of the full-mode-width, only half-mode-width 

along both the lower and upper directions are calculated separately and these are of 

133 nm and 20 nm, respectively at k = 20 μm
-1

. 

 

Figure 6.6. Variation of displacement vector Uy of the U
y
 mode along the y-axis at  

  k=20.0 μm
-1

 and k=40.0 μm
-1

. 

 

 It can also be observed that its peak value is closer to the upper interface 

where the material index difference was stronger. A small negative peak can also be 
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observed in the upper cladding layer. We have noticed similar negative peaks for all 

acoustic waveguide with a strong index contrast, where as for an acoustic waveguide 

with small acoustic index contrast, similar negative peak is absent. It can be noticed 

here, that for a higher propagation constant, k = 40 μm
-1

, shown by a red dashed line, 

the mode profile is narrow, the negative peak is sharper with a higher secondary peak 

value. When k is increased to 40 μm
-1

, these half-widths in the lower and upper 

directions reduce to 94 nm and 10 nm, respectively, much smaller values than that 

for k = 20 μm
-1 

which were 133 nm and 20 nm for lower and upper half-mode-

widths. 

 

 Similarly, it was observed that as the propagation constant increases the non-

dominant displacement vectors also shrinks in its sizes. The Ux profile in Fig. 6.7(a) 

shows one positive and one negative with the magnitude of 0.15 and the Uz 

displacement vector profile for propagation constant, k = 40 μm
-1

 is shown in Fig. 

6.7(b). If this is compared to the Uz profile shown in Fig. 6.3(c) for k = 20 μm
-1

, it 

can be clearly observed that its confinement area has substantially reduced. It can 

also be noticed that its peak value is now 63% of the maximum Uy displacement 

vector, compared to the only 55% value for k = 20 μm
-1

. This signifies that as 

propagation constant (or the frequency) increases modes are more confined but also 

more hybrid in nature, similar as the optical modes in high index contrast optical 

waveguides [Leung, 2010]. 

 

(a)     (b) 

Figure 6.7. U
y
 modes at propagation constant k = 40 µm

-1 
for W = 300nm, Ws= 150nm and 

  H = 220nm of (a) Ux and (b) Uz displacement. 
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Figure 6.8. Variation of the modal hybridness of the U
y
 mode with the propagation   

  constant. 

 

 Next, variation of the modal hybridness with the propagation constant is 

studied. The hybridness (Hby=Uzmax/Uymax) of the acoustic modes can be defined by 

comparing the maximum value of the non-dominant displacement vector with the 

dominant displacement vector. For this U
y
 acoustic mode, Uy displacement vector is 

the dominant and Ux and Uz are non-dominants. Variation of the maximum value of 

the Uz displacement vector with the propagation constant, k, is shown in Fig. 6.8. As 

the propagation constant, k is reduced, initially modal hybridness is reduced, but 

when the mode approaches its cut-off at lower k values this modal hybridness also 

increases rapidly. It should be noted that the maximum value of the longitudinal 

displacement vector, Uz, is comparable to the maximum Uy value, and as this value is 

reasonably larger for this U
y
 mode, this mode is not purely transverse mode but a 

highly hybrid mode. The interaction of this highly hybrid acoustic mode with the 

optical modes, which are also hybrid will be quite complex in nature. 
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Figure 6.9. Variations of the phase velocities for the difference width and height of a slot  

  waveguide. 

 

 Next, the effects of slot dimension on the modal properties are also studied. 

Variation of acoustic velocity with the acoustic frequencies for different slot heights 

and slot widths are shown in Fig. 6.9. When the slot width is reduced, as shown for 

Ws = 120 nm by a red dashed line, compared to Ws = 150 nm shown by a solid black 

line, it can be noted that it approaches its cutoff value at a lower acoustic frequency 

but with a slightly higher acoustic velocity. On the other hand, when the slot height is 

increased, as shown for H = 260 nm by a blue dashed line, compared to H = 220 nm 

shown by a solid black line, it can be noticed that its cut-off value is reached at a 

lower acoustic frequency but approaches the same acoustic velocity. 

 

 

6.3 Acousto-optic Interaction in Slot Waveguide 

 

Optical solutions of such Si slot waveguides are carried out by using fully vectorial 

H-field formulation [Rahman 1984]. It should be noted that, although both quasi-TE 

and TM modes can exist for this structure, but only quasi-TE mode will have a high 

power density in the slot region and for this reason only this mode is considered. 
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 Optical mode in the slot waveguide are presented here for the electric and 

magnetic field of the x, y and z displacement variation. 

 

(a)     (b) 

    

(c) 

Figure 6.10. The quasi-TE modes, (a) Hy, (b) Hx and (c) Hz field profiles in a slot waveguide. 

 

 The dominant Hy magnetic field profiles of the quasi-TE mode is shown in 

Fig. 6.10(a), which shows that the maximum field intensities are inside the Si cores.  

However the intensities are not in the middle of the cores but they are close to the 

boundary between the cores and the slot region. It can be noticed that the field 

extends more towards the buffer layer than the upper cladding area.  Figure 6.10(b) 

shows the non-dominant Hx field component of the quasi-TE mode.  It clearly shows 

four peaks at the four corners of the waveguide with alternate positive and negative 

signs.  The non-dominant Hz field component of the quasi-TE mode is also shown in 

Fig. 6.10(c), which illustrates that the Hz field is zero along the x-axis in the center of 
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the waveguide.  It can be observed that maximum intensity occurs at the horizontal 

interfaces between Si cores and upper cladding and Si cores and buffer layer.  

