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Abstract

We develop a joint model for the S&P500 and the VIX indices with the aim of extracting

forward looking information on the correlation between the two markets. We achieve this by

building the model on time changed Lévy processes, deriving closed analytical expressions for

relevant quantities directly from the joint characteristic function, and exploiting the market

quotes of options on both indices. We perform a piecewise joint calibration to the option

prices to ensure the highest level of precision within the limits of the availability of quotes in

the dataset and their liquidity. Using the calibrated parameters, we are able to quantify the

leverage effect along the term structure of the VIX options and corresponding VIX futures.

We illustrate the model using market data on S&P500 options and both futures and options

on the VIX.

Keywords: Lévy processes; time changes; implied correlation; option pricing 2020 Math-

ematics Subject Classification: 91G15, 91G20, 91G70, 60E10, 60G51

1 Introduction

Recent years have witnessed the fast development of the market for products related to the VIX

index, as they are widely used in risk management strategies and as building blocks for other

traded instruments (see Szado (2009) for example). These products are also advocated for the

construction of optimally structured portfolios issued by institutional investors (see Bertrand and

Prigent (2019) and references therein). A common key ingredient across these applications is

the correlation between the S&P and the VIX markets, the quantification of which requires a

consistent and tractable model for both indices.

Thus, in this paper we develop a joint model for the S&P500 and the VIX indices with the

aim of extracting forward looking information on the term structure of the correlations between

the two markets by calibrating to the prices of liquidly traded derivatives such as S&P500 and

VIX options, as well as VIX futures. We achieve this by using time changed Lévy processes in the

spirit of Carr et al. (2003), Carr and Wu (2004), Huang and Wu (2004) and Ballotta and Rayée

(2022), which allows to derive closed analytical expressions for the relevant quantities directly
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from the joint characteristic function. The latter is available thanks to the affine property of the

construction. Indeed, the class of affine processes has been restated in terms of time changed Lévy

processes by Kallsen (2006). Thus, we base derivatives pricing on Fourier transform techniques

(see for example Eberlein et al. (2010)), and data from the CBOE on S&P500 options and both

futures and options on the VIX.

The proposed model is built on purely discontinuous processes by means of a suitably designed

factor construction inspired by Ballotta and Bonfiglioli (2016), which enables the generation of

both stochastic volatility and leverage. The approach is quite flexible concerning the choice of

the driving processes, as the only relevant piece of information required is their characteristic

function. For the purpose of the empirical analysis, we consider a specification of the proposed

setting built on the CGMY process of Carr et al. (2002). Although the construction could be

extended to include diffusion components (see Ballotta and Eberlein (2025) for further details),

the empirical analysis presented for example by Ballotta and Rayée (2022) highlights their limited

added value in terms of calibration performance.

Models based on affine processes have been used in the literature to price options on realized

variance and VIX by Sepp (2008a,b), and options on quadratic variation by Kallsen et al. (2011).

Our approach differs as the model is based entirely on discontinuous processes, and dependence

is induced via a factor construction accommodating both leverage and volatility feedback.

The central contribution of this paper lies in the quantification of the correlation between the

(log-returns of the) S&P500 index and the (square of the) VIX index using the market consistent

information encapsulated by the VIX index itself and the existing S&P500 and VIX derivatives.

The objective is to extract a forward looking term structure for this correlation over the expiry

range of traded contracts. The recovery of implied correlation between assets using option prices

has been explored in the FX markets by Ballotta et al. (2017), Brigo et al. (2021) and Amici et al.

(2025) amongst others; however, to the best of our knowledge, this is the first study involving

two different markets, namely the S&P and the VIX markets. We envisage the potential for this

term structure of implied correlations to become a relevant market metric, if not even a reference

quantity for new derivative products.

Due to the affine construction of the model, we can also gain a forward looking insight into

the so-called leverage and volatility feedback effects, whereby leverage indicates the impact on the

volatility level of (in general adverse) changes in the log-returns, whilst volatility feedback refers

to the decline in equity returns originated by anticipated rises in volatility. In this respect, the

VIX market provides the ideal environment to price in such effects. This forward looking approach

distinguishes our paper from other contributions in the literature on leverage and volatility feed-

back which primarily focus on stock and portfolio returns (see for example Carr and Wu (2017)

amongst others).

An additional contribution of this paper is a new interpretation of the bias between the VIX

index and the conditional mean of the integrated variance. The general specification of the model

in fact allows us to identify the origin of this bias in the higher order moments of the Lévy process

which is time changed in the dynamics of the S&P500 log-returns. This particular aspect also

provides a theoretical ground for the ‘fear gauge’ nickname the VIX index is usually referred to

in the industry: by incorporating information on the skewness and excess kurtosis, the VIX index

offers indeed a view on the probability of significant market movements in the ‘wrong’ direction
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(see also the discussion in Ballotta (2024)).

This paper also contributes, albeit indirectly, to the growing literature that explores the joint

calibration problem, i.e. the development of models which can simultaneously reproduce the

market volatility surfaces of options on the S&P500 and the VIX indices in addition to the prices

of VIX futures. Recent works in this direction include Abi Jaber et al. (2023) and Cuchiero et al.

(2025) amongst others. Our work, however, differs from these studies in the way in which we

manage the variation in the level of the VIX implied volatilities from one maturity to the next

during the calibration. Motivated by the observation that a similar variation in scale characterizes

the interest rate market as well (although on a significantly different time scale), we adopt a

piecewise approach similar to Eberlein and Kluge (2005). In this way we can extract correlation

values consistent with the maturities available in the market for the relevant contracts.

