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Synopsis

The problem of linear wave diffraction by a vertical circular cylinder 

was studied both numerically and experimentally. The accuracy of the 

indirect boundary element method was improved by placing the source 

intensity distribution on a separate fictituous boundary outside the 

fluid domain. This method was demonstrated for the problem of steady 

flow past an infinite circular cylinder near a plane boundary, using 

a linear interpolation of source intensity. Reliable estimates of the 

force on the cylinder were obtained, provided that the gap between the 

cylinder and the plane was more than one tenth of the diameter.

The three dimensional problem of wave diffraction by a vertical circular 

cylinder was solved using a quadratic variation of source intensity.

It was possible to use the series form of the Green's function throughout. 

Good agreement with the exact solution for both the pressure and the 

total in-line force, was obtained with only twelve elements. This 

corresponds to fifty-six complex equations.

Experimental measurements of pressure were taken on a vertical circular 

cylinder in regular waves in the inertia/diffraction regime. The 

amplitudes of these pressures were consistently higher than the linear 

theory. The discrepancies did not appear to correlate with wave 

steepness except at high frequencies. The phase angles were closer 

to the theoretical predictions. These discrepancies were caused by 

the effects of finite wave height but a more complete explanation awaits 

a successful second order theory.



DIFFRACTION OF WAVES BY A VERTICAL CIRCULAR

CYLINDER : A NUMERICAL AND EXPERIMENTAL STUDY

BY

L.E. COATES, B.Sc.

Thesis submitted to The City University for the

Degree of Doctor of Philosophy in the Department 

of Civil Engineering

JULY 1982.



To my wife .



ACKNOWLEDGEMENTS

The work presented in this thesis was carried out in the hydraulics 

and computing laboratories of the Civil Engineering Department, and 

in the Computer Centre, of The City University, under the supervision 

of Dr. K. Arumugam. The writer is grateful to Dr. K. Arumugam for 

his encouragement and advice throughout the period of this work.

The writer gratefully acknowledges the help of Mr. D. Lacey in 

providing table 4.7.1.

Thanks are extended to  for manufacturing the pressure 

transducers, and to  and his staff for constructing 

the experimental cylinder.

The writer is indebted to   for her patience and 

ultimately her stamina in typing the manuscript.

The writer is thankful for the award of a support grant from the 

Science Research Council, which made this work possible.



CONTENTS

PAGE NUMBER

Synopsis

Ac knowledgements

Contents

List of Figures

List of Tables

CHAPTER 1. INTRODUCTION 1

1.1. Brief Introduction 3

1.2. Scope of the present work

CHAPTER 2. LITERATURE SURVEY

2.1. Forces on small structures in waves 6

2.2. Wave forces on large structures

2.3. Numerical analysis of boundless continua 85

CHAPTER 3. POTENTIAL THEORY

3.1. The governing equations of irrotational flow 103

3.2. Uniqueness theorems 108

3.3. Fundamental solutions 110

3.4. Numerical discretisation of a Dirichlet problem 120

3.5. Separation of the source boundary 131

3.6. The Neumann problem of steady flow 135

3.7. The Numerical details 140

3.8. The Numerical results 147

3.9. Linear wave diffraction 153

3.10. The Green's function 161

3.11. The integral equation 1^4



CHAPTER 4 DIFFRACTION COMPUTER PROGRAM

4.1. Introduction 166

4.2. Separation of the source boundary 167

4.3. The series form of the Green's function 170

4.4. Bessel function evaluation 175

4.5. Numerical formulation 177

4.6. Details of computer program 184

4.7. Numerical results 188

CHAPTER 5 EXPERIMENTAL APPARATUS AND RESULTS

5.1. Wave flume, generator and absorbing beach 197

5.2. Instrumentation for circular cylinder

5.2.1. Cylinder material 201

5.2.2. Cylinder mounting details 202

5.2.3. Displacement transducers 203

5.2.4. Pressure transducers 204

5.2.5. Wave probes 206

5.3. Pressure measurements without cylinder 208

5.4. Pressures on the circular cylinder 213

5.4.1. Pressure transducer calibrations 214

5.4.2. Noise levels 214

5.4.3. Blockage 215

5.5. Presentation of results 216

5.5.1. Wave heights 217

5.5.2. Phase speeds 219

5.5.3. Pressures on the cylinder 220

CHAPTER 6 DISCUSSION OF CHAPTERS 4 AND 5

6.1. The pressure measurements 231

6.2. Program efficiency 237

6.3. Application to arbitrary shapes 240



CHAPTER 7 SUMMARY AND CONCLUSIONS

7.1. Summary

7.2. The importance of the present study 245

7.3. Limitations of the present study and

recommendations for further work 246

REFERENCES 248

FIGURES 263

TABLES 344

APPENDIX A.l. The pressure on a fixed circular cylinder 368

in water of depth h

APPENDIX A.2. Filter amplifier details

APPENDIX A.3. Computer program listings 38^

395APPENDIX A.4. Bessel function notation

799APPENDIX A.5. Wave radiation and quadratic correction

APPENDIX A.6. Equivalent forms of the Green's function 401

List of symbols
410



LIST OF FIGURES
Page

2.1.1. Reproduced figure 5 from Morison et al^) plus 263

remainder function.

2.1.2.

2.1.3.

vs Um T/D, figure 10 from Keulegan and Carpenter^50)264 

Cq vs  Um T/D, figure 11 " " " " 264

2.1.4. The effect of time of separation on the instantaneous

2.1.5.

Si*

Pressure distribution due to observed vorticity.

265

(421Figure 10 from Isaacson and Maulr ' 266

3.2.1. An exterior problem domain 267

3.2.2. Coordinate system on 2 11

3.3.1. The small sphere & 268

3.3.2. Portion of curve S II

3.3.3. Exclusion of p from S II

3.3.4. Exterior and Interior domains II

3.4.1. Boundary discretisation 269

3.4.2. Notation for element i II

3.4.3. Boundary conditions 270

3.4.4. Sixteen element discretisation II

3.4.5. Numerical results from program ALBI 271

3.4.6. Difference between numerical and theoretical results II

3.4.7. Source intensity distribution from program ALBI 272

3.5.1. Boundaries S and P 273

3.5.2. Sixteen element discretisation II

3.5.3. Difference between numerical and theoretical results II

3.5.4. Source intensity distribution from program

ALB2,/3 = 1.2 274

3.5.5. 1L' shaped domain 275

3.5.6. Comparitive errors near node II II

3.6.1. Horizontal cylinder 276



3.6.2. Possible method of solution 276

3.6.3. Method of solution utilising the method of images

3.7.1. The source distribution f 277

3.7.2. The coordinate systems

3.7.3. The image distance r'

3.8.1. The polygonal source boundary 278

3.8.2. The test points A, B & C

3.8.3. Ratio of computed value to exact value/3=0.9vs.M. 279

3.8.4. Ratio of computed value to exact value M=16 vs./3 280

3.8.5. Normalised source intensity distributions for M=16 281

3.8.6. Ill-conditioning as M increases

3.8.7. Non-dimensional lift force vs. d/2a. 282

3.8.8. Angular distribution of source intensity for various

d/2a values 283

4.2.1. Two ways in which the numerical solution will

round a sharp corner 284

4.3.1. The roots of tanX + hvX-1 = 0

4.5.1. Node numbering, natural coordinates and a typical

shape function 285

4.5.2. Gauss quadrature points and weights "

4.6.1. Coordinate systems and twenty node discretisation 286

4.6.2. Computer program BESS flow chart 287

4.6.3. Areas over which pressure is assumed to be constant 288

4.7.1. Convergence of normalised force with decreasing ZK^3)289

4.7.2. Computed force expressed as F/Jy»ga6H against ka 290

4.7.3. Variation of source intensity f with depth 291

4.7.4. Explanation of reduced accuracy when using higher

order integration 292



5.1.1. Wave flume

5.1.2. Wave generator 294

5.1.3. Wave steepness kH vs. relative depth d/dc 295

5.2.1. Araldite test specimen

5.2.2. - 6. Drawings of cylinder apparatus 296

5.2.7. Photograph of cylinder apparatus 301

5.2.8. Linear displacement transducer amplifier 302

5.2.9. Linear transducer calibrations 303

5.2.10. Pressure cell construction 304

5.2.11. Calibration of pressure transducer 1 305

5.2.12. Calibration of pressure transducer 2 306

5.2.13. Calibration of pressure transducer 3 307

5.2.14. Calibration of pressure transducer 4 308

5.3.1. Wave record in the absence of the cylinder 309

5.3.2. Phase speed vs. wave steepness 210

5.3.3. Wave generator idealisation

5.3.4. Wave heights vs. frequency 311

5.3.5. Pressures in wave vs. frequency

5.4.1. - 4. Calibrations of wave probes and pressure transducers 312

5.4.5. - 8. Noise levels 316

5.5.1. Wave heights vs frequency 320

5.5.2. Wave heights vs steepness 321

5.5.3. Phase speeds vs wave steepness 322

5.5.4. Phase speeds vs wave steepness for frequency bands 323

5.5.5. Free surface in the presence of the cylinder 324

5.5.6. - 9. Experimental measurements 225

5.5.10. - 14.Pressure amplitudes and phases 229

5.5.15. A wave record 334

5.5.16. - 18.Pressure amplitudes and phases from transducer 2 only 335

5.5.19. A wave record showing harmonic pollution 338



5.5.20 - 21. Pressure amplitudes vs wave steepness 339

5.5.22. Angular pressure variation 341

5.5.23. Averaged pressures in wave compared with cosh (JkH) factor 342

A.2.1. Typical op. amp configuration 343

A.2.2. Two stage amplifier filter

LIST OF TABLES

3.5.1. Results along A-b and A'-B* for/3 =3 344

3.5.2. 1L' Shaped domain - lOOOx 345

4.7.1. Non-dimensional theoretical force, — = 4 346
a

4.7.2. a - f Numerical results 347

4.7.3. Computed pressures on circular cylinder, 1 351

4.7.4. Computed pressures on circular cylinder, 2. 352

4.7.5. Comparitive computation times. 353

5.3.1. Results without cylinder 354

5.5.1. a - h Experimental results 355

5.5.2. a - b Experimental results 363

6.1.1. Normalised computed pressures at the still water level 365

A.1.1. Exact solution for pressure on cylinder 366

A.2.1. Phase lag and amplitude reduction of 2 stage filter. 367



CHAPTER 1. INTRODUCTION

1.1. Brief Introduction

The design of an offshore structure must be based on the expectation 

of the worst possible conditions if it is to remain in one place for 

any length of time. Accurate assessment

of the structural responses to such conditions is necessary to avoid 

prohibitively expensive designs.

For small structures, or large structures composed of small elements 

the design is based on the equation attributed to Morison, O'Brien, 

Johnson and Schaaf. The interaction between neighbouring structural 

elements is usually neglected since each is assumed not to disturb 

the ambient flow. The total force on a structure is therefore obtained 

quite simply as the sum of the forces on the individual elements. The 

only difficulty associated with this approach is in the choice of the 

inertia and drag coefficients.

For large structures the presence of the structure deforms the ambient 

flow. Interaction effects between neighbouring large elements of 

the structure make it impossible to linearly sum the forces on each 

separate element. However, the fluid problem may be assumed to be 

irrotational.

Garrison and Chow^), using the Green's function for this problem 

have shown how a numerical solution may be obtained which automatically 

takes account of all interaction effects. The surface of the structure 

is represented by a number of plane facets at the centre of which
(33)is a pulsating source. Hogben and Standing' ' and others, have



developed this approach into a form suitable for commercial use.

It appears that these computer packages have had limited use, 

primarily because of the cost of running a realistic problem. There 

is therefore, a need for reducing the computation time of these 'facet' 

methods.

The numerical analysis techniques on which the facet methods are 

based, are a logical progression from the established techniques used 
(29)by naval architects and aerodynamicists (e.g. Havelock'' ' and Von 

Karman^)). They conceive the solution as the superposition of an 

array of point sources (or vortices, or doublets) and an ambient flow, 

such that the zero streamline of the resulting flow matches the desired 

object shape.

A separaue (although not radically different) numerical methodology has 

developed since the 1960's and the advent of fast digital computers. 

This has become known as the Boundary Integra1 Equation method or the 

Boundary Element method. The numerical formulation is based on a 

version of Green's theorem, in the form of an integral equation. In 

the method most closely akin to the facet method (known as the 

indirect method), the sources .re conceived as an’initially unknown 

continuous distribution of source intensity over a surface. The 

integral equation is then discretized by reducing the level of 

continuity of this source distribution. For steady potential flow 

problems it has been found that a piecewise quadratic variation can 

lead to increased accuracy or reduced computation time.
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1.2. Scope of the present work

This thesis is concerned with the problem of wave diffraction. Because 

of the complexity of this problem, many of the techniques used for its 

numerical solution are studied first in the context of two-dimensional 

steady flow.

The indirect Boundary Element method is discussed in detail. A steady flow 

field inside a square boundary, on which Dirichlet conditions are prescribed, 

is used to demonstrate the typical accuracy obtained using the most common 

form of this method. The source distribution is assumed to be piecewise 

linear over the domain boundary. This same problem is then solved using 

a source distribution on a separate fictitious boundary outside the domain. 

!hisseparauion increases the accuracy of the numerical solution. This 

•mprovea method is then applied to a problem previously solved numerically 
by Symn/76\ and the results compared. There is a significant increase 

in accuracy using fewer elements.

lhe exterior problem of steady flow past a circular cylinder is then 

considered, firstly when the cylinder is isolated and secondly when it is 

close to a plane boundary. The numerical formulation is explained in 

detail. For the first case the numerical results are compared with the 

exact solution. The position of the source boundary and the number of 

elements into which it is divided, are varied, to expose some of the 

limitations of the separate source method. For the second case, the 

force on the cylinder is of most interest. This force is towards the 

boundary except when the cylinder is in contact with it. The exact 

solution for this latter case was given by Jeffreys^45). It is explained 
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that this result can net be obtained with a separate source boundary, 

but, provided the gap between the cylinder and the wall is greater than 

one tenth of a diameter the force prediction seems reasonable.

The three dimensional problem of linear wave diffraction by a vertical 

circular cylinder is then considered. This problem has been solved 

numerically by Garrison and Chow^0), Hogben and Standing^33) ancj 

Lebreton and Cormault^) using the 'facet1 method with sources on the 

cylinder. This study demonstrates how the indirect Boundary Flement 

method may be applied to this problem, using a piecewise quadratic 

continuous distribution of source intensity on a separate boundary. 

The details of a computer program are explained. The numerical pre-

dictions of pressure and total force are compared with the exact 

solution, and with previous numerical solutions which used the facet 

method, it is shown that far fewer elements are required to obtain 

the same level of accuracy.

The diffraction theory has been compared with the corresponding 

physical situation. Hogben and Standing^33), Chakrabarti and Tail/15) 

and Huntingdon and Thompson^37' have shown that the total force on 

a vertical circular cylinder is fairly well predicted. There are 

however small discrepancies which have not been satisfactorily 

explained. These authors also measured fluid pressure on the 

cylinder. These measurements which do not agree so well, particularly 

near the moving free surface, have not been critically discussed.



In this thesis experimental measurements of fluid pressure and phase 

on a vertical circular cylinder in regular waves are presented. 

Firstly, the characteristics of the regular waves are measured. In 

particular the fluid pressure is shown to agree with linear theory to 

within the level of scatter. It is explained that the second order 

correction to the pressure does not affect its amplitude, because 

of the peculiar phase relationships in free waves. The experimental 

measurements of pressure at two levels on the cylinder are then 

compared with the exact linear theory. The phase angles agree to 

within the level of scatter. The amplitudes are consistently larger 

than the theory, but by an amount which does not appear to depend 

on the measure of nonlinearity - wave steepness, lhe errors aie 

apparently of first order. A simple explanation is put forward 

based on the locally increased wave heights near the cylinder. It 

is hoped that these measurements will provide data for comparison 

with a second order analysis, but it is suggested that many more 

orders may be needed to obtain satisfactory agreement near the front 

face of the cylinder.

- 5 -



CHAPTER 2 LITERATURE SURVEY

2.1. Forces on small structures in waves.

In response to the need for design procedures, for use in the 

economic design of offshore structures, a great deal of research 

into the forces due to waves has been completed. However, the 

research effort has concentrated on several specific topics 

often to the detriment of the overall advance. A state of the 

art survey by Verley(80)in 1975 shows that the field has been 

segregated into regimes depending on the relative sizes of 

structure and waves. This has arisen because a general complete 

solution of the problem has not been discovered. For some 

special cases certain simplifying assumptions may be made, which 

lead to useful design rules. The regimes of flow are then the 

various areas of validity of these assumptions. There are there-

fore a number of middle ground areas which are not satisfactorily 

accounted for by any of the regimes.

The waves on the surface of a real sea are multidirectional and 

contain many different frequency components. The design wave 

is likely to come from any direction (except possibly for structures 

close to the shore). The circular cylinder has therefore been 

used as the main structural element for vertical members, and 

consequently (on economic grounds) for members in any other 

direction. Also from a structural view point the circular tube 

is a strong shape with no areas of stress concentration.
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The most fundamental simplifying assumption which has largely 

been adopted is that of linearity. This enables the trains of 

waves travelling in different directions to be separated. In 

addition the Fourier-components of these wave trains may also 

be treated separately. For irrotational waves-in the absence 

of a structure - the only non-linearity arises from the free 

surface boundary condition. For small amplitude waves this 

non-linear term is small. If it is assumed that the structural 

response is linear then the responses to each component of the 

wave field may be treated separately and the effects summed 

assuming no inter-action. There has therefore been considerable 

emphasis on the comparatively simple problem of single frequency 

long-crested waves impinging on circular cylinders.

An important example of the interaction effects which are 

neglected by this approach is demonstrated by Rainey^^^ for the 

case of dynamics of bouyant structures in cross seas.

If the cylinder diameter is very small in relation to the wave-

length, it seems reasonable to assume that conditions are not 

dissimilar from those in steady flow. Morison et al(61) proposed 

that the force on a small vertical surface piercing cylinder 

comprised two parts, one analogous to the steady flow drag force 

and hence proportional to velocity squared, the second proportional 

to acceleration, both of these quantities being measured on the 

axis of the cylinder. To account for the error caused by assuming 

the presence of the cylinder does not disturb the flow field a 

coefficient was assigned to each term , the so called drag and 

inertia coefficients - Cn and C...D M
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The Morison equation represents a useful design tool if the 

values of the coefficients can be found. Keulegan and Carpenter^) 

showed that for a given oscillatory flow G^ and could 

be assumed constant as a first approximation, and that the 

variation of the coefficients over a number of waves correlated 

well with a period parameter, which has no physical significance 

in steady flow.

Wilson and Reid^) discussing the frustrating amount of scatter 

in the results up to that time show clearly that Cp and are 

also a function of Reynolds number. This highlights the problems 

of scaling up to real structures if both non-dimensional parameters 

are to be modelled. In particular the high Reynolds numbers in 

the prototype are difficult to model in the laboratory flume.

To achieve these high Reynolds numbers Sarpkaya^^ has used a 

U tube device and hence oscillatory flow. His extensive results 

for both rough and smooth cylinders show clearly the dependence 

of Cg and on both non dimensional parameters and relative 

roughness.

The small cylinder regime has then been straitjacketed into the 

framework of the Morison equation, and it is only recently that 

this framework has been questioned ? Lighthill. It seems 

clear that, if a dependence on a period parameter is being found, 

the assumption of quasi-steady flow is being violated.

-8-1



The problems of real seas have, however been tackled with this 

framework using linear spectral analysis techniques, by linear-

ising the drag term. Borgman^) has shown that the spectral 

density of wave heights and that of structural responses are very 

similar, which implies that use of a linear model is reasonable. 

The model breaks down however when the drag component predominates 

since the structural response must in reality be non-linear. 

Pierson and Holmes^) and Nath and Harleman(64) have also used 

this approach. It is unfortunate that the region where Morison's 

equation is most likely to be correct (small cylinders) is also 

when the non-linear drag term is most significant.

In steady flow the in-line force on a cylinder fluctuates about a 

mean value as a result of the discontinuous nature of separating 

vorticity. These fluctuations are usually unimportant except 

when their frequency is close to the natural frequency of the 

structure. The fluctations in the transverse direction are often 

larger because the separation takes place at or near the extremes 

of a transverse diameter. For the case of waves this transverse 

force has been studied by Isaccson and Maull^42^ .Chakrabarti et 

al (16)and Sawargi et al (73) . One conclusion is that it is by 

no means insignificant, sometimes exceeding the in-line force. 

It is surprising that no account of the corresponding fluctuations 

in the in-line direction has been taken, particularly as this would 

contribute to scatter in CD values.

The transverse force has often been called a lift force, and a lift 

coefficient has been introduced in a similar way to steady flow. 

This has lead to an artifical separation of the causes of the in-

line force from the causes of the lift force.

- 9 -



It is far more fruitful, particularly in the case of horizontal 

cylinders, to consider the instantaneous integral of pressure 

around the cylinder as giving rise to a resultant force which 

may be resolved into two components in orthogonal directions. 

The transverse force is caused by separating eddies just as the 

in line drag force is.

In steady flow the 'lift' force is usually associated with some 

asymmetry of shape which is entirely lacking here.

It is clear from the work of Zdravkovich and Namork^0) that the 

formation of vortices in waves is extremely complicated.

Verley^80) in a useful report setting out the various approaches 

to the analysis of wave loading summarises the regimes of flow 

essentially as follows:

L/d < 1 Pure reflection

L/D < 5 Diffraction effects predominate

H/D < 3 Inertia increasingly dominant

H/D = 1.7 Incipience of drag (and lift)

H/D > 3 Drag increasingly dominant

The limit of application of Morison's equation he implies from 

the above to be L/D>5.

There seems no valid reason for supposing that the upper limit of 

applicability of diffraction theory should be the lower limit for 

applicability of Morison's equation. It seems far more likely 

that there is a middle ground where neither approach is applicable.

- 10 -



Use of these simplified rules of applicability must be made 

with great care. It can be shown that the Keulegan-Carpenter 

number may be expressed as

Nkc = D tanh kh 2.1.1.

for small amplitude waves. It is therefore possible to maintain 

the value of this parameter by increasing H in the same proportion 

as D in line with the regimes above. For a given wavelength the 

wave steepness KH will be increasing and leading to increased 

non-linear effects as shown below ? Lighthill^) . Similar 

manipulation of H/tanh kh leads to differences in the variation 

of velocity with depth which must inevitably affect the formation 

of vorticity. The traditional scatter may simply be an attempt 

to represent a family of curves by a single line.

A discussion of the results of Sarpkaya, Keulegan and Carpenter 

and Bidde is included. Bidde uses waVes in an experimental 

investigation of transverse forces on rigid cylinders. It is 

suggested that the reason for the discrepancies between the results 

in waves and those in oscillatory flow is due to the different 

motions of the fluid particles. In waves the particle orbits 

are elliptical whereas oscillatory flow is rectilinear. There 

is however a more fundamental difference. It will be seen below 

Lighthill that forces due to the convective acceleration

in waves lead to a second harmonic component of force which is 

ignored in the traditional Morison approach. It is however not 

insignificant and could be responsible for the large amount of 

scatter reported in the values of C^.



The oscillating flow in a U tube does not possess convective 

accelerations. That is the particle motions at two different 

points in the tube are in phase, for incompressible flow. This may 

be one reason why Sarpkaya's results show very little scatter.

Verley explains that for 8< N^c< 20 the timing of eddy separation 

is likely to lead to considerable variations of CD and CM within 

a wave cycle. He is recognising that the velocity and the drag 

component of force associated with it may not be in phase because 

of the finite time taken for an eddy to separate. Since the 

engineer is usually interested in the maximum force and not its 

phase his recommended method for calculating CD for design 

purposes is to divide the maximum drag force by the maximum velocity 

squared. This will certainly be conservative but in some cases 

will lead to gross over-estimation.

Finally a useful set of design calculations is included as an 

appendix.

Rainey(?0^beginswith a review of the state of the art in dynamic 

design of tethered bouyant structures, from which it can be seen 

that what little mathematical analysis there is relies heavily on 

the assumption of linearity.- For most structures then, tank tests 

are performed to check for any undesirable effects. These may 

however be masked by the relatively high damping at model scale. 

The fundamental assumption in the design of such structures is 

that they move with the waves. This may be achieved by making sure 

that the natural frequencies of oscillation are below those in the 

design wave spectrum.

- 12 -



By considering the equilibrium of a simple tethered sphere in 

its instantaneous displaced position he arrives at a simple 

formula for the surge motion.

2.1.2.

by assuming that vertical motions are small. This equation is 

arrived at under the assumption of very long waves to avoid the 

problems associated with the convective terms when the sphere moves. 

The fluid exciting forces are therefore in the Morison equation 

regime. This simple model is shown to be the first approximation 

for many more complicated axisymmetric platform shapes, where in 

general three such equations arise for the motions of surge, sway 

and yaw, the latter being homogeneous for such structures.

The inclusion of a velocity dependent damping term is made to 

account for the effects of viscosity in an apparently arbitrary 

way. This is subsequently criticised by Sarpkaya who suggests that 

in the Morison equation regime the correct equations should include 

a non-linear drag term. Rainey responds by saying that this was 

a good first approximation.

The equations governing the platform behaviour are then shown to 

be reducible to a set of Mathieu equations for which instabilities 

are well known. The presence of instabilities is. shown using the 

symbolism of the analogue computer.
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It then appears that the damping is the single most important 

factor in controlling instabilities which will occur when the 

wave frequency is twice the natural oscillation frequency.

Subharmonic resonance is then demonstrated to be possible in 

cross seas if the difference between the major frequency components 

is close to the natural frequency. This means that although a 

designer may have been able to keep the natural oscillation 

frequencies much lower than the expected wave frequencies, in 

cross seas instabilities can still show up.

The presence of these two types of instability is demonstrated in 

tank tests and comparison of theoretical and experimental results 

shows good agreement except for one test result which showed an 

instability outside the predicted range ^Interestingly this was 

explained by Richardson in the discussion to be due to neglect 

of the convective terms within a wave. Their inclusion leads to 

a narrowing of the regions of stability}. Even though the model 

damping is likely to be greater than in the prototype the oscillations 

built up to - D/2 in surge and - 40° in yaw.

Two important conclusions may be drawn from this paper. For 

dynamic calculations the equation of motion must be written for the 

structure in its instantaneous displaced position so that the 

horizontal component of the cable tension (which is substantially 

due to vertical loads) is included in the horizontal dynamic equation. 

This component may have been ignored previously since it would normally 

be expected to aid stability.
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The use of superimposed undirectional Iwave analyses doesnot 

predict subharmonic oscillations. For the Mathieu instabilities 

however, random wave analysis leads to the inescapable conclusion 

that regular waves are the worst case.

Morison et alstudied the forces exerted by waves on surface 

piercing circular cylinders. They proposed that for small diameter 

cylinders the force on an infinitessimal element may be expressed 

as

dz 2.1.3.

To avoid complicated sign conventions the velocity squared term 

has subsequently been expressed in terms of u|u|. Using small 

amplitude wave theory for evaluation of the velocity and acceleration, 

they discuss the relative magnitudes of the inertia force (the first 

term) and the drag force. For a cylinder cantilevering from the 

bed they derive an expression for the total moment about the base.

An experimental set up is described from which a continuous time 

record of bending moment and surface elevation is obtained. The 

inertia and drag coefficients are then found by identifying the 

points of zero horizontal velocity and acceleration respectively.

The range of L/D values used for the limited experimental investi-

gation was 24<L/D<111. The lower limit seems much more reasonable 

and suggests the range 5<L/D<24 is neither diffraction (due to 

viscosity effects) nor quasi-steady. The results of this investigation 

are summarised as

1.626 - 0.414

1.508 i 0.197 2.1.4.
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There is considerable variation in the results and in view 

of the preliminary nature of this report it is surprising that the 

equation was adopted so readily. An example of the comparison of 

the measured bending moment with the theoretical expression 

assuming and CM are constant is reproduced as fig 2.1.1. A 

second harmonic component is clearly visible even though L/D = 147.

In order to increase the drag component of the force the upper 

limit of wave steepness is as high as 0.11. It will be shown below 

that this implies the contribution to the force from the convective 

acceleration is not negligible and could explain the scatter.

The Morison equation is essentially a split of the total force into 

two components. The first combines the effects of the added mass 

and the pressure gradient in the wave, in the absence of the cylinder, 

and is proportional to the acceleration. The second takes account 

of any velocity dependent forces which in this case are predominantly 

form drag since skin friction is extremely small.

The inclusion of just these two terms is valid as a first approximation 

for the case of very long waves since the flow is quasi-steady. The 

method has been applied to waves of much shorter length in relation 

to height with a resulting scatter of coefficients.

Keulegan and Carpenter set out to explain the scatter by correlating 

Cp and CM with a period parameter. By integrating the differential 

equation of momentum throughout the fluid contained between parallel 

planes equidistant from an infinite cylinder they derive an equation 

for the force on the cylinder.
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By substituting the expressions for the velocity and pressure 

fields in a fluctuating two dimensional flow they show that 

for irrotational flow = 2. They do not assume that the far 

field variation of velocity includes any convective terms such 

as would arise from a truly three dimensional flow.

Section 3 of their paper is the most important. For the restricted 

case of oscillatory flow they assume that the force per unit length 

on a cylinder may be expressed as a Fourier-series in terms of the 

phase angle. Comparison of this expansion with the Morison 

equation shows that and may each be expressed as a series, 

the first terms of which are constants.

The non dimensional force is then expressed as Morison's equation 

plus a remainder function. Analysis of this function enables the 

variation of Cn and C with phase to be calculated.
u M

To examine the form of this remainder function an experimental 

investigation into the forces experienced by cylinders and plates 

was conducted. The fluid motion is that of a standing wave in a 

closed rectangular tank. At the test section, in the middle of 

the tank and below the surface, the motion is shown to be approx-

imately oscillatory. To be able to investigate the relative 

magnitudes of vertical and horizontal velocity at the test section 

a second order wave theory must be used, since to a first approxi-

mation the mid-point free surface is a node and hence the vertical 

velocity is zero.
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The authors state that the majority of their results are made 

with the wave semi-amplitude less than 4% of the half wave 

length. The results of the experiments are well documented from 

which it is possible to see that 50% of the cylinder results use 

a semi-amplitude in excess of this. However, no evidence of non-

linear effects in the irrotational component of the force is 

apparent.

The graphs of CM and against the period parameter K = are 

reproduced as figures 2.1.2. and 2.1.3. The smooth curve suggested 

by Keulegan and Carpenter has been replaced by the more realistic 

family of curves. It appears that above a value of 25 for the 

period parameter their remains a quite strong dependence on diameter.
_ D2

This may be non-dimensionalized in terms of the parameter B = yy , 

called the frequency parameter by Sarpkaya

CM is no longer a function of the period parameter but appears 

approximately to be a constant depending on B. Cg however is a 

function of both parameters as would be expected.

Theoretical considerations suggest that = 2 irrespective of Cg 

It is difficult to reconcile this fact with the definite reduction 

of Cm to as low as 0.70 corresponding to peak Cg. However, their 

method of calculation of Cg and CM is shown to be equivalent to a 

weighted average. Any failing in the theoretical representation 

by Morison's equation inevitably leads to variations of and Cg 

to accommodate it.
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For a cylinder the comparison of measured force with Morison's 

equation using constant coefficients is given for values of 

the period parameter of 3.0, 15.6 and 44.7. A value of = 2 

would not significantly affect the results for K = 3.0 or 44.7, 

the variations of CM through a cycle being very slight. For the 

other case the variation of is shown to be oscillatory, plunging 

to a value of -2 at the points of maximum drag component.

K = 15.6 is shown to correspond to the formation of a single eddy 

per half period. This eddy separates from the top of the cylinder 

in either direction, which means that a substantial 'lift1 component 

will occur.

Detailed examination of their figures 24 and 25 suggests that the 

most important contributing factor is that the peak drag force is 

out of phase with and lagging the peak velocity. This is because 

the eddy contributing to this force takes time to separate and 

for this particular value of period parameter this separation time 

is a significant proportion of the quarter period.

The acceleration component falls through zero at peak velocity and 

is the only available term to accommodate this phase lag.

Consequently the instantaneous value of is large and negative. 

This behaviour may be understood by reference to fig 2.1.4.

It appears then that, if a suitable method of accommodating this 

phase lag can be incorporated in Morison's equation then CM may 

remain constant at 2.
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The discussion by Wilson and Reid(88)of a paper by Beckmann 

and Thibodeaux is often referenced as an illustration of the 

scatter in the values of C^, and C^. Their figure 9 showing 

Cp vs Re is however of little value out of context without 

the additional values of Keulegan Carpenter number. The 

main emphasis of the discussion is on the recommendation that 

designers be more conservative in their choice of C^, and 

also the 'lift1 coefficient C^. There is very little 

substance to this discussion. The only clear indication which 

appears is that the coefficients necessarily increase due to 

the proximity of the bed. Some extremely doubtful arguments 

are used to support this claim based on the assumption that the 

potential flow solution gives an upper limit to the values of 

CL and CM.

A simple illustration serves to highlight the criticism. If 

the cylinder (which in this context is a pipe-line) is a small 

distance above the bed the lift coefficient for the potential 

flow case is actually quite large and negative as shown below 

(section 3. 8. ). In the case of steady real flow a boundary 

layer will have formed along the bed which leads to a significantly 

smaller lift force but of positive sign. However, in the wave 

case this boundary layer will be extremely thin so that the 

potential flow result may be substantially correct. Even when 

the cylinder is resting on the bed, permeability of the soil 

and/or surface irregularities serve to allow the increased velocity 

beneath the cylinder. The special case of the uniform cylinder 

resting tightly on a plane bed is of doubtful practical interest. 

The implication by the authors that as the bed is approached the 

lift coefficient increases is refuted.
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Sarpkaya^71^has conducted many experiments on forces on 

cylinders in harmonic flow. This paper summarises much of 

this work with particular emphasis on the effects of cylinder 

surface roughness. The results of an extensive investigation, 

using a 'll1 shaped water tunnel, are described.

In a similar way to the experiments of Keulegan and Carpenter 

the period of oscillation does not significantly differ from 

5.5 seconds for all the tests.

The Reynolds numbers in the real sea are much higher than 

those usually achieved in a laboratory situation, often in 

excess of 107. The high Reynolds numbers achieved in this 

experiment (up to 1.5 x 10^) are therefore remarkable. Although 

it is stated in the introduction that the range of Keulegan - 

Carpenter numbers (K) was from 4 to 100, only the results for 

Cp and 0^ for K = 20, 30, 40, 60 and 100 are presented. 

Examination of his figure 17, where all the results of lift 

coefficient for relative roughness 1/200 are presented, suggests 

why. Below K = 20 considerable scatter in the results is apparent. 

This is the region where only one eddy separates per cycle and 

scatter is perhaps not surprising. This scatter is likely to show 

up in the in-line force, but to a lesser extent. In this figure 

the lift coefficient is seen to reach 3.5 when K = 15, which is 

almost twice the drag coefficient. This force, and a knowledge 

of the dominant frequency at which it acts is extremely important 

in the analysis of vibrations.
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Sarpkaya suggests that the Strouhal number controlling the 

eddy shedding frequency remains approximately constant at 

0.22 for rough cylinders when Reynolds number exceeds 2 x io\ 

This result may not be general because the frequency of operation 

of the tunnel was constant.

The values of CD and CM (calculated in essentially the same way 

as those of Keulegan and Carpenter) are plotted for each value 

of K, against Reynolds' number (Re), for different values of 

relative roughness, together with the results for smooth cylinders.

One striking result is that CM is considerably below 2 for most 

of the results. In particular it seems consistently to rise from 

1.0 for lbw Reynolds numbers less than 10^. The sophisticated 

analysis method may be masking an effect similar to that previously 

mentioned in the discussion of Keulegan and Carpenter's paper. The 

value to which CM tends with increasing Re is lower for lower K 

values.

The effect of roughness is to reduce the minimum Re at which separ-

ation occurs. The values of CQ up to the minimum are all below the 

corresponding value for smooth cylinders. After the minimum CQ rises 

rapidly with inreasing Re to approach a maximum value depending 

on relative roughness and K, in a similar way to steady flow. It is 

shown in the subsequent discussion that extrapolation of the data 

suggests that this maximum value of C& does not approach the correspond-

ing steady flow result until K = 1000.
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This highlights the conclusion that the steady flow results 

cannot be used for harmonic flows over rough cylinders.

In discussing the applicability to wavy flows, Sarpkaya 

suggests that his results represent an upper bound. His 

argument rests on the lack of what he calls 'spanwise coherence1 

of eddy structure in the wave situation. However, the results 

reproduced by Mi 11er(59) in the discussion show that Sarpkaya's 

results are lower than in the regular wave situation.

By spanwise coherence Sarpkaya means that along the cylinder length 

conditions are the same. In the wave situation the fluid velocity 

reduces with depth and so for vertical cylinders there is less 

spanwise coherence. The reduction of velocity with depth is taken 

into account when Morison's equation is integrated vertically so 

that this by itself should not lead to a reduction in Cg. However, 

since Cg varies with Re it should therefore vary with depth, a fact 

which is often ignored. For smooth cylinders in the drag regime 

Cg may increase with reducing Reynolds' number. This will lead to 

a higher average Cg than free surface characteristics would normally 

dictate. On the other hand, when the free surface velocity is 

sufficient to cause eddy separation this may trigger early separation 

lower down the cylinder leading to a higher force than the local 

Reynolds number would suggest.

It appears then that the apparent lack of spanwise coherence in the 

theoretical horizontal velocity allows the real fluid room to increase 

the actual spanwise coherence and hence the force.
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This argument leads to the conclusion that the harmonic flow 

results will be a lower bound to the regular wave results.

The effects of vortex street feedback in real waves may 

increase or decrease the fluid force depending on the values 

of Re and K so that in fact no definitive statement may be 

made (see Zdravkovich and Namork below).

It is often assumed that for Morison's equation to be valid, 

the cylinder diameter has to be small in comparison with the 

wavelength. A more accurate definition should include a restric-

tion on wave steepness. In other words, for quasi-steady flow 

the requirement that - the difference in velocity over a cylinder 

diameter must be small - is necessary but not sufficient, since 

this is easily satisfied by an infinitessimally thin cylinder. 

The spatial gradient of velocity must also be small, and this 

does not depend on the cylinder at all.

This statement may be understood with reference to the upward 

buoyancy force acting on a sphere in water. This force depends 

only on the fluid pressure gradient. The fact that for a small 

sphere the pressure difference across the sphere is small, is 

of no particular significance;

In the context of waves this means that the convective accelerations 

within the flow field may only be ignored if they are insignificant 

compared with the local acceleration irrespective of the cylinder 

size.
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Lighthill presented a remarkable discussion along these 

lines to a gathering of structural experts and hydrody- 

namicists. Although many of the arguments presented may be 

applied generally, he concentrated on the particular case of 

a long vertical surface-piercing cylinder in deep water waves. 

The paper is remarkable not only for its scope but also for 

its far reaching conclusions.

Lighthill suggests that it is possible to split the fluid flow 

around a body into an irrotational flow which satisfies the 

instantaneous boundary conditions and the flow associated with 

the separated vorticity which satisfies zero boundary conditions. 

This is because the kinetic energy associated with the irrotational 

flow component is always a minimum consistent with the instantaneous 

boundary conditions and the increasing energy (both kinetic and 

heat) of the wake must therefore balance the work done by the 

drag force.

The Morison equation may be seen to be a split of the total 

force into the responses to these two flow components. This 

suggests that the inertia coefficient (C^) should maintain its 

classical value of 2 independent of wake width or separation. 

Little emphasis is placed on the effects of attached vorticity 

which must satisfy the no slip condition. This suggests that the 

effective diameter must be greater than the actual diameter by 

an amount depending on the thickness of this boundary layer. This 

effect would lead to a slight increase in over 2 if the actual 

diameter is used.
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Lighthill now concentrates on the irrotational flow response. 

The components of pressure are defined as hydrostatic (-pgz), 

dynamic (-|pq2) and transient (-p ). The usual form of

Morison's equation assumes that the structure responds only to 

the transient pressures and is therefore wholly linear. Any 

non-linearities must therefore be interpreted as resulting from 

drag forces only. However, there is a possibility of non-linearities 

in the irrotational response resulting from significant quadratic 

(second order) errors caused by the presence of the cylinder.

Quadratic corrections may be found in one of three ways. The 

linear (first order) wave may be modified by the presence of the 

structure to include a significant quadratic wave component. The 

linear response to this component will be of quadratic order 

i.e. (linearized Bernoulli's equation may be used in a diffraction 

analysis since the dynamic pressure would lead to a quartic 

correction). This component of the force he calls Fq.

Another way is to include, from the point of view of the linear 

waves, any previously ignored quadratic terms. In other words for 

the calculation of pressures include the dynamic terms in Bernoulli's 

equation. The corresponding dynamic force he calls Fd>

A quadratic error is also incurred when the linearized free surface 

boundary condition is applied at the undisturbed water surface.

Including the dynamic terms here would lead to a tertiary error . 

This force which acts at the water line he calls F„.W
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The hydrostatic and transient pressures are equal and opposite 

at the free surface to satisfy the zero pressure condition. The 

hydrostatic pressure decays linearly to the still water level 

whereas the transient pressure decays very slowly (in fact to 

second order it must be assumed that the transient pressure is 

constant between z = 0 and z = n since the linear potential 

cannot be extrapolated above z = 0). The resultant force per 

unit length of waterline is therefore roughly equal and opposite 

to the hydrostatic force.

Lighthill shows (using the deep water diffraction theory from 

Havelock ^9)) fOrce p small in the Morison equation

limit of small kb (b is cylinder radius) but that it increases at 

least as (kb) becoming more important in the diffraction regime. 

However, the dynamic correction F^ and the water line force Fw 

(in particular) are shown to be significant in the limit of small 

kb, increasing in fact with wave steepness ka (a is wave amplitude). 

An example calculation for a wave of average steepness (ka = 0.3) 

is used to demonstrate that if the method recommended above by Verley 

is used to calculate Cp, neglect of the non-linear correction 

would require Cp to double to achieve the positive peak force. 

However, the negative peak is reduced by the non-linear correction 

so that a reduction of Cp is required. Since for a fixed value of 

CM (say 2) only one value of Cp will give the correct phase position 

of the peak, it is more likely that both CM and Cp would be varied 

to achieve the required maximum at the right phase. This suggests 

that large variations of these coefficients throughout a cycle will 

be necessary to fit both peaks if non-linear terms are ignored.
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Lighthill contrasts this approach with the use of an incident 

wave which includes a quadratic correction by virtue of 

satisfying the non-linear free surface boundary condition but 

is then assumed incorrectly to give rise only to a linear 

irrotational response. It appears that in the case of finite 

amplitude waves Fq may well become more significant in the 

Morison equation regime.

For demonstrating the calculation of F<j, Lighthill uses the 

concept of fluid extension. This dynamic force is the integral 

over the cylinder surface of the dynamic pressures

2
Fd = f J pq nyds 2.1.5.

The components of velocity are calculated separately as a 

response first to the fluctuating uniform velocity and 

secondly to the fluctuating extension v8x;. In other words 

these two flow components are the first two terms of an 

expansion of fluid velocity about the cylinder axis. The 

response to fluctuating velocity is the well known dipole 

(or doublet). The response to the fluctuating extension is 

considered as that due to a quadrupole plus a monopole, the 

latter potential being given as

(r2 - 2b2ln r) 2.1.6.

2
Where E is the instantaneous extension. Clearly r is not a 

potential function. This term arises from a truncated series 

of Bessel functions in Havelock's solution. It represents the 

local behaviour of the potential when kr is small.
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It is not emphasized in the paper that the contribution 

to the dynamic force from cross terms between the vertical 

velocity and its horizontal gradient is twice as big and 

opposite to that due to the horizontal extensions. It is 

perhaps more difficult to give this contribution a physical 

interpretation.

A simple method for calculating Fq is proposed using the 

concept of a reciprocal theorem (Green's theorem) explained 

in an analogy with structural analysis. It is important to 

emphasize that this method (similar to Haskind's relations 

for the linear force) gives little information about local 

forces, but only gives the total force or moment.

To summarize, Lighthill shows that a significant non-linear 

correction to the irrotational flow response must be included 

in Morison's equation. The coefficient associated with this 

term depends on wave steepness and cylinder shape, but not 

size.

In the diffraction regime an additional non-linear correction 

becomes increasingly significant (as cylinder diameter increases) 

caused by the deformation of the wave field, in contrast to the 

inertia coefficient which is known to reduce.

In other words the presence of the structure places an even 

greater restriction on the maximum wave steepness required for 

approximate linearity of irrotational response, than that required 

for linear waves in its absence.
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It will be clear that none of these quadratic corrections arise 

in purely oscillatory flow without a free surface such as that 

used by Sarpkaya.

The direct application of Morison's equation to the design of 

offshore structures is in the form of a design wave approach. 

The designer chooses a hundred year wave (say) in terms of its 

height and length. From a knowledge of the depth of water in 

which the structure will operate values of Reynolds number and 

Keulegan - Carpenter number can be calculated, and hence from 

published data (e.g. Hogben et al 35 ) the values of Cp and CM 

can be found.

Faced with the bewildering scatter of published coefficients the 

designer is forced to choose the highest values to produce a 

conservative design. For large structures this approach becomes 

uneconomical. An alternative approach is to calculate using 

statistical methods the probability of occurrence of a chosen 

maximum force. A detailed study of the statistical analysis of 

ocean wave forces is outside the scope of this thesis. However, 

a critical discussion of four important papers is included since 

they highlight the basic assumptions behind the methods.

Pierson and Holmes begin by criticising the method of 

calculating wave force coefficients based on velocities and 

accelerations implied by a best fit to the water surface. They 

remark that these methods lead to wide scatter but they do not 

say why. It appears that they feel the linearization of the 

drag term in Morison's equation is a major contributing factor.
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Using probabilistic techniques they are able to retain the 

non-linear term, by sampling the fluid force on a pile at 

equally spaced time intervals over a record time which is 

long compared to the lowest wave frequency. They propose 

a two parameter probability distribution which characterises 

the probability of occurrence of fluid force at a point on 

the pile.

The two parameters arise from the assumption that the ambient 

fluid velocity (U) and acceleration (U) are independent.

This leads them to suppose that therefore the corresponding 

force responses (drag and inertia respectively) are also 

independent. There are two possible flaws in this argument. 

The variations of CD and CM are often reported as being 

inversely related, which suggests that they are not independent. 

