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Figure 1: (A) Visualisation user studies can be assembled using a declarative specification from (B) visualisations and (C)
separately developed benchmark data and tasks used to evaluate them; the latter can be organised into ‘literate’ test-suites that
combine test data with narratives explaining their use and justifying their choice. (D) VisUnit parses declarative studies into (E)
study sequences and delivers (F) visual stimuli to participants by combining visualisations, datasets, and tasks dynamically.

Abstract
We make four contributions to lower the overhead of conducting
visualisation user studies and promote the reuse and extension of
their materials. (i) A declarative Javascript specification lets experi-
menters describe how studies are assembled from tested visualisa-
tions, datasets, tasks and chosen evaluation strategies. (ii)AVisUnit
library translates these into sequences of visual stimuli and delivers
them to participants. We move away from monolithic evaluation
stimuli typical of previous work and construct studies around three
ingredients – visual encodings, datasets, and tasks – that can be
developed independently and recombined flexibly. (iii) This paves
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the way for developing benchmark data+tasks test-suites as indepen-
dent, reusable resources to support multiple studies. (iv) Structuring
user studies as “literate” visualisation notebooks brings together in
the open all ingredients necessary for replication and scrutiny: for-
mal design specification; underlying materials; participant-facing
views; and narratives justifying design and supporting reuse.

CCS Concepts
• Human-centered computing→ Visualization design and evalu-
ation methods; Empirical studies in visualization; Visualization
systems and tools.

Keywords
visualisation evaluation, user studies

ACM Reference Format:
Radu Jianu, Aidan Slingsby, Dany Laksono, and Mershack Okoe. 2025.
VisUnit: Literate Visualisation Studies Assembled from Reusable Test-Suites.

https://orcid.org/0000-0002-5834-2658
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713104


CHI ’25, April 26-May 1, 2025, Yokohama, Japan Jianu et al.

In CHI Conference on Human Factors in Computing Systems (CHI ’25), April
26-May 1, 2025, Yokohama, Japan. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3706598.3713104

1 Introduction
User studies are commonly employed to formally evaluate the
effectiveness of visualisation systems and unravel how our per-
ceptual and cognitive systems interact with visual data represen-
tations [24, 33]. Over the last decade more have been published
each year [44] and many are influential on visualisation research.
However, empirical evaluation work trails behind technique devel-
opment and stifles the evolution of a cohesive understanding of
how visual tools should be designed [21, 30, 44]. This is attributed
to studies being challenging to conduct, time consuming to carry
out, and their reliance on a broad range of activities and expertise.
There is also a lack of published study materials, data, and detailed
analyses that future researchers can build on [31]. We introduce
four contributions to alleviate this:

• (i) a declarative grammar for specifying visualisation
studies from constituent components (tested visual encod-
ings, datasets and tasks) and evaluation strategies (randomi-
sation and blocking approaches, training) and

• (ii) VisUnit, a library that automatically assembles theses
into web-studies that can be readily delivered to participants.

These build on earlier ideas from EvalBench [2], GraphUnit [41],
Touchstone2 [17], EvalViz [37] and, more recently, reVisIt [15]. Our
declarative language and VisUnit share benefits already evidenced:
they lower the overhead of assembling and deploying user studies;
create a transparent link between a user study’s formal design and
its delivery; and support the exploration of alternative study de-
signs by letting experimenters reshape studies with minimal effort.
VisUnit innovates by moving away from monolithic visual stim-
uli, instead allowing them to be declared in terms of constituent
components – encoding (and interaction), datasets, and tasks – and
combining these into studies dynamically, based on chosen eval-
uation strategies. This decomposition fits models of visualisation
designs [40, 46, 53] and inspires a new reuse opportunity:

• (iii) data+task test-suites as research contributions and
resources in their own right.

Visualisation studies most often source their own datasets and
tasks to evaluate with. This is non-trivial and time-consuming [44],
as thematerials need to be ecologically valid yet constrained enough
to support evaluation, minimise confounding factors, and afford
meaningful participant responses to data questions. We advocate
that researchers pursue data+task test-suites – concrete datasets
and questions about them – as contributions in their own right.
Comprehensive test-suites for particular types of data (e.g., multi-
dimensional, network, spatio-temporal) could, once developed, un-
derlie a body of cohesive evaluative research on how best to vi-
sualise those data. Pursuing them independently, rather than as
by-products of specific studies, would focus effort, expertise and
scrutiny on assembling test-suites meaningful, comprehensive, and
rigorously built. Moreover, they connect with efforts to develop
visualisation task taxonomies by providing for them concrete and
representative exemplars that visualisations can readily test against.

• (iv) literate user studies that showcase and explicitly dis-
cuss the impact of selected and competing experimental
design choices on study delivery and which bring together
and in the open all ingredients necessary for replication and
public scrutiny.

When reporting on user studies, authors typically showcase
them as delivered to participants and motivate the chosen exper-
imental design over *imagined* alternatives. Instead, specifying
studies declaratively lets alternative designs be explored and ex-
perienced directly to strengthen the case for the chosen option.
This is possible because design adjustments (e.g. evaluating a factor
between participants rather than within) can be translated auto-
matically into revised study deliveries. We show that visualisation
notebook environments such as Observable 1 can bring together all
ingredients necessary for a study’s replication and public scrutiny:
its formal design specification, underlying study materials (visual
encodings, data, and task specifications), alternative choices, how
these present to participants, and narratives justifying choices and
supporting reuse.

Our approach borrows nomenclature and ideas from Unit Testing
in software development. Our data+task test-suites are ‘live’, testable
instantiations of abstract task taxonomies in the same way that test-
suites are developed for software projects as ‘live’ representations
of static project-requirement documents. We let visualisations con-
nect and evaluate against data+task test-suites automatically using
VisUnit in the same way that software test-suites are managed by
Unit testing libraries (see Section 2).

2 Related work
2.1 Visualisation user studies and their

challenges
Quantitative user studies in data visualisation typically involve
showing people (participants) visualisations of data and measur-
ing their performance (accuracy, speed) and preference as they
attempt tasks that probe their understanding of the data. They play
a central role in establishing the effectiveness of data visualisation
designs [24, 33, 39].

Conducting user studies is challenging, time consuming,
and requires diverse expertise [8, 17, 31, 32, 44]. They involve
a broad range of activities such as scoping the research, sourcing
or implementing visualisations to evaluate, coming up with tasks
and datasets that are representative of how visualisations are used
in practice yet can support the generation of quantifiable insights,
designing study procedures that reduce confounding factors, build-
ing infrastructure to run the study and collect results, recruiting
and managing participants, and analysing results. A rigorously con-
ducted, documented, and disseminated study is multi-month-long
process that requires diverse expertise [44].