The results from the empirical analysis show a significant negative implied correlation be-

tween the two markets, indicating a clear diversification potential of VIX instruments, which has

important implications for portfolio management decisions.

The paper is organized as follows. In section 2 we develop the model for the log-return

process driving the S&P500 index. In section 3 we obtain an useful expression for the VIX index

based on its representation via the log-contract, and pricing formulas based on Fourier transform

techniques. In section 4 we derive the analytical expression of the correlation. The term structure

of the correlation is studied in section 5, in which we perform the joint calibration, and section 6

concludes.

2 The model

The formal definition of the VIX index from the Cboe White Paper Cboe (2023) is

V̄ (0,∆τ ) = 100×

√√√√ 2

∆τ
er∆τ

∑
i

∆Ki

K2
i

O(Ki)−
1

∆τ

(
FS(0,∆τ )

K0
− 1

)2

,

where r is the risk free interest rate to expiration, O(Ki) is the mid price of out-of-the-money

(OTM) call and put options on the S&P500 with strike Ki and time to maturity ∆τ fixed at

30 days, FS(0,∆τ ) is the forward index level derived from index option prices, K0 is the largest

available strike below or equal to the forward index level, and ∆Ki is the interval between strikes

computed as (Ki+1 −Ki−1)/2.

For the purpose of pricing derivatives on the VIX, a more convenient expression for the

index can be obtained from the price of the log-contract on the S&P500. To this aim, let

(Ω,F , {Ft}t≥0,P) be a filtered probability space, with P denoting a risk neutral probability mea-

sure1, and denote by S(t) the value of the S&P500 at time t. An application of the static

replication formula implies that the VIX can be approximated as V̄ (0,∆τ ) = 100× V (0,∆τ ), for

V (t, t+∆τ ) =

√
− 2

∆τ
Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
, (1)

1We note that the proposed market model is incomplete and consequently the risk neutral martingale measure
is not unique. Hence, we follow standard practice for incomplete markets and determine the risk neutral measure
through the prices of derivative contracts traded in the market.
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with Et(·) denoting the conditional expectation under the risk neutral measure. As this equation

clarifies the connection to the S&P500 index, in the following we introduce a model for its price

process.

2.1 The general specification

We model the equity index price process with spot value S(0) as

S(t) = S(0)ert+X(t),

for r the (constant) continuously compounded interest rate, andX(t) a time changed Lévy process.

More in details, let L(t) denote the so-called base process, and T (t) be a stochastic clock,

then X(t) = L(T (t)) = (L ◦ T ) (t). In other words, the process X(t) is obtained by observing the

process L(t) on a time scale controlled by T (t). This construction recognizes that price changes

are caused by imbalances in demand and supply due to trades. Thus, uncertainty originates from

both the timing of the change, which is modelled by the clock T (t) and can be interpreted as

business time, and its magnitude which is captured by the base process L(t).

We assume that the base process is defined as

L(t) = −φJ1(−iσ1)t+ σ1J1(t),

for a constant σ1. In the above equation, J1(t) is a Lévy process with characteristic exponent

φJ1(u) and triplet (α1, 0, ν1(dx)), which satisfies the following.

Assumption 1. There exists a constant M̄ such that∫
{|x|>1}

euxν1(dx) < ∞ for all u ∈ [−M̄, M̄ ],

i.e. the exponential moments of J1 are finite.

The above assumption is required to ensure that the price process has finite moments (see

for example Eberlein and Kallsen (2019)) and is satisfied by all purely discontinuous processes

typically used in mathematical finance such as hyperbolic, Normal Inverse Gaussian, generalized

hyperbolic, Variance Gamma and CGMY processes, with the only exception of stable processes.

Assumption 1 implies in particular the finiteness of E (J1(t)), and consequently J1(t) can be

represented as

J1(t) = α1t+

∫ t

0

∫
R
x
(
µJ1 − νJ1

)
(ds, dx),

where µJ1(dt, dx) is the random measure of the jumps of J1 with compensator νJ1(dt, dx) =

ν1(dx)dt, and α1 = E (J1(1)). In other words, Assumption 1 allows us to use the identity function

for truncation. Consequently, the characteristic exponent is

φJ1(u) = iuα1 +

∫
R

(
eiux − 1− iux

)
ν1(dx).

For later use, we decompose the process J1 = J1,− + J1,+ into the sum of the (compensated)

negative and positive jumps with triplets (α1,−, 0, ν1,−(dx)) and (α1,+, 0, ν1,+(dx)) respectively.
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Under the above assumptions, the process X(t) driving the equity index is given by

X(t) = −φJ1(−iσ1)T (t) + σ1 (J1 ◦ T ) (t). (2)

For the stochastic clock T (t), we assume that it is absolutely continuous with activity rate

v(t), so that

T (t) =

∫ t

0
v(s−)ds.

In particular, we assume that the activity rate as well is originated by a time changed Lévy process

of the form

v(t) = v(0) + κθt+ (Y ◦ T )(t),

for κ and θ positive constants and

Y (t) = −κt− η1J1,−(t) + η2J2(t).

In other words,

v(t) = v(0) +

∫ t

0
κ (θ − v(s−)) ds− η1 (J1,− ◦ T ) (t) + η2 (J2 ◦ T ) (t), (3)

in which v(0) > 0, η1 and η2 are non-negative constants, and J2(t) is a purely discontinuous Lévy

process independent of J1(t), with jumps of positive size, and characteristic exponent φJ2(u). We

assume that J2(t) satisfies Assumption 1 as well, and therefore has characteristic exponent

φJ2(u) = iuα2 +

∫
R+

(
eiux − 1− iux

)
ν2(dx).

As equation (3) is an implicit equation, we show in section 2.2 that it has a unique non-negative

solution.

