
              

City, University of London Institutional Repository

Citation: El-Din, A. E. T. S. (1982). On the possibility of a Lagrangian derivation of 

nonsingular equations for gravitational field.. (Unpublished Doctoral thesis, The City 
University) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34920/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ON PO^IBIFIOy OF A FAGRANGXAN

DERIVATION OF NON^INGllFAR EQUATIONS

FOR THE GRAVITATIONAF FIFED

BU

AFI EF-TAHIR SHARAF

EF-DIN

A- THESIS SUBMITTED FOR THE DEGREE OF

doc tor  of  mcosopay

THE DEPARTMENT OF MATHEMATICS

THE CITy HNIVERSITy, CONDON, ENGFAND

DECEMBER, 1982.

1



CONTENTS

Page 

ACKNOWLEDGEMENTS .......................................................... ]Q

DECLARATION ...................................................... ............ U

ABSTRACT ................................................................... 12-

PART _I Synopsis ......................................... 13

CHAPTER ZERO

INTRODUCTION .......................................................... 14

(O.O) On Einstein's Theory of General Relativity 14

(0.1) Advantages and Disadvantages of Einstein’s

Model ................................................................... 16

(0.2) Modifications of Einstein's Model ................ 17

a - Limiting Curvature Theory ..................... 17

b - Kilmister-Yang Model ................................ 1&

c - Lagrangian Approach to Nonsingular

Gravi ty.......................................................... 12

d - A Model with Complex Curvature .............. 19

(0.3) Duality Between Geometry and Gravity ............. 19

(0.4) Modification or Renovation ............................... 21

(0.5) Nonsingularity and Quantizability ............. 22

(0.6) Presentation of the Thesis............................... 24

(0.7) A Novel Approach ........................................ 26

CHAPTER ONE

The Gravitational Field and the Theory of General

Relativity ................................................................... 31

(1.0) Historical Background ........................................ 31

(1.1) Space and Physics ......................................... 31

2



Page

(1.2) The Principle of Equivalence ...................... 3Z

(1.3) Riemannian Geometry ........................................ 35

(1.4) Metric and Curvature Tensors ...................... 36

(1.5) The Principle of General Covariance ............. 43

(1.6) EINSTEIN'S EQUATIONS FOR GRAVITATIONAL

FIELD ................................................................... 44

(1.7) The Variational Principle ............................... 49

(1.8) Conclusion .......................................................... 55

CHAPTER TWO

The Gravitational Theories and Weak-Field

Gravi ty ................................................................... 56

(2.0) GTR and its Competitors ............................... 56

(2.1) The Viability of a Gravitational Theory ... 56

(i) Agreement with Observation and

Experiment .................................................

(ii) Correct Newtonian Limit ...................... 57

(iii) Being Relativistic ...............................

(iv) Completeness ........................................

(v) Self-Consistency ................................ 57

(2.2) Metric and Non-Metric Theories ...................... 5§

- Definition ................................................. 5$

- The Foundational Experiments ...................... <60

- (a) EOTVOS EXPERIMENT ................................ 60

WEAK PRINCIPLE OF EQUIVALENCE ............. 61

SCHIFF CONJECTURE ............................... 61

- (b) RED SHIFT EXPERIMENT................................ 6 |

3



Page

THE UNIVERSALITY OF GRAVITATIONAL RED-SHIFT 62

Belintanfe-Swihart Theory of Gravity ... 63

(2.3) Parametrized Post-Newtonian Formalism ... 65

- THE SUPER METRIC THEORY ........................................ 65

- THE PARAMETRISED POST-NEWTONIAN PARAMETERS ... 66

- THE STRONG EQUIVALENCE PRINCIPLE ...................... 66

(2.4) Classification of Metric Theories of Gravity 69

- Conformally Flat Theories ........................................ 70

- The Stratified Theories with Conformally Flat Space

Slices ................................................................... 71

(2.5) Brans-Dicke-Jordan Theory ............................... 72

(2.6) Summary and Critique ........................................ 76

(2.7) Concluding Viewpoint ........................................ 7$

CHAPTER THREE

Gravitational Equations ........................................ 30

(3.0) Solutions of the Gravitational Field Equations

(3.1) Solution of Einstein Free-Field Equations ... 82

a - Static Isotropic Metric ...................... 82

- The Schwarzschild Metric ...................... 85

b - Axially Symmetric Metric ...................... 86

- The Kerr Metric........................................ 87

(3.2) Post-Schwarzschild Metric ............................... 89

(3.3) Application of Schwarzschild Solution to

Solar System's Gravitational Phenomena ... 92.

1. PRECESSION OF THE PERIHELIA OF THE PLANET 94

2. DEFLECTION OF LIGHT BY THE SUN ............. 95

4



Page

3. RADAR ECHO DELAY ........................................ 9 7

4. PRECESSION OF ORBITING GYROSCOPES ... 99

5. THE GRAVITATIONAL RED SHIFT...................... 1OQ

(3.4) The Schwarzschild Singularity ...................... 1O£

(3.5) Gravitational Collapse and Black Holes ... 106

- BIRKHOFF THEOREM ................................................. W

- COLLAPSE OF A MASSIVE STAR ............................... 107

- HORIZONS AND BLACK HOLES ........................................ 108

(3.6) On the Penrose-Hawking Singularity ............. Ill

- THE SINGULARITY THEOREM ........................................ 113

- THE SINGULARITY AND THE REALISTIC COLLAPSE ... 115

(3.7) Singular and Non-Singular Gravity ............. 117

- Discussion and Critique ........................................ 117

CHAPTER FOUR

Generalized Theories of Gravitation and Strong-Field

Models   121

(4.0) Modification of General Relativity ............. 121

(4.1) Generalized Gravitational Models ............. 122.

(4.2) Theories with General and Nonlinear Lagrangian 123

a - ELECTROMAGNETIC ANALOGY OF GRAVITY ... 123

(i) General Quadratic Lagrangian ............. 126

(ii) Lagrangian Quadratic in Scalar Curvature

Alone.......................................................... 128

b - HILBERT ANDPALATINI VARIATIONS ................ 129

c - GENERALIZED EQUATIONS OF THE GRAVITATIONAL

FIELD ........................................................ 131

5



Page

(i) Lanczos Variation ............................... 132

(ii) Lanczos Generalized Field Equations ,138

(4.3) Theory with a nonlinear Lagrangian and a

Limiting Curvature ........................................ 140

(4.4) Theories with Additional Fields ...................... 143

A - SCALAR-TENSOR THEORIES ............................... 144

(i) Brans-Dicke-Jordan Theory ............... 145

(ii) Tupper and Yilmaz Theories ............. 146

(iii) Fujii-0'Hani on Theory...................... 14g

B - VECTOR-TENSOR THEORY ............................... 150

(4.5) Kilmister-Yang Model ........................................ 152.

(4.6) General Relativity plus Torsion ...................... 155

(4.7) Quantization of General Relativity ............. 156

(4.8) A Model with Deformed Schwarzschild Solution 158

(4.9) Summary and Critique ........................................ 159

PART II Synopsis ................................................ 164

CHAPTER FIVE

The Most Generalized Gravitational Field Equations and

the Most General Lagrangian........................................ 166

(5.0) Prelude ......................................................... 166

(5.1) Euler-Lagrange Partial Differential Equations 167

(5.2) The Generalized Equations of Gravitation ... 169

- An Alternative Derivation ...................... 169

(5.3) Commentary and Remarks ............................... 178

(5.4) Most General Lagrangian Derived ...................... 180

(5.5) Remarks .......................................................... 187

6



Page

(5.6) The Generalized Metric ............................... 189

(5.7) Discussion .......................................................... 192

(5.8) The Cosmic Evolution ........................................ 194

CHAPTER SIX

Generalized Metric in the Static Isotropic Space-Time 197

(6.0) Overview .......................................................... 197

(6.1) Generalized Equations of Gravitation in the Static

Isotropic Metric ........................................ 198

(6.2) Differential Equations for gfr, and R ... zq ]
(6.3) The Solution of the Gravitational Equation

with Constant Scalar Curvature ...................... 208

(6.4) General Lagrangians, Classified ...................... 210

(6.5) On the Possibility of Physical Solution of the

Generalized Equations ........................................ 213

(6.6) Discussion ........................................................... 219

(6.7) Conclusion ........................................................... 222

CHAPTER SEVEN

Lagrangian Quadratic in R ........................................ 224

(7.0) Foreword .......................................................... 224

(7.1) R2-Equations .................................................. 225

(7.2) An Approximate Solution for R2-Equations ... 229

(7.3) Towards Exact Solution for R2-Equations ... 238

(7.4) The Effective Potential and the R2-Theory ... 245

(7.5) Resume' and Critique ........................................ 247

7



Page

CHAPTER EIGHT

An Advanced Model of Gravity ............................... ZB)

(8.0) Introductory Remarks .................. '.................... 25'1

(8.1) The Metric at Weak-and Strong-Field Limits 252

(8.2) Construction of Different Lagrangians ... 254

- THEOREM - 1 ................................................. 254

(8.3) Lagrangian Coefficients and Physical

Significance ................................................. 256

- THEOREM - 2   258

- THEOREM - 3   258

(8.4) The Scalar Curvature (Approximated) ............. 263

(8.5) An Exact Form of the Scalar Curvature ... 266

(8.6) Strong Gravity Domain ........................................ 265

(8.7) Conclusion .......................................................... 273

CHAPTER NINE

The Complex Metric ................................................. 276

(9.0) A New Possibility ........................................ 276

(9.1) The Physical Meaning of Complexity ............... 277
2(9.2) Further Derivation of R -equations ................. 279

(9.3) Scalar Curvature Complexified ...................... 281

(9.4) Discussion .......................................................... 287

GENERAL CONCLUSION ................................................. 292

- Resume' .......................................................... 292

- An Outlook ................................................. 295

REFERENCES .......................................................... 293

8



TABLE OF FIGURES Page

Figure 7-1
o

An R -metric versus the Schwarzschild's 237

metric.

of the gravitational source.

Figure 9-1 The scalar curvature 

of the gravitational

R in the

source.

vicinity 289

Figure 9UIa,b The metric component A in the vicinity 290

of the gravitational source.

Figure 9-IIIa,b The metric component B in the vicinity 291

9



ACKNOWLEDGEMENTS

I am deeply grateful to Dr. Allan E. G. Stuart, my 

supervisor, whose many useful suggestions and helpful 

discussions made me able to penetrate into strong-field 

gravity "without being trapped by the gravitational collapse.

I thank The City University whose research facilities and 

services were at my disposal and, the University of Khartoum 

without whose sponsorship this work would have not been 

accomplished.

Special thanks go to both  and  

for typing the thesis without being afraid of 

my sometimes lengthy mathematics.

10



DECLARATION

I (the author) hereby declare that this thesis must 

not be copied wholly or partially, within the period of one 

year commencing from the date of its submission.

After the elapse of one year The City University 

Librarian will be automatically authorized to allow its 

being copied without referring to me.

Signed:

11



ABSTRACT

Einstein's theory of general relativity is empirically verified 

to be the most successful model of gravitational phenomena. Its 

theoretical structure is both elegant and simple. On the other hand, 

in its strong-field limit, the theory has two major flaws. First, it 

is isolated'from the mainstream of physical laws and in particular, 

it is not amen-abl© to quantization. Second, by being essentially a 

singular theory it paradoxially predicts the inevitable gravitational 

collapse with its attendant formation of "black holes" the evidence 

for the existence of which is rather weak.

This setback of Einstein's model has motivated us to search for an 

alternative that will be both nonsingular and more amenable to quanti-

zation or at least possesses one of these features. In this thesis we 

explore the possibility of developing such an alternative using a 

variational approach based on a Lagrangian which is a nonlinear function 

of the scalar curvature.

We start with a general review and critique of the existing 

situation which puts our own contribution in its proper perspective. 

This contribution commences with a new derivation of the field equations 

which leads to a necessary condition on the structure of the Lagrangians.

By concentrating on static, isotropic free-field metrics, we obtain 

coupled ordinary differential equations for the metric coefficients and 

the scalar curvature in terms of the Lagrangian and its derivatives. 

This enables us to fix the asymptotic properties of the corresponding 

specetimes and hence to single out and classify viable Lagrangians.

Several examples are developed including the quadratic and more 

general Lagrangians. By appealing to the classical limit of an under-

lying quantum theory (i.e. the finiteness, and smallness of Planck's 

constant) we find solution spacetimes which have good behaviour in 

both strong- and weak-field limits.

We then extend the quantum connection to consider solutions which 

become complex-valued in the strong-field domain and obtain an 

interesting result.

The thesis ends with a resume and general outlook.
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PART I

Synopsis

*In the introduction to this thesis the status quo of 

the gravitational theory is stated,ahddiscussed from our 

point of view.

*In Chapter One the theory of general relativity is 

presented.

*In Chapter Two the viability of weak-field theories 

competing with Einstein's model is considered. Our critical 

viewpoint is given in the end of this chapter.

*The solution of general relativity as well as its 

applications to weak-field phenomena are given in Chapter 

Three. The singularities, and the gravitational collapse 

are discussed, whence in the end, we criticize the whole 

issue of applying general relativity to strong-field 

gravi ty.

*Chapter Four is concerned with the modifications of 

general relativity aimed to suit strong-field gravitation. 

A critical review is given within which we establish a 

strong criteria for a perfect theory of gravitation, the 

main goal which is successfully achieved in Part II of 

this thesis.

13



CHAPTER ZERO

INTRODUCTION

(O.O) On Einstein's theory of general relativity

The history of scientific development indicates that different 

theories of physics, at least those deal ing with a certain phenomenon, 

are destined to be unified into one generalised theory, which, in its 

turn, may be invalidated if a more general situation is to be con-

sidered where only a more generalised theory can be properly applied.

The advent of the twentieth century witnessed a remarkable 

progress in physics in two directions; Newtonian mechanics has been 

generalised microscopically to quantum theory, and macroscopically to 

Einstein's general theory of relativity (GTR). Hence, it is quite 

logical to think of a unifying theory that may embody both quantum 

mechanics and general relativity as a further step of scientific 

development. But the isolated geometric representation of GTR with 

respect to the rest of physics, makes the attempts to such a unifi-

cation, if not impossible, a very complicated task. This implies 

that either Einstein's theory or the rest of physics is incorrect. 

But the accumulated experimental evidence on the validity of quantum 

mechanics will leave no doubt about the incorrectness of general 

relativity or, say, its imperfection.

Further, the discovery [1] of quasi-steller objects, quasars, 

in the early sixties, has raised interest in the old, theoretically 

suggested in 1939, idea by J. Robert Oppenheimer [2] and others on 

the existence of exotic objects with powerful radio sources of 

energy, one of which is claimed to be "black hole", an assumedly 

massive body trapped in gravitational collapse.

14



If the nature of these quasars is to be explained in general 

relativistic terms where gravitational fields within these massive 

bodies would play a dominant role, then the gravitational attraction 

leading to collapse will possibly be the only powerful source of 

energy [3] through conversion of mass into the latter. Nevertheless, 

it is still possible that gravitational collapse may have no relation 

whatsoever with the existence of quasars.

However, the Schwarzschild solution of Einstein's equations in 

the strong-field region exhibits a singular behaviour which may be 

interpreted as the occurrence of black holes encompassed by a horizon 

of a closed, trapped surface. Evidently this kind of interpretation, 

giving singularity a physical meaning, is objected to by physicists 

who see the appearance of singular behaviour as a setback to any 

theory. But Penrose and Hawking [4] proved that gravitational 

collapse is an inevitable result of the existence of geometrical 

singularities in space, and hence, the black holes corresponding to 

these singularities should exist. In other words, if the geometro-

dynamical theory of Einstein is valid, then massive bodies are 

destined to collapse into black holes. But here we have to admit 

that the interpretation of X-ray radiation coming from Cygnus X-l 

[5j as an indication of a black hole in this binary system, serves 

as weak evidence of its existence and the whole issue is still 

controversial.

On the other hand, Einstein's free-field equations, besides 

being repeatedly described as the most elegant and beautiful theory, 

was tested and found to be very successful in explaining a number of 

weak-field gravitational phenomena, like the red shift, the deflec-

tion of light by the sun, the precession of the perihelion of the 

orbit of Mercury, etc.
15



To resolve this paradQjcial situation we may suggest that GTR 

is good and correct in the weak-field region and free space, but 

when one comes to areas with strong fields, i.e. high curvature, 

where possibly quantum effects may play an essential role, the 

theory is incorrect. Einstein himself thought that the concepts 

would be meaningless in regions of high field strength [6].

We therefore think that a modified model involving quantum 

corrections may be a priori nonsingular, and hence the idea of the 

yet unconfirmed existence of black holes being related to singularity 

is to be questioned and reconsidered if not entirely rejected.

To sum up the situation of GTR we have to quote here its 

positive and negative aspects.

(0.1) Advantages and disadvantages of Einstein's model

The theory is elegant and simple. It was tested to be in 

agreement with a number of weak gravitational field experiments and 

observations. It reduces to Newtonian Laws in the weak field limit 

and to the special relativity in the absence of gravity. It is 

complete in the sense that it is able to give answers to all questions 

related to gravitational phenomena and it is self-consistent since 

it will not lead to conflicting results if different methods based on 

it are used. But the model has its shortcomings. In the strong 

gravitational field it leads to a singular behaviour of the metric 

which is usually looked on as a limitation of any theory and, 

consequently, it predicts "black holes" whose hypothetical existence 

is surrounded by controversy and doubts, since the experimental 

evidence is still unreliable. The theory is isolated from the rest 

of physics in its geometrical picture and thus cannot be unified with 

other field theories and therefore, it is very probably non-quantizable.

16



Now, in order to accommodate the beauty and successfulness of 

Einstein's geometrodynamical theory with the avoidance of singulari-

ties "inevitably" leading to gravitational collapse, and to over-

come other defects of this model, we suggest that there are two 

ways of thinking of gravitational phenomena.

(0.2) Modification of Einstein's model.

It seems fairly reasonable to think along the lines of modifying 

the geometrodynamical equations of general relativity in a way 

that it preserves its physical significance in both weak and strong 

field domains.

This has been done by different authors, in different manners, 

by attempting to quantize GTR equations [7], by deforming the 

solution of Einstein's model in order to eliminate singularities [8], 

by introducing spin and torsion to avert gravitational collapse [9], 

and generally by utilizing a nonlinear general lagrangian density in 

a generalized gravitational field equations which would have tended 

to Einstein's version in the case when this Lagrangian turns to be 

the scalar curvature R.

We will review these types of modifications in Chapter Four of 

this thesis, but here we briefly quote some of them:

a. Limiting curvature theory

By exploiting the generalized field equation first derived by 

Lanczos [10], Muller et al [11] used a nonlinear Lagrangian to 

establish their model. Being guided by the Born-and-Infeld [12] 

idea of limiting the electromagnetic field strength to eliminate 

the divergence of Maxwell's thoery, they have endeavoured to avoid 

gravitational collapse by postulating an upper bound to the 

17



curvature scalar, and in an attempt to ensure both the weak and 

strong field behaviours, the nonlinear Lagrangian has been chosen 

in a way that for the region of vanishing curvature it goes over to 

Einstein's field Lagrangian. In general this Lagrangian contains 

nonlinear terms and unlike Einstein's model, the scalar curvature 

is not a constant or zero, but dependent of the radius r from the 

gravitational centre. A critical review of this model is given in 

Chapter Four of this work.

b. Kilmister - Yang Model

This attempt, made by Kilmister [13], Yang [14] and Stephenson 

[15] and developed by them is based on considering the covariant 

derivative of Ricci tensor R^;x, instead of the tensor Rp$ 

itself. Some studies [16] [17] of this kind of equation yield 

interesting results, especially in the strong field domain. The 

model has also Schwarzschild and Kerr spacetimes as special solution 

in the free-field case. It has the advantage of being amenable to 

quantization. The model will be introduced in Chapter Four of this 

thesis together with other strong field theories.

c. Lagrangian approach to nonsingular gravity.

This is a novel approach which represent our main contribution 

to modelling strong-field gravity. The model is based on a 

Lagrangian which we derive from general physical principles. The 

metric has been obtained by utilizing generalized field equations 

in the static isotropic space. The behaviour of'the metric is 

controlled by constant coefficients and parameters which,we believe, 

will acquire their meaning in the quantized version of the model. 

It is hoped that the model, being nonsingular, is quantizable.

18



Schwarzschild space, with its inherent singularities, appears 

to be incorrect since it comes out as a result of further approxi-

mation of our model.

Three chapters of Part II of this thesis are mainly devoted 

to considering and discussing this new and promising approach.

d. A model with complex curvature

This is another contribution and an alternative approach 

towards a nonsingular quantizable gravitational theory. The scalar 

curvature is considered to be complex, which in its turn complexi-

fies the metric coefficients. This complexity is motivated by the 

presumably close relation between the required nonsingular solution - 

in strong energy regions and the expected quantum structure of the 

equation. We utilized a Lagrangian purely quadratic in the scalar 

curvature R which was long advocated for unified field theory [18]. 

In Chapter Nine this model is discussed.

(0.3) Duality between geometry and gravity

An alternative line of thinking towards interpreting the 

gravitational phenomena is based on the idea that Einstein's 

geometrodynamical theory is neither a unique nor a basic 

description of gravitation, and therefore, we should not always 

expect that by modifying it the inherent defects, like the 

appearance of horizons and singularities can always be remedied.

This would imply that any attempt to build a unified field 

theory stemming from purely geometrical concepts is likely to be 

accompanied by failure; and that might have explained the failure 

of attempts made either to geometrize, e.g. electromagnetism [19], 

or to quantize the geometrodynamical equations of GTR [20].

19



Therefore, and without discrediting GTR, one would suggest a 

complementary to it - "nongeometrical“ model - as an alternative 

theory of gravity, and which will be preferred to explain strong 

gravitational field, while, in contrast to that, general relativity 

will be used, preferably in describing weak gravity. (By non-

geometrical we mean, here, the theory is not expressed in the 

geometrodynamical language of general relativity.)

The above-mentioned situation goes in line with what 

Poincare [21] thought of, that all geometries are equally true, 

i.e. both Einstein's and the proposed nongeometrical models are, 

but alternative ways of describing gravity, and it is a matter of 

convenience to (choose this or that model to explain the gravitational 

phenomena with respect to this or that area of the gravitational 

energy spectrum. Hence, Einstein's general relativity theory should 

be regarded as the mathematically convenient way of describing 

gravitational phenomena occurring in certain regions, especially in 

free space and weak field, while a proposed nongeometrical theory 

would be more advantageous when one considers regions of inter-

action with matter.

This situation would have led to thinking of explaining 

gravitation in a dualistic language of geometry-gravity, in the 

same way the light phenomena were interpreted in a dualism of wave- 

corpuscular theory [22] .

The Huyghens wave picture [”23j successfully explained 

light phenomena, like reflection refraction etc., while it utterly 

failed to explain the interaction of matter with light waves, where 

this particular phenomenon was wel1-interpreted in terms of Newton's 

corpuscular theory.

20



As only quantum theory succeeded, later, in combining both 

wave and photon features of light by starting from an entirely new 

quantum, concept, therefore the required candidate theory of gravi-

tation might not be achieved by just adding a correction to Einstein's 

model, but by rather reconsidering the very basic concept of general 

relativity, namely the influence of geometry on matter and vice 

versa.

(0.4) Modification or Renovation

Whether the line of thinking discussed in (0.2) or alterna-

tively in (0.3), is the most promising way of establishing a 

successful model, we have no option, in the absence of a viable non- - 

geometrical theory competitive to Einstein's, but to start from the 

validity of GTR and modify it towards improving its outcome, 

provided that the physical significance will not be violated at 

any part of the energy spectrum.

As for the question concerning renovation by suggesting a 

dual model as described in (0.3) or by a whole departure from 

the framework of geometric metric theories to nongeometric non-

metric ones, is left open for future development.

By metric theory we mean space-time model based on the 

principle of equivalence [24], the basic concept of GTR to which 

we will come back in Chapter One.

Thus we see that the sought theory should not necessarily 

emerge from the equivalence principle.

Throughout the last decades a number of theories [25], 

metric and nonmetric, had been established, one of which, i.e. 

Brans-Dicke theory [26], is in a good conformity with general 

21



relativity, while others mainly lead to unreasonable predictions 

[27],

The criteria for a theory to be good and viable whether metric 

or nonmetric has been put down by Thorne et al [28], where they 

suggested that three essential conditions should be satisfied by 

any candidate model: (i) completeness, (ii) self-consistency 

and (iii) agreement with past experiments.

In Chapter Two of this thesis, some different types of 

gravitational theories will be reviewed, among which GTR was 

tested and found to be the best in satisfying the above-mentioned 

requirements.