Studies are often difficult to replicate or extend. Following a
survey of visualisation studies on perception, Quadri et al. conclude
that one of the biggest challenges facing such studies is their limited
scope and reproduceabilty. They attribute this to the difficulties in
sourcing study materials and accessing diverse participants [44]. In
their review and positions on the state of replication in visualisation,

1www.Observablehq.com

https://doi.org/10.1145/3706598.3713104


VisUnit: Literate Visualisation Studies Assembled from Reusable Test-Suites CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Kosara and Haroz advocate for replication as a viable visualisation
contribution. They deem access to original data, code as well as
documentedmethods and analyses as crucial to support this [21, 30].

Our work tackles these challenges holistically. VisUnit literate
studies bring together in the open all ingredients needed for public
scrutiny and seamless reuse and extension. VisUnit test suites elevate
the design of test data and tasks to contributions in their own
right, ready to support evaluation efforts pursued independently
(Section 4).

2.2 Supporting the creation and replication of
user studies

Prescriptive guidelines for conducting user studies include
best practices for designing materials and study flows [4, 31], for
ensuring that studies can be replicated and extended [21, 30], and
for moving from in-lab to online studies [9, 23, 32]. VisUnit supports
the adoption of prescriptive methods by: (1) lowering the overhead
of exploring alternative study designs through the use of declarative
specifications, and (2) by asking researchers to justify design choices
in-situ with the user study and its materials (Sec.4,3.2,5). The first
contribution is not entirely new. The authors of Touchstone2 [17]
remarked that the ease of manipulating study designs in declarative
forms supports the exploration of alternatives. However, our fourth
contribution is to make such exploration part of explicit, open
design narratives and place these at the forefront of literate study
dissemination.

Efforts to lower the overhead of creating, deploying, and
processing the results of user studies also exist. Most relevant
are frameworks that move away from stimuli-sequences that are
crafted manually for different participant groups (treatments), to
assembling sequences flexibly from study-components and rules
described in declarative study specifications, and deliver them with
little overhead to participants.

EvalBench [2] was to our knowledge the first to use elements
of these innovations. It relied on XML definitions of participant
tasks and a Java architecture that could transform these into visual
stimuli. Our own GraphUnit [41] explored the assembly of network
visualisation studies from XML study-design specifications and a se-
lection of reusable network datasets and parametric tasks informed
by literature. Subsequently, Touchstone2 used a declarative language
to describe randomisation strategies for use in Human Computer In-
teraction experiments and remarked how it lets researchers explore
alternative designs with ease. Recently, reVisIt adopted similar ideas
but innovated with a more powerful design-specification form in
modern JSON to support the assembly of studies from a wide range
of web-stimuli [15]. EvalBench, Graph- and VisUnit, and reVisIt all
introduce some form of parameterised task definitions. Section 3.2
describes how this works in VisUnit. Overall, these innovations
significantly streamline the creation of user studies.

Other research efforts to support the creation of user studies
are less closely related to ours and rely predominantly on visual
stimuli assembled a priori into static images [12, 13, 18, 37, 49, 50].
Finally, as already argued by Ding et al [15] commercial surveying
platforms such as Qualtrics are not sufficiently flexible to support
the needs of complex visualisation evaluation.

Our contribution to this space is two-fold. First, our declarative
form shares the benefits of those proposed previously: they capture
study designs formally and support the exploration of alternative
designs. However, we add onemore step towards fullymodular user-
study designs. VisUnit’s decomposition of visual stimuli into their
constituent parts – visualisations, datasets, and tasks – inspired us
to move away from monolithic studies and separate out test-suites
of datasets and tasks as reusable, extensible research artefacts and
resources. Second, we show how declarative study-specifications
can underlie a new form of literate design and dissemination of
studies and their materials.

2.3 Synergies with visualisation task
taxonomies

Our data+task test-suites complement work on visualisation task
taxonomies. These refer to systematic classifications of tasks or
objectives users pursue while analyzing and interpreting data vi-
sually. They help designers create visualizations that align with
user needs and inform their evaluation. Some task taxonomies are
generic. They encompass broad activities like exploration, compar-
ison, and pattern recognition applicable across different visualisa-
tion types [3, 11, 52, 56]. Others are tailored to specific kinds of
data, such as network [1, 26, 34], geospatial [5, 45], or temporal
data[38, 47] to capture their particularities.

Many user studies rely on such taxonomies to derive tasks to
evaluate against [44]. However, the journey from abstract task
taxonomies to concrete task presentations that are instantiated
with data and can be deployed in a user study is arduous and can
account for the most significant part of a study’s design [44]. First,
while most taxonomies exemplify task categories, they do not do
so exhaustively. It is often difficult to imagine the ways in which an
abstract task can present in practice, especially when considering
the nuances of real-datasets. Second, the exact way in which a task
presents to participants needs to be designed carefully to reduce the
impact of confounding factors. Finally, picking datasets and instan-
tiating tasks in them, i.e. picking which data facets a participant
is queried about, is often non-trivial since tasks rely on answers
being possible and meaningful in the dataset.

VisUnit lets such activities be carved out as research in its own
right, distinguishable from other evaluation efforts. Essentially,
data+task test-suites can act as instantiations of visualisation task
taxonomies into datasets, that can be disseminated as stand-alone
evaluation resources for visualisations to test against. Moreover,
test-suites can go beyond supporting evaluation to serve as concrete
exemplars of how abstract task-taxonomies translate to practice.

2.4 Parallels to Unit Testing
Our work was further inspired by Unit Testing concepts in software
development [27]. This involves testing ’units of code’ (methods,
classes, packages) to ensure theymeet their functional requirements.
Concretely, formal tests are designed for each unit of a software
project to verify that the unit’s outputs for some given inputs match
expectations. Individual tests are then collected in a test-suite, which
a project’s code base can be tested against repeatedly, as it is changes
and evolves. Developing reliable and exhaustive tests is non-trivial
but once a test-suite assembled, repeated testing can be done at no
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added cost, with the help of language-specific unit testing libraries.
Since tests are typically created to meet a project’s documented
requirements, test-suites are seen as “live” representations of project
requirements, ones that software can be readily evaluated against.
In fact, in test-driven development, unit tests are written before
the software is even developed as a means of capturing how the
software should behave in practice.

We transfer two fundamental ideas to visualisation evaluation.
First is the ability to capture the data-reading requirements of
visualisations – what they need to answer about the data – in
concrete, “live” test-suites that visualisations can test against. Second
is the ability to connect visualisations to such test-suites and test
against them with minimal overhead using “unit” libraries. We
acknowledge the parallelism does not extend completely. User-
studies remain reliant on participant engagement and are thus
unlikely to be used as freely and often as unit-testing. Nevertheless,
we see value in borrowing those aspects that do translate and can
benefit visualisation evaluation.

Finally, we note that unit testing and visualisation user studies
bear resemblance in their focus on evaluating relatively low-level
functionality robustly. They both occupy distinct roles among a
wider array of testing options and typically are not meant to substi-
tute methods that evaluate systems more holistically (e.g., system
or usability testing in software development; insight-based and
longitudinal engagement with users).