We note the following points. Time changes are used to equip Lévy processes with stochastic

volatility features (see for example Carr et al. (2003), Ballotta and Rayée (2022)). Indeed, the

conditional variance of X(t) is proportional to the stochastic clock T (t), and therefore is governed

by the dynamics of the activity rate v(t).

Furthermore, in this construction dependence between the log-returns and their variance is

induced by a factor construction, inspired by the work of Ballotta and Bonfiglioli (2016), in which

the process (J1,− ◦ T ) can be interpreted as the source of systematic risk, whilst the process

(J1,+ ◦ T ) represents the idiosyncratic risk in the dynamics of the log-returns. In this context, the

process (J1,− ◦ T ) could be seen as the transmission channel of the so-called leverage effect meant

as increases in the volatility level due to negative return movements. The process (J2 ◦ T ) on the

other hand could be interpreted as the main driver of the so-called volatility feedback effect.

Finally, we observe on the one hand that discontinuous dynamics of the log-returns increase

the model ability to generate a consistent skew slope especially over short maturities as shown for

example in Ballotta and Rayée (2022). On the other hand, the factor construction in the design

of the volatility process is supported by the study of Jacod and Todorov (2010) amongst others.

Hybrid constructions in spirit similar to the one posited in this paper have been used for interest

rate modelling by Eberlein and Rudmann (2018).

5



We also note the following relationships for use in the remaining sections.

E(Y (1)) = −κ− η1α1,− + η2α2 =: b1 (4)

E(L(1)) = −φJ1(−iσ1) + σ1α1 =: b2 (5)

Var(Y (1)) = η21Var(J1,−(1)) + η22Var(J2(1)) =: σ̂2
1 (6)

Var(L(1)) = σ2
1Var(J1(1)) =: σ̂2

2 (7)

and

Cov(L(1), Y (1)) = −η1σ1Var(J1,−(1)) =: ρ̂. (8)

Finally, it follows from the given construction (see for example Eberlein and Kallsen (2019),

Proposition 4.14) that the trivariate process (v,X, T ) has differential characteristics (B, 0,K) of

the form

B =

κθ

0

0

+

b1

b2

1

 v− =: B0 +B1v− (9)

K(G) =

(∫
1G(−η1x, σ1x, 0)ν1,−(dx) +

∫
1G(0, σ1z, 0)ν1,+(dz)

+

∫
1G(η2y, 0, 0)ν2(dy)

)
v−, (10)

for any Borel set G, 0 /∈ G, and therefore it is affine. Consequently, the following holds.

Theorem 1. The affine system (v,X, T ) admits joint conditional characteristic function

Es

(
eiwv(t)+iuX(t)+izT (t)

)
= eΨ0(w,u,z;t−s)+Ψ1(w,u,z;t−s)v(s)+iuX(s)+izT (s), s < t

with the exponents Ψ0, Ψ1 solutions to the system of ordinary differential equations

Ψ′
0(w, u, z; t− s) = κθΨ1(w, u, z; t− s),

Ψ0(w, u, z; 0) = 0

Ψ′
1(w, u, z; t− s) = iz + φL(u)− κΨ1(w, u, z; t− s) + φJ1,− (iη1Ψ1(w, u, z; t− s) + uσ1)

−φJ1,−(σ1u) + φJ2 (−iη2Ψ1(w, u, z; t− s)) ,

Ψ1(w, u, z; 0) = iw,

for φL(u) = −iuφJ1(−iσ1) + φJ1(σ1u).

Proof. As (v,X, T ) is affine, we obtain

Es

(
eiwv(t)+iuX(t)+izT (t)

)
= eΨ0(w,u,z;t−s)+Ψ1(w,u,z;t−s)v(s)+Ψ2(w,u,z;t−s)X(s)+Ψ3(w,u,z;t−s)T (s).
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The exponents Ψ0, Ψ = (Ψ1,Ψ2,Ψ3) satisfy

Ψ′
0(w, u, z; t− s) = ΨB0

Ψ0(w, u, z; 0) = 0,

Ψ′
1(w, u, z; t− s) = ΨB1 +

∫
R

(
eΨ(−η1x,σ1x,0)⊤ − 1−Ψ(−η1x, σ1x, 0)

⊤
)
ν1,−(dx)

+

∫
R

(
eΨ(0,σ1z,0)⊤ − 1−Ψ(0, σ1z, 0)

⊤
)
ν1,+(dz)

+

∫
R

(
eΨ(η2y,0,0)⊤ − 1−Ψ(η2y, 0, 0)

⊤
)
ν2(dy),

Ψ1(w, u, z; 0) = iw,

and

Ψ′
2(w, u, z; t− s) = 0, Ψ2(w, u, z; 0) = iu,

Ψ′
3(w, u, z; t− s) = 0, Ψ3(w, u, z; 0) = iz.

The last two sets of equations imply that Ψ2(w, u, z; t − s) = iu and Ψ3(w, u, z; t − s) = iz.

Furthermore, by direct calculation

Ψ′
0(w, u, z; t− s) = κθΨ1(w, u, z; t− s),

Ψ0(w, u, z; 0) = 0,

and

Ψ′
1(w, u, z; t− s) = iz − (κ+ η1α1,−)Ψ1(w, u, z; t− s)− iuφJ1

(−iσ1) + iuσ1α1 + η2α2Ψ1(w, u, z; t− s)

+

∫
R

(
e−(Ψ1(w,u,z;t−s)η1−iuσ1)x − 1 + (Ψ1(w, u, z; t− s)η1 − iuσ1)x

)
ν1,−(dx)

+

∫
R

(
eiuσ1z − 1− iuσ1z

)
ν1,+(dz)

+

∫
R

(
eΨ1(w,u,z;t−s)η2y − 1−Ψ1(w, u, z; t− s)η2y

)
ν2(dy),

Ψ1(w, u, z; 0) = iw.