 

6.3.1 Effect of Slot Width (WS) 

Figure 6.11 shows the variation of effective index and effective mode area with the 

slot widths. It can be observed that as the slot width is reduced the effective index 

(neff) increases. This slot mode can also be described as the even supermode of the 

coupled Si waveguides, where effective indices increase as the separation between 

the guides (similar as Ws) reduces. However, in this case, as the constituent Si 

waveguides are rather narrow, they cannot support a mode on their own, so the odd 

supermode for this structure does not exist. 

 

Figure 6.11. Slot waveguide varied Ws of neff and Aeff (μm
2
). 

 

 The variation of the effective mode area, Aeff, is also shown in this figure, by 

a dashed line. The optical slot-mode only exists when slot width is not very wide, 

and for very smaller slot width, effective mode area is also reduced. 

 

6.3.2 The SBS Frequency 

An intense light beam passing through an optical waveguide with a small cross-

section, such as the slot waveguide shown here, produces an acoustic vibration due to 

electrostriction process resulting from the high electrical field of the optical wave. 
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The propagation of the generated acoustic wave is associated with the periodic 

distortion of the waveguide along the axial and transverse directions. This creates a 

periodic grating due to the material deformation and also the associated elasto-optic 

effects. This moving Bragg grating reflects the light – however since the acoustic 

wave is also travelling, the light is subject to a Doppler shift. For the U
y
 mode, its Uy 

profile was very closer in shape with the modal field profile of the fundamental 

quasi-TE optical mode, so their overlap was significant. 

 

Figure 6.12. Variation of Ws with overlap integral and SBS frequency shift (GHz). 

  

 The acoustic and Stokes waves mutually reinforce each other’s growth. 

Subsequently, the SBS frequency can be calculated using k=2β’ (the Bragg 

condition) [Kobyakov, 2005, Shelby, 1985 and Zou, 2008] where β’ is the effective 

propagation constant of the fundamental quasi-TE optical mode. The backward SBS 

only occurs under the phase matching condition k = 2 βo, where βo = 2 π neff / λo is 

the propagation constant of the optical modes. Figure 6.12 shows the SBS frequency 

shift that would be obtained for the fundamental optical mode, for different slot 

width of the slot waveguide and operating at λ=1.55 μm, through the interaction of 

the U
y
 mode. It can be observed that as the slot width is reduced the SBS frequency 

is increased. For this structure, as the slot width is reduced, its optical effective index 

is increased. This in turn increases both the optical propagation constant (β) and the 

phase matched acoustic propagation constant (ka). The resultant acoustic frequency, 
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which in this case is the SBS frequency shift increases with increased acoustic 

propagation constant, as shown in this figure. 

 

 The overlap between the dominant Hy field of the quasi-TE mode with the 

dominant displacement vector Uy of the transverse acoustic mode is also calculated 

and shown in Fig. 6.12. It can be observed that the overlap with the Uy vector 

increases almost linearly as the slot-width is reduced, as for this structure both the 

optical and acoustic modes get more confined in the narrow slot region. As this mode 

was fully hybrid in nature, there is also considerable overlap with the longitudinal 

displacement vector Uz and the Hy field of the quasi-TE mode. It should be noted that 

Uz profiles was non-symmetric with positive and negative peaks along the vertical 

directions, but since these peaks were not equal, there was a reasonable overlap of 

this displacement vector with the optical field. 

 

Figure 6.13. Variation of Ws with the overlap
z
 for a TE  mode.  

 

 The overlap of H
y
 field of the quasi-TE mode with the Uz profile is shown in 

Fig. 6.13 and  it can be observed that its value increases progressively as the slot 

width is reduced and reaches its maximum value of 0.18, when Ws = 110 nm, and 

then rapidly reduces as shown here. The overlap has reduced dramatically as the Ws 

of the slot waveguide is increased as shown in Fig. 6.13. On the other hand, overlap 
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of Hy field with Ux displacement vector was nearly zero as this profile was 

asymmetric along the horizontal directions, and this is not shown here. 

 

6.3.3 Varied Height (H) of the Slot 

Next, the effect of the slot height on the acousto-optic interaction is studied. 

Variations of the neff and the Aeff with the slot height are shown in Fig. 6.15. 

 
Figure 6.14. Variation of H with  neff and Aeff (μm

2
). 

 

It can be observed that as the height is increased, the effective index for this 

quasi-TE mode also increases as shown in Fig. 6.14. However, as the effective index 

is increased with slot height, its optical propagation constant (β) and phase matched 

acoustic propagation constant (ka) also increases. It can be observed that as the height 

is reduced, initially the effective area, is reduced however, for a further reduction of 

height, effective area is increased as mode approaches its cut-off and spreads more 

into cladding. 
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Figure 6.15. Variation of H with overlap

y 
and SBS frequency shift (GHz).  

 

Variations of the SBS frequency shift and overlap integral with the slot height 

are shown in Fig. 6.15. It can be observed that as the height of the waveguide is 

increased the overlap integral is reduced as shown by the dashed line. However, as 

the height of the waveguide is increased the SBS frequency is also increased as 

shown by the solid line.  