(0.5) Nonsingularity and quantizability

As we mentioned before in Section (0.0), in classical physics, 

mathematical singularities of any theory used to be reragded as 

a defect in any physical theory, and hence, 

attempts were usually made to eliminate them. We have some 

examples for similar situations in physics; the aforementioned in 

(0.2)a introduction of upper bounds to prevent divergence or 

collapse, the elimination of Rayleigh-Jeans catastrophe by Planck's 

quantization of blackbody radiation [29], and the prevention of 

collapse in Rutherford's, orbital model of the atom by the semi-

quantum, semi-classical theory of Bohr 130] .

Although it is not one of our objectives in this thesis to 

quantize the gravitational field, we may be encouraged by these 

examples to think that by constructing a model that will be amenable 

to quantization we may approach a nonsingular solution or at least 
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comprehend the nature of any possible singular behaviour.

On the other hand, it is strange to notice that, in 

contrast to other theories describing natural phenomena, all non-

singular solutions of general relativity are unphysical, while 

physical solutions are singular.

These situations have motivated us to look for a nonsingular 

solution which will correspond to a physical situation and hope-

fully be amenable to quantization.

We notice that in the weak-field area, quantum effects are 

observed only in microscopic domains, while they cease to appear 

within macroscpoic scales. In strong-field regions, where general 

relativity is defective, we expect that quantum effects will be 

dominating and hence a quantizable gravitational theory should be 

the right candidate to explain strong-field phenomena. A 

proposed model should coincide with general relativity in a 

certain area, where the classical solution can be matched together 

with the quantum one, giving indications as to how a generalized 

theory can be constructed in order to successfully explain both 

weak as well as strong field behaviour.

Since all efforts to quantize general relativity did not 

achieve any significant success, we may be encouraged to believe 

that Einstein's model is not quite correct, even in its present 

classical form. This incorrectness, we believe, is the reason 

for the existence of singularities in the nonlinear part of the 

solution of the gravitational equations.

We therefore look for an alternative model which will be 

correct and free of any singularity and which, we expect, will 
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contain certain parameters to be interpreted as classical limits of 

quantum gravitational quantities, analogously to those in Bohr's 

model, which had served an intermediate step between classical 

physics and quantum mechanics.

The proposed model will hopefully be the real viable classical 

candidate for a strong field theory and will successfully explain 

the weak field phenomena. Towards this aim we have devoted this 

present thesis.

(0.6) Presentation of the thesis

Together with this introductory chapter, which we denoted as 

Chapter Zero, the rest of our thesis, which is divided into two 

parts, will be comprising ten chapters altogether.

Part I consists of the first five chapters which are mainly 

a presentation of general relativity and its competitors, where 

the current situation of the theory of gravitation is reviewed 

and discussed.

Part II, containing solely our own contribution, comprises 

five chapters of the work.

The thesis ends with a resume and a general outlook where a 

possible direction for further research is proposed.

A list of references is provided for each chapter separately

at the end of the thesis.

In Chapter One, which is devoted to GTR, an historical back-

ground of the theory of gravitation is given in brief, where also 

the basic principle of general relativity, namely the equivalence 

principle is presented, together with Riemannian geometry, being 
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the vehicle for Einstein's geometrodynamical model of gravitation. 

And owing to the geometrical structure of the theory, tensor 

calculus, the only relevant mathematical language, has been 

employed and some useful tensorial relations and definitions have 

been given.

Then physical and mathematical principles are used to obtain 

the general relativistic equations in two different ways.

In Chapter Two, we review some gravitational theories 

competitive to general relativity, mainly those dealing with the 

weak-field phenomena. The viability of metric and nonmetric 

theories is discussed and a classification of metric ones is given, 

on the top of which stands Brans-Dicke theory as the most viable 

alternative for general relativity.

Chapter Three, will deal with the solution of general 

relativistic gravitational equations, namely, the symmetrized 

Schwarzschild and Kerr metrics. The singularity problem is 

discussed and a critique on the speculations about black holes 

being related to the singularity is given.

In Chapter Four, we introduce different schemes made for 

modification of GTR with the intent to remedy its singular behaviour 

in the strong energy spectrum. Although this chapter is mainly 

concerned with strong-field models, we have also introduced some 

weak-field viable theories for the sake of generality. Cartan's 

general relativity plus torsion [9] [31], as well as scalar-

tensor (Brans-Dicke) [26] and, vector-tensor [32j theories are briefly 

reviewed. We also quote other methods aiming to overcome the 

singularity in the strong-field region, either by attempting 
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the difficult task of quantization [7j , or by just deforming the 

solution of GTR in such a way that singularity will be eliminated 

[18].

Kilmister and Yang model [13} [14] is introduced as a good 

strong-field nonsingular model which is quantizable.

Also, we present theories with general and nonlinear Lagrangians 

where the possibility of utilizing Lagrangians with quadratic and 

linear in R terms, as well as applying to them different variational 

methods is discussed.

Finally, generalized 4th order in g differential equations 

due to Lanczos [33] [10] have been rederived by us to complete 

the picture of the Lagrangian formalism of gravitational theories. 

A nonlinear Lagrangian, due to Muller et al [11} and, used in these 

generalized equations with a postulated upper limit of the curvature

R aiming to prevent a gravitational collapse, is introduced, and

the model is criticized.

The following five chapters contained in Part II are purely our

own contribution to the theory of gravitation which we present in

the next section in more detail.

(0.7) A novel approach

(i) In Chapter Five we present a new derivation for the 

generalized field equations of the 4th differential order in g^. 

We obtain the same equations as those derived by Lanczos, though 

we think that our derivation has certain advantages. Firstly, it 

starts from very general assumptions, since our invariant function
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of the action integral is constructed from all possible derivatives

of while Lanczos considered as variational variables only the

metric tensor g. and Ricci tensor RHO pi) Secondly, we are able

to proye that the differential order of the equations cannot be 

. higher than the 4th, whilst such proof is not apparent in Lanczos'

derivation, and besides that, we think that our derivation is more

transparent and straightforward.

(ii) We also managed to derive the most general Lagrangian 

in a polynomial form of R with certain coefficients and 

parameters which, we believe, will have their origin in quantum 

gravity. The derivation is based on the validity of the generalized 

field equations and Brans-Dicke scalar-tensor theory. By this our 

Lagrangian will combine the successes of both of thss&theories. In 

other words it includes «both Einstein principle of equivalence 

which requires a Riemannian geometry, with Mach's 

principle of gravitation. Machian principle tells us about how 

the general distribution of matter affects the space geometry, 

whilst Einstein's equivalence principle speaks of how gravity is 

a mere manifestation of geometry. Hence, our Lagrangian does 

confirm the inseparability of gravity and geometry.

The polynomial structure of the Lagrangian is, in fact, 

corresponding to the highly nonlinear interconnectedness between 

geometry and gravity. The degree of nonlinearity depends on the 

value of the parameters which, in their turn, may be dependent on, 

say, quantum effects. Our Lagrangian contains all existing 

constructed Lagrangians as special cases and because of this highly 

general structure, we believe that a gravitational theory based on 
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it will constitute the most viable and the most reliable model of 

gravity.

(iii) Another contribution to gravitational field theories, 

which we think is more interesting, is the important result we 

obtain in Chapter Six. Utilizing the generalized gravitational 

equations in the static isotropic coordinates, we are able to 

derive a number of useful relations of the field variables, which 

eventually lead to exact expressions for the metric. The metric 

coefficients grf and g turned out to be Lagrangian- 

dependent. This implies that a certain choice of the Lagrangian 

will be sufficient to cure any possible singular behaviour at

small distances from the source and any asymptotically non-flatness. 

It is very interesting to notice that we discovered that the 

Schwarzschild solution is but an approximated value resulting 

only when a constant linear Lagrangian is adopted, and therefore, 

we conclude that the appearance of horizons and singularities 

is a direct consequence of the imperfection of Einstein's GTR.

By applying our general polynomial Lagrangian of Chapter Five, 

the model will be the most nonsingular classical candidate for a 

viable and, hopefully, quantizable theory of gravity.

(iv) In Chapter Seven we coiif.ine ourselves to a special case, 

by choosing a Lagrangian containing only the square of the scalar 

curvature R. Such kind of Lagrangian, historically, had a certain 

appeal in the "unified-field theory" [18], and in spite of some 

objections against it [34], we feel that it still has to play an 

important role in the theory of gravitation.
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We obtain useful relations for this kind of Lagrangian and 

through certain approximations, we manage to obtain fairly 

reasonable descriptions of gravitation for a point mass. We believe
2 

that even in their approximate form the R - equations are less 

singular than the Schwarzschild metric. This indicates that a 

further generalized Lagrangian will totally beat the singularities.

(v) Chapter Eight is a further step in our model described in 

Chapter Six, towards more concrete formulation of a nonsingular 

gravity.

We specialize here to the Lagrangian with both quadratic and 

linear in R terms plus a nongeometrical component. By 

imposing certain physical conditions on the constant coefficients 

we obtained very useful relationships which enabled us to formulate 

some theorems based on this type of Lagrangian and governing the 

behaviour of gravity by physical laws.

An expression for a nonconstant scalar curvature is first 

obtained and a possibility of the complex metric is stated.

(vi) In Chapter Nine our contribution is concerned with the 

possibility of establishing a theory with complex metric coefficients, 

which we have already introduced in (0.2)d of this introduction.

2
Again, in this particular attempt we exploit the R - equations 

of Chapter Seven, where by further derivation we come to highly 

nonlinear in R equations of the 3rd differential order with 

respect to r coordinates. Eventually we were able to reduce 

these equations to the first order, but still with the same non-

linearity.
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Investigation of this metric indicates that at least one of 

its real or imaginary parts will exhibit nonsingular behaviour at 

the points where Schwarzschild's singularities used to occur.

A further consideration of such models may elucidate much of 

the nature of the singularities inherent in GTR in strong-field 

domains.

In the end we reckon that our above-counted contributions to 

the theory of gravitation are novel and the obtained results will 

serve in furthering the research towards a comprehensive picture 

of gravity.
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CHAPTER ONE

The Gravitational Field and the Theory of General Relativity.

(l.Q) Historical Background
(.1.1) Space and Physics

The history of mechanics witnesses that the question 

about the relation between physics and geometry of space was 

widely discussed. It led to philosophical speculations and 

arguments about whether space has a physical significance of 

its own and that the mechanical theory should not be depending 

on which frame of reference the motion is observed - a view 

strongly advocated by Leibnitz [1].

A counterargument was raised by Newton [2] based on his 

classical idea of absolute space and supported by his well- 

known bucket experiment [3] which led him to believe that 

space is not empty of physical meaning, but on the contrary, 

it exerts forces on material bodies.

It is understood from the Newton's law of inertia that 

a nonuniform motion of a body is always caused by a force and 

straightline ascribed to the uniform motion with constant 

speed of a material point is an indication of being free from 

any force.

This relation between physical force and space 

geometry is well illustrated by the creation of the so-called 

"apparent" Coriolis and centrifugal inertial forces [4], which 

may appear or disappear according to the choice of the appro-

priate frame of reference. Even the force of gravity was 

described by Einstein with regard to his famous elevator 
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experiment [5] as an apparent force which can be made, 

vanishing in an especially chosen system of coordinates.

(1.2) The Principle of Equivalence

The fact that the gravitational force can be equally 

cancelled away by transformation to a proper coordinate 

system as does the inertial force, make gravity indis- 

tinguishably equivalent to inertia; this constitutes the 

meaning of the Principle of Equivalence |6].

In fact, the cancellation of gravitational force by 

an inertial one is possible,in particular, only in static 

homogeneous gravitational fields, but in time-dependent or 

inhomogeneous fields, this cancellation can be achieved only 

if a sufficiently small region was chosen in which time-

dependence or inhomogeneity will be negligibly small. Thus 

the Principle of Equivalence can be formulated as follows:

At every space-time point in an arbitrary gravitational 

field it is possible to choose a locally inertial system of 

reference, such that, within an infinitesmally small region 

of that point the laws of motion of freely-falling particles 

(or, more strongly, the laws of nature) take the same form 

as in unaccelerated Cartesian systems of coordinate (i.e. 

the special-relativistic form) in the absence of gravitation.

The principle of equivalence leads to the interesting 

fact by identifying gravitational and inertial masses, which 

was verified experimentally by Dicke and col 1aborators [7], [8] 

who improved on E’btvos method [9].
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The equivalence of inertia, which is so connected to 

geometry, with gravity which is perceived as a physical 

phenomenon establishes a strong relation between geometry and 

physicss or, in other words, geometry becomes a physical 

reality.

Mach's principle (1883) [10] which was raised as a 

refutation of Newton's concept of absolute space, states that 

the geometry and inertial system of reference are determined 

by the mass distribution of celestial bodies in the entire 

space. GTR [11] , while partially accepting this principle 

which proclaims the influence of matter on geometry, it 

disagrees with it for not recognising the effect of geometry 

on matter [12].

Since physical phenomena and the geometry of space are 

interconnected according to the Equivalence Principle, one 

sees that this mutual relation is the basis for GTR and, 

therefore, all the consequences of the application of this 

principle, whether leading to success or failure, would 

reflect how truly founded was the Principle of Equivalence. 

This is especially so if we know, as was discussed in the 

introduction to this thesis, that there is a breakdown in 

the conditions for directly applying this principle at 

space-time singularities, e.g. at the end-point of 

gravitational collapse [13].
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(1.3) Riemannian Geometry

The Euclid’s geometry, shown in his famous Elements [14] 

presented the space in which Newton built the concepts of the 

theory of gravitation.

Nearly two millenia had passed before the advent of a non- 

Euclidian geometry which started developing mainly due to the 

works of Gauss [15], Bolyai [16] and Labochevski [17]. 

Gauss, who first made a great emphasis on the inner properties 

of surfaces, had realised that the essential inner property of 

any surface is the metric function, that which gives the 

distance along the shortest path between two points on that 

surface.

The local inner property, i.e. metric function, for 

instance, for a cylinder is the same as that for a plane 

since the first can be unrolled to the latter without distor-

tion, i.e. maintaining the same metric function unchanged 

but it is different from spherical surfaces for which the 

metric function should be different.

Gauss first conceived a metric space that includes a 

broad class of ordinary and non-ordinary curved spaces and 

which allows, in an infinitesmally small region, the 

possibility of finding a locally Euclidian coordinate system.

The axiom made by Gauss to be the basis of a non- 

Euclidian geometry resembles the Equivalence Principle which 

admits the possibility of finding a locally inertial system 

at any point in space.
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The two dimensional space of Gauss used in determining 

metric functions was expanded to N-dimensions, and the com-

plicated problem related to it was solved by Bernhard Riemann, 

who established a complete geometry of space, i.e. the 

Riemann Geometry 08], [19].

Therefore, since Einstein's principle of equivalence is 

in a deep analogy with Gauss and Riemann geometry, we would 

conceive of gravitation as a manifestation of geometry or, 

equally, of the curvature of space as an indication of matter 

distribution in this space [20].

In the light of this relationship and the equivalence 

principle, the accelerated systems in an infinitesmally 

small region can be regarded unaccelerated and, correspondingly, 

the geodesics would coincide with the straight line in a 

locally Lorentzian frame.

By Lorentz frame we mean that,in which matter satisfies 

the laws of Special Relativity [21] ,[22] and by geodesics we 

mean the analogue of a straight line of Lorentzian frame, in 

the general curved space-time geometry. Geodesics give the 

extremum distance between two end points in a Riemannian 

space.

The geometry of the abstract 4-dimensional space of 

Special Relativity is well interpreted in real physical terms. 

The point in such a space, which is termed world-point, 

represents a physical event, and a world-line will represent 

a continuous series of such events. The interval between two 
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infinitesmally close events is represented by an arc length 

along a world-line, called line element, which is a geometrical 

invariant.

(1.4) METRIC AND CURVATURE TENSORS.

In the 4-dimensional space the line element (the

interval) is defined by

ds2 = _% dnadn^ [1.4.1]
a3

where
a 3n » n (a 3 = 0,1,2,3) are coordinates

in a Lorentz space and,

' 1 a = 3 = 1,2,3

p* TX
>

III 0 a | 3
-1 a = 3 = 0

[1.4.2]

is called Minkowski an tensor.

The non-negative line-element is called time-like interval. 

In the special case when we choose a proper Lorentz coordinate 

system where the 3-dimensional separation between events are 

zero, i.e. when we deal with a fixed spatial point, the line 

element ds is purely temporal, and ds coincides with the 

proper time measured by a clock attached to that coordinate 

system [23] .

As the Equivalence Principle teaches us, the laws of 

Physics should be equivalent, not only among inertial systems 

of coordinates, but also among accelerated ones, which means 

that the proper time interval is invariant under transformation 
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not only between inertial systems, but also between any space-

time accelerated coordinates (say, in Riemann space). Thus 

the invariant generalization of fl.4.1] yields the GTR, and 

the invariant general proper-time will be defined as

ds2 = -g ydx'Jdxv [1.4.3]

where xu are any other coordinates not necessarily

Lorentzian and g is the metric tensor defined by

q - 9na an6
axp axv *“6

It is obvious that when X = n that means g = q = x n.

Therefore, the principle of equivalence reads:

At any point r, in an arbitrary strong gravitational

field (a curved space), we can find a locally inertial coordinate 

system (a flat space), such that

[1.4.5]

[1.4.6]

As we notice, Riemannian geometry and gravitation are so 

tightly related that, in order to build a theory of gravitation 

by utilizing geometrical objects, we should know what other 

tensors may be constructed from g^ and its derivatives to 

enter in the equation of the gravitational field.

The equation should be in tensorial form and hence will be 

invariant under general coordinate transformation f24] f25] .
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We here write certain relations and definitions in terms

We see from [1.4.3.] that g is symmetric with respect

to its indices, i.e.

We define

r YW
r 99 99 sg >I VY + VY _ W I E 

3XP 3XV axY J

[1.4.7]

[1.4.8]

[1.4.8] is called Christoffel symbol of the 1st kind and the

Christoffel symbol of the 2nd kind is defined by:

rp\ =9XYfrv,y] S {pXv}= 4 [1.4.9]

As we know, scalars and vectors are considered tensors of zero 

and 1st rank respectively. The tensorial description in a 

general Riemann space can be reduced to scalars in specially 

chosen space. That means by virtue of the equivalence principle 

we will be able to come to measurable quantities by which the 

correctness of the gravitational theory can be checked.

Tensor quantities of nth rank has n different indices,
i

and under a coordinate transformation x -> x a tensor e.g. 

of a third rank TyX transforms as,
X)

y'pX = 3x'U 8XP ax'X t YO 

v axY ax'v axG p
[1.4.10]

Tensors with indices upstairs or downstairs are called 

respectively contravariant and covariant, otherwise they are 

called mixed tensors like [1.4.10].
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guv is the inverse contravariant tensor of g which y\)
is a covariant one. Contracting g by yield a mixed

pv

tensor (Kronecker symbol) i.e.

We see that [1.4.9] does not transform by the law [1.4.10], 

which means that is not a tensor. In fact, by the
pv

Equivalence Principle if r'*1 were a tensor in, say,
uv

Minkowski-Lorentz space where by [1.4.5,6,8,10] it must 

vanish, therefore it would vanish everywhere else.

By further using of tensor analysis [26], we introduce 

the covariant differentiation of tensors. We write here a 

number of useful formulae and definitions. The covariant 

derivative for a mixed tensor Tpv is defined byA J

Tuv = _3_ Tpv + rp Tav + rv Tya . fp r
A;y 3xy A yo A ya X Xy p L

We write also the covariant derivative for the contravariant 

and the covariant tensors Tpv and T respectively;

Tuv = _L_ + rv Tav + rv
;y 3Xy  ya ya

[1.4.13]

T = -A. T - r° T - r° T fl .4.14]
UV,Y 3x Y UY VY U° L J

These covariant derivatives are tensors and they reduce to

ordinary derivatives in the absence of gravitation i.e.

when r = 0.
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By the use of the equivalence principle and the following

By setting X = v in [1.4.12] it will be reduced to

-j-PV
3Tp0

v + rp Tov [1.4.v;y 3Xy ye; v

relation between rx and g
pv pv

Cl. 4.16]

g and pvand the relation between gpv and their derivatives,

ag Ey.
axy

[1.4.17]
>

we obtain for the covariant derivative of the metric tensor 

defined by [1.4.13,14] and hence, for Kronecker tensor in 

[1.4.11J the followi ng ;

9PV
;y

[1.4.18]

Further, the following relations are useful

= I 9W [1.4.19]

[1.4.20]

[1.4.19] can be used to obtain the covariant divergence of
-y.

vector V and tensor Tp\ that yield



and Di v T = Tpv = r- — ( /g” Tpv) + r\ TpX 
;p /g 9xu p*

[1.4.22]

or if TpX is antisymmetric [1.4.22] will be reduced to:

wi th

pv
T
;p

[1.4.23]

Another relation comes from [1.4.14] for the covariant 

derivatives of the covariant tensor T , if it is an pv 
symmetric in its indices. The cyclical permutation of

anti-

indices

lead to:

T .. pv>X [1.4.24]

where the RHS

tensor T ,
pv

of [1.4.24] is ordinary

i.e. T = — T 
^’X axx

derivatives of the

j-pv _ _-j-\)p
J

T + T AApsv vX,p

•The covariant curl coincides with the ordinary one and can

be obtained from [1.4.14]

V - V . = v P»v V
v ,p

[1.4.25]

Furthermore, we introduce the following important tensor,

Riemann-Christoffel curvature tensor

RX
pvy

ar x ar x 
_ py   py  + rP 
axY axv 1

rx - rp r x
Y p py vp

[1.4.24]

which transforms according to the law in [1.4.10]. This 

tensor is the only tensor which can be constructed from the 

metric tensor and its 1st and 2nd derivatives. There are
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other forms contracted from Ra ; i.e. Ricci tensor

R = RX = gXYR. = R [1.4.25]
pXv

and the scalar curvature,

R = gpvR [1.4.26]

The covariant form of Ra  reads;
uvy

R. = g.-P?' =
6|jvy  <5X p\ry

rY29r a2g a2gx a2g 'i<$y + UY +
-axYaxp ax^ax5 axvaxp axvax5 -

+ g (rp ra - rpJpo k \)6 UY Y<$ rp ) [1.4.27]

[1.4.27] shows that the curvature tensor has the following

algebraic properties:

= R XSpVY VY<Sp
[1.4.28]

R_ = " R x = “Rr = R r ,
6pvy povY 6pY"V p6yv

[1.4.29]

R + R r + R =0 [1.4.30]
<5p\>Y 6yuv  6vyu

The covariant derivative of this tensor can be calculated 

in a locally-inertial system of coordinates where all r 

vanish, leading to the so-called Bianchi identities;

R .. + R . , + R„ ,. =06uv>y;X 6pXv,Y 5uyA,\). L

which will hold in any other coordinate by the principle 

of equivalence. Contracting [1.4.31] by the metric tensor 

and using [1.4.18] yield the following equations, which 

are equivalent to each other
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(Rx-^x R);p = °

(Rpv - i gpvR).u = o

fl .4.32]

fl.4.33]

Further, we consider the 2nd covariant derivative of vectors

V and 
p

VA we obtain the following two commutation relations,

and

Si mi 1 ar

V , - V . = -V Rp
v; y V>y ;v P

- VX;y;v = VPRX

formulae hold for any tensor, for instance,

T , = T + T R? . - T , R°pA;v;y pX;y;\) pa A\jy uX pvy

pjv;y ' p’xjvy  ‘a ,xpvy

[1.4.34]

fl. 4.35]

[1.4.36]

[1.4.37]

The transformation to a locally inertial system of

coordinate will make the covariant derivatives commute and

therefore the curvature tensor vanished when the gravitational 

field vanishes. This expresses the close relation between 

space geometry (the curvature tensor) and the existence of 

gravitation field.

1.5 THE PRINCIPLE OF GENERAL COVARIANCE

This principle directly follows from the principle of equivalence. 

It says that the equation of physics is called generally covariant if 

it holds in the absence of gravitation as well as in its presence 

and it preserves its form under any general coordinate transformation. 
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That means if the equation is true in one coordinate system, so it 

will be true in all other coordinates. But by the principle of 

equivalence we can always find among these other coordinate systems 

a system which can be locally inertial; that means systems where 
the effect of gravitation vanishes, i.e. where [1.4.5] and [1.4.6~| 

hold. The equation therefore holds in both locally inertial and 

any other coordinate system. It is therefore called generally 

covariant [27]. The principle of general covariance indicates the 

effects of gravitation on any system. In brief the general 

covariance states,

The Laws of Nature holder? a general gravitational field, provided 

that they are generally covariant, and that they still hold in the 

absence of gravitational field. By exploiting this principle one 

can choose physical laws as simple and elegant as possible, and 

being guided by it we will' be able to build the equations that describe 

the gravitational field and hence explain gravitational phenomena.