The result follows from this.

2.2 Existence and non-negativity of the activity rate process v(t)

In order to prove that there is a unique non-negative solution to the implicit equation (3), we

represent v(t) as the solution to an affine martingale problem. For this purpose, define the linear

maps g1 : R− → R+, g1(x) = −η1x and g2 : R+ → R+, g2(x) = η2x, and the corresponding

measure transformations g1(ν1,−)(B) = ν1,−(g
−1
1 (B)) and g2(ν2)(B) = ν2(g

−1
2 (B)). Consider

J̃1,−(t) = −η1J1,−(t) and J̃2(t) = η2J2(t), then it follows that

φJ̃1,−(u) = −iuη1α1,− +

∫
R+

(
eiuz − 1− iuz

)
g1(ν1,−)(dz)

φJ̃2
(u) = iuη2α2 +

∫
R+

(
eiuz − 1− iuz

)
g2(ν2)(dz).
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The process J(t) = J̃1,−(t) + J̃2(t) has Lévy measure νJ = g1(ν1,−) + g2(ν2) and characteristic

exponent

φJ(u) = iu (η2α2 − η1α1,−) +

∫
R+

(
eiuz − 1− iuz

)
νJ(dz).

We extract from equations (9) and (10) that the first coordinate of the trivariate process

has Lévy-Khintchine triplets (κθ, 0, 0) and (b1, 0, νJ), leading to the following affine martingale

problem

b(t) = κθ + b1v(t−)

K(t, dx) = νJ(dx) v(t−).

As κθ > 0 and νJ is a Lévy measure on the positive half-line which satisfies the required moment

condition, according to Proposition 6.5 in Eberlein and Kallsen (2019) (non-negative case), this

martingale problem has a unique solution v(t) which is non-negative.

3 The VIX dynamics and derivatives pricing

The analysis in section 2 gives access to a useful expression for the square of V (t, t+∆τ ) (equation

(1)) and its characteristic function. The latter provides the basis for the development of efficient

pricing routines using Fourier transform techniques, which are instrumental for an efficient cali-

bration of the model to market quotes.

3.1 The VIX squared and its characteristic function

Equation (1) shows the link between the VIX index and the log-contract, which in a diffusion

setting leads to the identity between the VIX squared and the variance swap rate. However,

as discussed in Carr and Wu (2006), when the driving process is a general semimartingale, the

identity with the variance swap rate no longer holds due to a correction term incorporating the

effects of the jumps. Indeed, we can show that this correction term represents the higher order

moments of the base process L(t).

In virtue of equation (1), we have

V (t, t+∆τ )
2 = − 2

∆τ
Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
.

By construction

Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
= Et (X(t+∆τ )−X(t)) ,

consequently, we obtain from equation (2)

Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
= − φJ1(−iσ1) Et (T (t+∆τ )− T (t))

+ σ1Et ((J1 ◦ T ) (t+∆τ )− (J1 ◦ T ) (t)) .

As the last conditional expectation in the above equation is equal to

α1Et (T (t+∆τ )− T (t))

8



(see Proposition 4.14 in Eberlein and Kallsen (2019)), we finally obtain

V (t, t+∆τ )
2 = −2b2

∆τ
Et (T (t+∆τ )− T (t)) .

We note that by means of the above and equation (5), we can write

V (0,∆τ )
2 =

(
Var(L(1)) +

1

3
C3(L(1)) +

1

12
C4(L(1)) + · · ·

)
E (T (∆τ ))

∆τ
,

with Cj(L(1)) denoting the unit time cumulant of order j of the base process. Therefore, the VIX

index V̄ (0,∆τ ) = 100× V (0,∆τ ) carries information concerning not just the variance of the base

process, but also the higher order moments such as the ones controlling the skewness and excess

kurtosis of the distribution of the base process. Thus, our model offers an insight into the VIX

role as the ‘fear gauge’: by indirectly capturing information about the probability mass in the

tails of the log-return distribution, the VIX index provides a view of the market on the probability

of significant movements in the ‘wrong’ direction.

The conditional expectation of the stochastic clock T (t) can be recovered by differentiation

of its (log-)characteristic function, which can be obtained from Theorem 1 by setting w = u = 0.

To this purpose, let

cj(t− s) = −i
∂

∂z
Ψj(0, 0, z; t− s)

∣∣∣∣
z=0

j = 0, 1,

then by standard rule of calculus, it follows that

Es (T (t)) = c0(t− s) + c1(t− s)v(s) + T (s)

with the affine coefficients c0, c1 solutions to the system of ordinary differential equations

c′0(t− s) = κθc1(t− s),

c0(0) = 0

c′1(t− s) = 1 + b1c1(t− s),

c1(0) = 0.

This system can be solved analytically and returns

c0(t− s) = κθ
eb1(t−s) − 1− b1(t− s)

b21
(11)

c1(t− s) =
eb1(t−s) − 1

b1
. (12)

Consequently

V (t, t+∆τ )
2 = −2b2

∆τ
(c0(∆τ ) + c1(∆τ )v(t)) ; (13)

which implies that the characteristic function ϕV 2(h; t) of V (t, t +∆τ )
2 follows from Theorem 1

by setting w = −2hb2c1(∆τ )/∆τ and u = z = 0. Therefore

ϕV 2(h; t) = E
(
eihV (t,t+∆τ )2

)
= eA(h;∆τ )+A0(h;t)+A1(h;t)v(0) (14)

9



with

A(h; ∆τ ) = −ih
2b2
∆τ

c0(∆τ ),

and the exponents A0, A1 solutions to the system

A′
0(h; t) = κθA1(h; t),

A0(h; 0) = 0

A′
1(h; t) = −κA1(h; t) + φJ1,− (iη1A1(h; t)) + φJ2 (−iη2A1(h; t)) ,

A1(h; 0) = −ih
2b2
∆τ

c1(∆τ ).