The fact that U and U may be independent does not necessarily 

imply that the force responses in the presence of a pile are 

also. On the other hand, Lighthill ^4) has indicated that the 

inertia coefficient remains unaffected by the drag term but 

that a significant additional term must be included.

The comparison between the theoretical and measured distributions 

is constrasted with the normal distribution which is obtained 

if a linear analysis is pursued. They conclude that the probability 

of extreme forces is ten times greater than a linear analysis would 

predict. This conclusion must be based on their measured 

distribution since their theoretical distribution is not a 

consistently good fit.
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For real waves (unless the amplitude is infinitessimal) the 

water surface spends longer below mean water leveT than above 

it. If equal sample intervals are used then the probability 

of occurrence of a negative drag force is greatest, although 

the maximum force is most likely positive (in this context 

a positive force is in the direction of wave travel). This 

contributes to a skewness of the probability density function 

which has maximum effect at the extremes. Simply recognising 

that the first and third moments are non zero is invalid however 

since the skewness is caused by the waves themselves being 

non-linear.

The probability of a force close to zero is obviously high.

This means that the curve fit is weighted heavily away from 

the regions of most interest, the extreme forces. The effects 

of finite wave height show up clearly here as poor agreement between 

theoretical and measured distributions. An accurate measurement 

of the extreme probabilities is severely affected by the record 

time of twenty minutes. It is difficult to accept their impli-

cation that their approach is better than the normal distribution 

since the differences between them are not significant until a 

probability level of 2%, at which level the results are based 

on the number of samples obtained in a twenty-four second period 

(the sampling interval is not given). In addition these results 

are more likely to arise from finite amplitude waves.

They indicate that values of CD and CM where obtained from the 

two parameters which achieved the best fit to the measured 

distribution. No results are presented because they showed no 

clear correlations.
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They felt confident enough however to state that Cp and 

cannot be assumed constant with depth.

Borgman begins with a useful introduction to the terminology 

of spectral analysis of random processes. This method, which is 

based on the Fourier integral transform, has been used extensively 

in electronics but this application to waves was novel. It is 

assumed that the variation of a random signal with time may be 

expressed as the sum of an infinite number of sinusoidal compon-

ents covering all the frequencies from zero to infinity. Analysis 

of the signal leads to a function of frequency known as the power 

spectral density which is often proportional to the energy contained 

in each frequency component.

The application to wave forces is in the form of a black box 

approach. The input spectrum is that of the water surface elevation 

above mean water level (n) and the output spectrum that of the 

force per unit length (<|>) on a vertical pile. These two spectra 

are assumed to be related by a transfer function (of frequency) 

which characterises the physical process.

This relationship between n and <|> may be constructed by recognising 

that the ambient fluid velocity and acceleration are related to n 

by a wave theory and to <f> by Morison's equation. The mathematical 

complications associated with the non-linear drag force are then 

removed by using the first term of its series representation, an 

approximation which is in error by about 15%.
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Borgman goes on to analyse data from the real sea. From the 

measured spectral density of n(t) the approximate spectral 

density of force may be calculated but remains a function of 

the unkown coefficients Cp and C^. Morison's equation is 

assumed to be a flexible framework so that Cp and C^ can be 

found by a least squares fit to the measured force spectrum.

The good agreement is perhaps not so 'surprising' since this 

procedure allows the coefficients to vary to take up some of 

the inaccuracy introduced by the linearization of the drag 

term. The use of Morison's equation in this way will inevitably 

lead to scatter in the coefficients from different records.

On the strength of the presented results Borgman suggests 

that the equivalent linearized form of Morison's equation 

2.1.7.

may in fact be a better representation. There is a possible 

physical justification for this based on the fact that eddies, 

once separated, move with the flow. If the flow component 

normal to the pile is approaching zero, separated vorticity will 

stay close to, and continue to exert a force on the pile. This 

may be expected to make the force response more nearly sinusoidal. 

In addition, the orbital nature of the flow may contribute to 

increased vorticity compared with the oscillatory flow case. It 

is clear that equation 2.1.7. still reduces to the accepted 

steady flow form (except for a multiplicative constant).
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This suggestion combined with the additional irrotational flow 

term may well lead to reduced scatter even for regular waves.

In a second paper Borgman helps to clarify the application 

of numerical spectral analysis to the simulation of random waves 

and wave forces. Two similar methods are proposed.

Simulation of n(t) by superposition of a finite number of components 

of different frequency each having a random phase and an amplitude 

consistent with the energy in the required spectral density. Each 

component wavelet is assumed to travel at a phase speed given by 

linear wave theory. All the waves are therefore of small 

amplitude.

Simulation by digital filtering introduces the idea of the discrete 

Fourier transform which utilizes the numerical fast Fourier 

transform available on most computers. Essentially, a digital 

filter operates on an input' sequence of numbers with a kernal 

(sic) function to produce an output sequence of numbers. The 

kernal function K(f) is a Fourier series with initially unknown 

coefficients. The crux of this method lies in the relationship 

between the input and output spectral densities

Syy(f) = |K(f)|2Sxx (f) 2.1.8.

If the kernel function can be made equal to the square root of the 

required sea surface spectral density function then using white 

noise for the input yields the required spectral density at the 

output (white noise has a spectral density of one).
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Irregular water surfaces simulatedusing these approaches show 

marked differences when compared with real sea waves which tend 

to have more peaked crests and flatter troughs. This occurs 

as a consequence of the non-linear boundary condition satisfied 

by all but the smallest waves. The higher frequency components 

introduced by this condition tend to travel with the same phase 

speed as the main wave and so invalidate the assumptions of 

random phase. Although attempts to fit real sea data by 

introducing skewness may work in the open sea, the presence of 

a structure causes additional non-linearities which would not 

be modelled correctly in the force spectrum.

An interesting experiment may be easily set up to investigate 

the effects of skewness in laboratory generated random waves. 

From the spectral analysis of n^t) at one wave probe n2(t) at 

another probe may be extrapolated. If the distance between the 

probes and the water depth are chosen so that differences in 

phase velocity are easily detectable then comparison of the 

measured phase relationships at the second probe with those 

predicted, will enable a limiting wave steepness for linearity, 

to be found.

Nath and Harleman ^4) describe an interesting application of 

the methods proposed by Borgman to the measurement of sea 

spectra. They show that for certain ratios of wave height to 

cylinder diameter one or other of the terms in Morison's equation 

may be safely ignored.
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They pursue the case when the drag force is negligible and 

so the fluid force is linearly related to the water surface 

elevation. By arranging weights at the top of a vertical 

surface-piercing cylinder they were able to construct a 

single degree of freedom transducer which responded to the 

magnitude of the wave spectrum at its natural frequency, thus 

acting as a mechanical analogue of the narrow banded filter. 

The agreement between the spectrum obtained using this 

mechanical filter and the usual numerical technique is good 

except, significantly, near the peak energy. It is likely 

that here the non-linear effects in the irrotational flow plus 

the gross motions of the resonating vibrator will affect the 

response. The agreement is all the more surprising when it is 

realised that CM was fixed at 2.0 and not calculated to achieve 

a best fit.

To summarize, it appears that spectral analysis may be a power-

ful curve fitting technique but the large scatter in the published 

coefficients makes extrapolation doubtful. It seems likely, 

however that the main reasons for this scatter are inherent in 

the use of Morison's equation.

The possible sources of error include

1. Linearizing the non-linear velocity term in Morison's 

equation.

2. Ignoring the non-linear irrotational flow term.

3. Ignoring the variation of CQ and CM with depth.

4. Ignoring the variation of CQ and CM with frequency.

5. Assuming that the structure responds to the instantaneous 

normal component of velocity i.e. ignoring fluid memory and 

orbital motions.
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6. Assuming that real waves satisfy a linear free surface 

condition.

7. Assuming that the structure responds independently to 

each individual component wavelet.

To date most workers have reduced the effects of some of these 

errors by using narrow banded spectra, small amplitude waves 

(maximum wave steepness of Borgman's data was approximately 0.03) 

and allowing and to vary to achieve a best fit. As 

Borgman suggests, the linear form of the drag term may infact be 

a better approximation.

The most important assumption is number 6, since this enables 

the linear superposition of wavelets. Although this may be 

valid in the open sea often significant forces are caused by 

interactions in the presence of the structure.

The use of spectral analysis for wave forces has become more 

widespread since the introduction of the Fast Fourier Transform 

algorithm by Cooley and Tukey (18), it is unfortunately all too 

easy to misuse it. The analysis to date of the transverse or 

'lift' forces on small cylinders is an example of just such a 

misuse.

Isaacson and Maull ^2) investigating the transverse forces on 

a vertical cylinder measured both the resultant force and the 

pressure distributions around several cross-sections at different 

depths by assuming that their experimental waves were perfectly 

periodic.

- 38 -



The pressure distributions are presented in coefficient form 

by using as a reference pressure the static (sic) pressure 

within the wave at the same depth. They used two different 

experimental situations: the rigidly mounted cylinder under 

the action of regular waves and (to facilitate flow visualisation) 

a cylinder oscillating in otherwise still water. It is not 

always clear which results relate to which flow regime. The 

results from the two cases are only comparable if the depth 

variation of velocity is small and the waves are small amplitude.

The coefficient of lift force is defined in a similar way to

the drag force for steady flow by 

2.1.9.

although unlike the drag coefficient the lift coefficient C|_ 

must vary throughout the cycle even as a first approximation. 

The variation of velocity with depth will affect the separation 

of vorticity and is characterised by the wave depth parameter 

kh. The variation of C|_ with Keulegan - Carpenter number (KC, 

defined at the surface) exhibits a maximum at about 10 for all 

values of kh. They use a depth averaged r.m.s. lift coefficient 

to compare the results for deep, intermediate and shallow waves. 

Since this takes account of the depth variation of velocity, 

the results should be the same for all depths if the transverse 

force is a response to the local fluctuating velocity. The 

experimental fact that the intermediate depth results are largest 

is in agreement with the hypothesis (above) that the reduced 

spanwise coherence in the ambient flow allows room for more 

separated vorticity than the local velocity would suggest.

- 39 -



They show that the Fourier components of the lift force occur 

at multiples of the wave frequency with the strongest being 

the second harmonic at KC - 10 corresponding to the formation 

of one eddy per half cycle. The third harmonic peaks at about 

KC = 20.

To demonstrate that the lift force is closely related to the 

presence of separated vorticity they show the pressure 

distributions close to the surface together with the positions 

of any eddies from the flow visualization. One such result is 

reproduced as figure 2.1.5a where the broken line represents 

the potential theory. Figure 2.1.5b shows the variation of 

pressure derived from this, due to the presence of the eddy 

only. They do not comment on the surprisingly large positive 

pressure close to 0 = 270°. Two reasons for this large 

discrepancy are, firstly that their potential theory result is 

for an oscillating flow withoutthe effects of the free surface 

(in particular a fluctuating vertical velocity) which may be 

quite large even if their resultant is small. Secondly they have 

reduced the potential flow result to mean zero which will obviously 

not affect the resultant force. However, there is no reason to 

suppose that the additional pressure distribution due to the 

single eddy close to 0 =150° will also be mean zero.

Chakrabarti et al consider both the in-line and the 

transverse forces on a vertical cylinder although they analyse 

them separately. The values of CM and Cg which they obtain by a 

least squares fit show surprisingly little agreement with the 

results of Keulegan and Carpenter ($0) anc| sarpkaya although 

the integrated theoretical force is within 5% of the measured force. 



Although the transverse force traces appear to be irregular, 

pronounced spikes in the energy spectra occur at multiples 

of the wave frequency. They show that as KC increases the 

number of eddies shed per half cycle increases in integer 

steps. Correspondingly the ratio, lift frequency to wave 

frequency is always an integer. They therefore propose that 

the lift force expression should be in the form of a Fourier 

series for which they calculate the first five coefficients. 

Their results are in general agreement with Isaacson and
(42)

Maull ' '. The largest component is the second harmonic for 

KC between 6 and 16, corresponding to one eddy shed per half 

cycle.

Their measured forces confirm the importance of the transverse 

force in this range since for KC about 15 the resultant force 

is as much as 60% more than the in-line force. They conclude 

by proposing that the resultant force be considered as the 

vector sum of Morison's equation and their Fourier series 

representation of the transverse force.

Although the Fourier analysis of the transverse force will 

usually yield the phase angles of the components, the above 

two papers make no mention of them.

Sawaragi et al investigated the transverse forces on

a vertical cylinder using synchronized photographic and 

tape recording techniques to try to accurately relate eddy 

formation to transverse force.
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They define a surface tracer KC (which is closely related 

to the usual definition but is more easily estimated from 

the photographic record) and classify eddy formation into 

six categories according to the ultimate distribution of 

shed eddies in a half cycle, each category being a specific 

range of KC.

Using these techniques they are able to closely relate the 

asymmetry of the vortices to the occurrence of a transverse 

force, showing how their categorization defines the frequency 

at which it occurs.

They present a comparison between the phase of occurrence of 

the maximum in-line force and the maximum transverse force.

The considerable scatter makes it difficult to draw any 

useful conclusions. Ln any case it is the in line drag force 

which should correlate with the transverse force since both 

are derived from the eddy structure.

They calculate the frequency components of the transverse force 

in the same way as Chakrabarti et al ^16) ancj obtain similar 

results. They draw the surprising conclusion that, because the 

frequency ratio in waves increases in discrete steps whereas 

for undirectional steady flow it varies continuously, the 

mechanism of vortex shedding is qualitatively different for the 

two cases.
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Their results again confirm that design based solely on 

Morison's equation is likely to seriously underestimate total 

forces. In this context it is worth remarking that the 

usual statistical analysis of irregular ocean wave forces 

pays little attention to the direction of the maximum force 

for uni-directional spectra. The effect of transverse forces 

is therefore to some extent included in the calculated Morison 

coefficients. However, for multi-directional wave spectra 

the effects of transverse forces will be ignored since the 

force response will be assumed to be in the wave component 

direction.

There seems to be considerable agreement between the 

experimental findings of these researchers.

It is clear that the variation of transverse force with time 

is usually irregular within a single wave cycle but shows 

remarkable consistency from wave to wave. This means that 

for periodic waves the transverse force is periodic at the 

wave frequency. However irregular the variation within a 

wave this periodicity dictates that only harmonics of the 

wave frequency may be used to represent the force.

• 1

This is not to say however, that the dominant frequency of 

vortex shedding must be a multiple of the wave frequency. The 

mechanism of vortex shedding is unlikely to differ very much 

for steady or unsteady flow. The similarity between the two 

cases can be brought out by an analysis based on the concept 

of time of separation.
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The time it takes an eddy to separate and hence exert a 

force is related to the local velocity and a dimension 

representative of the distance the vorticity must travel 

to separate by

T a Dimension defining separation 2 1 10
Velocity at which vorticity travels

For a cylinder this dimension is related to the diameter and 

the velocity of travel to the fluctuating velocity in the 

wave. The frequency of vortex shedding within a single wave 

is therefore related to the inverse of Ts and hence (for a 

given cylinder) directly to the fluctuating velocity. If only 

one eddy separates per half cycle then the maximum velocity in 

the wave may be used to characterize Ts. As more eddies are 

shed the frequency will reduce with the reducing velocity.

The frequency of vortex shedding within each half cycle is 

therefore expected to be a continuous function of KC.

It is generally accepted that the drag component of wave force 

given in Morison's equation depends largely on the shed vorticity 

since skin friction effects are small. It is remarkable there-

fore that no one has related the discrete formation of eddies 

to the variation of this drag component. Most researchers have 

preferred to manipulate the coefficients CQ and CM to best fit 

the measured in-line force. One possible difficulty is the 

fact that this force is not solely due to drag but includes 

the irrotational flow response.
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If it is accepted that = 2 and non-linear irrotational 

effects if significant are equally determinate then the drag 

force may be isolated and analysed with reference to the 

shed vorticity. This may help to explain the anomalously 

low values of close to the region of maximum lift force. 

It may also answer the question raised by Borgman of whether 

the linearized form of the drag term is more accurate.
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As if to underline the complicated nature of vortex 

formation in unsteady flow Zdravkovich and Namork ) 

show a previously unobserved phenomenon for apparently the 

same situation. They show that the persistence of vorticity 

is such that when a separated vortex is swept back (as the 

ambient flow reverses) onto the cylinder on the same side as 

it was formed, it does not mix with the increasing vorticity of 

opposite sign. Instead a vortex pair is formed which persists 

for a considerable time. This suggests (contrary to the usual 

expectations) that vortex feedback may in certain circumstances 

increase the lift and drag forces.

The physical explanation of this phenomenon appears to be that 

the local velocity near the separation zone is increased by the 

presence of the previously separated eddy. The increase 

contributes to increased vorticity of opposite sign because of 

the no slip condition on the cylinder boundary. The low pressure 

near the eddy contributes to the greater adverse pressure gradient 

required for separation.

Zdravkovich and Namork observed that this behaviour usually led to 

a vortex doublet in the wave trough.

This is because the wave height to water depth ratio is quite 

high for their experiment so that the crest has more vortex 

generating power and hence the separated eddy lasts longer. 

This is probably why the researchers working in greater water 

depths have not observed this.
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2.2. Wave Forces on Large Structures

As the size of the structural elements comprising an offshore structure 

increases in relation to the incident wavelength the effects of 

separated vorticity become less significant. This is particularly 

so for shapes that do not possess sharp edges, such as the 

commonly used circular cylinder. There is therefore a significant 

range for such shapes, called the inertia regime where Morison's 

equation with C = 2 and Cn= 0 may be applied. The equivalent
M u

regime for shapes such as rectangular prisms may not exist since 

the form drag component will reduce much more slowly. Keulegan 

and Carpenter^ presented results for the case of flat plates 

which showed that in fact increases rapidly with increasing 

plate size.

As the structure increases in size still further its effect on 

the incident wave pattern is no longer negligible. Characterising 

the flow response in terms of the acceleration on the axis of the 

structure becomes less physically reasonable. Morison's equation 

has still been used but C is no longer 2 even though the flow
M

may be considered as irrotational. Chakrabarti^) however, presented 

a semi-analytical approach to the forces on submerged objects in 

the inertia/diffraction regime. The effects of the free surface 

and the presence of the object were small for the cases considered.

For small amplitude waves the free surface boundary condition may 

be linearised. For large structures the fluid problem therefore 

reduces to that of finding a velocity potential satisfying Laplace's 

equation and the boundary conditionswhich are now all linear.
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Traditionally a distinction has been made between the two different 

ways in which an incident wave train may be modified. The continual 

modification of the waves caused by variations in bed topography 

is termed refraction, whereas the wave scattering effect of 

arbitrarily shaped obstructions is termed diffraction. Both of 

these terms are borrowed from the partly analogous nroblem of 

the propagation of electromagnetic waves, hence the often used term 

'monochromatic1 water waves when referring to single frequency waves.

When the variation of bed topography is gradual, and all other 

lateral boundaries to the flow may be assumed to be vertical, the 

variation of the potential with depth may be separated out leading 

to a wave equation in the plan dimensions, Berkhoff^'. For the 

particular case of constant depth the wave equation reduces to a 

Helmholtz equation and further separation of variables in a number 

of co-ordinate systems isthen possible depending on the shape of 

the cylindrical obstruction. For a circular cylinder the solution
(29) may be found as an expansion in cylindrical harmonics. Havelock*" 7 

quotes the result for the special case of infinite depth and periodic 

single-frequency waves. The periodicity allows a further variable 

separation by introducing the complex potential. In addition, 

linearity allows the effects of the incident wave and the scattered 

wave to be treated separately. This analytical solution was extended
fe8) by McCamy and Fuchsv to the case of constant finite depth. The 

importance of their result is that it is a particular case of both 

the diffraction and refraction problems.
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If a rigid structure is able to move under the action of the waves 

then additional forces will be induced by virtue of its motion.

These motions may be considered as a linear combination of the 

six degrees of freedom. The added mass forces are those in phase 

with the structure accelerations and the damping forces are those 

in phase with the structure velocities.

The analysis of such motions has long been the concern of Naval 

Architects. However, it has often been possible for them to 

consider a ship as a slender body and thereby reduce the complexity 

of the problem. The so called strip theory arises from the assumption 

that forces on cross-sections of a ship may be integrated along 

its length to obtain total forces without consideration of inter-

action effects. In the case of offshore structures Morison's 

equation for force per unit length is an example of just such a 

strip theory.

In a survey of the state of the art of structural dynamics of fixed 

and floating platforms Eatock-Taylor^ points out that much of 

the work has actually been of a quasi-static nature considering 

the structure as a rigid body. The flexing of the structure in the 

dynamic sense has received very little attention, and even when it 

has the wave frequency has been so far removed from that of the 

first mode of the structure that dynamic amplification has been 

negligible.

The importance of the small amplitude motions of the structure 

whether fixed or floating is demonstrated by Newman®5) in a 

presentation of Haskind's relations. This approach which leads 

to a single total force for each mode of oscillation may be likened 

to an application of the principle of virtual work, similar to that 
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utilised by Lighthill ^4) for the calculation of the forces due 

to the quadratic potential.

However, for all but the simplest shapes the radiated potentials 

(due to the motions) are no easier to find than the corresponding 

scattered potential.

It has long been known that any irrotational flow may be represented 

by a distribution of sources around the boundary, (Lamb(51)). It 

is only comparatively recently that this fact has been utilised in 

the case of waves to enable the numerical solution of problems with 

more complicated boundaries. Much of this work stems from the 

derivation by John^ of a series form of the integral expression 

presented by Wehausen and Laitone^) for a pulsating source in 

three dimensions, and the development of fast computers. Because 

these expressions already satisfy the boundary conditions on the 

free surface and at constant depth, the distribution of sources 

may be limited to the boundary of the submerged object.

Lebreton and Cormault^2) applied the facet approach using the 

pulsating source solution to the problem of surface-piercing and non-

surface-piercing cylinders. They were particularly interested in 

the interaction between adjacent cylinders. They found that if the 

cylinders were about 5 diameters apart the forces each experienced 

could not be derived from simple superposition of results for single 

cylinders.
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Garrison and Chow^^ presented the basis of the general numerical 

approach for bodies of arbitrary shape. They evaluate the co-

efficients necessary both for finding the unknown source 

distribution and for calculating the resulting potential function 

in parallel. The forces and moments acting on the structure are 

then derived from the linearised Bernoulli equation. They over-

come the problems associated with the singular kernel of the 

integral form of the pulsating source in the same way as Monacella^^

Their numerical discretization consists of dividing the immersed 

surface of the object into many plane facets and assuming that a 

single unknown value of source strength is associated with each 

one. They make a number of simplifying assumptions which although 

consistent in the limit of small facet size do require a large 

number of facets for an accurate solution.

This method is the basis for a number of computer packages for the 

analysis of wave forces on large structures, for example Hogben 

and Standing^)

The extension of this approach to the case of floating bodies is 

extremely simple being merely a slight modification of the boundary 

conditions. Faltinsen and Michelsen^2^ consider this problem 

for large floating bodies and in addition show how the second 

order horizontal drift force may!be evaluated.

The true dynamic problem of a flexing cylindrical cantilever has 

been solved by Eatock-Taylor and Waited for the first two 

flexural modes.
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After considerable application of this approach to real design 

problems it has become clear that it can be an extremely costly 

method in terms of computer time. One reason for this is the 

complexity of the fundamental (pulsating source) solution or 

Green's function. In either form it involves computations of 

Bessel functions for coefficients contributing to the fully 

populated matrix prior to solution. Invariably the time taken 

to calculate these coefficients far outweighs that required for 

solution of the equations.

Bai and Yeung present a method, which has received little 

attention>which aims to reduce some of these problems by using 

a simpler fundamental solution and distributing sources over 

all boundaries to the flow. Although the number of equations 

is increased the reduction in overall computation time may be 

significant.

Another problem in the application of this method has been put on 

a theoretical footing for the particular case of a circular cylinder
fc3)by Murphy . This is the existence of certain irregular frequen-

cies for which a solution is not possible by this method.

Ursell^7^ has shown for the case of acoustic wave scattering 

(analogous to long water waves) that the fundamental solution may 

always be modified by the additionofa regular wave function to 

avoid this problem. An alternative is to distribute sources over 

an external ficititous boundary. Van Oortmerssen^7^ and Boreel^9^ 

have used this approach for the general water wave problem but 

little critical study of the problems of uniqueness has been made.
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Much research has therefore been directed towards ways of modifying 

the approach to make it more economical. Black^) and later Fenton^ 

considered diffraction by objects with a vertical axis of symmetry. 

This method relies for its economy on the fact that only the first 

two terms in a Fourier expansion in polar co-ordinates will 

contribute to a net force. Discretization of the immersed object 

need only take place along an arbitrarily shaped generating curve.

Isaacson^ and Harms^ have considered the case of vertical 

cylinders of arbitrary cross-section. Isaacson starts from the three 

dimensional case and integrates the fundamental source along a 

vertical line to find the expression for a line source. Harms starts 

with the Helmholtz equation in the plan dimensions and utilises the 

known fundamental solution directly. Both approaches lead to the same 

numerical formulation and necessitate the discretization of the 

cylinder cross-section only. This approach is particularly appropriate 

for studying interactions between many cylinders.

Unlike the results from an experimental investigation in the Morison 

equation regime, the diffraction theory should agree exactly with 

experimental measurements on large structures provided the waves 

are of small amplitude. Measurements of total force on small cylinders 

in the diffraction regime have confirmed that = 2. However, very 

few results are available for large cylinders.

Chakrabarti and Tam^ considered the forces and pressures on a 

large surface piercing cylinder in long crested waves. Although the 

total forces are shown to agree well with the theoretical curve 

from McCamv and Fuchs the measured pressures are not so good 

particularly near the free surface.

- 53 -



Hogben and Standing^ measured the forces and pressures on a square 

cylinder finding that vortex separation from the corners severely 

effects the measurement of pressure.

In addition, they found that second harmonic pressure fluctuations 

due to the finite wave height were significant but concluded that 

they were unlikely to affect the measured forces. They also showed 

numerically that superposition of diffraction forces for elements of 

a structure may be sufficiently accurate in certain circumstances.

Garrison et al^ extended this idea to consider a gravity platform 

by using a diffraction analysis for the large base and the resulting 

velocity field for a Morison equation analysis of the legs. They 

found it necessary to include the velocity squared terms in calculation 

of the vertical force on the base even though the waves satisfied 

a linearized boundary condition at the surface.

Huntington and Thompson^ used the powerful technique of linear 

spectral analysis to analyse measured forces on a large surface 

piercing cylinder in multi-directional seas in addition to long crested 

waves. In agreement with the experimental results of Hogben and 

Standing^theinline force and moment seem to be consistently over-

estimated by the theory.

These and other experimental findings have highlighted the importance 

of non-linear effects caused by the free surface being in reality 

finite amplitude, particularly in the region where wave enhancement 

is caused by the presence of the structure.
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Initially, this non-1inearity was-allowed for in the incident wave 

using a higher order Stokes representation without reference to the 

increased non-linearity in the presence of the structure. Chakrabarti 
and Naftzger^4) considered bottom seated structures in an approximate 

manner using Stokes 5th order waves and the full Bernoulli equation 

for pressure.

A more consistent approach of extending the first approximation for 

the potential to a second order has been shown by Isaacson^) to 

lead to an inconsistency in the boundary conditions on the structure 

and the free surface if they meet at a place where the local curv-

ature is cylindrical. Discussions by Venkatanarasaiah^9) and

<241Garrisonv ' merely serve to confirm the problem. There is therefore 

a need for accurate experimental investigation of the non-linear 

effects on large cylinders.

The Froude-Krylov force is due to that part of the pressure resulting 

from the ambient flow acting on the object boundary in its absence. 

It is therefore usually simple to calculate by integration of the 

known incident wave potential. The pressures corresponding to the 

flow scattering of the object require a solution of the governing 

equations in the presence of the object which is not so readily 

achieved.

Using first order wave theory Ckakrabartievaluated the expressions 

for the Frounde-Krylov force on a number of objects of symmetry 

which have associated co-ordinate systems which yield useful separation 

of variables. The additional force due to the presence of the object 

is then assumed to be proportional to the Froude-Krylov force so that 

the total may be represented by multiplying the latter by an initially 

unknown coefficient.
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Wave scattering is assumed to be small since the objects are close 

to the bed and one order smaller than the wavelength. Wave scattering 

is certainly not linearly related to the Froude-Krylov force, being 

frequency dependent.

The values of the coefficients are then found by a best fit to the 

published data in the inertia regime. This yields an expression 

for the force which is compared graphically with the experimental 

data from which it was derived. Only one set of data was used for 

each object so that the superficially good agreement is not surprising. 

For the horizontal circular cylinder the agreement is however remark-

ably good even though the coefficient, which for this shape is 

equivalent to the inertia coefficient in Morison's equation, takes a 

value 2.1. The position of this cylinder relative to the bed is 

unclear but since the depth to diameter ratio is 3, then blockage 

effects must be sianificant and are unlikelv to be linear. The high 

value of the vertical force coefficient for the rectangular block 

(6.0) is extremely doubtful because of the effects of separation, as 

the comparitively large scatter confirms. A high value implies that the 

major part of the force results from the presence of the object.

The assumption of simple porportionality to the Froude-Krylov force 

is in this case a gross over simplification. The vertical force 

will depend on complicated interactions between vortex shedding from 

the sharp edges, and the eddy size to object length and fluid particle 

trajectories. As suggested above, the inertia regime will probably 

never exist in this case. It would have been useful if estimates of 

precision were given for the coefficients. It would then be possible 

to see if the accuracy of the mathematical evaluations was warranted 

or whether a straight forward Morison equation inertia term would 

have sufficed.
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Certainly none of the objects was too larae to invalidate this approach. 

In fact, it is probably possible to calculate the exact results using 

Haskind's relations.

Considering the case of waves on water of infinite depth Havelock 

shows that if all bounding surfaces are vertical, the governinq equation 

reduces to a Helmholtz equation for the scattered potential, for which 

the solution is a series of Hankel functions. One of the special 

boundary surfaces for which a solution is shown is that of a vertical 

circular cylinder. The velocity potential is constructed from a 

Bessel function expansion of the incident wave and an expansion in 

outgoing circular waves the coefficients of which are chosen to 

satisfy the kinematic condition on the cylinder. Wave amplitude ratios 

for positions at 45° intervals around the cylinder are quoted from 

which it can be seen that as the wavelength approaches the radius of 

the cylinder the amplitude ratio on the front face approaches 2. The 

results for a parabolic cylinder are shown to lead to the surprising 

result that the amplitude ratio is constant along the boundary for 

a qiven wave. As a result a possible simple expression for run up 

at the bow of a ship is proposed.

Subsequently, calculations of pressures, to second order, on a 

plane wall are performed. It is clear from these that the arbitrary 

function of time in Bernoulli's eauation is qenerally non- zero to 

second order but reduces to zero to first order, rather than beinq 

absorbed into the potential as usually stated. Clearly a fluctuating 

pressure without a spatial gradient can qenerate no net forces on 

completely submerged objects, nevertheless it contributes to a second 

harmonic term which obviously does not decay with depth in the usual 

wav and is probably resDonsible for the problems encountered by 

Hoqben and Standing^).
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Following rigorous calculations, Havelock shows that the results for 

pressure on a plane wall may be more simply derived from the reversal 

of momentum flux bv total reflection.

Analysis of the additional force on a circular cvlinder to second 

order is shown to lead to an infinite series of cross terms between 

Bessel functions of adjacent orders (see also Lighthill. For short 

waves the limiting behaviour of the series is shown to be the same as 

assuming complete reflection from the front half of the cylinder only, 

using the previously derived expression for a plane. He concludes that 

since his results nowhere exceeds this limit (coming close at A/D = ir) 

that it may be an upper bound even for longer waves. Without an 

efficient computing machine he is only able to calculate five values. 

It is quite possible in view of their irregular nature that intermediate 

results do exceed this limit.

MacCamy and Fuchs^$ extended rather simplv the results of Havelock for 

a fixed circular cvlinder in deeD water to the aeneral case of finite 

depth. Since in this case the vertical variation is still separable, 

the only difference is in the introduction of a hyperbolic cosine function 

to satisfy the kinematic condition on the bed. The pressure from the 

linearised Bernoulli equation and hence, the total force per unit length 

are then simply derived. A consistent expression for total moment is 

then calculated bv integration to still water level.

They continually work in terms of the force per unit lenqth but it must 

be remembered that the only body for which their results are valid is 

the vertical circular cylinder. For small diameters their results 

reduce to the Morison equation expression with = 2 when drag force 

is negligible.
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They then embark on a somewhat circular argument which seems wrong in 

principle but rather fortuitously arrives at the correct answer.

Havelock had shown that for short waves the cylinder acts as a Derfectly 

relfectina plane (locally), so that the total result may be derived by 

assumina that the hvdrodynamic pressure on the structure is twice that 

in the ambient flow. MacCamy and Fuchs attempt to use this approach 

for long waves. They double the ambient pressure and then integrate 

it around the cylindpr arrivinn at the correct result, fortuitously, 

because in this case the added mass force is equal to the Froude-Krylov 

force. This is unlikely to be a general result, as they conclude.

It seems wrong to assume that for large wavelengths the effect of the 

cylinder is a Derfect reflector, particularly as in the limit the
A

cylinder does not radiate any wave energy. Consideration of, for 

example, the thin flat plate (for which the Froude-Krylov force is 

zero) would seem to confirm this.

In a review of the state of the art of the dynamics of offshore 

structures Eatock-Taylor^ attempts to group all the methods of 

analysis within a unified framework. This makes it easier to demonstrate 

that the vast majority of so-called dynamic analyses have been in fact 

quasi-static. The true dynamic amplification terms are clearly identi-

fiable and distinct from the quasi-static loads which include the 

effects of rigid body motions. He points to the increasing 

importance of true dynamic analyses as structures are placed in deeper 

and deeper water (120m +) since the increased structural element 

lenqths imply a lowering of the lowest fundamental frequencies towards 

those of typical ocean waves.
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It appears that the only non-linearities associated with wave-

structure interaction which have been studied are those arisina from 

the drag term in Morison's equation. The unified framework relies 

on the linearity implied by small structural displacements. Finally, 

the importance of modelling the structure-foundation interaction is 

stressed since it contributes to a further lowering of the overall 

fundamental frequency. It seems that a great deal of work is required 

on true dynamic flexural problems.

Newman^ presents a version of Haskind's relations, which have 

received little attention since they were originally presented in 

Russian. The approach may be summarized as follows. What are sought 

are the exciting forces on a submerged body which may be considered 

as comprising the Froude-Krylov component (due to the incident wave 

only) which is easily calculable and the force due to the scattered 

potential, which is initially unknown. If it is accepted that the 

effects of the locally generated scattered and radiated potentials die 

out at infinite depth then Green's second identity may be used to 

relate these potentials in a way which may be interpreted as a state-

ment of the principle of virtual work.

'The forces due to wave scattering acting through the displacements 

due to body motion are equal to the forces due to body motions acting 

through the displacements due to wave scattering'.

This, when used in combination with the kinematic condition on the 

body gives an expression for six total exciting forces in terms of the 

six virtual rigid body motions.
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It is important to recognise that being a statement of virtual work 

its application is not restricted to bodies where the rigid body 

motions are physically meaninaful. Therefore Lighthillhas 

apDlied this approach to the case of second order forces on a 

vertical circular cylinder rigidly connected to the sea bed.

To reconcile this virtual work statement with Green's second 

identity, since it is actually a statement of rates of work, for 

forces and displacements read potentials and velocities respectively.

Thus the six exciting forces may be expressed wholly in terms of 

radiated potentials and the incident wave potential.Newman makes 

a final simplification by a further application of Green's theorem 

to the region between the body and an external cylinder in the far 

field. This enables the final result to be evaluated in terms only 

of the far field behaviour which is often considerably simpler to 

derive than the near field.

Although at present, Haskind's relations have only been used for total 

exciting forces, it seems possible that they may be just as widely 

applicable as in the corresponding structural engineering case.

In a remarkable two part paper John^ tackles the various problems 

of uniqueness associated with floating bodies. The second part is of 

direct relevance, in which he derives a series form of the Green's 

function. Assuming that the motion is simple harmonic, he defines 

a 'wave function' as a complex function which satisfies Laplace's 

equation and all the linearized boundary conditions outside a.bounded 

region but with unprescribed behaviour at infinity.
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He then shows that any wave function may be uniquely decomposed into 

an everywhere regular wave and a wave satisfvinq the Sommerfeld 

radiation condition. These two waves may be intuitively identified 

with the incident (primary) and the scattered waves respectively. He 

further shows that the regular wave may be expanded in terms of Bessel 

functions of the first kind and that the scattered wave may be ex-

panded outside a circular region in terms of Hankel functions. The 

first term of this latter expansion consists of outgoing finite ampli-

tude waves at infinity and is called the secondary wave. The other 

terms in the series called local waves satisfy the radiation condition 

trivially by dying out at infinity. Radiated energy is therefore 

carried out to infinity only by the secondary wave.

Because of his use of cylindrical harmonics John only attempts to prove 

uniqueness for a limited class of bodies of convex shape which break 

the free surface.

As a consequence of the uniqueness theorem, 'there is only one wave 

function which satisfies the radiation condition and that is the Green's 

function', the derivation of the simple singular wave function leads to 

a Green's function which automatically satisfies the radiation condition. 

This is in contrast to the derivation by Wehausen and Laitone of 

the pulsating source solution (Green's function) where they do not 

introduce the complex plane and are therefore forced to ensure that 

their solution satisfies the radiation condition separately.

Lebreton and Cormault^ use the pulsating source in an application of 

the so called facet method. Thev present John's theory in a form which 

yields the added ma^s and linear damping coefficients. Working in 

terms of transfer functions relating the free surface elevation to the 

force on cylindrical piles they show how the function is modified by the 
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presence of another pile. This presence can lead to considerable 

constructive or destructive interference depending on the ratio 

of separation distance to wave length. This was particularly so 

for the orientation of piles wherejone sheltered the other 

(enhancement of up to 24%). They also considered vertical circular 

cylinders truncated below the free surface concluding that the inertia 

coefficient approaches one as the height of the pile reduces for 

quite a wide range of ratios of wavelength to diameter. Very little 

detail of their numerical procedures is shown which makes it very 

difficult to draw any firm conclusions, particularly in view 

of the singular behaviour at the pile top.

Garrison and Chow^) present the details of a numerical application 

of the pulsating source to the problems of hydrodynamic forces on 

submerged objects. They show how the total potential, which is 

assumed to be time harmonic, may be split into the incident and 

scattered potentials which are complex. The scattered potential is 

expressed in terms of an initially unknown distribution of pulsating 

sources on the surface of the object. An integral equation for the 

unknown source strengths at the centroids of a discrete number of 

plane facets is formed by satisfying the kinematic boundary condition 

on the object.

Once the source strengths have.been found the total potential and 

hence all the other variables of interest may be found by back- 

substitution.

They discuss a number of problems associated with the detailed 

numerical application of the theory. The integrand of the fundamental 

solution is singular within the domain of integration at a point 

corresponding to the real root of the dispersion relation.
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This is a simple singularity however, which may be subtracted out 

using the scheme proposed by Monacella^60\ Another problem is 

associated with the singular nature of the pulsating source. The 

effect of this on the integral equation has been accounted for by the 

limiting process which leads to the diagonal terms. During the back- 

substitution the source strength is assumed to be distributed uniformly 

on each facet and the local behaviour calculated as if the object was 

in an infinite fluid in all directions. Since the behaviour of R 

dominates the local behaviour this will be correct in the limit of small 

facet size.

I

They validate their program using the result for a heaving sphere'oj' 

Havelock and the MacCamy and Fuchs solution for a vertical circular 

cylinder. The reported accuracies are subsequently improved still 

further by the correction in their closure, which therefore suggests 

that perhaps too many facets were used. Finally, the results of an 

experimental investigation on a submerged oil tank are shown to agree 

very well with the corresponding numerical results. They do mention 

the importance of the velocity squared terms in the case of steep waves.

In Studying the far field pressures due to oscillation of a slender ship 

in waves Monacella^0) encountered the problem of the singular integrand 

in the Green's function. He evaluates this in what appears to be a 

fairly standard way by subtracting the simple singularity to leave an 

integrand which is well behaved throughout the domain. It is however, 

indeterminate numerically without resorting to a limiting procedure 

at the singular point. The three eighths rule is therefore used to 

avoid the singular point. There are two points of additional interest 

in this paper.
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Although his solution is only valid in the far field it appears 

that he could have made use of Haskind's relations to at least 

evaluate the exciting forces on the ship. He formulates his 

potential problem in terms of what might be called the direct form 

of Green's theorem relating potentials and potential gradients 

directly without the use of fictitious sources.

Hogben and Standing^ have had considerable experience of using a 

program based on the method of Garrison and Chow and present some 

results of its application to truncated circular and square cylinders. 

In discussing their results they deliberately avoid the use of the 

diffraction coefficient since it is artificially affected by the 

zeroes in the Froude-Krylov force, preferring to quote both the total 

and the Froude-Krylov forces so that the additional effects of 

diffraction are clearly visible. They also present some interesting 

photographs of the behaviour of the flow around a square cylinder 

placed with one face normal to the waves. The inevitable separation 

at the rear edges leads to some interesting focusing effects which 

yield quite large discrepancies between theoretical surface profiles 

and those estimated from the photographs.

They compare their numerical results for the circular surface-

piercing cylinder with those of MacCamy and Fuchs. These comparisons 

are made more interesting by the fact that they have not used too 

many facets. Even with 96 facets at wavelength/diameter ratio of 

about 1, when the facets are evenly distributed the results are quite 

poor. When they are concentrated near the surface, in this short 

wave case, the results improve 100% but are still not as close as 

the long wave results.
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This is presumably because the piece-wise constant variation of 

source strength cannot accurately model the rapid exponential 

variation required. They also recommend that no less than 8 facets 

per wavelength be used for the same reason. For these short waves 

the ratio of circumference to wavelength is 3 so that with 24 facets 

per level only 4 vertically is obviously insufficient.

Clustering of the facets in one region although often improving 

accuracy may lead to unbalanced equations and numerical problems.

They then show how economies may be made by recognising regions where 

diffraction forces are likely to be insignificant e.g. more than 

3x /4 below the surface, and objects whose size is too small for 

diffraction effects to be significant. They suggest that in certain 

configurations interference effects are quite small so that the 

total forces may be calculated from summation of elemental forces.

In a series of appendices they summarise Garrison and Chow's approach 

in detail leaving no doubt over the numerical procedures involved. 

Several time saving checks have been included in their formulation 

to curtail infinite series and tailor integration schemes to the 

expected variation of the integrands.

They were able, in the final appendix and in the subsequent discussion 

to present perhaps the most interesting results. They showed that 

the experimental results for horizontal force and moment on a truncated 

circular cylinder were less than their numerical results, with the 

error a significant proportion of the diffraction force. The experi-

mental values of vertical force showed a 50% reduction in the 

diffraction force. This discrepancy was not explained.
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It could be a complicated interaction between local energy loss 

in separated vorticity and the resulting wave height reduction. 

In the discussion they mention that the phenomenum of second 

harmonic pressure fluctuations with no spatial gradient was 

detected within their cylinder due to the local standing waves 

outside.

Faltinsen and Michelsen^)use the plane facet method to evaluate 

the exciting forces and the added mass and damping coefficients 

for a floating box by splitting the total potential into that 

due to the incident wave plus a scattered potential from the 

stationary body and the radiated potentials from motion in the 

six degrees of freedom. They are then able to solve the full 

dynamic problem for motion of the-box in these six directions. 

This indirect approach is necessary because the fictitious source 

strengths must first be found before the potentials may be 

evaluated.

It appears that in such problems, direct use of the Green's theorem 

relation between the potentials and their normal gradients may 

enable a more direct evaluation of the exciting forces.

In waves of finite height there is a net mass transport of fluid in 

the direction of propagation. This can lead to gross displacements 

of a floating body, since, a restoring force is absent in the 

horizontal plane. They show how these drift forces may be calculated 

to second order and present graphically their results for two boxes 

of equal plan area but different drafts.
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In particular, they illustrate the reduction in the drift forces 

when the motion of the body is taken into account, except when 

dynamic amplification occurs. They also contrast their three 

dimensional results with a finite strip program which generally 

gives poor results but underestimates the yaw added mass in 

particular. It is important to realise that even though the body 

may be freely floating the dynamic analysis relies on the linearity 

implied by small displacements from the mean position.

Following on from the review paper abovefco), Eatock-Taylor and 

Waite^ show how the true dynamic problem of a flexible body 

whether fixed or floating may be split into the structural dynamics 

in vacuo and the fluid boundary value problem. This split again 

relying on linearity. The modal analysis is therefore based on 

the mode shapes of the structure vibrating in vacuo. This corresponds 

to keeping the fluid added mass and damping forces on the forcing 

function side of the dynamic equations.

They make use of Green's theorem to remove the necessity for 

evaluating the diffracted potential(Newman) but do not see 

the possibility of using it for solving the numerical problem. 

Instead they use the facet method in its usual form. For the 

particular cases of a vertical circular cylinder and a vertical 

frustum of a cone they show how the first couple of flexural modes 

may be calculated. The cross coupling between these modes caused 

by the presence of the fluid is seen to be significant.

In a remarkable dual-theme paper Bai and Yeung^present a comparison 

of the modified variational finite element method and the fundamental 

singularity distribution.
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The variational method is modified by virtue of the fact that the 

domain is split into an outer region (truncated at a suitable radi-

ation condition boundary) in which the solution is expanded in 

cylindrical harmonics (for 3-D) and an inner region in which the 

advantages of the F.E.M. discretization are utilized. The inner 

region therefore allows for the change from a region in which the 

horizontal and vertical dimensions are separable,to the region 

dominated by the arbitrarily shaped body and bed boundary conditions.

They then present a novel alternative to the traditional facet 

approach (referred to by them as the Green's function approach) 

using only the fundamental point source solution for an infinite 

fluid. This function is much simpler than the constant depth Green's 

function in particular being purely real. Because it does not satisfy 

any of the boundary conditions, application of Green's theorem to the 

domain results in an integral equation for the potential over the 

whole boundary. Since solution of the discretized equation yields 

the potential on the boundary, their approach may be interpreted as 

a direct boundary element method. The only complex terms in the 

equations arise from the necessary radiation condition at the outer 

boundary.

They attempt a comparison of the computer time necessary for a solution 

using several different numerical approaches which appears to show 

that this new fundamental singularity approach is three times as 

expensive as the Green's function method. They conclude by suggesting 

that a modification using eigenfunction expansions in an outer region 

along the lines of the variational approach might yield similar savings.
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It is surprising, in view of the possibility of coping with variable 

bed topography, that this approach has received little attention. 