(1.6) EINSTEIN'S EQUATION FOR GRAVITATIONAL FIELD

Starting from the principle of general covariance which 

stems from the Einstein's Equivalence Principle, we require that 

the following criteria should necessarily hold for gravitational 

field equations to be constructed.

I - THE FIELD EQUATION SHOULD BE IN A COVARIANT TENSOR FORM

This is because, in accordance with the principle of general 

covariance the physical law should be indistinguishable in 

both accelerated and inertial coordinate systems. That means 

the coordinates do not enter in the equation; therefore, the 

the laws should be tensorial.
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II - IT SHOULD BE A PARTIAL DIFFERENTIAL EQUATION OF g pv

In Newtonian mechanics we have the differential equations

dt2

which describe the motion of matter in a gravitational field

with a potential 4>, and the Poisson-Laplace partial 

differential equation

0 (if p=o)

47t G. p

which shows how the presence (p^o) or the absence (p=o) 

of matter determines the gravitational field. In fl.6.2] 

p is the mass density of matter and the gravitational constant 

is given by

G = 6.67xl0'8dyne • cm2g"2. fl.6.3]

We use the units where the speed of light is a unity. For 

weak static gravitational fields in the Newtonian limit it 

can be shown that^gQ0 % -(/). Since the Laplace equation 

involves the second derivative of g00, and because of the 

tensor form of our laws and according to criteria (I), all 

the components of g^ should enter our general relativistic 

equation.

Knowing that the energy density for non-relativistic 

matter Too coincides with the mass density p, we can 

generalize the Poisson equation [1.6.2J to

G = -8tt G T fl.6.4 1pv pv L J 
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where T^ is the general energy momentuni tensor, and G^, 

called the Einstein tensor, is a combination of possible deriva-

tives of g and their products, which has yet to be constructed.

■Ill - IT SHOULD CONTAIN DERIVATIVES NOT HIGHER THAN THE SECOND
DERIVATIVE OF g

Because Poisson's equation is of the 2nd order in g00 and 

due to criteria (I), G^ in [1.6.4] should contain the 2nd 

derivative of g^, and since the equation should be uniform in 

scale, therefore derivatives of order higher than the second in 

g will not be contained in the equation.

IV - IT SHOULD NOT INCLUDE rV * * * * X

V - IN THE ABSENCE OF MATTER g -> x

This is by virtue of the general covariance principle for

locally inertial coordinate systems the general space-time metric

reduces to Lorentzian metric in this particular case. This means 

that the first derivative of the metric tensor, which is the 

Christoffeit symbol is zero. (See [1.4.5,6,8] .) The

equation, therefore, must admit a Lorentz metric as a particular

solution.

pv

Indeed, by (I), (II) and (III), G^ may contain g^', gpv 

R or their products g R, R but not rX , since the latter 

contradicts the covariant tensor form of the equation.
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VI - THE SECOND DERIVATIVE OF g SHOULD ENTER LINEARLY pV
a2For our equation to have a unique solution, —------ g

axW

2
should be uniquely determined by —g and g , i.e. 

axA

a2
ax^axY enter linearly.

It is clear that we cannot construct our equation in its

covariant tensor form from only

since the latter is excluded by

g and its first derivative,

(IV).

The only tensor that can be constructed from g and pv

first derivative, and linearly from the second derivative is

its

the

Riemann-Christoffel curvature tensor [1.4.27]

R and R by [1.4.25,26].

are the only tensors

and which can be

contracted to

shows that R

from R, Rpv

and Rpv

and g .pv

VII - THE TENSOR SHOULD BE SYMMETRIC

means

In [1.6.4] since

The property [1.4.29]

that can be contracted

that G uv
constructed of

al so

T is symmetric pv

symmetric. Indeed,

w. r. to

since G

and

indices it

it is therefore

g pv

symmetric

R uv
in its

is 
pv

which are themselves symmetric,

indices.

VIII - THE TENSOR IS CONSERVED

therefore by [ 1.6.4] Gpv

will

Since T is conserved,

be divergenceless in the sense of covariant differentiation.

i .e. 9Gp
- + rPG14 + rx G]1 = Gp = 0 
p pX v pv X v;pax

[1.6.5]

i s
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IX - THE EQUATION SHOULD BE NONLINEAR

The gravitational field equation should be nonlinear partial 

differential equation (different from the Maxwellian equations 

and hence it does not satisfy the principle of superposition). 

The nonlinearity arises from the fact that the gravitational 

field (unlike the electromagnetic) has an effect on its source. 

However, the first approximation corresponding to weak fields is 

linear and therefore the superposition principle is valid there.

X - IT SHOULD REDUCE TO STATIONARY WEAK FIELD LIMIT FOR T -> Tnn pv oo

That is, by 0.6.2J, 0-6.4] becomes

[1.6.6]

which is representing the Newtonian limit.

The above criteria and requirements should be satisfied in 

order to construct the gravitational field equation. The 

fulfillment of the first nine requirements leads to the well-known 

Einstein's field equation.

R - i g R - Ag = -8irGT 0.6.71[IV pv pV [IV u -1

from 01.6.4J A is called the cosmological constant. In order

to satisfy condition (X), we should set A = 0.

The Einstein's field equation then reads:

R = -8tt GT pv pv p.6.8]

and by contracting with g‘iJ one gets

R = 8KGT11
p

R = -8it G(t -§g T ). pv v pv ^pv X'

[1.6.9]

[1.6.10]or
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(1.7) The Variational Principle

The principle of Invariance of Relativity is automatically 

satisfied by the methods [29] of variational calculus because 

these methods deal with calculating the minimum of scalar 

quantities which do not depend on the coordinates in which they 

are measured.

The differential Riemannian geometry provides us with 

quantities invariant under any coordinate transformations. The 

"action" of the variational principle can be chosen to be invariant 

and General Relativity Principle is therefore'satisfied and the 

required field equation can be easily set up. [30].

In the preceding section we have constructed the gravitational 

field equations based on certain physical requirements. By utiliz-

ing the variational principle the same equation can be derived.

The suitable invariant will be the Lagrangian density 

Z(x)/g .

We consider the variation of the action integral

I = dfi, [1.7.1]

requiring that,

<51 = 0 [1.7.2 ]

where-g is the determinant of g defined by [1.4.20]; and dQ. 

is the 4-volume element. For Newtonian space these turn to be: 

g = 1 and dQ = d3xdt.

We are using g^v with positive signature and with fg

real. By signature we mean the set of the diagonal elements
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(+1, +1, +1, -1) denoting the signs of the eigenvalues of the 

symmetric matrix with coefficients g The sum of these elements 

gives the signature which in our case is +2. (Other authors [31] 

use other sign conventions and the quantity under the square-root 

can be -g and the sign of the metric [1.4.1] can be positive. 

In either case the signature should be identified with that of the 

Lorentz metric of special relativity.)

Now the total action for a gravitational field is the sum of 

the action of the field I , and the action of the matter I i.e.g m

61 = 61 + 61 g m [1.7.3]

By putting in mind the analogy to electromagnetic field [32] 

we will expect that the resulting gravitational equations of the 

Euler-Lagrange type [5.1;3], will contain, according to criteria 

III of the previous section, derivatives of g no higher than

We therefore assume that the integral should not contain

derivatives of g higher than the first. But owing to 

criteria IV and VI of section six and the fact that the

Lagrangian density is an invariant, may be replaced 

by the scalar curvature R[32] which^al though it contains up to the 

second derivative of g^, still leaves the integral [1.7.1] 

invariant..

In fact the variations of the integrands R/g and Z/g 

will differ by a quantity-in a form of a divergence, which can 

be transformed away by integration, i.e.

A (^g£X)dn
ax

[1.7.4]
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where will be shewn to be

&r\ - gpW . [1.7.5]

In spite of being composed of only the metric tensor 

and its first derivative, we see that, due to the vanishing 

of the integral with ^X, we are allowed to write

<5jX/gdQ = djR/g"dQ [1.7.6]

This is because, by Gauss theorem the volume integral of the 

divergence can be transformed to an integral over a hyper-

surface surrounding the 4-volume of integration and the 

variation of the field on this boundary surface is zero.

Let us carry the variation of the action of the purely 

gravitational field. By using [1.4.19] and [1.4.26] we get,

S(R^) = /gRpu «9pv + 9 pV'Sgpv + ’'g9 5Rpv-C1.7.7]

The RHS second term in [1.7.7] will be rewritten so that 

Sg be expressed in terms of <5gyv according to [1.4.17].

The RHS last term will give the change due to the 

variation of Ricci tensor [1.4.24];

6R = JL 6rx - a 6rx +
axv pv

+ 6rp rx + rp <srx - 6rp, rx + rp <$rx [1.7.8]
pv vp pv Vp pX Vp pA Vp

where the variation of rx defined by [1.4.8,9] is given 
pv

by
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pp +

11.7.9]

Since [1.7.9] transforms like a tensor, it is a tensor in

spite of being not a tensor by itself. The variation

w.r. to carried independently of g is due to

Palatini [33].

The use of the covariant derivative for <5g in 
pv

[1.7.9] according to [1.4.14] yields:

[1.7.10]

Also, the difference of the covariant derivatives of tensor

in [1.7.9] will lead to expression [1.7.8], which 

will have the form of the following, first obtained by

Palatini [34], identity:

6R = (fir\) - (srx ) ,. [1.pv x pA ,v v pv' ;A

By taking into account [1.4.18], that the covariant

derivative of the metric tensor is zero, we can now write the

R.H. last term in [1.7.7] using [1.7.11]. We thus obtain:

or by [1.4.21] it turns to be:

which agrees with [1.7.4] and [1.7.5].
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This term will vanish according to Gauss theorem when integration 

is carried over all the hyperspace. Finally we obtain after these

considerations

[1.7.14]

Where C is a constant number which can be determined 

by reducing the resulting equation to the Newtonian limit.

Furthermore, we know [35] that the energy momentum tensor 

of any physical system can be calculated if the action integral 

is given. And since the energy-momentum tensor Tpv for any 

material system for which the action I is given is the 

functional derivative of I with respect to the components 

of the metric tensor gpv> we therefore define:

«Iro = [1.7.15]

where we consider that the change in the action is induced by 

the change in g^. On the other hand, the field Lagrangian 

density will depend, as in the case of electromagnetic field, 

on the field variables, which.here,are gpv and its first 

derivative. This means

[1.7.16]

By subjecting [1.7.16] to variation one obtains,

z

J [agM >• 1 3

jfZ] 6
f- agp

r V 1

L

By integrating by parts one comes to
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[1.7.17]

Now by using in [1.7.15]

T^fig = - T
pv pv ; [1.7.18]

then the comparison of [1.7.15] with [1.7.17] will give:

[1.7.19]

The symmetry of this expression and the fact that 

is a scalar justify the definition [1.7.15].

The combination of [1.7.15] and [1.7.14] with the use 

of [1.7.19] will yield Einstein's equations [1.6.8] which 

will cause the total action to be stationary.

The constant C is determined by the gravitational

constant G as:

C =-----— [1.7.20]
16irG

In fact, Einstein's equations can be obtained by using 

different methods of derivation [36] provided that the 

Equivalence Principle is fulfilled. The use of the Lagrangian 

formalism supplementary to the afore-given in the preceding 

section, derivation will certainly confirm the validity of 

GTR and will al low ustointroduce other Lagrangians which can 

then be classified with respect to their structure in relation 
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to the Lagrangian of general relativity. We will return to 

these kind of Lagrangians in Chapter Four.
(.1.8) Conclusion

As for the possibility of having in the Eurler-Lagrange 

equation a gravitational field other than g , one assumes the pv

contrary, i.e. if otherwise another field g exists, there
pv

would have been a local Lorentz frame of g in which g
pv pv

will not completely vanish, violating the local validity of 

special relativity. Therefore, only g can enter the 

gravitational equations [37].

Further, the 16 differential equations of [1.6.8]

are reduced by the symmetry relation [1.4.7] to only 10, and 

in the vacuum case, i.e. when T =0, the equations become
pv

R = 0 [1 .8.Hpv

But the vanishing of R does not necessarily mean
pv

the vanishing of the field, due to [1.4.251 and hence a true 

gravitational field may exist in empty space. Furthermore, 

equation Cl.8.1.] is the simplest form of Einstein's 

graviational field equation, though it is too complicated to be 

solved. In Chapter Three, the solution of the equations is 

considered in a symmetrized form. This solution constitutes the 

basis for all tests of general relativity which proved to be 

successful. As we explained in the introductory chapter of 

this thesis, the theory has its setbacks which raised the need 

for alternative theories. In the next chapter we introduce 

alternative models which compete with Einstein's theory in the 

weak-field regions. In Chapter Four we introduce the strong-field 

competitors which are basically modifications of GTR.
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CHAPTER TWO

The Gravitational Theories and the Weak-Field Gravity

(2.0) GTR and its Competitors

As it has been discussed in the introduction to this thesis, 

Einstein's theory of general relativity though regarded as the 

most successful theory of gravity, may not be the only one. A 

large number of competing theories have been made by different 

authors [1], [2] since the early twenties [3] but the more theories 

have been invented, the more they confirmed the supremacy of 

Einstein's general relativity, especially in the weak-field regions.

In this chapter we give a general account for different 

categories of these theories starting by considering their 

viability.

(2.1) The Viability of a Gravitational Theory

Among the numerous theories of gravity only few of them may 

compete with general relativity, namely those considered viable 

ones. For a theory to be essentially viable there are certain 

requirements to be satisfied [4]. These requirements are 

summarized in the following basic criteria.

(i) Agreement with observation and experiment

In order that any candidate theory be viable it should 

necessarily agree with observations and past experiments. This 

agreement should be more strongly confirmed with the improvement 

of the observational techniques. At least it is necessary that 

a proposed theory satisfies the tests of general relativity like 

gravitational red shift, perihelion shift, deflection of light, 

and radar echoes time delay [5J.
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(ii) Correct Newtonian limit

In the limit when gross motion of bodies, say planets, is 

considered the theory should agree with Newton's theory.

Ciii) Being relativistic

This implies that when the effects of gravitational field 

be so negligible, the nongravitational laws derived from the 

theory should agree with those of special relativity.

Civ) Completeness

The theory should mesh and incorporate a complete set of 

physical laws like those of electromagnetism, quantum mechanics 

and particle physics or any other nongravitational laws and 

therefore be able to analyse byrthem any experimental result. 

It should also be capable of explaining all astronomical 

phenomena including those of strong gravity like quasars, pulsars, 

neutron star, etc. The theory that lacks this capability is 

considered incomplete.

(v) Seif-consistency

That it should not lead to controversial results if 

different methods, based on the theory, are used.

Any theory that violates any of these criteria is basically 

nonviable. Newton's theory is an example of nonviable theories 

since it violates at least (i), (iii) and (iv). Birkhoff's 

theory [6J violates, for instance CW since it predicts 
that sound travels with the speed of light. Though it satisfies 

57



the basic tests of general relativity. The Whitehead theory [7J 

of gravity although it copes with the general relativity tests, 

it was contrarily realised [8] [9J that it contradicts the 

everyday observations that the ebb and flow of ocean tides are 

independent of time'

The Milne k.inematical theory of relativity [10] does not 

satisfy (iv) because it is mathematically incapable of saying 

anything about the gravitational redshift of light. Kustaanheimo's 

theory [11] violates (v) since it gives two different predictions 

for the red shift, if light is regarded as an electromagnetic 

wave, there will be no red shift, but if the photon nature of 

light is considered it leads to nonzero shift.

There are many other theories that fail to fulfill the above 

requirements and hence are nonviable, but those which are viable 

divide into two categories, the so-called, "metric" and "non-

metric" theories of gravity.

(.2.2) Metric and non-metric theories

By metric theory of gravity, generally speaking, we mean 

that one in which gravitation is identified by curvature of 

space-time, or more precisely, it is that theory which 

incorporates the following two principles:

(i) Space-time has a metric, i.e. a fundamental 
geometric object describing gravity.

(_ii) This metric satisfies the equivalence principle.

Being based on these principles, the following definition 

due to Thorne and Will [12] was given.
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Definition;

A theory of gravity is a "metric theory" if and only if it 

can be giyen a mathematical representation in which two conditions 

hold;

Condition i. There exists a metric of signature 2, which 
governs proper length and proper time measurements 
in the usual manner of special and general 
relativity as in [1.4.3];

ds2 = dxv [2.2.1]

Condition ii Stressed matter and fields being acted upon 
by gravity respond in accordance with the 
equation

Tpv = 0 [2.2.3]
iv

where Tpv) is the total stress-energy tensor for all matter 

and nongravitational fields, and where the covariant derivative 

with respect to g is denoted by the semi-colon (;). As it 

was explained in (1.7) the signature may be as well -2 

depending on the adopted convention.

Einstein's general relativity among other gravitational 

theories [13J which fulfilled the above stated conditions, 

serves the best example of a metric theory.

Metric theories differ from each other in the way matter 

affects space-time metric. While nonmetric theories do not 

relate grayity and matter with the space-time curvature and 

therefore do not satisfy the conditions [2.2.1] and [2.2.3],
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The basically viable theories are.the metric ones since 

they satisfy the criteria stated in the preceding section. All 

nonmetric theories are basically nonviable except, say, Cartan's 

[14], Il5J which agrees with experiment to the same accuracy 
as Einstein's general relatiyity does. Though, it is claimed that 

Cartan's theory violates the viability criterion of being 
relativistic, i.e. it does not reduce to the laws of special 

relativity in the absence of gravitation. In fact, a non-
metric theory usually violates at least one of the viability 

criteria.

The strongest criterion for testing the viability of any 

theory is its agreement with experiment therefore, in order 

to test the viability of nonmetric theory the following two so- 

called foundational experiments are utilized.

The Foundational Experiments

-Ca) EOTVOS EXPERIMENT [16], This experiment which had been 

first conducted by Eotvos and later on improved to a higher 

accuracy by Dicke [17] and by Braginsky [18], demonstrates the 

indistinguishability of mass in any gravitational field with that 

in an accelerated system, i.e. by comparing the ratio of the 

gravitational mass to the inertial mass M^/Mj for various 

materials, or their free-fall rates.

This experiment gives an experimental verification of the 

so-called weak principle of equivalence which states that the 

trajectories of electrically neutral small bodies are independent 

of their composition.
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WEAK PRINCIPLE OF EQUIVALENCE.

According to Dicke [19] it reads J20];

If an uncharged test body is placed at an initial
event in space-time, and is given an initial velocity 
there, then its subsequent world line will be indepen-
dent of its internal structure and composition.

This is an alternative weak version of the statement given in 

Section 2 of the first chapter, where here, by uncharged test body 

we mean that it is shielded from external fields or particles and 

that the self-gravitational field of the body is negligibly small. 
SCHIFF CONJECTURE

L. Schiff made a conjecture stating that every nonmetric 

theory violates the weak equivalence principle and therefore 

it is nonviable, since, conversely, the basically viable 

gravitational theory agreeing with the weak equivalence principle 

is necessarily metric. It reads [21]:

Any complete and self-consistent gravitationaltheory 
that obeys the weak equivalence principle must also, 
unavoidably, obey Einstein's equivalence principle.

It was shown by Lightman and Lee [22] that Schiff's conjecture 

together with Eotvos-Dicke-Braginsky experiment can be used to 

rule out many nonmetric theories from being viable.

(b) RED SHIFT EXPERIMENT [23]. This experiment measures the 

shift of the light spectrum towards the red end due to the 

presence of gravitational field.

Experiments [241 [25] [26] had been conducted with a high 
precision to measure the red shift of the earth's gravitational 
field. It was found that every metric theory with the right
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Newtonian limit predicts the same red shift which has been 

confirmed by these experiments. However, different nonmetric 

theories generally predict different red shifts, even though 

they have the correct Newtonian limit.

The red shift experiment, therefore, like Eotvos -type 

experiments, besides confirming GTR, they, infact, test the 

validity of nonmetric theories and hence their viability.
THE UNIVERSALITY OF GRAVITATIONAL RED-SHIFT

Schild [27] regarded the gravitational red shift as an 
evidence of a curving of space and hence he concluded that the 

correct theory of gravity must be metric.

To be more rigorous, we refer to the previous definition

for metric theories in (2.2) which implies that

(i) trajectories of freely falling test bodies
are geodesics of g

pv

(ii) in local freely falling systems the physical laws 

coincide with those of special relativity

i.e. locally, the frequencies of atomic clocks measured in 

these freely falling systems will not be affected by external 

gravitational field and will depend only on the universal 

constants like the velocity of light c, Planck's constant “h, 

and the electronic charge e. The gravitational red shift will, 

therefore, be universal because the comparison of the frequencies 

is determined solely by the comparison of the trajectories which 

are universal. We then write the following conjecture as worded 

by Clifford- Will [28].
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Any complete, self-consistent and relatavistic theory 
of gravity that embodies the universality of gravi-
tational red shift is necessarily a metric theory.

Nonmetric theories violate the above mentioned conditions 

and hence they yiolate the universality of gravitational red-

shift, and therefore, they may predict a gravitational red 

shift which depends on the nature of the clock to be used in the 

red shift experiment.

The two above-mentioned experiments in (a) and (b) are 

considered complementing each other in testing the viability of 

nonmetric theory. In fact, both of them are interlinked to 

the principle of equivalence, Eotvos experiment through Schiff's 

conjecture and the red shift experiment through the conjecture 

stated by Clifford Will on the universality of gravitational 

red shift.

Up to now there is, with one exception, no nonmetric 

theory which does not fail the test by at least one of the 

two foundational experiments and therefore be filtered out 

from the class of viable theories. The exception is Cartan's 

theory of gravity [14] which although it is nonmetric it, as argued, 
obeys the Einstein's equivalence principle. See (2.6) and (4.6).

As an example of nonmetric theory which is well developed 

and agreeing with some experiments and yet ruled out from being 

yiable, we have:

-Belinfante-Swihart theory of gravity.

This theory was constructed by Bel infante and Swihart

[29] [30] [31] in 1957 to' be Lorentz invariant and quantizable.
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Like general relativity the theory is Lagrangian-based and agree 

with the three classical tests of gravitation; red shift of 

light, bending of light and perihelion shift of Mercury.

But it violates Eotvos-type experiment and partially agrees 

with the weak equivalence principle, i.e. does not cope with 

Einstein's principle of equivalence as it is expected by Schiff's 

conjecture.

The theory has been analysed by Lee and Lightman [32] 

where attempts were made to put it in the metric form, though 

this did not save the theory from being nonviable. Because of 

this nonviability we are not going to consider the theory further. 

Due to the defectiveness of nearly all nonmetric theories the 

whole attention now is confined to the metric theories of 

gravity which are regarded as the most viable models.

A brief account of Cartan's theory will be given in 

Chapter Four together with the strong-field models. This is some-

times called Cartan-Einstein theory [15] different from Cartan's 

theory with Newtonian spacetime (1923) [33] which is also non-

metric but nonviable.

In this last theory Cartcin introduced his idea of strati-

fying Newton's Euclidean space into slices with flat geometry 

and constant universal time which he regarded as a scalar field 

function.

We will come back to the idea of stratification in (2.4) 

when we briefly consider the stratified metric theories of gravity.
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[2.3) Parametrized Post-Newtonian Formalism

THE SUPER METRIC THEORY

Each viable metric theory of gravity differs from 

others by the way the metric is generated, i.e. by types 

of the gravitational fields and the mode of their 

interaction. On the other hand, but parallel to that, 

theories differ among themselves in how far everyone 

agrees with experiment.

It was also noticed [34-J that just beyond the 

Newton’s limit, i.e. post-Newton approximation, all 

metric theories have the same form and can, therefore, 

be unified in one SUPERMETRIC theory [34] whose most 

general mathematical formula will contain certain 

coeffici ents-parameters.

Adding corrections K to the components of 

the metric tensor, i .e.

g =6 + K [2.3.1yv yv

and imposing certain constraints [35] on the form

of these corrections, will lead [36] to the

following expressions for the components of the metric

coeffi cients g andov 9nn [37]’
00

= KOv = AV - KW1 V * 2 v
+ 0(e5), [2.3.2]

and

%o = -1 + 2y^ + ^00 “ "1 + 2y <j . - 2g*2

+ f!2*2 * 63*3 + Me 5p - nD [2.3.3]
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where 4), ip, a , a£, P,D are integrals for the 

fields 138] which die out not slower than - far r
from the solar system, f stands for the Newtonian 

potential defined by Poisson equation [1.6.2] and

having the solution:

[2.3.4]

THE PARAMETRISED POST-NEWTONIAN PARAMETERS

Other integrals in [2.3.2, 3] represent the 

gravitational potential and the ten coefficients 

Y> 3, 32> 33, 3V C, n Da, D2 are-unknown

constants called Paramatrized Post Newtonian (PPN) 

parameters first introduced by Nordtvedt [39].