2.5 Building on literate visualisation and
Observable notebooks

Literate visualisation [54] and visualisation notebooks more gen-
erally [29], rely on combining the narrative clarity of written lan-
guage with the expressive power of visualizations as a means to
discuss and justify visualisation designs or to create compelling
data stories. Observable notebooks are a concrete technological
embodiment of this paradigm. They allow users to combine data,
code, visualisations, and explanatory text in a single document to
integrate visual data analysis and storytelling. By extension, we call
for “literate” user studies and visualisation data+tasks test-suites
that combine explorable, ready-to-use study materials and design
specifications with narratives that justify their choice and explain
their use (Section 4). While the principles around our approach
are technology-agnostic, we exemplify how it can work within the
Observable environment and show that Observable’s support for
notebook development and extension – versioning, forking, tracing,
and permission management – can be readily harnessed to support
the creation of user studies that are easier to extend and reproduce
(Section 5).

2.6 Other efforts to evaluate data visualisations
Finally, we note efforts to reduce the need for user-driven evalu-
ation altogether. Wu et al. [55] review the use of AI to evaluate
visualisations based on design guidelines or models trained on avail-
able empirical data and conclude that studies are still indispensable
to the evaluation of complex and novel visual encodings. Heuristic
approaches [51] rely on expert designers’ assessment of a visual-
isation’s expected effectiveness. Data saliency models attempt to
capture the working of people’s visual perception and predict the

effectiveness of visual encodings [35]. More relevant to our work
are methods that rely on inspection of visualisation code or design
such as algebraic visualisation evaluation and linting. They target
similarly low level data-reading tasks as quantitative user studies
do and also draw on parallels to software development. Visualisa-
tion linting [36] relies on close code/visualisation inspection and
recommendations for improvement while algebraic evaluation [28]
is in some ways similar to formal program verification [16] in that
it attempts to use rules to determine the effectiveness of a visualisa-
tion/program without actually running it. We argue that linting and
algebraic visualisation evaluation, while useful, cannot substitute
the need for actual user evaluation data, especially in more complex
usage scenarios; e.g. those involving interaction.

3 Declarative visualisation user studies
Stimuli typical of visualisation studies can be thought of as a com-
bination of data, visual encoding, and tasks. We show how
we can define these separately and assemble them flexibly into
different combinations (Section 3.1). This paves the way towards
describing user studies declaratively based on evaluated visuali-
sations, datasets, and tasks and associated testing strategies (e.g.
between or within participant testing; whether tasks are timed and
trained). We introduce a concrete declarative specification that
can capture a broad range of visualisation studies and a Javascript
VisUnit library that can interpret the specifications, translate
them into studies, and deliver them to participants (Section 3.2).
We validate these contributions in Section 3.4. We first fully repli-
cate two previously published studies [20, 43]. We then sample 49
representative visualisation user studies from TVCG and discuss
the degree to which VisUnit can replicate them.

3.1 Assembling visual stimuli from constituent
components

Visual stimuli are the backbone of visualisation user studies. Most
can be seen as combinations of a (a) visual encoding of some (b) un-
derlying data and (c) elements pertaining to a task that partici-
pants are asked to do. The latter may include task instructions,
annotations on the primary visualisation (e.g., highlighted marks
that task instructions reference), and mechanisms for answering.
Example stimuli are shown in Fig. 2. This delineation between
visualisation, data, and tasks aligns with conceptual models of
data visualisation design [40, 53] and efforts to develop task tax-
onomies [3, 11, 34, 45, 52, 56]. With a few exceptions, most visu-
alisation studies report on their stimuli and materials along these
three facets.

Studies typically expose participants to multiple ‘repeats’ (or
‘trials’) which are visual tasks of similar form but with different
content and answers. For example, Ghoniem et al. generate a new
random network for each repeat of the same task [19]. Okoe et
al.[42] asks participants to find paths between three distinct pairs
of nodes selected from the same network. Tory et al. [48] structure
multiple repeats of a spatialisation task around sub-regions within
a single large dataset.

VisUnit task can be defined using a parametric form that: (i)
can be defined independently from data the task may refer to and
visualisations it may be pertain to; and (ii) supports the creation of
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Figure 2: Examplar stimuli used in visualisation studies: (a) Okoe et al.’s stimuli emerge as combinations of different networks
shown with different encodings [42]. (b) Beecham et al. construct line-ups of synthethic colorpleth maps that are auto-
correlated [7]. Jianu et al. compare four different ways of encoding group information onto a given node-link diagram [25].

multiple repeats for the same task. Its design rests on insights from
work on task taxonomies, recognising that concrete tasks emerge
by instantiating generic ones (Amar et al.’s pro-forma tasks [3];
Roth’s operators [45]) into concrete data elements within a dataset
(Brehmer and Munzner’s inputs and outputs; Roth’s operands). Fig. 3
(upper-right) exemplifies the parametric form of a network task
asking participants to determine which of two highlighted nodes
has a larger degree (compare-degree). It includes its question to
participants and two elements relating to its parameterisation:

• A set of task inputs (or parameters). Giving values to those
inputs instantiates the task into different repeats. For ex-
ample, the prototypical task Find and select the node labeled
$0 (find-node) would be instantiated by replacing $0 with
different concrete node labels; the task Determine which of
the two highlighted nodes has more connections and select
it (compare-degree) would be instantiated by highlighting
different pairs of nodes in the visualisations (see Fig. 3).

• A set of task outputs or responses expected from partici-
pants. These may be inputs into graphical widgets, keyboard
interactions, or interactive changes to visualisation state. For
example, the tasks exemplified above require participants to
select their answers in the visualisation so their outputs are
selected network nodes. Multiple output are possible such as
quantitative answers accompanied by qualitative reflections
(see Fig. 8).

To create concrete visual stimuli, parametric tasks are then in-
stantiated into datasets, by picking concrete elements within those
datasets as values for a task’s inputs. Fig. 3 (bottom right) shows four
repeats of the compare-degree task instantiated with inputs cho-
sen from two different datasets; these were attached to the paramet-
ric task description. Concrete task stimuli can then emerge from the
combination of independent visual encodings (viewers), datasets,
and tasks and their instances. Fig. 3 exemplifies this: four distinct
stimuli were assembled from one viewer (a node-link diagram) en-
coding two datasets and highlighting two task instances (pairs of
nodes for a compare-degree task) for each of those datasets.

To achieve this in practice, VisUnit relies on viewers, datasets
and tasks to implement a set of interfacing conventions. For
example, all viewers that wish to interface with VisUnit need to

implement a loadData method (among a few others) which Vi-
sUnit would call when the study design asks for a new dataset
to be shown. For a viewer to be able to set-up a task, it needs
to implement ‘setters’ for its inputs and ‘getters’ for its outputs.
Concretely, the viewer that produced the stimuli in Fig. 3 had to
implement setHighlightedNodes() and getSelectedNodes() in
order to set up the compare-degree task exemplified. The benefit
of Javascript is that adding such methods to already implemented
resources is relatively effortless. VisUnit relies on calls to these
capabilities to piece stimuli together.