3.2 The characteristic function of the process X(t)

In order to price options on the S&P500 in this setting, we also require the characteristic function

of X(t). This follows from Theorem 1 by setting w = 0 and z = 0, i.e.

ϕX(u; t) = E
(
eiuX(t)

)
= eD0(u;t)+D1(u;t)v(0), (15)

with the exponents D0, D1 solutions to the system of differential equations

D′
0(u; t) = κθD1(u; t),

D0(u; 0) = 0

D′
1(u; t) = φL(u)− κD1(u; t) + φJ1,− (iη1D1(u; t) + σ1u)

− φJ1,− (σ1u) + φJ2 (−iη2D1(u; t)) ,

D1(u; 0) = 0.

Alternatively, the expression for the characteristic function can be obtained adopting the

leverage neutral measure approach of Carr and Wu (2004) (see also Ballotta and Rayée (2022)).

To this purpose, let us define

γ(t) = eiuL(t)−φL(u)t;

this process is a martingale starting at 1. Consequently, the time-changed process

M(t) = Mu(t) = (γ ◦ T )(t) = eiuX(t)−φL(u)T (t)

is a martingale too and defines the density process for a complex-valued ‘measure’ M such that

E
(
eiuX(t)

)
= EM

(
eφL(u)T (t)

)
. (16)

In other words, the change of measure allows us to operate as if the process of the log-returns

were independent of its volatility, i.e. as if there were no leverage (see Carr and Wu (2004)).

3.3 Pricing derivatives: a Fourier based approach

Among the available approaches for option pricing, we adopt the method of Eberlein et al. (2010).

Thus, the prices of call and put options on the S&P500, denoted as πSPX(K, τ), are computed
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as

πSPX(K, τ) = e−rτ e
−Rs

π

∫ ∞

0
ℜ
(
e−iusϕX(u− iR; τ)

K1−R−iu

(1−R− iu)(−R− iu)

)
du,

with R > 1 for the case of the call option and R < 0 for the case of the put option (see Eberlein

et al. (2010) for full details on the method), and s = − lnFS(0, τ). The characteristic function

ϕX(·; τ) is given by equation (15).

For the computation of the price of the VIX call option with payoff

C(V̄ (τ, τ +∆τ )) = 100× (V (τ, τ +∆τ )−K)+ ,

we proceed as follows. Given the availability of the characteristic function ϕV 2(·; t), we first

re-express the payoff as

C(V̄ (τ, τ +∆τ )) = 100×
(√

V (τ, τ +∆τ )2 −K
)+

,

and then we derive the Fourier transform f̂ of f(x) = (
√
x−K)

+
. Thus, for z ∈ C

f̂(z) =

∫ ∞

K2

eizx
(√

x−K
)
dx

= − 1

iz

∫ ∞

K2

eizx

2
√
x
dx

where the last equality holds for ℑ(z) > 0. This integral can be solved by substitution: set

y =
√
−izx, then

f̂(z) =
1

(−iz)3/2

∫ ∞

K
√
−iz

e−y2dy

=

√
π

2(−iz)3/2

(
1− erf(K

√
−iz)

)
, (17)

with erf(·) denoting the error function of a complex argument. Then, the price of the VIX call

option struck at K̄ and expiring at τ is given by

CV IX(K̄, τ) = 100× e−rτ

π

∫ ∞

0
ℜ
(
ϕV 2(u− iR; τ)f̂(iR− u)

)
du (18)

with r the risk free rate of interest and R the dampening factor. Convergence is ensured for

R > 0. The relevant characteristic function, ϕV 2(·; t), is given by equation (14). VIX put options

can be recovered using the put-call parity, so that

CV IX(K̄, τ)− PV IX(K̄, τ) = E
(
e−rτ

(
V̄ (τ, τ +∆τ )− K̄

))
,

and therefore

PV IX(K̄, τ) = CV IX(K̄, τ)− e−rτ
(
FV (0, τ)− K̄

)
. (19)

Finally, VIX futures prices are obtained following a procedure similar to Kallsen et al. (2011)

11



so that

FV (0, τ) = 100× E(V (τ, τ +∆τ ))

= 100× 1

2
√
π

∫ ∞

0

1− ϕV 2(iu; τ)

u3/2
du

with ϕV 2(·; t) given by equation (14).

The numerical schemes are implemented in Matlab R2023b. All integrals are computed by

standard quadrature methods fully vectorized for speed, and the relevant differential equations

are solved numerically using the Runge-Kutta method. The computation of the error function of

a complex argument is carried out by means of the algorithm developed by Godfrey (2024).

4 Second order moments of log-return and activity rate processes

Theorem 1 also gives access to the second order moments and co-moments of the relevant quan-

tities through repeated differentiation. In particular, we focus on the variances of the log-return

process X(t) and the activity rate process v(t), and the covariance between them.