Every individual metric theory can be obtained 

by a certain choice of numerical values of these 

parameters or, conversely, these parameters can be 

determined by comparing the coefficients of the 

equations of the given theory with those in [2.3.2, 3]-

A physical significance is attributed to each of 

the ten PPN parameters.

y- indicates how strongly a unit of mass curves 
the space-time.

3 - denotes the nonlinearity in gravitational laws 
due to the combination of gravitational potentials 
of different bodies.

n - characterizes the effects due to anisortropy
■ in pressure.
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The revised parameters [40] a1}a25a35c15c2J?3>Ci+

which are defined by the following combination of

parameters:

4ai - 7^1 + A2 - 4y -
0J2 = A2 + ? - 1
ot3 = 40x - 2y - 2 - ?

=

20 + 202 - 3y - 1

= 03 - 1

= 0i+ ~ y

[2.3.5]

7

are also indicating certain effects:

alsa2 and a3 describe the phenomena connected 

with the so-called "preferred" frame of reference 

where the result of observation depends on the 

velocity of the observer. If at least any one of 

these a is not zero the theory is a preferred-

frame theory [41] [42], Parameters alsa2 and a3 

measure the size and nature of the effects connected 

with such frames.

In general relativity all a = 0, i.e. the 

theory does not recognise such "preferred" frames. 

In fact the preferred frame effect is in conflict 

with Dicke's [43] [44] so-called strong equivalence 

pri nciple.
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THE STRONG EQUIVALENCE PRINCIPLE

This principle states that

(a) The weak principle is valid.

(b) The result of ANY local test experiment 
whether gravitational or nongravitational 
(stronger than Einstein's principle
which is confined to nongravitational ones) 
is independent of when and where in the 
universe it is performed and independent 
of the velocity of the freely falling 
apparatus.

As an example of this the dimensionless ratios of non-

gravitational constants are independent of location,

time and velocity.

The Cavendish experiment [45] measuring the variability of the 

gravitational constant G, satisfies the Einstein's principle 

but, the result would violate the strong Principle of 

Equivalence if it indicated that G was not constant.

The parameters ?15 ?2, ?3> and a3 indicate

the extent to which the laws of conservation of energy,

momentum and angular momentum are violated. The non-

violation of conservation laws i.e.

Ci = = ?3== a3 = 0 characterizes the so-called

conservative theories such as GTR and Brans-Dicke 

theory. These theories also are free from preferred-

frame effects since all a = 0.

We notice that Einstein's gravitational theory . .

has a significant position among various theories of 
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gravity and the simple form of PPN parameters 

(y=3=l & a=c=0) reflects its consistency with the 

laws of nature and therefore its viability.

The coefficient n is usually neglected by 

considering the stress at the post-Newtonian limit as 

isotropic pressure.

An extra parameter appeared in the calculation 

of some theories [46] is associated with gravitational 

effect due to the presence of nearby, say galactic, 

matter when induced in our solar system. Such effect 

is not predicted by GTR and many other theories.

(2.4) Classification of Metric Theories of Gravity

By introducing the PPN formalism, Nordtvedt made 

it possible to analyse experiments and to study and 

classify different metric theories of gravity according 

to the numerical values given to the PPN parameters 

[47], into nearly eight categories.

The following are the known classes:

1. General Relativity
2. Sealar-Tensor theories (Brans and Dicke) 

[48] [49]
3. Vector-Tensor theories (Nordvedt, Helling 

and Will) [50].
4. Tensor-Tensor theory (Lee and Lightman) [5T].
5. Conformally flat theories (Nordstrom) [52].

6. Stratified theories (Rosen-type) l(Rosen) [53 v

7. Stratified theories (Ni-type) (Ni) [2],

69



8. Quasi-1 inear theories (Whitehead) [54].

Of these classes only the first three are viable. 

The others violate specific solar system experiments. 

It can be shown [ 2] that this classification is also 

based on the types of gravitational fields included 

in the theory and on the way they interact with each 

other.

Apart from general relativity where only one 

gravitational field is contained in-the theory, other 

theories deal with a scalar field $ being generated 

by matter and nongravitational field, via a wave 

equation. Examples for these are the Brans-Dicke scalar-

tensor theory and conformally flat theories and strati-

fied field theories.

These last two classes are nonviable because of 

their violent disagreement with certain solar system 

experiments and observations [52]. We give, here,a 

brief idea about these two kinds of theories and more 

details about the ones listed in the above-given 

compendium can be found in reference [ ,2].

Conformally flat theories [52]

This theory possesses, besides the scalar field 

a flat background metric dn2 and a conformally flat 

physical metric ds1.

The generated field $ and dn2 generate the 

physical metric by the conformal relation
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ds* = e‘2f(^dn2 [2.4.1]

By conformally flat metric we mean that one 

which is flat for photons and curved for particles. 

These theories predict no deflection of light therefore 

disagree with experimental results. In order to 

avoid this disagreement the following kind of theories 

is proposed:

The Stratified theories with conformally flat space 
slices [55J.

In this modified version of preceding conformally 

flat theories a ‘'preferred" universal frame of reference 

and conformally flat space slices (strata) of this 

frame are postulated [55]. The whole space-time is not 

flat.

In these kinds of theories the field $ generated 

by the matter and nongravitational field via a wave 

equation combines with the universal time-coordinate t 

and dn2 to generate the physical metric ds2 

through the following relation:

ds2 = e_2fi($)dn2+[e2f^)- e'2fi^hdt2 [2.4.2]

In the rest frame of the universe this metric reduces to 

ds2 = e2f(^dt2 - e’2fl^\dx2+dy2+dz2) [2.4.3]

Different stratified theories will correspond to 

different choices of the functions f and fT and 

by the field equation for $. In these theories the 
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background metric and the universal time coordinate do 

not change by changing the distribution of the 

gravitating masses. This is in contrast with the 

principle of covariance and that is why GTR and Brans- 

Dicke theory are free of these geometrical aspects 

which are named "prior geometry" [56].

The "strata" concept and the universal frame 

had been introduced in the stratified theories in 

order to remedy the zero deflection of light, but 

unfortunately the theory still is in conflict 

with experiment and there fore nonviable.

(2.5) Brans-Dicke-Jordan Theory

The theory was first formulated by Jordan (1948, 

1955) [57]?Thirry (1948) [58], independently,and also 

by Brans and Dicke (1961) [59]<

This sealar-tensor theory comes immediately after 

Einstein's as the most viable competitor and hence is 

considered as the strongest alternative to GTR.

In contrast with general relativity the theory 

is based on the Machian Principle [60] which states 

that inertia arises from accelerations with respect to 

the general mass distribution of the universe.

By this, the inertial masses of particles should 

represent the interactions of these particles with a 

long-range field $ coupled to the mass density of
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[2.5.1]

the universe by

V2$ Pm T..
y Mo

Or in the generally covariant form

a = d2$ = [2.5.2]

2 
where Q $ is the invariant d'Alembertian.

is the stress-energy tensor of matter and
nongravitational fields.

X is a coupling constant.

As it was mentioned in (2.4) $ is generated

by matter and nongravitational fields and acts 

with $ to generate spacetime curvature, i.e. the 

metric.

The total Lagrangian for the whole system can 

be constructed and the variational principle will be

6 /g (+ 16irX - w —------- ) dQ = 0

[2.5.3] 
where R is the scalar curvature and is the 

matter Lagrangian including nongravitational fields.

It is noticed that if $ 1 in [2.5.3] be 

replaced by the gravitational constant G, it will 

yield the variational principle of GTR given in (1.7).

Thus the resulting field equations read,
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G = R 
pv pv

□
y

[2.5.4]

If u), being a dimensionless constant, is gi ven by

1
CO = “

ae 2
3 .
" 3* [2.5.5]

called Dicke's coupling constant, then the wave

equation [2.5.2] becomes:

3 + 2> [2.5.6]

For co large, then It can be

also shown [61] that then, we can write:

+ 0 [2.5.7]

This will make [2.5.4].

G = —8tt GT
pv pv

+ 0 [2.5.8]

and that means for to [2.5.4] will reduce to

Einstein's gravitational field equation [1.6.8].

It is obvious from [2.5.6] that the theory breaks down

at to = -3/2.
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It is seen from [2.5.4] that the metric represented 

by G is generated by T and the scalar field $ 

but the latter has no effect on the matter.

The post-Newton approximation was obtained [£]

and the PPN parameters are given by:

Y
1
2+w

= 03

3+2(d

4+2 CD
j [2.5.9]5

Where id may run

1 +u)
2+w

the

A = 1 0 + 7c° s

1 14+ (D

values between and oo

J a 2 = 1

3
2

Thus to can be adjusted to fit the best 

experimental data. For w« parameters in

[2.5.9] and consequently in [2.3.5] will coincide 

with those of general relativity.

Brans-Dicke-Jordan theory, therefore, satisfies 

the equivalence principle and reasonably agrees with 

nearly all experiments that test Einstein's theory 

of gravitation.

We will come back again to this theory in Chapter 

Four within the frame of scalar-tensor theories (4.4), 

where its validity in strong gravity is considered.

For brevity this theory is sometimes referred 

to as simply Brans-Dicke theory.
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(2.6) Summary and Critique

In the preceding sections of this chapter we 

considered different aspects of the gravitational 

theories those which serve alternative models to general 

relativity in the weak-field gravity. The viability 

criteria (2.1) ruled out many theories from considera-

tion, especially those whose mathematical formulation 

cannot be put in a metric form, i.e. nonmetric theories. 

Schiff conjecture gives credibility'to only the metric 

ones which are defined, more or less, in accordance 

with general relativity. By this, Einstein's model has 

been anticipated to be the standard theory of gravitation 

with respect to which the validity of other models are to 

be assessed. But the unreliability of GTR in the areas 

of strong-field gravity, discussed in Chapter Zero, makes 

this distinctive position of Einstein's theory question-

able.

Moreover, the fact that GTR as well as its sister 

theories are mostly singular in the vicinity of massive 

bodies, whereas in the weak gravitational field they 

predict Newtonian limit, would suggest that Newtonian 

inverse-square law might break down as from at a certain 

field strength along the energy spectrum. Fujii-0'Hanlon 

theory of gravity [62], [63j, which satisfies all but 

one viability requirement due to its predicting a non-

Newtonian potential even in the weak field limit, may 

confirm this situation. Consequently, extra restrictions 
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in the conditions should be imposed so that a gravitational 

theory can still be viable in the strong-field domains.

Hence the viability conditions should be amended 

to accommodate strong-field gravity. For instance, the 

completeness conditions should be understood in the 

classical sense that the theory be capable of giving 

definite answers, whether correct or incorrect, in pre-

dicting all gravitational as well as nongravitational 

phenomena, without having being meshed with quantum laws. 

Otherwise a certain indefiniteness in the predictions 

will be allowed when quantum mechanical laws are incor-

porated in the theory.

Another example, Cartan's theory [14], which is 

considered nonmetric, though accepted as viable because 

its experimental predictions are almost identical to those 

of GTR. But this viability is inconsistent with its being 

nonrelativistic, since the torsion generated by spin does 

not represent a gravitational field which, by the general 

covariance principle, disappears in local systems. 

Trautman [64] refuted this by arguing that since in the 

real world spin effects decrease with the decrease of 

mass in the laboratory, therefore the spin-induced 

torsion automatically disappears with the absence of 

gravitation. That means the theory can be locally 

reduced to special relativistic laws. We think that the 

cogency of either arguments can be reconciled if we look 
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to the torsion as a microscopic effect which arises in 

strong-field gravity where the applicability of the 

equivalence principle breaks down as far as that 

relates to GTR. In weak gravity the spin cancels out 

each other within the bulk of matter whilst the equi-

valence principle is meaningful.

In the end we notice in the catalogue of metric 

theories which differ among themselves with accordance 

to the values of PPN parameters, GTR possesses an 

outstanding position by having the simple values 0 and 

1 for these parameters. This implies that other viable 

metric theories are but a modification of Einstein's 

model whose success will be always judged by how far 

from general relativity they stand in terms of their 

predictions or in other words, with respect to their 

PPN parameters. But we also notice that the PPN 

formalism has nothing to do with either nonmetric theories 

or- with strong-field gravity where the superiority of 

GTR over its weak-field competitors is meaningless.

(2.7) Concluding Viewpoint

The above-noted modification of general relativity 

towards improving its outcome will gain no further 

success if this modification is made by just adding an 

auxilliary scalar field additional to Einstein's 

Lagrangian R. Firstly, because this additional field 

is already a weak field it will not be having any 
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significant effect in the strong-field gravity. 

Secondly, it is imposed into the gravitational equation 

with a strange assumption of being included in the 

source and at the same time not affecting the equality 

of inertial and gravitational mass [65], i.e. again 

sticking to general relativity in one way or another.

Now, since the whole success lies with the geo-

metrical picture of Einstein's theory we think that 

the modification of GTR will lead to fruitful results 

if we maintain the geometrical representation by 

replacing = R by a nonlinear geometric Lagrangian. 

This can be done, in a way, by visualizing the additional 

field, like that of Brans-Dicke theory, in terms of 

Riemannian geometry. In other words, by generalizing 

GTR so that Brans-Dickes additional field may be not 

just an auxilliary one but a priori embodied in the 

metric space. We will come back to this issue in 

Chapter Four when we will deal with strong-field models 

and in Chapter Five in relation to the generalized 

gravitational field equations and the generalized 

Lagrangian.

In the next chapter we consider the solution of 

the gravitational equations, particularly the metric 

of Einstein space which represents the data base for 

all applications and tests of general relativity and 

comparatively of other weak-field models.
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CHAPTER THREE

Gravitational Equations

(3.0) Solutions of the Gravitational Field Equations

Being nonlinear, equations of gravitational field 

like Einstein's [1.6.8] do not have the exact general 

solution,

But in certain cases an approximation can be 

allowed and a sufficiently adequate solution can be 

obtained while in other cases the equation itself can 

be simplified and the exact solution can be achieved.

In the case of anisotropic nonstatic systems, 

two methods of approximation are utilised; the weak- 

field approximation [1] dealing with matter of 

relativistic velocities, i.e. gravitational radiation, 

and the post-Newtonian approximation [2] referred to 

in (2.3), which is adapted for nonreJativistic bodies 

e.g. of the solar system.

As for the case of symmetric and static systems, 

the gravitational field equation can be simplified by 

assuming either isotropy [3] or axilally symmetry [4] 
of space, leading to an exact solution due to 

Schwarzschild [5] and Kerr [6] respective'ly.

In domains where neither this kind of simplification 

nor approximation schemes are applicable, namely, in 

the intensive gravitational radiation, e.g. during the 
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formation of Neutron stars, the exact general solution 

remains to be the only alternative.

Besides the analytic solutions, computational 

analysis may play a greater role in solving nonlinear 

equations of gravity as the numerical methods develop [7].

Finally, although some progress has been achieved 

[8] [9] in attempting to obtain exact solutions for 

Einstein's gravitational equations, the symmetric- 

static metrics still have the significance of being the 

most useful solutions.

In this chapter we confine ourselves to these 

symmetrized metrics where we consider the empty-space 

Scwarzschild solution as well as its generalized and 

transformed versions. We shall not go into the 

detailed derivations of the metrics and the resulting 

application formulae, which we regard as a textual 

information obtainable from any standard literature 

on general relativity (see for example [10] or [11]).

As we are concerned with a nonsingular gravity in 

our present work, we deem necessary to be well acquainted 

with the singular behaviour of Schwarzschild metric, 

the metric relative to which we may assess the validity 

of any other alternative model. The concept of 

"black holes" [12] as being related to these singulari-

ties is discussed and criticized.
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(3.1) Solution of Einstein Free-Field Equation

In the free space outside the matter generating 

the gravitational field, Einstein's equation will be 

having the simple form [1.7.20]; though it is too 

complicated to be solved in general terms as being of 

second order partial differential equations for g^. 

This is clear from the definition of the Ricci tensor 

[1.4.25] which can be contracted from [1.4.24] to 

have the form:
ar\ arA . .

R = —EA------E2. + rn.rA - r11 [3.

But since we know that the equation is built from 

the metric tensor, therefore we will rather look for 

the structure of g , i.e. the solution of thep\)
metric tensor in terms of space coordinates. Thus, 

in order to study the field represented by the metric 

we shall study the metric and for this purpose we 

choose the simplest form with space symmetry and 

independence of time, i.e. isotropic, or axially ■ 

symmetric, static metrics.

a. Static Isotropic Metric

In this metric the gravitational field will 

depend on the spatial coordinates in the form
- 2 - 2 “ "X, dX , X-dX being rotational invariants.

The invariant proper time interval [1.4.3] should 

be the same for all points in symmetrical positions.
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By using the spherical coordinates one can come 

to the following static isotropic metric [13]:

ds2 = -g dXpdXv
pv

= - [A(r)dr2 + r2de2 + r2sinod(p- B(r)dt2]

[3.1.2]

where,
9rr = A(r) 1

g = r2yee
= geesin2e

9tt = -B<r>

q =0 for pH

and owing to [1.4.11]

g = (gw)_1

The function A and B can be determined 

[3.1.3]

[3.1.4]

from the solution of the field equation.

Further, by applying [3.1.3] to [1.4.9] and

[1.4.8] or [1.4.19] one obtains

rA =0 for all other indices

r A -r r - rs i n 2 6 r B
rr 2A 5 He ‘ A ’ A ’ tt" 2A

e 0 1 0 sinecoser = r , r = -ro er r

r* = rj . 1
, - r^A = cote )■

fr r 6(j) <j)0

nt nt B
rt = r1 tr ’ 2B

[3.1.5]
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and by using [3.1.5] in [3.1.1] the components of

the Ricci tensor wi 11 have the following form,

where

R rr
B

2B
1 [A
4 [A

B+ -
B 7

B
B

1
r

A
A

1

+

00 si n20

R . A
tt 2A

R =0 uv for

1
4

D

, A, = -] + ^-
2A

«

[A 
kA +

A
A

B
A

+ b ' 
B J

•
J3_ 
rA

+ 1
A y [3.1.6]

J

A _ dA
— 3

dr
and B = — 

dr

From [3.1.6] one obtai ns the following relation:

and

and

for

i.e.

The scalar

R rr
A

+
Rtt

B
1 [3.1.7]

curvature can be calculated from [1.4.26]

[3.1.4,5] to give

Rrr

A
R

B
+

2Ree

r2
[3.1.8]

by using [3.1.6] we come to the following expression

R
*

R =
♦

B _ fA B + A i A , B 1+ “ - - + -
AB 2A A B rA I A B J

in the static

+ —(1-A) [3.1.9]
r2A

the scalar curvature isotropic metric

does not depend on either

a function of only r,

R = R(r). [3.1.10]
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The Schwarzschild Metric

In the vacuum Einstein's equation

which by [3.1.7] yields

—(AB) = 0 
dr

AB = constant

A(°°) = B(<») = 1

being the flatness condition at large

A(r) = B (r)

Using [3.1.14] in [3.1.6] will yield

dr' J
and,

B = C1r-2.

which by integration yield the following

for A and B;
A(r) = [1 +^]_1

c
B(r) = 1 + —

.7.20] gives,

[3.1.11]

[3.1421

[3.1.13]

r, and therefore

[3 J • 14]

The gravitational Newtonian potential of

= -MG
r

which is related to g^ by

+ 2cj) j

solutions

[3.1.15]

source mass M,

[3.1.16]

[3.1.17]

85



if entered in [3.1.15] the following metric space due

to Schwarzschild (1916) [14], results from [3.1.2]:

[3.1.18]

ds2 =
r 1

-] _ 2MG dt2-
f >

1 - 2MG
-1

dr2 - r2do2 - r2sin2ed<|)2
l r J I r J

By transforming the time coordinate in the form,

t  = t + 2MG1n|1-r/2M| [3.1.19]

and accordingly the metric tensor components Eddington (1924) 

[15] obtained the following expression for [3.1.18],

ds2 = di2 - dr2 - r2(de2 + sin26d(£2) - (dx+dr)2 [3.1.20] 
r

where the last term represents the nonflatness of space.

The Schwarzschild metric [3.1.19] although having 

singularities at r = 0 and r = 2MG, was very useful 

in studying celestial and astrophysical problems, namely 

those investigating static gravitational field exterior 

to spherically symmetric bodies like, say, stars.

b - Axially symmetric metric

Besides the Schwarzschild solution which is confined to 

static gravitational fields, Lense and Thirring [16] 

(1918) tackled the problem of gravitational field 

generated by a rotating spherical body by using a per- 

turbational method. But their solution, being 

approximate, is not useful for describing the strong 

field of rotating stars.
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The problem of axially symmetric stationary gravi-

tational field was successfully treated by Kerr (1963) 

117]. By stationary we mean time-independent but not 

static.

The Kerr solution will be a generalization for 

Schwarzschild space when the stationary field of a rotating 

body is considered instead of static gravitational 

fields. The theory accounting for electromagnetic 

effect, by incorporating the electric charge, and including 

the intrinsic angular momentum of the rotating body will 

be having a metric space called Kerr-Newman [18] geometry, 

which will reduce to the so-called Reissner-Nortstrdm 

£19] [20] form for nonrotating objects, or to Kerr metric 

for the vanishing electric charge.

It is obvious that in the case of zero electric charge 

and zero angular momentum, i.e. static body, the Kerr- 

Newman solution coincides with the Schwarzschild's.

The Kerr Metric

Commencing with Eddington (Eddington-Finkelstein 

[21]) form [3.1.20] of the Schwarzschild metric, 
in terms of the Boyer-Linquist coordinates [22] [23], 

one can obtain [24] for the axially symmetric rotating 

body,the following solution of Einstein's free field 

equations;

ds2 = - A(p,e)dp2 - B(p,e)dt2 - c(p,e)de2 - d (p,e)df2

- E(p,e)dtd(j), [3.1.21 ]
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with
A = P2+a2cos2e

p2+a2-2MGP

= 2MG:P
p2+a2cos2e

y [3.1.22]C = p2 + a2cos2e,

p2+a2cos20

F = 4MGpa sin20 , 

p2+a2cos20

and where the radial marker p is defined in terms of

the radius r and the constant parameter a, as:

p2 = r2 - a2sin20 [3.1.23]

It is clear that when a = 0, p = r and in

[3.1.22] E= 0, i.e. the last cross term in [3.1.21] 

disappears and the metric will then reduce to the 

Schwarzschild's space time.

[3.1.21] was first obtained by Kerr (1963) [25] for 

axially symmetric time-independent gravitational field 

exterior to a rotating object.

This axially1 symmetry and time-independence is 

manifestly shown by the absence of both $ and t in 

the coefficients definitions of [3.1.22].

There are some other features of solution [3.1.21]’ 

which we can summarize as follows.
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(i) If t -> -t and -> -<h ds2 will not 

be changed. This physically means the 

equivalence of running time backwards with 

a negative spin direction to running time 

forward with positive spin.

(ii) If a = 05 ds2 reduces by [3.1.22] to 
the static isotropic metric, this gives 

indication that the parameter a is a measure 

of the angular momentum per unit mass of the 

source.

(iii) Also the change of and a -> -a

will leave ds2 unchanged which implies 

that a specifies spin direction.

(3.2) Post-Schwarzschild metric

The fact that Einstein's is not the only successful 

theory owing to its having strong competitors, the 

Brans-Dicke-Jordan theory, make us think that Schwarzs-

child metric which is derived from the equations of 

general relativity may not be unique, at least, in 

describing the gravitational field generated by static 

spherically symmetric bodies. The metric may, therefore, 

be modified in such a way that the metric coefficients 

A(r) and B(r) in [3.1.18] will contain small 

corrections. To do so we expand these metric coefficients 

as power series in the small value MG/r being the 

gravitational Newtonian potential [3.1.16]. That yields:
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B(r) = 1 - 2aMG + 2(£-ya) M2G2
r2

[3.2.1]

A(r) = 1 + 2y [3.2.2]

where a,3,y are dimensionless constants. This

expansion, which was first made by Eddington [26] and

Robertson [27] reduces to Schwarzschild's solution of.

Einstein's equation when

a = 3 = y = -1 [3.2.3]

Indeed, since the centrepetal acceleration g of a

planet moving with speed v around the sun (with

M0G/r«l and v2«l.

determined by:

i,e. far and slowly) is

MG
g = -- [3.2.4]

r2

whereas from [1.4.8] and [1.4.9] we have

r 3gtt V
g = r = -I —Si = 0 -®~ [3.2.5]

LL ar r2

By comparing this with [3.2.4] one gets a = 1.

As for the values of 3 and y being equal unity, 

one can verify that by virtue of general relativity tests 

[28].