 

6.3.4 Varied Width W (Si) on the Side of Slot 

Finally, the effect of slot waveguide width (W) on the generation of SBS frequency 

shift is also studied. The variation of the SBS frequency shift and acoustic-optical 

overlap integral are shown in Fig. 6.17. 

 

It can be observed that the effective index of the quasi-TE mode, shown in 

Fig. 6.16, is increased as the width of the waveguide is increased as shown by a solid 

line. The variation of the effective mode area, with the waveguide width is also 

shown in this figure.  In here, it can be observed that as the width is reduced, initially 

Aeff is reduces, then achieve a minimum value and for further reduction of width, it 

increases, as the quasi-TE mode approach their cutoff as shown by a dashed line. 
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Figure 6.16. Variation of W with neff and Aeff (μm
2
). 

 

 
(b) 

Figure 6.17. Variation of W with (a) overlap
y
 and SBS frequency shift (GHz). 

 

 The strength of the SBS frequency depends on the overlap between acoustic 

and optic modes. Therefore the overlap integral of the transverse U
y
 mode shown in 

Fig. 6.17. For this slot-waveguide as the width of the Si core is increased the 

effective index of the optical mode is increased. This in turn increases the phase 
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matched acoustic propagation constant (ka) and also the SBS shift frequency. In this 

case, the acousto-optical overlap integral also reduces as the width of the waveguide 

is increased but only modestly, over the range shown here.  

 

 

6.4 Summary 

 

In this Chapter, it has shown that optical slot waveguide is an unique class of optical 

waveguides where light is guided in low refractive index region and this nature are 

being exploited for various functional photonic devices. For this structure, if this slot 

region is filled up with SiO2, then this region can also guide acoustic waves through 

this high acoustic index SiO2 slot region. The interactions of optical and acoustic 

modes for the slot waveguide are shown in this Chapter, by employing full vectorial 

approaches for both the optical and acoustic models. The identical mesh 

discretization has also been used for both the models and the interactions were 

calculated rigorously without interpolating the field variables.  

 

 The numerical result shows that the by varying the slot width and slot height 

of the slot waveguide, the overlap
y
 between acoustic and optical mode is decreased. 

It is also shown in this Chapter that SBS can be reduced by decreasing the overlap
y
 

between the optical and acoustic fields.  
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Chapter 7 
 

Conclusion and Further 

Work 
 

7.1 Conclusion 

 

Propagation of acoustic wave in an optical waveguide is a unique feature in which 

both light and sound are guided in core where both the optical and acoustic indices 

are higher than that of the cladding and this nature is being exploited for a various 

functional photonic devices. Studies of the propagation of acoustic waves in various 

type of waveguides has been explored in this thesis, such as the studies of acoustic 

fibres which may have the potential to develop devices in sensor and signal 

processing. A detailed analysis for the propagation of acoustic waves in circular, 

rectangular, square, strip and slot optical waveguides has also been presented. The 

results, computed with the numerical method developed for this PhD project have 

demonstrated the ability to predict the propagation of acoustic waves in different 

waveguides and a good agreement has been found with published results. Moreover, 

in the computer code developed, any material, either isotropic or anisotropic or with 

loss can be considered, when necessary. 
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 This thesis has successfully achieved the following objectives: 

 

1. A finite element code has been developed to study the vector acoustic modes 

in high and low index contrast acoustic waveguides. 

2. The developed acoustic FEM code has been benchmarked against some 

reported results. 

3. The versatile finite element approach presented in the thesis has been used to 

study interactions between the fully vectorial acoustic and optical modes in 

practical optical waveguides. 

4. The study of SBS and the optimization of their interaction via acousto-optic 

overlap integral were also undertaken. 

 

 In achieving all these objectives, the core of this research began in Chapter 2 

by looking at the fundamental and the background theory of acoustic wave.  The 

objective of investigating different types of waveguides with acoustic wave have 

been presented in that Chapter and different acoustic modes in various waveguides 

have also been characterised, particularly longitudinal and shear acoustic waves. 

 

 In terms of how the acoustic FEM code is developed, Chapter 3 started by 

looking at the fundamental of the FEM theory. Following this, the incorporation of 

acoustic wave theory into the FEM is shown.  Finally, the newly developed acoustic 

FEM code is benchmarked on a steel rod structure.  The results obtained from the 

developed code along with the calculated results from the Atkin's extrapolation (in 

which, the mesh size is increased in geometrical proportional ratio for the bending 

(B) and torsional (T) modes) showed that the results obtained from the developed 

code matched well with the results from the published work [Hennion, 1996]. With 

this benchmarked results, it gave us confidence that one of the objectives is met.  The 

importance of this benchmarked results showed that Ux, Uy and Uz displacement 

vector of the dominant U
x
 and U

y
 mode can be realised. The result highlighted that  

degeneration in the Ux and Uy displacement vector is due to the equal width and 

height of the waveguide structure.  
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 In order to establish further the validity of the developed acoustic FEM code, 

Chapter 4 looked at the modal displacement profiles of both weakly and strongly 

guiding acoustic silica fibres. First, for the weakly guiding acoustic fibre waveguide, 

the characteristics of the longitudinal and transverse modes are presented in that 

chapter. In addition, three different case studies have been assumed and investigated. 