Certainly no one who discussed the paper seemed to appreciate the 

direct nature of the equations. It is not made clear in the paper 

that the comparison is based on the time taken for solution of the 

equations. In the usual facet method there is considerable extra 

computation involved in order to evaluate the fluid pressures on the 

body. The important point is made however, that the extension to 

higher order solutions via a numerical perturbation scheme is made 

much simpler by a knowledge of the potential on the free-surface.

One minor advantage of the fundamental singularity method is that 

there is no possibility of encountering the so called 'fictitious 

frequencies' which affect the short wave solutions of the Green's 

function method. Murphy^ shows that the potential representation 

in terms of a wave source distribution on the surface of a circular 

cylinder fails whenever the incident wavelength and the cylinder 

diameter are related by

Jn ( = 0 2.2.1.
A

The lowest root of this equation is however when

- = 0.7.7

So that for most practical cases thi: 

however pollute a spectral analysis, 

such frequencies. Murphy shows that 

existence of non-trivial solutions to 

form of the integral equation.

2.2.2

is not a problem. It can 

which would normally extend to 

these roots arise from the 

the associated homogeneous

- 70 -



Ursell^ has shown for the exterior acoustic wave problem (the 

governing Helmholtz equation arises from any diffraction problem 

in which the vertical variable is separable and also in the long 

wave approximation) that it is possible to redefine the fundamental 

solution in such a way that the source representation never fails.

He first shows that - in the usual method - the exterior Neumann 

problem will not possess a solution whenever the wave number 

corresponds to one of the eigenvalues of the interior Dirichlet 

problem, and vice versa. The kinematic boundary condition for the 

exterior diffraction problem makes it a Neumann problem and it can 

be seen from e.g. l_amb§]91^, that the interior Dirichlet problem 

for a circular cylinder has eigenvalues at

Jn(ka) = o

confirming Murphy's result.

To understand the way in which Ursell removes this problem it is 

important to appreciate the distinction between the physical problem 

and its mathematical realisation. Once found, the mathematical 

solution consists of two parts. The unique exterior solution corre-

sponding to the real physical problem (in this case) and an interior 

solution to the interior problem as defined. These two mathematical 

solutions exist together and influence each other. The presence of a 

free surface in unsteady flow enables non-trivial solutions of 

the Helmholtz equation for completely homogeneous boundary conditions 

(eigenfunctions).
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In the Green's function method these interior solutions correspond 

to forced oscillations in a closed tank, and failure of the method, 

to forcing standing waves at a natural frequency.

To remove the difficulty Ursell therefore redefines the mathematical 

interior problem by introducing an additional ficititous boundary 

on which a Newton (dissipative) condition is to be satisfied in the 

form

(|_+K)t = 0 2.2.3

This has the effect of disallowing any non-trivial solutions of the 

homogeneous interior problems. Ursell shows that a Green's function 

may be found which satisfies this additional condition in the form

G = GQ + r 2.2.4

where r is an analytic wave function everywhere except at the centre 

of the interior, and GQ is the usual Greens function.

An alternative approach is used by van Oortmerssen^7^ in which it 

is assumed that the exterior problem may be analytically continued 

across the physical boundary into the interior. The singularity 

distribution may therefore be placed on a fictitious boundary inside 

the real boundary. This reduces the problem to solution of an 

integral equation of the first kind for which the only homogeneous 

solution is trivial.
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The important difference between this approach and that of Ursell 

is that it places a further restriction on the class of problems 

which may be solved since singular behaviour between the real 

boundary and the fictitious one can not be accommodated.

Van Oortmerssen uses this method to study the mooring forces on 

large ships. As a test problem, he compares the results of the 

numerical analysis with experimental measurements of total force 

on a square cylinder on top of a pyramid. The agreement is not good 

and is clearly not due to experimental scatter, since the experiment-

al results appear to lie on a curve distinctly different from the 

numerical results. The sharp corners on the real boundary of this 

object make it necessary to accommodate the possible singular 

behaviour to obtain a unique solution. Hogben and Standing^) a]So 

showed that the presence of vortices separated from the corners in 

the real problem leads to large discrepancies in the free surface 

behaviour. These may be masked to a certain extent by a comparison 

based only on total force.

The motives for separating the singularity distribution from the 

real boundary are 1) the increased numerical accuracy, 2) the 

avoidance of the singular behaviour and hence the necessity of 

using the integral form of the fundamental solution and 3) the 

consequent reduction in computer time.

Using the same numerical and physical model as Van Oortmerssen, 

but with the pyramid completely immersed Boreel^^ concentrates 

on experimental measurements of pressure at six points on the plane.
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By cola liny lhe model he was able to do a complete pressure traverse. 

The agreement between experimental and numerical pressures is only 

good sufficiently far removed from the effects of the moving free 

surface. The water depth was 0.9m whereas the highest pressure 

tapping on the body was 0.4m below the surface. Even so the measured 

pressures are significantly higher than the numerical results , 

increasingly so as the frequency (and hence probably the wave steep-

ness) increases. Unfortunately, there are at least two possible 

reasons for this. One is that complete neglect of the inevitable 

singularities at the sharp edges of the body renders the numerical 

solution particularly suspect close to these edges. The other is 

that tne experimental wave heights, will never be infinitessimally small.

No critical discussion of the pressure results was attempted, which 

was a shame, becausethey are quite remarkable by their consistency. 

Detailed inspection of the 'scatter' in the experimental results 

shows that it ib in fact largely due to systematic error, because 

the pattern of scatter is the same for each pressure tapping. This 

maybe attributed directly to the effects of different finite wave 

heights. The width of the tank is not given but it is always possible 

that interTerence effects (blockage) between the real structure, and 

its infinite series of imayes in the side walls can lead to increased 

(or decreased) wave heights close to the structure in the same way 

as reported by Lebreton and Cormault^?) an(j lsaacson^0\ The major 

cause of scatter is more likely to be finite wave steepness (a 

parameter given no consideration in a linear theory). This may be
i

concluded from comparisons of the results for total force when the 

waves approach either normal to a face or at 45° to each face. The 

pattern of scatter in both cases is identical, although the blockage 

effects would be expected to be significantly different.
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This emphasises the importance of reporting wave height (or 

steepness) results so that non-linear effects may be identified, 

particularly as the major contribution to the force arises from the 

region close to the surface.

A much greater economy may be achieved by reducing the dimensions 

of the problem still further.

By using a fundamental solution which is a Fourier expansion in
(8) 

cylindrical co-ordinates Blacic ' shows that vertical axisymmetric 

problems may be solved as a series of Fourier component problems. 

Fortunately, because of the symmetry only the first two terms are 

needed for evaluation of the total force which significantly reduces 

the necessary computation, unless pressures are required. He 

suggests that his fundamental solution is non-singular whilst at 

the same time, satisfying a Poisson equation, calling it a source 

and allowing for its singular behaviour on the real boundary when 

formulating the integral equation.

This integral equation is expressed in direct form but approximated 

by a piecewise constant distribution along the boundary. It is 

applied to the two classical problems of the floating sphere and 

the vertical circular cylinder, exhibiting excellent agreement. 

Black mentions that this good agreement is obtained using only 

eight unknowns,chiefly because of numerical convergence difficulties 

associated with the apparently singular behaviour of the Green's 

function. This would place a severe restriction on the geometrical 

complexity which this method could accommodate. Even so, the results 

for a truncated circular cylinder are remarkably good, even without 

allowance for the likely singular behaviour at the top edge.
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The importance of his results is the great saving in computer 

time - 60 times less than the method of Garrison & Chow^.

Fenton^ using essentially the same approach only in indirect 

form, shows the singular nature of Black's Green's function and 

explains the consequent problems of numerical convergence. By 

making use of an important relation for the Bessel functions (Graf's 

addition theorem) he is able to express John's Green's function 

as a Fourier expansion in cylindrical polar co-ordinates. For 

the singular Bessel functions (YQ and KQ) this is achieved by 

splitting the domain in two so that the singular behaviour of each 

individual function is never encountered. This led Black to 

suppose that the singular behaviour of the total function had also 

disappeared. Fenton shows however, that it is only hidden in the 

infinite series which are at least logarithmically singular. It 

is to be expected that redefinition of the co-ordinate system cannot 

remove the singular behaviour.

Having established the nature of the singularity Fenton shows how 

it may be subtracted from the Green's function and its contribution 

evaluated in closed form leading to much quicker convergence of 

the series expressions close to the singular point. This leads to 

a further saving in computer time which Fenton estimates to be 800 

times less than for a three dimensional body.

One further way of reducing the dimensions of the problem is to 

separate out the vertical dimension. This may be achieved in those 

cases where the immersed body is motionless and its boundaries are 

all vertical, i.e. for vertical surface piercing cylinders. Then the 

unknown potential satisfies a Helmholtz equation in the plan dimensions 

for which the fundamental solution is a Hankel function.
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Attempting to show that this solution may be obtained from the 

three dimensional Green's function, Isaacson^0) shows that 

integration of a source distribution along a vertical line yields 

the Hankel function provided that the vertical variation of all 

quantities is as

cosh k(y + d)/cosh kd 2.2.5.

He does not make it at all clear that this assumption is only valid 

as a consequence of the separation of the potential into that due 

to the incident wave (which varies as 2.2.5.) and that due to the 

scattered wave which must therefore vary as 2.2.5. on the body to 

satisfy the kinematic condition there.

A more rigorous analysis along the lines suggested by Havelock^ ' 

for the case of forced waves needs only the assumption that a 

source representation for the scattered potential exists for the 

vertical variation of source strength to be as 2.2.5. for diffraction 

by vertical bodies. It becomes clear when following this analysis 

that the radiated potential due to sway or surge cannot be similarly 

solved without including the local waves (terms which vary as 

cos kn(y + d).

Isaacson goes on to show how the resulting line integral equation may 

be numerically solved using a piecewise constant source distribution. 

This formulation was verified against the MacCamy & Fuchs solution 

for a circular cylinder. The comparison showed that an accurate 

evaluation of total force was easily obtained to within 1% using only 

8 equations.
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The run up on the front of the cylinder was however 50% in error.

The artificial numerical symmetries of this particular problem 

make it a less severe test of a numerical method. Not only should 

a comparison of total force be made but also the potential on the 

body.

Harms^27), using a virtually identical numerical formulation to that 

of Isaacson, shows in some detail how the integral equation may be 

solved. He then concentrates on showing that the influence of body 

shape extends over quite a small region close to the body. The far 

field behaviour is however only a function of body width and 

orientation. A simple way of evaluating far field effects is therefore 

obtained by a superposition of two diffracted wave trains emanating from 

the extremes of the body. This represents a considerable economy 

for such problems as coastal protection in the lea of offshore 

breakwaters.

An experimental investigation of the diffracted wave pattern 

encountered severe difficulties in generating long crested waves, the 

wave amplitude varying typically by 50% along the crests. Nevertheless, 

measured wave heights in the lea of the breakwater were significantly 

higher than the theory suggested. He concludes that the increasing 

discrepancy with distance from the body could be attributed to the 

effects of finite wave steepness. In view of the three dimensional 

nature of the incident wave train any firm conclusions are difficult 

to justify. Finally, the mathematical model is applied to a problem 

for which no verification is attempted to show the type of geometries 

which can be accommodated. Since no mention of singular behaviour 

was made the two sharp cusps on the boundary of the chosen cylinder 

render the numerical results highly suspect.
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It is well known that finite height deep water waves are unstable 

to small perturbations , which vary slowly enough (Benjamin and 

Feir^ 3). The wide piston type generator used here is unlikely 

to be able to escape this problem, particularly as the wave depth 

parameter kd used in these experiments was well above the maximum 

value for stability of 1.363 (Whithan/ , being 2.45.

An experimental study of the forces and pressures on a large vertical 

circular cylinder in waves was conducted by Chakrabarti and Tan/15). 

They present without correction the theoretical derivation of the 

diffraction force from MacCamy and Fuchsmaking the same mistaken 

use of the Hankel function of the second kind, in combination with a 

negative imaginary time constant. However, they obtained the correct 

result for total force and moment. They showed that the results may 

be discussed in terms of a diffraction coefficient or a Cm 

coefficient defined in a similar way to the inertia coefficient in 

Morison's equation. The diffraction coefficient is defined as

the ratio of total force to Froude-Krylov force. It has not gained 

widespread popularity because of its artificial variation with 

increasing wave number. Although the two coefficients approach the 

same long wave limit of 2 as the wave number reduces, the diffraction 

coefficient approaches infinity whenever the Froude-Krylov force is 

zero, this behaviour being different for different shaped objects.

The experimental measurements of pressure are made using differential 

pressure transducers for increased sensitivity, by flooding the interior 

of the cylinder from below. Unless correct allowance is made for the 

oscillations of the internal free surface, the experimental accuracy 

is severely affected. To establish that non-linear effects were 

negligible they plotted maximum force against wave-height for two 

fixed frequencies. Using a least squares fit through three data points 
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they apparently seem convinced of the linearity of their results. 

In such a situation the fit should be heavily weighted to pass through 

the origin. When this is done, on their graph, there is clear evidence 

of increasing non-linearity with increasing wave height.

The pressure results are inconclusive and are certainly not critically 

discussed. Some quite large discrepancies are evident in both vertical 

and horizontal distributions. The agreement between measured and 

theoretical force is good for all the quoted results but it is clear 

that the results have been selected.

It was mentioned above that in a similar experimental situation Hogben 

and Standing^) observed genuine second harmonic components in the 

pressure field which extend to the bed without decay (Longuet-Higgins^) 

Chakrabarti and Tam do not appear to have taken account of these 

effects. In a later review paper Hogben and Standing^) mention 

them again, as well as concluding that not much good experimental data 

exists for short waves. If investigations are being extended to the 

second order then a clear understanding of these fluctuating pressures 

in the presence of standing wave energy is necessary.

Garrison et al^26) analysed the problem of a typical gravity platform 

with a large base and smaller vertical surface piercing columns using 

the method suggested by Hogben and Standing^), diffraction analysis 

of the base alone was used to calculate the modified velocity field on 

the centrelines of the columns. The force on the columns was then 

estimated using Morison's equation with Cg = 1 and CM = 2. Because 

the columns are still large compared with the wavelength the drag 

component makes a negligible contribution to the total force and may 

even have more accurately been neglected, since the Keulegan- 

Carpenter number was about 2. The use of CM = 2 for each individual 



column was justified on the basis of a steady flow result which showed 

negligible interference for the spacing of between 4 and 6 cylinder 

radii. The interference effects caused by wave diffraction are 

certainly not negligible in this case, and could easily account for 

the increased experimental results compared with the theory. The 

results of Lebreton and Cormault^52) show, for a spacing of 10 

cylinder radii, that the interference effects at ka = 0.15 (which is 

the value appropriate to this case) are of the order of 10%. Never-

theless, the comparison of the predicted results with those of an 

experimental study at 120th scale shows remarkable agreement, and 

confirms the assumption of negligible inter-action between columns and 

base.

Huntington and Thompson^37) used random waves to test the transfer 

functions derived from linear theory for pressures, forces and moments 

on a vertical circular cylinder in the inertia/diffraction regime. 

In general, the agreement between experimental pressures and 

theoretical predictions is excellent. Close to the free surface 

however the discrepancies increase so that the total force and moment 

results are over-estimated by about 20% at the peak spectral frequency. 

Although this is in agreement with the regular wave results of Hogben 

and Standing no explanation is attempted, it being fortunate that the 

error is conservative. In order to identify any non-linear effects 

of wave height each spectrum-was used with significant wave heights 

in the ration of 1 : 2 : 3. What is remarkable is that all the results 

for total force fall on the same curve consistently below the theoret-

ical curve, with no evidence of non-linearity. The error is evidently 

of first order.
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An attempt to allow for the effect of non-linear waves was presented 

by Chakrabarti and Naftzger^) for the special case of bottom seated 

structures. For these it is assumed that the scattering effect of the 

structure does not extend to the free surface so that it is only the 

incident wave which satisfies the correct non-linear boundary condition 

taking the form of a Stokes fifth order wave. However, it seems likely 

that the scattering of the first order component will be modified at 

least to second order by the free surface, and so on through the orders. 

This suggests that the results become increasingly doubtful to higher 

orders and fifth order results (being typically 10,000 times smaller 

than first order) must be extremely inaccurate.

A more consistent approach is to extend the complete boundary value 

problem to second order by letting the total potential satisfy the 

correct non-linear boundary condition. Isaacson^) showed that for 

objects which pierce the still water surface at least locally as a 

circular arc, the boundary conditions on the free surface and the 

body are inconsistent where they intersect; to second order. Subsequent 

discussions of this paper only served to confirm the existence of an 

inconsistency. However, subsequent papers, notably Hunt and Baddour(36) 

have suggested that although certain derivatives of the second order 

potential may not exist at this point a solution may still be obtained. 

It is worth remembering that Lighthillobtained an expression for 

the second order correction to the total force without difficulty and 

without having to evaluate the second order potential.

At the time of writing,the problem is by no means resolved. It seems 

appropriate here to point out some facts which have been consistently 

neglected by the various authors.
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Havelockshowed for waves incident on a plane vertical wall, 

that the arbitrary function of time in Bernoulli's equation is non-

zero to second order, to satisfy the free surface boundary conditions. 

Longuet-Higgins^55) generalised this result to show that in the presence 

of standing waves, a second harmonic pressure fluctuation occurs, 

throughout the fluid, in proportion to the square of their amplitude.

A non-oscillatory term in this function can also occur if the boundary 

conditions are satisfied at still water level which implies a distinction 

between mean and still water level which is often misinterpreted (e.g. 

Wiegel^?), pp. 29 - 31). Whitham^) has shown clearly how these 

two phenomena are inextricably linked with the consequences of placing 

the origin of coordinates in the mean water level. Phillips^8) and 

Longuet-Higgins and Ursell^57) show in slightly different ways how 

the correct second order pressures may be derived from a balance of 

vertical momentum using first order results.

Without exception the researchers in the field of second order wave 

forces on vertical cylinders have assumed that the arbitrary function 

of time in Bernoulli's equation may be absorbed into the definition 

of the velocity potential. This is perfectly acceptable, provided 

that subsequent analysis does not preclude the inclusion of arbitrariness 

in the solution. For example, the widespread use of complex variables, 

forces the potential to be periodic or constant.

A better procedure would be to consider the periodic solution as a 

particular solution to which must be added, for generality, a function of 

time to satisfy the boundary conditions. So far, this step has probably 

been ignored because (fortuitously), for first order problems (and 

second order free waves) this function is in fact zero.
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It is clear from the solution of MacCamy and Fuchsthat standing 

wave energy does occur around the cylinder, increasing with the 

frequency of the incident waves as the cylinder becomes more and 

more efficient as a reflector of waves. Since the waves are steepened 

in front of and flattened behind the cylinder, a resultant force exists 

by implication, even though to second order there is no spatial gradient. 

However, Cooper and Longuet-Higgins^) demonstrated clearly for an 

infinitely long partially immersed vertical barrier that the so called 

second order contribution to the total force was more than twice the 

first order contribution.
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2.3. Numerical analysis of boundless continua

Following the introduction of the weighted residual method for 

transforming the differential field equations into integral form, the 

finite element method (FEM) has developed rapidly into a powerful 

numerical tool for analysing continuum problems. Problems including 

material and geometric non linearities, inhomogeneity and time 

dependence may all be solved with varying degrees of complexity 

(Zienkiewicz^9^). Complicated boundary geometries may be easily 

accommodated, using higher order interpolation polynomials.

However, the FEM can prove inefficient and costly for solving those 

problems for which the region of interest is concentrated in one 

part of the domain. This is because the whole domain must be discret- 

ised reasonably uniformly to obtain reliable results. If one or 

more of the boundaries is so far away as to be mathematically at 

infinity, the domain must be artificially truncated and convergence 

of a norm of the solution examined as the fictitious boundary is 

moved outwards. This becomes particularly costly for three-dimensional 

problems.

The boundary value problem corresponding to the physical problem of 

wave forces on structures in the oceans is characterised by the fact 

that the solution must satisfy boundary conditions at infinity. A 

more economical approach to the numerical solution of these problems 

is to partition the domain into a near field in which the effects 

of non-linearity, inhomogeneity and/or geometric complexity are 

contained, and a far field in which the field equations take on a 

particularly simple form.
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Working within the framework of the existing F.E. methodology 

Bettess^) proposed a special 'infinite' element which relies on 

an assumed form of the far field behaviour of the solution and is 

used to model the effect of the infinite domain on the near field 

finite element discretisation. This special element possesses many 

of the advantages of normal elements and in particular, does not 

affect the symmetric, banded nature of the simultaneous equations.

For the three-dimensional problem of wave refraction by a 

parabolic shoal Berkhoff^) showed how the field equation could be 

reduced to a wave equation in the plan dimensions. He then split 

the domain (the horizontal plane at still water level) into the 

region over the shoal, which he discretised using finite elements, and 

the far field in which the depth could be assumed constant, so that 

the field equation reduced still further to a Helmholtz equation. 

Using a singular distribution of Hankel functions on the fictitious 

boundary between the two regions to model the far field behaviour,he 

was able to obtain the strengths of these wave sources by satisfying 

straightforward juncture conditions.

Another method of allowing for the far field behaviour was used by 

Chen & Mei(I?) for the problem of wave forces on large floating 

harbours. The fictitious boundary is deliberately chosen as a circular 

cylinder so that the far field solution may be expanded as a Fourier 

series of cylindrical harmonics which being singular only at the 

cylinder axis cannot suffer from the problem of fictitious frequencies. 

The coefficients of this series become additional unknown parameters.
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Using the same finite element formulation as Berkhoff, Bettess and 

Zienkiewicz^^dem onstrated how their novel 'infinite elements' could 

be used to model the far field behaviour of the scattered waves from 

an inner region in which refraction was modelled using finite elements.

The method used by Berkhoff for the far field can in fact be used 

to solve the whole problem provided refraction effects are negligible. 

In these cases, the singularity distribution is placed on the physical 

boundary and discretised to enable numerical satisfaction of the 

boundary conditions. Before discretisation, the boundary conditions 

yield integral equations of Fredholm type for the source intensity 

function. In the past, mathematicians have been able to prove 

existence and uniqueness theorems (with limited success) by assuming 

the intensity to be piecewise constant and examining the limiting 

behaviour of the solutions of the resulting matrix system as the number 

of equations increases (Jeffreys & Jeffreys^46) p.167). That this 

same system of equations could be used in finite terms as a basis for the 

approximate solution of potential problems was demonstrated by 

Jaswon^43) and Symn/76).although, at the time, the FEM proved more 

popular. They showed that the reduction in the dimensions of the 

problem lead to a smaller system of equations, which were in general 

fully populated. Any linear problem for which a complete set of 

independent fundamental solutions is available is amenable to this 
approach. Oliveira^66) solved the problem of elastostatics using 

distributions of point loads on auxiliary boundaries external to the
(2)domain. Banerjee' ' used the same formulation for the problem of 

a plate embedded in a semi-infinite elastic half-space but distributed 

the surface stresses on the plate itself.
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This technique was not totally new Naval architects (e.g. Havelock^)) 

used a source distribution on the axis of a thin ship to solve the 

problem of wave forces. An analogous procedure became extensively 

used for thin aerofoils. Von Karman^) used distributions of 

sources and doublets on the axis of revolution of simplified airship 

hulls to obtain pressure coefficients. Subsequently, aerodynamicists 

(Hess^)) have tended to place the sources and point vortices on the 

actual body surface for maximum numerical stability. The main difference 

between these well tried methods and the Boundary Element methods (BEM) 

as reviewed by Brebbia and Walker^) for example, is that the latter 

are couched in a form which can benefit from the knowledge gained in 

the application of FEM.

The established methods required the evaluation of a fictitious source 

distribution before any useful quantities could be evaluated. They 

are in that sense called 'indirect' methods. A more recent approach 

is that of discretisation of the integral relation between the essential 

and natural boundary conditions. For potential flow, this is derived 

from Green's second identity and for elastostatics from Betti's theorem. 

For a well posed potential problem, either the potential or its 

normal derivative is known (or some additional relation between them 

is prescribed) at every point on the boundary. If Green's identity 

is discretised by assuming the potential and its normal derivative to 

be piecewise constant on the boundary, then substitution of the 

prescribed boundary values yields a system of matrix equations for 

the unknown values directly. Formulations based on the use of such 

reciprocal formulae are therefore known as direct methods.
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Because of their increased accuracy and ease of use, these direct 

methods have been gaining wide acceptance. Whichever method is used 

however, if values of potential or its gradients within the domain 

are required, they must be obtained by additional numerical application 

of Green's theorem once the boundary values are known.

Much of the research on wave forces on immersed objects has followed 

in the footsteps of established methods used by Naval architects. The 

thin ship theory has therefore lead to the singularity distributions 

of Garrison & Chow^5), Hogben and Standing^), Eatock-Taylor & Waite^3^ 

and others. With the notable exception of Bai & Yeung^) they all use 

a piecewise constant distribution of source strength in an indirect 

formulation, thus necessitating considerable additional computation 

before the hydrodynamic pressures can be calculated.

Watson^83) for the case of elastostatics and Hess^30^ in aerodynamics 

have shown two different approaches to the inclusion of higher order 

terms in the approximation for the direct and indirect formulations 

respectively. Both report significantly increased accuracy which allows 

a trade-off in the number of unknowns.

It is now becoming increasingly recognised that the FEM and the BEM 

may be most usefully employed in combination, primarily because of the 

(current) difficulty of solving non-linear problems using BEM and 

infinite domains using FEM. Zienkiewicz, Kelly and Bettess^3^ have 

shown how the coupling may be accomplished without sacrificing the 

symmetry of the FE formulation. Shaw^) has discussed how the use of 

a boundary integral equation as a natural boundary condition enables 

an extended variational principle to be obtained for the F.E. domain.
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Walker^81) has shown how the problem of fluid-structure interaction 

may be modelled, using a more mechanical coupling of nodal compatibility 

conditions between the FE idealisation of the structure and the BE 

idealisation of the fluid.

Bettess^8) showed how a special element could be formulated for problems 

for which the domain extends to infinity. The usual Lagrange inter-

polation functions were multiplied by an exponential decay to account 

for the expected decay of the solution towards infinity. Since in rpost 

problems, the actual decay rate is initially unknown, an arbitrary decay 

length L was introduced. As an example of how this element performs 

in the one-dimensional case, he solved an ordinary differential equation 

for which the infinite behaviour was known to be as the inverse of the 

distance. The behaviour of the numerical solution was shown to depend 

significantly on the choice of decay length, with the decay being obviously 

too rapid to model the correct behaviour.

The degree of arbitrariness in the choice of L could have been reduced 

by minimizing the functional with respect to L as well as the other 

unknowns, although, this would have lead to a system of non-linear 

equations.

Because of the rapid decay of the interpolation functions, the far 

field behaviour could only be modelled at the expense of the nearfield 

and vice-versa. The best near field behaviour was shown to occur with 

a decay length of 2 for this particular problem.
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The two dimensional problem of zero Reynolds number flow past a 

circular cylinder was then solved using a decay length of 2. The 

agreement of the numerical solution with the analytical solution is 

remarkably good. However, in this case, the behaviour is also R_1, 

and no results are shown for other decay lengths. In the conclusion 

Bettess admits that this element does not give a true indication of 

the far field behaviour of the solution. It is at best a small 

improvement on simple truncation of the finite element domain, and 

should only be used as the last row of elements in a finite element 

analysis of an exterior problem. In most realistic problems where 

an analytical solution is not available, parametric variation of decay 

length will not give any indication of what is a reasonable choice 

unless minimization of an energy norm is achieved.

Although diffraction may be solved by a source method, and refraction 

may be estimated by following wave rays, the combined problem has 

always proved difficult (see e.g. Ippen^38)). Even in the absence of 

diffraction, the ray method fails in places where wave focussing causes 
a caustic to form. For combined diffraction-refraction Berkhoff^4) 

derived a general wave equation, on the assumption of a small wave 

steepness and small bed slope, by expanding the potential as a power 

series in terms of these two parameters. Although it is more general 

than the shallow water approximation (because it includes the effects 

of dispersion), it nevertheless relies on depth being small in comparison 

with the wavelengths of both the bed undulations and the fluid free 

surface. Identifying an outer region in which the depth may be assumed 

constant, for which the source distribution method is satisfactory, and 

an inner region in which a finite element formulation may be used, he 

concentrates on the details of the method by which these two solutions 

may be matched at the interface.

- 91 -



The finite element formulation is based on the functional corresponding 

to the above wave equation. It is therefore straightforward to include 

in such a functional an integral over the interface of the normal 

potential gradient as the natural boundary condition. In turn, this 

may be expressed in terms of the unknown source distribution for the 

outer domain to satisfy continuity of flux. Minimization of this 

functional can only yield enough equations for the values of the potential 

at the FEM nodes. Satisfaction of continuity of the potential at each 

boundary point yields just enough equations for finding the source 

strengths. The matrix equations are partitioned and solved in a way 

which makes maximum use of the banded nature of the FE terms.

It is clear, that use of a 'direct' numerical relation between the 

potential and its gradient on the interface would remove the need for 

indirect calculation of the fictitious source strengths.

With particular regard for economical engineering application, he shows 

how the calculations of refraction over a parabolic shoal by ray methods 

may be pontinued across the caustic using the ray results as a boundary 

conditions for the numerical model.

An excellent example of coupling far field and near field behaviour 

is demonstrated by Chen and Mei^7) for the case of long wave impinging 

on a large floating power station. Using a pseudo-variational represent-

ation they show with commendable clarity how the contribution from the 

outer region may be included as a constraint condition on the interface 

only. They use linear triangular finite elements inside the near field 

which contains all the floating bodies. By deliberately choosing a 

circular interface, the outer solution may be constructed from a Fourier 

series of Hankel functions singular only at the centre, combined with 

the known incident wave. The unknown coefficients of this series are 

combined with the unknown values of the potential at the nodes of the
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FE mesh in a linear system of equations. The bandwidth of these 

equations is considerably increased by the constraint condition 

connecting all the interface nodes. They show an efficient partitioning 

of the equations that can lead to savings if Gauss elimination is used.

They demonstrate the excellent accuracy achievable with this approach 

for both the simple vertical circular cylinder and a semi-circular 

breakwater protecting an infinite straight coast for which they derive 

a new analytical solution. Finally, they analyse the floating harbour. 

They are unable (in a two-dimensional model) to model the sloping 

sides, but for the wavelengths they are using,the effect of breaking 

would be negligible, so the boundaries would act as perfect vertical 

reflectors. For bodies with sharp edges they show how the ideas used 

for far field behaviour may be used to enable matching of an inner 

singular series solution, satisfying the correct behaviour near the 

edge, with the FE mesh. This approach has been used in crack prop-

agation problems in solid mechanics. It is of doubtful value in this 

case, since, in the physical situation the flow will almost certainly 

separate at such an edge. The effect of separation on such large 

structures is likely to be so small that they might just as well round 

off any edges in the mathematical model.

Using the same theoretical formulation as Berkhoff for wave refraction 

by gradual depth variation, Bettess and Zienkiewicz^6\ solve a number 

of problems in which the fluid domain extends to infinity. Instead 

of a distribution of wave sources, they model the outer region using 

infinite elements for the scattered waves. The interpolation function 

in the infinite direction in these special elements was assumed to be 

the product of a Lagrange polynomial, an exponential decay term and 

a complex exponential term to represent the wavy nature of the potential.
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The arbitrary decay length was chosen to give approximately the 

same decay rate as the first term in the series solution, when 

available. The actual decay of this term for large R is as (R 

but they do not indicate where they chose the best fit. It is 

clear from the results presented, that the numerical solution is 

increasingly inaccurate as the infinite elements are approached. 

In many cases the incident wavelength is so long that the scattered 

part of the solution is likely to be quite small so that they do 

not constitute a severe numerical test. The main disadvantage of 

this method of coping with infinite domains is the necessity of 

numerical integration over infinite elements. In practice, the 

element is truncated at a large distance but this computation still 

involves 32 sample points per element. The considerable advantage 

of this approach is that the values of potential on the interface 

between near and far field are no longer interconnected. The band-

width of the overall matrix is therefore not increased.

A similar effect can be achieved using zoned boundary elements. In 

this case numerical integration along an infinite line might be 

necessary, but the correct far field behaviour would be included 

automatically.Watson^83) has used this for elastostatics, where the 

far field behaviour is monotonic decreasing. In waves the oscillatory 

nature of the far field behaviour makes numerical integration more 

difficult.

One of the first expositions of the boundary integral technique was 

made by Jaswon^43) and Symm in a two part paper. This coincided 

with the rapid emergence of powerful digital computers whose absence 

had previously limited the methods of solution of integral equations.
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In the first part Jaswon summarises the theoretical background to 

the equations of Fredholm type, suggesting that numerical solutions 

should be possible for both the indirect method and the direct 

method which he refers to as Green's boundary formula. He concentrates 

on the more difficult two-dimensional problem (because of logarithmic 

behaviour at infinity). In the second part, Symm shows how these 

integral equations may be approximately solved. He assumes for the 

indirect case, that the fictitious source distribution is piecewise 

constant along an inscribed polygonal approximation to the boundary. 

For evaluation of the resulting integrals, he uses Simpson's three 

point rule except when the boundary point and integration point are 

on the same element (i.e. terms contributing to the diagonal coefficients) 

when an exact integration is possible. A detailed investigation of 

the error bounds is performed on the Dirichlet problem of a notched 

circular cylinder. The maximum error which always occurs on the 

boundary is typically 4%.

Not long after the previous papers Oliveira^66) solved the problem 

of elastostatics using the Kelvin solution for a concentrated load 

in an infinite medium. He preferred not to present the theory in 

the form of integral equations but rather as a linear superposition 

of independent solutions. This is one of the few papers in which 

the fictitious force distribution is placed on an auxiliary boundary 

outside the real boundary. He is well aware of the limitations this 

places on his solution, but does not seem to be wholly motivated in 

this choice by a desire for increased accuracy. In fact, in all the 

examples cited, the auxiliary boundary and the real boundary are 

extremely close together. He seems only to be concerned to avoid 

the logarithmic singular behaviour of the Kelvin solution for small 

argument.

- 95 -



Another simple example of the application of the indirect formulation 

is shown by Bannerjee^^ for the problem of a plate embedded in an 

elastic half-space. By using the fundamental solution of Mindlin 

instead of Kelvin, the zero stress condition on the surface is 

automatically satisfied, thus removing the necessity of discretising 

the whole surface. The numerical agreement with the Boussinesq 

solution for a circular disc was shown to be better than 5%.

One of the earliei applications of the indirect boundary element 

method, as distinct from superposition of a small number of solutions 

was made by Von Karman^48). He solved the problem of flow past 

airship hulls, by taking account of axisymmetry and so using Stokes' 

stream function. He considered the general problem of flow at any 

angle by splitting it into the flow along the axis and the orthogonal 

component. The perturbation of the former he represented by an 

initially unknown distribution of (piecewise constant) source strength 

along the axis and the latter similarly by a dipole (or doublet) 

distribution. The source strengths were then found which made the 

zero stream line pass through as piany points of the actual body 

profile as there were unknown values. Once the flow is simulated, 

the pressure coefficients may be found. For the particular airship 

considered the results of this calculation were compared with measure-

ments from an actual flight and the agreement shown to be excellent.

(121In an introductory review paper Brebbia and Walker' ' use the 

weighted residual formalism to show how the governing field equation 

of a boundary value problem may be couched in integral form. By 

successive integration by parts, they show how the finite element 

equations may be related to the direct boundary element method and 

then in turn to the indirect method. They then show that many of the 

techniques of finite elements may be usefully employed in boundary elements.
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In particular, in the direct method the variation of the potential 

and its normal derivative on the boundary may be approximated by 

high order interpolation or shape functions, and curvilinear co-

ordinates using these same functions may be used to specify the 

boundary shape.

A number of examples of the application of boundary elements are 

reproduced. In view of their statement that 'boundary' methods are 

generally more accurate than 'domain' methods it is interesting to 

examine this accuracy. Typical accuracy is shown to be about 4%. 

The plane strain problem of an anchor plate embedded in a crack in an 

infinite medium is particularly interesting. The distribution of 

tensile stress along a line through the crack side is plotted. 

Although, this stress will remain bounded up to the edge, the results 

stop mysteriously short. This is almost certainly because of the 

breakdown of the results as the boundary discretisation is approached. 

It was just such a problem which first suggested to the writer the 

use of an auxiliary boundary, since it is the boundary results which 

are usually of most interest.

Finally, for the problem of wave diffraction governed by the Helmholtz 

equation, they derive the boundary integral relation for wave height 

(say) from the direct BEM statement. The theoretical results of this 

section are extremely doubtful. One rather obvious solution of the 

Helmholtz equation is the plane progressive wave. It clearly (c.f. 

John^?) ) does not satisfy the radiation condition at infinity. Any 

general statement of Green's second identity for this problem should, 

at least initially, include a boundary at infinity. This is primarily 

the reason for traditionally separating out the incident wave in such 

Problems, and they have therefore derived a relation for the scattered 

wave only. Having assumed that the observation point is within the 
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inner region, they then use the asymptotic formulae for the Hankel 

functions as if it is a long way outside this region eventually 

producing the radiation condition. They have obtained this 

fortuitously because of the symmetry of the Hankel functions. The 

statement -

" As a test to determine the adequacy of the radiation 

condition in representing a train of plane harmonic 

waves, the case with no solid cylinder was first 

studied"

makes it all the more surprising that the quoted numerical results 

for the cylinder run-up are closer to the analytical solution than 

those of Chen and Mei^?) who used a better approximation. In 

short, all that they have done is apply the radiation condition 

on the boundary of the finite element domain.

Watson^) shows for three-dimensional elastostatics how the same 

shape functions used in two-dimensional finite elements may be 

used to interpolate over curvilinear surface boundary elements. It 

is frequently stated that an advantage of the BEM is that it can 

handle infinite domains easily. This sweeping generalisation is 

only true if the boundary surfaces of the domain are finite. Watson 

is interested in solving for the state of stress around the intersection 

of underground tunnels. Mathematically, the tunnel surfaces extend 

to infinity away from the intersection. Using an infinite surface 

element, he shows how a non-linear mapping of the infinite domain 

onto the range for which Gauss quadrature formulae are available, 

may be justified. This approach does not require any assumptions to 

be made about the far field behaviour save that it decreases away 

from the intersection.
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Hess, co-author of one of the most well known papers on the numerical 

calculation of potential flow problems in the field of aerodynamics^) 

showed in this later paper^O) accuracy of formulation

could be significantly improved by the use of higher order represent-

ations of both the boundary geometry and the source strength distrib-

ution. Working in a two-dimensional coordinate system based on the 

tangent to the mid point of an element, he supposes both the element 

shape and the source strength to be expandable as power series in the 

tangential coordinate. The velocity at a general point caused by the 

presence of this element can then be found by integration term by term. 

The result is a power series in the element length which reduces for 

small elements to the simple constant source, straight elements. The 

next term in the series includes a contribution from the linear term 

in the source strength plus a term from the curvature (second power) 

of the geometry. The usual reason for extending to higher order 

interpolation is to enable the curved geometry to be more accurately 

represented. Hess has shown that a mathematically consistent improve-

ment may be made by including the boundary curvature without having 

to assume a parabolic variation of source strength. His examples 

bear this out. The increase in accuracy obtained by using a linear 

variation of source strength was always of the same order as that 

improvement when curvature was added (without increasing the number 

of unknowns). Whereas the addition of parabolic source terms showed 

negligible improvements. All his examples where for cases of 

uniform flow perturbed by the presence of an object. For the more 

rapidly varying boundary conditions of water waves the additional 

complexity may be justified.
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Zienkiewicz, Kelly and Bettess^) discussed the problems of linking 

the indirect or direct boundary integral procedures to those of finite 

elements. They concentrate on the need for establishing symmetrical 

equations, which they achieve by using an energy principle for the 

BE domain. For the indirect method the principle must include as an 

additional constraint the satisfaction of the Dirichlet conditions, 

whereas for the direct method the satisfaction is guaranteed by the 

coupling of the inner and outer potentials. If the interpolation 

functions are the same on both sides of the interface, the coupling 

is continuous along the interface. They make no mention of the 

possiblities of reducing the bandwidth of the BEM region by zoning.

They redefine the finite element methodology in a sufficiently general 

form to enable them to show that the boundary element formulation 

may be viewed as a subset of it. To do this, they have to drop the 

requirement of locally based shape functions which is essential for 

the economic use of FEM. They then compare the two methods. The 

major failing of the BEM to date has been its inability to model non-

linear field equations.

Although the FEM can cope with nonlinear equations,ultimately it 

leads to a set of nonlinear simultaneous equations which have to be 

solved by iteration. For economic reasons,weak nonlinearity is 

often assumed so that the initial 'stiffness' matrix may be retained 

throughout the calculation.

It is possible that the BEM may be applied to the linearized field 

equations and again the solution obtained by iteration. After the 

first iteration however, this will almost certainly involve numerical 

integration over the whole domain even though the unknowns will still 

be concentrated on the boundaries. This additional computation may 

only yield savings for three - dimensional problems.
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In most realistic exterior wave problems, the only interest in the 

outer domain is in how it affects and controls the behaviour of the 

inner local solution. The use of an indirect formulation for the 

outer solution means that in order to incorporate its interface values 

the fictitious source strengths (or similar parameters) must be included 

as additional unknowns in the overall matrix system. Application of 

Green's theorem to the outer region (a direct method) yields a relation 

between the potential and its gradient all around the boundary which 

may be incorporated into a variational principle for the inner region 

without introducing any new unknown variables. This is the procedure 

sketched by Shaw^74^ for the long water wave case. It should be 

equally possible to include this boundary integral relation in a 

weighted residual sense, which extends the possibilities for the 

inner field equation.

Most of the results of diffraction analyses yield the forces exerted 

by the waves on the rigid structure. The structural analyst then 

uses these forces to calculate the displacements of the structure. 

The implied displacement of the fluid boundaries and hence modification 

of the fluid forcing is seldom taken into account. Eatock-Taylor^20) 

has shown how for small displacements these problems may be correctly 

uncoupled. Walker^) shows a procedure for solving the coupled 

motion of a closed tank containing fluid with a free surface. He 

does not emphasise the fact that motions are again assumed to be 

small, about the mean position of the tank. He represents the 

structure as thin shell finite elements and the fluid as boundary 

elements. The coupling is achieved 'mechanically1 by deriving a 

force displacement relationship for the fluid boundary (by 

averaging the hydrodynamic pressure over each element) and 

satisfying equilibrium and compatibility with the structure.
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The problem is still nevertheless linear. The nonlinear problem 

of finite displacements has not yet been solved. This problem could 

still have been solved using the modal analysis of Eatock-Taylor but 

with greater complexity. Because Walker does not have to restrict 

the analysis to the first few modes of structure vibration his results 

are in that sense more accurate.
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CHAPTER 3 POTENTIAL THEORY

3.1. The governing equations of irrotationai flow

The motion of an incompressible fluid may be characterized by 

the velocity vector u.. The flux of this vector through any 

closed surface r, within the fluid , is

f ni u. dr 3.1.1.

Where n^ are the components of the outward normal vector, and 

the index is repeated to imply summation. The flux is then 

the volume of fluid crossing r in unit time.

For constant density, the conservation of mass of the fluid 

requires that the flux be zero across every surface r wholly 

within fhe fluid. If Q is the region within r then, from Green's

1 emu'.?

f ni ui dr
r

=
<2. ax -

dfi = 0 3,1.2.

By letting r tend uniformly to zero at a point P it may be shown^C)

that at point P

au.
—1 = div u_ = 0

-

3.1.3.
3Xi

Where the repeated index is used to imply summation, and div is 

the divergence operator.

Clearly for incompressible flow of a fluid this result must hold 

at every point of the fluid. A vector ,<hich has zero divergence 

everywhere in a region is called a solenoidal vector.



The circulation of u. is the integral of velocity along 

a circuit r within the flow

f u. dx.j 3.1.4.
r

If the circulation is zero along all circuits within a 

region then u^ is called an irrotational vector within 

that region. If A is now a two-sided surface bounded by 

r, from Stokes' theorem

f u . dx = f n. curl u dA = 0 3.1.5.
r A

As before letting r tend to zero whilst all the time A is 

the smallest surface bounded by r, for an irrotational 

flow

curl u = 0 3.1.6.

If u^ is irrotational the line integral of velocity between 

any two points A and B is single valued, irrespective of 

the path taken, since any two such paths form a circuit for 

which the total is zero. A velocity potential <t> may then 

be defined by usually

♦b - *A = Uidxi 3J'7'

Consider now a point P (xp and a point Q(x^ + 6xp a small 

distance away. Since the <Sx. are small, the small change in 

<t> is

6<p =9±<5xi=/Q dx
3Xi P 1 1
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As the <5Xj approach zero the integral approaches u^<5x..

Since the 6x^ are arbitrary any two may be assumed to 

be zero from which the result follows

An

3.1.9.

irrotational vector may then be expressed as the gradient

of a scalar potential. If in addition, the velocity vector

is solenoidal then the potential satisfies Laplace's equation,

A

9'X.3X^
0 3.1.10

The equations of motion of an ideal fluid may be found by

an application of Newton's second law, to be

au, u. 3 u. 1 aP
-J. + 1 _ J = X. - _ —,i j = 1,2,3 3.1.11.
at 9xi J p axj

Where a summation on i is implied and P is the fluid pressure

and p the constant density. For

irrotational flow

u. =
J

3<f>

and aui __ 9U.
___J_

9xj ■ ax..

whence 9 /9l^\x 3U. =

the particular case of

3.1.12.

3.1.13.



If the body forces are due to a potential (such as gravity) 

then

9 <j> u. u o i i+“ +-L 3.1.15.
9t

These equations may now be integrated to yield the generalized

+

2
0

Bernoulli equation

+ V,- + « + P
29t

F(t) 3.1.16.
P

A velocity potential may be found which satisfies the kinematic 

conditions. However, for the corresponding flow to be 

dynamically possible then equation 3.1.16. must be satisfied 

everywhere within the fluid. In most applications the 

potential is redefined to include the arbitrary function F(t).

If, on the boundaries of a flow, the effects of viscosity are 

negligible the boundary condition is that of free slip. The 

kinematic boundary condition for moving impermeable boundaries 

is therefore:

n 2* = vn 3.1.17.
3xi

A free surface boundary must be treated separately. The origin 

of co-ordinates is at mean water level, with y positive upwards. 

The velocity components u, v, w correspond to the x, y, z 

directions respectively.
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The body force potential due to gravity is then n = gy.