Brans-Dicke-Jordan theory [2.5], in its post-

Newtonian approximation [2.5.9], has the same form 

as Robertson isotropic metric:
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with a = 3 = 1 agreeing with general relativity, but

Here, Brans-Dicke-Jordan theory has the advantage over 

Einstein's, since the parameter w can be always 

adjusted to fit the best experimental data.

Finally, the metric [3.2.6] as well as

Schwarzschild's metric indicates that the solutions for 

the gravitational field equation at any point outside 

the static spherically symmetrical body depend only on 

its mass and not on any other of its characteristics.

As for the stationary gravitational field at any 

point exterior to an axially symmetric rotating body 

the solution will not depend on any other property 

of this body other than its mass and angular momentum.

In the following sections we shall consider the 

applications of expressions [3.2.1] and [3.2.2] to the 

weak-fi.eld of the solar system gravitation. We shall 

also consider the consequence of applying such a metric 

to the strong gravitational fields.
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(3.3) Application of Schwarzschild Solution to Solar System/s 
Gravitational Phenomena.

Being the data-base for all weak-field predictions of general 

relativity, Schwarzschild solution is quite applicable to the 

gravitational field of the sun, where it describes well the 

behaviour of the metric space at distances from the sun 

r > r > 2M G, with r denoting the sun's radius and 2M G 

the Schwarzschild's gravitational radius for the sun at which 

space geometry becomes infinite. For simplicity the sun can 

be considered a correctly shaped sphere and static, that means 

any possible anomalous effect produced by the solar oblateness 

can be ignored.

We introduce in brief the classic tests of general relativity 

that are based on Schwarzschild's description. As we have stated 

before in (3.0) we shall not elaborate on the derivations of the 

formulae predicting different gravitational phenomena, which are 

obtainable from any standard text book on general relativity, 

but rather confine ourselves to how far these predictions agree 

with experiment.

let us first obtain the equation which describes the motion 

of a particle in static isotropic gravitational field represented 

by the metric [3.1.18].

By referring to [1.4.1] defining the proper time ds, 

the equation of motion of a particle, fixed to a freely falling 

coordinate nv in a purely gravitational field, w.r. to this 

(locally Lorentzian) coordinate reads:
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2
d y _ n — n - u. 

ds2
[3.3.1]

Now by considering the coordinates np as a function of other

coordinates, say X equation [3.3.1] will lead to

or

d dx 
ds ax^ ds 3X ds2

a2np
axuaxv

dV 
ds2

-rx dxu dxv 
ds ds

[3.3.2]

4

where the coefficient r\of the transformation of a coordinate 
pO

from one point in one manifold to another, is defined by

axX a2n° = rX 
an“ ax'V ' yv’

[3.3.3]

It is called the affine connection which is a nontensor, and 

can be identified with the afore-given in [1.4.9] Christoffel 

symbol [23]

Now by using the nonvanishing components of from

[3.1.5] and hence the Robertson expansions [3.2.1, 2] of the 

static isotropic space in [3.3.2], one can derive a relation-

ship expressing the shape of a particle's orbit represented by

as a function of the coordinate $ or conversely,

= 4>(r) [3.3.4]

The explicit form of <j>(r) (see [10]) will be employed 

in predicting the following two phenomena of the gravitational 

field of the sun.
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1. PRECESSION OF THE PERIHELIA OF THE PLANET

Consider a particle or a planet moving in an orbit around 

the sun. It is predicted, by virtue of [3.3.4] that the 

planetary orbit precesses in the same direction of the planet's

motion, forming an angle 

6tt GM0
L

f 1
2-B4-2y

. 3 ,
radians per revolution

[3.3.5]

where L, called semilatus rectum, determines the dimension 

of the eliptical orbit and can be found from astronomical tables 

for the eccentricity e, and the semi-major axis a of any 

known planet by the formula

L = (l-e2)a [3.3.6]

For general relativity the parameters y = 3 = 1, therefore

[3.3.3] reads
radians per revolution [3.3.7]

As we have GMq = 1.475 KM and for Mercury L = 5.54x107 KM

and since it makes 415 revolutions around the sun per century, 

then we get for this planet

= 43.03" per century. [3.3.8]

The observed value for the centennial precession of Mercury 

was found by Clemence [29] to be

Mobs ~ 43.11 ± 0.45" per century [3.3.9]

which is an excellent agreement with the predicted value.

This high accuracy results from the analysis of the accurate
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observations accumulated since the last two centuries. Usually

astronomers use light rays which, as we shall see below, are

affected by the sun's gravitational field and hence systema-

tic errors will occur, but because the precession is cumu-

lative, this kind of error will be more insignificant, the 

more revolutions are counted. For this situation this test is

considered the most important in verifying general relativity.

The Brans-Dicke version gives by 1 the

following formula.

a*GTR • [3.3.10]

The parameter io in

[3.3.5] can be well estimated by virtue of [3.3.9].

As for other planets like Venus, the earth and Icarus,

the accuracy of the observations will become less as the planet

is orbiting far from the sun and the uncertainty in estimating

the errors will be greater.

2 - DEFLECTION OJT LIGHT BY THE SUN.

In this phenomena we consider as a particle the photon of 

light which isnot bound in an orbit around the sun. The light 

coming from a great distance where the metric is Minkowski an, 

and approaching the sun, could continue travelling in straight 

lines, but because of the solar gravitational field, it will 

be deflected towards the sun forming an angle,

A(f) = 2 | <J>(r0) - * | - n
00

[3.3.11]
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where <j>(r) is the explicit expression for [3.3.4] and

<j> = 4^ as A(«) = B(«) = 1, and r0 -the distance of the 

closest approach to the sun which will coincide with the solar 

radius rQ as the light rays graze the sun's surface. This

yields

= 0.8755(1+y) [3.3.12]

GTR with y = 1 predicts

[3.3,13]

and Brans-Dieke theory with y given by [3.2.7] yields,

A<f,BD = 2^+4 A'*’GTR [3.3.14]

The deflection of light by any other body less massive than

the sun will be negligibly small.

The deflection angle is measured by comparing the apparent 

positions of stars during the eclipse of the sun when they appear 

to lie next to the solar disc with their positions half a year 

later when their observed images will be mostly unaffected by 

the sun's gravity. Such a measurement was made during the 

1952 eclipse in the Sudan [30] and was in good agreement with 

GTR g iving the following deflection angle.

A40bs = 1.70 ±0.10-1 
while y is found > L0,0,
to have the value Y = 0*94 ± 0.12 J

Beside the optical observations radio astronomical means have 

been recently utilized with a potentially greater accuracy in
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measuring the deflection of radio waves by the solar gravi-

tational field. This yielded [31]:

with

^obs-1’7710-20”

Y = 1.02 ± 0.24
[3.3.16]

Thus one may see that despite the technical and observational 

difficulties [JO] surrounding these kinds of experiments, the 

results obtained fairly confirm Einstein's general relativity. 

Further, besides the afore-discussed gravitational phenomena 

which are predicted by general relativity we introduce the 

following third test of Einstein's theory, i.e.

3 - RADAR ECHO DELAY

This time general relativity predicts a delay in time a 

radar signal takes to travel to an inner planet (Mercury) and 

back, again. By exploiting the geodesic equation [3.3.2] we 

obtain an equation governing the time history of the photon 

trajectory whose solution will determine the motion as a 

function of time [10]. Then one can calculate the time 

required for a light to travel from position r* to position rz 

via To J C-.&

ti2 = tfr^ro) + t(r2,r0) [3.3.17]

The delay in time will be maximum when a light signal or the 

radio echo, grazes the solar surface in its round-trip. This 

yields the following excess time delay;
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*
1 + 1+y In 4rer0

2 rI G JJ

= 5.9KM 1 +11.2 [1+y)
I 2 J [3.3.18]

where r^ and r$ are the distances to the sun from the earth 

and Mercury respectively. Then general relativity (y=l) would 

predict.

(At) - 72 KM = 240 /*iSec. [3.3.19]' 'max

Series of experiments have been carried out by Shapiro and 

collaborators [32] who used Mercury as a reflector when it 

was at superior conjunction. In other experiments [33] the 

artificial satellites Mariner 6 and 7 were used as reflectors 

for the electromagnetic signals. Although these experiments 

encountered considerable difficulties [34] , the results 

obtained are comparable with those obtained from the deflection 

of light of distant stars by the solar gravity. These experiments 

9ave the following values for the parameter y.

y = 1.03 ± 0.04 by using Venus and Mercury as reflectors

, (1967-70),
'(

and y = 1,00 ± 0.028 by using the spacecrafts Mariner 6 and 7 

as reflectors (1969-71).

Furthermore, we add here t;wo other experiments 4 and 5 that test 

The validity of general relativity, but differently from the 

Preceding tests,,are not based on Schwarzschild's solution.
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4 - PRECESSION OF ORBITING GYROSCOPES

In this test a gyroscope was proposed [35] to be placed 

in an orbit around the earth. The precession of the spin vector 

Sp can be used to measure the fine details of the earth's gravi-

tational field. Owing to the rotation of the earth the system 

is not static and not isotropic and therefore the Schwarzschild 

metric is not applicable. By treating the gyroscope as a point 

particle the frame can be regarded as locally inertial in which 

the spin does not precess. In a general coordinate system spin 

precesses according to the equation

dS _ E
ds

rA dxv
A ds

[3.3.20]

The angle 
-> 

gyroscope S 
y 

from a distant

between the direction of the

and the velocity vector of light

spin of the

rays Ug coming

star is given by

-10 = COS V u9 ■]

. ISgl |Ug| .

[3.3.21]

e

It can be measured by focussing the star's image on photo-

electric cells fixed to the gyroscope in such a way that any 

change of 0 will cause the image to move over the cells. 

Consequently, the photoelectric current will be produced 

describing the precession Q of the spin with which a value for 

the constant y can be obtained according to the relation [36]

Q = - (J + y) (V x VS) [3.3.22]

where $ the gravitational potential of the earth.
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We note that, although the metric under consideration is 

not static-isotropic, this experiment has been introduced here 

to test general relativity for only the sake of generality.

5 - THE GRAVITATIONAL RED SHIFT.

This test, like the last one, is not an application of 

Schwarzschild's solution. It is rather a test for the validity of 

the equivalence principle and hence confirms the GTR. We have 

already discussed in (2.2) the universality of the gravitational 

red shift and how that is related to the universality of the trajec-

tories of the photons. We consider that n light waves with frequency 

are emitted, within ds@ seconcjS} on the sun where the potential 

is The same number of waves will be received on the earth where ©
the potential is <^. Now since the interval between two events is 

given by:

ds2 = -g x(x)dxudx^ = -g^dt2— g.kdx^dxk [3.3.23]

then the actual time interval between two events for a given 

point will yield ,
ds2 = “D-^dt2 with dx^ = dx^ = 0. [3.3.24]

Then by taking into account [3.1.17], the n waves received 

during dS^ seconds on the earth will be having frequency 

which is different from v and hence
Q

•» = v0*s = Vs® [3-3-25]
i.e.

v /I+2$ = \> /l+2$ft [3.3.26]o To © ®

Now since the field is weak then we can expand to the first order 

in $ and this yields
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[3.3.27]

or finally,

[3.3.28]

the gravitational shift of the spectral

Evidently, since

This formula perdicts 

lines to the red end.

its large potential which is negative w.r. to the earth will 

make Av negative. It means that the frequency would decrease 

by leaving the sun, and by being received on the earth would shift 

towards the red end of the light spectrum. This can be explained 

by the relatively slower vibrations of the atoms on the sun by 

comparison with those on the earth where the gravitational field 

is less intense than that on the sun.

the sun is a massive boc|y,

Now by calculating the sun's gravitational potential on 

its surface,
GM

$=- — =-2.12x10“’ . [3.3.29]
0 r

0

The frequency of light from the sun [3.3.2/7] will be shifted 

towards the red by about 2.12 parts per million.

There are practical difficulties in measuring the red shift 

due to the Doppler effect caused by the motion of the source, 

and due to the convection of gasses in the solar atmosphere [37]. 

However, an empirical evidence that supports the afore-predicted 

value for the red shift was obtained by Pound and Rebka [38] 

who performed a terrestrial experiment of highest precision by
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using Mossbauer effect [39]. In this case [3.3.23] yields,

— = -2.46xl0'15 [3.3.30]

which is in excellent agreement with the experimental value

[40],

= (2.57 ± 0.26)xl0"15. [3.3.31]

For further information about the experimental data concerning 

solar system experiments the reader may refer to [41] [42JDH.

Now at the end of this section we conclude that the last 

two tests are not relevant to the theme of the present chapter 

which is mostly confined to the solutions of the gravitational 

equations and in particular, to the Schwarzschild metric. How-

ever, as we noted before, these have been supplemented here for 

the sake of generality in presentation. Finally, we admit that 

in the previous sections we mainly investigated Schwarzschild's 

Metric in regions where gravity is considerably weak. It will 

be rather interesting to consider, in the next section, the 

behaviour of Schwarzschild's space in its nonlinear part where 

singular points are exhibited.

(3.4) The Schwarzschild Singularity.

The Schwarzschild metric [3.1.18] corresponding to the 

solution of Einstein's free-field equation is obviously singular 

at r = 0, and at r = 2GM, which is called the Schwarzschild 

radius of the mass M.
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The singularity at the origin is real, since physically, 

there is no point mass whose gravitational field is infinite# 

and mathematically it is coordinate-independent, i.e. it is 

unremovable by the use of any coordinate transformation. As 

for the singularity that appears to occur at r = 2GM, one 

can prove that it does not affect the well-behaved nonzero 

curvature invariants at this point. By curvature invariants

we understand quantities composed of Riemann tensor , its 

contractions and the metric tensor, those constituting certain 

constructions of the so-called Weyl's conformal tensor [43][44]. 

There are only four such nonvanishing invariants. Had the 

singularity been present w.r. to any of these invariants at 

the Schwarzschild radius, it would not have disappeared in all 

coordinates. Thus because the curvature invariants are singular 

at r = 0 and non-singular at r = 2GM, this situation will

remain so in all coordinate: systems. Therefore, in contrast to 

the real singularity at r = 0, the singularity at r = 2GM 

is "apparent" because, physically, it does not correspond to

any breakdown in the laws of nature, and, mathematically, it can 

be abolished by employing a new set of coordinates like the

following one due to Kruskal [45] and Szekeres [46] which

describe an unusual topology [47] , i.e.

t' r
2 GM

r
2GM

X

'll
- 1

cosh

sinh

jT
4GM?

/

exp • r
[4GM;

>r > 2GM [3.4.1]

4GM
expf—1

|4GMp

- 1
1

i 
r
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and

=^1 ■ slnh(w)exp('4£M)

r =i^1 ' 25m)2 cosh(w )exp(w)

or
r'2 + t'2 z 2t'r‘

tanh (•jrgjgf)

and
r'2 - t'2 = C2(l - ^Jexp^) 

r < 2GM

[3.4.3]

[3.4.4]

where C is an arbitrary constant and where the prime signifies 

the new coordinates. The resulting from [3.1.18] metric, therefore, 

becomes,

dc2 _ 32G3M3C 2 ,-r x , ,2 ,
ds = ~------ exp (w) (dt'‘ - dr

- r2de2 - r2 sin2ed<|> [3.4.5]

which now, is singularity-free at the Schwarzschild's radius 

and still singular at r s 0. In fact, at the origin the scalar 

curvature [3.1.9] will be infinite irrespective of which 

coordinate system is used as the metric.

Apart from Kruskal-Szekeres, Novikov [48] had suggested 

in (1963) a well behaved metric. He used the so-called co-

moving coordinates [49] in which the radially moving particle 

remains always at rest and hence the proper time interval 

between two points coincides with the time measured by the 
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clock attached to the (freely falling) particle. Novikov 

coordinates though easily visualized, are not conveniently 

usable. They transform from Schwarzschild metric by very 

complicated formulae.

More detailed discussions and illustrations about Novikov 

and Kruskal-Szekeres modifications of Schwarzschild geometry 

can be found in reference [46].

Now although the singularity at r = 2GM is not real, 

Schwarzschild solution is still singular, like other symmetrized 

solutions of general relativity [50]. Then what causes this 

singularity to happen, say, in Schwarzschild space? The answer 

can be either because Schwarzschild solution is not the correct 

general solution of gravitational equations, or because GTR itself 

is not the perfect model of gravitation. The first possibility 

could be thought of as due to the symmetry conditions imposed 
on the space-time, as was claimed by Lifshitz and Khalatnikov [50] . 

However, Penrose and Hawking |[51], employing topological methods, 

proved in a number of theorems, that space-time singularities can 

occur under general assumptions of asymmetry.

Hence, it became clear tnat time-independence 

and isotropy of Schwarzschild space are not responsible of its 

singular behaviour. Thus,as the validity of general relativity 

is a basic assumption of Penrose-Hawking theory,it is obvious 

that we are left with the second possibility that Einstein's 

model is not perfect.
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In this thesis we show that because of the imperfection 

of general:relativity,-the Schwarzschild solution has its 

limitation in strong field region one of which is the occurrence 

of singularity and the prediction of gravitational collapse and 

black holes.

(3.5) Gravitational Collapse and Black Holes

In the introduction to this thesis, Section (0.0), we have 

mentioned the probably close relation between the quasars and 

the gravitational collapse being the mechanism which may explain 

the powerful source of energy indicated by their great optical 

luminosity.

Now in order to know how the gravitational collapse may 

affect the geometry of space, let us imagine Schwarzschild metric 

generated by a star after the latter has shrunk to r = 0?. In 

Kruskal-Szekeres coordinates this situation can be visualized 

as "wormhole"-!ike shape connecting two asymptotically flat 

universes through two singularities at r = 0 one in each universe. 

This.implies that in despite of the pathological behaviour of 

the metric at zero, the external geometry will be unaffected by 

the disappearance of the star generating the gravitational field.

- BIRKHOFF THEOREM

Birkhoff formulated in (1923) [52] a theorem which states 

that a spherically symmetric gravitational field in vacuum must 

be static with a metric given by the Schwarzschild solution. 

This means that the region of any spherically symmetric empty 
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space-time does belong to Schwarzschild geometry. Thus Birkhoff 

theorem shows how Schwarzschild geometry can be applied to a 

collapsing star. It says that although the collapse is a 

dynamical process the outer region will still be static implying 

that no radiation can escape to the exterior. Similarly, an 

electrically neutral axially symmetric body would not affect 

its external Kerr metric [53] by undergoing collapse, the 

moment it has settled down to a stationary state.

- COLLAPSE OF A MASSIVE STAR

In astrophysics one recognizes that a massive star whose 

fuel has been exhausted, would cool and contract inward. The 

tnost massive white dwarf can exist if its mass is less than a 

critical value of 1.2 solar mass called Chandrasekhar limit [54] 

before it becomes stable. However, if it reaches the end of 

its thermonuclear evolution with a mass above that limit, its 

internal pressure will fail to support; it and therefore it 

collapses radially until, possibly, it heats up and explode to 

a supernova. Then matter might be blown off so that the remnant 

mass drops below the Chandrasekhar limit and collapses into a 

neutron star. If however the collapsing mass does not reach 

an equilibrium and does not drop below the so-called 

Oppenheimer-Volkoff limit of 0.7 solar mass [55], ft is thought 

that further collapse will take place. Now if the following 

possibilities' like; ejection of matter from the collapsing 

star, its explosion into fragments with small enough mass so 

that stable neutron stars or white dwarfs can be formed, or 
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the existence of a limiting curvature, are ruled out, then by 

general relativity further collapse is predicted to be unavoidable. 

HORIZONS AND BLACK HOLES

Once the collapsing star is doomed to further collapse 

under the gigantic gravitational force then by passing its 

Schwarzschild radius the gravitational field will be so large 

that any incoming or outgoing particles including photons will 

be captured inward. An event horizon of a (trapped surface) 

is thought to be formed and no light or radio waves can escape 

from the region r < 2GM, which for this reason is called 

black hole.

The formation of black holes might take place, as believed 

by astrophysicists, in two other different situations; one 

of which can be caused by the possible coalition of massive 

stars, say, at the centre of star cluster in the galactic 

nuclei. The other, is due to certain perturbations in the 

early stage of the universe where the so-called primordial 

black holes were produced. The latter were suggested by Hawking

[56] in (1971) to be of a wide mass range starting from about
_ r 1 C

10 gram for mini-holes and up to perhaps 10 solar masses

[57] . The huge primordial black holes are thought to be grown 

from mini-holes by continual accretion of matter. They might 

have constituted the core around which elliptical galaxies 

condensed [58]. For more information about the progress of the 

black hole hypothesis the reader may refer to the review by

M. J. Rees [59].
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On the other hand, inspite of different speculations 

advocating the realness of black holes, search for them since 

(1964) has not yet reached the stage to tell decidedly whether 

or not they do realistically exist [60]. It was hoped that the 

binary system Cygnus X-l would be the site where a black hole 

can most probably be detected. By studying the spectral red 

shift of the visible component of this system, whose mass and 

orbital inclination are known, the mass of the invisible component 

orbiting relatively to the former, can be estimated. Up to now 

(the writing up of this thesis), it is not decided whether the 

estimated mass of the collapsed component of this system will 

represent a neutron star, a white-dwarf or a black hole. This 

uncertainty will not allow us to consider the outcome of such 

observations an experimental evidence for the existence of black 

holes. However, the lack of experimental verification should 

not prevent us from considering further the theoretical model 

that lead to their prediction.

•f V

Beside the black holes, the concept of white holes was 

introduced [61] as representing an undressed singularities where 

matter is expelled out into the universe. White holes are 

thought to have been originated in the chaotic situation after 

what cosmologists believe to be the initial state of the big 

bang. Now since it is obvious that this kind of singularity is 

unobservable the idea about the white holes remains a mere 

speculation.
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Further, it can be understood that the spherical collapse 

or the collapse with slightly perturbed sphericity is charac-

terized by the following stages, instability, implosion, horizon 

and according to Penrose [62] a singularity should take place. 

Now if we assume the formation of an event horizon hiding a 

black hole, then the field exterior to it, as we noted in 

(3.2), is uniquely determined by the mass of the collapsing 

star, in the case of Schwarzschild’s geometry, or by the mass, 

charge and angular momentum in the case of Kerr-Newman 

geometry [18].

This implies that the black hole has no other characteris-

tics, and that is why it was termed as "black hole without 

hair" [63].

In the realistic terms, the collapse of a star is 

nonspherical with net charge either positive or negative, and 

therefore the resulting black hole is somewhat asymmetric, 

differently from Schwarzschild’s. It was also explained, in 

heurestic terpis [64] that the external geometry, i.e. the 

gravitational field of a black hole would still be uniquely 

determined by the same characteristics (mass, charge and 

angular momentum).

As for the interior geometry beyond Schwarzschild's or 

any other asymmetric horizon where singularity is believed to 

occur, we should first define the meaning of the singularity 

and thence explain what will happen inside the event horizon 

and how the realistic collapse is thought to come to its final 

state.
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(3.6) On the Penrose-Hawking Singularity

In space-time manifolds we recognize three kinds of 

geodesics:

1 - TIME-LIKE when the metric is negative, this represents

the path of a freely falling observer.

2 - SPACE-LIKE when the metric is positive - it represents

the path of the tachyons (hypothetical particles 

moving with speed greater than the speed of 

light).

3 - NULL GEODESICS the path of photons.

Besides that, the time-like curves with bounded acceleration 

(path of 0 imoving observer).

We recognize also that if a regular point has been cut out 

of the space-time the geodesic will be incomplete. For the 

time-like geodesics incompleteness would imply that there could 

be a freely falling observer or a particle whose history 

terminates after the lapse of a finite proper-time.

If we assume that the manifold is inextensible beyond 

this termination point then we call this point together with 

its neighbouring points a "singularity." This definition was 

given by Schmidt [65].
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Similarly, the space-time which is null-geodesically 

incomplete is also regarded as singular because it represents 

the history of zero-mass particles. As for space-like geodesics, 

since we cannot immediately attach any physical meaning to 

tachyons moving on space-like curves, we may confine ourselves 

to time-like and null-geodesics. Thus we require that for a 

space-time to be singularity-free, it should be, at least, 

non-space-like geodesically complete, or conversely for a space-

time to be singular it should be at least, non-space-like 

geodesically incomplete.

We notice that according to Schmidt’s definition of the 

singularity the Schwarzschild radius does not represent a 

singular point since the manifold is extensible beyond r = 2GM.

Moreover, by examining the two-dimensional spherical 

surfaces (r, t) = const., inside Schwarzschild horizon, Penrose 

devised the concept of trapped surface, a closed two-dimensional 

space-like surface for which both tne outgoing and the ingoing 

families of future-directed null geodesics orthogonal to the 

surface are converging.