In order to define the variance of the process X(t), we use the moments of the base processes

defined in equations (4)–(8), and set

d0(t) = σ̂2
2c0(t) + 2ρ̂κθ

b2
b21

(
eb1tt+ t− 2c1(t)

)
+ σ̂2

1κθ
b22
b31

(
2c1(t)− 2eb1tt− t+

e2b1t − 1

2b1

)
,

d1(t) = σ̂2
2c1(t) + 2ρ̂

b2
b1

(
eb1tt− c1(t)

)
+ σ̂2

1

b22
b21

(
e2b1t − 1

b1
− 2eb1tt

)
,

with c0(t) and c1(t) derived in equations (11)–(12). Then, by repeated differentiation of the joint

(log-)characteristic function in Theorem 1, we obtain

Var(X(t)) = d0(t) + d1(t)v(0). (20)

Theorem 6.15 in Eberlein and Kallsen (2019) gives access to an alternative derivation of this

result. Similarly, set

q0(t) = κθ
σ̂2
1

2
c21(t)

q1(t) = σ̂2
1e

b1tc1(t),

then

Var(v(t)) = q0(t) + q1(t)v(0). (21)

Finally,

Cov(X(t), v(t)) = p0(t) + p1(t)v(0), (22)

for

p0(t) = κθ
ρ̂

b1

(
eb1tt− c1(t)

)
− κθσ̂2

1

b2
b21

(
eb1tt− e2b1t − 1

2b1

)
p1(t) = eb1t

(
ρ̂t+ σ̂2

1b2
c0(t)

κθ

)
.
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Figure 1: Correlation between X(t) and v(t): sensitivity analysis with respect to the ‘loading’ coefficients
σ1, η1 and η2. Correlation calculated using equations (20)–(22) for a specific choice of the remaining
parameters.

A sketch of the proof is offered in Appendix A for the case of the covariance. The other quantities

can be obtained along the same lines.

The expression for the correlation between the log-return process X(t) and the activity rate

process v(t) follows directly. In virtue of equation (13), this is the same as the correlation between

the S&P500 index log-returns and the VIX squared.

In order to demonstrate the flexibility of the approach, we show in Figure 1 (parameters

available upon request) how the correlation changes for different values of the parameters σ1,

η1 and η2, which control respectively the level of the correlation between the base processes of

the log-returns and the activity rate (see equation (8)), and the impact on the log-returns of the

idiosyncratic movements in the activity rate (see equations (2)–(3)).

5 The term structure of implied correlations

In this section we first calibrate this model jointly to market data for options on the S&P500 and

the VIX together with VIX futures. We then use the calibrated parameters to extract the term

structure of implied correlations by applying the results obtained in section 4.

End of day market prices were collected from the CBOE on May 3rd 2023 for call and put

options on both the S&P500 and the VIX indices, together with VIX futures prices. We use mid

option prices obtained from the quoted bid and ask prices of out of the money (OTM) contracts.

We apply the commonly adopted exclusion filters to the set of option prices, so that only

contracts with positive open interest, bid price and bid-ask spread are selected. Furthermore, we

only consider maturity slices with more than 5 traded strikes. For the observation date under

consideration, this implies that we can use options on the VIX up to 77 days to expiry as the bulk

of liquidity is concentrated around short maturity contracts. The corresponding market implied

volatilities are shown in the top panels of Figure 2. The VIX futures prices for the corresponding

maturities are shown in the bottom panel of Figure 2 together with the VIX spot value. The term

structure of interest rates is extracted from the USD SOFR curve on May 3rd 2023.
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Figure 2: A sample of market data. Top-panels: implied volatilities from the S&P500 market (left-hand side
panel), and the VIX market (right-hand side panel). Bottom panel: VIX futures prices for maturities corresponding
to the ones of VIX options. Source: CBOE. Observation date: May 3rd 2023.

5.1 The joint objective function and the calibration problem

In order to obtain a reliable estimation of the implied correlation, we need to ensure that the model

is able to reproduce the market quotes of derivatives as closely as possible. However, from Figure

2 we note two important features of the implied volatilities in the VIX market which can represent

a challenge for the calibration procedure. In first place, there is a clear difference in the scale of

the implied volatilities between the two markets. Indeed, the level of the VIX implied volatilities

is significantly higher than the one of the implied volatilities in the S&P market. Secondly, the

level of the VIX implied volatilities varies substantially from one maturity to the next, especially

between the first two available maturities, i.e. 7 and 14 days to expiry.

Furthermore, we note that the correct calibration of VIX futures is necessary in order to

recover consistent VIX implied volatilities by inversion of the Black formula (see Black (1976)).

The inclusion of the futures prices though exacerbates the issue of scale noted above. Therefore,

it is crucial to define an appropriate objective function in which all the relevant quantities are
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suitably rescaled to ensure comparability.

To this purpose, let

fi(j;ϑ) =

(
πmod
i (j;ϑ)− πeod

i (j)

Voleodi (j)V egai(j)

)2

, i = 1, 2, j = 1, . . . , Ni,

where πeod
i (j) is the end of day mid market price given by the j-th data point representing either

an OTM call or an OTM put option struck at Kj and with maturity τj , written on the S&P500

for i = 1 and the VIX for i = 2 respectively. πmod
i (j;ϑ) denotes the corresponding price originated

by the model with parameter set ϑ. In this context, V egai(j) denotes the (Black) Vega computed

using the market implied volatilities Voleodi (j). Ni is the number of option contracts in the data

set.

The ratio between the error of the model price with respect to the market price and the Vega

is used as a first order approximation of the implied volatility error; this approximation is chosen

to both speed up the calibration and avoid potential bias due to expensive contracts (see for

example Christoffersen et al. (2009), Ballotta and Rayée (2022), and references therein). The

normalization via the implied volatility guarantees comparability between the two markets, given

the observed different ranges of implied volatility values for S&P500 and VIX options.