 

 In Case I, transverse modes with the assumption that the longitudinal velocity 

of the core equals to that of the cladding velocity to suppress longitudinal 

modes, is studied first. The results showed that the fundamental and higher 

order shear modes exists with their spatial variation displacement of Ux, Uy 

and Uz modes. The combination of the Ux and Uy displacement are given as 

Ut (Ut=Ux+Uy) vector plot of transverse modes of S01 and S11. Their vector 

combination is categorised into bending (B), torsional (T), radial (R) and 

torsional-radial (TR) modes.  The significant mode findings are listed below: 

o The degeneration occurred in bending (B), torsional (T), radial (R) 

and torsional-radial (TR) modes with the Ux and Uy displacement 

vectors. 

o The bending mode is shown that the vector plot (Ut) is 45° rotated to 

the x-axis. 

o The Ux and Uy displacement vector profile of the torsional, radial and 

torsional-radial modes are similar in the characteristic of having one 

positive and one negative peaks that will rotated 90° to the x-axis in 

the Uy displacement vector. 

o The combination of the Ux and Uy torsional mode showed there is a 

periodic twisting in clockwise or anticlockwise at every half 

wavelength in the vector plot (Ut). 

o The radial mode vector plot (Ut) of the Ux and Uy combination shown 

that the mode is either in axially inwards or outwards directions. 

o The torsional-radial vector plot (Ut), as combination of the Ux and Uy 

displacement vector showed that there is a periodic elliptical 

deformation, in which, it is expanded from the inner core and squeeze 

to the outer core region. 
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 Case II showed only the longitudinal mode with the condition that the 

transverse velocity of the core and cladding are equal to suppress transverse 

modes. Again the longitudinal and higher order modes are obtained, in 

particular, the pure dominant longitudinal mode showed that maximum 

intensity of the mode occurred at the centre of the core whereas for the higher 

order mode, L11 showed there exists one positive and one negative peaks.  

 

 Finally in Case III where all the material parameters are different.  The results 

of ∆Vs which is similar to the case II studied is shown first. However, by 

decreasing the Vs of the core from 3764 m/s to the value of 3625 m/s, while 

the Vs of the cladding is kept constant at 3764 m/s. This introduced the shear 

mode into the core, in which it co-existed with the longitudinal modes. The 

reduction of velocity is due to the enhancing of the modal confinement as the 

shear velocity in the core is slowly deviates more from the cladding. 

Furthermore, the effect of ∆VL is also studied in which it is similar to the 

scenario of case I but VL of the core is reduced progressively from 5933 m/s 

to the value of 5736 m/s, while the VL of the cladding remains at 5933 m/s. It 

is observed that as ∆VL is increased, the phase velocity of the S01 mode 

reduces uniformly as the modal confinement increases. 

 

 As mentioned, Chapter 4 also looked into the study of high index contrast 

acoustic waveguides, in which the sub-wavelength silica nanowire is presented.   

Here the transverse modes of bending (B), torsional (T), radial (R) and torsional-

radial (TR) modes are shown. From here, one of the objectives was to study the 

modal interaction between optics and acoustics. SBS frequency in acoustic 

waveguide was found to be one of the important parameters in order to study the 

interaction between optics and acoustics. An overlap integral is applied to the 

acoustic radial mode (R) of the Uz displacement vector and the optical modes 

dominant (H
y
11) mode to study the interaction. It is observed that the SBS frequency 

increased as the radius of the fibre increased, in contrast the overlap between 

acoustic and optical modes is reduced.  In this Chapter, it has also shown that there is 

a different between the SBS frequency for a sub-wavelength silica waveguide and 

the bulk SBS frequency, in which the SBS frequency in a sub-wavelength silica 
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waveguide is lower due to the fact that the mode being fully hybrid and not being a 

pure longitudinal mode.  It is important to take note that for sub-wavelength optical 

and acoustic waveguides, both the optical and acoustic modes are fully hybrid in 

nature and therefore it requires rigorous full-vectorial approaches to determine the 

acousto-optical interactions. 

 

 Waveguides are of different shapes and sizes, not only waveguides can be in 

a circular form, such as silica fibres discussed previously in Chapter 4, it can also be 

in rectangular shape.  Therefore Chapter 5 concentrated on applying acoustic FEM 

code to rectangular waveguides with both low and high index contrast materials, in 

particular, the strip waveguide is presented at the last section of this chapter.   

 

 For the low index contrast Ge-doped SiO2 core with the pure SiO2 cladding, it 

is observed that when the hybrid transverse acoustic Ux, Uy and Uz modes overlap 

with the hybrid optical modes. The results showed that the SBS frequency is 

decreased with the width of the waveguide, in contrast their overlap
x
 and overlap

y
 are 

increased with the width. 