In Schwarzschild's geometry this surface must be spherical, 

however, Hawking and Penrose [66] suggested that the same holds 

for asymmetric space-times. The convergence of light from both 

inward and outward directions at the trapped surface can be 

attributed to the intense gravitational pull where photons of 

light are sucked into the singularity.
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Now having elucidated the concepts of the singularity and 

the trapped surface we introduce in the following an epitome for 

the singularity theorem due to Penrose and Hawking. Within the 

frame of the present thesis, we shall be mainly concerned with 

the content and the physical significance of the theorem rather 

than with its formulation and proof for which the reader is 

referred to the authors'; original works, Hawking and Ellis (1973) 

[67], Hawking and Penrose (1969) [68] and Geroch (1971) [69].

- THE SINGULARITY THEOREM; It states that;

The space-timernanifold#f is singular (in the Schmidt sense) 

by necessarily containing incomplete inextendable non-space-like 

geodesics if:

(i) the equations of general relativity hold,

(ii) for every non-space-like vector V the following 

inequality holds:

vV >. 0

(iii)#tis  general i.e. sufficiently non-symmetric,

(iv^contains no closed non-space-like curves

(v)!^contains a closed trapped surface.

The implications of these conditions may be explained in 

the following:

Condition (i) which obviously means the validity of GTR 

on the space-time manifold would imply that certain 

modifications of general relativity will essentially 

violate the singularity theorem.
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Condition (ii) indicates that matter has a focussing effect 

on geodesics, it also means the positivity of energy and 

by (i) it yields the equivalent condition on the stress-

energy tensor at each event oft , i.e:

1 W)VV 0
Condition (iii),called the generic condition; requires 

that 4^ should be not too highly symmetric, in the sense 

that on every non-spacelike geodesic there is a point at 

which the tangent vector V satisfies.

V r Rq i r V-. n V^1 v" f oL« 3 Jpv[. y X J T

Generality means that the manifold should be curved space-

time differently from Minkowsky space which is flat and 

complete and therefore nonsingular. It also means, as 

we noted before that the symmetry of Schwarzschild metric 

has nothing to do with the appearance of the singularity.

Condition (iv) constitutes a reasonable causality condition 

which states that, the causal future J+(P) and the causal 

past J~(P) of the event P comprise the set

j +(p)Dj '(p ) pc  #1
which should be empty i.e. P is not on a closed non-space- 

like curve. Where by J’(P) and J+(P) we mean the set of 

events that precede and follow P respectively, and by 

stating that the event Q causally follows P we mean that 

there is at least one future-directed causal non-space- 

like curve that extends from P to Q.
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Condition (iv) is also a chronology condition, since 

chronology and causality coincide when by non-space-like 

curve we mean only time-like curve. That means the 

causality condition holds on#( if there are no closed 

non-space-like curves whereas chronology condition holds 

if there are no closed time-like curves.

As for Condition (v) there is no evidence that real massive 

stars in realistic space-time may develop a trapped 

surface. Though it seems reasonable to accept the idea 

of trapped surfaces once the general relativity is 

accepted to be applicable in strong field gravity. This 

means that Condition (v) is a consequence of Condition (i). 

The other three conditions (ii), (iii) and (iv) seem to be 

quite reasonable for any physically realistic space-time.

- THE SINGULARITY AND THE REALISTIC COLLAPSE

If we admit that the above-given conditions are satisfied 

for a real situation then the theorem will tell us that, 

singularity does take place beyond which space-time is 

inextendable and, that massive stars are doomed to collapse 

into black holes.

Then one would ask how a realistic gravitational collapse 

might come to its final state, and, what is the nature of the 

singularity at the end point? Before answering these questions 

we should realize that all full information about the interior 

of the collapsing system is hidden beyond the event horizon 
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which constitutes a one-way membrane such that no naked 

singularity can appear. Therefore due to this sort of, what 

was called by Penrose, "Cosmic Censorship", [70] one cando 

nothing but speculate. That is, if we accept the validity 

of general relativity at all as a strong field model of 

gravitation, then perhaps one of the following possibilities 

may be admitted to explain the nature of the singularity at 

the end point of the realistic collapse:

(1) Infinite curvature at the singularity, i.e. infinite tidal 

force crushes the collapsing body to infinite density. 

This would imply that the laws of physics breakdown near 

the singular point including the general relativistic law. 

Consequently this would suggest that GTR is not the right 

model for strong gravity, and therefore the predicted 

singularities are but a result of a wrong theory, which 

would contradict our basic assumption on the validity 

of general relativity.

(2) At the singularity the curvature grows to a certain limit 

after which matter re-expl odes,not outwardly through the 

horizon which is a one-way membrane, but into another 

region of space-time forming e.g. a "wormhole" in the 

manifold.

(3) A reverse classical effect may take place in the neighbour-

hood of the singularity, e.g. a repulsive gravity may 

develop that would counteract any further collapse.
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(4) Near the singularity, quantum fluctuations in the space-

time curvature become dominantly large and the classical 

laws of general relativity cease to hold.

Beside these possibilities, the space-time singularity may 

not necessarily be associated with the infinitely large 

gravitational force and gravitational collapse as one may learn 

from Taub-Nut space-time [71]. However, from the afore-counted 

possible situations we learn that it is not matter that is 

collapsing by approaching singularity, it is rather general 

relativity which is destined to collapse.

(3.7) Singular and Non-Singular Gravity

Discussion and Critique

In the preceding section we came to the controversial 

conclusion that by predicting the gravitational collpase general 

relativity is, in fact, predicting its own collapse. To resolve 

this paradox we proceed as in the following. Firstly, there is 

a possibility that the singularity theorem is not quite well 

established.and its prediction of the gravitational collapse is 

questionable for the following reasons:

(1) As we have explained before,in the proximity of the 

singular point the classical laws of general relativity 

are no longer valid.

(2) It was shown by Geroch [72] that there is no quite suitable 

definition for the singularity.
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(3) Even in the Schmidt sense the incompleteness of the non- 

space-like geodesics does not necessarily imply the 

singularity, and as we mentioned before, Taub-Nut space-

time has a locally non-singular region in which the 

geodesics are incomplete {73].

(4) If a closed trapped surface is assumed to exist with 

slightly deformed symmetry it becomes unreasonable to 

assume the same with large departures from sphericity.

(5) Neither these trapped surfaces nor the singularity are 

verifiable by experiment and, in addition, there is no 

reliable evidence of the existence of black holes.

For these reasons and because of the incompatibility of 

general relativity as a strong field model and its prediction 

of the gravitational collapse, we decidedly believe that the 

solution of the gravitational equation must be non-singular. 

In the introduction to this thesis (0.5) we gave a justification 

to this belief.

Secondly, a non-singular solution can be achieved in two 

prospects:

(a) by modifying Schwarzschild metric which proved to be a 

successful' weak-field solution, so that its singular 

features at strong-field ehergies be eliminated. Recently, 

by deforming Schwarzschild space-time, Osborne [74] managed 

to avert the essential singularities in the strong-field 

domain without harming the successful predictions of 

general relativity in the weak-field area.
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(b) by modifying general relatiyity itself so that the theory 

becomes well-behaved at the strong-field end of the energy 

spectrum. Part II of this thesis is devoted to this 

purpose where we obtain our generalized non-singular metric. 

Schwarzschild's space-times with its singular features come 

out as a special case within certain restrictions imposed 

on the curvature scalar R.

It will be shown in [6.3.2] that the solution,

1 + 7 + V2
[3.7.1]

R = R = constant

constitutes an intermediate situation between space-time described 

by our generalized metric and the Schwarzschild singular geometry.

It yields Schwarzschild space-time by setting = 0, and
i

K = - 1, and by setting K = 0 and yQ = - y A, we have the 

following cosmological solution,

[3.7.2]

the so-called De Sitter space-time for an Einstein static 

universe with a perfect fluid distribution [75], where A 

represents the cosmic constant of Einstein's space

[3.7.3]
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We will show in Chapters Five and Six that by generalizing 

Einstein’s vacuum equations so that more geometrical terms would 

appear in the R.H. side of [3.7.3],the corresponding solution 

will be more general and non-singular.

In chapter Four we briefly review other ways and schemes 

of modification of general relativity that aimed to lead to a 

non-singular gravitation.
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CHAPTER FOUR

Generalized Theories of Gravitation and
Strong-Field Models

[4.0) Modification of general relativity

In spite of the great successes of general relati-

vity theory in describing weak gravitational field phenomena, 

there are problems of space-time singularity and 

event horizons which are predicted to occur in strong 

gravitational field, as described in (3.5),

The postulated existence of black holes and 

speculations related to them, encouraged many authors 

to think of alternative theories. These theories 

are required to be capable of describing gravitational 

phenomena and at the same time not be defeated by the 

appearance of singularities in the strong-field region.

Besides this, the incompatibility of Einstein's 

picture with the already well established nongravitatioal 

theories like electromagnetic theory, made some theorists 

think of even abandoning the geometrical representation

of general relativity altogether.

Many theories had been invented, some of which are 

based on the same geometrical grounds as Einstein's, 

called metric, and as described in (2.2); others are 

non-metric. The latter had mostly failed the viability 

test by not satisfying the experimental requirements 

and therefore were deleted from being alternative 
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theories of gravitation (2.1) even in the weak-field 

regions. The viable metric theories are but a modi-

fication of general relativity model.

Because Einstein's theory was founded on solid 

grounds by its fulfilment the physical requirements (1.6), 

modifiers of general relativity always try to adhere 

totally or partially to these requirements. To do that 

a number of approaches and schemes had been adopted to 

modify GTR with a hope that strong-field gravity will 

be well described, both physically and mathematically.

In the following sections of this chapter, we 

review different schemes of modification starting in 

the next section by quoting a number of these approaches. 

(4.1) Generalized gravitational models

We provide here a compendium of different 

categories of approaches towards a generalized theory 

of gravitation that is intended to be successful in 

strong-field as well as weak-field regions of energy 

spectrum, i.e.

(a) Theories with general and nonlinear Lagrangian,

(b) Theory with a limiting curvature and non-
linear Lagrangian,

(c) Theories with additional fields,

(d) Kilmister-Yang model,

(e) General Relativity plus torsion,

(f) Quantization of general relativity

(g) Model with a deformed Schwarzschild space.
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Besides these we introduce our own approach which 

will be presented in detail in the next five chapters 

of this thesis as a novel model towards a nonsingular 

gravity. The above-counted theories, though aimed to 

be strong-field models of gravity, are not all entirely 

successful in that area; nevertheless, they do at least 

pave the route towards a comprehensive picture of gravi-

tation that will explain well all features of energy 

domains.

We briefly review these theories in the following 

sections without going into their derivations to which 

we refer the reader to their sources, but putting 

emphasis on the motivations and ideas behind them, 

though a derivation of a general Lagrangian is provided 

to serve as a comparison with our own derivation in the 

next chapter.

(4.2) Theories with General and Nonlinear Lagrangian

a - ELECTROMAGNETIC ANALOGY OF GRAVITY.

There are certain aspects analogous between electro-

magnetism and gravitation which are linked by the deep 

coherence of the mass with the charge. In the real world 

every electromagnetic effect implies the presence of 

gravitation whilst gravitational effects are not always 

accompanied by electromagnetic field. This irreversible
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situation may elucidate more the contrasts between 

gravitational and electromagnetic phenomena. However, 

there are a number of common grounds between them. First, 

as we mentioned in (1.7), there is a certain corres-

pondence between the metric tensor components and the 

potential of the electromagnetic field, whereas the 

Riemannian tensor [1.4.27] which has the form:

[4.2.1]

corresponds to the electromagnetic field strength:

[4-2-2]

Second, one observes another feature of analogy between 

the Einsteinian gravito-geometrodynamical free field 

equations:

R '= 0 [4.2.3]pv L

and the homogeneous Maxellian electrodynamical equations 

[1.1
F + F. + F . =0 [4.2.4]pv,A Xpjv vX,p

where both of them represent a system of coupled 

partial differential equations of the second order.

Third, the resemblance between the inverse-square 

law of Newtonian gravitational and Coulombian electro-

static fields is a common feature between gravitational 

and electromagnetic interactions, at least in the weak 

field areas. But as we noted in (1.6)-IX, there is a 

major difference. Mathematically, the gravitational 

equations which describe a tensor field are nonlinear, 

124



and physically the grayity influences its source, whereas 

Maxwell's equations that describe a vector field are 

linear in the field variables, and the electric charge 

is not affected by its field. Contrary to that, 

Einstein's equations [4.2.3] are derived from a 

variational principle by using a Lagrangian linear in 

R (1.7), whilst the electromagnetic equations [4.2.4] 

are derivable by utilizing a Lagrangian quadratic in 

the field strength [2] i.e.

Z <v FpvF [4.2.5]
]JV

Therefore, it seems very logical due to the correspon-

dence between and to employ for the gravi-

tational field, analogously, a Lagrangian

/ <v RmPR , n [4.2.6]

Moreover, according to Weyl's guage invariance [3], 

the action integral should be not only invariant w.r. 

to arbitrary coordinate transformation but also w.r. 

to the arbitrary units in which the length is measured 

[4]. Hence, it is demanded that for the action integral 

to be rational it should be gauge invariant, that 

means it should be a pure number. This implies that 

the Lagrangian should be quadratic in the scalar curvature R 

or any other contracted form of Riemann tensor. This is 

different from Einstein's Lagrangian where the action 

integral has the dimension of the square of length [3j.
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In (2.7) we pointed out the rationality of modi-

fying Einstein's equations by using a Lagrangian con-

taining nonlinear R, but still free from additional 

nongeometrical terms.

(i) General quadratic Lagrangian

Due to the afore-discussed analogy between

gravity and electromagnetism and the rationality behind 

the utilization of non-linear Lagrangians in R,. 

quadratic Lagrangians were recommended to be a basis 

for gravitational equations. It was also learnt that 

general relativity theory which is far from being 

amenable to quantization (0.5) may be improved towards 

being quantizable (similar to the electromagnetic 

theory) if a quadratic term is included in the Lagran-

gian rather than having alone the scalar curvature R.

By being thus motivated, authors employed variational 

principles with a Lagrangian containing quadratic 

invariants of Riemannian-Christoffel tensor and its 

contractions. In fact, quadratic Lagrangians were 

suggested to be considered in gravitational theory 

even in the early decades of general relativity [5]. 

Later, special interest was made by Lanczos who devoted 

a number of papers [6] ,[7J advocating the use of 

quadratic Lagrangians to construct a unified field theory.
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Let us denote the following Lagrangian densities

Lj = /g R2

where

L3 2

^■r r pv
]dV

/? R R^P 
pvyp

zy eaplJVR , RAy
opAy pv

[4.2.7]
t-2 =

=

>

J

eappv = |

I

+1 if crppv

-1 if appv

0 if oppv

even permutation of 0123 
odd permutation of 0123 
are not all different

[4.2.8]

is the Levi-Civita tensor density components [8] and

0123 is a sequence of t,x,y,z or t,r,0,0.

These four invariants in [4.2.7] are algebraically 

independent and as it was shown by Lanczos [9] only 

two of them are variationally independent [10], since

6 L4 dQ e 0 [4.2.9]

6 (Lj - 4L2 + L3)dQ = 0 [4.2.10]

The field equations derived from [4.2.10] can be 

therefore equally derived from a linear combination 

of only L} and L2, viz

6 + a2L2)dQ = 0 [4.2.11]

with cq and a2 constant coefficients. Moreover, 

the most general combination will include a matter 

Lagrangian density L^ and the gaussian scalar 
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curvature R to ensure the Newtonian correspondence.

Thus the field equations will result from the variation-

(ct | R + + f3R + nL^)^gdQ = 0
[4.2.12]

where 0 and n are also constants.

(i i) Lagrangian quadratic in scalar curvature alone

Gravitational theories based on Lagrangians 

containing the square of the scalar curvature, R2, 

were well studied by many authors and much effort was 

made by Lanczos Illi, Buchdahl [12], Stephenson [13], 

Bicknell [14] and others.

Special attention was paid to Lagrangians consist-

ing of the square of the scalar curvature alone which 

because of its similarity to other field theories' 

Lagrangians it has some appeal. Some authors [15] 

[16] exploited combination aR2 + $R rather than R2 

alone as a Lagrangian to secure the correct Newtonian 

limit. Bicknel has explained that field equations 

derived from the Lagrangian R2 alone, may have 

physically reasonable solutions but the predictions 

of the theory were found to disagree with observations 

when the matter term was introduced into the equations [14]. 

Though R2-field equations are satisfied by spaces 

R - 0 and R = constant. In the case R 0 it
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was proved [12] that asymptotically flat solutions do 

not exist for equations based on R2. Notwithstanding, 

these solutions are cosmologically reasonable; for 

instance, those belonging to Einstein's space

G = Ag [4.2.13]
pv p\)

like the De Sitter solution quoted in (3.7) where the 

metric coefficients g,, and g „ have the form:□tt 3pr

gtt = 1 - W = grr [4.2.14]

A is the Einstein's cosmological constant.

Further, as far as the variational methods are 

concerned, Stephenson has stressed that when dealing 

with Lagrangians other than the linear scalar curvature, 

one should distinguish between two variational devices: 

the g-variation (or Hilbert method), and P-variation 

(or Palatini method). It can be shown that in the case 

of R the two methods are indistinguishable [17]. 

Below we give a brief account of these two variations.

b - HILBERT AND PALATINI VARIATIONS

In 1915 Hilbert, first and independently obtained 

[18] the Einstein's geometrodynamical law by utilizing 

the Hamiltonian action principle (1.7) where he used 

as a Lagrangian the 4-dimensional scalar gaussian 

curvature R.

The action integral [1.7.1] is subjected to small 

variations 6gpv in the components of the contravariant
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metric tensor gpv, whilst the Cristoffel connection 

coefficients rA are not considered independent 

variables, are generally called affine connections,

but can be identified with Cristoffel connections 

(or symbols) [1.4.9].in some special cases [19].

Palatini (1919) [20] subjected to variation not 

only gu\ but also the arbitrary symmetric affine 

connection , both of which were treated as indepen- pv
dent variables in the stationary action integral.

6 j /g / dn= 0 [4.2.15]

and after variation rX was specialized to the
yv r

Cristoffel connection.

If the Lagrangian function is given the form: 

/= 3R + Y [4.2.16]

where y corresponds to a nongravitational field 

and R- is the scalar curvature, the empty space gravi-

tational equations derived from [4.2.15] will be 

equivalently the same in both P- and g - variational 

methods.

As for Lagrangians other than [4.2.16], the 

Palatini method has been severely criticized by Buchdahl 

[21] [22] who has shown that the P-variation will lead 

to strange results. Thus we are left with the g-variation 

in considering Lagrangians that are nonlinear in R.
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C - GENERALIZED EQUATIONS OF THE GRAVITATIONAL FIELD

In subsection (a) we considered the introduction of 

Lagrangian quadratic in R into the theory of gravitation as 

one way of modifying general relativity. The resulting equa-

tions are no longer those of Einstein's theory. Now instead of 

dealing separately with differently constructed Lagrangians we 

would rather assume a very general one that will allow classi-

fication for all its possible forms. This will enable us to 

choose from among various possible constructions the most perfect 

Lagrangian form which will be required to lead to a complete and 

self-consistent theory of gravitation that hopefully:

(1) Shares with GTR all its successes, i.e. it reduces to 
general relativity in the weak field areas and hence agrees 
with experiment and admits correct Newtonian and Minkowski an 
limits,

(2) does not exhibit any pathological behaviour anywhere, 
especially in strong-field domains,

(3) becomes amenable to quantization.

In the next chapter we will introduce our derivation based 

on a certain variational principle and which will yield a fourth-

order in g^ partial differential equations, different from 

general relativistic equations which are of the second order 

in the metric tensor derivatives.

For the sake of comparison with our variation we will 

herein give a derivation due to C. Lanczos who first obtained 

this kind of generalized equation.
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Ci) Lanczos Variation

In his(1932)paper [25] C. Lanczos employed the Hamiltonian 

principle of least action I1.7.2J for the action integral 
.[L7.1J, this would give:

(Si h JhdQ ? O [4.2.17]

where function H being invariant will contain the curvature

tensor R as well
pv

Yariant forms, i.e.

and, where, owing to

as the metric tensor g or their contra-

H = H(R ,g ) [4.2.18]

[1.4.26] and [1.4.11] Rpv and

are related to R
pv

and g^^ respectively by:

pv _ pp vaR
R " 9 9 Rpo [4.2.19]

and

gpv = 9UV% [4.2.20]

The condition of the minimum action for the integral

[4.2.17] over the volume Q will be carried out, with assumption 
that R^v and g^v are, at first, independent variables.

We also consider the change 6R in R , caused bypv pv
infinitesmally small change 6g 

small and we denote them by:

in g infini tesmally

6R = p 14.2.21]
pv pv

and

6g pv = Ypv [4.2.22]
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Then by considering the function H as the Lagrangian density:

H - ^gZ(R) [4.2.23]

as it was given in [4.2.15J, the variation of the action integral

with respect to g^ will yield:

dQ = (/g 5R + Zsi^g”) dQ
BR

[4.2.24]

Further, by knowing from [1.4.26] that, R = gpvR »pv
and by

using [1.4.19] which yields

J
= 0

[4.2.25]

and by denoting the derivative ofjfw.r. to R as

8R
[4.2.26]

one wil1 obtain [4.2.24] in the form,

0 [4.2.27]

Now, by the aid of the following relation:

6gpv = -9uVv6gXy [4.2.28]

obtained from [1.4.17] and by using [4.2.19,21,22]

integral [4.2.27J will have the general form: 

ygtiTp - )dQ = opv 'pv
[4.2.29J

where
[4.2.30]

133



a n d

v p v = Z( R) R p v - i Z( R) gp v 1 4. 2. 3 1]

E x pr e s si o n  f or p , 
r p v

i nfi nit el y s m all c h a n g e i n

d efi n e d  i n [ 4. 2. 2 1] a n d  b ei n g

d ef or m ati o n v of g , 
p v  p v

t1 9 2 3 ),[ 2 5] ( 1 9 2 5).

R , c a u s e d b y  i nfi nit el y w e a k  
p v

w a s  c al c ul at e d  b y L a n c z o s [ 2, 4]

F oll o wi n g  L a n c z o s' d eri v ati o n  w e r e writ e t h e Ri c ci  t e n s or

[ 3. 1. 1],

R
p v

ar x  
_ _ p X  

a x v

ar x  
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a x x
+ [ 4. 2. 3 2]

w h er e

rn rx
p X v n

- rn
p v X n

[ 4. 2. 3 3]

will  v a ni s h  i f a l o c all y i n erti al s y st e m of  c o or di n at e  w a s

a d o pt e d, si n c e i n t hi s c a s e all r will  b e  z er o. It will b e

s h o w n al s o  t h at t h e v ari ati o n 6 0

L et  u s c al c ul at e  t h e

will  gi v e  n o c o ntri b uti o n  
p v

v ari  ati o n s a n d r, i. e.

w h er e r

sr 7 1 . 
p x i g

, n a

n rx  
p X v n

n [ 1. 4. 8, 9]

9 6 g .
g A

3 X V

+ rn  
p X

<sr x  
v n

a n d

3 < 5 g
+

N o w  b y u si n g [ 4. 2. 2 2, 2 8] a n d

<sr n _ =  
p X g

n g 3 y g p

a x x
+

3 Y a X

3 X P

t o p
P V

6r n p X
p v  X n

rn 6r x
p v X n

[ 4. 2. 3 4]

a s

p A

3 x a

gi v e n  i n [ 1. 7. 9]

+
2

a g3 g p
I 3 X X

+
" g A  

a x p a x “ ,

[ 4. 2. 3 5]

[ 1. 4. 8, 9] o n e g et s

0 X a
✓

1 ̂ n ^ P
~ 0  9 r a* p g p X

[ 4. 2. 3 6]
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Y being a difference of two.tensors will constitute aap J

tensor and is also a tensor since it transforms by the
pA

tensor law [1.4.10]. Further, by using the covariant

differentiation according to [1.4.13,14] in [4.2.36J and due to
the symmetry property of both and y^, one obtains the

same expression [1.2.10] while all the terms with r cancel 
amongst themselves. We,thus/ have;

gna(Y
v ap

+ YaX - y
' pA ;a

9A“(y , + Y "• Ya\) in an vn

gn“(Y + y , ~ Y . •ap iV av ' pv ,a

9X“Cy
in

+ Y an ;a An j a

[4.2.371

By substituting [4.2.37] into [4.2.34] we get:

[4.2.38]

By making the change A -> v, the first term bracket cancels 

with the third bracket and the second cancels with the fourth,

[4.2.39]
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It will be convenient to adopt the locally inertial coordinate 

system all through, the derivation and in addition g should 

be brought to its standard orthogonal form.

Now, in virtue of [4.2.22,25] and the notation

Y [4.2.40]

we will have

6g X
— = Y = Y, [4.2.41]

and accordingly

[4.2.42]

and

[4.2.43]

Then [4.2.41] and [1.4.19] yield

[4.2.44]

which could be obtained also from any of equations [4.2.37] with 

the use of [4.2.43].