Finally, we find it useful to let tasks incorporate computation to
determine whether answers provided by a participant (the output)
are correct. As exemplified in Fig.3, the compare-degree task de-
scribed above can verify that the node selected by a participant is
indeed the more connected one and return an appropriate accuracy
measure.

3.2 Declarative study specifications
As discussed in Section 2, previous research found benefits to de-
signing studies using declarative specifications. Our declarative
form integrates elements from such work. For example, parametric
tasks in the context of declarative study designs were introduced
in EvalBench [2] and adopted inGraphUnit [41] and reVisIt [15].
Centering study design around study blocks that are arranged in
accordance to specified experimental designs and randomisation
strategies was used in GraphUnit, Touchstone2 [17] and reVisIt.
Additional similarities, in particular to reVisIt are discussed in Sec-
tion 6. The main innovation in VisUnit and its declarative form
stems from organising studies around viewers (visual encodingwith
interaction), datasets, and tasks and the benefits that this affords.

VisUnit study specifications start from factorial designs centered
around the three factors described above: viewers, datasets, and
tasks. Section ?? shows that variations of factorial designs form a
large part of visualisation studies. Fig. 4 (left) illustrates a VisUnit
declarative design in its simplest form. It captures a 2 viewer ×
2 dataset × 2 task design with all factors evaluated within par-
ticipants and viewer counterbalancing. The blocking hierarchy is
viewer→data→tasks (blocking : "vtd"). This means that participants
will complete all activities for the first viewer before moving to the
next. For each viewer, they will complete each task for all datasets
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Figure 3: Two visual repeats each for two different datasets (left) emerge from the parameterised task declaration on the right.
The task takes two HighlightedNodes as input and participants select a node as output (upper right). Two concrete pairs of
nodes are picked from each of two networks (demoNetwork and lesMis) as inputs for four tasks instances (lower-right). The
correct answer for each task instance is encoded into its accuracy function.

Figure 4: A declarative specification of a 2 viewers × 2 datasets × 2 tasks study, with all factors evaluated within participants
and counterbalanced for viewers (left), is translated by VisUnit into a study sequence (middle). VisUnit can then deliver this
to participants by sequentially assembling each ’stack’ of viewers (orange), datasets (yellow), and tasks (green) into a visual
stimulus (see Fig. 5). A small change in the declaration to the viewer evaluation strategy and the study’s blocking is seamlessly
translated into a new delivery sequence (right).

before moving to the next task. The two tasks included in the dec-
laration are of the form shown in Fig. 3 and include task instances;
the two viewers implement the interface methods mentioned in
section 3.1 but are otherwise basic Javascript implementations of
network visualisations. The datasets contain regular node-link data.

Fig. 4 (centre) shows the study sequence for this declarative
design – this is generated automatically by VisUnit from the declar-
ative specification. Since the testing of the viewers is counterbal-
anced, VisUnit produced distinct sequences for two participant

groups, each group starting with a different visualisation. The
benefits of the declarative approach become apparent when small
changes made to design specifications translate seamlessly to rela-
tively significant changes in the study delivery. For example, chang-
ing the evaluation strategy of viewers to between participants and
changing the blocking order to tasks first, completely rearranges
the study sequence as shown in Fig. 4 (right).
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Once study sequences produced, VisUnit can assemble the view-
ers, datasets, and tasks for each factor combination (stacked verti-
cally in Fig.4) into visual stimuli and deliver the study in order to
participants. VisUnit can collect participants’ raw responses, task
completion times, and accuracies computed with the help of the
tasks’ dedicated function.

This basic declarative specification can be extended to capture
significantly more complex study designs. Fig. 5 shows a fully func-
tional study constructed around the minimal factorial design dis-
cussed above but which was expanded to include training and mul-
tiple repeats for each task, introductions of visualisation methods,
pre- and post- questionnaires (e.g. visualisation expertise or partici-
pant demographics), color-blindness testing, and brief alerts to keep
participants informed about upcoming activities and progress. Key
principles of its declarative design are shown in Fig.6 and described
below:
Customising how a task is delivered: If a task is provided in the
format discussed in Sec. 3.1 then a single repeat is chosen from the
ones attached to the task. However, tasks can also be provided in
an expanded format to include:

• Number and choice of repeats: how many repeats of each
type of task are to be included and how they are picked from
all available repeats (e.g., in order or at random; whether
a participant can experience the same repeat in a different
task∗data combination or not).

• Training: whether tasks ought to be trained, with how many
training repeats, with what datasets and when they should
be trained (e.g., at the very start of the study or just before a
new visualisation is introduced).

• Estimated task duration: VisUnit can use this information to
estimate the total duration of a study (which is useful when
balancing number of conditions and repeats against partici-
pant engagement and fatigue) and to inform participants of
their progress through the study.

• Mark gateways tasks for which participants are required
to give a particular answer before they can continue the
study. For example, participants need to choose “yes” on the
consent page and pass a color-blindness test or else the study
will terminate.

Block tasks follow the same format described in Sec. 3.1. How-
ever, they are exempt from the factorial design and instead in-
serted into the study sequence before, after or between factorial
blocks. They would be inserted before (show:"before") or after
(show:"after") the main (factorial) study (block:"s") in the case
for study entry/exit questions such as consent processing, demo-
graphic questions, or requests for study-feedback (Fig.6). However,
block tasks can also be inserted at different points before, after,
or between viewer, dataset, or task blocks (block:"v"|"d"|"t").
These would typically be tasks connected to those blocks. Fig. 6
shows the use of a rate vis task designed to be introduced after
the last showing of each viewer. Again, the benefit of positioning of
block tasks relative to the main factorial sequence is that a change
to the factorial design leads to an automatic reconfiguring of all
activities at no cost to the experimenter.
Parametric and non-parametric tasks. A typical task is para-
metric – it has inputs (data elements) and outputs (answers) – and

interfaces with data visualisations. However, tasks do not need to
have inputs or outputs. Tasks with no inputs are non-parametric
single instance tasks. They include tasks that apply to the whole
dataset (e.g. “estimate the total number of nodes in the network”)
or to a visualisation (e.g. the “rate this visualisation“). Tasks with
no outputs are likely to simply provide information. For example,
an announce demographics task might simply tells participants
that demographic questions will follow. Finally, tasks with no
viewers rely on task instructions alone and do not need to be used
in conjunction with a visualisation or dataset. The “demographic”
askAge task in Fig.6 is an example of this.

Finally, we note that VisUnit ‘visualisations’ can be any HTML
+ Javascript implementations: D3, Vega and other SVG or canvas
visualisations; collections of pre-rendered static images displayed as
HTML content; simple as well as complex web-pages built around
HTML components (e.g., based on React). In the VisUnit model their
implementation would load data and revolve primarily around eval-
uated encodings and interaction designs. However, in practice their
implementations can be tailored flexibly to support designs and
deliveries that go beyond the default VisUnit model This provides
flexibility in the range of studies that can benefit from VisUnit use.