 

 An example of a strong index contrast SiO2 rectangular waveguide is also 

studied in this chapter, the results showed fully hybrid acoustic modes with both 

transverse and longitudinal displacement vectors have been determined. Unlike in a 

weakly guiding SiO2 waveguides, the transverse and longitudinal displacements are 

strongly coupled in the high index contrast SiO2 waveguide. It is also shown here 

that their displacement vector profiles continuously evolve as the frequency or 

propagation constant increases and becomes increasingly confined along the 

waveguide interfaces. The overlap interaction of the transverse acoustic radial modes 

(R) of the Uz displacement showed that initially the overlap
z
 is increased with height 

and decreased as height of the waveguide increased further. As the width of the 

waveguide is analysed it showed that the SBS frequency is increased with the width. 

The overlap
z
 shown that when the width is reduced the overlap

z
 is increased to its 

maximum, further decreased of width results into the overlap
z
 being reduced. The 

increasing in width and height of the waveguide showed that it will increase the neff 



CHAPTER 7  CONCLUSION AND FURTHER WORK 

   

190 
 

and phase match acoustic propagation constant (ka) which in turn increases the SBS 

frequency shift. 

 

 Finally in this Chapter, two different scenarios have been studied for the strip 

waveguide.  In the first case, assumption is made to the transverse velocities of the 

core and claddings are equal to avoid the transverse mode for being coupled. The 

simulation results showed the Uz and Ux displacement vector profiles of the quasi-

longitudinal (L01) mode. The effects of the width of porous silicon (PS) on the SBS 

frequency shift and their acousto-optic interaction are also presented. The increased 

in width showed that the SBS frequency also increased, however, the overlap
z
 

decreased with wider widths. 

 

 The second scenario assumed that all the parameters are different with only 

transverse acoustic modes being shown. It is shown that with the dominant in the Ux 

displacement vector of the U
x
 mode, the SBS frequency is increased with width and 

their overlap
x
 is reduced when width of the PS strip waveguide is increased. It is 

shown that the neff of the optical mode is increased with width this in turn increased 

the SBS frequency and the phase match condition.  

 

 Overall, both cases showed that the effect of variation on the width of the PS 

strip waveguide in the longitudinal (U
z
) and transverse (U

x
) modes are similar, in 

which the neff of both optical modes increased. This in turn increased their phase 

match of the SBS frequency shift and the overlap
z
 and overlap

x
 are also increased. 

 

 Lastly, acoustic and optical modes in the optical slot waveguide is presented 

in Chapter 6.  It is found that such slot waveguide allowed light to guide in the low 

refractive index region and this nature are being exploited for various functional 

photonic devices. On the other hand, if this slot region is filled up with silica, then 

this region can also guide acoustic waves through this high acoustic index silica slot 

region, paving way for new photonic devices. The interactions of optical and 

acoustic modes are shown for this structure by employing full-vectorial approaches 

for both the optical and acoustic models. It is observed that the SBS frequency and 

the overlap
y
 are reduced with wider slot width. However for the overlap

z
, it is found 
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that overlap
z
 increased with the slot width until its maximum value, further increased 

of width resulted in the overlap
z
 being reduced. It can be noticed that the reduced slot 

width resulted in increased of neff and phase match acoustic propagation constant (ka) 

of SBS frequency.  

 

 Over the last few years several research groups have studied this important 

optical-acoustic interaction, often ignoring vector natures of the modes and using 

approximate scalar formulation. The acoustic wave not only changes refractive index 

to form a moving grating, but also the periodic stress variation will change the 

refractive index due to elasto-optic effects, which is fully anisotropic. The versatile 

finite element approach presented here can be used to study interactions between 

fully vectorial acoustic and optical modes in practical waveguides and devices. It 

should be noted that the optical modes are also fully hybrid with all the 6 

components of the Electric and Magnetic fields being present. To evaluate and 

optimize the complex interactions between the hybrid optical modes and the hybrid 

acoustic mode, a fully-vectorial approach is necessary. A computationally-efficient 

finite element based approach, as presented here, is seen to be more appropriate to 

study and thus use to optimize such interactions. It is also well known that due to the 

strong index contrast and arbitrary shaped dielectric interfaces, the guided optical 

modes are hybrid in nature.  

 

 In this work, it is also shown that acoustic modes in the waveguides with a 

strong material contrast are also hybrid in nature and strongly influenced by the 

material interfaces. To study the complex interaction between such optical and 

acoustic modes a full-vectorial, yet computationally efficient and flexible, approach 

would be required. 
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7.2 Suggestions for future work 

 

The development of this finite element code allows a more rigorous study of the 

vector acoustic modes in complex acoustic waveguides to be undertaken, such as 

guiding through exotic optical waveguides, for example via photonic crystal fibres, 

silicon slot waveguides and plasmonic hybrid waveguides or waveguides which may 

have a more complex shape. The newly developed finite element code is versatile, 

and therefore it can be used to study hybrid transverse and longitudinal acoustic 

modes in practical optical waveguides and also it can be employed to consider 

complex acoustic-optical wave interactions in such waveguides. 

 

 There have been significant efforts on developing high power fibre lasers 

with narrow line-width and good beam quality. Such high power lasers pose 

significant challenges on fibre designs to reduce nonlinear effects such as SBS and to 

achieve simultaneously single mode operation. SBS is non-desirable for high power 

lasers because they limit the amount of output optical power. One well known way to 

reduce the SBS effects is to make fibres with large mode area (LMA). However, 

when the core size is too large, the fibre becomes multi-moded. Modal 

discrimination techniques, such as bending, are then required to achieve single mode 

operation. But for large core size, bending deforms the mode field distribution and 

reduces the mode area, which puts a limit on the benefit of using large core. 