The elevation of the free surface above mean water level 

may be considered as a function of x, z and t»

n = n. ( x, z, t) 3.1.18.

The kinematic condition is that the velocity of the free 

surface must be that of a particle of fluid on the surface

22 + U—+ w^2 = V on y = n 3.1.19.

st ax az

The position of the free surface is not usually known a priori 

so that an additional condition is required. If in particular 

it is assumed that the pressure on the surface is constant, then 

without loss of generality it may be zero. The dynamic condition 

then becomes

2* + J (u2 + v2 + w2) + gn = o on y = n 3.1.20.

at

By considering each condition as a Taylor series expansion about
(51)

y = 0 it can be shown that a consistent first approximation reduces

these two conditions to

= v «
3(j) on y = 0 3.1.21.

at ay

and

3<t>— + gn 0 on y = 0 3.1.22.

at
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Combining to remove the initially unkown n leads to the 

free surface boundary condition

2
+ g 1* = 0 on y = 0 3.1.23.

st2 ay

The first order approximation represented by the satisfaction 

of the free surface conditions at y = 0 becomes more accurate 

as n reduces so that for infinitessimal waves it approacnes 

the exact solution.

3.2. Uniqueness theorems

Potential theory is concerned with the problem of finding <j> 

subject to boundary conditions sufficient to make its existence 

unique.

Ihe following sections are concerned with those aspects of 

potential theory wMch are necessary for setting up a framework 

for numerical evaluation of <j> using the technique of Boundary 

Elements.



Consider now Laplace's equation governing the variation of 

a potential <p

2_1 = = 0 3.2.1.

3X.3X.

If two solutions exist and eac^ satisfying arbitrary 

boundary conditions a third function may be defined as

*3 = *1 + <f)2 3.2.2.

2 2 2 2Since v <f> = v (<t>1 +<t>2) = v + v <f>2 = 0 3.2.3.

then is also a solution of Laplace's equation. In short

Laplace's equation is linear. Clearly the above result may be 

generalized to include any number of solutions.

Consider now an arbitrary domain fi boundary r on which the 

gradient of a potential <j> is prescribed

21 = q
an

3.2.4.

this is the interior Neumann problem.

Green's theorem may be written in the form

2V ip d Q + /grad <j>. grad ip dQ == f . 9^ Hr_ ar 3.2.5.
R Q r an

If * = ip is
2

a solution of v <t> = 0 this reduces to

2
/ (grad <j>) dQ = f 4> 2* dr 3.2.6.

ann r
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the object being to show that the interior Neumann problem 

possesses a unique solution.

Consider then that two solutions exist . and <j>2» both 

satisfying Laplace's equation and the conditions = q on r 
an

Then ^3 = 4>] _ 1S a^so a so^u^^on satisfying

2* = 0 on r 3.2.7.
an

Therefore, from equation 3.2.6.

f (grad dfi = 0 3.2.8.

Since the integrand is non-negative it must be zero, that

is

grad = 0

or $3 = C 3.2.9.

where C is an unknown constant.

It follows that the two solutions <|>^ and <f>£ are uniclue excePt 

for an additive constant. The physical interpretation of this 

is that the datum from which <j> is measured may be shifted by an 

arbitrary amount without affecting the gradient of <f>.

If however, in addition, <j> isprescribed anywhere on r then the 

solution will be unique absolutely.
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'For if j> = in a neighbourhood of a point i on e , and

= q on r - e; then considering two solutions which 

satisfy Laplace's equation and the above boundary conditions 

4>.| and <p^9 then <f>3 = - <t>2 a^so a solution but satisfying

zero boundary conditions.

2
f (grad ) dQ . f 8<t>3 dr *3^dr = 0

3.2.10.e J 9n r-e an

Again <j>3= C. However on e, = 0 and since <j>3 is continuous 

and constant it must be zero everywhere. Therefore <j>-| = and 

the solution is unique.

It is also necessary to prove uniqueness for the exterior Neumann 

problem, in which <f> exists in aregion Q exterior to a boundary r 

(see figure 3.2.1).

Green's theorem is applied to the region n between the boundary

r and a large sphere e completely enclosing r, whence

3.2.11.

9
If <j) satisfies v 4> = 0 then

f (grad
n

3.2.12.

The behaviour of <t> and 21 must clearly be restricted at large 
3v

distances if the contribution from the integral over E is to

vanish as E approaches infinity.
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If the radius of Y. is R then the integral of a function f over

E is given by (see figure 3.2.2.).

f fdE
E

ir
= 7 2

2 IT
f f R sine dxRde
X = 0

2
= ff f sine R dxde 3.2.13.

For this to vanish as R soothe integral must behave as 0(R ^). 

Since |sine|< 1, f must be at least 0(R ). for large R.

Hypothesizing, again, that two solutions exist whose difference 

satisfies zero boundary conditions on r then

/(grad <f>3) dQ « / dz 3.2.14.

Provided then that <f>^ and tend to 0 for large R and that
_2

their derivatives behave as 0(R ) for large R, then and

behave as 0(R and the integral behaves as 0(R for large R.

In this case the Neumann problem possesses a unique solution.

The corresponding result for two dimensions is that if

27T
I = f dr = f fpdg 3.2.15.

_2
then f must be at least 0(R ) for the integral to be bounded

for large R.
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3.3 Fundamental Solutions

The results necessary for the derivation of the Indirect Boundary

Element method will now be derived.

The three dimensional case will be presented in detail with the

results for two dimensions quoted without derivation.

If r is the di stance from the origin to the point P(Xp x^, x^)

then

xi xi 3.3.1.2 r

and 2r ar 2xj

is

ar XJ no sum on j 3.3.2.

a fundamental solution of Laplace'c equation then

3xj

r

If <|>*(r)

2 *3 4> 0
av. ax.

Where N is the number of dimensions
xi xi

r
.2 *d <]>

T7 dr
1 (N-i)
r dr

3.3.3.+

For three dimensions
1_
r 3.3.4.
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Whence
a2** -2 + 1
------- - 3 ax. ax. r r

For two dimensions <j>* In r 3.3.5.

whence

ax-px^

- (2-1) = 0 
r

1 2Therefore <f>* = - is a solution of v <j> = 0 everywhere except
r

at r = 0.

The physical significance of is that it is the potential due 

to a point sink at the origin. Consider a small sphere of 

radius a, centred at the origin, whose surface is a (see figure 

3.3.1.). The radial velocity at any point on a is then

The total flux of <j> across a is

3.3.6.

2
Since the surface of the sphere is 4iTa .

Green's theorem may be written

21 ]
f <}) V -dQ + f grad*. grad-dQ= 
Q p Q p

f <t> — - dr 
r an r

3.3.7.

If 4> = C this reduces to

dQ = dr 3.3.8.r an r
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This is actually Green's lemma, or the Divergence theorem

Evidently, the above result for a sphere may be generalized 

to any surface containing the origin, since it may always be 

surrounded by a sphere and equation 3.3.8. applied to the region 

between the two surfaces.

Applying Green's lemma to the domain w within o 

gives

2 1f V — dw = —4tt  3.3.9.

a result which holds for all a as a tends to zero.

This behaviour is most easily represented by recourse to the 

theory of generalized functions. As a tends to zero the 

radial velocity tends to infinity but in such a way that the 

flux across a remains finite and equal to - 4ir. The Dirac 

delta function may be conceived in the same way so that in 

the 1imit

s(r) 0 r y 0
<s(r)

and 3.3.10.0

Formally then <|>* = - satisfies the Poisson equation 
r

2
v 4>* = -47r<S(r)-4irfi(r) 3.3.11.

where <S(r) is the Dirac delta function centred at the origin.



Integrating equation 3.3.11 over fi recovers equation 3.3.9.

In a similar fashion it may be shown that <f>* = In r satisfies

2 .
V 4> = 2tt  <5(r) 3.3.12.

where <f>* represents the potential due to a line source.The 

foregoing results may evidently be generalised by a shift of the 

origin of co-ordinates.

Consider now the solution of Laplace's equation generated by 

the addition of a number M of fundamental solutions 

centred at points q^ (5^, of strengths f... The potential

at a point P(x.) is
J

f(p) = fj 4>* (P.q) 3.3.13.

Provided then that the points q. may be enclosed by a finite 

surface, <f> (p) behaves as <j>*(p) for large distances. Clearly 

for the three dimensional case no problems of uniqueness will 

arise since is 0(R_1) for large R. To avoid unnecessary

notational difficulties the two dimensional case will be pursued 

on the understanding that many of the results will generalize to 

three dimensions by replacing 2n with -4tt , and In r with

Application of Green's lemma to this potential within a domain Q 

enclosing all the points q. gives

2 a M
/ 7Q

4>(p)dQ = f - <j>(p)dr = 2tt  e fj/ 6(p-q.)dfi 
r gn i=l

Whence / dr = 2n e fi 3.3.14.r an i=1
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The points q. may be arranged uniformly around a closed curve 

S. For sufficiently large M the small distance dq may be 

defined as shown in figure 3.3.2. If the source strength 

associated with q^ is assumed to be constant over the small 

distance dq, then as M °° the sum may be interpreted as an 

integral over S. In other words the potential

<Kp) = f 4>*(p»q) f(q) dq 3.3.15.

may be generated by the continuous distribution of source 

strength f(q) on S. Evidently 4>(p) doe> not satisfy Laplace's 

equation on S. The corresponding expression for the normal 

derivative of <j>(p) must be derived with care because of the 

singularity when p and q coincide. Consider the boundary S 

to be split into two parts, the smaller part a being a semi-

circular curve radius a centred at p (see figure 3.3.3.). The 

correct expression is obtained by letting a tend to zero.

For a point p on the boundary S

<|>(P) = f In r f (q) dq + f In r f(q) do 3.3.16.
S-o cr

where r is the distance from q to p. The normal derivative of

<t> at p directed into the domain is

= 1im J f 2 in r f (q) dq + / In r f (q) do/ 3.3.17. 
9n a-K) 1 s-o9n a 9n J

The first term on the R.H.S. is well behaved. For the second term

— = — and do = ade
an ar ,r=a
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,im f ’ ln r f(q) do = lim Ia+" 1 f(q) a d(rt> . f(p) 
a->o ° an a->o a a

Therefore

’i(M , /lln rf(q) dq + Hf(P) 
an S8n

3.3.18.

accounts for the singular behaviour of the integral. If P 

is not on S then the second term does not arise. Clearly 

there will be a similar expression for the exterior domain.

Using the notation n. for the normal directed into the interior

and n for the normal directed into the exterior from S then e
(see Figure 3.3.4)

■5n-*(t>) " 1 lrln r f(q> dq + ’f(p) 3-3-19'
i s i

|r*(p) = 4 Ijj-ln r f(q) dq + „f(P) 3.3.20.
e e

Because In r is uniformly continuous on crossing S then addition

of the above equations gives

= 2irf(p) 3.3.21.

by virtue of ni and ng being in opposite directions. There is, 

then, a step change in potential gradient on crossing S corresponding 

to the inflow f(p).
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Integrating equation 3.3.21. over S gives

fs dS + 4 '^■P) dS = 2k 4 f(p) dS 3.3.22.
i e

If there are no sources in the interior domain then, by

Green's lemma, remembering that n. is an inward normal

V24>(p)dfii = - f3 -|£(p)dS = 0 3.3.23.

Equation 3.3.22. becomes

4^|(P)dS = 2ir f f (p) dS 3.3.24.
e s

Consider now the domain exterior to S but bounded by another 

boundary e containing S. Application of Green's lemma to the 

region between e and S leads to

4 -^(P) dE = 4^(P) ds = 2<f(P) ds 3.3.25.
4 dn o e

provded that no sources exist between e and S. Here n denotes 

the normal directed outwards to infinity from E.



3.4. Numerical discretisation of a Dirichlet problem

The potential generated by a distribution of source strength 

f(q) on a closed curve S may be used as the basis of a 

method for solving interior boundary value problems subject 

only to Dirichlet conditions, in the form

f In r f (q) dS = $ (p) p on S 3.4.1.

where the bar indicates that the values of <f> are known on S 

for a Dirichlet condition. This equation represents an 

infinite set of equations for the unknown source strength f(q). 

This is an integral equation of the first kind. '

For numerical computation it is necessary to reduce the infinite 

degrees of freedom of f(q) to a finite number M. The early 

approaches to this were made by approximating the curve S by 

a finite number of straight segments subsequently Called elements.
(43) On each element the source strength f(q) was assumed to La constant. 

Subsequently, many of the approaches to discretization used in 
the Finite Element method have been utilized^. ^hese involve 

the use of higher order interpolation functions, often called 

shape functions because they may be used to descibe the geometry 

of the elements of the boundary. The motive for the use of higher 

order interpolation is that the same accuracy may be achieved with 

fewer elements and fewer unknowns. A considerable advantage is 

gained in the case of Finite Elements as a consequence of the 

localized nature of these shape functions.
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The effect of each element is only felt by its neighbours so 

that the matrix of coefficients involved in the simultaneous 

equations is sparse and banded. There is a reduction in 

computer storage requirements, as compared with that of a 

traditional Rayleigh-Ritz approach using global interpolation. 

In the case of the Boundary Element Method, no such advantage 

may ever be gained. The fundamental solutions are continuous 

throughout the domain of interest and can only have zero effect 

at infinity. Consequently every point on the boundary comes 

under the influence of the source strength at every other, so 

that the matrix is fully populated. The only advantage gained 

is that the integral over each element only involves the source 

strengths within it, leading to a reduction in computation time.

The use of global interpolation functions may then be possible 

and desirable. The use of complete Lagrange polynomials may 

be possible, although difficulties are envisaged in consistently 

achieving continuity on a closed boundary curve.

For closed curves the possiblity of expanding f(q) as a Fourier 

series seems the most attractive of these global approaches.

Blac k^abd Fento(i2Jlve used Fourier expansions of the potential

and source strength functions, restricting their analyses to 

axisymmetric problems. Their approaches lead to a reduction 

in the number of equations, but for each term of the expansion 

a separate problem must be solved. Fortunately in their case 

only the first two terms lead to results of significance.
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What is envisaged here is the possibility of reducing the 

number of unknowns by recognising that in many non-symmetrical 

cases the first few terms of a complete Fourier series may 

still be used to adequately represent f(q). This may be most 

easily accomplished in two dimensional problems. To attempt 

to satisfy the boundary conditions at as many points as may be 

required, a least squares procedure could then be adopted. The 

number of equations would therefore still be governed by the 

number of terms in the expansion for f(q).

In some cases the function <t> or its derivatives may be expected 

to vary quite rapidly, for example, near regions of small radius 

of curvature on the boundary. The simplest solution to this 

problem is to replace this portion of the boundary with a more 

suitable radius of curvature and investigate convergence by 

varying this radius.

For cases where singular behaviour is expected, such as at 

re-entrant corners, two alternative approaches have been adopted. 
Ligget^^is used special interpolation functions in the elements 

close to the singularity. He assumes that the singular behaviour 

close to the corner is not influenced by the shape of the rest 

of the boundary. For example, if the behaviour is of the form

<j> rv for r -> o ; \> <1

where r is measured from the corner and \> is a known function 

of the angle at the corner, the interpolation functions can be 

chosen to behave similarly

1 - and
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where the natural co-ordinate 5 is measured from the corner.

The fundamental assumption of this approach makes it necessary 

for any special elements used to be very small and close to 

the corner. The interpolation functions used are incomplete 

polynomials and cannot accommodate any other variation, except 

perhaps a constant.

The method proposed by Jaswon and loes not suffer from

this shortcoming. They assume that the singular behaviour 

exists in addition to an otherwise regular behaviour. They 

redefine the potential

Ip + my 3.4.2.

Where y is the singular function of strength m and ip is a 

regular function which satisfies modified boundary conditions 

involving m. The strength of the singularity becomes an 

additional unknown which is found by satisfying a compatibil-

ity condition at the elements adjacent to the singular point.



In order to accommodate as many of these approaches as possible 

the approximation for f(q) may be written

f* (q) = N. a. 3.4.3.

where the are a set of known independent functions and the 

a.j are a set of unknown parameters.

The particular case when a. = f. and the are localized linear 

interpolation functions will now be examined (see Figure 3.4.1).

Substituting the approximation for f(q) into equation 3.4.1. 

gives

/s In r N. dq f^ = | (p) p on S 3.4.4.

Since the f,. are no longer functions of position. The Dirichlet 

boundary condition may be satisfied at M points p. on S.
J
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A set of linear algebraic equations for f.. results

fs In r dS. f^ = (Pj) 3.4.5.

or [a] [fj = pj 3.4.6.

Replacing r with (p.» q) to indicate 
J

q to point p. a typical term of[A]is 
J

the distance from point

then

aji ‘ 4ln <Pj’ Ni dq 3.4.7.

Provided the functions are sufficiently continuous across 

element boundaries then this may be evaluated as the sum of 

the contributions from each element

a4. = E f In (p-,q) N. dq 3.4.8.
k=l Ek J 1

where NE is the number of elements and E is element k. 
k

Because the function is only non-zero in elements E^-j

and E. then this reduces to two terms

This is the only reduction in computation gained by the use 

of localized functions.
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element junctions. In general the integrals may be evaluated

integration is taking place. For this case the singular point 

associated with the fundamental solution In r is within the path 

of integration and the improper integral must be evaluated by 

a limiting process. Alternatively numerical integration formulae 

are available which automatically take account of the logarithmic 

behaviour.

In the particular case of piecewise constant variation of f(q), 
(44)

all the integrals may be evaluated exactly. However, in general, 

the complexity of these closed form evaluations should be care-

fully considered. Since every part of the source distribution

saving in each one of these is then extremely significant. In

view of the fact that for the constant and linear case the 

boundary is approximated by an inscribed polygon,the extra complex-

ity seems unjustifiable. In the examples which follow the 

integrations were evaluated using Simpson's rule for three points.

If the point p. is at i then the following integrals must be
J

evaluated for the contributions from element i.

In (pj.q) N. dq

In (Pj,q) Ni+] dq

3.4.10.

3.4.11.
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A local co-ordinate system is defined by

3.4.12.

where £ is the length of the element (see Figure 3.4.2.)

Therefore

N. =1-5

dq = £d£

3.4.13.

3.4.14.

The integral is evaluated as a limit thus

I] " ’"(Pj-A) 3.4.15.

For this case since the singular point is at i then

(Pj.q) = r = u 3.4.16.

>1 li m / £ (1-5) 1 n£5
a-*O

d5 3.4.17.

Integrating by parts leads to

>1
1 i m
a-*O

(5 ) 1 n£51- I?

q = U

1 £

c r f 2 i1
• £ 1 n £ - £a (1 - '2’) 1 n £a - £ . 5 ” Q
I?

1 im
a->0

.4.18.
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From L'Hospitals rule

1 i m al n

a-*O
£a_ 1 im

a->0
ln£a

1
a

1 im
a-+o

1
— = 0

1
- a2

3.4.19.

h £
7 (ln£ - 31r 3.4.20.

Similary

T2 =
£
2 (1 n£ - i) 3.4.21.

Oree the f. values have been found the value of 4>(P) at any 

point of the domain can be calculated by backsubstitution into 

equation 3.4.1. in the form

<t>(p) = fsln r Ni dS f.. 3.4.22.; p in fi

Flow velocities at p represented by the gradients of <t> may also

be found, for example

2i(p) =
ax

ds f.
1

3.4.23.4 r Ni

The integrals are in this case evaluated numerically. If the 

point p is close to the boundary then the accuracy may be poor 

for two reasons. Firstly, the boundary is being approximated 

by an inscribed polygon and this has greater effect closer to 

the boundary. Secondly, the integral over the element nearest 

to p involves an integrand which may be of much higher order 

than that assumed for the integration formula.
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For numerical purposes, logarithmic behaviour is weakly 

singular and so, increasing the order of integration may 

suffice except when p is very close to the boundary. Hence 

the exact integrals may be used. This conclusion will not 

generalize to three dimensions.

A third non-rigorous argument is suggested by the previous 

statement that <|> (p) does not satisfy Laplace's equation on 

S. Numerically the effect of this may extend into the 

domain.

The unknown values of source strength f.. must be found, by 

solving a set of simultaneous equations, before equations 

3.4.22. and 3.4.23. can be evaluated. The source distribu-

tion f'(q) is fictitious and usually has no physical 

significance in any particular problem. Because of this 

the formulation outlined above is often called the Indirect 

Boundary Element Method.
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A simple example of the implementation of the two dimensional 

formulation outlined above is the problem shown in figure 

3.4.3. for which the exact solution is clearly

4> = (100 - x) (100 + y) /2Q0

A typical discretization is shown in figure 3.4.4.

A computer program based on the above formulation was written 

(see ALBI in Listings^ to calculate the matrix of coefficients 

[Ajand to solve for the f. values using Gauss elimination

The results were examined along the lines A - B and A1 - B1.

The latter being chosen so as not to meet the boundary near 

a point at which the integrand is evaluated for use in 

Simpson's rule.

Figures 3.4.5. and 3.4.6. show a comparison of the exact 

solution with the numerical results and an exaggerated plot 

of the error, for discretizations involving 8, 16 and 32 equal 

elements. The accuracy of the solution is seen to deteriorate 

as the boundary is approached. The results are clearly 

converging as the number of elements is increased.

Often the results of most interest are on the boundary and 

even if a closed form evaluation of the integrals was used 

the piecewise linear approximation f' (q) on S, where it is 

clearly going to vary continuously, will lead to inaccurate 

results on or close to the boundary.

Figure 3.4.7. also shows the variation of f(q)
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3.5. Separation of the source boundary

The potential generated by a distribution of source strength f(q)

on the boundary S in figure 3.5.1. is

0(p) = In r. f(q) dq
Js

3.5.1.

where now p is in the extended domain 0 Equation 3.5.1 .

may be used as the basis of a Dirichlet formulation as before 

except that now the point p is on the real boundaryT’, and the 

fictitious source distribution is on the fictitious- boundary S. 

This is the approach originally adopted by Oliveira^) for the 

case of elastostatics.

It is assumed tiiat^(p), which satisfies 0(P) = /®(P) onf7, also

satisfies

V20(p) = 0 in 0^0+^ 3.5.3.

If however> the particular shape of Pis such that singular behaviour 

occurs on P at a point V(^.), then^(p) actually satisfies a Poisson 

equation of some form

02/(p) +<x.3Cxi -^) = 0 3.5.4.

where are the coordinates of the singular point.

It has been demonstrated that equation 3.5.1. generates a potential 

which satisfies Laplace's equation everywhere except on S. It is 

clearly incapable of simulating singular behaviour on P or inCZf1-
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This reduces the application of this method to the particular cases 

where either singular behaviour is clearly not going to occur, or 

the form of the singularity is known and it may be removed with 

suitable modification of the boundary conditions, as described in 

section 3.4.

Since p and q are never coincident, numerical integration may be used 

throughout. To illustrate the improvement in accuracy obtainable 

using this approach, the problem previously solved with P and S 

coincident, is solved with P and S as shown in figure 3.5.2., using 

program ALB2. There appears to be no reason why S should be geometrically 

similar. Indeed it may be better if it is not since there is a 

possibility of it being a 1 P contour' (Jaswon and SymnJ44)). Equally 

good results have been obtained using a regular polygon for S.

Numerical results were obtained for the two cases when a representative 

dimension on S was 1.2 and 3 times that on P. The results were again 

examined along the lines A - B and A1 - B'. The errors in the first 

case are plotted in figure 3.5.3, to the same exaggerated scale as 

in figure 3.4.6. In the second case, the errors were so small that the 

results are shown in table 3.5.1.

The results on the boundary are no longer so inaccurate. In a 

physical situation this means that the pressures may be derived with 

some confidence. The overall accuracy of the results improves as the 

source boundary S is moved away from P .

- 132 -



In this particular case the increase in accuracy may seem surprising.

It is a consequence of the beh.aviour of the source strength at the 

corners of the domain whenPand S are coincident. Although the 

potential is regular over all P , the variation of source strength 

required to model the behaviour at the corners is singular. This 

is explained by Symn/76\ to be a consequence of the exterior solution 

corresponding to the given boundary conditions on P . The use of 

equal length linear elements will make it difficult for the source 

intensity f'(q) to model this behaviour accurately. The accuracy of 

the overall solution may not be improved significantly by concentrating 

elements near the corners, because the equations for f. become ill- 

conditioned.

The slightest separation of P and S however removes the singular 

behaviour and consequently the accuracy improves. The change in the 

source distribution for the B=1.2 case is shown in figure 3.5.4, which 

may be compared with figure 3.4.7.

This may be illustrated convincingly by solving the problem of the

L shaped domain shown in figure 3.5.5.

Symn/76) has solved this problem subject to the boundary conditions 

(ft = 1000 x on P . The accuracy of his solution at the corners was 

poor even though he used a total of 64 elements.

Clearly, the solution is (f) = lOOOx everywhere and is therefore regular 

throughout Q j + P The results near the corners for the dis-

cretisation shown, with the S boundary 1.2 times and 3 times the P 

boundary, are presented in table 3.5.2. Figure 3.5.6. compares the 

errors in these results with those given by Symm, in the region of the 

corner at node 11. There is a significant improvement with fewer elements.
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The indirect B.E.M. with separate Hand S boundaries was used 

below for the problems of waves in finite depth water. Because 

of the possibility of difficulties associated with singular behaviour 

on the real boundary T , the problems in the next section were tested 

to check the limits of the validity of the approach. For simplicity 

the test problems are restricted to two dimensional behaviour.
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3.6. The Neumann problem of steady flow

It will be found below that the particular formulation of the

B.E. method applicable to diffraction theory involves a Neumann 

boundary value problem.

A particular problem which serves to illustrate several of the 

features of the B.E. method when applied to a Neumann problem is 

that of f1ow past an infinite circular cylinder parallel to an 

impermeable plane boundary and positioned normal to an otherwise 

uniform stream parallel with the boundary.

The solution of this problem for the particular case when the 

cylinder is resting on the boundary may be found analytically 

for irrstational incompressible flow. This problem was solved
(45)

by uuffreys . He utilized a conformal transformation which 

transforms the plane boundary into another but inverted plane 

and the cylinder into a parallel plane boundary. Successive 

application of the method of images tc satisfy the kinematic boundary 

condition on each plane leads to a series which is recognised as 

an expansion of the hyperbolic cotangent.

The complex potential is then given by

co = <|> + irp = irall cosh (~) 3.6.1.

Where z = x+iy, a is the cylinder radius and U the stream velocity, 

co is therefore the solution for a uniform stream travelling in the 

positive x direction, perturbed by a cylinder.
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It can be shown that the real and imaginary parts of w. may be 

separated thus:-

(u = (J, + iip = ^aU (sinhX + i sinY)/(coshX - cos Y) 3.6.2. 

where

X = and Y =
x +y x+y

whence
it all sinh X

* “ cosh X-Cos Y 3.6.3.

Using the Bernoulli equation for steady flow the pressure on 

the cylinder could be found and hence, the lift force. The result 

is derived more simply by considering the conservation of 

momentum in a vertical direction, since the integral is then along

the x axis.

The component of the lift force, due to the deformation of the 

streamlines causing a high velocity and low pressure at the top 

of the cylinder and a high stagnation pressure at the base, is then 

found to be

Fl  = np aU2 +(y)2] = 1-430 KPaU2 3.6.4.

Once the cylinder lifts off this component of the lift force 

diminishes rapidly and becomes negative.

The details of the solution of this problem by the indirect B.E.

method are now presented. The boundary value problem consists of 

finding the potential <j>T which satisfies Laplace's equation 

v2<t>T = 3.6.5.0 in 2 dimensions



and the homogeneous Neumann boundary conditions

a 4>y
( —L) = 0 3.6.6.

y=0

and 9<|)y 0 on X2 + (y-d)2 = a2 3.6.7.
9n

where n is the normal direction into the domain from the

boundary of the cylinder, and is therefore directed radially outwards 

(see fig. 3.6.1.).

In addition at large distances from the cylinder

3.6.8.

where the suffix T stands for total. This behaviour at infinity is 

extremely inconvenient since it means that contributions from the 

usual large external boundary are no longer negligible. However, 

recognising that Laplace's equation is linear the total potential 

may be considered to be made up of two parts

<I>T 4>u + <1> 3.6.9.

where 4>u = Ux 3.6.10.

and <j> is the perturbation of this stream caused by the presence of 

the cylinder which is expected to have zero effect at infinity.



The boundary conditions of the original problem will all be affected 

by this change of variable. The boundary conditions at infinity are 

satisfied by <j>u, therefore <{> must satisfy zero boundary conditions 

here. The boundary condition on the x axis is still homogeneous 

since the uniform stream satisfies a zero boundary condition here.

On the cylinder.

9<|>y 3d>= A + 9 (f)

an an 9n

Whence

a<t> "3*u
— 3.6.11.
3n an

is the new boundary condition for <|>. Using the notation of figure

3.6.2.

= U cose

a d>*u 3d> u ax

an ax an

Therefore 21 - U cos e
an

3.6.12.

At this stage it is possible to solve the Neumann problem by 

arranging for a continuous distribution of source strength for example, 

along the broken lines in figure 3.6.2. The boundary condition on 

the x axis would have to be satisfied over most of its length to 

obtain an accurate solution. This respresents a prohibitively large 

set of equations.
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If the method of images is utilized it will be seen that the problem 

of flow between two such cylinders is identical. The problem is 

then solved by using as a fundamental solution, a point source and 

its image in the x axis ( see figure 3.6.3. ) .

Any combination of such fundamental solutions will clearly satisfy 

the Neumain condition on the x axis. In general this approach may 

be used for a large family of bounding surfaces provided that all 

possible image sources are considered.

The following section shows in some detail the formulation for this 

particular problem.
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3.7. The numerical details

The fundamental solution of Laplace's equation in two dimensions 

has been shown to be that of a unit line source

★
<t>~ = In r 3.7.1.

Referring to figure 3.7.1. a continuous distribution of line sources 

of strength f (q) on closed curve S generates the potential at 

a point P exterior to S

$ C-P) = f lnr dq 3.7.2.
S

The gradient of $ along the inward normal at p is then, in general, 

from equation 3.3.18.

Mill = / f(q) 1 (Inr) dq + n f(p) 3.7.3.
an an

Tn this particular case however, q and p can never coincide so

K.CP! = { f (M) j H- (lnr).dl,P on r 3.7.4.

Equation 3.7.4. may then be used as the basis of a Neumann formulation 

in a similar way to the Dirichlet problem already demonstrated. The 

source distribution is given finite degrees of freedom by the 

approximation.

f1(q) = N-f^ i = 1, M 3.7.5.

yielding the set of equations for the f^

J- Ni (Inr) dq fi = 4n‘(£>‘ 3'7'6'
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or in matrix form

{f} = {4>*} 3.7.7.

Where {f} is the vector of M unknown source strengths and {<)>'}

is the vector of known gradients of the perturbation potential where

<f>‘ (P) 2i£p)
an 3.7.8.

A typical term of matrix [A]is

a.... = ■ f N.
J1 s 1

In <lnrj> 3.7.9.

one of the points p. on r at whichVWhere r. is the distance from
J

4.1 (p.'; is known. A small benefit is now derived from the choice 
J

of localised interpolation functions N•, in that the coefficient a.. I J ’
integrals over each element, mostmay be evaluated as the sum of the

of which are zero

ar
NE 
E 

k=l
f
Lk

Ni In (ln rj>

Where WE is the number of elements

which in the linear interpolation case is equal to the number of

M. If q.j is taken to represent the ith point 

element k. is between q^ and q^ . Therefore a typical

unknowns on S then

coefficient

becomes simply

a-- = +
Ai 3.7.11.

It is this step in the case of the F.E. method which leads to the banded

nature of the matrix of coefficients.
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In this case however, the point P. is not necessarily between 
J

%•-! and W

In order to show how these coefficients are evaluated it is 

simpler to work in terms of a typical element. Consider the 

element of S between q.. and , where the indices increase in 

a clockwise direction since we are considering an exterior 

problem. Within this element the source distribution is inter-

polated linearly between f. and f^ that is,

f* (q) = N.f. + N 3.7.12.

where now no summation is implied. A local coordinate system is 

defined, 5, such that

K, = 0 at q.

5 = 1 at Qi + 1 3.7.13.

The distance from a general point £ on the element to the point 

p. is given by
J

r2 = Cx{'xj)2 + 3-7-14-

At the point p. the normal direction 
J

for a particular problem so that the

n will in general be known

figure 3.7.2. will be given. If the

set of angles a. shown in 
J

tangential direction is

defined in the clockwise positive sense for an exterior problem then
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and

a<t>... a <|> *

an ar
(

ar ax •
J

3Xj an
+

ar

a 4> - a<j>
_1 = _
as

3<f>* ar

ar
(

ax.
1

ax. as
J

ar
+ 3. 7.15.

are the normal

solution <j>*. 
J

at

and

3y0

and tangential gradients of the fundamental

P.. From equation 3.7.14. 
J

Hence

So that

and also

For two

ar

axj r

and 9r (y? - y^)

3yj

■ '
3. 7.16

> from figure 3.7. 2.

ax.
J , _ = COS a. 

J
an as

ax.
J = sin a.

J
an as 3. 7.17.

dimensions =
J

In r

_ *
1 3. 7.18.

ar r

finally

a<t>j _
an

alnr
an BxrxJ>cos“j+ (yfyj) sinaj

s .
as

alnr
"as”

II L'xfxj’sinaj - (yc-yj) cosaj 3 7.19.
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The contribution to equation j from this element is then

1 ■ '’1+1 f(«) 4inr dq
’i

= / N. i lnr dVi + / N. |lnr d5.- fi + 1 3'
0 1 an 0 1+1 an

7.20.

Although it may be possible to evaluate the integrals in closed 

form, in general when a higher order approximation is used for 

f1(q) this will not be the case. As mentioned above it may 

prove prohibitively expensive in terms of computer time to use 

the closed form anyway.

In the program based on this formulation, Simpson's rule for

3 points was found to be sufficiently accurate.

The potential generated by a continuous distribution of line 

sources is of the form

<t>(p) = Tf(q) ln(r) dq 3.7.21.

Where r is the distance from p to q . Interpreting p and q as 

vectors indicating the position of points p and q then

<t>(P) = Tf(q) ln|p-q |dq 3.7.22.

The behaviour of this potential for large p may be derived 

by expanding this expression in terms of p using the series 

expansion of In (1 - x) to obtain

♦(p)- 1" lp|/f(q)dq - lpl“2/(p-q)f(q)dq*O( |p|'2) 3.7.23 
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The potential generated by equation 3.7.21. behaves logarith-

mically at large distances, its derivatives will be 0(|p| 

and so the formulation may not lead to a unique solution, in 

view of equation 3.2.15.

If the formulation includes satisfaction of the additional 

condition

ft (q) dq = 0 3.7.24.

then a unique solution is obtainable.

It was shown above that for two dimensions

/ Mp ) dr = 2-rr f f (q) dq 3.7.25. 
an

Where n is directed outwards to infinity from the large boundary

If equation 3.7.24 is satisfied then

/ 11(P) dr = 0 
an

3.7.26.

and <f> (p) -> C for large distances, where C is an unknown 

constant.

In order to provide the additional unknown required to enable

equation 3.7.24. to be satisfied the datum from which <$> is 

measured may be shifted by this unknown amount C. The dis-

cretized form of equation 3.7.24. is then

f Nq- dq f. = 0 3.7.27.
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Recalling also however that for any boundary surrounding S 

and in particular for r

;9|(p) dr = 2X f f (q) dq 3.7.28.
rne s

On r however, for the general perturbation problem

3.7.29.

and by the divergence theorem, since <j>u is a known solution 

of Laplace's equation everywhere then

dr 3.7.30.= 0

Therefore the side condition on f(q) is always satisfied 

automatically for the perturbation problem.

A computer program {see listings B C Y LI was written for 

the particular Neumann problem of flow past a cylinder near a 

plane boundary by using the previous formulation but with 

a fundamental solution which satisfied the Neumann condition 

on the plane automatically,- that is

= In (rr'l 3.7.31.

where the sense of r and r' is shown in figure 3.7.3. The 

formulation is not significantly changed by this form of 

fundamental solution.



3.8. The numerical results

As a first check on the validity of the method and to enable 

estimates of convergence to be obtained the image source 

distribution was omitted and the classical problem of flow 

past a cylinder was tested.

The well known exact solution for this problem is generated 

by superposing a doublet and a free stream. The perturbation 

potential sought is therefore that of a doublet. A doublet, 

like a source has singular behaviour near its centre and so 

care must be taken to exclude the centre of the cylinder from 

the domain. This is always achieved if the source distribution 

boundary S is a regular M sided polygon concentric with r as 

shown in figure 3.8.1. The radius of the boundary r is that 

of the circular cylinder, a. The radius of the source boundary 

S can be defined as fa.

The convergence of the exact solution was examined 

by vary-ng f anu M.

Three indicators of convergence of results were chosen as 

indicated in figure 3.8.2, the potential at points A and B and 

the tangential velocity at point C. These are obtained, once the 

f. values have been found, by back-substitution in to equation 

3.7.21. above.



The particular numerical problem solved was that of a uniform 

stream of velocity U = 10 and a cylinder of radius a = 1 for 

which the exact values are <j>^ = 25, <|>g = 20 and = 2U = 20.

For g = 0.9 the convergence to the exact results is seen, from 

figure 3.8.3. to be slow as M is increased. For values of M 

greater than 16, however, the results appear to be always within 

1.5% of the exact results. The presence of the source discre-

tization quite close to the real boundary is the cause of this 

poor accuracy. Figure 3.8.4. shows the convergence for a

fixed value of M = 16 as g is varied. It is clear that as the 

source boundary is moved further and further away from r the 

results become more and more accurate. Figure 3.8.5. shows the 

variation of normalised source strength for the cases when 

5 is 0.2 and 0.1. The results for g > 0.2 lie on the same 

curve as those of g = 0.2. Somewhere between g is 0.2 and 0.1 

numerical ill-conditioning occurs leading to instabilities in 

the source strength. This il1-conditioning is caused by the 

diagonal term losing its dominance in the row of coefficients 

because all the distances involved are now very similar.

It is perhaps surprising that the results of interest do not 

appear to be affected by this ill conditioning even when g=0.01. 

It is felt however, that this behaviour is peculiar to this 

problem because of inherent symmetries in the results. In 

general, it would be unwise to use such a small value of g.

A similar problem occurs for fixed g as M is increased. In this 

casethis is the numerical analogue of the difficulties involved 

in finding solutions to integral equations involving non-singular 

kernel s(44)



If the kernel is singular; such as in the Dirichlet problem 

shown above, then the diagonal coefficients are always 

dominant. In the method used here, as the number of elements 

is increased the diagonal dominance is always reduced locally 

(see figure 3.8.6)since the contributions from adjacent elements 

become closer together. The only remedy is to increase 0. 

Examination of the results suggests the optimum values for this 

particular problem are M = 16, g = 0.4.

The next set of results are presented for the case of flow past 

a circular cylinder near a plane boundary, by including the image 

source distribution. Figure 3.8.7. shows the variation of lift 

force on the cylinder with its distance above the plane. This 

distance is expressed in the non-dimensional form d/2a. The 

negative sign indicates that the force is acting to pull the 

cylinder towards the boundary.

The lift force has been evaluated by making use of the dynamic 

boundary condition on the cylinder in the form

PJ ”7 ( at a point j on r 3.8.1.
6 3S 3S

Where p. is that part of the pressure due to the deformation of 
J

the streamlines. The bouyancy force is not considered here.

Now 9^
a U sina.

J
3.8.2.

and

by backsubstitution.

/ 
s

The

Ni a Inr .
a J

dq.fj 3.8.3.

lift force may then be evaluated by

a

Simpson's rule in the form



Fy
- 2ira

3 m

m
E {3 + (-1)J} p. sin 2it (j-1) 

j=l J m 3.8.4.

where m must be even. The results presented here were 

calculated with m = M for simplicity, but in general m could 

be much greater than M.

It might be expected that as d/2a -> J the lift force should 

approach the analytical result

—= 1.430 3.8.5.
Trpair

However, the potential function associated with this solution 

is
TTaUsi nhX
coshX-CosY 3.8.6.

cosh - 1
A

Where X = 2tt £X 
~r 2X +y

>
v  2tt 3U

x +y

For y = 0

TTaU sin I
<i> = X

Therefore

= -nail
x-K)'

and

”">0 • -all
x-»O

3.8.7.

3.8.8.
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The step change in <$> as x crosses the origin implies infinite 

velocity at this point. This singular behaviour is within 

the domain of interest and so the source distribution on S 

cannot model this behaviour. If the sources are distributed on 

r then the singular behaviour may be achieved but as shown 

previously the accuracy will be limited unless a large number 

of unknowns is used.

The variation of source strength around S is shown in figure 

3.8.8. from which it can be seen

0.5 the source distribution at 0

that as reduces towards

is approaching infinity.

If a doublet is used at this point instead of the source, which 

may be assumed known and equal to zero, the number of equations 

is still the same. The accuracy should then improve.

In this case however a more consistent approach would be to remove 

the singularity from the origin by assuming that the perturbation 

potential is made up of two parts, one due to a singular point of 

suitable form at the origin and the second an unknown but every-

where harmonic function which can now be generated by the source 

distribution on S without difficulty. See section 3.4. above.

The results over which doubt is cast as a consequence of this problem 

are those in figure 3.8.7. for which is less than 0.6. 

Unfortunately no exact solution of this problem exists in order 

to verify the results.
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To summarise, it has been shown that a problem involving behaviour 

at large distances, of the form of a known harmonic function, may 

be solved by considering the total potential to comprise this 

function plus a perturbation potential.

For exterior problems, not involving singular behaviour, the 

Neumann formulation involving a source boundary everywhere exterior 

to the real boundary, from the point of view of the domain, has been 

shown to give accurate results.

The method of images may be employed fruitfully to satisfy an 

otherwise troublesome boundary condition.



3.9. Linear wave diffraction

The foregoing methods of analysis will now be applied to the 

case of wave diffractior by large objects. The physical assumptions 

necessary for the forces on structures in waves to be closely 

approximated by diffraction theory are mentioned in chapter 2.

The following sections concentrate on the mathematical and numerical 

aspects.

The analysis will be restricted to the case of waves in an

infinite sea of finite constant depth. If the motion is irrotational

and incompressible then a velocity potential exists which satisfies

V = 0 3.9.1.

where

$ = /(x,y,z,t)

with y positive upwards from an origin in the me^n water level.

On the bed the normal velocity is zero

if- = o on y = -h . 3.9.2.
3y

and on the structure

2£ = V . n_ 3.9.3.

9 n

where V is the velocity of the surface of the structure. For 

small amplitude waves the linearized boundary conditions on the 

free surface may be used. In any case, the results of this analysis 

will act as the first approximation from which the non-linear 

approximations may be derived.
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Therefore 1 
g at

and

on y = 0

on y = 0

3.9.4.

3.9.5-.at " 37
these results combine - as shown above - to give the boundary

condition for $

In a manner analogous to that used previously for the pertur-

bation problem, it is supposed that the potential is made up of 

that due to the incident waves, which without loss of generality 

may be assumed to be travelling in the positive x direction, and 

that due to the presence of the structure. This latter - scattered 

potential being composed of that due to the diffraction of the 

waves by the stationary structure and that radiated from the motion 

of the structure.

/ +/s 3-9-7-
This separation relies heavily on linearity of the problem.. For a 

linear system, the components of the wave at different frequencies 

may be analysed separately, and their effects summed using Fourier's 

theorem.

Therefore, consider the case when the potential is time harmonic of 

radian frequency cf so that

cos tft sin tit 3.9.8.
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The subsequent analysis may be simplified by assuming that

y, z) e_i<?tJ 3.9.9.

where / = + i^

Throughout the subsequent analysis real parts of the complex 

expressions are taken to recover the physical quantities. It is 

clear that (/) will still be governed by Laplace's equation and the 

kinematic conditions on the solid boundaries remain unchanged.

The free surface condition reduces to

= 0 on y = 0 3.9.10.
dy 9

It has been shown by John^^) that sufficient conditions for the 

unique prescription of the problem must include that $ $ satisfies 

a radiation condition of the type of the Sommerfeld condition at 

infinity

Jim = 0 3.9.11.

which is equivalent to the statement that the scattered potential 

must behave as an outgoing wave at infinity. This is analogous to 

the requirement that the perturbation potential should tend to 

zero at infinity, used above.

In principle then, the potential generated by

= C f (q) | dq 3.9.12.
J c

where now f is complex, could be utilised to solve the Neumann 

problem. The opportunity to satisfy the condition at y = -h should



could be used.

The free surface boundary condition is not so readily handled, 

neither is the radiation condition. The numerical procedure 

would then have to consist of satisfying the remaining conditions 

at a finite number of points. Although this would represent a 

large number of equations, this approach should not be dismissed 

out of hand. Watson^) has shown how the infinite element 

approach used successfully in finite element work [Bettess^)] 

may be adopted to cope with just such an infinite boundary as 

the free surface here. The reduction in complexity of the 

fundamental solution at the expense of an increased number of 

equations is worthy of consideration.

However, a fundamental solution, or Green's function does exist 

which satisfies all the boundary conditions in the absence of an 

immersed object and is equivalent to waves issuing from a point 

(a, b, c) radially outwards - the so called pulsating source 

solution. Wehausen and Laitone^) derive the following integral 

form

G(x,y,z,a,b,c) = | + ^7 +PV
R

2(k+V)e ^cosh k(b+h)cosh k(y+h)Jo(kr)dk

k sinh kh - ycosh kh

+

m h
2xi(mo+y)e onsinh mQh cosh mQ(b+h) cosh mQ(y+h)Jo(mor)

2
yh + sinh mQh 3.9.14.

where R2 = (x-a)2+(y-b)^+(z-c)2

(R7)2 = (x-a)2+(y+2h+b)2+(z-c)2 

r2 = (x-a)2+(z-c)2

and V = — = rn tanh m h

where m = — the radi an wave number.

0 0

0 A

9
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Jo(x) is the Bessel function of the first kind of zero order.

The integral must be evaluated as a Cauchy principal value because 

of the singular point in the path of the integral at

k tank k.h = V 3.9.15.

The imaginary part arises in their derivation from satisfaction of
(47)the radiation condition. In the derivation of John' it arises 

from the use of the integration path in the complex plane.

It is instructive to show how the Bessel functions arise in this 

context although for the complete derivation of the above,reference 

should be made to Wehausen and Laitone^)

The distance R' is from the image of the point (a,b,c) in the bed 

so that the bed kinematic condition is satisfied. The rest of the 

Green's function involves terms in cosh k(y+h) which will contribute 

nothing to the gradient of the potential at the bed.