Therefore, by taking into account [4.2.39,44], the

variation sR of [4.2.32] will become

6R — <sr\

1 d2y
2 axW

_1_ (5rx + se 
axA 

asrA
___ pv
axA

[4.2.45]

The use of 14.2.37] and covariant differentiation will 

result into:
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where [pv,a] is defined in [1.4.8], and the covariant 

derivatives are used instead of the ordinary ones to secure 

the invariant form of <5R .
pv

Further, with the help of [1.4.37] and [4.2.43] 

together with the obvious relationship:

[4.2.47]

expression [4.2.46] becomes:

Act Sr 1 
~ LyViCxJ

n, ., a

k.

arp
-^ + y 
axx up

[4.2.48]

+

2
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Cii) Lanczos Generalised Field Equations

By introducing the following notations:

2
- n Y

[4.2.49]

an(] the relation,
O’ n Y Rv op

[4.2.43],resulting from

Aa
9 Tp\>;a',A

Aan
Y , g R vA crp

where

Ry
v

[4.2.50]

[4.2.51]

[4.2.52]

pX
• Y vX p

into [4.2.48], then due to [4.2.21] one Obtains;

The R.H. side of [4.2.54] can be rearranged to give the

L.H. side by utilizing the definition of 

in [1.4.27].

R _ which is given pvXa

Furthermore, we write the following property of the 

"adjoint" differential expressions
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[4.2.55]jdniupvDCYijv) - Y^Vciyj = <[

where 0 is the integral oyer the surface containing the 
J

volume which according to Gauss vanishes by variation [26]

andj D+ is the adjoint of D defined as:

[4.2.56]

Now, according to [4.2.55] we can transform the term with p^ 

in [4.2.29] and we eyentually get,

61 = ( [JD+(Upv] - V^Jy^dQ = 0 [4.2.57]

Therefore, since y is arbitrary, we obtain the following 

form for the field equation:

D+(Upx>) = 2V)av. [4.2.58]

Then, substituting for Uyv and Vyv from [4.2.30,31] 

into [4.2.56,58] yields the following 4th order in 

differential equation.

HPV ^)(R.pR.y ■ V;aR;x9ab

/ 2
+ ^W(R;v;v- 9pvOR)

+ /(R)RPV - i/(R)gpv = 0, [4.

where the covariant derivatives for the scalar curvature R

are given by:

R. , [4.2.60]
ax'4
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R. . = —
3Rf —

3X
[4.2.61]

It is clear from [4.2.59] that the field equations are 

divergence-free since:

h u = o. [4.2.62]

(4.3) Theory with a nonlinear Lagrangian and a limiting 

curvature.

The following nonlinear Lagrangian has been chosen by 

A. Muller et al [27];

m
[4.3.1]

in order to fulfill certain necessary requirements like 

coinciding with Einstein's general relativity in the weak field 

area i.e. when R -> 0 , and satisfying the asymptotic flatness.

This Lagrangian was chosen to be successful also in the 

strong field domain, where, in order to avoid gravitational 

collapse an upper limiting bound of the curvature has been 

postulated i.e.
[4.3.2]

As we mentioned in (0.2) the idea of the limiting bound is 

motivated by other field theorte$[28] [29].

By employing equation [4.2.59] with the Lagrangian [4.3.1], 

the following expressions for the scalar curvature and the 

digonal components; grf = A and -gtt = B in the static 

isotropic metric result;
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(2-m) 
R-Ro

R-Rp
m -1

A(R-Ro)2 
2m(m-1) [(1 £-)m-1]

Ko
[4.3.3]

m-1A _
A " 3(R - Ro) [4.3.4]

B = __  1
B_l + (m-1)Rr

2(R-R0)

21mdlft + ARr+l.A
Ro-R 2 r r

r/1 _E_,m-l
+ rAR0 .[(1 “ Ro )

2m
]

R] m-1 [4.3.5]

B
- B r + 2 & + 3B

" B
B

+ A 
r

I

be obtained by direct substitution ofThese expressions can

[4.3.1] into the generalized equations [6.2.35, 32, 34] 

respectively where,

[4.3.6]

Equations [4.3.3,4,51, as we will show in (6.4), admit the 

Schwarzschild solution with its Minkowskian flat space limit as 

special cases and^by c’hoosing Special values of the parameter m 

cosmological solutions with asymptotically non-flat metric can 

also be obtainedlike

R = ^Rq at m = J [4.3.7]

which would correspond to Einstein's equation

G = -Rog [4.3.8]

Apart from that, the model has a free space solution with R = R(r) 

which exhibits no pathological behaviour of the metric at any 

value of r, and which is limited by
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[4.3.9]

In their paper [27] Muller et al investigated and discussed 

the metric by employing global numerical solutions. They imposed 

certain constraints by requiring that the metric should be 

finite everywhere with correct Newtonian limit, and that the 

speed of light stays limited as r goes to zero.

In spite of the criticism [30] against this work-in which 

it was suggested that it be revised, the idea of utilizing 

the nonlinear Lagrangian to develop a nonsingular model of 

9cavitation looks promising and very attractive. In (5.4) 
we will show that [4.3.1] is a special case of a very general 

and rational Lagrangian form.

Comparing the solutions of this limiting curvature theory 

with those of GTR, both in the free-field region as well as in the 

interior of a star, suggests that the model is a good candidate for 

a nonsingular description of strong gravity.

The difficulty, in this theory, arose in transition from 

a solution with a point source to an extended hydrodynamical 

Model for the star, whence equations [4.3.3,4,51 will 

contain components of the energy-momentum tensor,

-P -P -P
C2’ C2> C2,

[4.3.10]

where, p the density and P the hydrostatic pressure of the 

incompressible fluid modelling a sphere of the steller matter. 

Here the velocity of light C vrilt be set to unity(see Adler et 

al • [31]). This is because equations [4.2.59] are now in-
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homogeneous by having in the R.H.S. Now, such a difficulty

of transition is, perhaps, due to the big contrast between the 

physically imperceptible point mass, that are supposed to 

generate an isolated gravitational field, and a physical star, 

and also due to the sophisticated mechanism that allows this 

transition.

We would always expect that quantum effects have a certain 

role to play in domains of strong gravity, namely inside the 

star or within its immediate vicinity. Therefore, the author's 

conclusion about the unavoidability of the collapse of a heavy 

star to a point singularity in spite of the limiting curvature 

being introduced, should be re-thought.

(4.4) Theories with additional fields

The idea of having beside the gravitational tensor field an 

additional field, as we have noted in (2.5), is aiming towards bring-

ing together the principle of equivalence with Mach's principle [32]. 

Inspite of our criticism in (2.7) to the way an additional field 

bad to be incorporated into the field equation, theories with 

additional fields beside being, mostly, viable, lead to interesting 

results. Among the theories listed in (2.4) the only viable ones 

are those which contain auxiliary fields in addition to g - field. 

We have three categories of these

Scalar-tensor theories e.g. Brans-Dicke-Jordan theory [33], 

Vector-tensor theory due to Nordvedt, Helling and Will [34]. 

Tensor-tensor theory due to Lee and Lightman [35],
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All these theories are metric and Lagrangian-based. By 

Lagrangian-based we roughly mean that the theory possesses a 

generally co-variant representation in a similar way to 

general relativity [36]. To the first category belong, certain 

generalizations of the Brans-Dicke-Jordan theory made by 

Bergmann [37], Wagoner [38], and Nordvedt [39]. We have also 

the scalar-tensor theories due to Tupper [40] and Yilmaz [41] 

and the Fujii-O'Hanlon theory [42][43]. The last one exhibits 

a non-Newtonian gravity at small radius and thence violates the 

viability condition. As we are concerned, in this chapter, with 

the modifications of GTR which are aimed to improve its strong-

field behaviour, we shall pay less attention to the weak-field 

aspect of the theories under consideration. Our aim is to point 

out which theory might be considered as a good candidate for 

strong-field gravity. We give, here, a concise survey of 

scalar-tensor, and vector-tensor theories as examples for 

modified versions of general relativity.

A - SCALAR-TENSOR THEORIES

We have been aquainted with auxilliary scalar fields being 

introduced into the Einstein's Lagrangian density [2.5.3] of 

the Brans-Dicke-Jordan scalar-tensor theory in the form:
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Terms, such as:

<K <Z>(i) 2 <S>2R, R, 0 R

(i) Brans-Dicke-Jordan Theory

As we stated in Section (2.5), this theory const!tutes 

the strongest competitor to GTR. The field equations are 

given by [2.5.4] and [2.5.6]. The theory is primarily, viable 

and in particular, it satisfies well all the classic tests of

5 5 V S > S J V S J V
[4.4.2]

can also, at least for generality, be incorporated in the

Lagrangian function.

Similarly, as in [1, 7, 17], the Euler-Lagrange 

= 0 [4.4.3]

will reduce the power of $ giving rise to a term not depending 

on 4* and can be representing the $-field source.

Lagrangians containing terms, such as those in [4.4.1] and 

[4.4.2] in addition to the scalar curvature R were constructed 

and developed by Thirry (1948) [44], Jordan (1948, 1955) 

[45] [46], Bergmann (1968); Wagoner (1970), Nordtved (1979), 

and by Brans and Dicke (1962) [47] [48].

In the following, we briefly introduce the Brans-Dicke- 

Jordan model as a main example for the modification of general 

relativity together with some other scalar-tensor theories 

which are related to it.
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general relativity. The predicted values according to this 

theory for the solar system's experiments;/.e-the perihelion 

precession, the bending of light, and the radar echo delay can 

be respectively obtained from [3.3.10, 14, 18] with [3.2.7]. 

As the theory reduces to general relativity when the parameter 

u)->oo , the Schwarzschild solution of the vacuum equations 

is admitable. Cosmological solutions, like those of GTR, are 

also allowed in this model. In the strong field region Brans- 

Dicke-Jordan theory, like GTR, predicts singularities and black 

holes. Though, recently some solution of this theory have been 

found in discrepancy with the singularity theorem 149 |. 

Particularly, the energy condition stated in Section (3.6) is 

not always satisfied and this would imply that non-singular 

solutions can be obtained. Therefore, irrespective of the lack 

of adequate physical significance of this kind of solution we 

think that their very existence indicates that by modifying 

general relativity its singular features might disappear. This 

would mean that by further modification i.e. further departures 

from GTR we wil probably, be able to achieve, within the classical 

frame, a non-singular gravity.

(ii) Tupper and Yilmaz Theories [40] [41J

These two scalar-tensor theories, though, steming from 

different motivations are interlinked so that their static 

solutions may^coincide with each other. On the other hand they 

are related to Brans-Dieke-Jordan theory and share with it its 

being viable and its satisfying the equivalence principle.
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Tupper's theory is based on the idea that the Einstein's 

free-field equations

Rpv= 0 [4.4.4]

are not necessary to guarantee the agreement with the weak-field 

tests of general relativity, whilst Yilmaz's is motivated by the 

viewpoint that there is a lack of correspondence between the 

gravitational potential and the components of the metric tensor 

tensor g^ . Thus the field equation [4.4.4] was generalized 

by Tupper to have the form:

r = Ay. 'P. , [4.4.5]

where X is a constant and ? is the scalar field satisfying the 

Laplace equation, i,e.

□ 2 T = 0 [4.4.6]

Due to the simplicity of these equations it is sufficient 

to use Tupper's version to generate static solutions which will 

be representing both theories. The relationship between Tupper 

and Yilmaz theories on one hand and Tupper and Bran-Dicke- 

Jordan theories on the other hand will certainly make it easy to 

transform the solution of one theory to the other [40]. Thus 

we see that Tupper and Yilmaz theories can be regarded as 

alternative versions of Brans-Dicke-Jordan model, the common 

feature among ^hich is, that they all assume additional fields 

coupled to massless scalarons. Apart from that, an additional 

scalar field with such hypothetical particles, but which are
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Jnassfye, was postulated in the Fuji.i-O'Hanion theory which 

follows in the next sub-section.

(iii) Fujii-O'Hanlon Theory [42] [431

This theory satisfies the principle of equivalence, but 

unlike other scalar tensor theories it possesses, as we have 

noted before, an additional field associated with non-zero- 

mass particles. This latter causes the theory to exhibit a 

non-Newtonian gravity and subsequently violate one of the 

viability criteria.

The field equations read

[4.4.7]

where f(4>) is an undetermined function of the scalar field

which satisfies

2

□ 2, 8tt  Tim /, 3f o-P\* ■ r T + ’2f)

and m denotes the non-zero mass of a dilaton, a boson, that 

couples with the matter to produce the gravitational potential 

?g. Within the weak-field approximation the gravitational 

potential of the point mass M was found to be: 

in which the first term represents the Newtonian potential and 

the second term which is non-Newtonian would vanish fastly as
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r -> oo, As r -> 0 the gravitational potential would tend to be

wi th

5g(r) * GM [4.4.10]

[4.4.11]

r

The coupling "constant", and Gq the background value of the 

gravitational constant. It is noticed here that G reflects 

a certain variability over a short range of r. Such a 

variability can be verified by Cavendish type experiment [50].

Now, so far, without having the exact solution for [4.4.7.8] 

the potential form [4.4.9]will only point towards the interesting 

properties of, possibly, the non-Newtonian gravity in the strong-

field domains. One interesting remark which we make here is that 

in [4.4.9] the second term of the gravitational potential 

resembles the Yukawa nuclear potential [51] of the mesonic field,

[4.4.12]

which as a -> 0 reduces to the Coulomb potential of the electrostatic 

field. Analogously, we can think of the Fujii-O'Hanlon gravita-

tional potential as reducing to Newtonian potential as m 0, 

and since a gives the range of the Yukawan potential, one may 

think of m as indicating a range for a non-classical parameter [52J,

Further, in the naxt sub-section we introduce another example 

of the modification of GTR in which the additional field is still 

associated to massless particles like that of Barns-Dicke-Jordan 

theory, but alternatively, it is now a vector field.
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B - VECTOR-TENSOR THEORY [34] [53]

In this model the Einstein's Lagrangian density was amended to 

include terms that describe the interaction between the 

gravitational tensor field and the auxilliary vector field.

The following reconstruction for the system's Lagrangian 

density was given [34] that yields,

r  + /gZfield +

■y/g(167rG0)_1(a Vp V|JR + bVp Vv Rpv + ct^ t^) [4.4.13] 

where V is the vector field component and a, b, and c are
r*

constants. The terms in brackets represent the vector-tensor 

interaction, and the curl of the vector^, as given by [1.4.25], 

as defined by

curl f = y. v = v - v = t v;p p,y v,p pv [4.4.14]

The resulting Euler-Lagrange equations will lead to field 

equations which by contraction yield

R = 8TrG0T - (3P + | q) - q(V^ Vv).y;v [4.4.15] 

where, in this theory, & is defined by

$ e y yp 
p

[4.4.16]

and where GQ the background value of the gravitational constant 

and, p and q are dimensionless parameters.
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The weak-field approximation in the case of the static field 

will predict values of the PPN parameters that can be made 

identical to those of GTR by a certain choice of the dimensionless 

parameters p and q. For this reason the theory will successfully 

satisfy all the experimental tests of general relativity. It 

also satisfies other viability requirements. Moreover, like 

scalar-tensor theories, this model demonstrates the variability 

of the gravitational coupling constant. This variability is 

caused by the presence of the additional field.and supported by 

the afore-mentioned Cavendish experiment. The dependence of the 

gravitational constant, for instance, on the position in the 

space, would lead to departure from the geodesic motion of 

freely-falling particles due to the anomalous acceleration 

associated with the spatial variation. Such a departure from 

the geodesic motion, called Nordtvedt effect [54],is unpredic-

table in general relativity [55], Though, we believe that the 

possibility of observing such a phenomenon would not be so great 

that general relativity or any other viable theory might be 

disproved.

Finally, we conclude that whether a real field of massless 

vectorons exists or not, we reckon that further investigation of 

this model will lead to new results. If an exact solution can 

be reached then we would expect that interesting features of 

the strong-field gravity wall be manifested. But before this i<> 

ou,t no statement about th.e advantages of scalar-

tensor or vector-tensor theories can be made. We, therefore, 

think that it will be feasible to modify general relativity, 

not by introducing additional fields whose nature is
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nongeometrical, but by rather sticking to the geometrical 

representation of Einstein's model. This is the viewpoint we 

advocated in Section (2.7) and within Chapter Five of the present 

thesis.

In the next section we introduce an example of a modification 

of general relativity which is free from any additional 

nongeometrical elements.

(4.5) Kilminster-Yang Model

By adhering to the idea, that, the most complete and self- 

consistent theory of gravity must be a quantum one, thought has 

been directed towards building a quantum theory of gravitation 

whose classical limit would undoubtedly be Einstein's general 

relativity. In other words, the general relativistic equations 

should be quantized so that microscopic and strong-field 

gravitational effects find their correct interpretation. But, 

as it will be stated in (4.7), general relativity is, 

disappointingly, not amenable to quantization. Therefore a 

need had arisen for a theory that beside preserving the advantages 

of general relativity in the weak-field region will be hopefully 

quantizable. That means one should first achieve a classical 

generalization for GTR and then look for the quantized version 

of that.

One alternative generalized model of general relativity 

which is considered a good candidate for a quantizable theory is 

due to Ki.lmister and Yang. Like Einstein's theory, this model 

is purely geometric but alternatively the free-field Lagrangian 

density is quadratic in the contracted Riemannian tensor components
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[4.5.1]

As we explained in (4.2), such a Lagrangian has certain 

appeal and historically it was suggested and advocated by both 

Weyl [56] and Lanczos [57] to be a basis for a unified-field 

theory of gravitation and electromagnetism and more later it 

was utilized by Yang in his gauge theory of gravitation [58].

Now, in order to derive the field equations the Lagrangian 

density [4.5.1] should be subjected to variation. But because 

of the unconformity between the p- and g-variations stated in 

(4.2) - b,and in view of the point raised by Stephenson [21]; 

that the p-variation method is highly dubious when it is applied 

to quadratic Lagrangian, one would adopt only the g-variation 

to derive the field equation. Otherwise, a straightforward 

derivation due to Ki 1 mister will lead to the gravitational 

equation. By assuming that the space time is pseudo-Riemannian, 

and that the Riemann tensor is divergenceless, then contracting 

the Bianchi identities [1.4.31] and using the symmetry 

properties of the Riemann tensor [1.4.29] yield,

0Rn. , - Rr.. [4.5.2]

These .equations were first obtained by Stephenson [59] and 

derived and studied by Kilmister [60] [61] and by Yang [58]. 

They represent a set of coupled partial differential equations

differential order, the equation [4.5.2] will be, therefore,more 

informative than GTR in the domains of higher curvature.
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In the static isotropic coordinates Kilmister - Yang 

equations, unlike Einstein's, yield a variety of solutions 

[62] [63], including Schwarzschild space-times,as special

cases. Hence this theory satisfies all the viability requirements. 

The conservation of the curvature tensor makes necessary, the 

constancy of the scalar curvature R of all solutions. Moreover, 

solution of cosmological nature, as well as other interesting 

spacetimes were also, obtained [641. In particular, the theory 

admitted a well-behaved metric in the strong-field region, and 

a metric with periodic character, where, gravity may be repulsive, 

was also allowed.

Now, considering the above-counted merits of Kilmister - Yang 

theory may allow us to believe that this model is a big step 

towards a deep comprehension of gravitation, especially, in its 

strong-field limit. As we stated in (3.7), the defectiveness 

of GTR is primarily caused by its imperfection. The best remedy 

for that, we believe, is not by destorting its geometrical 

nature which was tested to be correct:in the weak-field gravity, 

but by rather "promoting" it, i.e. by raising its differential 

order so that it becomes capable of accommodating higher nonlinear 

effects. Thus, Kilmister - Yang modification of GTR goes in the 

right path towards perfection. It is our goal in Part II of this 

thesis to develop the most accepted model of gravity by taking 

the furthest step in this line of generalization i.e. by 

utilizing gravitational equations of the highest possible 

differential order.
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(4.6) General Relativity plus Torsion

This is the earliest attempt to modify the general relati-

vistic laws, in which an additional geometrical feature was 

introduced into Einstein's theory of general relativity. In 

1922 E. Cartan [65] put forward his idea in which he proposed 

a space-time manifold with a metric tensor and a linear 

connection. The torsion of the connection was required to be 

related to the density of the intrinsic angular momentum. By 

varing the metric, the frames, and the linear connection 

independently of each other it can be shown |66] that Einstein's 

equations may be written in two equivalent forms called 

Einstein-Cartan equations. Similar ideas towards generalizing 

GTR were proposed.by other authors [67]. In support of Cartan's 

theory, A. Trautman [66] suggested that space geometry can be 

affected by the spin in the same way it is affected by the mass. 

Thus, by introducing torsion related to the intrinsic angular 

momentum, spin effects on space geometry can be admitted.

In Section (2.2) we stated that, although Cartan's theory 

is not metric it is, exceptionally, considered viable. In fact, 

the theory is experimentally indistinguishable from general 

relativity and this confirms its viability [68]. However, some 

authors [63] argue that this theory violates one of the 

viability criteria by claiming that it is irreducible to special 

relativistic laws.in the absence of gravity. Nonetheless, as 

we showed in Section (2.6), this argument was cogently refuted 

by Trautman [69] who believed thatmtbereal world spin effects 

disappear automatically with the disappearance of gravity and 
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thus the Cartan's theory is still linked to special relativity.

In fact it can be realized that, in contrast to the masses 

which .are essentially additive quantities, the spins of 

individual particles usually cancel each other when the system 

is considered as a whole. Therefore, in such a circumstance no 

torsion effect on space will be observed. But in the world of 

particles the influence of spin on space geometry is thought 

to be greater than that made by their masses. Thus, it is 

expected that in the case of, say, neutron stars where the spin 

density may play an effective role the torsion should be taken in 

a great account and, as suggested by Trautman, gravitational 

collapse may be avoided. By this, and by knowing that some 

interesting results based on this theory have been obtained [70] 

we conclude that Cartan's model serves a good approach to strong 

gravity. On the other hand since spin effects are basically 

of a quantum nature one would believe that a proper modification 

of general relativity should be achieved by quantization - what 

we shall introduce in the following section.

(4.7) Quantization of General Relativity

As it was learnt before,the strong evidence of the viability 

of Einstein's theory in the weak gravity,is counterbalanced by the 

weak evidence of its validity in strong gravity. This situation 

necessitates that general relativity should be reconstructed in 

a way that strong field effects may be primarily accounted for. 

Presumably this may be achieved, as many used to believe [71], 

by leaving the framework of classical physics, i.e. by introduc-

ing a quantum-mechanical modification of Einstein's gravitational 

model.

156



have already stated in the introduction to this thesis 

in Section (0.5) that, certain motivations had encouraged this 

sort of thinking, since by the quantization of classical theories 

of the electromagnetic field unreasonable behaviours in physics 

were averted or eliminated. For instance, the collapse of the 

classical Rutherford's atom, the Rayleigh-Jeans catastrophe 

were respectively remedied by Bohr's semi-quantum model [72] 

and the Planck quantization of black body radiation [73]. In spite, 

of this similarity the nonlinear character of the gravita-

tional field and the geometrical picture of general relativity 

had made Einstein's theory stand apart from the mainstream 

of physics. Hence, all attempts at quantizing GTR run into 

great difficulties.

Since, nearly, the last three decades a diversity of 

frameworks, and a great deal of studies had been made by 

Wheeler [74], DeWitt [75], Feynman, Schwinger and others [76] • 

Unfortunately, all these approaches are either ambiguous or, 

arbitrary or both and, have unmanageable-technical problems [77]. 

In particular, the nonrenormalizability of the quantized general 

relativity nearly closes the gates against any further progress 

in this direction [78].

As we noted in the beginning of Section (4.5) the 

unquantizability of GTR as well as its singular character are 

but a consequence of its imperfection. Whence, we believe, 

that the road to the quantized gravity should firstly pass 

through a certain classical modification of Einstein's theory.
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In fact, ultimately, we are not looking for a quantized 

theory of gravity within the framework of this thesis, but for 

rather a classical alternative that will be hopefully amenable 

to quantization.

(4.8) A Model with a Deformed Schwarzschi1d Solution

In this model, instead of modifying general relativity, 

its Schwarzschild solution is amended so that the resulting 

metric can be made free from singular features, say, in the 

strong gravity, whereas it retains the usual weak-field behaviour. 

The idea of this approach is to associate dynamical systems with 

the flow of the geodesic equations. As it was learnt from Section 

(3.6) space-time singularities are defined by the incompleteness 

of the geodesic. Then since the dynamical system is defined for 

all the values of the proper-time, representing the flow 

parameters, the geodesic will be complete. Therefore, the 

singularity on the original manifold will be disconnected from 

the space-times of all observers [79].