 

 Nonlinear effects can also be managed through design approaches other than 

increasing the effective area. It has been found that SBS can be reduced by 

decreasing the overlap between the optical and acoustic fields. This is achieved 

through fibre profiles designs to confine the optical and acoustic field in different 

regions in the core, in which this newly developed acoustic FEM code may be 

beneficial. As a further design technique for SBS suppression, an acoustic anti-

guiding structure can be formed by designing an optical waveguide which does not 

guide acoustic wave for high power deliver.  Another idea is to design an optical 

waveguide which also guides acoustic wave and optimises optical-acoustic 

interaction for sensing application. 
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Appendix A 
 

Stress, Strain and 

Reduced Notation 
 

Stress and strain vectors 

 

In this appendix we derive the three-dimensional forms of the stress and strain 

tensors somewhat more fully and rigorously than in Secs. 2.2 and 2.3 of the text. We 

also describe the commonly used reduced notation based on the symmetry of the S 

and T tensor 

 

Strain vectors 

 

A point r in the material is displaced by stress to a point r + u, where u is the 

displacement vector. Suppose that we consider length l in the material between the 

point r and r+δr. After displacement, l changes to l' and, as illustrated in Fig. A.1, we 

can write: 

 

       
2 2 2 22

1 2 3      l r x x x   (A.1) 
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and 

   
2 22 2 2          l r u l u r u   (A.2) 

 

 We shall express δux in the form: 

 

   
  

  
  x x xu u u

x x y z
u x y z     (A.3) 

 

 

Figure A.1. Notation used in Eq. (A.1). 

 

 With similar notations for δuy and δuz. These relation can be summarized 

conveniently using tensor notation (see Sec. 2.3) and written in the form: 

 

 



 i

j

u

i jx
u x       (A.4) 

 

 This is a short and notation for: 

 

 



 i

j

u

i jxj
u x      (A.5) 

where i can be x, y, z, and where for a given i, the summation over the subscript j is 

understood. 
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 We may write a Taylor expansion for Eq. (A.2) and keep term to second 

order in δxi. This process yields the result: 

 

2 2 2    
  

  
   i i i

j j k

u u u

i j i kx x x
l l x x x x    (A.6) 

where, as discuss in Sec. 2.3, the tensor notation now implies double summations 

over the three independent suffixes i, j, and k on the right-hand side of Eq. (A.6). 

Note that we have replaced the vector δr by δxi. in tensor notation. Similarly, a scalar 

product A.B is Ai Bi. 

 

 The change in l
2
 is the true measure of the deformation of the material. If 

instead, we were to use the change in δr as a criterion, this vector could be changed 

by a pure rotation of a rigid material without changing the length l; thus the change 

in δr would not be a measure of the deformation in this case. 

 

 We can now interchange the suffixes i and k in the third term of Eq. (A.6), 

and write the second term in the form: 

 

1

2
   

  
  

    

ji i

i j i j

j j i

uu u
x x x x

x x x
   (A.7) 

 

 In this case, Eq. (A.6) can be written as: 

 

2 2 2     ij i jl l S x x     (A.8) 

where Sij is known as the strain tensor and is defined as: 

 

1

2

   
   

     

ji k k

ij

j i i j

uu u u
S

x x x x
   (A.9) 
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 We see from that definition that  Sij is a symmetric tensor. For small 

displacements, we can neglect the last term in Eq. (A.9) as being of second order. 

From now on we shall write 

 

1

2

 
  

   

ji

ij

j i

uu
S

x x
    (A.10) 

 

 Alternatively, we can use a symbolic notation S, much like that for a vector, 

and define the strain Sij in the form 

 

11 12 13

21 22 23

31 32 33

  
  

    
     

xx xy xz

yx yy yz

zx zy zz

S S S S S S

S S S S S S S

S S S S S S
   (A.11) 

where now the subscript 1, 2, and 3 are equivalent to x, y, and z, respectively, and are 

used interchangeably with them in the literature. It follows that 

 

1

2

  
  

    

ij ji

j i

S uu

t x x
    (A.12) 

where v=∂u⁄∂t is the velocity of a particle in the material. This is equivalent to the 

one-dimensional equation of conversation of mass, given as 0m mv
z t
 

 
 

 
, but it 

yields more information than just conservation of mass. If we take only the diagonal 

terms, we see that ∇.v=(∂vi)⁄(∂xi ) and that the equation of conservation of mass is 

 

0

0

0

0using   


 




   





ml

m

m

t

    (A.13) 

 

 We use, from Eq. (A.12), the relation 

 

 11 22 33


   


S S S
t

    (A.14) 
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 This is directly equivalent to 0m mv
z t
 

 
 

 
, and will be derived in another 

way below. The diagonal terms are associated with longitudinal strain; the off-

diagonal terms are associated with the shear strain. It will be noted that the volume of 

a small portion δV of the material is δx1, δx2, δx3. After deformation, it becomes δV', 

where, 

   

   

 

31 2

1 2 3

31 2

1 2 3

1 1 2 2 3 3

1 1 1

1

      


 

  

 

  

    

   

   

uu u

x x x

uu u

x x x

V x u x u x u

V
   (A.15) 

 

 It follows that: 

 

 11 22 33     V V V S S S    (A.16) 

 

 We see that the sum of the diagonal components of the strain tensor is the 

relative volume change (δV'-δV)/δV.  The shear term do not contribute to a change 

in volume. We can also see this result from substituting Eq. (A.14) in Eq. (A.13).  