Also G possesses radial symmetry. For cylindrical polar co-ordinates

Laplace's equation becomes

3 320 + 1.^+1 _ n
3y^ dr2 r dr r2 30^ 3.9.16.

If possesses radial symmetry i.e. (/) = (r,y) then this reduces to

s2^ + + i <¥ 0

3y2 3r2 r 3r
3.9.17.

Assume now that <f) = Y(y). R(r), then

R A + y A +I « . o 3.9.18.
dy2 dr2 r dr
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From which

A - «2Y - 0

. 2dy2

d2R [ 1 dR 2
+ ex R= 0

dr2 r dr

3.9.19.

The first equation has the solutions

3.9.20.

and the second equation is a particular form of Bessel's equation 

which has a solution, for finite values at r = o of

R = Jo(<xr) 3.9.21.

clearly = cosh cx(y+h) Jo (ar) 3.9.22.

may be constructed as a possible solution which satisfies the 

finite depth condition. In addition, the free surface boundary 

condition must be satisfied.

Since

— = <x sinh cx(y+h)Jo(<xr) 3.9.23.
3y

^2
then a sinh exh Jo (cxr) - — coshexh Jo (<xr) = 0 on y = 0 3.9.24.

whence ex tanexh = — = V 3.9.25.
9

the dispersion relationship. It may be seen then that the Bessel 

functions arise from the choice of coordinate system.

The restriction to radial symmetry is unnecessary however, since for

any variation of by Fourier's theorem



3.9.26.= /(y,r) ascos s<9 + b$ sins#
s=o

where s must be integral if the domain is the exterior of a

closed cylinder

The case of s = 0 has already been examined but considering a

typical term involving cos s<9

If JZ5 = /(y,r) cos s<9 3.9.27.

The governing equation becomes

a? dr2
si

r2
3.9.28.

Now assume = Y (y). R(r) 3.9.29.

from which Y
e^y

3.9.30.

/ = 0

and R satisfies

d2R

dr2
— + (<X
dr

3.9.31.

which is the more general form of Bessel's equation with the

solution for finite values at r =

+ 1 0

r r

0

R = Js (ar} • 3.9.32.

Series involving Bessel functions are therefore to be expected in 

many problems of diffraction where the use of cylindrical polar 

co-ordinates is justified. See for example McCamy and Fuchs^),

(52) (51)Lebreton and Cormaultv ' and Lamb'' '. As a final illustration 

of the expansion of a function in cylindrical harmonics, the expression 
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used by many authors (notably McCamy and Fuchs^58^) for the 

potential of a wave travelling in the positive x direction will 

be derived.

In the case of simple harmonic waves the complex potential may be 

written in cartesian co-ordinates as

-gH cosh k(y+h) e1^ 3.9.33.
T w

2 O' cos/ik.h

Or in cylindrical polar co-ordinates simply

.-gH cosh k(y+h) eikrcos'9
3.9.34.

2cf cosh kh

The Bessel functions of integral order may be defined [sneddon^75) 

Jeffreys and Jeffreys^6) j as the coefficient of tn in the 

expansion of exp (t - , in which context they are often

known as Bessel coefficients.

The expression for the complex potential is shown in appendix

A.l. to be expandable in Bessel coefficients

s -jH cosh ,k(rh) [Jo(kr)+2 inJn(kr)cosnfl] 3 

Id cosh kh n~l
.9.35.
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3.10. The Green's function

For most numerical work using the Green's function the infinite 

integral is inconvenient. Monacel la^) has shown a numerical 

scheme for evaluating the integral by removing the singularity 

and then evaluating the infinite integral as an infinite series 

of integrals which is truncated in accordance with a convergence 

criterion. Each integral term of this series is evaluated 

numerically using the 1 rule. Most numerical work has relied 

heavily, fo date, on the equivalent series form of G derived by 

John'47’.

The derivation relies on the use of an identity relating the 

fundamental solution P to the Bessel function of the first kind 

of zero order. In general

co

e Jo^aa) d/\
o

3.10.1.

which is valid for positive b. (Watson^) and appendix A.6).

Consider now the following form of the fundamental solution

oO
-Vh1 1 2(z<+P)e cosly/(b+h)coshy.'(y+h) Jo(#r) dz<

R R Jo >csinh/h -ycosh/di 

where it is recognised that the contribution from the positive real 

root of the denominator is avoided by letting the path of integration 

follow a small semi-circle in the complex plane below the root. 

Making use of relation 3.10.1. the two singular functions may be 

taken under the integral sign to give
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r

G 2coshyx(b+h) (zxcosj>uy + vsinFyxy) Jo^r) d/>-

oo

3.10.3.

The integrand may be expanded as an infinite series of terms by

the method of partial fractions,whereby there is one term associated

with each of the roots of the denominator. The real roots of 

/-itanlydi - V = 0 are equal and opposite^since if

-t, -t tanh(- th) -V= t.tan h(th)-V= 0

The imaginary roots of

- V = 0

are found by putting /<= is from which

is tanh(ish) - v = isi tan (sh) - V = 0

therefore s tan sh + V = 0

and again -s tan -sh + V = s tan sh + V = 0

All the roots may then be expressed as

= + m^ j k = 0, 1, 2 ............ , 3.10.4.

where m is the real positive root.o

The following expansion for the integrand results

where the terms involving corresponding positive and negative roots 

have been combined. By substituting this series in place of the 

integrand above and integrating term by term John arrives finally at 

the following series form of G

k=0 h(mk2-/) +1) k k o k

where H (x) is the Hankel function of the first kind and zero order, o ' '
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The Hankel function is related to Jn(x) and Yn(x) by

H„(1) (x) = Jn(x) + i Yn(x) 3.10.7.

where Y (x) is Weber's Bessel function of the second kind. Johnn' '
calls this N (x). The modified Bessel function of the second kindn' '
Kn(x) is related to the Hankel function by [Jeffreys and Jeffreys ^6)

/ 3.10.8

for n = 0

3.10.9

The Green's function may be written
2 2

G = - cosh mju+ty mbm°(b+h) ‘ Wor)]

hfo-v )+v

OO

+Z'nL 2
k~\

V__Goshrri^+^cosh^b-i-^ H^^r)

3.10.10.

by separating the contributions from real roots and imaginary roots. 

Noting that mk are the imaginary positive roots, replace mk with im^ 

where now m^ is real to obtain
”2.

+ A-Z cos Ko^kr)

3.10.11.

This is the form quoted by Wehausen and Laitone^84\ and Isaacson^40), 

where the m^ are now the real positive roots of

% 3.10.12.
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3.11. The integral equation

The scattered potential generated by constructing a distribution 

of pulsating sources over a surface S.

^c(x, y, z) = f(a, b, c). G(x, y, z; a, b, c)dS 3.11.1. 
^s

will satisfy all the boundary conditions of the wave problem except

those on the boundary of the immersed structure. Since G is singular like 

R 1 as R->0 then 

(x, y, z)

3 n

r-

f(a, b, c) 
ds

— dS - 2xf(x, y, z). 
a n

3.11.2.

as before.

On the surface of the structure the kinematic boundary condition is

= y = + M/ 3.11.3.

3n n 3 n 9n

Where Vn is the ve^city of the boundary along an inward normal 

direction with respect to the fluid domain.

Because the problem is linear the traditional procedure has been 

to assume that the scattered potential is made up of that due to the 

presence of the stationary object under the influence of the 

incident wave, plus that due to the motion of the object in otherwise 

still water. The latter is called the radiated potential and the 

former will continue to be referred to as the scattered potential 

to avoid confusion when referencing other work. The boundary 

condition then becomes



9n
3.11.4.

Separating according to the definitions above

3n
3.11.5.

and 3.11.6.

are the boundary conditions for the two p<2rt5 of the unknown

potential. The scattered potential may be found as the solution

of the Neumann problem

<j

— dS - 2*f(x,
3 n

y» 2) — (x, y, z) 3.11.7.
3n

9(z5s K

r
f .

Once the source distribution f is known, the scattered potential 

may be calculated at any point by backsubstitution as before.

With and hence known at any point, other results of interest 

may be derived. In particular, the fluid hydrodynamic pressure 

may be found from the linearised Bernoulli equation

3.11.8.

The forces and moments on an immersed object may be found by inte-

gration of these pressures. Garrison et al^26^ have used the 

resulting potential to define velocities and accelerations along 

the axis of a thin object for subsequent application of Morison's 

equation. Monacella^O) calculated pressures on the bed caused by 

the presence of an object.
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CHAPTER 4 DIFFRACTION COMPUTER PROGRAM

4.1. Introduction

The theoretical formulation on which this chapter is based is 

applicable to quite general boundary geometries. However, for the 

purposes of testing the use of quadratic variation of source intensity, 

as well as facilitating program debugging the vertical circular 

cylinder has many advantages.

With very little input data the whole of the coordinate geometry 

may be automatically generated, so avoiding the problems of checking 

large quantities of input data. This in turn makes it possible to 

conduct parametric studies.

Numerical integration is also more easily accomplished, since the 

mapping of a cylindrical element onto the Gaussian quadrature range 

is achieved directly, using cylindrical polar coordinates.

The most important advantage is the availability of an exact solution 

which relies on exactly the same mathematical assumptions as the 

numerical method.

Once the numerical method has been verified, the program may be extended 

to accommodate other boundary shapes by using the established 

techniques of the Finite Element Method.



4.2. Separation of the source boundary

In chapter 3 it was shown how separating the boundary on which the 

kinematic condition is prescribed, from the fictitious boundary on 

which the source distribution is placed can lead to increased 

accuracy. In the context of wave diffraction this has been done 

(Boreel^\ van Oortmerssen^?) anc| others) primarily to avoid the so 

called 'irregular frequencies'.

For a given geometry and boundary condition there are always two 

distinct solutions, the usual one of interest in wave diffraction 

is exterior to the boundary. But the solution in the closed interior 

is always available if required. If the interior region possesses 

a free surface then there may be certain wave frequencies which 

correspond to standing wave modes or eigenvalue solutions. In such 

cases the matrix to be inverted will inevitably be singular and so 

neither solution can be obtained.

One way of deliberately avoiding this problem proposed by Ursell^?), 

is discussed in chapter 2. Murphy^) gives the particular values 

of incident wave frequency at which this problem may occur for a 

circular cylinder. In general, for the lowest possible frequency, 

the standing wave length must be of the order of twice the longest 

length of the geometry or ka must be at least 1.5. In reality, this 

corresponds to very large structures.

Physical reasoning suggests perhaps the most obvious technique for 

avoiding this problem. If the kinematic condition of zero flow across 

that portion of the still water contained in the interior, is 

additionally prescribed, then all wave motion in the interior is 

prevented at the expense of a few more equations.



Mathematically, the possibility of non-trivial eigenvalues corresponds 

directly to the 'diagonal term* which makes the integral equation 

one of the second kind. Defining a separate source boundary removes 

this term and so eigenvalue solutions are not possible. The integral 

equation is now of the first kind and is unfortunately no longer so 

well conditioned.

For a stationary immersed object in waves the integral equation (3.11.7)

becomes 

4.2.1.

where the point (x,y,z) is on the physical boundary P, and the complex 

source distribution f is on the fictitious boundary S.

This integral equation is the basis of the numerical formulation used 

here. It is difficult to prove uniqueness for integral equations of 

the first kind, but it is possible to put forward physically reasonable 

arguments for particular boundary shapes. It seems likely that a 

wide class of problems must be excluded. In particular, structures 

with sharp edges cannot be expected to yield the correct results 

unless some singular behaviour is allowed at these edges.

In many cases in which diffraction forces predominate,the corners 

may be artifically rounded. It is likely that the nearest singular 

behaviour will occur at the local centre of curvature of these corners. 

Provided that the fictitious source boundary is always closer to the 

physical boundary than the local radius of curvature,then reasonable 

results may be obtained.
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Boreel^ applied the constant source 'facet' method to a structure 

with many sharp edges. He provides no information about the 

relative positions of his source boundary and his physical boundary, 

but he mentions that 176 facets were used. Since the kinematic 

condition is only satisfied at the centre of each facet, the 

numerical model assumes that sharp corners have a radius of 

curvature of about half the width of the nearest facet as shown 

in figure 4.2.1. This may explain some of the discrepancies 

between his numerical predictions and the experimental results.

The vertical circular cylinder used here is a very special case. 

As the analytical solution (Appendix A.l) shows, the only singular 

behaviour required is at the cylinder axis. The source distribution 

may be placed almost anywhere and accurate results should be 

obtained, provided always that the cylinder axis is inside the source 

boundary.

In chapter 3, it was shown that two forms of the Green's function 

are available. Garrison and Chow^) recommended that the series 

form could be used as long as the argument of the Bessel functions 

exceeds 0.1, since then it converges reasonably quickly. The effects 

of diffraction do not become important until ka is at least 0.3.

If the source distribution is arranged on a co-axial cylinder of 

radius r , then to satisfy this criterion, r$ must be less than two 

thirds of the cylinder radius a. This restriction may be progressively 

relaxed as ka increases.
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4.3. The series form of the Green's function

The form of the various terms in equation 4.2.1. may now be examined 

in detail.

For a wave travelling in the positive x direction, the potential is 

given by equation 3.9.33 as

. -gH coshmQ(y+h) _ 1m x
<j> - ----------------- e o 4 3 1

w 2a coshm h

The normal velocity across the cylinder due to this wave is given

by

2*w = ^w 9*w
nx + — nv 4.3.2

an ax ay y

where nA and n^ are the direction cosines along the outward normal

from the body.

Therefore ,

3<j>
= -A

an

si nh
{------
cosh

%(y+h)

in h o

cosh m0(y+h)'
Xcosh moh

where
gHrnJ o

2o

Garrison and Chow^5) leave the constant A out of

eimox 4.3.3.

their analysis for

n
y

+ i

A

dimensional reasons. This merely leads to a compensating change in

the fictitious source intensity function.



The series form of the Green's function is

G = 27ri(m02 - v2) cosh mo(y+h)cosh mQ(b+h) [J0(mQr) + iY0(mQr)]

2X 2 h(rno-^)tp
°o ihl

+ -------- -—-— cos nk(y+h).cos m.(b+h) K (m.r) 4.3.4.
k=l h(mk2+v2)-v K kok  

where r = jjx-a)2 + (z-c)2 J is the projection of the distance 

between the source point (a, b, c) and the point (x, y, z), on the 

horizontal plane.

The normal velocity across the cylinder due to this source is given

by

3G 
an

aG 3G 3G
ax x ay’ y az 4.3.5.

where in general the direction cosines are given as input data. For

. n z

the circular cylinder these are automatically generated within the 

computer program.

Once the source distribution has been found the scattered potential

maybe obtained by back substitution into

fGdS♦s ■ / 4.3.6.

Because of the similarities

in parallel in the computer

between G and » they are calculated o n
program. The real and imaginary parts

are tested separately, indexed by 1 and 2 respectively. Performing

the straightforward differentiations and then simplifying by use of

the recurrence relations for the Bessel functions yields the

following results. Where possible the same symbols are used as in

the program.
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G] = AC cosh mQ(y+h) Yo(mQr) +E C cos n^(y+h) K0(mkr) 4.3.7.

G2 = -AC cosh mQ(y+h) JQ(mor) 4.3.8.

—1 = D(x-a) Y.(mr) -E C ni Cos m (y+h) K,(m r) 4.3.9.
ax 1 0 k=l K r K 1 K

aG9
— = -D(x - a) J,(m r) 
ax

4.3.10.

aG i

ay
= E.Y0(V> -E 

k=l
C.mk.sin m.k(y+h) Ko(mkr) 4.3.11.

aG9
—~ = -E-J0(V) 4-3’12’

aG -J

az
= D.(z-c) Y (ni r) -J

1 u k=l
C mk(—).cos mk(y+h).K1(mkr) 4.3.13

aG9
L = -D (z-c). J1(mQr) 4.3.14

az

where D = -AC cosh m (y+h) 
r

E = AC. mQ. sinh mQ(y+h)

2ir(v2-m02)
AC = ----------------  .coshm (b+h)

h(m02-v2)+v

4(m 2+v2)
C = —------- . cos m (b+h)

2 2 K 
h (rn k +v )-v
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Here the real positive root m is identical to the wave number k o

used elsewhere. The notation used here is that of Wehausen and 

Laitone^84).

If the input data for a particular problem includes the incident 

wavelength rather than the period then mQ is fixed, and from it 

may be calculated the frequency

2
a = gmQ tanh mQh = vg 4.3.15.

The real positive roots of

an m^h + v= 0 4.3.16.

must still be found. The roots are most easily identified by 

defining a new set of non-dimensional roots.

X|< = m^h 4.3.17.

and rearranging equation 4.3.16. into the form

tan Xk + = 0 4.3.18.
k

The positions of the roots of this equation on the X axis are shown 

in figure 4.3.1.

Tne Newton-Raphson method was applied to find the roots X^, using 

as the initial guess for each one, the previous root plus it . The 

initial guess for the first root X-| is a minor difficulty, since 

it is always greater than Jtt  but by an initially unknown amount. 

If the initial guess is greater than X, then there is no guarantee 

that the iterative procedure will converge to the correct root.



Of the many possibilities the one chosen here was to define the

1 residual' function as

<p(X) tanX + 4.3.19.

Examination of figure 4.3.1. shows that the Newton-Raphson

procedure will converge to X-| provided that the initial guess is in 

the range |ir<X°-|<X^. The continued fraction

... 4.3.20.

will eventually be in this range. This fraction is repeatedly

substituted into equation 4.3.19. until the function becomes

negative. The value of X when this happens is then used as the

initial guess for the following Newton-Raphson algorithm

tanxf + — 
k

Xk

4.3.21.

vr+l
Xk

Because of

correcti on

2 vr hv sec X - — 0‘ (XI)2 4.3.22.

4.3.23.

4.3.24.

method of choosing the initial guesses (X°) the

in equation 4.3.23. is always positive. When the

the

1pr

,r, ,8ip >r = ’ * 7 <-5xk>

correction is found to be in the range

0 < Ax £ < ALIM

the iteration is stopped. The required root is then obtained from 

equation 4.3.17.
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To evaluate equations 4.3.7. to 4.3.14. the Bessel functions

J , J,, Y , Y., K and K, are required. On many mainframe 

computers mathematical packages are available for calculating 

these functions. It is unfortunately all too easy to obtain 

answers from a package with no knowledge of the governing 

theoretical assumptions. Hence, all the Bessel functions used in 

the diffraction computer program were calculated by a separate 

FORTRAN function segment called BESS. This is listed in appendix 

A.3.

The call statement is made by using the word BESS as a function 

with three arguments, for example

A = BESS (K, N, X)

where K is an integer in the range 2 to 5, used to indicate the 

kind of function.

For IN(Z)-, K = ■' ; JN(X), K = 3 ; KN(X), K = 4 ana YN(X;, K = 5.

N is the positive order of the function and X is its argument.

The function segment is more general than required by this 

application since N can have any positive integral value.

The change between the power series expansion for small X and the 

asymptotic expansion for large X is made at X = 9. This corresponds 

to the point at which both series require roughly the same number 

of terms for convergence to a given accuracy.



The convergence criterion for small argument is quite straight-

forward. For large argument an asymptotic series always diverges 

having first (unless X is too small) attained a minimum. It may 

be shown (e.g. Jeffreys and Jeffreys^)) that the error in the 

sum of an asymptotic series is less than the first term neglected. 

Accurate assessment of the sum requires that the smallest term 

be found and the sum stopped one term before it.

In the case of the Bessel functions each term in the series is 

calculated from the previous one by multiplying it by a term 

dependent factor. The minimum is therefore, most easily established 

by testing for this factor exceeding unity.

For quite large arguments, this check alone would give unnecessarily 

high accuracy. In these cases, the series is truncated prematurely 

by the same convergence check as for small arguments.

There are several forms of notation in the literature when referring 

to Bessel functions. The definitions used in this function segment 

are explained in appendix A.4. This function segment has been 

thoroughly tested against the extensive tables in Watson's^) 

treatise.
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4.5. Numerical Formulation

The numerical solution of equation 4.2.1. is achieved by restricting 

the source distribution to a finite number of degrees of freedom. 

The fictitious cylinder on which the source distribution is placed 

is split into a number of elements and the variation of source 

intensity is assumed to be defined in terms of the values at the 

nodes of each element.

The bi-quadratic variation used here is illustrated in figure 

4.5.1. Each element has 9 nodes.

Because of the banded nature of Finite Element equations, the 

equation corresponding to the middle node of a 9 node element, 

only involves contributions from the nodes in that particular 

element. The number of equations in the overall system may therefore 

be reduced by the technique of nodal condensation, whereby the 9 

equations corresponding to this element are reduced to 8 by 

eliminating the middle unknown. The 8 node isoparametric element 

is often used instead to avoid this complication.

In the Boundary Element technique used here, the matrices are fully 

populated because every point on the prescribed boundary feels the 

effect of every point on the source distribution. The 9 node element 

was used in this case, because it simplifies the automatic generation 

of nodal coordinates.

The source intensity within an element may be expressed as

f(x, y, z) = N.( x, y, z). f. 4.5.1.
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where the repeated index is used to imply summation up to nine, 

and the source intensities at the nodes (t\) are complex. The 

interpolation or shape functions (hL) are most easily defined 

in a natural coordinate system (5, n) as shown in figure 4.5.1. 

The bi-quadratic variation is obtained as the product of a 

quadratic Lagrange interpolation function in each coordinate 

direction as

where

2, 3 4.5.2.

Lr  = 5(5- l)/2

J 1>

L3? = 5(5 + 1)/2

and similarly for the n direction. This coordinate system also

corresponds to that in which the Gaussian quadrature formula

rS defined. The functions <j>T, and N. are related through lu 1

Ni = *1J

where

i = 3(1 - 1) + J

4. j  . 3.

If the real and imaginary parts of all complex quantities are 

identified by the subscripts 1 and 2 respectively then the 

integral equation 4.2.1. becomes

3G-.
/(Vf 2)(n

dn

ds = ~3A -i3-^ 

dn 0 n 3/1 4.5.4.
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Equating real and imaginary parts yields the pair of coupled integral

equations

f
3G-> f_ _ L
'8n

3Gq
- f __£

2 an
dS

a*
wi

an
4.5.5.

f
bn

dC,,

+ f2 as = 4.5.6.

These may now be discretised by substituting for the source intensity

^unctions from equation 4.5.1. In matrix form they become

r r \

This equation system is of the form

Therefore, only submatrices [A]and [B]need be stored. Hogben and 

Standing^) showed how advantage may be taken of the form of these 

equations to avoid inverting the large matrix. This involves solving 

for the real (or imaginary) parts first from half of the equations and 

then backsubstituting to obtain the imaginary (or real) parts from 

the other half. Four distinct possibilities exist depending on which 

submatrix is inverted and which set of unknowns is eliminated. One 

such possibility is

17.9 -



f2 = [A]-1 {w2 - M f,}
4.5.9.

and hence

f, - [W* [Bj .W-1 [B]

If one of the submatrices is found (or known) to be singular then 

this one need never be inverted. Each inversion only involves 

a matrix of the size of each submatrix. Since the number of 

operations required to invert a N x N matrix is roughly proportional
2

to N , then this procedure may be expected to halve the computation 

time.

Because matrices [a] and[B] are fully populated, the use of a 

direct inversion technique may not be the most efficient, Fenton^) 

showed that, for integral equations of the second kind, the 

diagonal dominance of the overall matrix makes an iterative method 

such as Gauss-Siedel converge rapidly. This method is also more 

suitable for use with disk backing store. The elements of the 

overall matrix are not changed, but simply read repeatedly from 

the disk. This means that sequential file storage could be used. 

On most computers this is a more efficient way of accessing and 

storing data.

The integral equation used here is of the first kind. The more refined 

the element mesh, the less dominant are the diagonal terms, Attempts 

were made to use Gauss-Siedel iteration but convergence was extremely 

slow. A linear convergence accelerator was also included but in many 

cases this did not improve the situation.
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The computer program,as shown 'in the 1 i s t i rig, uses a Gaussian 

elimination technique applied directly to equation 4.5.7. Although 

it is recognised that this application is not the most efficient, 

the computer time devoted to solving the equation system is an 

insignificant part of the total.

Once the source intensities at the nodes have been found, the

scattered potential is calculated from the discretized form of

equation 4.3.6.
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In general the argument of the Green's function is (x, y, z; a, b, c)

where (a, b, c) are the cartesian coordinates of the integration

point on the source boundary, and (x, y, z) is any point outside the

physical boundary. In this case, the L.H.S. vector contains only

two values. The equations would be used in this form if, for example, 

the wave height at some point on the fluid surface (y = 0) were 

being calculated.
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Although this calculation could be appended to the existing program 

the most important quantities of interest are the pressures on the 

cylinder and the total force and moment. These may be calculated 

once the scattered potential is known at the nodal points on the 

physical cylinder. This is not the only possibility, but it is 

certainly the simplest since the coordinates of these points are 

also required for the calculation of the source intensities. In 

this context the L.H.S. of equation 4.5.11 will be the same size as 

the vector on the R.H.S.

Because of the lack of diagonal dominance and the possibilities 

of round off error with a direct elimination technique, most of the 

variables were stored in double precision. Matrices [a ] [b] [c]and 

[Djtherefore represent a considerable storage problem. For most 

cases, the computer resident memory was insufficient. These matrices 

were therefore stored in disk backing store, as random access files.

A typical integral over an element on the source boundary is of the 

form

I ds hi 4.5.13,

where m and I can be either 1 or 2. For the nine nodes used here

this may be expanded as

ds.f21 + .... +
v

I
r
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The complexity of each integrand makes it impossible to attempt 

an exact integration. Each integral may be evaluated using 

Gaussian quadrature. To do this, the variables of integration 

must be more clearly defined. In general the integral would 

have to be transformed onto the plane by numerically

evaluating the Jacobian of the transformation. In the particular 

case of a circular cylinder the transformation is made especially 

simple by the use of cylindrical polar coordinates. If <x is half 

the angle swept by the element, is half its vertical dimension 

and r$ is the radius of the source cylinder, then each term may be 
t P3 flS v-rno r4 4-hllC

’ 4-5-'15

where ( )k means the value of the function in parentheses at sample 1

point k, and is the Gaussian weighting factor. Figure 4.5.2. 

shows the positions of the sample points and weights for the 3x3 

quadrature used here. The nine point quadrature scheme was chosen 

primarily because it corresponded with the use of nine nodal points 

and not because the Integra..d was known to require it. The form 

of the Green's function makes it difficult to estimate the order 

of the equivalent polynomial. Nevertheless the distance between the 

points (a, b, c) and(x, y, z) is always large enough to justify the 

use of a polynomial based method. In application where this distance 

is small, the singular behaviour of the fundamental solution must be 

taken into account.



4.6. Details of computer program

The main seyinent of the computer program is listed in appendix A.3.

The following is a short explanation of how it is constructed.

The variable names in the program are also listed in appendix A.3 

Every attempt has been made to use names which correspond with the 

symbols used in the text. Alternatively, the name has been chosen 

as a mnemonic.

The two coordinate systems utilized are defined in figure 4.6.1. 

together with an example of the node numbering system. The origin 

of both is in the still water level with the y axis directed positive 

upwards. The waves are assumed to be travelling in the positive x 

direction in water of constant depth.

The structure geometry consists of two co-axial circular cylinders, 

the outer one corresponding to the physical boundary has a radius 

PRAD. The inner one on which the fictitious source distribution 

is placed has a radius SRAD which is generated by the input factor 

ZK.

Each cylinder is equally divided into the same number of surface 

elements specified by the number in the horizontal plane (NIH) and 

in the vertical plane (NIV). The total number of elements is therefore

NE = NIV * NIH 4.6.1.

In the present formulation the boundary conditions are only satisfied 

at the nodal points, so that the elements on the physical cylinder 

are not used directly. It is conceivable that the boundary conditions 

could be Satisfied in a weighted residual sense, in which case, these 

elements would take on a greater significance.
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The nodes of these elements take on a different role depending 

on which cylinder is involved. On the source cylinder they 

correspond to the finite number of values of source intensity. 

On the physical cylinder the node numbering system is identical 

but each point corresponds to one complex equation satisfying 

the kinematic condition. The total number of nodes is

N = 2 * NIH * (1 + 2 * NIV) 4.6.2.

because of the mid-side nodes.

The node numbering system on the outer cylinder starts at the 

point

(x, y, z) = (PRAD, 0, 0) ■ 4.6.3.

and completes one rotation in the horizontal plane before jumping 

down to the next horizontal level.

In generating meshes for Finite Element programs, the node numbering 

sequence is extrem°ly important in defining the bandwidth of the 

overall matrix. Strictly speaking, the numbering sequence does not 

matter for the fully populated Boundary Element.matrices. However, 

the presence of Bessel functions in the Green's function implies 

that, on average, the smaller the argument the larger the value.

By ensuring that the two sequences have the same number on each 

radial line the matrix diagonal coefficients are made as large as 

possible, on average.



The generation of the coordinates on this regular mesh is achieved 

through the use of the two increments ALPHA in the rotational sense 

and DEL in the vertical direction.

A general element on the source cylinder has a local numbering system 

from 1 to 9 as shown in figure 4.5.1. This is related to the 

global numbering system through the vector NNS. This vector is then 

used to define the positions in each equation where the contributions 

from each integral must be accumulated. The. coordinates of the corner 

nodes of these elements are never calculated. The coordinates of 

the middle nodes are

(r, 6 , y) = (SRAD, GAMA, YMID) 4.6.4.

From these the coordinates of the Gaussian sampling points are 

calculated using the non-dimensional factor GAUSS (in this case /076) 

and the two increments.

The majority of the program is involved with the calculation of 

the matrix elements and their storage. The three pairs of large 

nested loops which go to make up this section are explained in the 

form of a simplified flow chart in figure 4.6.2. Each pair of loops 

corresponds to the vertical and angular coordinate directions. The 

core store required is significantly reduced by generating the 

coordinates only when required.

To minimise the time involved in transferring data to disk the co-

efficients are stored in vectors corresponding to the real and 

imaginary parts of matrices [A], [B], [C] and [D]. By making the 

outermost pair of loops correspond to each boundary condition on 
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the physical cylinder, each equation can be accumulated in a ROW 

vector before transfer. These ROW vectors are then overwritten by 

the next equation. The data transfer to disk is via channel 

number 3.

The contribution from a typical element was shown in equation 4.5.14. to 

comprise nine separate integrals each of which is numerically 

integrated by sampling at nine points. Because, for a given sample, 

the same Green's function contribution occurs in each integral, it is 

more efficient to calculate all nine integrals in parallel, one sample 

point at a time, rather than completing each separate integral before 

proceeding to the next.

That is, equation 4.5.15 is evaluated as

I
r\

ds
r
2(Ni
/=l

4.6.5.
3 H

rather than

I = 4.6.6.

Once all the contributions from the elements on the source boundary 

have been accumulated for each node on the physical boundary the disk 

backing store is re-arranged in the form of equation 4.5.8. The complete 

system of equations is then solved for the source strengths, using a 

standard Gaussian elimination technique, augmented by the need to read 

in two ROWS at a time from disk.

The scattered potential 0S is then combined with the incident wave 

potential at each node. The pressure may then be evaluated from 

equation 3.11.8. as



P] + ’p2 +^s >

= *& - < <) ^sl>] 4-6-7-

This enables the real and imaginary parts of the total force to be 

calculated separately and then combined to obtain the maximum.

Figure 4.6.3. shows how the total force was calculated by assuming 

the pressure at a node to act at a constant value over its area 

of influence.

4.7. Numerical details

The aim of using a bi-quadratic variation.of source strength was 

to enable accurate eumer-’cal results to be obtained with a smaller 

number of equation^. This should lead to significant savings 

in computation time, over the traditional facet method.

A further advantage of this choice is the ability to accurately 

model curved boundary geometries. In this particular application,
i

to the circular cylinder, the curved boundaries are exactly modelled 

as circular arcs. In general applications, a transformation from 

curvilinear coordinates to plane cartesian cooridnates would fit a 

circular arc with a portion of a parabola. In other words, if 

this program was modified to accommodate general boundary geometries, 

and then applied to the circular cylinder, the results would be 

slightly different from those obtained here.
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are also compared with the theoretical results

Most of the comparisons between numerical and theoretical results 

will be based on the non-dimensionalised total in-line force. It 

is often suggested (e.g. Isaacson^0)) that this is not a 

particularly severe test of the numerical method since the only 

contribution to the in-line force is from the first cosine term 

in the infinite series. For this reason some numerical pressures 

calculated using 

found by integration 

the result

4.7.1.

appendix A.l.

The exact expression for the total force may be 

of this pressure. Chakrabarti and Tan/^) give

r 
/

where
ex

Ji (ka)tan '

and // \2 x/7 21

This force is a function of both ka and 4- For 
d

appears only as a simple multiplying factor.

results were obtained for a depth of four times

fixed ka, the ratio 

All the numerical 

the cylinder radius.

Table 4.7.1. shows the exact results for the range 0<ka<4.00, and
L.
- = 4.0. Any other results may therefore be obtained by multiplyingd
by tanh(kh)/tanh (4ka).



Tables 4.7.2a to 4.7.2f show the numerical results obtained from

the computer program. These are in the form of an incomplete 

parametric study. The four parameters are, the position of the 

source cylinder defined by ZK (see appendix A.3), the wavelength 

parameter ka which is a measure of the amount of diffraction, the 

number of elements and the accuracy limit for convergence of the 

infinite series (ALIM).

The parameter ALIM would normally remain fixed to ensure convergence 

to the required number of significant figures. However, in this 

case, the amount of computation time required is related almost 

directly to this parameter. To obtain results for the 16 element 

cases, the convergence criterion had to be relaxed.

As the number of elements is increased, all other things being 

equal the results should converge to the exact solution. Because 

of the restrictions of computer time, the effect of this parameter 

is not so obvious.

As shown in chapter 3 the accuracy of the numerical results improves as 

the source boundary is moved away from the physical boundary.

Figure 4.7.1. shows how the results for fixed ka converge as ZK 

is reduced towards zero. For a larger number of elements, this 

convergence is towards a more accurate value for these particular

values of ka. However, there is a surprising jump in some of the

4 element results between the values of 0.5 and 0.6, which must be 

attributable to the larger value of ALIM in this case.
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This effect is highlighted in figure 4.7.2. The results on the

upper graph are obviously not affected by the accuracy limit. On

the lower graph it is clear that the accuracy limit is not sufficently 

strict. When the number of elements is increased from 4 to 16 the 

forces become completely unreliable in a restricted range approximately

0.2 < ka <1.0.

From the equations 4.3.7. to 4.3.14. it will be seen that there are three 

distinct infinite series involved in the calculation of the Green's 

function and its derivatvies. These are

S = £ Cwkcos ^(cj+h) ■ (vk r) 
k=i

S2 = .2-CirkSin K0(^kr)

S = 2
J k=i 

4.7.2.

4.7.3.

4.7.4.

where the factor

C ’ cos mk 4.7.5.

has the dimensions of (Length) \ In the program from which these 

numerical results were obtained it was (incorrectly) assumed that 

convergence of series S-^ would be slower than the other two because 

of the presence of K^m^r). In fact series S-] and S2 have different 

dimensions from S3.
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Detailed examination of the results confirmed that the erratic 

behaviour of the force is caused by the fact that series has not 

converged sufficiently when the accuracy check is satisfied. The 

source intensities were identical (to the four significant figures 

printed) at corresponding points in the 4 and 16 element cases.

The pressures, which rely directly on series Sg, were significantly 

different.

The convergence criterion was poorly chosen in a misguided attempt 

to reduce computation time by having one conditional branch instead

of three. A much better way of checking convergence is to compare 

the series term being added with the total, since this is based on 

the number of significant figures and is not affected by dimensions.

Despite this problem it is clear from the upper graph in figure

4.7.2. that quite remarkable agreement between theoretical and 

numerical results is obtained with a very coarse discretization.

As ka increases beyond 2 the arguments of the Bessel functions 

cover an increasingly wide range. The effect of the series terms 

involving KQ(x) and K^x) becomes insignificant. The integrals which 

are being numerically integrated therefore have more rapidly varying 

integrands and may therefore require not only a higher order inte-

gration scheme but also higher order interpolation functions for 

the source distribution.

For the constant source 'facet' method it has been generally agreed that 

at least ten facets must span one wavelength to obtain reasonable 

accuracy. The more significant discrepancies at these ka values 

are to be expected since even with 16 elements, each element spans 

about half of one wavelength. Hogben and Standing^) eXp-|a-jn that, 



to obtain reasonable accuracy at these short wave lengths they 

had to concentrate their facets close to the surface using angular
1° oincrements of ll-^ and 15 . This is because of the rapid decay of the 

cosh mQ(y+h) terms for these waves.

The variation of source intensity with depth is shown in figure

4.7.3. for the 16 element case at ka = tt . It appears that the quite 

reasonable agreement shown in figure 4.7.2. for this case has been 

obtained by effectively only using the top row of four elements.

Tables 4.7.3. and 4.7.4. show a comparison between the numerical 

and theoretical pressures for two cases, one using 4 elements (20 nodes)

and one using 12 elements (56 nodes). The average percentage errors 

between the two are also compared with the error in the total force. 

With 4 elements the errors are about the same. In the 12 elements

case the pressures appear to show better agreement than the total 

force would suggest. This must be because of the crude method 

of integration of the pressures.

The direction cosines and the pressures are available at the nodes

of an element mesh which is already defined on the physical boundary. 

The same interpolation functions which were defining the source

distribution may be used as the basis for an improved numerical 

integration of the pressures.



The contribution to the in-line force from a typical element is

given by

Fxe

a

-R

-A

ex

Pais <9

If it is assumed that the variation of the

then

Pcosfi1 Ni (P cos(9)i

4.7.6.

integrand is biquadratic

4.7.7.

u

the force is therefore transformed to

Fxe
f=i

Because the N. are already factorised this

4.7.8.

reduces simply to the

integration scheme

F = Z £ 4.7.9.
e 1=1 J-1 31+J-3

in a form suited to computation.

When this is applied to the pressures in table 4.7.1. the total force 

evaluated is approximately one third of the correct value. If the 

scheme is rotated through 90° then a value four times larger is obtained. 

Figure 4.7.4. demonstrates clearly why this should be. This is an 

example of the possible benefits of 'reduced integration' which is often 

used in Finite Element work. This integration scheme should become much 

more accurate as the number of elements is increased. To obtain con-

sistently accurate results the pressure will have to be evaluated, either 

at more points or at different (Gauss) points.
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In view of these difficulties the merits of the approach used in 

this thesis will be discussed on the basis of the reasonable agreement

with pressure.

There is no doubt that, for such a coarse discretization, this 

agreement has been obtained because of the strong symmetry of the 

problem. If the physical boundary was irregular, it would be 

unreasonable to expect accurate results. Whatever order of inter-

polation is used for the source discretization, the boundary conditions 

are satisfied at a finite number of points. The resulting potential 

function will actually satisfy the kinematic condition on a boundary

curve which fits smoothly through these points.

Nevertheless, the number of equations required to obtain less than
(33) 1% error is somewhat less than the 96 used by Hogben and Standing' '

and the 120 used by Garrison and Chow

The aim of any refinement to the traditional constant source facet 

method, is to reduce computation time and/or storage. Since storage 

relates directly to the number of equations then clearly a saving 

has been made.

Comparisons of computation time are usually difficult to make because 

they depend on so many factors. However, in this case, the differences 

between the two approaches may be isolated. Table 4.7.5. shows the 

numbers controlling the size of the computer program for the three 

element meshes used here. In the facet method, the number of times 

that the Green's function is evaluated is proportional to the square 

of the number of facets, and there is one equation per facet. In 

this quadratic source method the Green's function is evaluated at every 

Gauss point of which their are nine on each element. The number of 



evaluations is therefore related to the number of nodes multiplied 

by nine times the number of elements.

For the same number of equations then the facet method is about 

twice as fast, but the quadratic source method is more accurate.

In an attempt to reduce computation time the numerical integration 

was reduced to a four point Gauss scheme. However, the accuracy 

deteriorated dramatically.

Figure 4.7.1. shows that provided a reasonable number of elements is 

used, (56 in this case) the accuracy is not particularly sensitive 

to the position of the source boundary. The optimum value for ZK 

should be about 0.5. The smaller number of equations involved 

should make this method particularly suitable for studies of inter-

action between objects. If these objects are smooth (as most offshore 

structures are) and not too close then no problems should arise.

For closely spaced objects, care must be taken to make the source 

boundary contain the likely position of any images of one object 

in its neighbour.



Chapter 5 Experimental Apparatus and Results

5.1. Wave flume, generator and absorbing beach.

The experiments were conducted in a glass sided wave flume 

approximately 16 metres long, 750 millimetres wide with a typical 

water depth of 500 millimetres. This is shown diagramatically 

in figure 5.1.1.

The wave generator was of the plunging wedge type. The driving 

mechanism is illustrated in figure 5.1.2. Previous tests had shown 

the optimum wedge angle to be about 30°. The mean depth of immersion 

of the wedge could be varied, but with difficulty, and for these 

experiments it was fixed so that in its mean position the bottom 

of the wedge was 19.8 centimetres above the bed. The vertical 

amplitude of oscillation could be fixed at any value between zero 

and 12 centimetres and the oscillation frequency was limited by the 

wave characteristics rather than by the driving mechanism.

The gap underneath the wedge allows a possible back flow which 

generates waves behind the wedge. In an attempt to damp these down, a board 

was placed on the rear free surface and its motion restricted by 

frictional resistance with four vertical bars. This loss of energy 

contributes to a reduction in the efficiency of this type of generator 

For higher frequencies the effect of the back flow may be less 

significant because of the rapid decay of the particle orbits with 

depth.

There are two advantages of this type of generator. Firstly, there 

is a possibility of studying the combined effects of waves and 

- 197 -



current. Secondly, if the rotational speed of the motor is constant 

the vertical oscillation has no higher harmonic content. This is 

in contrast to most piston and paddle type generators which use 

a rotating crank and connecting arm where the harmonic content 

is related to the crank : connecting arm ratio. Each harmonic will 

generate a corresponding free wave which will pollute the main wave 

shape.

At the other end of the flume the majority of the energy in the waves 

must be converted into heat and/or a uniform back flow. One way of 

achieving this is by increasing the steepness of the waves until they 

break thus dissipating most of their energy. This may be achieved with 

negligible reflection by gradually reducing the water depth to zero.

The effect of this on the wave steepness may be derived by assuming 

that the waves behave locally as if the depth is constant. If energy 

dissipation due to friction with the bed is neglected, then the 

energy flux is conserved

2kd
EU = ECn = EC| ( 1 +sinh 2kd) = constant 5.1.1.

Consequently, if there is no accumulation of energy within a fixed 

control volume the period must also be constant. The dispersion 

relation relates the behaviour at any depth to that at the constant 

depth section of the flume dc>
r/r _ X _ tanh kd c , o7Cc ‘ X? ’ tZHhFd 5J-2-

V C C

The ratio of wave steepnesses is therefore given by

tanh k d c c
tanh kd 5.1.3.)

3
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This ratio is plotted in figure 5.1.3. against the depth ratio 

(d/dc) for a range of incident wave lengths (^c/dc)- This shows 

that for short waves the steepness initially reduces and only 

st. arts to increase dramatically when the waves 'feel' the bed 

which is much later than might be expected, because of the reduction 

in wave length given by equation 5.1.2. The longer waves being already 

in shallow water get steeper as soon as the depth reduces.

Because of the short wave behaviour many beach designs use a curved

profile to reduce the depth to less than half, as quickly as possible.

The length scale of the beach must be at least as long as the wave

length for the bed slope to be negligible. If it is not, the beach

will act as an efficient reflector. This fact combined with the 

much lower initial steepness of the longer waves (because of the 

generator characteristics) makes it very difficult to destroy long 

waves by breaking. Because the velocity variation with depth is 

almost uniform for long waves, beach designs based on frictional 

dissipation with the bed are liable to be more successful.

The beach used in these experiments was a straight slope at about 

9° up to still water level and then a flat section in a region 

where the flume widened. The sloping section forced the waves to 

break and then the flat section dissipated much of the energy of 

the resulting flow by friction by spreading it over aslarge an area 

as possible. This design was successful for waves up to 2 metres 

long.
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However, well the beach is designed some of the wave energy will be 

reflected back. Typical reflection coefficients obtained in practice 

are less than 5% which is fortunately small enough for second powers 

and higher to be negligible (Ursell, Dean and Yu^)). The wave 

motion in the middle of the flume may therefore be assumed to be the linear 

superposition of an incident wave.

^21 =<Xcos (kx -</t) +<x£cos(kx - </t -S) + 0(S2) 5.1.4.

and a reflected wave

2r  =«£cos(kx + ^t +£>) + 0(£2) 5.1.5.

The importance of the second term in the incident wave, due to the 

assumed perfect reflection at the generator, is often not recognised, 

on the incorrect assumption that it is of higher order (Keating and 

Webber ^9)). Simple manipulation of the trig, functions shows that 

the reflection coefficient is
a - a .max min
a + a .max min 

and the primary wave amplitude
a + a . max min
2(1+?cos 3)

5.1.6.

5.1 .7.

For most practical purposes the denominator of this expression may 

be assumed to be 2, but not when attempting to verify the small 

amplitude generator theory. The maximum (amax) and minimum (a -n) 

amplitudes of the wave envelope occur at points one quarter of the 

incident wavelength apart and are easily detected visually (when 

present) by following a wave crest as it travels down the flume.

By varying the wave generator amplitude and frequency the intermediate 

range of waves was found for which problems of reflection, first 



harmonic generation (for long waves), in-line or transverse in-

stability and breaking (for short waves) were negligible.

5.2. Instrumentation for circular cylinder

5.2.1. Cylinder material

The circular cylinder on which the measurements were taken was 

made of green araldite sprayed on to a wooden former and then turned 

down to a thickness of 1.4 mm. The original intention was for this 

cylinder to flex under the action of the waves so that measurements 

of displacement could be compared with the predictions of a math-

ematical model, including the coupling effect.

Because of the method of manufacture the manufacturer's figures for 

elastic modulus and density were unlikely to apply. A simple pair 

of tests was devised for measuring them.

A small sample was sawn from the cylinder and accurately measured

as follows:

Mean diameter D = 100.70 - .08 mm.

Thickness t = 1.41 - .01 mm

Width b = 19.60 - .61 mm

Mass P = 10.51 -0.02 gms.