The studies featured in Fig. 4 and 5 can be browsed at https:
//observablehq.com/@rdjianu/visunit-tutorial.

3.3 Deploying VisUnit studies
VisUnit provides the infrastructure to deliver study sequences
(parsed from study specifications) to participants. It assembles stim-
uli by combining visualisations, dataasets, and tasks, lets partici-
pants advance through the study, and collects their responses. The
latter include raw participant responses, accuracies computed in
accordance with task specifications and those responses, and task
timing.

VisUnit does not provide storage for studies or results. VisUnit
studies need to be deployed using third-party web hosting services
or as part of Observable notebooks as discussed in Sec. 4. Similarly,
VisUnit makes new participant responses available as they advance
through their studies, but experimenters are expected to provide
callback implementations that store these responses into third-party
databases.

3.4 Validation
Through replication: We validate VisUnit first by replicating two
studies comparing the effectiveness of node-link diagrams and ad-
jacency matrices for displaying network data. Ghoniem et al.’s [20]
seminal study tested the two visualisations on synthetic networks
that varied in size and density (but with overall small network size)
and seven types of tasks inspired by Lee et al.’s taxonomy [34].
The study was conducted in-person within participants. Okoe et al.
later extended this research to include two real, larger networks,
fourteen more diverse tasks – including network clustering and
memorability ones — and more interactive visualisations [42, 43].
They conducted their study online with Amazon Mechanical Turk
(AMT) participants.

We first sourced the data used in the two experiments. We gener-
ated multiple random instances of Ghoniem et al.’s 9 categories of
graphs (20, 50, 100 nodes × 0.2, 0.4, 0.6 densities) and sourced Okoe

https://observablehq.com/@rdjianu/visunit-tutorial
https://observablehq.com/@rdjianu/visunit-tutorial
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Figure 5: A fully functional study parsed by VisUnit from a declarative specification shown in Fig. 6. It includes, roughly
in order (left to right): consent elicitation; demographic questions; testing for color-blindness; trained tasks evaluated over
multiple repeats; qualitative questions; and bridging information. Viewers (orange), datasets (yellow) and tasks (green) are
combined into visual stimuli exemplified in the bottom half of the image and delivered to participants. VisUnit would collect
raw participant responses, task time, and computed accuracy when appropriate.

et al.’s ingredients (258 nodes, 1090 edges) and airports (332 nodes,
2126 edges) networks. We then defined parameterised VisUnit spec-
ifications for all of Ghoniem et al.’s 7 tasks and for 10 of Okoe et al.’s
14 ones. We skipped their 4 network clustering tasks because, even
though straightforward to implement in VisUnit, showing them
required more complex visualisations, the development of which
was beyond our scope. We kept the two memorability tasks as they
introduced complexity in study sequencing: they refer to questions
that participants see earlier in a study delivery. We then generated
repeats for all task×dataset combinations by choosing concrete
data elements as inputs for the parameterised tasks. We assembled
datasets, tasks and repeats in a network test-suite available here:
https://observablehq.com/@rdjianu/network-test-suite. Finally, we
implemented node-link and adjacency matrix visualisations with
interaction sets to match those used in the replicated studies.

We then assembled the studies using VisUnit’s declarative speci-
fication. Ghoniem et al.’s study was relatively straightforward to set
up – within participant evaluation of all factors, counterbalanced
for visualisations, and with visualisation→network→task block-
ing. One particularity was in the ordering of the 9 datasets: the 3
sparsest networks were shown before the 6 denser ones but within
theses two category the order of graphs was random. VisUnit does
not support this by default but can show datasets in a given order.
Dataset ordering was thus computed separately and fed into the

study’s VisUnit specification. Okoe et al.’s setup was a bit more com-
plicated as tasks were divided into three groups; tasks in a group
were evaluated within participants but groups themselves between
participants. Again, VisUnit does not support task grouping but
the setup could be implemented as three different studies, one for
each task group, with tasks in each study evaluated within partic-
ipants. To conclude, both studies could be designed as originally
delivered, with minimal extraneous effort. They can be explored at
https://observablehq.com/@rdjianu/ghoniem-network-study and
https://observablehq.com/@rdjianu/okoe-replica.
By surveying existing studies: To get a more general sense of
the range of studies VisUnit supports, we sampled 49 representative
visualisation studies and imagined whether and how they could be
implemented with VisUnit. Fully implementing the studies would
not have been feasible. We searched SCOPUS for papers published
in Transactions on Visualization and Computer Graphics (TVCG)
between 2000 and 2023 with keywords ‘user study’ and ‘evaluation’
and 10 citations or more. We read their abstracts and removed
papers that did not include quantitative user studies or evaluated
visualisations in Virtual or Augmented Reality, on mobile or large
displays, or in collaborative contexts. Our rudimentary keyword
searchmissed a few studies known to us andwe recognise that there
are many other venues where visualisations studies are commonly
published. Nevertheless, we judge our sample to be representative
of typical visualisation studies.

https://observablehq.com/@rdjianu/network-test-suite
https://observablehq.com/@rdjianu/ghoniem-network-study
https://observablehq.com/@rdjianu/okoe-replica
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Figure 6: Complete declarative specifications let users cus-
tomise how tasks are delivered (e.g., their number of repeats
and whether they are trained) and include tasks that are in-
serted before, after or between factorial blocks.

We found that 35 studies (71%) we sampled had a direct im-
plementation in VisUnit (A); 5 studies (10%) required minor ad-
justments in mapping authors’ designs and study presentations
to the VisUnit structure but could by-and-large be described in
VisUnit (B); 9 (18%) were not VisUnit compatible (C). Of such un-
supported studies, four followed a staircase design (e.g., [22]); two

of them evaluated stimuli that were not strictly data visualisations –
videos and GIFs; in the remaining three, participants’ performance
was factored dynamically into the choice of stimuli. For example,
Boukhelifa et al. gave their participants more or fewer experimental
blocks depending on their performance[10].

Among studies requiring minor adjustments (B), the most no-
table issue was a non-straightforward mapping between authors’
evaluated factors and the three default VisUnit ones –viewers,
datasets, tasks. For example, Borgo et al. describe their study on
visual embellishments [8] as having two tasks, A and B, with the
former having four ‘sections’, each containing 9 embellished and
9 plain visual stimuli. We mapped ‘sections’ to VisUnit tasks as
they were meant to capture different kinds of activities. We mapped
‘stimuli’ to nine repeats drawn from a dataset shown with two
visualisations. Moreover, the visualisation supplied into VisUnit
would need to be engineered to permanently display the author’s
distractor task B. These adjustments would let VisUnit deliver the
study in its original form. Lack of ‘study flow’ that fits the VisUnit
model was another reason. For example, two studies opted for ‘semi-
factorial’ designs: some combinations of factors were included but
some not. This can be achieved by letting VisUnit design the study
as full factorial, then removing unwanted conditions from resulting
study sequences.