 

This yield result 

 0 11 22 33    ml m S S S     (A.17) 

which is identical to Eq. (A.15) for 

 

 

0

 

 

 
ml

m

V V

V
     (A.18) 

 

Stress Tensor 

 

Here we shall give a different and more detailed derivation for stress than that given 

in Sec. 2.3. The force in the x direction on a body of a volume V is ʃFx dV, where the 

force Fx is a scalar quantity. We can always write a scalar quantity as the divergence 

of a vector.  

 



APPENDIX A  STRESS, STRAIN AND REDUCED NOTATION 

   

198 
 

 Thus we put 

  

  

  

x

y

z

F A

F B

F C

     (A.19) 

 

 Then from Gauss’s theorem, we can write 

 

   etc.     x
V V S

F dV AdV A dS   (A.20) 

where the surface integral is taken around the enclosing volume V. 

 

 It is apparent that we need nine components, Ax, Ay, Az, Bx, By, Bz, Cx, Cy, 

Cz, to express ʃFx dV , ʃFy dV and ʃFz dV In tensor notation we write 

 




 ij

j

T

i x
F      (A.21) 

 

which is short and for 

 




 ij

j

T

i xj
F      (A.22) 

or 

 

  
  xyxx xz

TT T

x x y z
F     (A.23) 

and so on. The quantity Tij is called the stress tensor. In our previous notation, we see 

that Ax=Txx=T11, Ay=Txy=T12, Az=Txz=T13, and so on. 

 

 It follows that the average force on an element of volume dV is 

 

1 1 1 1


       

ij

j

T

ij jdV dV x dV dV
TdV dV T ds T n ds   (A.24) 

where we define ∇.T as (∂Tij)/(∂xj ), and where dsj is the surface element vector 

directed along the outward normal. The force on a surface in the z direction therefore 

has three components normal to the surface that compromise the vector C in Eq. 

(A.19); these are Txz, Tyz and Tzz. The first two terms are shear stresses that tend to 

distort the surface of an isotropic material, as shown in Fig. A.2(b). 
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(a)       (b) 

Figure A.2. Effect of normal longitudinal and shear stresses at a surface: (a) longitudinal 

  stress; (b) shear stress. 

 

 The last term in a longitudinal stress, which acts as shown in Fig. A.2(a). All 

the stress components are applied to a cube, illustrated in Fig. 2.3. because 

ʃTijdsj=ʃTjidsi, it can be shown that Tij=Tji (i.e., T is a symmetric tensor). 

 

Equation of motion 

 

The force on an element dV is ʃT.n dsj due to internal stresses. Thus, if only internal 

stresses are applied, we can write the equation of motion for first-order 

displacements as 

 

2

20 0lim 


 
   

T nds
u

m dV dVt     (A.25) 

or 

2

20 


 u

m t
T      (A.26) 

which is equivalent to 

2

20



 ij

j

Tu
m xt

     (A.27) 

where ρm0 is the mass density of the material 
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Symbolic notation and abbreviated subscripts 

Strain Tensor 

 

To reduce the complexity of the stress and strain tensors, it is helpful to use 

symmetry and to work with an abbreviated subscript notation. Here we shall describe 

this abbreviated subscript notation and show how it is used. We first consider the 

strain tensor Sij, defined as 

 

 1

2



 
  ji

j i

uu

ij x x
S     (A.28) 

 

 Because the strain is the symmetric tensor, we can replace Syx with Sxy, and 

so on. Thus we can use a reduced notation with fewer subscripts. The standard 

reduced notation can be expressed in matrix form: 

 

6 5

6 4

5 4

1 2 211 12 13

21 22 23 22 2

31 32 33 32 2

  
  

    
      

S S

S S

S S

SS S S

S S S S S

S S S S

  (A.29) 

 

 Note that the notation follows a cyclic order, with the longitudinal strain 

terms corresponding to the subscripts 1, 2, and 3, respectively, and the shear strain 

terms corresponding to the subscripts 4, 5, and 6, respectively, as shown in Table 

A.1: 

 

Table A.1. Reduced Tensor Notation 

Normal tensor notation Reduced notation Corresponding strain 

xx 1 Longitudinal in x direction 

yy 2 Longitudinal in y direction 

zz 3 Longitudinal in z direction 

yz=zy 4 Shear y - z 

zx=xz 5 Shear z - x 

xy=yx 6 Shear x - y 
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 Note that the off-diagonal terms are multiplied by 1/2 so that we can write the 

strain in the form of column matrix: 

 

1

2

3

4

5

6

0 0

0 0

0 0

0

0

0













 

 

 

 

 

 

  
  
                    
  
     

x

y

x

z

y

z y

z

z x

y x

S

S
u

S
u

S
u

S

S

    (A.30) 

 

 This can be done only because the 1/2 was used in our definitions in Eq. 