Furthermore, let

f(l;ϑ) =

(
πmod(l;ϑ)− πeod(l)

πeod(l)

)2

,

with πmod(l;ϑ) denoting the price of the VIX futures with maturity τl for l = 1, . . . , NF under the

given model, and πeod(l) denoting the corresponding end of day market prices. NF is the number

of VIX futures contracts considered. We use relative errors for the prices of the VIX futures to

ensure consistency with the option error functions.

Then, the objective function of the joint calibration problem is given by

F (ϑ) =

2∑
i=1

1

Ni

Ni∑
j=1

fi(j;ϑ) +
1

NF

NF∑
l=1

f(l;ϑ).

The rescaling based on the number of contracts accounts for the different sizes of the respective

markets, which could otherwise compromise the fit.

The calibration problem is stated as

min
ϑ

F (ϑ),

with ϑ within the parameter limits of the chosen model.

It remains to address the issue of the variation in the VIX implied volatility level across

maturities. Motivated by the similarity with the interest rate markets, we adopt a piecewise

calibration approach similar in spirit to Eberlein and Kluge (2005). To this purpose, we calibrate

separately each maturity interval [τV IX
j , τV IX

j + ∆τ ], for τV IX
j ∈ {7, 14, 21, 28, 49, 77}, i.e. the

maturities of VIX options considered here. For options on the S&P500, we refer to contracts with

maturities τSPX
j coincident with τV IX

j up to two days, according to availability. Consequently,

N1 denotes the number of options on the S&P500 for all strikes available for maturities τSPX
j and

τV IX
j + ∆τ , whilst N2 indicates the number of VIX option contracts for all strikes available for
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maturity τV IX
j . The choice to focus on these ‘triangles’ is motivated by the fact that the VIX

by construction encodes information on the forward density of the S&P500 log-returns and their

variance (see, for example Yuan (2022), and references therein).

We note that equation (13) for t = 0 links directly the initial level of the volatility activity

rate v(0) to the square of the spot value of the VIX index. This allows us to ensure that the

model matches exactly the current value of the VIX index. Anchoring the calibration procedure

to the current state of the VIX market also contributes to speeding up the convergence of the

optimization routine.

In the empirical analysis, we assume that the process J1(t) is the CGMY process of Carr et al.

(2003) with Lévy density

C

(
e−G|x|

|x|1+Y
1x<0 +

e−Mx

x1+Y
1x>0

)
,

and parameters C,G,M > 0, Y < 2. The corresponding characteristic exponent is

φJ1(u) = CΓ (−Y )
(
(M − iu)Y −MY + (G+ iu)Y −GY

)
.

Finally, we assume that the process J2(t) is a Gamma process with characteristic exponent

φJ2(u) = β (lnλ− ln(λ− iu)) ,

for β, λ > 0.

5.2 Results

In this section we gauge the performance of the piecewise joint calibration and extract the term

structure of implied correlations between the S&P and VIX markets.

Consistently with the definition of the calibration objective function F (ϑ), we measure the

model performance using relative errors based on the implied volatility recovered from the cali-

brated parameters. Let Volmod
i (j;ϑ) denote this value for the j-th data point, and define

ei =

Ni∑
j=1

(
Volmod

i (j;ϑ)−Voleodi (j)

Voleodi (j)

)2

, i = 1, 2,

eF =

NF∑
l=1

f(l;ϑ).

We measure the pricing performance separately on each market with

ϵi =

√
1

Ni
ei, i = 1, 2, (23)

ϵF =

√
1

NF
eF , (24)

and on aggregate with

ϵ =

√
1

N
(e1 + e2 + eF ), (25)

for N = N1 +N2 +NF .
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Table 1: Joint calibration with piecewise approach. Performance measures as defined in eqs. (23)–(25).

Maturity interval [7, 37] [14, 44] [21, 51] [28, 58] [49, 79] [77, 107]

ϵ1 5.90% 2.54% 3.65% 3.61% 4.07% 2.64%
ϵ2 2.07% 1.09% 2.49% 1.43% 2.57% 2.95%
ϵF 6.65E-03 1.48E-04 1.71E-03 1.43E-03 0.35% 3.93E-03
ϵ 5.42% 2.30% 3.43% 3.39% 3.76% 2.66%

We compare the implied volatilities generated by the model to the market ones for the dataset

under consideration in Figure 3, whilst the corresponding performance measures are reported in

Table 1 (the calibrated parameters are available upon request). The accuracy of the calibration is

comparable across each maturity interval, but it deteriorates in correspondence of those expiries

characterised by relatively low liquidity.

The term structure of the implied correlations is obtained along the range of maturities of

the VIX futures and VIX options; we then interpolate/extrapolate for each day between the

given maturities using a piecewise cubic Hermite interpolating polynomial. The result is shown

in Figure 4. The correlation between the log-returns of the S&P500 and the (square) of the VIX

index is significantly negative across the considered time horizon, and it justifies the fact that

the VIX calls are the contracts more heavily traded as they are perceived as ‘disaster insurance’.

The hump shape of the curve could be linked to the low liquidity level of the contracts with 28

days to maturity. The result also indicates that the VIX index and its derivatives have a high

diversification potential, and it supports the recommendations from Bertrand and Prigent (2019)

to include exposures to VIX instruments for the optimal management of structured portfolios.

Finally, as in virtue of equation (13), the implied correlation between the S&P500 log-returns

and the VIX squared coincides with the one between the index log-returns and the activity rate

v(t), i.e. the process of the ‘point-in-time’ variance, we can gain forward looking information on

the strength of the leverage/volatility feedback effect in the case in which the volatility is priced

in directly through the VIX market.

6 Conclusions

We have developed a joint model for the S&P500 and the VIX based on time changed Lévy

processes for the valuation of derivatives written on these indices, and ultimately the quantification

of the forward looking implied correlation between the two markets. Due to the affine construction

of the model, this implied correlation also quantifies the leverage and volatility feedback effects.