4 "Literate", reusable test-suites and studies
4.1 Data+task test suites
The ability to decouple visualisations, datasets and tasks and re-
combine them flexibly paves the way for data+tasks test-suites de-
veloped as stand-alone resources to support the design and evalua-
tion of visualisations pursued separately. Such test-suites could be
constructed to capture tasks specific to certain types of data (e.g.,
network, multi-dimensional, spatio-temporal, geographic) or to par-
ticular domains and applications (e.g. transport analytics, genomics
and proteomics, finance and trading, urban decarbonisation).
How? Consider the compare-degree task in Fig. 3. Bundling it
with the two datasets it references – demoNetwork and lesMis – pro-
vides all information needed to evaluate four variations of this task.
VisUnit would be able to set this task up and collect user responses
from any (Javascript) network visualisation that lets it highlight
nodes (implements setHighlightedNodes) and retrieve nodes that
users select interactively (implements getSelectedNodes).

This task is one listed in Lee et al.’ taxonomy of network tasks
and was used in multiple visualisation studies [6, 19, 25, 43]. We
can similarly define other tasks featured in the taxonomy or popu-
lar in network evaluation (e.g. findNode, findCommonNeighbour,
shortestPath) and instantiate them in our two datasets. We can
include additional datasets with different sizes and topological prop-
erties. Generally, we can choose data, task presentations, and re-
peats with evaluation requirements in mind: that they cover how
networks are used in practice; reduce confounding factors; and af-
ford meaningful answers. Finally, we can design task presentations
such that highlighting nodes and retrieving selected nodes are all
the capabilities network visualisations need to set the tasks up.

The result would be a comprehensive data+task test-suite to sup-
port the evaluation of network visualisations. To be tested, such
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visualisations would simply need to implement the two capabil-
ities referenced by the suite’s tasks (setHighlightedNodes and
getSelectedNodes). VisUnit would then be able to connect them
to the test-suite with minimal overhead. Such test-suites could
be developed to capture the particularities and analysis needs of
specific types of data, applications, or domains.
Why? Developing such test-suites as research artefacts in their own
right has several benefits. First, they would reduce the overhead of
conducting user studies, help avoid duplication, and supports reuse.
This is significant as Quadri et al. cites lack of materials as a major
roadblock to reuse and replication [44]. Second, it would focus the
effort, expertise, and scrutiny needed to develop test-suites that are
comprehensive, ecologically valid, meaningful and evolving. While
sourcing datasets and tasks to evaluate against typically forms a
significant part of a user study [44], it is still just one of several
activities involved. As such, the efforts that go into it, as well as
the scrutiny it receives, are typically balanced against a study’s
other activities and contributions. Suboptimal testing materials can
thus slip through the research pipeline. Third, they can improve
evaluation consistency and support the incremental development
of visualisation knowledge. Using a consistent set of tasks and
data and presentation to participants would make the results of
subsequent user studies more easily relatable.

Finally, data+task test-suites complement existing work on task
taxonomies. By providing fully fleshed-out task exemplars that
can be readily browsed and used in evaluation, they effectively
instantiate task taxonomies into ‘live’ representations that serve
similar purposes – design, evaluation – but in more tangible ways.

4.2 Literate test-suites and studies
We advocate that data+task test-suites are disseminated as com-
putational notebooks, using “literate” design paradigms [29, 54].
This can bring together all ingredients needed for their scrutiny,
interpretation and reuse: testing materials, visual demonstrators,
and the reasoning behind their choice and design.
How? Observable (observablehq.com) is a notebook environment
designed for visualisation and can readily support this. Data and
tasks developed within an Observable notebook can be easily con-
nected to visualisations and imported into other notebooks for
reuse; can be browsed and explored as raw data, programming con-
structs or visualisations; and are declared in Javascript, currently
the lingua franca of visualisation. Narratives can be included in-situ
as markdown text to justify why chosen materials are ecologically
valid, sufficiently diverse, and how their setup avoids confounding
factors.

Studies as awhole can follow a similar approach. First,Observable
can be used to store most study ingredients and outputs: materi-
als (either embedded directly or imported from test-suites); their
declarative designs; demonstrators of participant delivery; and,
once complete, participant responses and their analysis. These can
be combined with narratives justifying experimental design; se-
lection of evaluated visual encodings, datasets, and tasks; inter-
pretation of results; and conclusions drawn. The ease of changing
declarative studies and observing the effects on participant deliv-
ery (Section 3.2), lets researchers explore and showcase different
evaluation approaches explicitly (e.g., within vs. between testing,

number of repeats) to support their methodological choices. This
is similar to Wood et al.’s branching narratives [54]. Finally, study
flows developed and showcased as part of an Observable notebook
can be easily embedded in stand-alone web-pages for delivery to
participants.

Observable provides native capabilities for reproducing and ex-
tending user studies and test-suites through version locking, ‘fork-
ing’ and provenance tracing. Test-suites can be extended over mul-
tiple iterations to enrich or tailor their capabilities. For example,
a basic test-suite for network visualisation could be forked into
extended versions to include attribute-based tasks, dynamic net-
works, or domain-specific network data and tasks. Similarly, an
existing study could be extended by ‘forking’ it to test different
visual encodings or to alter its experimental design. We exemplify
these scenarios in Sec. 5.
Why? Overall, the current practice of disseminating user study
research and results across many platforms including academic pub-
lications (for methodological narratives and result summaries), data
and code repositories such as Github or Figshare (for study materi-
als and raw results), and online hosting services (for exemplars and
study delivery) makes it difficult to interpret them holistically. Inter-
active access to all a study’s information together and in the open
can answer calls for more transparent reporting, dissemination and
reuse [21, 30, 44].

4.3 Validation
An exemplar test-suite: To demonstrate the form and utility of
data+task test-suites we developed a fully functional one for net-
work visualisation: https://observablehq.com/@rdjianu/network-
test-suite. It was built primarily around materials used in three
user studies on network visualisations, those of Ghoniem et al. [20],
Okoe et al. [43], and Di Giacomo et al. [14]. It contains Ghoniem
et al.’s 9 types of random graphs of different sizes and densities,
Okoe et al.’s ingredients and airports networks, and Di Giacomo et
al.’s weavers, ecoli, and dblp datasets. It also includes 19 different
tasks, most of which replicate those evaluated in the three studies
above, and repeat instances of these tasks onto the datasets. All
tasks include logic necessary to compute the accuracy of partici-
pant responses and rely on just two visualisation capabilities to be
available: highlighting and selecting nodes. Finally, the test-suite
is augmented with instructions for use and narratives justifying
the choice and design of materials. The latter include discussions
around the representativeness of datasets and the ecological valid-
ity of tasks, their links to taxonomies such as that of Lee et al. [34],
and how their design minimises confounding factors.