From these the density was calculated as

yO = -------------= 1202 i 9 kg.m'3
A bTTDt

5.2.1.
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To estimate the elastic modulus this same sample was suspended as 

shown in figure 5.2.1. on a knife edge support. A series of 

accurately measured weights were suspended from the lower knife 

edge hanger. The displacement of the lower edge of the cylinder 

was measured using a travelling microscope and the following results 

obtained

Load gms 50.072 95.481 140.565 163.265 185.845 185.845

Displ.mm 0.61 1.23 1.75 2.09 2.40 2.29

The last result was taken from zero load to enable an estimate of the 

creep for which araldite is notorious. The linear behaviour is clear 

from the figure from which the slope is 80.0 gms. mm \ It may be 

shown that for linear elastic behaviour in this situation the elastic 

modulus is given by

e = |. (|). |= 3260 180 N-mm"2 5-2-2’

The crucial measurement of thickness (t) was made as accurately as 

the variability of the material would allow.

5.2.2. Cylinder mounting details

Copies of the five drawings from which the cylinder mounting was 

constructed are included as figures 5.2.2. to 5.2.6.

The cylinder was glued rigidly to an araldite base using araldite 

adhesive. The internal aluminium frame served a dual purpose.
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Firstly, it enabled the cylinder to be positioned anywhere in the 

flume by jacking down from the top against the base. The six holes 

in the base were only used for convenience in preliminary tests. 

Secondly, once this framework was under compression it acted as a 

rigid support on which the displacement transducers could be mounted 

inside the cylinder.

The great strength of the circular cross-section in overall bending 

meant that the primary mode of displacement was likely to be an 

ovalling of the cross-section. For this reason the displacement 

transducers were arranged in a cross at two levels 226 and 476mm above 

the base. In between these points at 130 and 370mm above the bottom 

of the flume, pressure tappings were arranged at 45° intervals. The 

ease with which the cylinder could be rotated meant that measurements 

could be taken at any angle. The P.V.C. tubing connected permanently 

to these tapping points was carefully arranged so as not to foul 

the displacement transducers. The aluminium framework could be with-

drawn to allow calibration of the displacement transducers. Figure 

5.2.7. shows the completed assembly.

5.2.3. Displacement transducers

The displacement transducers used were of the linear (IkO) potentio-

meter type. The resistance element is a conducting plastic so that 

the resolution is infinite. The linearity is better than 1% over the 

12 mm displacement range. This does assume that no significant loading 

is placed on the output by any additional electronics. Because the 

input resistance of the analogue tape-recorder was not particularly 

high an 8 channel amplifier was constructed primarily as a buffer 

between the transducers and the recording equipment. This was based 



on a simple 741 operational amplifier configured as a variable 

gain non-inverting differential amplifier. The circuit for this 

is shown on figure 5.2.8. An immediate advantage of the differential 

amplifier was the ability to null balance the output from each 

transducer when the cylinder was stationary whatever its initial position.

In order to measure the cylinder displacement at four points on the 

same level,the transducers had an additional perspex element fixed 

on the sensing end (see figure 5.2.6.). Unfortunately, the transducer 

was rotationally weak and the additional lever arm provided by this 

element accentuated the problem. Each transducer was fitted with a 

low-stiffness return spring to maintain contact with the cylinder with-

out restraining its motion significantly.

The calibrations of all eight transducers are shown in Figure 5.2.9. 

together with their respective calibration constants. The calibrations 

were performed by clamping a micrometer on the aluminium frame to which 

the transducers were attached. As expected, each transducer shows 

excellent linearity and sensitivity, typically 1 cm. division on the U.V. 

recorder represents 60/<m. The small amount of hysteresis is caused 

by rotation of the extension head on the transducer. If this problem 

could be removed these transducers are capable of extremely precise 

measurement.

5.2.4. Pressure transducers

The measurement of water pressure was made using four pressure trans-

ducers manufactured by the technicians in the Hydrodynamics Laboratory 

of the Civil Engineering Department at The City University. The details 

are shown in figure 5.2.10. The sensor is a brass diaphragm 3 
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thousandths of an inch (76/tm) thick on the rear of which is glued 

a circular strain gauge. As they were not differential transducers 

it was felt that the diaphragm had to be able to withstand the 500 mm 

head of water which it might experience if placed level with the base 

of the flume. Attempts to make the device more sensitive by using 

thinner diaphragms led to problems of drift of the electrical signal 

due apparently to temperature.

It was the original intention to fix the transducers inside the 

cylinder so every attempt was made to keep them small. Since, 

eventually, they were placed outside the cylinder larger diaphragms 

could have been used. One advantage of the lack of sensitivity was the 

linearity associated with minute displacements of the diaphrams.

Figures 5.2.11 to 5.2.14 demonstrate this linearity over a much wider 

pressure range than was actually used. Although attempts had been made 

to prestrain the diaphragms and strain gauges to enable zero pressures 

to be accurately measured, the transducers were always operated under 

a positive mean static head of about 100 mm of water.

The connection between the pressure tappings on the cylinder and the 

transducers was made with about 1.5 metres of clear P.V.C. tubing with 

an internal diameter of approximately 2.5 millimetres. Although this 

tubing may have flexed significantly under the hydrostatic pressure 

component, the small superimposed dynamic pressure fluctuations caused 

very little additional flexure. The speed at which pressure fluctuations 

travelled along the tubing could not have been very much below the speed 
of sound in water, 1400 m.s \ To cause a phase lag of 1% of the typical 

wave periods the speed of travel would have to have been reduced by a 

factor of ten. No problemsof phase lag were encountered from this source.



Because of the low sensitivity of these devices it was necessary 

to construct additional amplifiers to boost the signal from the 

strain gauge amplifiers. At each stage, an attempt was made to 

filter out some of the inevitable noise by including a 10 nano-

farad capacitor in the negative feedback loop of each op-amp, such 

that the cut-off frequency was at approximately 16 Hz. Although 

a lower cut-off would have removed much more of the 50Hz and other 

more random noise, it was found to lead to unacceptably large phase 

shifts in the main signal. Appendix (A.2.) shows the design and 

characteristics of these simple active filters.

Also associated with these high D.C. gains (typically 106 x) is the 

inevitable drift caused by contact resistances in potentiometers 

for example. It was therefore important to be able to check the 

calibration of the transducers quickly, while still connected to the 

cylinder tapping points. This was achieved by mounting all four 

transducers on a moveable frame. Movement of the transducers upwards 

was equivalent to the still water level moving downwards. Care was 

taken to bleed all air bubbles from the connecting tubing. The 

transducers were filled with water by forcing it in through a hypo-

dermic until all the air was expelled before connecting the tubing.

5.2.5. Wave probes

The measurement of water surface elevation was made using a purpose 

built amplifier based on the well known design from the Hydraulic 

Research Station. The probes were twin stainless steel conductors 

enabling an audio-frequency alternating current to be passed through 

the water. The output from the amplifier is proportional to the 

immersed length of the conductors since this governs the resistance 

between them. These devices are extremely reliable, do not suffer from 



drift, are easy to calibrate and are linear over a wide range of 

wave heights.

5.2.6. U.V. Recorder and analogue tape recorder

Because of the high noise levels on the pressure signals, and the 

erratic drift, it would have been very difficult to use digital 

techniques to obtain reliable information. The intermediate process 

of tape recording magnified the noise level to such an extent that 

the signal-to-noise ratio was always less than 1. Because of this 

the signals were stored on ultra-violet light sensitive paper using 

a 12 channel U.V. recorder. The pre-amplifiers of the tape recorder 

were still used as a low output resistance buffer to drive the gal - 

vonometers. Details of the data reduction technique from the U.V. 

paper are given with the results.

The galvonometers used with the pressure transducers were type Al00, 

those with the displacement transducers were Bl60. Both types are 

manufactured by S.E. labs (E.M.I).
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5.3. Pressure measurements without cylinder

For a single frequency progressive wave travelling in the positive 

x direction the dynamic pressure at depth h above the bed is given by

cosh kh 
cosh kd

cosh kh H r „ ,cosh kd 2 sin (kx“^) 5-3-l-

This pressure is therefore in phase with the surface elevation and is 

proportional to the wave height. This theory is only valid for small 

wave steepness and relatively large depths. In view of the finite 

height of experimental waves it was necessary to check this simple 

theory by measuring the pressure in the side wall of the wave flume. 

The linear diffraction theory for a vertical cylinder assumes a coshine 

variation with depth for the potential and pressure and if this is to 

be tested experimentally, it is important to know if it is valid in 

the absence of the cylinder.

A pressure tapping point was fixed in the side wall of the flume 399 mm 

above the bed in water of depth 523 mm. Two wave probes were fixed 

1.86 m apart and the one in line with the pressure tapping calibrated. 

The calibration constant was 18.5 mm of water per centimetre division 

on the U.V. recorder. The calibration of the pressure transducer was 

performed as accurately as possible but it seems likely that the 

calibration constant of 22.2 mm of water per centimetre, could be 5% 

in error over 80 mm of water. The connection between the transducer 

and the tapping point was made with the same length of P.V.C. tubing 

as would ultimately be used with the cylinder.
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Figure 5.3.1. is an example of a typical wave record. The pressure 

signal contains an unusually high amount of mains (50 Hz) noise and also 

some 100Hz noise from an unknown rectifying device. This noise 

was polluting even the main earth lines at about 50 mV between earth 

and a separate ground connection to the water main. The signal to 

noise ratio is seen to be close to unity. However, the regularity 

of the noise made it possible to draw a smooth curve through the 

signal from which the maximum and minimum pressures could be measured. 

The results were then averaged over several wave cycles.

The results from the 14 waves used are summarised in table 5.3.1.

The variable parameters were the generator frequency and amplitude.

From the record the following quantities could be measured,

T - the wave period

Tt~ the time taken by a wave crest to travel 1.86 metres

H - the trough to crest wave height

A?- the amplitude of the pressure fluctuation.

From T, the non-dimensional frequency parameter was calculated
9

From the dispersion relation
^2 

k-|d tanh k-j d = —— 5.3.2.

the equivalent parameter kd was calculated and from this the theoretical 

wavelength and celerity correct to second order

= 27T/k-| and C-] = A^/T 5.3.3

The wavelength and celerity were also calculated from

C2 - 1.86/T^ and A^ — C£T 5.3.4.

- 209



Since was calculated from only the measured period (to better than 

0.01 seconds) and the still water depth (to better than 0.5%) the 

difference between C2 and C-] should be a third order quantity in the 

wave steepness k2H* Wiegel^87) shows that the third order correction 

increases with wave steepness. Figure 5.3.2. shows the ratio Cp/Cj 

against wave steepness, from which it is clear that although the steeper 

waves are definitely travelling faster, some of the less steep waves 

are travelling slower than theory would predict. Similar trends are 

exhibited in the experimental results quoted by Wiegel^87\ although 

there, as here, the scatter in the results is certainly as great as 

the discrepancy between theory and measurement.

As well as measuring the pressure, the relationship between the wave 

generator parameters and the resulting wave height was required in 

the absence of the cylinder.

The linear wave generator theory (Havelock^28), Ursell, Dean and Yu^78)) 

predicts that for a given generator executing small amplitude 

oscillations, there is a one to one relationship between the frequency 

of oscillation and the wave height/generator stroke ratio. This two 

dimensional theory is only directly applicable to generators whose 

mean position is vertical since this enables the spatial co-ordinates 

to be separated. An accurate result for the plunging wedge could be 

obtained numerically using the boundary element technique. A simple 

approximate expression can be obtained by assuming the wedge acts 

as a piston generator extending from the surface down to its mean 

position above the bed, which in this case was 19.8 centimetres as 

shown in figure 5.3.3.



Straightforward application of the theory gives

■=■ = tan (o<) sinh(kd)
bcoshk (y+d) dycoshk (y+d) dy

0 cosh2k(y+d)dy
5.3.5.

J -d
[sinh kd - sinh (kd - kb)] r _

= tan(w).4 sinh kd[s1nh 2kd+ 2kd j

where ex is the wedge angle and b is the depth to the bottom of the 

wedge. This expression will be a good approximation provided the 

horizontal dimensions of the wedge are small compared with the wave 

length or

5.3.7.

Most of the waves used satisfied this condition.

Equation 5.3.5. assumes that no flow takes place under the wedge.

2
Figure 5.3.4. shows the ratio H/S plotted against d/g. There seems 

to be no clear dependence on wave steepness even though some of the 

waves were clearly quite steep. The limiting steepness for breaking 

of periodic waves is usually given as

kH = 0.887 tanh kd . 5.3.8.

From table 5.3.1. it may be seen that several of the waves were close 

to half this value. The reason for the surprising lack of non-

linearity in figure 5.3.4. is because the second order correction to 

the wave shape travels in phase with the main crest and being half the 

wave length does not affect the trough to crest height until it is 

some 30% of the first order term. The energy in the wave depends, 

to second order, on the wave height so that the linearised generator 

theory actually predicts the wave height correct to second order.
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Also shown on this graph is the approximate relationship 

(equation 5.3.6). It is clear that the back flow is reducing the 

efficiency of the wedge by about 18% (or 30% based on energy).

The efficiency of the generating device becomes important when 

trying to generate low frequency (long) waves. Because of the form 

of the generator characteristics, for a given stroke (S), lower 

frequencies generate significantly lower wave heights. In practice, 

this means that the generator amplitude must be increased to provide 

waves of useable height and herein lies a problem. The large dis-

placements of the generator contribute to a significant nonlinear 

forcing term at twice the generator frequency. This does not give 

rise to a Stokes type second order correction to the primary wave 

because the waves are not steep. Instead, it generates a significant 

'free' wave travelling at its own phase speed. A numerical example 

clearly illustrates what happens.

If the period of the primary wave is 2 seconds in water 0.5 metres 

deep then its length is 4.1 metres and its phase speed 2.0 m.s”1. 

The free wave with twice this frequency has a wavelength of 1.5 metres 

and travels at 1.5 m.s 1.

Although its length is less than half that of the primary wave, the 

secondary wave (because of the reduced effects of dispersion for such 

long waves) travels almost as fast. This now provides a simple 

explanation for the reduced phase speeds of certain of the less steep 

waves in figure 5.3.2. The usual method of estimating phase speed is 

to compare the time histories of water surface elevation at two points 

a known distance apart . What is actually measured is the velocity of 

travel of the wave envelope. Because of the presence of the slower 



moving secondary wave this velocity will not be the same as the 

correct value. Whether it is higher or lower will depend on the 

relative positions of the wave probes and the generator.

The comparison between the measured pressure and the theoretical 

pressure in table 5.3.1. shows a remarkable agreement. All the 

results are within 3mm of water of the prediction, the overall r.m.s. 

error being 1 mm. There is no clear correlation between the errors 

and wave steepness or frequency. In view of the high noise level and 

the estimated precision of the calibration there is nothing to suggest 

that the theory is inadequate.

It is important to recognise that this agreement has been obtained 

in the absence of the cylinder. Many of the comments regarding the 

self cancelling effect of the second order corrections to the wave 

height apply equally in this case. Because the theory does not 

predict a wave height but simply includes it as a linear multiplier 

then the coshine variation with depth is stretched to fit the given 

wave shape.

Figure 5.3.5. shows the scatter in the pressure results to the same 

scale as they will be shown below in the presence of the cylinder. 

There was no detectable phase lag.

5.4. Pressures on the circular cylinder.

The circular cylinder was fixed in the wave flume about 6 metres from 

the wave generator. It was found that the displacements of the 

cylinder under wave action were so small that most of the movement of the 

displacement transducers was taken up in rotation because of the
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extension pieces. It was unfortunately not possible to obtain reliable 

results from these transducers.

5.4.1. Pressure transducer calibrations

The measurments of pressure were far mon?successful. The cylinder 

was exposed to a total of 93 different waves. Each was given a 

number which has been included in all the tables to facilitate cross-

referencing. Each wave record 'stored1 on U.V. paper included (over 

about four periods) the information from two wave probes and four 

pressure transducers. The measurement were taken on four separate 

occasions. Figures 5.4.1. to 5.4.4. show the corresponding calibration 

lines and the record numbers to which they apply. An indication 

of the drift of the calibration constants is given on figure 5.4.1. 

by the recalibration at record number 12. The change in calibration 

from figure to figure is not a result of drift, but corresponds 

to the quite distinct amplifier configuration on each occasion.

One wave probe was placed alongside the cylinder in line with its 

axis and the other typically 1.8 metres in front of the cylinder on 

the flume centreline.

5.4.2. Noise levels.

The wave probe signals did not suffer from noise or drift. There 

was always considerable noise on all four pressure transducer signals, 

however the character of the noise changed on each of the four 

occasions. Therefore, a typical piece.of wave record has been 

faithfully reproduced from each occasion as figures 5.4.5. to 5.4.8. 

to illustrate the noise levels. Unlike the previous tests in the 
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absence of the cylinder this noise appeared to be random, which 

made it slightly more difficult to draw a smooth curve through it.

Each transducer signal drifted by varying amounts. The slow rate 

at which this occurred made it easy to remove its effects from the 

data. Unfortunately, it does mean that no information about steady 

mean pressures could be obtained. The only information which could 

justifiably be extracted was the maximum and minimum pressures and 

their phase in relation to the wave on the axis of the cylinder.

5.4.3. Blockage

The cylinder diameter was 100.8 mm whereas the width of the flume 

was 750 mm. The blockage of the flow by the cylinder presents 

a number of problems which can only be quantified approximately.

For the high frequency, short waves the cylinder becomes capable of 

greater wave radiation and this will be reflected by the sides of the 

flume. This situation is equivalent to the diffraction of waves by 

a row of cylinders at 750 mm centres which in this case is approximately 

15 times the cylinder radius (a). For two such cylinders 10a apart 

the computations of Lebreton and Cormault^52^ and Isaacson^40) suggest 

the effect on the maximum force for ka<0.5 is less than 2|% and 2% 

respectively due to the interaction between the cylinders. A row of 

cylinders may be expected to double this figure. As the spacing 

increases the amount of scattered wave energy incident on the adjacent 

cylinder may be expected to fall off as the inverse square of their 

separation because of the reducing angle of incidence and the reducing 

wave amplitude. This suggests that for ka = 0.5 the blockage effect 

increases the forces by less than 2%. Most of the waves were lower 
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frequency than this and since the interaction falls off rapidly 

with increasing wave length.blockage by diffraction may be 

expected to affect most of the results by less than 1%.

For the lower frequency, longer waves the flow past the cylinder 

is approaching quasi-steady uniform flow. The presence of the 

cylinder in such a flow may be assumed to increase the ambient 

flow in inverse proportion to the reduction in area. In this 

case, the ambient velocity may be increased by 15%. It may be 

shown that, at the still water level, the ratio of the two components 

of pressure in Bernoulli's equation due to the flow velocity and

the rate of change of the potential is

kH coth kd
4

5.4.1.

For a typical wave kH = 0.24 and kd = 1.3, which gives a figure 

of 7%. The effect of this mode of blockage on the total pressure 

is therefore about 1%.

A possible problem associated with the size of the cylinder is 

the reflection from the generator of the scattered waves from 

the cylinder. Because of the small amount of scattered wave 

radiation and the 6 metres between the cylinder and the generator 

this was not expected to be a problem.

5.5. Presentation of Results

All the results, both measured directly (indicated by an asterisk) 

and subsequently calculated are presented in tables 5.5.1. and

5.5.2. Much of this information has also been presented graphically 



as will be discussed below. In these tables the following suffices 

are used

1 - refers to the wave probe alongside the cylinder

2 - refers to the wave probe in front of the cylinder.

T r refers to quantities calculated only from the wave period

at probe 2, and water depth, and thus represents the theoretical 

results.

C - refers to quantitites calculated from the measured time of travel

of the wave crest.

It will be seen that nearly all of the waves fall into 6 broad groupings 

on the basis of frequency. Although this arose by accident it fortunately 

allows results to be plotted against wave steepness for fixed frequency.

5.5.1. Wave heights

Measurements of the wave height were obtained at both wave probe positions 

although the probe at the cylinder is more likely to suffer from the 

effects of diffraction by the object. These two heights, together with 

the generator stroke are shown in table 5.5.2. In most cases, the wave 

height at the cylinder was higher. However, because of the possibility 

of reflection of the scattered wave by the generator, a partial standing 

wave system will be set up which may affect the wave probe in front of 

the cylinder depending on its position in the system. Accordingly, both 

results are plotted against the frequency parameter in figure 5.5.1. 

Superimposed on this graph is the curve from the measured results in the 

absence of the cylinder, which appears to define the mean line through 

the considerable scatter.
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Figure 5.5.2. shows 80 of these results grouped into four frequency 

bands and plotted against wave steepness. The scatter does not 

appear to correlate with wave steepness. Because the mean position 

of the wedge remained at 198 mm above the bed, changing the water 

depth necessarily changes the generator characteristic. For this 

reason the results corresponding to different water depths are 

represented by different symbols.

The lower the water depth the less efficient the generator will 

become, and so the lower will be H/S. This is borne out by results. 

The water depth in the tests without the cylinder was 523 mm. All 

the results with the cylinder in place should be lower than the curve 

on figure 5.5.1. The results in figure 5.5.2. are in approximately 

the correct relative positions but as the frequency increases, they 

shift higher than they should. This is consistent with the presence 

of standing wave energy due to increasing diffraction.

There is still further evidence of this standing wave behaviour. For 

a fixed frequency and distance between wave probes the position of 

the standing wave envelope should not depend on wave height (for small 

steepness). This suggests that the difference between the measurements 

at each wave probe should be largely the same. This is indeed the 

case. In particular, for a water depth of 503 mm the results in band 3 

exhibit much less scatter. The mean frequency for this band corresponds 

to a wavelength of 1.66 metres. Since the wavelength of the standing 

wave envelope in this case will be about 0.83 metres, the distance 

between the wave probes is close to a multiple of this length and so 

the two measured heights are much closer.
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It should also be clear from this, that the correct value of H/S is not 

necessarily in between the values from the two probes, although the 

larger the discrepancy, the more likely it is to be.

5.5.2. Phase Speeds.

The wave celerity was again estimated from the time of travel of a wave 

crest between probes 1 and 2 (distance L metres in table 5.5.2). The 

results are plotted in figure 5.5.3. as the ratio of the calculated 

celerity Cc to the second order value Cy, against wave steepness.

Over 90% of the results are within 4% of unity. The third order 

correction over this range of wave steepness is much less than the 

scatter. In an attempt to explain the scatter, the results are 

separated into the same frequency bands as were the wave heights, and 

replotted on figure 5.5.4. The only definite conclusion that can be 

drawn from this figure is that the low frequency, low steepness waves 

exhibit the most scatter. Whilst the arguments put forward in section 

5.3 are still appropriate, this trend is also consistent with the 

greater difficulty of estimating the position of the wave crests for 

the longer waves. In view of the lack of correlation of the scatter 

with any particular parameter, it appears that random experimental 

errors are its most likely cause. Also shown on this figure are 

the third order corrections, based on the mean frequency parameter of 

each band, taken from Wiegel^?).
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5.5.3. Pressures on the cylinder

The measured pressures on the circular cylinder are shown in table

5.5.1. Four pressure transducers were used at one time, all at the 

same depth and 90° apart around the cylinder surface. Sixteen 

pressure tappings were available, eight at 130mm and eight at 370 mm 

above the bed, at 45° intervals. For simplicity, the angular position 

of each pressure tapping has been assigned a number N as shown in figure 

5.5.10. where the pressure tapping number 1 (£= 180°) faces directly 

into the waves and is therefore referred to as the front of the cylinder. 

The symbols U and L are used to refer to the upper and lower pressure 

tappings respectively.

To condense the presentation of the results all the pressures have been 

normalised with respect to the pressure in the incident wave at the 

same depth. This has the effect of removing the dependence on the 

depth by assuming it to be a coshine variation. This enables all the 

results for a given angular position to be plotted on the same graph.

The results derived from the upper and lower pressure tappings have 

been kept separate for two reasons. Firstly, the smaller pressure 

fluctuations and hence, lower signal to noise ratio suggested that 

increased scatter should be expected in the lower results. This 

would give a false impression if all the results were together. 

Secondly, the lower results should have a different spectral.composition 

because the decay terms of higher harmonics become increasingly rapid. 

Normalisation on the basis of the first order depth variation ignores 

this. Due to the presence of standing wave energy at the front of 

the cylinder, the non-decaying pressure fluctuation was expected to 

occur . This would lead to a proportionately higher 1st harmonic 

content at lower depths. 



The analytical solution for the pressure on a circular cylinder 

in water waves of arbitrary depth is usually attributed to MacCamy 

and Fuchs^25). The only difference between their solution and many 

similar wave solutions for a circular cylinder (e.g. acoustics and 

electromagnetics in Morse and Feshbach^2), deep water waves in 

Havelock^)) -js jn the coshine variation with depth. Several 

mistakes occured in their paper, which have led to some confusion 

in the literature. This is mainly as a consequence of the initially 

arbitrary choice of either elcr^ or e for the harmonic time.

Once a choice is made this then fixes the form of the radiation 

condition, which in turn depends on whether the positive or negative 

gradient of the potential is used to define velocity. Sarpkaya and 

Isaccsonuse both forms of harmonic time in different contexts 

but persist with the same radiation condition. Chakrabarti and 

Tam^5) give an expression for the pressure which cannot be derived 

from their theory. It is in any case incorrect, since they misuse the 

Jacobi symbol in such a way that the second term in their series 

expression is half what it ought to be. Had they used this expression 

the pressures would have been about 40% too small. The correct 

derivation of the potential ahd hence the pressure is therefore included 

in appendix A.l. The results of this calculation have been verified 

against those given by Havelock^29) and those of Wiener given by 

Wiegel^?) for ka = 0.5.

The disagreement between the phase results of Wiener and those given 

in the appendix is merely a difference of definition. Wiener has 

defined the phase angle relative to the incident wave at the same 

position, wherease the figures used in this thesis are all relative 

to the wave at the axis of the cylinder. This was simply because 

the wave probe was fixed in line with this axis. For position 1, for 

example, the phase must be in advance of the wave probe by at least 



the time it takes a wave to travel the distance of the cylinder

radius a. This gives a phase angle of

ka 5.5.1.

Figure 5.5.5. shows the theoretical variation of wave height along 

a radial line through position 1 in front of the cylinder for 

ka = 0.3, as a fraction of the incident wave height over the 

range in which the wave probe was situated. The wave height measured 

by the probe could therefore be as much as 6% out depending on its 

position in relation to the wave system. In practice this curve will 

be modified slightly by the multiple reflections between the cylinder, 

the wave generator and the side walls. Once steady state is achieved, 

a curve of this form will still emerge.

The effect of this partial standing wave on the measured wave heights 

has already been discussed. It does, however, have an important 

bearing on the comparison between measured and theoretical pressures 

on the cylinder.

In order to normalise the pressures, they are divided by the 

amplitude in the incident wave

H cosh k (y+d)
2 cosh kd 5.5.2.

which requires a choice to be made for the value of the wave height 

in the experiment. It is tempting in view of the reduced scatter 

to use the incident wave in the absence of the cylinder. However, 

the incident wave to which the cylinder is responding clearly has 

an increased amplitude because of the reflection from the generator.
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Since the diffracted wave amplitude reduces with distance from 

the cylinder, the wave probe in front of the cylinder (at least 

1.6 metres away) is likely to be closer to the correct height 

than the probe along side the cylinder (about 0.15 metres away). 

Rather than rely on this probability the results were normalised 

with respect to both measured wave heights, it being remembered 

that it is, in general, coincidental if both measurements are the 

same and not at all indicative of increased accuracy.

Figures 5.5.6. to 5.5.9. show how the measurements of pressure 

amplitude and phase were made from the wave records. The amplitude 

in this case is half the difference between the maximum and minimum 

pressures and therefore is not necessarily the amplitude of the 

fundamental frequency component. The presence of a first harmonic 

(at twice the wave frequency) in the pressure signal will always 

increase this measured amplitude unless it happens to be a multiple 

of 90° out of phase with the fundamental, as it is in the absence 

of the cylinder.

The phases of the peak pressures relative to the wave were always 

averaged over an integral number of cycles. Therefore, the presence 

of a first harmonic will not affect the phase if it is a multiple 

of 45° out of phase with the fundamental. The phase measurements 

are therefore less affected by the presence of higher harmonics.

Figures 5.5.10. to 5.5.14. illustrate graphically the theoretical 

and experimental results for amplitude and phase. Because of 

symmetry the measurements at positions 2, 3 and 4 have been combined 

with those at 8, 7 and 6 respectively.
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The phase results although exhibiting some scatter, generally show 

excellent agreement with the theoretical curves. Because measurement 

of phase requires an estimate of the position of a turning point, 

rather than its value, it is in a sense one order more difficult 

to estimate, particularly in view of the noise levels. The probable 

reason for the good agreement is that the phase angles do not depend 

on the measured wave height. Any fluctuations in the wave height 

which made for difficult measurement of amplitude, had less effect 

on the phases. This also means that the phases do not depend on 

the calibration constants of the transducers.

It appears from these results that the theoretical predictions for 

phase are correct. This is in contrast to the results reported by 
r g \

Boreel' ' where in general, the phase showed poor agreement even

when the measured pressure amplitudes agreed with their numerical 

predictions.

The amplitude measurements in all five figures seem consistently higher 

than the theoretical predictions. There is however, considerable 

scatter.

Some of this scatter was actually present in the traces as an 

experimental fact, even apart from the noise. At least one wave 

record (see figure 5.5.15.) showed a remarkably consistent periodic 

behaviour, at approximately half the wave frequency, at the pressure 

tapping at position 3. This is close to the likely position of 

separation and may indicate an asymmetry in the flow which is usually 

observed at much larger values of the Keulegan and Carpenter number.



The largest values in this experiment were about 3 which is well 

into inertia dominance.

The normalised pressures will also include the scatter in the wave 

heights already shown on the generator characteristic, figure 5.5.1.

It was not particularly difficult over four or more cycles to estimate 

the maximum and minimum pressures in a wave quite precisely. However, 

it was quite difficult to calibrate the pressure transducers because 

of the high noise level, particularly for transducer No.3. Since 

the measured pressures are ultimately only as accurate as the cali-

bration this is a severe limitation. This source of error should be 

random and in view of the twenty independent calibrations it is 

unlikely to have led to a consistent increase.

Transducer number 2 was twice as sensitive as the rest and therefore 

required less amplification.. In turn, the lower noise level led to 

a more reliable calibration constant (see figures 5.4.1. to 5.4.4.) 

To see if this transducer gave results which were consistently 

closer to the theory they are replotted as figures 5.5.16. to 5.5.18. 

The consistent discrepancy is still clearly apparent, particularly for 

position 5 (fig 5.5.18).

Figure 5.5.19 shows a copy of record number 19d, which is quite a 

high frequency wave, for which measurements of pressure were taken at 

the lower pressure tappings. On the front of the cylinder (position 1) 

there is clear evidence of a large first harmonic component which has 

clearly contributed to the large amplitude labelled in figure 5.5.10. 

For this frequency the depth factor cosh kh/cosh kd = 0.132. The 

amplitude of the first harmonic pressure fluctuation in the incident 



progressive wave should be less than 1% of the first order value 

at this depth. The much larger component suggested by record 19d 

(and similarly by 21c, 21d and others) seems to confirm the

presence of a first harmonic pressure fluctuation which does not 

decay with depth in the usual way. Longuet-Higgins^55^ analysis

suggests that the size of this pressure fluctuation, in the presence of 

the standing wave energy near the front of the cylinder, should be

£ “ ? ( 5 kH> 5.5.3.

whereas the first order pressure in the wave at this depth is 

approximately

x 0.132. cos (eft +^) 5.5.4.

Here,ex is the reflection coefficient at the front of the cylinder which 

from figure 5.5.10. may be estimated, in this case to be 0.14. 

Substitution into 5.5.3. shows that this second order term may be some 

10% of the first order, which explains some of the 60% increase over 

linear theory in this case.

If the presence of higher harmonics in the pressure fluctuations is the 

main cause of the discrepancy between the linear theory and the 

measured values then the disagreement should increase with wave 

steepness. Figures 5.5.20 and 5.5.21 show the results in the four 

middle frequency bands (some 85% of the total) plotted against wave 

steepness. There is little clear evidence to support this explanation 

except perhaps in the higher frequency band 5. Certainly, there is 

no evidence that the results are approaching the predictions at zero 

steepness.
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This comparison is unfortunately complicated by the apparent positive 

correlation between wave steepness and frequency (see for example 

figure 5.5.4.). This is obviously coincidental, since the two 

parameters are independent. For the high frequency waves the 

lower limit of wave steepness was governed by the difficulty of 

detecting any pressure fluctuation at all, because of their rapid 

decay with depth. For the lower frequency waves the upper limit of 

wave steepness was fixed by the maximum wave generator stroke of 

240 millimetres.

Since it has been suggested that the effects of blockage are too small 

to have caused the observed discrepancies (which are typically 20%) 

the only possible conclusion is that the linear theory is somehow 

invalid.

Perhaps the clearest trend in the results is the steadily increasing 

pressure a mplitude at the rear of the cylinder, in figures 5.5.14 

and 5.5.18. Here the linear theory predicts very little change in 

the amplitude ratio over this range of ka before it steadily reduces 

due to the sheltering effect of the cylinder as ka increases. For 

some of the waves, there was clear visual evidence on the surface 

of a focussing of the wave energy arriving from both sides of the 

cylinder. This focussing was reported by Hogben and Standing^33) 

for the more obviously separated flow around a square cylinder.

Figure 5.5.22. shows the variation of pressure amplitude around the 

cylinder, both on cartesian axes and as a polar diagram, for the 

results in frequency band 4. The results have been averaged to remove 

the scatter. Because these amplitudes are actually out of phase 

this figure is only for qualitative comparison. Nevertheless, because 



the measured phases are in agreement with the theory, this figure 

gives some idea of why the total force is usually much less affected 

by the errors in the pressure.

The main difficulty in applying linear wave theory in the presence 

of a cylinder is that the rise and fall of the water surface dominates 

the measurement of pressure whereas the theory assumes that this vertical 

motion is negligibly small, such that the free surface boundary 

condition may be applied without correction at the still water level. 

This shift of the boundary condition is a feature of all the subsequent 

non-linear corrections. Obviously, the pressure between the trough 

of a wave and the still water level is zero, and non-zero between the 

crest and the still water level. The theory maps this behaviour onto 

the still water level.

(54)Lighthillv ' shows how a consistent correction to the total wave 

force may be derived but this still assumes infinitessimal wave height. 

This is why he recommends it be applied at the waterline rather than 

at /3. This problem was in fact the primary reason for conducting 

the preliminary experiments on the free waves. It was expected that 

just below the wave troughs the proximity of the free surface would 

modify the pressures. It has already been shown how these waves 

appear fortuitously to escape this problem. It appears (as Lighthill 

suggested) that the situation is radically different once the cylinder 

deforms the flow.

Bearing in mind that the free surface boundary condition may be 

satisfied to first order either on the moving free surface or on the 

still water level, the following heuristic analysis suggests itself.
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The pressure at a point y in the fluid is given by

P = H 
yog ?

Cosh k 
cosh k sintft 5.5.5

As a wave trough passes above this point it is actually at a depth
u

y + below the free surface. Conversely when a crest passes it is
u

apparently in deeper water at a depth y - (y is positive upwards).

The actual pressure at this fixed point y may therefore be

u
cosh k(y+d- 7 sin^/t)

cosh kd
'5.5.6.

The amplitude of this pressure fluctuation is therefore

H cosh k (y+d). cosh kH 
cosh kd 2

5.5.7.

Expansion of the cosh kH
T term shows that this correction is in fact

third order in the wave steepness, but unlike the Stokes correction it 

does not decay rapidly with depth.

The measured pressures in a wave are replotted in figure 5.5.23. against 

wave steepness. The agreement between the five point moving average
kHcurve and the cosh -y factor is quite good. For waves of steepness 

kH = 0.5 this factor predicts a. 3% increase over linear theory. On 

the front :of an object this steepness can double for high frequency 

standing waves and the factor then becomes 1.13 because of the rapid 

increase of the coshine function.

The derivation of this correction factor has been included only in 

an attempt to show how the rise and fall of the free surface may have 

- 229 -



a significant effect on the pressures beneath it. It would not stand 

up to rigorous scrutiny. There is promise of a numerical solution 

to the problem using a three dimensional equivalent of the approach 

of Longuet-Higgins and Cokelet^), By solving the irrotational flow 

problem at the instantaneous position of the free surface, there is 

no need to involve the still water level. It is only the free 

surface condition which makes the problem nonlinear.
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CHAPTER 6. DISCUSSION OF CHAPTERS 4 AND 5

6.1. The pressure measurements

The mathematical solutions of Havelock^) and MacCamy and Fuchs^58\ 

and the numerical calculations based on the indirect formulation 

of Garrison and Chow^'^ make the same fundamental assumptions about 

the fluid Flow. In particular it is assumed that the vertical 

displacement of the free surface is small enough for a Taylor 

series expansion of the free surface boundary condition about its mean 

position, to be truncated after the first term.

The linearised boundary condition at the free surface of a simple 

harmonic motion is of the form

The importance of the second order terms left out when this is 

satisfied at y = 0 is therefore given by the size of vp relative to 

unity. This may be estimated from first order theory for progressive 

waves to be less than (kH tanhkd)/2, which for deep waves is limited 

by incipie.it breaking to be less than 0.89. This is cleanly not 

small. The comparative success of the linearized analysis for 

progressive waves up to half breaking height has been shown in 

chapter 5 to be due to the self cancelling effect of the second order 

corrections. Indeed, covergence of the Stokesian perturbation expansion 

has only been proved for progressive waves, by Levi-Civita.
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For waves diffracted by structures, the comparison between theory 

and experiment has been made on problems for which the effect of 

the free surface is small, either by considering completely 

immersed objects (see Chapter 2, Chakrabarti^3^) or by using 

structures which span the whole water depth so that the free surface 

effect is an insignificant part of the total response.

The two forms of this response which have been measured are the 

total forces and the fluid pressures. Chakrabarti and Tam^0^ and 

f 37)Huntington and Thompson*1 ' have measured both, on a vertical 

circular cylinder. Hogben and Standing measured both on a circular 

cylinder and a square cylinder. Boreel^^ and Van Oort m erssen^^) 

used a square cylinder on a pyramid. This list is not exhaustive 

but all of these objects extended from the bottom through the free 

surface.

The measurements of total force on these objects generally showed 

fair agreement with the theoretical or numerical predictions over

(15) most of the frequency range. Indeed, Chakrabarti and Tam' ' 

quote a correction for the free surface effect, DUt comment that 

it was insignificant in most cases.

Some researchers used several wave steepnesses at fixed frequency 

to enable the effects of non-linearity to be identified. For 

example, Huntington and Thompson^3?) note that all their results 

lie on the same curve showing that the resuits were linear in wave 

steepness. Howeverthis curve was below the linear theoretical 

prediction.
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Although many measurements of pressure have been taken, they have 

not been critically discussed. Consistently the pressure results 

do not agree with the theory, particularly close to the free
(9)surface. Boreel' ' shows that, as the effects of diffraction 

increase the pressures become larger than the theory predicts, for 

measurements close to the free surface. He also shows the runup 

at the front of his object to be 50% greater than the theory for ka= 

0.87, which is consistent with the pressure observations. Although 

he gives no information about wave heights his experimental total 

force is consistently higher than his numerical predictions. For 

a circular cylinder the experimental total force is usually lower 

than predicted.

There are very few reliable results available for objects which are 

larger than half the incident wave length (ka^l.5), which is true 

diffraction. This is because of the practical difficulties of wave 

generation. The reflection from the front Face of the object 

increases with frequency.

The local '.:ave elevation may double but the ’total forces are reduced 

because the effect of the 'laves is beginning to cancel around the 

object.

Because of this, and the fact that the pressure variation in such 

waves falls off rapidly with depth, the wave heights have to be 

increased to obtain measureable forces. This necessarily increases 

the steepness of the incident wave (and often its free harmonic 

content) which then becomes increasingly unstable and three-dimensional 

(Benjamin and Fier^3\ Whithan/86) and Yuen and Lake^’’9^) and also 

very near to breaking.



The doubling of the wave height at the front of the object is caused 

by standing waves which may exceed the limiting steepness for 

progressive waves by up to 50% before breaking. In these situations, 

the expansion parameter may approach unity. The contribution 

from the terms neglected in the expansion may actually exceed the 

linearised term retained.

Until recently, most offshore structures for which the design was 

governed by diffraction forces, had extended from the sea bed through 

the free surface. As oil exploration goes into deeper water, 

different types of structures are being designed, such as tethered 

buoyant platforms. Most of the wave action on such structures is in 

the region close to the free surface. It now becomes important 

to understand the discrepancies in the pressures.

Much current research is directed towards extending the linearized theory 

to second order. The above discussion suggests that quite large 

increases may be found in some cases. The expansion may not even 

converge for h-’gh frequency steep waves. The controversy surrounding 

Isaacson's assertion, tnat the second order .theory was inconsistent, 

has been discussed in Chapter 2.

If the perturbation expansion does not converge then an alternative 

must be sought. One way of achieving this, is to place a source 

distribution on the moving free surface as well as on the body. The 

use of a separate source boundary will only be possible if proper 

account is taken of the logarithmic singularity at the junction of 

the two-boundary conditions. The only difficulty envisaged in this 

analysis is the construction of a non-linear radiation condition.
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The experimental measurements of pressure presented in Chapter 5 

are some 20% higher than the linear theory. The definition of 

pressure amplitude and phase used in these results may include 

contributions from second and higher order terms. Since the 

differences between experiment and theory do not depend on steepness, 

rather on frequency, it appears that there is quite a large first 

order error. Huntington and Thompson^?) would have to come to 

the same conclusion on the basis of their results.

The lower limit of wave steepness was governed by the signal to 

noise ratio on the pressure signals. The higher limit was fixed 

by the generator characteristics. It is possible that the range 

of values does not go low enough to reach true small amplitude theory. 

If this is true it is in remarkable contrast to the measurements in 

the free progressive waves and would seem to confirm Lighthill's 

conclusions (see Chapter 2).

The measured phases of these pressures generally showed good agree-

ment with linear theory. Appendix A.2. describes how these signals were 

amplified and. fil tei ed. It seems likely that these phases were lagging 

the actual values by an amount which, although within the level of 

scatter, was significant. This phase lag would increase with wave 

frequency. There appears to be evidence of this behaviour in 

figures 5.5.10. and 5.5.14. Because the characteristics of these 

filters were not accurately known, the results have not been corrected.

The amplitude reduction of these filters was definitely not the cause 

of the increased pressures.



It is perhaps surprising that such large discrepancies do not 

affect the total force to the same extent. It was suggested with 

reference to figure 5.5.22., that the increase in pressure 

amplitude was about the same all the way round the cylinder so that 

the net effect was reduced. However, as was stressed, the pressures 

are not in the same phase with each other.

From Appendix A.l. the expression for the pressure on the cylinder 

is of the form

CX9
cosh k(y+d), Re 2 f0.cos (Jn'-iY') 6.1.2.

cosh kd n=o (J'2 + Y'^)
v n . n '

The in line force may be obtained by integrating this expression as

"2%
p.a. cos# d$.dy

- o
6.1.3.

The orthogonality of the cosine terms makes the only non-zero term

from the series, that for n = 1. Whence

F =^- . . 2 Re

k cosh kd

o
cosh k(y+d)dy

r 2.K

cos^d#

J _d oJ

6.1.4.

which reduces to
F = logll tanh_kd cos ((/t . tan-l J'

k2 (J/+Y/) Y'

For small ka (less than 0.5) the first two terms of the series in 

equation 6.1.2. dominate. The pressure may therefore be expressed as



cosh k(y+d)

cosh kd

Y 'Q
cosfcft + tan J^1 ) 

(J '2 + Y ’2)^
k o o'

+ 2cosiScos(<5't - tan 6.1.6.

(^'2 + Y]'2)^

The first term corresponds to the rise and fall of the free 

surface whereas the second term which corresponds to its slope 

gives rise to theforce. It seems possible that the effects of 

finite wave height could contribute to an increased amplitude 

of the first term without significantly affecting the second.

6.2. Program efficiency

In cnapter 4 the efficiency of the diffraction program based 

on quadratic variation of source strength was compared with 

the constant source facet method, using as a basis for 

comparison the number of Green's function evaluations. Inis 

gives the relative efficiencies of the two approaches, all other 

things being equal.

An absolute saving in computation time may only be obtained by 

making the existing program at least as efficient as a typical 

facet method program. A major contribution to this time is the 

evaluation of the Bessel functions.
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Several possibilities exist for improvement. The most obvious 

one is to replace the subroutine with a reference to a machine 

coded package. Further improvements may then be obtained by 

storing values in a look-up table as they are calculated. For 

many typical geometries, repeated calculations may then be 

avoided if the results are already available. In the special 

case of the circular cylinder this would reduce the number of 

references to the package to three for each Bessel function.

As computer storage capabilities increase it is becoming 

feasible to store the completed evaluations for all arguments 

in 'tabular' form. Linear or quadratic interpolation may then 

be used to quickly obtain any value.

A similar saving may be obtained in the evaluation of the imaginary 

roots of the dispersion relation. At present, these are duplicated 

at each Green's function evaluation because it is not known a 

prion how many will be required. This duplication may be avoided 

by storing the roots in a 'vector' and maintaining a parallel 

vector of flags which a:~e set once a root is calculated.

The use of the continued fraction for obtaining the initial 

guesses is not the most direct way. It is clear from figure 4.3./

that
2hv

7C(2k-l)

6.2.1.

provides an initial guess on the required side of the root.
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In more general terms, the indirect method used here is by 

definition inefficient. It requires the intermediate 

computation of a distribution of source strength, which is 

not of any physical significance, before the values of interest 

may be obtained. Few researchers in this field have seen the 

advantages of using the direct boundary element method, based 

on Green's theorem, although Haskind's relations based on the 

same theorem have been in use for some time. Monacella^60) 

commenced M’s semi-analytical approach to ship motions using 

a direct boundary integral statement. Bai and Yeung^^ used 

a direct numerical discretisation which appears to have gone 

largely unnoticed.

The direct B.E.M. (see chapter 2. section 3) yields a numerical 

boundary relation between the normal velocity (q) of the fluid 

and its potential (^) in the matrix form

[h]{^= [g ](9| 6.2.2.