(A.29). Following [Auld, 1973], it is convenient to define the matrix in Eq. (A.30) 

with symbolic notation, writing 

 

 SS u      (A.31) 

where ∇su  is defined as the symmetric part of ∇u. The symmetric operator ∇su is 

defined by the first matrix on the right-hand side of the Eq. (A.30). In the unreduced 

tensor notation, the symmetry of ∇s is apparent because 

 

 1

2



 
  ji

j i

uu

ij x x
S     (A.32) 

 

 A simple example of longitudinal motion in the x direction with propagation 

in the x direction is defined by the relation S1=∂ux⁄∂x; this follows from Eq. (A.30). 

On the other hand, a plane shear wave, in which propagation is in the z direction but 

particle displacement in the y direction, is defined by the relation ux=uz=0 and 

S4=∂uy⁄∂z. In this case, all other components of strain are on zero. The first case 

corresponds to a longitudinal wave passing through a flat plate; the second case 

corresponds to the flexural motion of a thin strip. 

 

 

  



APPENDIX A  STRESS, STRAIN AND REDUCED NOTATION 

   

202 
 

Stress Tensor 

 

The stress tensor may be stated in terms of reduced subscripts just as the strain tensor 

was. Thus we write 

 

1 6 5

6 2 4

5 4 3

   
   

    
     

xx xy xz

yx yy yz

zx zy zz

S S S S S S

T S S S S S S

S S S S S S
   (A.33) 

 

 Note that the 1/2 terms are not required here. The equation of motion for 

symbolic notation is 

 

0 


  v

m t
T      (A.34) 

 

 This can be put in reduced tensor form, by writing 

 

1

2

3

0

4

5

6

0 0 0

0 0 0

0 0 0



 



  

  

   

   

  

  

 
 

    
    

       
          

 
  

x z yx

m yt y z x

z z y x

T

T

T
T

T

T

T

   (A.35) 

 

 For example, if the stress field has only one component, a shear stress T5=Txz 

propagating in the z direction, then ∇.T becomes (∂T5)⁄∂z and corresponds to an 

acceleration in the x direction. 

 

Elasticity 

 

Similarly, the elasticity tensor cijlk can be expressed in reduced notation. Because 

Sij=Sji and Tij=Tji, it follows that cijlk=cjilk=cijkl=cjilk, which reduces the number of 

independent constants required from 81 to 36. Furthermore, because of symmetry, 
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cijlk=cklij. This further reduces the required number of independent constants in an 

arbitrary medium to 21. Thus we write 

 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 43 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

     
     
     
     

     
     
     
     
          

T c c c c c c S

T c c c c c c S

T c c c c c c S

T c c c c c c S

T c c c c c c S

T c c c c c c S

   (A.36) 

 

or 

 T c S      (A.37) 

where the general term is cIJ; we use capital subscripts to denote the reduced notation 

and take cIJ=cJI. 

 

Example: Cubic crystal 

 

Most crystals have certain symmetries that reduce the required number of constants. 

For instance, a cubic crystal looks the same in the x,-x,y,-y,z,and-z directions. This 

implies that c11=c22=c33, c44=c55=c66 and c12=c13=c23. All other diagonal terms are 

zero because of the mirror symmetry. Thus we find that for a cubic crystal, 

 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 

  
 
 
 
  

c c c

c c c

c c c
c

c

c

c

   (A.38) 

 

 When there is the shear wave propagation along z axis, with motion in the x 

direction, it follows from Eq. (A.30) that 

 

5




 xu

z
S      (A.39) 

and form Eqs. (A.36) and (A.38) that 
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5 44 5T c S      (A.40) 

 

 Assuming that the RF components vary as exp (jωt), then vx=jωux. It follows 

from Eq. (A.34) or Eq. (A.35) that 

 

5

0 





T

m xz
j      (A.41) 

 

 However, from Eq. (A.39) and (A.40), we see that 

 

44 5







x

z
c j T      (A.42) 

 

 Equations (A.41) and (A.42) are the transmission-line equations for the shear 

wave propagation. Assuming that waves propagate as exp (±jβs z), we see that for 

shear waves in a cubic crystal, 

 

 0

44

2 2 
  m

s c      (A.43) 

 

 If, on the other hand, we consider longitudinal motion in the z direction with 

only uz  or vz finite, we find that the propagation constant βl is given by the relation 

 

 0

11

2 2 
  m

l c      (A.44) 

 

Example: Isotropic material 

 

In this case, which is very much like that of the cubic crystal, the c tensor is of the 

same from as that of Eq. (A.38), with the additional condition that c12=c11-2c44. Note 

that the c12 term corresponds to the ratio of the longitudinal stress in the x direction 

to the longitudinal strain in the y direction. Such term occur because when a material 

is compressed in one direction, it tends to expand in a perpendicular direction. The 

relation given follows from the requirement that the tensor c keeps the same form; 

however, the axes are rotated from their original position. It follow that an isotropic 
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medium has only two independent elastic constants. These are usually called the 

Lame constants, defined as 

 

12

44









c

c
      (A.45) 

with 

11 12 442 2    c c c     (A.46) 

 

 The c matrices of different types of crystals are tabulated in appendix A.2 of 

B. A. Auld’s Acoustic fields and Waves in Solids [Auld, 1973]. The similar s 

matrices, for which s=c
-1

 or 

:S s T     (A.47) 

are also tabulated by Auld. 
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