The result is a test-suite that can support the evaluation of net-
work visualisations. It can be readily used to replicate the three
studies above with minimal effort as well as to conduct subsequent
studies. As long as tested visualisations implement node highlight-
ing and selection, VisUnit can connect them to the test-suite, eval-
uate them against its data and tasks, and report back accuracy
measures. Additionally, the test-suite acts as an instantiation of
Lee et al.’s network task taxonomy. Users can browse concrete task
examplars across a range of tasks to understand their challenges
and imagine visualisation designs to support them better.

observablehq.com
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An exemplar literate study: We used this test-suite to repli-
cate Okoe et al.’s study (described in Sec. 3.4) in ‘literate’ note-
book form: https://observablehq.com/@rdjianu/okoe-replica. We
imported datasets and tasks from the test-suite and justified their
inclusion into the study (e.g., choice of real datasets over synthetic
ones; why networks are representative of real-life networks more
broadly; ecological validity of tasks). Similarly, we imported two
interactive (Javascript) network visualisations and justified their
interaction sets. The notebook was set up to allow the study’s ma-
terials (datasets, tasks, visualisations) to be explored interactively,
helping to contextualise the selection and design narratives pro-
vided alongside.

We then combined these materials into a VisUnit study design
specificationwhichwe linked (using VisUnit utilities) to a schematic
view of the study delivery as well as a view of the study as delivered
to participants. Through these links, the study’s specification (and
any changes to it) is seamlessly reflected into the other two views,
helping readers observe directly the impact of design choices on
study-delivery. Moreover, we showcase the journey towards the
study’s final presentation as an iteration over alternative designs
that were considered (and some abandoned) along the way. As
illustrated in Fig. 7, each alternative design is discussed, its specifi-
cation can be explored, and its participant-facing delivery can be
tried in-situ. The ability to directly experience the drawbacks of
alternative designs (rather than just imagining them) strengthens
the case for the study’s ultimate delivery. This mode of alterna-
tive design exploration bears similarities to Wood et al.s branching
design narratives [54].

Finally, the notebook cells showcasing the study are directly
exported (as iFrames) onto separate websites ready for delivery
to participants. Participant responses are collected into a database
and looped back into the notebook where they can be explored
in context with the study design. Thus, the study’s materials, de-
signs, delivery, and results are brought together and in the open for
inspection and reuse.

5 Use case
We validated individual contributions in Sections 3.4 and 4.3. How-
ever, their main benefits stem from how they can impact visualisa-
tion evaluation holistically, by supporting study reproduction and
extension workflows. We highlight these benefits via a fictional
use case that builds on a sequence of three real studies. The
first two – (S1) Ghoniem et al.’s study on node-link (NL) diagrams
vs. adjacency matrices (AM) and (S2)Okoe et al.’s subsequent exten-
sion of it – were introduced in Sec. 3.4. The third is (S3) Di Giacomo
et al.’s recent evaluation of hybrid network visualisations that blend
node-linking, matrices, and chord diagrams [14]. They evaluated six
tasks on three real-life networks with online participants recruited
from universities and research lists.We re-imagine this series of
studies with VisUnit:
S1: The authors design a test-suite with 7 tasks and 9 synthetic net-
works of different sizes and densities. They then create Javascript
node-link and adjacency-matrix visualisations and use VisUnit to
assemble everything into an Observable “literate” study. They opt
for within participants evaluation of the visualisations (counterbal-
anced), datasets and tasks and motivate their design choices (e.g.,

Figure 7: Our literate replica of Okoe et al.’s study captures
the evolution of the study’s final design as a sequence of
iterations. Each iteration is justified and its corresponding
delivery is shown and can be experienced interactively. The
figure illustrates the first and fourth iteration.

https://observablehq.com/@rdjianu/okoe-replica
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within participants designs are immune to differences in individual
participants). Once the study complete, they include de-identified
data, result analysis, and interpretation on their study’s Observable
notebook. They distribute this along with their publication, allow-
ing reviewers to explore their study-design and delivery first hand
and to interpret results in context. It also hands future researchers
the data and details to extend it.
S2: The authors decide to evaluate more interactive versions of the
two network visualisations on real rather than synthetic data and
with more tasks. They fork the S1 test-suite and add two datasets to
it, one capturing ingredients commonly used together in recipes and
another of well-connected airports. They also define and include
6 new tasks to the test-suite. Along with the data and tasks, they
provide in-situ justification of their inclusion (e.g., why real data is
preferable to synthetic one; why datasets and tasks are representa-
tive). To complete the test-suite expansion, they need to provide
repeats for all task × dataset combinations. This means repeats
for new S2 tasks on new S2 datasets; but also for old S1 tasks on
newly added datasets and for new S2 tasks on the older synthetic
datasets. Upgrading the test-suite involves added effort beyond S2
goals but it leads to the creation of a more complete test-suite that
now includes both synthetic and real data as well as more tasks.

The design of the study itself is more complex as it involves more
tasks and repeats. Moreover, the authors plan to recruit Amazon
Mechanical Turk participants who do not engage with long studies.
So, delivery needs to be short. Using VisUnit’s timing estimate,
the authors conclude that a fully within participant setup would
take about an hour. To half this time, the opt for evaluating the
two visualisations between participants instead. They also carefully
balance the repeats of each task: more for short tasks, fewer for
longer tasks. However, studies are still too long. They ultimately
decide on a mixture of between participant and within participant
evaluation of tasks.

VisUnit supported this iterative design because changes were
quick to make and their impact on study delivery immediately
evident. The ability to explore alternative designs gave authors con-
fidence that they converged on a study fit for purpose. The authors
describe the evolution towards their final setup in an Observable
notebook as a sequence of alternative designs (in both declarative
and participant-facing forms) and justifying narratives. Similarly to
S1, authors publish de-identified data and result analyses. Together,
the information helps reviewers gain a holistic view of the study
and its findings.

Finally, S2 authors wish to compare their results to those of S1,
to understand the impact of added visualisation interaction or of
testingwith real rather than synthetic data. However, the significant
differences in how the two studies were delivered – S1: within
participants, in person university students; S2: between participants,
AMT online users – complicates this. The authors decide to re-run
part of the S1 study in its original form but with AMT participants.
Setting this up takes just under an hour as the test-suite contains
all necessary materials and VisUnit puts everything together. The
replication facilitates the desired comparison and new findings.
S3 aims to contribute further with an evaluation of visualisations
that blend node linking with matrices. The authors decide to reuse
S2’s test-suite. The ingredients dataset has an appropriate size for
their envisioned study, but the airports network is too large. As

using a single networkwould hurt their study’s generalisibility, they
include two additional datasets, an ecoli co-expression network and
a dblp co-citation one. They decide to use six tasks already available
in the test-suite. The inclusion of new datasets means that task
repeats need to be provided for all tasks on these datasets. Overall
the reuse of tasks and one dataset saved the authors significant
time and their effort led to a more complete network evaluation
test-suite. Moreover, it means their experimental setup and delivery
overlaps significantly that in S2. They can thus relate results to
those obtained by S2 and discuss how differences can arise from
the slight difference in participant recruitment (students over AMT
users).
Summary:When compared to the original research sequence of
three independent user studies that each sourced its study mate-
rials separately, the imagined use of VisUnit would have resulted
in: limited savings for the authors of the initial S1 study; but, a
significant reduction in the overhead of conducting S2 and S3; a
new, comprehensive network visualisation test-suite to support any
future studies; and additional research insights – S2: comparison of
in-person vs. AMT delivery; S3: comparison of S3 and S2 results.