For wave diffraction by a fixed obstacle the vector £q^is known 

in terms of the incident wave. The matrices [Hjand [g ] involve 

similar integrals to those in the indirect method. For simple 

harmonic waves the use of complex notation means that the fluid 

pressure may be directly related to^(equation 4.6.7). The equations 

therefore reduce to

-i/)</[G][q] 6.2.3.
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The unknown pressures are now given directly once matrix [h ] is 

inverted. Equation 6.2.3. is in a form which lends itself to the 

solution of fluid-structure interaction problems. Walker^) solved 

the coupled problem of a thin walled container of fluid by using 

a complex notation to relate the normal velocity of the container 

to its normal displacement. This is a small displacement analysis 

since it neglects the time variation of the normal direction 

necessary for an admissible displaced shape.
)

There is no possibility in this method of defining an auxiliary 

boundary in an attempt to improve accuracy. However, the accuracy 

of this approach is generally better than the traditional indirect 

method. The integral form of che Green's function will have to be 

used for arguments close to zero.

The homogeneous form of equation 6.2.2. may be expressed as

X^(p)-f^(q) — (p,q) dq = 0 6.2.4.

J 9n
which has solutions at exactly the same values of ka as equation 

3.117. Therefore che problem of fictitious frequencies still 

exists for the direct method.

6.3. Application to arbitrary shapes

The excellent agreement obtained with a small number of elements, 

in the numerical calculations in chapter 4, was ooviously due in 

some part to the considerable symmetry which the vertical circular 

cylinder possesses in the plan dimensions. The way that this 

symmetry influences the results, must be understood if estimates 

of the behaviour for other less regular shapes are to be made.
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The numerical solution makes use of the pulsating point source 

solution. The fact that the total force only requires the use of 

the first cosine term of the analytical solution would seem to 

be of no direct relevance. The only information that the numerical 

formulation has about the shape of the cylinder is its position and 

normal direction at the finite number of points chosen for satis-

faction of the boundary conditions. It seems reasonable to suppose 

that the final solution will attempt to fit the smoothest surface 

through these points, which in this particular case, is very close 

to the actual shape.

In general, the points on the physical boundary should be so chosen 

that the smoothest curve through them coincides with the required 

shape. For bodies with sharp edges, the normal direction must be 

be specified at either side of the edge, by introducing additional 

nodes. This must accompany proper allowance for singular behaviour.

The other numerical advantage peculiar to the circular cylinder 

is that singular behaviour is only necessary at its axis. One way 

of investigating tiie effect this has on the numerical results, is 

to change the position of the axis of the fictitious cylinder.

The difficulty of properly testing a diffraction program is that 

there are very few analytical solutions available which do not possess 

either singular behaviour at some point on the boundary or many axes 

of symmetry, whereas many realistic structures have neither.

In the absence of such solutions, validation is often based on 

experimental results which apparently satisfy the same assumptions.
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I he previous arguments associated with containing any possible 

singular behaviour suggest that the fictitious boundary should be 

placed fairly close to the physical boundary.

For the circular cylinder Table 6.1.1. shows the pressures from three 

cases for which a 56 node discretisation was used, for values of 

ZK of 0.1, 0.5 and 0.9. The values given are the normalised 

amplitudes at the still water level for a value of ka = 0.571. The 

exact solution is also shown.

it might be concluded, on the basis of the experimental evidence in 

chapter 5, that the most accurate estimate would be obtained with 

ZK = 0.9 or even higher. It is clear, that this result would be 

the furthest from the exact solution. Figure 4.7.1. shows that 

this ■'ndecerminancy reduces as the number of elements is increased.

To apply the separate source diffraction program therefore requires 

a parametric study based on the position of the source boundary as 

well as the number of elements. Because of the cost of running 

diffraction programs not even the latter is done in practice.
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CHAPTER 7 SUMMARY AND CONCLUSIONS

7.1. Summary

The problem of linear wave diffraction by a vertical circular cylinder 

in arbitrary but constant water depth was solved numerically using 

the indirect boundary element method. Many of the numerical 

procedures used, were first discussed in the context of the simpler 

case of steady flow without a free surface, in two dimensions.

It was demonstrated that greatly increased accuracy may be obtained 

by defining a separate fictitious boundary on which the source 

distribution is placed. Both interior and exterior problems were 

solved using a piecewise linear interpolation for the source intensity. 

The numerical formulation for the particular problem of steady flow 

past a circular cylinder near a plane boundary was shown in detail. 

The limitations of the separate source boundary approach are high-

lighted by this example, since the analytical result for the case 

of the cylinder resting on the boundary cannot be modelled without 

additional allowance for the singular behaviour at the point of 

contact. The three computer programs written for these steady flow 

cases are included in appendix A.3.

The separate source boundary technique was then applied to the wave 

diffraction problem using the series form of the corresponding Green's 

function. In this case, quadratic interpolation of source intensity 

was used. The computer program, listed in appendix.A.3. was tested 

against the analytical solution for the circular cylinder. It was 

demonstrated that the accuracy of the numerical solution increases 

as the source boundary is moved away from the physical boundary.



Although the majority of the comparisons was based on the total 

in-line force, the pressures were also shown to be predicted equally 

well. Within the limits of computer time it was shown that the 

force converges rapidly as the number of elements is increased. 

Nevertheless, very few elements are needed to obtain reasonable agree-

ment with the theoretical force.

Experimental measurements of pressure due to regular waves on a vertical 

circular cylinder in the inertia/diffraction regime were also presented.

The pressure amplitude in the waves in the absence of the cylinder 

was shown to agree with the linear theory to within the level of 

scatter. The measured pressure amplitude on the cylinder was about 

20% higher than the theoretical prediction whereas the phase 

measurements were scattered closely about the theoretical line. The 

discrepancy in the amplitudes only appeared to correlate with wave 

steepness for very high frequencies. A larne first harmonic pressure 

component at points on the lower half of the cylinder was observed.

It is shown 'that the numerical predictions of pressure on the 

cylinder may increase as the fictitious source boundary is moved 

towards the physical boundary. It is possible that experimental and 

numerical pressures may agree if a coarse discretisation is used.

This agreement should always be tested by refining the discretisation 

until convergence is obtained in the numerical procedure.
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7.2. The importance of the present study.

Some linear diffraction programs separate the source boundary and 

the physical boundary to avoid the problem of the 'fictitious 

frequencies', particularly when spectral techniques are used. This 

study shows that this separation must be made with care to make 

sure that an accurate solution is obtained. At least one incorrect 

application of this approach has been published.

Most diffraction programs are based on idle point source 'facet' method. 

This study demonstrates how the concept of a continuous distribution 

of source intensity may be used to introduce higher order inter-

polation. This does not resiPt in significant savings in computation 

time.

Most comparisons of experimental measurements and theoretical or 

numerical predictions have been based on total forces. The good 

overall agreement often masks quite significant local discrepancies. 

The measured pressures in this study show such discrepancies near 

the free surface to be quite large. This may be extremely 

important for structures which do not extend to'great depths.

These results will prove useful for comparison with a non-linear 

solution.
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7.3. Limitations of the present study and recommendations for 

further work

The present study has been limited to the vertical circular cylinder. 

This is not a severe limitation since many offshore structures are 

nearly circular or composed of elements of circular cross-section.

Any structures which possess sharp corners will exhibit flow 

separation at least locally.

The reduction in the number of elements required for accurate numerical 

solution, does not necessarily lead to reduced computation time. 

Because of the quadratic interpolation and the size of each element 

in relation to a wave length, it appears that at least nine point 

Gaussian quadrature is required. One definite advantage of higher 

order interpolation is that the rapid decay of source intensity with 

depth Is accurately represented without having to concentrate 

elements near the free surface.

in general, few benefits appear to be obtained from separation of the 

source intensity boundary from what must be a smooth physical boundary. 

However, existing facet methods cannot model singular behaviour at 

corners either, unless the facet mesh is extremely fine. The un-

certainty in the choice of boundary position and the lack of diagonal 

dominance in the matrix of coefficients make it very difficult to apply 

this method without a parametric study. Unlike the case when the 

sources are on the physical boundary, there is no guarantee that 

convergence (if obtained) will be to the correct solution. In this 

context the studies of convergence for the cylinder in steady flow 

are important, since they showed (without being limited by computer 

time) that increasing the number of elements may actually reduce 

accuracy. This behaviour must also occur in wave diffraction.



The experimental results seem to point to a first order error in 

the linear diffraction theory near to the moving free surface. 

These results will be useful for comparison with the non-linear 

theories, which are currently being derived. There is however, 

still room for improvement in the normalisation of these results.

The considerable scatter may be reduced by scanning the wave 

envelope in front of, and behind, the cylinder to enable a more 

precise determination of the incident wave height. This may in 

turn show that many of the high frequency waves are in fact 

unstable. A theoretical development based on Stokes perturbation 

expansion will not predict this real phenomenum.

A numerical method which should predict the correct behaviour 

(including instability, and other less well understood phenomena such 

as wave set down) is one in which the free surface boundary conditions 

are actually numerically satisfied at the moving free surface. Such 

a method will remain valid until the free surface actually breaks.

A more sophisticated method of data analysis is required to separate 

the Fourier .components of the pressure signals. This would make i t 

much easier to find the dependence on wave steepness.
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Measured wave profile. 
’Thejorebical moment:
Measured moment:

Approximate. remainder function shewing 
strong evitkmce. of a. harmonic at: twice, 
the wave frequency.

Fig.Z-l'l Reproduced figure 5 
from Morison eb al plus 
remainder function .
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Table 3.5*1
Results along A-B and. Ar-B' for/3 = 3

Coordinates Exact

Solution

8

elements

16

elements

32

elementsX y
50.0 50.0 37.5000 37.5000 A B

tl 37.5 34.3750 54.3748
1! 25.0 31.2500 31.2497U 12.5 28.1250 28.1247
1! 7.5 26.8750 26.8747
n 5.0 26.2500 26.2498
n 2.5 25.6250 25.6249
!t 1.25 25.5125 25.3124n 0.50 25.1250 25.1250
IT 0.25 25.0625 25.0625

46.875 50.0 39.8433 39.8439n 37.5 36.5234 36.5230
tt 25.0 33-2031 33.2022
IT 12.5 29.8828 29.8814
II 7.5 28.5547 28.553"
IT 5.0 27.89W 27.8889

? 2.5 27.2300 27.2247
1! 1.25 26.8950 26.8926
it 0.50 26.6950 26.6934
tt 0.25 26.6239 26.6270

0.00 26.5625 26.5605 A JB

A - All values exact to five decimal planes

B - All values exact to four decimal places. Round-off error 

significant due to ill-conditioning.
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TABLE 3.5.2.

'L' Shaped domain -fl- 1000 x

coordinates Potential fl

X y /3 =1.2 /3= 3.0

1.0 4.0 1000.0000 1000.0000

1.3 4.0, 1305.1305 1300.0040

1.6 4.0 1605.7795 1600.0047

1.8 4.0 1803.5839 1800.0030

1.9 4.0 1901.9039 1900.0017

2.0 4.0 2000.0000 1999.9999

2.0 3.9 1999.9574 1999.9995

2.0 3.8 1999.9507 1999.9995

2.0 3.6 1999.9746 1999.9995

2.0 3.3 2000.0048 1999.9997

2.0 3.0 2000.0000 1999.9999

- 345 -



Non dimensional theoretical Force -=r a
A
7

TAD! C A 7 1
I HULL. -r • I • I •

ka FORCE ka FORCE ka FORCE

0.05 1.2442 1.05 4.0961 2.05 1.6997

0.10 2.4102 1.10 3.8950 2.10 1.6409

0.15 3.4313 1.15 3.7038 2.15 1.5853

0.20 4.2715 1.20 3.5229 2.20 1.5362

0.25 4.9250 1.25 3.3524 2.25 1.4828

0.30 5.4062 1.30 3.1922 2.30 1.4355

0.^5 5.7386 1.35 3.0418 2.35 1.3906

0.40 5.946b 1.40 2.9009 2.40 1.3479

0.45 6.0522 1.45 2.7689 2.45 1.3073

0.50 6.0742 1.50 2.6453 2.50 1.2687

0.55 6.0281 1.55 2.5296 2.55 1.2320

0.60 5.9272 1.60 2.4212 2.60 1.1969

0.65 5.7834 1 65 2.3196 2.65 1.1634

0.70 5.6071 1.70 2.2244 2.70 1.1345

0.75 5.4078 1.75 2.1350 2.75 1.1010

0.80 5.1935 1.80 2.0510 1 2.80 1.0717

0.85 4.9712 1.85 1.9721 2.85 1.0438

0.90 4.7465 1.90 1.8978 2.90 1.0170

0.95 4.5238 1.95 1.8279 2.95 0.9914

1.00 4.3062 2.00 1.7619 3.00 0.9668
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Table 4.7.2a Numerical results

NIE = 4 NIV = 4
ZK = 0.6 ALIM = 10_5

ka Computed 
Force

Exact 
Force

0.052 1.276 1.302
0.105 2.472 2.512
0.20? 4.347 4.408
0.251 4.845 4.939
0.273 5.047 5.168
0.299 5.509 5.400
0.314 5.114 5.514
0.331 5.978 5.628
0.349 6.096 5.734
0.370 14*789 5.835
0.393 3.953 5.923
0.419 6.034 5.997
0.449 5.521 6.051
0.483 6.013 6.075
0.524 6.270 6.060
0.571 6.809 5.991
0.628 6.811 5.850
0.661 7.251 5.746
0.698 3.920 5.614
0.739 5.616 5.452
0.785 5.135 5.257
0.838 1.328 5.025
0.898 4.782 4.757
1.047 4.191 4.108
1.257 3.422 3.331
2.094 1.942 1.648
3.142 1.108 0.902
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Table 4.7.2b Numerical results

NIH = 2 NIV = 2 ALIM = 10“3

ka Exact Computec Forces
Force ZK = 0.5 ZK = 0.6

0.052 1.502 — 1.272
0.105 2.512 2.477 2.454
0.209 4.408 4.545 4.582
0.242 4.828 - 5.215
0.251 4.959 4.879 -
0.275 5.168 - 5.599
0.299 5.400 5.297 -
0.514 5.514 - 6.070
0.549 5.754 6.586 6.295
0.595 5.925 - 6.558
0.419 5.997 6.565 6.575
0.449 6.051 - 6.897
O.465 6.O67 - 6.824
0.485 6.075 6.646 6.755
0.505 6.075 - 6.752
0.524 6.060 — 7.178
0.546 6.055 - 6.151
0.571 5.991 6.799 5.957
0.587 5.957 - 5.919
0.598 5.951 - 6.955
0.628 5.850 - 6.905
0.661 5.746 - 6.679
0.698 5.614 5.522 6.588
0.759 5.452 - 6.122
0.785 5.257 — 5.257
0.898 4.757 4.690 4.692
0.967 4.451 - 4.574
1.047 4.108 - 4.084
1.257 5.551 5.259 5.522
1.571 2.484 2.595 2.595
1.795 2.059 - 2.025
2.094 1.648 1.745 1.741
2.515 1.259 - 1.626
5.142 0.902 1.725 1.714



Table 4.7.2c Numerical results

NIH = 2 NIV = 2 Aim = 10“7

ka = 0.571 ZK = 0.6

ZK Computed 
Force

Pc/PE ka Computed 
Force

Exact 
Force

0,1 5.864 0.979 0.209 4.047 4.408
0.2 5.818 0.971 0.251 4.531 4.939
0.3 5.751 0.960 0.299 4.950 5.400
0.4 5.667 0.946 0.349 5.240 5.734
0.5 5.579 0.931 0.419 5.490 5.997
0.6 5.543 0.925 0.483 5.580 6.075
0.7 5.647 0.943 0.571 5.543 5.991
0.8 6.169 1.030 0.698 5.264 5.614
0.9 8.168 1.363 0.898 4.551 4.757
0.95 11.093 1.852 1.257 3.221 3.331

Table 4.7.2d
Numerical results

NIH = 4 inv = 3
ZK = 0.3 ALU! = 10“5

ka Computed 
Force

Exact
Force

O.2O9 4.537 4.408
0.273 5.269 5.168
0.419 6.092 5.997
0.628 5.936 5.850
0.898 4.884 4.757
1.257 3.522 3.331
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Table 4.7.2e Numerical results

NIH = 2 NIV = 2 ALIM = 10-3

ka - 0.785 ka = 0.571
Exact Force = 5*257 Exact Force = 5*991

ZK Computed 
Force pc Ae Computed

Force
Ms

0.1 5*203 0.990 9.304 1.553
0.2 5*186 0.986 7.051 1.177
0.3 5*237 0.996 6.799 1.135-
0.4 5*157 0.981 6.691 1.117
0.5 5.168 0.983 6.625 1.106
0.6 5*237 0.996 5*957 0.994
0.7 5.345 1.017 6.308 1.053
0.8 5.765 1.097 7-113 1.187
0.9 7.296 1.388 9.952 1.661
0.95 7.452 1.418 13.494 2.252

Table 4»7»2f Numerical results

ka 0.571
NIH 4
NIV
ALIM

4_4
10

ZK Computed 
Force

M Computed 
Force Ms

0.1
0.3
0.5
0.6
0.7
0.9

6.088
6.099
6.OO7

5.663
5.488

1.016
1.018
1.003

0.945
0.916

6.040

6.010

1.008

1.003



y
/
h

0
Degrees

Normalised pressures p/i^gH

Computed Theoretical
Real Imaginary Real Imaginary

0 0.814 -0.473 0.899 -0.405
0.00 90 -0.182 -0.968 -0.168 -0.978

180 -1.182 -O.854 -1.241 -0.894

0 0.464 -0.276 0.519 -0.254
-0.25 90 -0.105 -0.557 -0.097 -0.564

180 -0.677 -0.485 -0.716 -0.516

0 0.281 -0.165 0.515 -0.141
-0.50 90 -0.065 -0.556 -0.058 -0.540

180 -0.409 -0.290 -0.452 -0.511

0 0.189 -0.112 0.211 -0.095
-0.75 90 -0.045 -0.227 -0.040 -0.250

180 -0.276 -0.197 -0.292 -0.210

0 0.165 -0.096 0.181 -0.082
-1.00 90 -0.057 -0.195 -0.054 -0.197

180 -0.257 -0.168 -0.250 -0.180

Average errors %
ZK = 0 .5 ALIM = 10”' 10.0 17.2

8.5 1.1
NIH = 2 NIV = 2 5.1 6.6

Total computed force = 5.579

Total theoretical force = 5.991

Error = 6.9 %

Table 4.7.5
Computed pressures on circular cylinder 1



Table 4.7.4 Computed pressures on cylinder 2

y
/
h

9
Degrees

Normalised pressures p/i/PgH

Computed Theoretical
Real Imaginary Real Imaginary

0 0.888 -0.419 0.899 -0.405
45 0.600 —0,646 0.609 -O.64O

0,00 90 -0.168 -0.975 -0.168 -0.978
135 -0.938 -0.979 -0.947 -0.984
180 -1.229 -0.890 -1.241 -0.894

0 0.614 -0.289 0.621 -0.280
• 45 0.415 -0.446 0.421 -0.442

-O.16 90 -0,116 -0.674 -0.116 -O.676
135 -0.649 -O.676 -0.655 -0.680
180 -O.85O -0.614 -0.858 -0.618

0 0.432 -0.202 0.435 -0.196
• 45 0.292 -0.512 0.295 -0.310

-0.33 90 -0.081 -0.472 -0.081 -0.473
135 -0.456 -0.474 -0.459 -0.477
180 -0.597 -0.431 -0.601 -0.433

0 0.510 -0.144 0.313 -0.141
45 0.210 -0.224 O.212 -0.223

-0.50 90 -0.058 -0.540 -0.058 -0.340
135 -0.528 -0.340 -0.330 -0.343
180 -0.429 -0.309 -0.432 -0.511

0 0.255 -0.109 0.236 -0.107
• 45 0.159 —0,169 0.160 —0 • 168

-0,66 90 -0.044 -0.256 -0.044 -0.257
135 -0.248 -0.257 -0.249 -0.259
180 -0.325 -0.253 -O.326 -0.255

0 0.194 -0.090 0.194 -0.088
• 45 0.151 -0.139 0.132 -0.138

-0.85 90 -0.056 -0.211 -0.036 -0.212
135 -0.204 -0.212 -0.205 -0.213
180 -0.267 -0.192 -0.268 -0.193

0 0.181 -0.084 0.181 -0.082
45 0.122 -0.130 0.125 -0.129

-1.00 90 -0.054 -O.196 -0.034 -0.197
135 -0.190 -O.197 -0.191 -0.198
180 -O.249 -0.179 -0.250 -0.180

-5 Average errors %
ZK = 0.5 ALIM = 10 J

NIH = 4 NIV = 5 0.9 2.9
1.2 0.8

Computed force = 6.007 0.0 0.3Theoretical, force = 5,991 0.8 0,6
Error = 0.27 % 0.8 0.6

- 35° -



Table 4.7*5 Comparitive computation times

Number 
of 

Elements

Number 
of

Nodes

Number 
of 

operations 
with 9 

Gauss pts.

Number 
of 

operations 
with 4 

Gauss pts.

Number 
of 

operations 
using 

facet method

4 20 720 520 400
12 56 6048 2688 5156
16 72 10568 4608 5184
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Table 5.5.1 a Experimental results

0.291

RUH
11°.

* 
d 

(ms) kca

2a 505 0.242

2b 505 0.241

5a 505 0.080

5b 505 0.156

5c 505 0.166

5d 505 0.135

4a 505 0.152

5a 505 0.144

5b 505 0.165

5c 505 0.179

6a 505 0.296

7c 505 0.276

0.289

0.054

0,166

0.252

0.526

0.2^0

0.125

0.°02

0.269

0.479

0.264

kCh2
cosh kh 
cosh kd

r

0.558

0.541

0.881

0.745

<

(
I
X

r
0.615 j

f
0.726 j

X

O.65O ■(

osition/ Amplitude
•K-

Phase p/p P/P
/a 1ransducer (mm H^O) (rads) /P2

1b / 4 24.0 0.55 1.47 1.24
5U / 5 21.0 0.05 1.29 1 .08
5U / 2 25.5 -0.45 1.44 1 .21
7U / 1 25.0 0.02 1.58 1.16
1U / 4 26.5 0.51 1.61 1.50
5b / 5 21.0 -0.12 1.28 1.05
5b / 2 25.4 -0.51 1.45 1.15
7U / 1 25.6 -0.02 1.44 1.16
1U / 4 20.5 0.52 1.57 1.25
5U / 21.7 0.11 1.47 1.55
5U / 2 17.6 -0.10 1.19 1 .08
7U / 1 20.5 0.07 1.57 1.25
1b / 4 28.1 0.50 1.22 1.15
5U / 5 28.7 0.18 1.25 1,16
5U / 2 27.5 -0.17 1.19 1.10
7 b / 1 25.4 0 <08 1.02 0.94

/ 4 51.5 0.28 1.22 1.20
5U 1 5 51.5 0.05 1.22 1.20
5b / 2 52.5 -0.57 1.26 1.24
7U / 1 52.5 -0.11 1.26 1.24
1U / 4 55.0 0.49 1.07 1.15
5b / 5 52.6 -0.09 1.06 1.14
5U / 2 54.5 —0.46 1.12 1.21
7b / 1 54.1 -0.15 1.10 1.19
iu / 4 56.0 0.26 1.04 1.01
5U / 5 41.5 0.09 1.18 1.15
5b / 2 41.6 -0.21 1.21 1.18
7U I 1 41.8 0.04 1.21 1.18

1U / 4 21.0 0.52 1.54 i.08
5U / 5 27.5 0.20 1.74 1.40
5b / 2
7U / 1

22.7 -0.26 1.45 1.17
24-5 0.16 1.55 1.25

1U / 4
5U / 5

26.5 0.28 1.25 1.15
26.6 0.01 1.27' 1.15

5U / 2 28.0 -n.24 1.55 1.21
7U / 1 29.4 0.06 1.40 1.27
1U / 4 26.5 0.51 1.07 1.08
5b / 5 27.5 0.08 1.11 1.12
5U / 2 29.9 -0.40 1.22 1.25
7b / 1 29.7 0.04 1.21 1.22

1U / 4 50.0 0.45 1.60 1.55
5b / 5 25.2 — 1.54 1.12
5U / 2 29.9 -0.68 1.59 1.55
7b / 1 25.6 — 1.56 1.14
1U / 4 15.4 0.82 1.51 1.21
5b / 5 15.8 0.15 1.54 1.24
5b / 2 16.0 -0.55 1.56 1.26
7U / 1 15.5 0.06 1.51 1.22



Table 5.5,1b Experimental results

RUN
N°.

* 
d 

(nm) kca kcH? cosh kh 
cosh kd

Position/
Transducer

*
Amplitude 

(mm H?0)
Phase 
(rads)

P/P2 7^
iu / 4 13.9 0.61 1.39 1.30

7d 505 0.306 0.270 0.450 3U / 3
5S / 2

13.3
14.6

0.15
-O.65

1.53
1.46

1.24
1.37(

7U / 1 *4.2 0.03 1.42 1.33
1U / 4 9.8 0.65 1.43 1.19

10a 503 0.303 0.182 0.453 •
. 3U / 3

5U / 2
9.1

10.1
0.05

“0,66
1.33
1.47

1.10
1.22

7U / 1 9.5 0.04 1.39 1.15

( 1U / 4 11.6 0.83 1.93 1.44
10b 503 0.373 0.238 0.375 <

3U / 3
5U / 2

9.5
'0.8

0.16
-0.71

1.58
1.30

1.18
1.341 7U / 1 8.8 0.04 1.46 1.09

/ 1U / 4 10.0 1.07 2.20 1.42
10c 503 0.419 0.228 0.332 3U / 3

5U / 2
6.2
8.2

0.46
-0.89

■.37
1.81

0.88
1.16

7U / 1 6.4 0.13 1.41 0.91f 1U / 4 35.3 0.54 1.27 1.23
11a 503 0.210 0.393 0.592 3U / 3

5U / 2
32.7
33.4

0.09
-0.36

1.17
1.20

1.14
1.17I 7U / 1 32.6 -0.03 1.17 1.14

i f 8U / 4 17.7 0.27 1.36 1.07
13a 503 0.148 0.107 0.715( 2U / 3

4U / 2
15.9
16.4

0.21
~0.11

1.22
1.26

0.96
0.99I 6U / 1 18.2 -0.15 1.40 1.10

( 8U / 4 21.1 0.34 1.02 0.96
15b 503 0.186 0.240 O.636\ 2U / 3

4U ! 2
6u / 1

22.5 0.35 1.09 1.02
21.7 “0.22 i .05 0.98I 23.4 -0.27 1.13 1.06

r 8TJ / 4 21,9 0.61 1.27 1.28
15c 503 0.244 0.311 0.536 ’ 2U / 3

4U / 2
19.0
19.2

0.60
“0.18

1.10
1.11

1.11
1,12

6U / 1 20.8 -0.32 1.20 1.21f 8U / 4 14.3 0.25 1.39 1.05

14a 503 0.156 0.091 0.69° < 2U / 5 15.2 0.32 1.47 1.12
4U / 2 14.2 -0.17 1.38 1.04I 6u / 1 15.6 “0.11 1.51 1.15
8U / 4 15.1 0.40 1.01 1.07

14b 503 0.187 0.176 0.634< 2U / 5
4U / 2

14.6
13.6

0.36
-0.22

0.97
0.91

1.04
0.96I

6U / 1 15.6 -0.27 1.04 1.11

8U / 4 20.4 0.53 1.39 1.17
14c 503 0.237 0.254 0.546■ 2U / 3

4U / 2
19.7
19.2

0.50
—0.30

1.34
1.31

1.13
1.10

6U / 1 21.4 “0.30 1.46 1.23

f 8U / 4 18.1 0.52 1.20 1.35
I4d 505 0.306 0.407 0.450 2U / 3

4U / 2
15.9
14.9

0.62
-0.47

1.05
0.99

1.18
I.11(

6u / 1 16.9 “0.47 1.12 1.26

- 5%



Table 5*5.1c Experimental results

RUN d"
kGa k E0 2

cosh kh Position /
"A*

Amplitude

—
*

Phase

—
7p2

--- (
NO. (mm) cosh kd Transducer (mm K20) (rads)

8U / 4 '4.3 0.50 1.27 1.20
15a 505 C.200 0.146 0.611 2U / 3 12.7 0.44 1.13 1.07

4u / 2 11.8 -0.23 1.05 0.99
6U / 1 13.0 -0.27 1.16 1.09

( 8U / 4 15.1 0.39 1.53 1.19
15b 505 0,243 0.180 0.557 2U / 3 15.2 0.42 1.54 1.20

4U / 2 14.5 -0.20 1.47 1 • 14I 6U / 1 14.9 —0.' 8 1.51 1.17

( QU / 4 15.8 0.45 1.31 1.24
15c 505 0.500 0.513 0.453 < 2U / 3

4U / 2
6U / 1

15.2
13.0

0.46
-0.35

1.26
1.08

1.19
1.02

( 14.3 -0.41 1.19 1.12

( QU / 4 21.1 0.28 1.24 1.03
16a 505 0.137 0.125 0.742 < 2U I 3

4U / 2
21.2
19.5

0.16
-0.09

1.24
1.14

1.08
1.00

( 6U / 1 22.8 -0.12 1.34 ,.16

QU / 4 27.2 0.27 1.13 1.07
16b 505 0.182 0.271 O.644 < 2U / 5

4U / 2
25.4
26,3

0.30
-0.33

1.05
1.09

1.00
1.03

I 6u / 1 28.6 -0.38 1.18 1.12
QU / 4 33.2 o„64 1.45 1.33

1?a 503 0.259 0.399 0.544 -
2U / 5
4U / 2

30.5
28.5

0.54
-0.24

1.33
1.25

1.23
1.15

X 6U / 1 27.9 -0.21 1,22 1.12

[ QU / 4 38.5 0.13 I.07 1,07
18a 503 0.129 0.242 0.761 < 2U / 3

4U / 2
37.4
39.7

0.10
-0.03

1.04
1.10

1.04
1.10

( 6U / 1 40.9 -0.02 1.14 1.14
( 8U / 4 47.5 0.31 1.18 1.11

18b 503 0.U7 0.325 0.720 < 2L / 3
4U / 2

43.2
44.6

0.23
—0.14

1.07
1.11

1.01
1.04I

6U / 1 46.3 -0.19 1.16 1.09
- / 1L / I 11.0 0.43 1.81 1.17

19a 503 0.145 0.078 0.484 ’ 3L / 2
5L / 3

9.3
8.9

0.07
-0.31

1.53
1.46

0.99
0.95

7L / 4 10.5 0.12 1.73 1.12

< 1L / 1 10.5 0.59 1.30 1,28
19b 503 0.184 0.170 0.347 < 3L / 2

5L / 3
8.8
9.3

0.09
-0.54 •

1.09
1.15

1.07
1.13I

7L / 4 8.6 0.14 1.06 1.05
1L / 1 7.8 0.58 1.32 1,22

19c 505 0.242 0.265 0.214 < 3L / 2
5L / 3

6.3
7.9

0.25
-0.40

1.15
1.34

1.06
1.23

7L / 4 7.9 0.15 1.34 1.23

[ 1L / .1 8.1 0.57 1.91 1.73
19d 503 0.299 0.582 0.152 < 3L / 2

5L / 3
5-6
6.3

0.12
-0.69

1.32
1.48

1.20
1.35

I 7L / 4 5.6 0.09 1.32 1.20

- 557 -



Table- 5.5.Id Experimental results

SUIT 
No.

* 
d 

(mm) zca C 2
coch kh 
cosh kd

Position /
Transducer

•it
Amplitude

(-m H?0)
Phase
(rads)

p/p2 r/pZ±1

20a 503 0.154 0.153
0,443 | 1L / 1

3L / 2
5b / 3
7b / 4

16.2
15.9
15.3
14.3

0.55
0.05 

-0.21
0.05

1.46
1.26
1.20
1.29

1.22
1.05
1.00
1.08

20b 505 0.187 0.298
0.338 | 1b / 1

3b / 2
5L / 5
7b / 4

15.6
15.6
13.3
15.8

0.32
0.01 

-0.37
0.09

1.15
1.00
0.93
1.17

1.07
0.93
0.91
1.08

20c 503 0.242 0.392
O.213 j 1L / 1

3b / 2
5b / 3
7b / 4

13.6
11.8
11.4
11.5

0.54
0.14 

-0.29
0.09

1.57
1.36
1.31
1.30

1.32
1.15
1.11
1.10

21a 505 0.145 0.125
0.484 | 2L / 1

4b / 2
6b / 3
8b / 4

14.3
12.7
12.7
14.3

0.33
-0,14 
-0.06

0.31

1.36
1.21
1.21
1.36

1.12
0.99
0.99
1.12

21b 505 0.187 0.295

0.337 | 2b / 1
4b / 2
6b / 3
8b / 4

14.5
12.7
12.7
13.6

0.38 
-0.22 
-0.32
0.39

1.08
0.96
0.96
1.02

1.15
1.02
1.02
1.10

21c 505 0.255 0.550
0.225 j 2b / 1

4b / 2
6b / 5
8b / 4

12.3
10.2
10.1
11.3

0.50
-0.27 
-0.26
0.47

1.46
1.21
1.20
1.34

1.23
1.02
1.01
1.13

21 d 505 0.289 0.513
0.144 | 2b / 1

4b / 2
6b / 3
8L / zl

9.1
8.7
8.9
9.4

0.33 
-0.35 
-0.40

0.31

1.41
i.35
1.38
1.46

1.26
1.21
1.23
1.30

22a 505 0.139 0.097

0.501 | 2b / 1
4b / 2
6b 1 3
8L / 4

12.7
9.6

10.8
11.3

0.41
-0.04
0.07
0.4/

1.44
1.09
1.22
1.28

1.13
0,85
0.96
1.00

22b 505 0.182 0.259
0.355 | 2L / 1

4b / 2
6b / 5
8b / 4

11.7
12.1
11.1
12.2

0.22
—0.56 
-0.20
0.24

1.00
1.03
0.95
1.04

1.02
1.05
0.96
1.06

22c 505 0.236 0.520

/

0.224 'I
2b / 1
4b / 2
6b / 3
8L / 4

11.7
9.4
9.0

10.5

0.50 
-0.04 
-0.14

0.68

1.53
1.23
1.18
1.37

1.34
1.08
1.03
1.21

22d 505 0.152 0.071 0.452 ■

2b / 1
4b / 2
6b / 3
8b / 4

9.7
7.4
5.7
9.8

0.28 
-0.16 
-0.13
0.23

1.81
1.38
1.06
1.83

1 .40
1.07
0.82
1.42

22 e 505 0.202 0.155

0.299 j 2b / 1
4b / 2
6b / 3
8b / 4

7.1
6.5
7.0
6.8

0,22
-0.19 
-0.09

O.46

1.23
1.12
1.21
1.17

1.18
1.08
1.16
1.13



Table .5.5.1® Experimental results

HUN
Ko.

* 
d 

(mm) kQa k E0 2
cosh kh 
cosh kd

Position / 
Transduccr

Amplitude
(mm H^O)

.v.
Phase
(rads)

P/?1

( 2L / 1 5.8 0.66 1.51 1.25'
22f 505 0.245 0.179 0.208 < 4L / 2

6L / 3
5.2
5.7

-O.34
-0.28

1.36
-.49

1.12
1.23I

8L / 4 4.9 0.57 1.28 1.06
r 2L / 1 4.9 0.38 1.61 1.45

22g 505 0.J06 0.295 0.125 ■ 4L / 2
6l  / 3

4.5
4.4

-0.13
-0.45

1.41
1.45

1.27
".30

■ 8L / 4 4.1 0.69 1.35 1.21

I 1U / 1 10.5 0.50 1.44 1.32
24a 520 0.187 0.091 0.597

3U / 2
5U / 3

9.5
9.0

0.02
-0.52

1.30
1.23

1.19
1.13I

7U / 4 8.9 0.11 1.22 1.12

( 1U / 1 No informati on
24b 520 0.235 0.163 0.509 \

3U / 2
5U / 3

It
11,1

It
-0.35 1.25 1 29( 7U / 4 9.8 0.28 1.10 1.14

( 1U / 1 9.8 0.60 1.15 1.28
24c 520 MU 0.268 0.397 < 5U / 2

5U / 3
3.9
9.0

0.04
-0.75

1.04
1.05

1.16
1.18(

7U / 4 9.8 0.15 1.15 1.28

( 1U / 1 8.0' O.63 1.41 1.10
: 24a 520 0.370 0.244 0.334 < 3U / 2

5U / 3
7.0
9.0

0.05
-0.88

1.24
1.59

0.96
i.23

( 7U / 4 8.9 0.14 1.57 1.22
1U / 1 11.4 0.39 1.14 1.20

25a 520 0.150 0.088 0.679 < 3u / 2
5U / 3

11.8
10.4

0.04
-0.37

1.18
1.04

1.24
1.09

( 7U / 4 11.8 0.05 1.18 1.24
f 1U ' 1 15.5 0.32 1.32 1.28

2jb 520 0.189 0.146 0.594 <
3U 7 2
5U / 3

15.4
13.9

-0.01
”0.27

1.33
1.20

1.29
1.16(

7U / 4 14.2 0.03 1.23 1.19
f 1U / 1 15.5 0.45 1.32 1.27

25c 520 0.237 0.218 0.506 < 3u ! 2
5U / 3

14; 3
12.5

0.05
-0.39

1.22
1.07

1.18
1.03I

7U / 4 14.6 0,13 1.24 1.20

1U / 1 16.1 0.62 1.45 1.57
25d 520 0.307 0.338 0.405 < 3U / 2

5U / 3
12.6
12.1

-0.01
-0.64

1.12
1.08

1.23
1.18(

7U / 4 11.8 0.09 1.05 1.15
r 1U / 1 14.9 0.50 1.13 1.17

26a 520 0.147 0.112 0.688 < 3U / 2 15.1 0.20 1.14 1.19
5U / 3 13.9 -0.23 1.05 1.09

( 7U / 4 15.5 0.25 1.17 1.22

f 1U / T 20.4 0.33 1 .40 1.53
26b 520 0.188 0.183 0.596 < 3U / 2

5U / 3
20.1
18.0

0.06
-0.35

1.38
1.23

1.31
1.17(

7U / 4 "8.3 0.05 1.25 1.19

- 559



Table 5.5.1b Experimental results

RUN
K°.

* 
d 

(mm) kca V2
cosh kh 
cosh kd

Position /
Transdueer

J A,
Amplitude 

(mm H?0)

*
Phase
(rads) X

1U / 1 21.1 0.56 1.28 1.26
26c 520 0.244 0.325 0.494 < 3U / 2 20.1 0.03 1.22 1.20

5U / 3 19.4 -0.52 1.17 1.16( 7L’ / 4 19.5 0.04 1.18 1.17

( iu ! 1 22.3 0.57 1.35 1.33
2nd 520 0.243 0.324 0.495 < 3U / 2

5b I 3
20.7
18.0

0.11
-0.55

1.25
1.09

1.24
1.08( 7U / 4 19.5 0.12 1.18 1.17r 1U / 1 20.4 0.47 0.96 1.03

27a 520 0.147 0.182 0.686 1 3U / 2
5U / 3

22.9 0.24 1.07 1.16
21.5 -0.19 1.01 1.081 7b/4 20.8 0.18 0.97 1.05

1' 1U / 1 22.9 0.33 1.10 1.06
27b 520 0.107 0.260 0,597

3U / 2
5U / 3

27.6
25.3

0.08
-0.38

1.32
1.21

1.28
1.17( 7U / 4 25.1 0.05 1.20 1.16

/ 1U / 1 26.6 0.48 1.10 1.14
27c 520 0.234 0.439 0.510 1 3U / 2

5U / 3
27.7
26.4

-0.09
“0.72

1.15
1.10

1.19
1.13

7U / 4 24.4 -0.03 1.01 1.05j 1U / 1 31.0 0.29 1.01 0.97
28a 520 0.088 0.127 0.843 X

3U / 2
5U / 3

33.3
30.9

0.03
“0.23

1.09
1.01

1.05
0.97!

7U / 4 30.1 0.11 0.98 0.94( 1L / 1 23.5 0.17 0.95 0.98
29a 520 0.086 O.129 0.659 \

1
3L / 2
5L / 3

26.6
25.5

0.00
-0.36

1.07
1.03

1.11
1.07

7L / 4 25.2 “0,09 1.02 1.05( 1L / 1 14.5 0.50 1.11 1.16
29b 520 0.142 O.158 0.467 < 3L / 2

5L / 3
15.4
15.3

0.11
-0.56

1.18
1.17

1.23
1.22

- I 7L / 4 12.6 0.2? 0.96 1.01(■ 1L / 1 13.9 0.60 1.20 1.21
29c 520 0.186 0.264 0.322 < 3L / 2 14.0 0.06 1.21 1.22

5L / 3 14.1 -0.50 1.22 1.23I
7b / 4 ■14.2 0.13 1.23 1.24( 1L / 1 12.4 0.41 1.30 1.22

29d 520 0.231 0.405 0.216 3L / 2
5L / 3

12.1
11.7

0.00
-0.67

1.27
1.23

1.22
1.15( 7L / 4 11.8 0.04 1.24 1.16

r 1L / 1 9.5 0.38 1 «16 1.21
30a 520 0.144 0.104 0.459 < 3L ! 2

5b / 3
10.1
9.7

0.13
-0.24

1.22
1.17

1.27
1.22( 7L / 4 9.8 0.10 1.18 1.23r 1L / '1 10.1 0.36 1.20 1.11

30b 520 0.182 0.182 0.333 I 3L / 2
5b / 3

11.5
10.0

0.07
“0.31

1.37
1.19

1.27
1.10( 7b / 4 11.0 0.00 1.31 1.21

- J6O



Table 5.5.1& Experimental results

PUN
NO,

'A*
d

(mm) *6* Vj
cosh kh 
cosh kd

Position /
Transducer

Amplitude
(mm H?0)

Phase
(rads) PA P/p

50c 520 0.252 0.274

/•

0.215 <

1L / 1
5L / 2
5b / 5
7b / 4

8.5
7.5
7.1
7.5

0.57
0.16

-0.42
0.20

1.55
1.17
1.11
1.14

1.25
1.08
1.05
1.05

51a 520 0.141 0.074

0.475 | 1L / 1
5b / 2
5b / 5
7L / 4

7.7
7.5
7.4
9.8

0.25
0.07

-0.55
0.50

1.22
1.16
1.18
'i.56

1.24
1.17
1.19
1.58

51b 520 0.182 0.150
0.552 j 1L / 1

5L / 2
5L / 5
7L / 4

7.7
7.5
8.5
8.9

0.56
0.12 

-O.52
0.25

1.29
1.22
1.59
1.49

1.19
1.15
1.28
1.58

51c 520 0.255 0.210
0.215 j 1L / 1

5L / 2
5b / 5
7b / 4

5.6
5.6
5.2
5.7

0.62
0.11

-0.48
0.15

S15
1.15
1.07
1.18

1.25
1.25
1.15
1.26

55a 51? 0.141 0.152
0.475 j 2L / 1

4L / 2
6b / 5
Ob / 4

11.6
14.0
15.4
15.5

0.59 
-O.14 
-0.20
0.16

0.89
1.08
1.19
1.20

0.94
1,14
1.25
1.26

55b 51? 0.184 0.265

0.528 j 2b / 1
4b / 2
6L / 5
8b / 4

15.6
14.2
16.1
15.5

0.10 
-0.15 
-0,55
0.42

1.14
1.19
1.55
1.50

1.07
1.12
1.27
1.22

55c 5'9 0.254 0.414

0.212 j 2L / 1
4b / 2
6L / 5
8b / 4

9.5
9.6

11.0
10.5

0.55 
-0.28 
-0.41
0.82

0.98
1.01
1.16
1.09

1.05
1.07
1.22
1.14

40a 495 0.140 0,165
0.752 | 1U / 1

5U / 2
5U / 5
7U / 4

22.5
20.1
19.8
20.7

0.25
0.15

-0.26
0.13

1.02
0.91
0.90
0.94

1.27
1.15
1.11
1.16

40b 495 0.186 0.272
0.658 j 1U / 1

5U / 2
5U / 5
7U / 4

28.0
27.4
27.2
28.2

0.59
0.05

-0.48
-0.07

1.16
1.15
1.15
1.17

1.21
1.18
1.17
1.22

40c 495 0.190 0.287

/

0.652 (

1U / 1
5U / 2
511 / 5
7U / 4

29.8
25.9
28.1
26.8

0.58
-0.07
-0.58
-0.02

1.20
1.04
1.15
1.08

1.55
1.15
1.25
1.19

40d 495 0.228 0.402

*

0.586 -
1U 1 1
5U / 2
5U / 5
7U / 4

55.7
29.5
51.5
29.6

0.53
-0.25
“0.74
-0.15

1.57
1.12
1.20
1.14

1.50
1.06
1.14
1.07

41a 495 0.142 0.108
0.749 | 1U / 1

5U / 2
5U / 5
7U / 4

14.7
15.7
14.8
14.0

0.50
0.17 

-0.26
0.19

1.02
0.95
1.05
0.97

1.15
1,07
1.16
1.09
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Table- 5,5.1h Experimental results

RUN
NO.

* 
d 

(mm) V- nKca k wC 2
cosh kh 
cosh kd

Position /
Transducer

z.
Amplitude 

(mm H?0)

-X- 
Phase 
(rads) X p/pi

41b 495 O."85 0.169 O.664

1U / 1
5U / 2
5U / 5
7U / 4

"7.7
17.2

16.0

0.58
0.05 

-0.59
O.Oo

1.14
1,11
1.25
1.05

1.18
1.14
1.29
1.O6

41c 495 0.240 0.279 0.567

1U / 1
5U / 2
5U / 5
7U / 4

22.2
20.8
21.9
19.2

0.47 
-0.04 
-0.55
0.02

1.54
1.26
1.52
1.16

1.19
1.11
1.17
1.05

41d 495 0.140 0.090 0.755

1U / 1
5U / 2
5^ / 5
7U / 4

15.7
12.6
10.8
15.2

0.55
0.07 

“O.25 
-0.04

1.29
1.05
0.89
1.08

1.55
1.09
0.95
1.14

42a 495 0.145 0.089 0.746

1U / 1
5U / 2
5U / 5
7U / 4

12.4
10.6
9.0

12.0

0.46
0.25 

“0.09
0.19

".06
0.91
0.77
1.05

1.06
0.99
0.84
1.15

42b 495 0.192 0.126 0.648

1U / 1
5U / 2
su / 5
7U / 4

15.7
12.1
15.1
12.8

0.56
-0.01
-0.45
-0.01

1.27
1.15
1.40
1.19

1.50
1.15
1.45
1.21

42c 495 0.241 0.210 O.565

1U / 1
5U / 2
5U / 5
7U / 4

15.8
12.8
16.0
14.2

0.45 
-0.05 
-0.61
0.02

1.27
1.05
1.29
1.15

1.28
1.04-
1.50
1.15

42d 495 0.504 0.5'4 0.480
1U / 1
5U / 2
5U / 5
7U / 4

14.1
11.4
15*7
12.6

0.51
0.01 

-0.82 
-0.01

1.13
0.91
1.26
1.01

1.51
1.06
1.46
1.17

45a 495 0.252 0,125 0.579

1U / 1
5U / 2
5U / 5
7U / 4

10.7
8.6

10.5
9.9

0.59
0.15 

-0.42
0.25

1.56
1.09
1.51
1.26

1.52
1.06
1.27
1.22

45b 495 0.572 0.255 0.404

1TJ / 1
5U / 2
5U / 5
7U / 4

11.1
7.5

10.5
8.6

0.70
0.11 

-0.85
0.10

1.60
1.08
1.49
1.24

1.49
1.01
1.58
1.15
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Tab}6 5.5.2a Rr^erimental results

RUK

M°.