We stress that, as the parameters are extracted from a joint calibration of derivatives quotes, the

obtained result is forward looking in nature.

The investigation based on market quotes shows that the implied correlation is significantly

negative over the horizon of the traded maturities considered in this paper, indicating the level of

diversification that the VIX and its derivatives can have. This is particularly relevant for portfolio

management decisions.
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Figure 3: Joint calibration with piecewise approach. Left-hand-side panel: implied volatility of S&P500 options
expiring at τSPX

j = τV IX
j (up to 2 days). Centre panel: VIX futures price (vertical line) and implied volatility of

VIX options expiring at τV IX
j . Right-hand-side panel: implied volatility of S&P500 options expiring at τV IX

j +∆τ .
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Figure 3: (cont.) Joint calibration with piecewise approach. Left-hand-side panel: implied volatility of S&P500
options expiring at τSPX

j = τV IX
j (up to 2 days). Centre panel: VIX futures price (vertical line) and implied

volatility of VIX options expiring at τV IX
j . Right-hand-side panel: implied volatility of S&P500 options expiring

at τV IX
j +∆τ .
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Figure 4: Term structure of implied correlations Corr(X(τ), v(τ)) = Corr(X(τ), V (τ, τ + ∆τ )
2) obtained from

equations (20)-(22) and the calibrated parameters.
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A Proof of Equation (22)

We note that

Cov(X(t), v(t)) = − ∂2

∂u∂w
lnE

(
eiwv(t)+iuX(t)

)∣∣∣∣
w=u=0

,

with the relevant joint characteristic function given by Theorem 1 for z = 0. In the following we

write for short Ψj(w, u; t) = Ψj(w, u, 0; t) for j = 0, 1; further, we set for j = 0, 1

Ψ̃j(w, u; t) =
∂

∂u
Ψj(w, u; t)

Ψ̂j(w, u; t) =
∂

∂w
Ψj(w, u; t)

Ψ̄j(w, u; t) =
∂2

∂u∂w
Ψj(w, u; t).

We denote x = iη1Ψ1(w, u; t) + uσ1 and y = −iη2Ψ1(w, u; t), and we write the characteristic

exponents φJ1,−(ū) and φJ2(ū) as functions of the argument ū.

By differentiation with respect to u of the system of ODEs in Theorem 1, we obtain that

Ψ̃0(w, u; t) and Ψ̃1(w, u; t) satisfy the following system of ODEs

Ψ̃′
0(w, u; t) = κθΨ̃1(w, u; t) (A.1)

Ψ̃0(w, u; 0) = 0 (A.2)

Ψ̃′
1(w, u; t) =

d

du
φL(u) +

(
−κ+ iη1

d

dū
φJ1,− (x)− iη2

d

dū
φJ2 (y)

)
Ψ̃1(w, u; t)

+σ1
d

dū
φJ1,− (x)− σ1

d

dū
φJ1,− (uσ1) (A.3)

Ψ̃1(w, u; 0) = 0. (A.4)

These ODEs can be used to recover the expected value of X(t) by setting u = w = 0 and

hj(t) = −iΨ̃j(0, 0; t), for j = 0, 1 so that

h′0(t) = κθh1(t)

h0(0) = 0

h′1(t) = b2 + b1h1(t)

h1(0) = 0.

The above can be solved explicitly leading to h0(t) = b2c0(t) and h1(t) = b2c1(t) for c0(t) and

c1(t) derived in equations (11)–(12). Therefore E (X(t)) = h0(t) + h1(t)v(0).

By differentiation of the system (A.1)–(A.4) with respect to w, we obtain the system of ODEs

satisfied by Ψ̄0(w, u; t) and Ψ̄1(w, u; t)
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Ψ̄′
0(w, u; t) = κθΨ̄1(w, u; t)

Ψ̄0(w, u; 0) = 0

Ψ̄′
1(w, u; t) = iη1σ1

d2

dū2
φJ1,− (x) Ψ̂1(w, u; t)

−
(
η21

d2

dū2
φJ1,− (x) + η22

d2

dū2
φJ2 (y)

)
Ψ̂1(w, u; t)Ψ̃1(w, u; t)

+

(
iη1

d

dū
φJ1,−(x)− iη2

d

dū
φJ2(y)− κ

)
Ψ̄1(w, u; t)

Ψ̄1(w, u; 0) = 0.

Setting u = w = 0, the system reduces to

Ψ̄′
0(0, 0; t) = κθΨ̄1(0, 0; t)

Ψ̄0(0, 0; 0) = 0

Ψ̄′
1(0, 0; t) = iρ̂Ψ̂1(0, 0; t) + σ̂2

1Ψ̂1(0, 0; t)Ψ̃1(0, 0; t) + b1Ψ̄1(0, 0; t)

Ψ̄1(0, 0; 0) = 0.

Let us define g1(t) = −iΨ̂1(0, 0; t), p0(t) = −Ψ̄0(0, 0; t) and p1(t) = −Ψ̄1(0, 0; t). The above

system then can be rewritten as

p′0(t) = κθp1(t)

p0(0) = 0

p′1(t) = ρ̂g1(t) + σ̂2
1g1(t)h1(t) + b1p1(t)

p1(0) = 0.

The function g1(t) follows from the derivation of the expected values of v(t) using a similar

argument as for h1(t), which returns g1(t) = eb1t. The expression of the covariance follows as the

above system can be solved explicitly.

An alternative derivation of the result can be obtained by applying Theorem 6.15 in Eberlein

and Kallsen (2019).
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