6 Discussion
Limitations of the declarative form: VisUnit structures studies
around three default factors: visualisations, datasets, and tasks. The
benefit is a straightforward mapping from conceptual study design
to a model of assembling visual stimuli from granular components
– visualisations show datasets and set up tasks – that fits princi-
ples of visualisation design and implementation (see Section 3.1).
As discussed in Section 3.4, many studies are indeed structured
around these three factors. However, some are not (e.g., Borgo et
al.’s study [8]). In such cases, VisUnit forces authors to map their
conceptual factors to its three default ones.
Beyond quantitative studies: While VisUnit was designed with
quantitative studies in mind, it can also support qualitative or mixed
methods studies. First, tasks can be designed to accept free form
answers (without an objectively correct response) and even mul-
tiple answers. A task might thus involve a quantifiable response
(e.g. a number, a selection) but also qualitative reflection about how
the task was performed. Moreover, while VisUnit doesn’t itself cap-
ture interaction, voice or gaze data, its interfacing mechanisms lets
visualisations capture it themselves and return it to VisUnit as com-
ponents of a task’s answer. Second, VisUnit tasks can be designed
to capture not just keyhole data-reading tasks, but also more elab-
orate data analysis scenarios, perhaps with explicit grounding in
domain problems. Fig.8 exemplifies the definition and presentation
of a relatively complex, domain specific task with multiple outputs
- including a selection on the visualisation, a multiple choice se-
lection, qualitative self-reflection, and interactions logged by the
visualisation.
Beyond Observable: We advocate that studies be designed and
disseminated as visualisation notebooks to support interpretation,
scrutiny, and reuse and show how Observable can support this.
However, we also distribute VisUnit as a stand-alone library to
support studies that need to be created outside the Observable
ecosystem. Moreover, we note that Observable notebooks can be
exported as stand-alone resources to be stored or pre-registered
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Figure 8: Example of an open ended VisUnit task with mul-
tiple outputs to support testing of visualisations for decar-
bonisation planning.

on other platforms (e.g. Figshare) if needed. Ultimately, while Ob-
servable provides a convenient platform to implement ‘literate’
test-suites and studies, the same principles could be implemented
in regular web setups.
Comparison to reVisIt: reVisIt provides capabilities closest to
VisUnit. A series of design principles are also shared: reVisIt al-
lows parametric visual stimuli that can serve similar purposes to
VisUnit parametric tasks; and VisUnit gateway tasks are similar to
reVisIt interruption blocks. We have not formally compared VisUnit
against reVisIt, but our intuition from validation efforts described
in Sec. 3.4, is that reVisIt’s declarative language may in fact support
a few more designs than VisUnit. On the other hand we point out
that this is because reVisIt’s specification language is at a lower
level of abstraction. For example, its specification and placement of
study-blocks is highly recursive and it cannot combine factors as

VisUnit can; adding task repeats to a study is done one at a time
and programmatically (compared with a change of parameter in
VisUnit); and it doesn’t have support for automatic task training.
As such, while expressive, we think that reVisIt specifications are
longer, and more difficult to design, change and interpret.

Beyond these differences, we feel the main benefit of VisUnit is
the explicit decomposition of studies around visualisations, datasets
and parametric tasks and the natural delineation of reusable data+task
test-suites that this inspires. reVisIt provides support for parametric
visual stimuli and we think this would be sufficient to implement
a form of basic reVisIt test-suites. However, reVisIt specifications
are more monolithic so ‘importing’ separately defined data and
tasks into them is less natural than in VisUnit. Moreover, we see
our research as going beyond a system for the development and de-
ployment of user studies: our contributions (iii) and (iv) are to the
visualisation evaluation ecosystem as a whole and they complement
work on task taxonomies.
Guiding study design: Through declarative specifications, study
design choices with known implications become salient and explicit.
This facilitates the provision of study-design guidance and opens
the way to narrative design schemas suggested by Wood et al.[54].
Study designers could be prompted to consider the implications
of choosing between a within and between participant setup and
provided with information to support their decision. Along with
the ability to more easily explore alternative design options, this
could lead to studies better fit for purpose.
Default result analyses: Having a formal, declarative study spec-
ification paves the way to recommending default result analyses
that match the study design declaration. For example, information
on whether independent variables were tested between or within
participants, along with preliminary tests of data normality, would
inform the type of statistical testing needed (e.g. paired t-tests vs.
independent t-tests; Wilcoxon rank-sum vs. Wilcoxon signed-rank),
and the need for post-hoc testing. While not excluding the possi-
bility of more nuanced, bespoke analysis of raw participant data,
default statistical analyses and visualisation of collected data that
are aligned with study design would make user studies more acces-
sible to those who lack expertise in numerical methods.
New opportunities: The ability to create and deploy user stud-
ies within hours once test-suites assembled, without the need for
specialised expertise, can broaden the use of quantitative user eval-
uations. First, rather than predominantly a way to validate an es-
tablished visualisation technique or a finished design, lightweight
quantitative evaluations could be integrated within the design process
to help developers choose between alternative designs, similar to
how A/B testing is employed in website design. Second, the ability
to change design declarations and immediately observe how these
are reflected into user study sequences and result analyses can help
support the teaching of user research methods.

7 Conclusion
We describe a way of specifying the design of visualisation user
studies using simple declarative forms and translating them effort-
lessly into complex participant-facing studies. This encourages the
exploration of study design alternatives and reduces the overall
overhead of conducting user studies. An important innovation of
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our declarative specification is that it lets visualisations, datasets,
and tasks underlying studies to be parameterised and defined sepa-
rately from each other. This paves the way for the development of
independent data+task test suites for particular data types, appli-
cations, or domains and reusing them across studies that evaluate
the visual designs meant to support them. They can lower the over-
head of running user studies, support reproducibility, and their
consistent use can lead to studies with more comparable outcomes.
Finally, we advocate for the development of test-suites and studies
as visualisation notebooks that bring together and in the open all
ingredients necessary for study delivery, scrutiny, and dissemina-
tion. We show, with a use case, how embracing these methodologies
can lead to more effective, transparent, and cohesive visualisation
evaluation.
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