-M.
s

(mm)

T

(secs) (m)

rn
t

(secs)

Cf2 d

£ B
an

d i

CT
(n.s-1)

°C1 
/ — I X
(jn*s )

* 
H.

(mm)

•JT
H2

(mm)

2a 98 0.918 1.80 1.264 2.401 4 1.415 1.424 72.3 60.5
2b 98 0.920 1.80 1.260 2.391 4 1.415 1.429 75.1 60.5
>a 160 1.865 1.80 0.851 0.582 1 2.004 2,115 37.0 33.7
3b 160 1.260 1.80 0.971 1.276 2 1.753 1.855 66,7 61.8
3c 160 1.140 1.80 1.077 1.557 - 1.659 1.671 77.8 76.3
3d 160 1.072 1.80 1.111 1.761 3 1.595 1.620 89.0 96.0
4a 220 1.324 1.80 0.990 1.155 - 1.796 1.817 94.5 92.1
5a 120 1.24s 1.80 1.019 1.300 2 1.745 1.766 53.7 43.1
5b 120 1.149 1.80 1.077 1.533 - 1.667 1.671 68.4 61.8
5c 120 1.072 1.80 1.093 1.762 3 1.592 1.647 75.1 75.5
6a 120 0.817 1.80 1.376 3.053 5 1.269 1.308 97.3 81.5
7c 60 0.864 1.80 ’.357 2.710 - 1.338 1.326 52.0 48.1
7d 60 0-819 1.80 1.424 3.020 5 1.272 1.264 47.5 44.4

10a 40 0.816 1.80 1.406 3.042 5 1.267 1.230 36.4 30.3
10b 40 0.725 1.80 1.539 3.848 6 1.132 1.170 45.1 32.1
10c 40 0.697 1.80 1,660 4.167 6 1.086 1.084 42.5 27.4
11a 140 0.985 1.80 1.173 2.094 - 1.494 1.534 96.6 94.3
13a 98 1.256 1.80 1.043 1.526 2 1.756 1.725 46.1 36.3
15b 98 1.06? 1.80 1.130 1.777 3 1.539 1.593 69.5 65.0
15c 93 0.918 1.80 1.271 2.401 4 1.413 1.416 65.9 64.4

i 14a 80 1.226 1.80 1.087 1.347 2 1 729 •1.657 38.9 29.5
11b 80 1.057 1.80 1.125 1.810 3 1.578 1.600 44.5 47.3
14c 80 0.934 1.80 1.260 2.521 4 1.432 1.429 63.9 53.9
1Ai 80 0.808 1.80 1.404 3.103 5 1.256 1.282 59.8 67.1
15a 6u 1.034 1.S0 ■.173 1.895 3 '.552 1.534 38.9 36.8
15b 60 0.926 1.80 1.279 2.559 4 1.423 1.408 47.3 36.8
15c 60 0.829 1.80 1.412 2.943 5 1.288 1.275 55.6 52.6
1 Ba 120 1.250 1.80 0.971 1.296 2 1.747 1.853 52.8 46,0
16b 120 1.058 1.80 1.096 1.809 3 1.578 1.642 79.2 75.0
17a 120 0.931 1.80 1.263 2.335 4 1.429 1.425 91.5 84.2
i8_i 240 1.341 1.80 0.981 1.125 - 1.80 7 1.835 94.5 94.7
■8b 240 1.225 1.80 1.019 1.553 0 

c. 1.727 1.766 119.5 111.8
1% 80 1.257 1.80 1.024 1.281 2 1.752 1.758 38.9 27.6
19b 80 1.063 1.80 1.111 1.793 3 1.582 1.621 47.3 46.6
19c 80 0.931 1.80 •'.279 2.335 4 1.429 1.408 59.8 55.2
19d 80 0.817 1 «o0 1.389 3.030 5 1.271 ' 1.296 70.9 64.4
20a 120 1.221 1.8O 1.071 1.357 2 1.726 1.631 59.8 50.0
20b 120 1.058 1.80 1.125 1.809 5 1.578 1.600 86.2 80.2
20c 120 0.913 1.80 1.256 2.426 4 1.406 1.453 96.5 81.5
21a 120 1.243 1.80 1.013 1.3'1 2 1.741 1.777 52.8 43.4
21b 120 1.07-' 1.80 1.139 1.766 3 1.591 1.580 73.7 78.9
21c 120 0.940 1.80 1.258 2.291 4 1.440 1.431 89.0 75.0
21d 120 0.857 1.80 1.375 2.895 5 1.298 1.309 100.1 89.4
22a 98 1.255 1.80 0.990 1.286 2 1.750 1.817 45.0 35.2
22b 98 1.077 1.80 1.115 1.745 5 1.598 1.617 65.5 66*5
22c 98 0.939 1.80 1.260 2.295 4 •’.439 1.429 77.8 68.4
''2d 60 1.236 1;80 ".067 1.326 2 1.736 1.686 50.6 23.7
22e 60 1.026 1.80 1.175 1.921 3 1.545 1.531 40.3 58.7
22f 60 0.920 1.80 1.279 2.592 4 1.414 1.408 44.5 56.8
22g 60 0.822 1.80 1.428 2.995 5 1.278 1.261 54.2 48.7
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rn«-»*k1 ~ tz rr nv. rv«_._ >-•—_ -*• ■> _. -» ».-e. Jxc j-iA.uerj.xxieui uaJL x'eyuibs

KUN Q
•X-

T
*■ 

L T, t
0

d__ a £
(m.s )

%
(m. s )

* *
H2

No. (m) (secs) (n) (secs) g
<5 (mm) (mm)

24a 40 1.065 1.60 1 .008 1.345 5 1.593 1.587 26.7 24.5
24 b 40 0.953 1.60 1,106 2.406 4 1.434 1.447 33.7 55.0
24c 40 0.817 1.6O 1.292 5.153 5 1.272 1.239 38.6 43.1
24d 40 0.753 1.60 1.370 3.898 6 1.143 1.168 45.6 53.3
25a 60 1.237 1.60 0.959 1.367 2 1.751 1.704 28.1 29.4
25b 60 1.074 1.60 1.024 1.815 3 1.602 1.562 40.2 39.0
25c 60 0.915 1.60 1.094 2.501 4 1.410 1.463 48.1 46.4
25d 60 0.817 1.60 1.267 3.135 t; 1.272 1.263 50.5 55.5
26a 80 1.236 1.60 0.917 1.371 2 1.749 1.745 37.0 38.5
26b 80 1.065 1.60 1.012 1.345 3 1.594 1.58" 51.5 49.0
26c 80 0.921 1.60 1.137 2.466 4 1.419 1.408 67.7 67.0
26d 80 0.921 1.60 1.132 2.469 4 1.418 1.4U 67.5 67.2
27a 120 1.240 1.60 0.9^3 1.360 2 1.754 1.733 57.8 62.3
27b 120 1.067 1.60 1.008 1.857 ".596 1.587 72.5 70.0
27c 120 0.9'29 1.60 1.099 2,424 4 1.430 1.456 9^.5 94.5
23a 240 1.737 1.60 0.879 0.655 1 2.011 1.821 75.6 72.6
2% 240 1.814 1.60 0.905 0.656 1 2.0^8 1.767 72.5 75.3
29b 120 1.266 1.60 0.910 1.506 2 1.773 1.758 53.5 56.0
29c 120 1.072 1.60 ■’.005 1.321 3 1.601 1.592 71.5 71.8
29d 120 0.937 1.60 1.093 2.386 4 1.459 1.464 94.i 88.4
5Ca 80 1.260 1.60 0.920 1.319 2 1.768 1.739 34.7 36.2
50 h 80 1.O69 1.60 0.982 1.852 3 1.598 1.629 54.5 50.4
50c 80 0.938 1.60 1.099 2.381 4 1.440 1.456 64.4 59.5
5ia 60 1.260 1.60 0.897 ".319 2 1.768 1.783 26.3 26.6
51b 60 1.035 1.6O 0.999 ".778 5 1.614 1.602 59.0 35.9
51c 60 0.934 1.60 1.099 2.399 4 ^.456 1.456 42.6 45.5
53a 120 1.260 1.60 O.896 1.315 2 1.768 1.786 51.9 54.6
53b 120 1.073 1.60 0.997 ".813 5 1.602 1.605 77.2 72.7
55c 120 0.926 1.60 1.095 2.454 4 1.426 1.464 84.9 89.4
AC a 120 1.260 1.60 0.893 ".251 2 1.745 1.792 47.3 58.5
:oo 120 1.063 1.60 1.001 1.759 3 1.578 1.598 70.4 73.5
40c 120 1.063 1.60 1.019 1.759 3 1.578 1.570 69.0 76.2
40d 120 0.934 1.60 -.076 2.276 4 1.450 1.4°7 94.1 89.0
41a 80 1.259 1.b0 0.837 .293 2 1.751 1.804 54.2 38.4
4"b 80 1.075 1.60 0.995 1.719 5 1.590 1.608 45.5 46.6
41c 80 0.928 1.60 1.126 2.308 4 1.421 1.421 66.1 58.5
41d 60 1.264 1.60 0.892 1.242 2 1.749 1.794 50.8 32.4
42a 60 1 242 ".60 0.897 1.287 2 1.755 1.784 28.6 51.3
42b 60 1.062 1.60 1.029 1.760 3 1.578 1.555 32.6 55.2
42c 60 0.920 1.60 1.121 2.345 4 1.412 1.427 43.6 43.9
42d 60 0.819 1.60 1.258 2.963 5 1.271 1.272 44.7 52.0
43a 40 0.930 1.60 1.092 2.296 4 1.425 1.465 28.1 27.2
43b 40 0.729 1.60 1.569 3.754 6 1.157 1.169 36.9 34.5
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Table 6.1.1.

Normalised computed pressures at the still water level - P/iZ>gH,

for ka = 0.571, NIV = 3 and NIH = 4

0

degrees
Exact ZK=0.1 ZK=0.5 ZK=0.9

0 0.9858 0.9845 0.9882 1.0836

45 0.8831 0.8751 0.8830 0.8628

90 0.9921 0.9901 0.9917 1.0452

135 1.3662 1.3561 1.3691 1.3431

180 1.5293 1.5264 1.5333 1.6263
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ka 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

2.11 3.84 5.14 6.12 6.93 7.62 8.25 8.82

f(Hz) 0.34 0.61 0.82 0.97 1.10 1.21 1.31 1.40

c^(rads) -0.02 -0.04 -0.05 -0.06 -0.07 -0.08 -0.08 -0.09

cos 0 1.000 0.999 0.999 0.998 0.998 0.997 0.997 0.996*

2^( rads) -0.04 -0.08 -0.10 -0.12 -0.14 -0.15 -0.17 -0.18

cos y 0.998 0.994 0.989 0.985 0.981 0.977 0.973 0.969

Table A.2.1.

Phase lag and amplitude reduction of 2 ctage filter.

(fc = 16 H , depth d = 0.5m)



APPENDIX A.l.

THE PRESSURE ON A FIXED CIRCULAR CYLINDER IN WATER OF DEPTH h

The velocity of waves incident from the negative x direction is

$ = ft f atf . e‘te
cosh kh

The wave shape is given by the linearized form of Bernoulli's

A.l.2.

which at x = 0 becomes

7 = — sin
7 2 A.1.3.

I
j

If the axis of the vertical cylinder is placed at x = y = 0, then 

the boundary conditions may be more simple applied if the incident wave 

is expressed in cylindrical polar co-ordinates.

By definition the Bessel functions of integral order are the coefficients 

of the expansion



A.l.4.

Let A= ie1'^, then

x, > 1, ixcos(9 . , r
exp ^(A - ^) = e A. 1.5.

In order to involve only Bessel functions of positive order

J_n (x) = (-l)nJn(x) A.1.6.

is used.
ixcosd -T- / x 77

■ ■ e = Z Tn(x-)t e
n=-°°
—I- z X v-1 -r-/ x H (-H0 K,' -t -/ \ .ft tWO

— + z£ Jnfc) t + Z

A.1.7.

which becomes finally

eLX^^ cosn& A.1.8.

The complex spatial part of the incident potential may be expressed 

in polar coordinates as

— ikrcosQ
-T.e A.1.9.

which from A.1.8. becomes

^-T Z cos
where the Jacobi symbol S. obeys the relations

£o=/ ; f„=2 for n>o
— A9 —

A.l .11.



Because of the symmetry of the problem about the x axis, and the 

exclusion of the origin from the fluid domain, the most general 

expression for the potential due to scattering by the cylinder 

may be expressed as

<*, = Tfa H$kr) + Bn A.1.12.

The asymptotic expansions for the Hankel functions of the first

and second kinds behave for large kr as

A.l.13.

A.l .14.

Because of the original choice of e 1 c for the harmonic time, 

then the solution representing waves travelling outwards from the 

cylinder is of the form

A.l .15.

The total potential is therefore

The radial gradientof this potential at r = a must be zero to 

satisfy the only remaining kinematic condition ( a is the cylinder 

radius). Therefore



The final solution is therefore

The variation of the free water surface shown in figure 5.5.5 was 

obtained by substituting this expression into Bernoulli's equation.

The effect of the side walls of the wave flume was therefore not 

taken into account.

The pressure on the cylinder may similarly be found from Bernoulli's

equation as

A.l .19.

The Wronksian relation between Jn(x) and H ^\x) may be found from 

that usually quotea •‘"or Jn(x) and Y (x)

A.l.20. ;

The argument x may be dropped for simplicity so that

Equation A .1.19. simplifies to

A.l.22.
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Although this expression for the pressure is in its most concise 

mathematical form, for numerical evaluation the real and imaginary 

parts must be readily identifiable. The experimental pressures in 

chapter 5 were all divided by the pressure in the wave at the same 

depth. For direct comparison equation A.1.22. may be expressed in 

this non-dimensional form as

By separating the odd and even terms of the infinite series, the 

troublesome in term may be made wholly real by a suitable redefinition 

of the summing indices. Taking real parts as defined in equation

A. 1.1. yields

A.l.24.

The arguments of all the Bessel functions are all (ka) and have 

therefore been omitted for clarity. This result is distinctly 

different from that of Chakrabarti and Tarn' '. Because-of the 

normalisation process it is directly comparable with a diffraction 
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amplification factor for wave height at the cylinder. As mentioned 

in chapter 5 results for the relatively small amount of diffraction 

at ka = 0.5 are available and agree exactly with the above expression.

The theoretical curves in figures 5.5.10 to 5.5.14 were calculated 

from the above expressions.

Although tables of Bessel functions are available, they were evaluated 

in this case by using a small programmable calculator (Casio FX601P) 

This was done using the same techniques as in the FORTRAN segment of 

the diffraction program. Convergence of the above series was quite 

rapid for values of ka less than 0.5, usually requiring less than 

four terms for reasonable accuracy.

The program listings for Bessel functions Jn(x) and Y (x) for small 

x are included here since they may be of general intelest. Most of 

the currently available programmable calcu1ators have all the necessary 

functions used in thse programs, but those few which still use reverse 

polish notation would necessitate considerable modification.

The Bessel coefficient of the first kind may be'^valuated for small x 

by
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Po AC, Mind , Min 5

1, EXP, 7,+/-,MinF

MR2,t, 2, = ,Min 2,

1, Min 3

MR1, if x -0 , GOTO1

MR2, xy, MR1, t MR1, xl, =,Min 3

MR3, M + 5

ISZ

+/-,X,MR2 ,x2,t,MRO

t,(MRtf + MR1)Min3

t, MR5,= ,ABS,if x> F, GOTO 1

MR5

Clear accumulators

Set accuracy limit at 10

Put in memory 2 

Initialise term memory 

Avoid evaluating (0)° 

First term

Initialise accumulator

Increment memory 0

Calculate next term

Convergence check

Return with result.

The program multiplies the present term by a term dependent iactor 

to obtain the next term and checks for convergence on tne number of 

significant figures. This convergence check fails prematurely in 

the uncommon event of memory 5 becoming zero (as at the second term of 

Jq (2)). This may Le overcome by using as the penultimate line

t, MR5, if__x_=_P_?_eX, = » ABS, if x^F, G0T01

To run the program put n in memory 1 and x in memory 2.

The Bessel coefficient of the second

' r-o



Using a rearranged form of Sneddon's notation. The program 

listing follows a similar pattern to that for Jn(x) and 

therfore comments have not been included.

Po AC, Min4, Min5, 1, EXP, 7, +/-, Mi nF

MR2,t,2, =, Min 2

l,Min3, MR1, if x = 0, G0T01, MR2, xy, MR1, t MR1, x'., =, Min 3

LBL1 AC, Min9, MR4, GOSUB, P9, MR1, +, MR4, =, GOSUB, P9

MR2, In, +, MR8, MR9, t 2, =,

X, MR3, = M + 5, t, MR5, =, ABS, Min 9

1, M+4

MR3, +/-,X,MR2,x2, t, MR4, t, (MR4 + MR1), =, Min 3

MR9, if x>F, G0T01

MR1, Mi.iO, if x = 0, GOTO 5

-,1, =,x!, f ,2,t,MR2,xy,MR1, =
»

LBL4 M-5, DSZ, G0T06, G0T05

LBL6 X, MR2, x2, t, MRO, t, (MRI - MRO), =, G0TG4

.LBL5 MR5, x, 2, ■>, , =

P9 if x = 0, G0T03, Min U

LBL2 MRO, 1/x, M+9

DSZ, G0T02

LBL3

The use of a convergence check based on the number of significant 

figures is far more important here since for small argument Y (x) 

is unbounded whereas |jn(x)| 1 for all x.
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To run this program put n in memory 1 arid x in memory 2 as before.

In addition Euler's constant = 0.577215665 must be kept in memory 

8.

Table A.1.1. gives the pressure amplitudes and phases for ka = 0.05 

(0.05)0.5.
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APPENDIX A.2.

Filter Amplifier Details

In chapter 5 the typical noise levels on the signals from the 

pressure transducers were shown. The high amplification needed, 

to obtain a measureable signal, made the noise inevitable. The 

noise levels shown had already been considerably reduced by 

including in the intermediate amplifier stage a degree of filter-

ing action.

These amplifiers were assembled on solderless prototyping boards 

to facilitate improvements. The active circuit elements were 

type 741 operational amplifiers.

Figure A.2.1. shows the typical configuration of a single invert-

ing amplifier stage. V. and VQ are the inpu4- and output voltages 

respectively. The only information required about the op-amp 

to understand how this circuit behaves is its:

a) extremely high resistance - typically 100 db’,

b) hiqh input resistance - typically 2 megohms.

The differential inputs are labelled negative (inverting) and 

positive (non-inverting) and the output voltage represents the 

difference between them multiplied by the (open loop) gain. 

If the output takes up its maximum value Vg (relative to earth) 

then the difference between the two inputs can be no more than 

V$ x 10 ^0. Since in many applications the non-inverting input 

is tied to earth, the voltage at the other input is said to be at 

"virtual earth".
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Except for comparator action the high gain is only utilised 

indirectly. The use of negative feedback, although reducing 

considerably the overall gain, leads to a more stable configuration 

in which the overall gain is controlled by the external components. 

Since the input resistance at the negative input is so high it may 

be assumed that the current flowing into the amplifier is negligible.

Kirchoff's law applied to junction A (see figure A.2 1.) gives

A.2.1.

This linear differential equation may be solved by recourse to

Fourier's theorem. If

= A sin (cb-t) A.2.2.

is given, then

VQ = 0 sin (eft +</>) A.2.3.

Substituting equations A.2.2. and A.2.3. into A.2.1. and equating 

in-phase and quadrature components yields

(j) = - tan_1(</RC) A.2.4.

and
□ _ “ A.R. cos (^) A.2.5.

R.1

The cut off frequency may be defined as that which makes the phase 

lag 45°, and is therefore

fc = (2tc RC)_I A. 2.6.
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It may be seen that if the capacitor is removed there is no phase 

lag and the gain is fixed by the ratio of the feedback resistor 

to the input resistor. If on the other hand the feedback 

resistor is removed (i.e. the output signal is always 90°

out of phase with the input and the circuit behaves as an inte-

grator.

The configuration used to amplify the pressure transducer signals 

is shown in figure A.2.2. Two inverting amplifiers were used in 

series;the gain of each typically x 50. The supply was derived 

from a single 9 volt battery. Both input and output signals were 

taken relative to an artificial 'earth' fixed by a potential 

divider to the non-inverting input of the first amplifier. The 

ncn-inverting input of the second amplifier was connected to a 

potentiometer to facilitate null balancing of the final output.

The feedback resistors were usually 1 megohm and the feedback 

capacitors 10 nanofarads, giving a cue off frequency of about 

16 Hz. For a 1 Hz input signal the phase lag would be 0.06 

radians and the amplitude reduction only 0.2%, The 50Hz 

mains noise would be reduced by 70%.

Although the effect on the signal amplitude is small the phase 

lag becomes increasingly significant with frequency.

The expected phase lag and amplitude reduction (compared with 

d.c.) over two such amplifiers is shown-in table A.2.1. There 

is some evidence of the effect of this on the phase results in 

figures 5.5.10, 5.5.14 and 5.5.18.
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The input resistors were used to vary the gain as required. In 

some cases, only one filter capacitor was used since the noise 

was not significantly increased by the first amplifier.
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APPENDIX A.3.

Computer Program Listings

ALBI - Conventional two-dimensional Boundary Element method using 

linear source variation. Dirichlet boundary conditions 

only. Any shape may be specified by input co-ordinates.

ALB2 - Same as ALBI except that the source boundary is separate.

BCYL - Two-dimensional problem of flow past a circular cylinder 

near a plane boundary.

DIFF - Main segment of diffraction program for a circular cylinder 

using separate source method. This segment must be combined 

with function segment BESS. List of variable names is 

included.

BESS - Self-contained Bessel function segment.
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Variable names used in diffraction computer program DIFF.

a) Real Variables.

AC Constant in Green's function.

AKA Nondimensional parameter, ka.

ALIM Accuracy limit for series convergence.

ALPHA Incremental angle, .

ARG Argument of Bessel functions.

r V Term dependent constant in Green's function series.

D Constant in Green's function.

DEL Vertical incremental distance, A .

DEPTH Water depth, d or h.

E Constant in Green's function.

FAC Temporary store for multiplying factor.

FORCE Non-dimensional total in line force.

GAMA Angle, V.

GAUSS Constant used to define coordinates of Gauss points.

GRAV Acceleration due to gravity, g.

GWT Gauss Weighting factor.

PI K = 4/ tan 1 (1) .

POT. I Real and Imaginary parts of total potential,^,

PRAD Radius of physical circular cylinder, a.

R.J. Three distances used in Green's function.

RMAXF Maximum in line force.

RMAXM Maximum in line moment.

RO Density of water,/).

SIGMA Radian frequency cf- 27t/T.

SRAD Radius of fictitious source cylinder, r .

SUM Temporary accumulator
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T.J. Three temporary variables.

TEMP Temporary variable .

TEST Temporary variable in conditional branch.

TOT.J Three accumulators for infinite series.

TRM.J. Three term variables for infinite series.

UK Corresponds to m^ in text.

V y=tf2/g.

WH Wave height, H

WK Wave number, k.

WL Wave length,A .

X Non-dimensional variable in Newton-Raphson iteration.

YMID Vertical coordinate of element mid-point.

ZERO Double precision zero.

ZK Radius factor, rs/a.

b) Real Vectors

A(NON) Area associated with node NON,

ABC(J) Cartesian coordinates on source cylinder, (a,b,c).

B(I) Terms required for calculating^,.

CN(I) Natural coordinates on transformed element, (5,^7).

DGDN(I) Real and imaginary parts of 5G/<3n.

FF(NON) Right hand side vector of equations.

G(I) Real and imaginary parts of Green's function.

PHI(K) Interpolation fuction,^^.

ROW.L(NON) - ROW accumulators.

SFX(I) . Real and imaginary parts of in-line force.

SFZ(I) “ " " '“ " transverse force.

SMX(I) " " " " " in-line moment.

XYZ(J) Cartesian coordinates on physical cylinder, (x,y?z).
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where I = 1 or 2, J = 1, 2 or 3

K = 1 to 9, L = 1 to 4

NON = 1 to N.

c) Real Arrays

DC(NON,J) - Direction cosines at node number NON.

DG(J,I) - Cartesian components of 3G/dn.

F(I,NON) Real and Imaginary parts of R.H.S. vector,

FL(J,I) Lagrarge interpolation functions.

P(I,NON) Real and Imaginary parts of

PHIS(I,NON)- II II II II II

PHIW(I,NON)~ II II II II II

pressure

■
<p
' w

at

II

II

node NON.

II

II

II

II

where I = 1 or 2, 1 to 3, NON 1 to N,J

d) Integers

IEH Horizontal plane, element counter.

I EV Vertical plane, element counter.

IH Horizontal plane, node counter.

IV Vertical plane, node counter.

KC Jump in element number per row.

Steplength of random access memory blocks.

MREC Total number of records in disk store.

Total number of nodes..

NC Global central node number in each element.

NE Total number of elements.
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NIH * Number of equal divisions in horizontal plane.

NIV - If II It il II vertical plane.

NNS(K) - Node numbering sequence.

NON Number of node under current consideration.

Where k = 1 to 9.
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Appendix A.4.

Bessel function notation.

Several different forms of notation are used in the literature for

Bessel functions. The notation used in chapters 3 and 4 is that 
due to Watsoi/^“\ Reference was made to the concise presentation 

(75)by Sneddon'1 ' (subsequently referred to as S). For some of the 

proofs of equations in the work of John ^7) reference was Made. bo 

Jeffreys and Jeffreys ceffaed boas XT) w>ho ase or

shyhldy dtfffer&ib notatioi/}.

It seems to be generally accepted that the Bessel function of the 

first kind is given by

C<9 P
jjx) = 2 -------(-)n+2r A,4.1.

r=0 rl(n+r)l 2

The companion function, Weber's Bessel function of the second kind 

is given by S as
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The diagamma function is defined by JJ as

A.4.4.

/7o) = A.4.5.

where 'jA is Euler's constant. In a way analogous to the factorial 

function this function is sometimes expressed as

Vfzti) = f(z) A.4.6.

In equation A.4.2., fl is defined by S as

/
d----
r A.4.7.

/ /
+ —+ — +

2 3 •"

From equations A.4.5. and A.4.7. it is cle«r that

A.4.8.

which, together with equation A.4.1. shows the equivalence between 

equations A.4.2. and A.4.3. Johr/47) refers to the Bessel function 

of the second kind as Nn(x).

fhe asymptotic expansions for the Bessel functions are often expressed 

in a series form for which thereis an obvious pattern but no general 

term is quoted. For programming purposes such a general term must 

be found. For example JJ give for the modified Bessel function of 

the second kind



]'Sx + A.4.9.

By defining the following notation, apparently attributable to

Hankel,

A.4.10.

S is able to express this function as

(Zx)'- A. 4.12.

The equivalence between these two definitions may be straightforwardly 

established, but it must be noted that

A.4.13.

and

A,4.14.

For small argument this function is given by S as
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It is again generally accepted that.the modified function of the 

first kind is given by 

= 2 (?) A.4.16.

which should be compared with equation A.4.1. The definition of

Khn(x) by JJ makes equations A.4.15. and A.4.2. just as closely 

related. This definition attributable to Heavisiae, makes several 

other relations to the Hankel functions much simpler as well.



Appendix A.5. Wave radiation and quadratic correction

In chapter 3 it was shown how the problems of floating bodies in 

waves may be split into two parts by defining a scattered potential 

and a radiated potential For the simple case of forced 

oscillations of a rigid body the existing program is easily utilised. 

The integral equation governing this problem becomes

u A.5.1 .

where V n is the velocity of the body in a direction normal to the

boundary. Once f is found then the radiated potential is obtained

as before from

These two equations should be compared with equations 4.2.1. and

4.3.6. The only change required by the program to evaluate the 

radiated potential from a swaying cylinder is in the right hand 

side vector of the equation system. Since Gaussian elimination 

is particularly efficient at solving any number of right hand side 

vectors it would take very little additional computation time to 

solve both problems in parallel.

The method of calculating the quadratic correction to the total 

force suggested by Lighthill may therefore be simply programmed 

by making V correspond to a unit oscillation in the direction of 

the force. If no other changes are made then the correction obtained 

will relate to a primary wave of half the frequency</ given by the 

dispersion relation.
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It appears that the analogy with the virtual work principle may 

be carried one stage further by only prescribing the boundary 

conditions on a small element of the structure. The resulting 

vertical velocity of the free surface when integrated with 

the quadratic pressure will give the quadratic correction to 

the force on this small element. A series of such calculations 

could be made to yield the variation of this force with depth.
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Appendix A.6.

Equivalent forms of the Green's function

Parts of the proof of the equivalence of the two forms of the

Green's function were left out of section 3. They are included 

here for completeness.

L = J
1 -bA 

e
o A.6.1.

where a and b are real, which may be proved as fallows.

The decay of the Bessel function with large x is not enough to 

counter the exponential term if b is negative. The integrand
I

being unbounded the integral would therefore not exist, lhe 

Bessel function is not usually defined for negative argument. 

Accordingly it is assumed that a, b>0.

The Bessel coefficients may be defined as

A.6.2.
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The coefficient of zero order may now be isolated by recognising

the periodicity of all the other terms on the left hand side,

Integrating both sides from -A to 77,

X r
oO

n^-oo J
-7C

de =

-X

Ik
A.6.4.

The integral in equation A.6.1. may now be expressed as

ZK

60 nK

o -K

4.6.5.

Since the integrand is bounded, it exists and therefore the order

Z=

of integration may be changed.

1 I* oo ■ \
-b.

ZK . J
•71 o

I'

-K
(b - castb^')

!<

A.6.6.

The range of integration may be interpreted as a passage once round

the unit circle in the complex plane. The periodicity of the integrand 

ensures continuity at the end points. Defining the complex variable



whence A.6.8.

and recalling that

A.6.9.

the integral becomes

J = —
.A 49

0 b -
K

^de^+^e"6

~l
r dx

A.6.10— --- 1 'I
2Jox -a.in c ax -

The value of this integral may be obtained from Cauchy's theorem 

once all the poles within the unit circle have been identified. 

The roots of the denominator are given by
i

A.6.11.

In this particular case these two real roots may be written a^ 

and - 1/cx. Therefore

r-I
1= — otTCdl J A.6.12.

where A.6.13.

and ex A.6.K.

The two simple poles of the integrand may be separated by the method

of partial fractions thus,

n I-I Z= — i A.6.15.
I
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Since a and b are both positive then from equation A.6.13. is 

within Jzj =1 and therefore - 1/ex is outside it. The function 

(z-^) 1 is therefore analytic throughout the unit circle. The 

residue of the integrand is therefore (ex + l/o<) \ being the 

coefficient .of (z The integral is then given.by Cauchy's

theorem as ■ _

A. 6.16.

thus proving equation A.6.1.

It is now possible to show the derivation of the series form of the

Green's function G, from the integral form derived for example by 

Wehausen and Laitone^). This derivation follows the line of John^^) 

but includes many intermediate steps.

The integral -form of the Green's function may be expressed as
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'The path of integration is along the real axis except for an

arc in the lower half plane, which avoids the positive real root

/x = mQ of the denominator'. It is no coincidence that the complex 

plane chosen is that defined bv the simple harmonic time. If any 

other plane were used the function G would not satisfy the radiation 

condi tion.

From equation A.6.1., R and R' may be expressed in integral form as

A.6.18.

A.6.19.
I
£

which restricts the values of y and b to

-h <b <y 40 A.6.20.

to ensure that the exponential terms represent a decay.

Combining equations A.6.18 and 19,

A.6.21.
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The Green's function now becomes

The identity

e = cosh x, - sinh CC
A.6.23.

may be used to simplify this to

A.6.24.

2 cosh^i(b+h!)(yA ccsh^utj sinlyuj) 

/a ^hyjh - v ccsh^h
A.6.25.

John calls pjz() a meromorphic function of/X. . This is understood 

to mean that it is only singular at distinct points (rather than 

at a finite number) and may be put in the form (morphic) of partial 

(mero) fractions. A simple aside helps to explain how this is 

achieved. Consider the function

12)
(xs- 6x 2+ //x  ~

A.6.26.

The roots of the denominator' are x = 1, 2 and 3 so that its 

partial fraction expansion may be expressed as

fl, , /T
?(x) “ (x-f) * (x-2) +(x-3) A.6.27.
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Equating these two forms and multiplying by the denominator gives

One common alternative to equating coefficients of like powers of

x, is to set x equal to each root in turn. For example

A.6.29.

from which may be found. This form is obviously unuseable when 

the denominator has an infinite number of roots. However, the 

coefficient of A^ is clearly the denominator divided by (x-2), i.e.

-(d)
A.6.30.

The fraction is obviously indeterminate but its value may be established 

by L'Hopital's rules. Comparing equations A 6.25. and A.6.26. it

will be seen that the denominator is

A.6.31.

which has the roots

X = %
and /A. = nd = -m k =

/ -k k > J

where

A.6.32.

m sinh
k

m h = v cash rfh 
k k A.6.33.
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The real roots correspond to k = 0. The expansion for may be 

sought in the form

The coefficient of - m^) 1 is given by

A.6.34.

The indeterminancy of the fraction on the right hand side may be

removed by applying u'Hopital's rules, thus

Therefore

2 cosh +y sii/i
-- ------------------------------------- :------------ ?

h cosh - y sinh
A.6.37.

This may be rearranged using equation A.6.33. into the form used by John

A.6.38.

Since then A_^ = A^, therefore equation A.6.34. becomes

-t sW?

2

A.6.39.
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The Green's function is therefore, from equation A.6.24.

=Z 2k=o o
4W-

John makes use of the identity given by Watson^) as

A.6.40.

oo 
r

Jo A.6.41.

If t = - i.m^ this becomes

GO 
r

A.6.42.
Jo

the nij< are

■integration does not encounter

For k = 1, 2, dll imaginary so that the

these roots. However,

path of

the positive root

r- lies on the real axis, o
has already been specified

The path of integration in

so as to avoid this root.

equation A.6.40

It so happens

that this choice preserves the identity in equation A.6.42.

The Green's function is therefore

A.6.43.

2 2

OC

John now lifts the restriction given by A.6.20 on the grounds that 

for positive r this function satisfies all the requirements of the Green's 

function and by the uniqueness principle must therefore be the correct 

expression.
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LIST OF SYMBOLS

a i) Wave amplitude as used By Lighthill

ii) Radius of small sphere, surface cf.

iii) Horizontal coordinate of pulsating source point.

3ji A typical element of matrix [a].

amax
Maximum wave amplitude as used by Ursell, Dean and Yu^8).

amin Minimum wave amplitude as used by Ursell, Dean and Yu^).

A i) Projected area of structural element as used by Isaacson

and Maul 1

ii) Arbitrary two-sided surface within the fluid.

iii) Fixed point in the flow domain.

iv)

'■')

Dimensionless constant in velocity due to-incident wave.

Constant in appendix A.l.

vi) Amplitude of input voltage V. in appendix A.2.

[A] Matrix of coefficients.

A-], A^ Amplitudes of pressure fluctuations in waves.

A(ka) Function of Bessel functions defined by MacCamy and Fuchs^).

AC, ALIM & ALPHA see Appendix A.3.

b i) (54) Radius of circular cylinder as used by Lighthillv

ii) Vertical coordinate of pulsating source point.

iii) Depth of immersion of wave generator wedge.

B i) Fixed point in the flow domain.

ii) Constant in appendix A.l.

iii) Amplitude of output voltage VQ in appendix A.2.

W Sub-matrix of equation system.
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c i) Horizontal coordinate of pulsating source point .

ii) Subscript referring to constant depth section of wave flume.

C i) An unknown constant.

ii) Fixed point in the flow domain.

iii) See also Appendix A.3.

iv) Wave celerity or phase speed.

v) Feedback capacitor in amplifier.

[c] Sub-matrix of equation system.

CpC^ Theoretical, experimental phase speeds.
(15) Diffraction coefficient defined by Chakrabarti and Tam'

c c &cD’ M L Drag, inertia and lift force coefficients.

d i) W^ter depth e.g. Isaacson^). /

ii)
(45)Distance between horizontal cylinder and the bed, Jeffreys'' '

dc
Constant water depth as used by Wiegel^7).

d s
(54) Differential element of cylinder surface, Lighthili'

0 i) Diameter of circular cylinder e.g. Verley^), of sphere— 

Rainey^70'.

ii) See also Appendix A.3.

Submatrix of equation system.

DEL See Appendix A.3.

e Refers to an element length or area .

E i) (54) Fluctuating extension as defined by Lighthill' .

ii) See also Appendix A.3.

iii) Energy associated with a wave.

iv) Young's Modulus for Araldite.

Ek Element number k .



H^(x),H^(x) Hankel functions of the first and second kinds, order n.

f i) An arbitrary function on the large sphere X .

ii) Frequency as used by e.g. Borgman^ \

f(x) Function of x used in appendix A.6.

f(q) Continuous distribution of source intensity on S.

f'(q) Approximation to the distribution f(q).

fc Filter cut-off frequency.

fi Source strengths of a finite number of point sources.

ii) Finite number of values of continuous distribution of 

source intensity.

F Force on circular cylinder.

Rt) Arbitrary function of time in the generalised Bernoulli equation.

Fd’Fq’hw

f l

Quadratic co.rections to the in line force, Lighthill

Lift or transverse force, Isaacson and Maull^), Jeffreys

F 
y

Lift force in the positive y direction.-

9
_2

Acceleration due to gravity - 9.81 ms .

e(x) Function of x used in appendix A.6.

G The Green's function for linear waves.

[6] Matrix in direct boundary element statement.

Co The Green's function used by Ursell^z\

h Water depth.

H Wave height from crest to trough.

M Matrix in direct boundary element statement.

H Horizontal flow velocity used by Rainey^).

i i) Complex index, .

ii) General index, if repeated implies summation.

1,1^2 Integrals .

I (x) nK ' Modified Bessel function of the first kind, order n.

J General index, if repeated implies summation.

•M*) Bessel function of the first kind, order n.
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k i) Radian wave number, 2X/ X .

ii) Summation index.

kp k^ Theoretical, experimental wave numbers.

K i) Keulegan and Carpenter number used by Sarpkaya^\

ii) Operator in dissipative boundary conditon used by Ursell^?),

K(f) Kernel function of frequency as used by Borgman^ 1 \

K (x)rr ' Modified Bessel function of the second kind, order n .

KC Keulegan and Carpenter number used by Isaacson and Maull^)

Z i) Length of tether cable, Rainey^).

ii) Typical boundary element length •

L i) Wave length as used by Verley^O).

ii)
(51Exponent'al decay length used by Bettess' '.

LirL^ Quadratic Lagrangian interpolation functions .

hi
Strength of singular function^, Jaswon and Symrn^).

m0 Real root of the dispersion relation, corresponds to wave 

number k .

mk Imaginary roots of the dispersion relation.

M i) Mass of sphere used by Rainey^).

ii) Mumber of boundary elements.

iii) Number of point sources.

n i) Ratio of group velocity to phase velocity.

ii) Order of Bessel functions.

iii) Normal direction to surface.

n Normal direction vector, components n^.

n.1 Normal directed into the interior domain.

ne Normal directed into the exterior domain.

nx
(54) Direction cosine used by Lighthillk

N Number of dimensions.

,Ni Interpolation or shape functions .
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N
KC

NE,

Keulegan and Carpenter number used by Verley

NIH,NIV see Appendix A.3.

i) Fluid pressure .

(80)

ii)

Pjxt)

Point on the boundary P.

Meromorphic function defined by John^?).

Vector of unknown pressures on a structure.

p* Normalised fluid pressure.

P] »P2

P

Real and Imaginary parts of the complex fluid pressure.

i) Fluid pressure.

ii) A fixed point in the fluid.

iii) Physical boundary, corresponds to f .

P

P

PRAD See Appendix A.3.

q i) Dosition on source boundary S .

il) Magnitude of fluid particle velocity, Lighthi 11 .

qj Vector of normal velocity components.

q Prescribed normal fluid velocity.

Q Fixed point in the fluid domain .

r i) Cylindrical polar radial coordinate.

ii) Projection of R iii) onto the horizontal plane.

r' Distance measured from an image source-.

rg Radius of source cylinder S .

R i) Radius of the large sphered.

ii) Subscript indicating radiated component .

iii) Distance from (a,b,c) to (x,y,z) .

iv) Feedback resistor in filter amplifier.

R' Distance from the image of (a,b,c) to (x,y,z).

R(r) Radial variation of potential function.

R. Input resistor see appendix A.2.

Re Reynolds number .



s i) Integer in Fourier series.

ii) Dummy root of dispersion relation.

S i) Boundary on which source distribution is placed.

ii) Subscript indicating scattered component.

iii) Vertical stroke of wave generator.

SpS^ & S, Infinite series in Green's function. 

Spectral densities defined by Borgman^^\S , xx syy

SRAD See Appendix A.3.

t i) Variable time .

ii) Variable used by Jeffreys and Jeffreys ^6).

iii) Dummy root of dispersion relation.

T i) Wave period .

ii) Non dimensional constant used ir appendix A.l.

iii) Subscript indicating total.

Ts Time of separation of shed vorticity.

Time of travel of wave crest.

u Component of fluid velocity in x direction.

u_ Fluid velocity vector, components u^.
(45'U i) Velocity of uniform stream used by Jeffreys'

ii) Group velocity.

U, 0 Velocity and acceleration used by Pierson and Holmes^)

^m’^niax Maximum velocity in x direction.

v Component of fluid velocity in y direction.

V’^’vrms Velocity, acceleration and root mean square velocity, 

Borgman

V Vertical flow velocity used by Rainey^).

V. Input voltage used in appendix A.2.

VQ Output voltage used in appendix A.2.
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velocity component in a normal direction.

Velocity component in a radial direction.

Volume of tethered body used by Rainey'^.

Component of fluid velocity in z direction.

Subscript indicating incident wave component.

Gaussian quadrature weighting factor.

Horizontal cartesian coordinate.

Horizontal displacement of centroid of sphere, Rainey^).

Argument of Bessel functions.

Cartesian coordinate components.

(45)Non dimensional coordinate used by Jeffreys'

rth approximation to the kth r^ot of the dispersion relation.

Body force components.

Vertical cartesian coordinate.

Horizontal cartesian coordinate used by some authors

e.g. Lighthill
(451Non dimensional coordinate used by Jeffreys'

Separable y variation of potential function.

Bessel function of the second kind, order n.

Horizontal cartesian coordinate component.
(29)Vertical cartesian coordinate as used e.g. by Havelock'

General complex variable i.e. x + iy.

see Appendix A.3.



c\ i) Separation constant for Laplace's equation.

ii) Semi-angle subtended by a cylindrical element.
(15 iii) Phase lag of total wave force on cylinder, Chakrabarti and Tarn'

iv) Amplitude of primary wave, Ursell, Dean and Yu'7'J'.

v) Angle of wave generator wedge.

vi) Reflection coefficient used by Longuet -Higgins^),

vii) Symbol for roots in Appendix A.6., as used by Jeffreys and 

Jeffreys ^6).

viii) Angle of tangent at the point where a cut is made in Si).

ix) ^mall distance along element from singular point.

j Set of angles indicated in figure 3.7.2.

/3 i) Frequency parameter as used by Sarpkaya^7^.

ii) Ratio of source boundary size to physical boundary size.

(44) y i) Singular function of known form as used by Jaswon and Symnr

ii) Euler's constant = 0.577215665...

P i) Arbitrary closed surface within the fluid.

ii) Boundary on which values are prescribed.

iii) Wave function (i.e.V^P = 0) used by Ursell^77^

8 i) Phase angle between incident and reflected waves^7^\

ii) Deflection of Araldite test piece.

<5 (r) Dirac delta function centred ar r = 0 .

3 x.. Cartesian components of a small change in x^ .

Half the vertical dimension of a cylindrical element.

<5 Small distance defining the neighbourhood of a point.

£n Jacobi symbol.

Reflection coefficient, Ursell, Dean and Yu^7^\
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i) Vertical coordinate of a point on the free surface.

ii) Natural coordinate corresponding to the y direction.

Q(<9)

Incident and reflected wave profiles, Ursell, Dean and Yu^°\

Angular coordinate, either spherical or cylindrical polar.

Separable angular variation of potential function.

A i) Spherical polar coordinate.

ii) Wavelength.

iii)

A1 A

Variable in power series expansion for Bessel coefficients^)

Theoretical, experimental wavelengths.

Integration variable in the wave number domain.

V i) Kinematic viscosity of water.

ii) Normal direction on large sphere 2D .

iii)
C^/g, as defined e.g. by Garrison and Chow^J\

iv) Exponent used by Liggett and Liu^53\

f Natural coordinate corresponding to x direction.

x 3.14159...

/> Density oi water.

A

i)

Density of Araldite

Surface .of a small sphere.

ii) Radian frequency.

2 i) • Surface of a large sphere.

ii)

/ i)

Summation symbol.

Potential function of space, sometimes complex i.e.^ + i^ ■

ii) Force per unit length used by Borgman^

iii) Unknown phase angle.

iv) Phase angle of VQ with respect to V^.



0(0 ..... . , . (7ZX
function defined by Sneddon'”', used in Appendix A.6.

0

Fundamental potential solution of Laplace's equation. 

Prescribed values ofp, usually on P.

A j  

$

Bi-quadratic Lagrangian interpolation function.

Potential function of space and time.

Y i) Potential function in Green's theorem.

ii) Stream function.

Residual function.

W i) Region within Li).

ii) (45)Complex potential as used by Jeffreys'

IL i) Body force potential.

ii) Region enclosed by P.

^i’°e

A

°'M

Interior, exterior domain bounded by P.

Interior domain bounded by Si) .

Middle domain between Si) and P.

v2
Laplacian operator.

A Diagamma function^)

* Indicates results obtained by direct measurement.
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