In Section (3.7) we suggested that the singularity can be 

eliminated by either deforming Schwarzschild space-time or by 

deforming Einstein's gravitational equations themselves. It seems 

to us that both ways must be equivalently meaningful, since any 

deformation of the solution would generally correspond to a 

deformation of the equation and vice versa. We, therefore, 

introduce this model to complete the picture of different 

modifications of general relativity that required to lead to a 

non-singular strong-field behaviour.
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(4.9) Summary and Critique

In the preceding sections we reviewed different approaches 

aiming to establishing a theory which should fulfil the following 

main requirements:

1 - Satisfying the viability conditions;

2 - Not predicting the gravitational collapse,

3 - Not leading to ambiguities or arbitrariness, when subjected

to quantization.

The first requirement is almost satisfied by all kinds of 

the afore-given modifications of GTR. The fulfilment of the 

second requirement is our main target in this chapter. In fact 

all strong-field models are designed to, primarily, satisfy this 

requirement. There are strong indications from our previous 

discussions, especially in Section (4.5) that collapse can be 

prevented if the following two criteria are observed:

i - The geometrical representation of GTR is preserved, 

ii - The gravitational equation of the modified theory are of

a differential order higher than that of general relativity.

This implies that a Lagrangian with nonlinear term in R should 

be employed. As we noted in Section (4.2) -a the quadratic 

Lagrangian seems to be more important in considering strong-field 

gravity or when we need to bridge the gap to quantum physics. 

In the next chapter we will show that the most general and the 

most rational form of the Lagrangian should be nonlinear in R 
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with coefficients whose significance will be revealed in Chapter 

Eight. As for the objection raised against the quadratic Lagran- 

Lagrangian, and mentioned in (4.2) - a, we believe that it is 

weak. Apart from our critique which will be given in Section 

(7.5) this objection is not well substantiated since it relies 

solely on the weak-field correspondence. It is illogical to 

throw away the valuable (in strong-field gravity) quadratic terms 

of the curvature because ‘it dce_s no! satisfy the (weak-field) flat 

space limit. Lanczos, arguing on that, had suggested, that there 

exists a highly agitated metrical plateau of such high frequency 

that, for all macroscopic purposes, only the average value of the 

g are at our disposal which are thus constants, although they 

hide the existence of very high curvatures [80].

As for the third requirement concerning the quantizability 

of general relativity, some modifications like KiImister-Yang 

model are promising. Again any achievement in this direction can 

be secured by sticking to the geometrical picture of general 

relativity and by utilizing nonlinear Lagrangian which leads to 

gravitational equations of a differential order higher than that 

of GTR. Only then the gravitational theory may be brought under 

the umbrella of quantum mechanics.

Further, since we know that the unquantizable Einsteinian 

model is essentially singular, we can think of a modification 

which is non-singular to be quantizable. And since the 

gravitational collapse is due to the existence of singularities 

it seems to be sufficient to require that a model, viable in the
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weaK-field gravity, should be non-singular in the strong-field 

gravity. In the example explained by Trautman for a non-singular 

strong-field gravity, based on Cartan's theory (4.6) the 

gravitational collapse is prevented by the spin-induced torsion. 

The prevention of collapse by assuming certain strong-field 

effects seems to be very interesting. For instance, the 

repulsive potential in Fujii-O'Hanlon theory (4.4) - (iii), 

or the theory with a limiting curvature (4.3) may serve examples 

for these kinds of effects. In [5.4.34] we will show how the 

limiting curvature may be related to, possibly, quantum parame-

ters - which will perhaps have something to do with the spin 

effects. Such an example gives strong indications of the deeply 

close relation between the nonlinearity of the Lagrangian, the 

nonsingularity of the metric and, probably, the quantizability 

of such a modified theory.

Furthermore, it was explained in (2.6) and (4.6) that 

Cartan's theory is. still considered viable, though it seems to be 

nonrelativistic (in one sense). This discrepancy arises because 

in the areas where spin effects vanish the principle of 

equivalence is applicable, and in the areas where this principle 

breaks down the spin is dominant. But because of the fact that 

the vanishing of spin does not mean the absence of gravity, 

whereas the absence of gravity automatically means the absence 

of spin, and in view of Trautman's argument given before, 

Cartan's theory is, in fact, relativistic and hence viable. 

This is also consistent with the above-qupted argument raised 

by Lanczos.
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Moreover, the above-mentioned strong-field effects can be also 

accounted for as it is proposed in (4.8) by deforming Schwarzschild 

solution. This idea seems to be useful in distinguishing which 

modification of GTR is more promising. If a deformed solution 

fully agrees with the experiment, thence it will give an 

indication Of how the Lagrangian,and consequently?the gravitational 

equations, can be modified. Thus a correct generalization of 

general relativity may be obtained.

As for the introduction of the additional fields into general 

relativity as an alternative way of modification, we see that it is 

less encouraging. Though, this approach would indicate 

how the theory should be modified in order to reasonably 

explain strong-field behaviour. We have noticed that theories 

with additional fields predict certain unusual effects like the 

variability of gravitational coupling "constant" G, and the non-

Newtonian potential as. it was shown in Section (4.4). The 

variability of G leads to Nordtvedt effect which contradicts the 

equivalence principle because of the anomalous acceleration that 

forbids the geodesic motion. In fact such an effect is due to 

Mach's principle. We notice that general relativity does not 

fully agree with the Machian hypothesis, since the Minkowskian 

space which constitutes one of the solutions of GTR is non- 

Machian.

On the other hand, the non-Newtonian potential [4.4.9] 

whose form coincides with the Yukawan potential [4.4.12] may 

lead to a yery interesting idea. Namely, one may think that the 

exact solution of Fujii-O'Hanlon potential is nothing but the 
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potential of the nuclear scalar mesonic field (see for example 

reference [7]). This would imply that nuclear forces are somehow 

linked to the strong gravitational field phenomena.

To sum up, we end this chapter by concluding that all the 

afore-presented modifications of GTR give strong indications that:

1 - General relativity is not' the perfect theory of gravitation.

2 - Modification of GTR is the route to strong-field nonsingular

quantizable gravity.

3 - A successful modification must be within the frame of the

geometrical picture of general relativity.

4 - A perfect version of a successful modification should exhaust

the maximum geometrical content of spacetime.

Being guided by these Consecrations we devote the following 

five chapters of this thesis to the establishing of a perfect 

model of gravitation.
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PART II

Synopsis

This part is purely our contribution to the gravitational 

theory.

*In Chapter Five, we give a new derivation of the 4th 

order gravitational equations from which we establish our 

theory on the generalized Lagrangian. We derive the most 

reasonable form of the Lagrangian function that will be the 

basis of our generalized theory of gravitation. We also 

obtain a relationship that should be obeyed by any Lagrangian 

describing gravitation.

*In Chapter Six, we obtain useful relations governing 

the metric coefficients and the scalar curvature in static 

isotropic space times. A classification rule for different 

Lagrangians is given. Our generalized metric is introduced 

which is nonsingular and reducible to cosmological and 

thence to Schwarzschild solutions by imposing a weak-field 

constraint.

^Chapter Seven deals with a special case of the 

generalized metric where we first obtain an exact 

expression for a variable scalar curvature.
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*The advanced model of gravity is given in Chapter 

Eight where we establish three useful theoremsgoverning 

this kind of metric. We set an upper limit for the scalar 

curvature beyond which general relativity should be not 

applicable. We also first obtain an exact solution for our 

metric which allows complex values in the strong-field limit 

that may characterize quantum effects.

*More consideration of the complexity of the metric is 

provided in Chapter Nine.

- A resume and a general outlook come at the end of 

the thesis.
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CHAPTER FIVE

The Most Generalized Gravitational Field Equations 
and the Most General Lagrangian

(5.0) Prelude

In this chapter we present an alternative derivation 

of the Lanczos 4th order in g^ generalized equation [4.2.59] 

Our method, we believe, is more advantageous in comparison 

with Lanczos1 derivation.

We started from very general assumptions in construct-

ing the Lagrangian function of our action integral by 

allowing all possible derivatives of g , in Contrast'
pv

to Lanczos', whose invariant function consists of 

only g and R , Therefore we are able to
pv pv

answer the question, why the equations cannot have a 

differential order higher than the fourth? Such an 

answer is, at least, not directly clear in the previous 

derivation. Lanczos excluded from his invariant 

function the 1st derivative of the metric tensor by 

employing the principle of general covariance. We 

conversely show that the inclusion of this derivative 

will give no contribution to the resulting equations 

and this confirms the equivalence principle. Our 

derivation, besides that, is more transparent and 

straightforward.
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Moreover, we exploited the resulting gravitational 

equations together with the Brans-Dicke-scalar-tensor 

theory to derive the most general physical Lagrangian 

in a polynomial form of R. The arbitrary parameters 

of this polynomial will be utilized, we suggest, to 

establish the long-awaited generalized theory of gravity 

which will hopefully be able to successfully explain 

the weak-field as well as the strong-field gravitational 

phenomena.

We commence by employing Euler-Lagrange equations 

resulting from the Hamiltonian principle of the least 

action, to derive the generalized gravitational field 

equations.

(5.1) Euler-Lagrange Partial Differential Equations:

Let us consider the variation 6l of the following 

integral

dXf(x,y,y; y") [5.1.1]

w.r. to y, where y = y(x) and y' = , and
dx

where a and b are some constant numbers. As has 

been discussed before, for f being an action function 

the variation 6l will be zero, i.e.

61 =
fD 

dx
a

= 0

[5.1.2]

where the variations,
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<5y> <5y' and <sy“ are infinitesmally small. Integrating 

twice by parts will immediately lead to the following well- 

known Euler-Lagrange differential equations [1]

3y

with boundary term

d 'af d2+ — [ afl

dx L3y'j dx2 lay"J

9
. 9 * 11 a yand y. = —2--, .

axW

In the next chapter we will apply equations[5.1.3, 4, 6]

to obtain the differential equations that govern the behaviour 

of the gravitational field.

[5.1.3]

7af _ d '3f ' 3f , 7
— <sy + — <sy.by1 dX 3y11 

I J . 4 3y"
[5.1.4]

[5.1.3] is the necessary and sufficient condition for 

[S.j.l] to be stationary with given boundary conditions. 

If the integral involves more than one independent 

variable, say, XA= {x1,x2,x3,xk} i.e. X = 1,2,3,4 

then the following integral

I = . 1 . 2 . 3 , ijp, 12 3 4 i i n i ii iidx dx dx dx f(x,x,x,x,y,yx,yx,yx...y2y2...y12...)

.4 47/X ' "dxAf(x .y.yx.yXY) [5.1.5]
7

will lead to the following equations for y.

3f

ay

4I
X,Y = 1

. [5.1.6]' d f af ] d2 f af 11

dxY J dxydxx

with
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(5.2) The Generalized Equations of Gravitation.
An Alternative Derivation.

In the derivation of equations [4.2.59] the Ricci 

tensor R and the metric tensor g were regarded, pv pv
at first, as independent of each other and the Lagrangian 

density [4.2.23] was subjected to variation. The change 

<SR corresponding to the infinitesmal deformation 6g
pv pv

was calculated to give the expression [4.2.48] represent-

ing derivatives of g , higher than those of general 

relativity equations.

The expressions have been simplified during deriva-

tion by bringing g^ to its orthogonal form, and by 

choosing locally inertial coordinate systems in which 

the first derivatives of g vanishes.
pv

It will be shown here that we are able to derive

the same generalised equations [4.2.59] alternatively 

by simply applying the afore-given Euler-Lagrange differen-

tial equations.

Let us take as variational variables [5.1.1] the 

metric tensor and its 1st and 2nd mixed derivatives. 

We thus consider the integral over 4-volume Q(x^),

The variation will yield the following system of equations,
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✓

3f = i j

3 9  A J

af d 2 3f

d X A
- a

d x Y d x A
~ 3

r a 2 9 'i

I a x Y a x\

[ 5. 2. 2]

F u n cti o n f w hi c h w e c o n si  d er i i n v ari a nt i s c o nt ai ni n g

or di n ar y  d eri v ati v e s of g of  
p v

or d er  wit h  r e s p e ct t o c o or di n at e

t h e fir st a n d  s e c o n d

X. T h e  fir st d eri v a-

ti v e s of g w hi c h  d o  n ot  c o n stit ut e  a t e n s or will  
p v

a c q uir e  t h e t e n s ori al f or m b y  b ei n g •s u bj e ct e d t o v ari ati o n.

N o w  b y  u si n g  t h e f oll o wi n g n ot ati o n,

[ 5. 2. 3]

t h e L. H. si  d e of  [ 5. 2. 2] yi  el  d s  :

3f

3  9 p v

=  / g P L-  

a R  a g a g  
p v  p v

[ 5. 2. 4]

Al s o,  b y t h e ai d  of t h e d efi niti o n  [ 1. 4. 2 6] f or

w h er e  R i s a s s u m e d  t o b e  i n d e p e n d e nt of  
p v  r

b y  u si n g [ 4. 2. 2 2, 4 2, 5 2], o n e  g et s

g
p v

a n d

p V 3  p V
[ 5. 2. 5]

R

T h e n  b y  e m pl o yi n g  t h e r el ati o n a n d  b y

u si n g [ 5. 2. 5] t o g et h er wit h

o n e  o bt ai n s  f or t h e L. H. si d e of [ 5. 2. 2] t h e f oll o wi n g

e x pr e s si o n

—  =  -/ g ( Z‘r p v - [ 5. 2. 6]

W e  t h e n c al c ul at e t h e R. H.  si d e  of [ 5. 2. 2] st arti n g

wit h  t h e fir st t er m, i. e.
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d

d R

d r d

d ? ' a g
p v

d x A

3 x A

3 _f

3 R

a R

3
f3 g  

p v

k  ✓

3f d

3 R d x X

[ 5. 2. 7]

w h er e,  a s i n [ 4. 2. 6 0] t h e c o v ari a nt  d eri v ati v e  of  t h e

s c al ar  c ur v at ur e R, c oi n ci d e s  wit h  it s or di n ar y

d eri v ati v e.

N o w  b y  u si n g [ 5. 2. 3] a n d  t h e f oll o wi n g n ot ati o n:

a R

r a 9 a  d p v  
a — r

[ 5. 2. 8]

w e  will  g et

F urt h er,  t h e l a st t er m i n [ 5. 2. 2] yi el d s:

d 2  

d x Y d x X

af
F a ^ g ] 

p v

3 X 7 9 X X

J

d  

d x Y

c 'i

d f 1 a R
R ; v

d R

1 —

l a
a 2 9° p v

a x ^ a x A

d ( d
f 1 a R

| R..  +  —  

f > x d R
f 1

a R

d X 7 d R
T

a
f a 2 g

3 p v
- a

f a2 g ]
p v

v X
I a x Y a x J 3 x 7 3 X X

l J

[ 5. 2. 1 0]
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where, in [5.2.10] the ordinary differentiation was 

replaced by the covariant form, and where the 

expression in the brackets { } has no tensorial 

features, in particular, w.r. to the indices X 

and y that means,

d

In fact, introducing covariant differentiation will 

secure the covariant form of the resulting field 

equations by causing to disappear any first derivatives 

of g .
W

Now by denoting

C1ŷX
a

[5.2.11]

which implies

[5.2.12]

the R.H. side of [5.2.10] becomes:

I- for' ] r + a  |f ■ er*
'•dR / dR L M

[5.2.13]

where [5.2.4] has been used, i.e.

[5
3R

and according to [5.2.12] is independent of R.
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Now we calculate the coefficient in [5,2.8],
A

First, by recalling definitions [1.4.8,9,26,25,24] we

rewrite the following relations

R = R(x) = gpvRuv Rppcrv

AgUP<J s2g
po

s2g
pv

s2g3pv

= g^V0

 9PV°
2

+
9XV3XP 3x°3xP 3XQ3x P

, pvptj
+ 9 9 9n6 rn L

r6
pv

rn
Vp [5.2.15]

with

Then

rxpv
oX

[5.2.8] yields:
rpv _ 
UX =

3g
po

3XV

3g va
3XP

3g3vp

3xa
[5.2.16]

6
pv

9^pv

l

3R

pv
3XX

I

4-

+ .Prvxoto 6 6
P V A

.a.vrp0 0 6 
p V X

nO„P „a o 6 ,6.p v X
5W 

p v X
xdxp_V 
0 0 0 .[ p V X

(jW
p v X

API 
p v X

J

pg3
2

pP qba 
vp*rd.p .V6 6 6." P V X

6a(5P<5°
P V A

H gVX 
pvy rA gvp pv + rx gap Op3

rX po 
op

rX gapap 2rp gXa+ rx gpp - rv gpX- po pp vp rA gpv
Vp

/

I

+ 1

+

+

+

3

«W 
p v X

r' goa

2

+ rv gpX
vpa [5.2.17]
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This means that
A. = o 
dX A

[5.2.18]

Now we have in [5.2.9]

d 
dXA

8

9f___
f 99 J 

h X3x z

= 0 [5.2.19]

which yield the fol lowing interesting result: that our

function

is either

all. The

f, and hence by [5.2.3] the Lagrangian function
9g

linearly dependent of —or not dependent at 
axA

latter, of course, is completely consistent with

the principle of general covariance which excludes the

first derivatives of g from the Lagrangian. 
However, the result,

3f = const.= C
[5.2.20]

will always allow the inclusion of
99
—~ , at first, 
9x A

in the invariant Lagrangian, since the constant C can

be set zero. Also, the result

that although R is constructed from

to [5.2.15,16] the terms containing

contribution if the change in R w.r.

[5.2.19] indicates
9g
—~• according
axA

would give no
9 9
—~ has been 
a xA

employing

r
to

considered. This situation is equivalent to

the principle of equivalence by working in a locally

inertial system of coordinates where all r vanish.
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This implies that either [5.2.18]is an expression for the 

yalidity of the general covariance principle or else

is in accordance with it.

Now we return to equation [5.2.7,9] where the

following boundary term correspond!ng to [5.1.4] is given

for [5.2.91.

[5.2.21]

Then because of

A cv*v = o, [5.2.22]
dR *

we get

-4 (cry'j = r , - (cz') = t5-2-23i^X k Ay <4 7 jX dp K ^Y^ 7 ^Y

Therefore, in virtue of [5.2.18,22,23] [5.2.21] becomes:

89 i pv
axx j

b
V
J a

[5.2.24]

and this will give zero, since fig are assumed to be 

vanishing at the boundaries. Furthermore, by collecting 

the terms [5.2.6,7] and also [5.2.19] together with 

[5.2.13], then by using them in [5.2.2] the following 

field equations result:
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We then utilize [5.2.151 to calculate the terms with 

the coefficients under the summation sign. It is 

convenient to adopt the usual tensorial summation notation 

by dropping the [ in [5.2.25]. Thus, we will have:
uv

C^R R = 9- (gpVM°
yX ;X ;y 2 p v p v

- gp°(5u6a6X6y - gpa6p6V6X6y
p v v p J p V J p

(R R gpv - R R gpv

- R R gpa + R R gpp) [5.2.26]

By renaming the repeated indices in the last three 

terms in [5.2.26] as follows: v -> a in the second 

term, p -> p in the third term and o -> v, p -> p 

in the fourth term. This yields:

CppR ,R = gpv( yX ;X ;y ' R R gpv - R R gp0)
■ ;p ;p3 ‘ [5.2.27]

which by lowering the indices p and v of rpv
YX ’

becomes:

CyXR ,r = 
pv ;X ;y = R R - g R R gpo ;v 3uv ;o sp ’ [5.2.28]
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Similarly we obtain

Cy AR . = R - g R gp0
pv ;X;y ;u ;v 3jjv  ;°;p

[5.2.29]

= R. . - 9 O2R [5.2.30]

where the following invariant D'Alembert-Laplace

operator was used:

[5.2.31]

Finally, by entering [5.2.28] and [5.2.30] into

[5.2.25] we obtain the following set of 16 gravitational 

field equations in its covariant form:

H = (R R. - g R R gp0) uv v ;o ;p3 7

+ <Z'(R - 9 D2r ) +

+ Y'r - i/g = 0 [5.2.32]

which is similar to [4.2.59] derived by Lanczos.

The equation is divergenceless and automatically reduces
to Einstein's equation of general relativity for linear^.

The contribution of the first two brackets in

[5.2.32] makes the equation of the fourth order in g
and it vanishes for the Lagrangian c/?= R.

We will employ equations [5.2.32] in our further 

consideration of the gravitational field that will lead’ 

to a generalized theory of gravity.
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(5.3) Commentary and Remarks

It seems again interesting to notice that in deriving

[5.2.32] the part of R containing r did not give 

any contribution to the structure of the equation, since 

had it given this, it would have contradicted the 

principle of general covariance.

As for the possibility of generalizing [5.2.32] to 

contain derivatives of g up to the nth order, we 

will view that as follows.

If we include in the function 

derivatives of g of order n, 

second, we would have expected in

f of [5.2.1]

higher than the

[5.2.2] terms like:

d" af
dx" ranq

a 3pv

ax..ax

and correspondingly, a derivative of the type,

aR

a
1

ax...axn?

But in view of definition [5.2.15] of R and its 

contractions being constructed of g derivatives pv
not higher than the second, no such extra terms will 

occur.

Therefore, we come to the conclusion that, within

the frame o.f Riemannian geometry, being characterized by 
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the curvature tensor or its contractions, we cannot 

construct gravitational field equations of order higher 

than the fourth derivative in ’

This result makes our derivation more 

advantageous than that made by Lanczos, where such 

an explanation is not unwed lately apparent.

On the other hand, since the invariant function 

[4.2.18], proposed by Lanczos is built solely from 

R and g , where R implicitly contains the 

first and the second derivatives of g , it must be 

equivalent to our Lagrangian function of [5.2.3] which 

explicitly contains these derivatives, and hence it 

looks natural that the two derivations will lead to the 

same generalized field equation.

In the end we would like to admit that the inclusion 
3g

of —in our Lagrangian did not contribute to the 
axA

resulting equation which justifies the choice of the 

Lagrangian made by Lanczos in his derivation.

We also add here a concluding point about Equations

[5.2.32].  By constituting a further generalization of 

GTR within the frame of Riemannian geometry, and by having 

the maximum possible differential order, these equations 

are compatible with the requirements set in the 

end of the preceding chapter. Thus, they will serveasagood 

basis for developing our generalized model of gravitation 

in the following chapters.
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(5.4) Most General Lagrangian Derived

Since equation [5.2.32] has been derived as a result 

of more general assumptions about the structure of the 

Lagrangian density, therefore, it is regarded as a modi-

fication of general relativity in the case when Lagrangians 

other than R are to be employed, and hence it should 

contain terms representing Einstein's model and should 

have Einstein's spaces as special solutions.

Let us rewrite equations [5.2.32] with the use of

Einstein's tensor G [1.6.8]; we then have 
pv

following vacuum equation:

G = Z- (g R R gp0 - R R )R 
pv / VJpv ;p ;p ;v'

+ 4- (g D2r  - R. . )R - ( 
/ ^pv1—4 JPJV'

Contracting [5.4.1] by gpv yields:

the

4^ - !)R
[5.4.1]

+
III

■ (4R R gp0- gpvR R )R
1 ;p ;o ;u ;v'

[5.4.2]

z
3Z"

III

(4R R gpP- gpvR R ) 
;p ;o3 3 ;p ;v'

[5.4.3]

It is obvious that for R [5.4.1] reduces to

[5.4.4]G = 0 pv
which is general relativity free field-equation, and 
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by [5.4.2] it gives

R = 0 [5.4.5]

It is interesting to notice that [5.4.1]> [5.4.3] can 

be interpreted as Brans-Dicke-Jordan type equations:

[2.5.4] and [2.5.6] , where the R.H. side of 

[5.4.]] will represent the contribution brought in by 

the zero mass additional scalar field R coupled to 

them and satisfying the wave equation [5.4.3].

This situation, while explaining why the Brans-Dieke 

theory got the best reputation after Einstein's model, 

will suggest that modifying GTR by deriving generalized 

field equations is equivalent, in a certain sense, to 

introducing an auxilliary scalar field. This modification 

may be looked to as a geometrization of the scalar field 

of Brans and Dicke theory, as [5.2.32] is constructed 

solely from geometrical objects.

Further, for the Lagrangian quadratic in R,[5.4.1] ,

and [5.4.3] yield respectively:

G = - R + - (g n2R - R )

=-j9 R + Lg Q2R - R. . ) [5.4.6]

and
□ 2R = 0 [5.4.7]

If we define R in terms of Brans and Dicke scalar 

field density as

R = -4C4 [5.4.8]
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where C is a constant. Then we get from [5.4.6,71

the following

[5.4.9]

Comparison with [2.5.4] suggests that this equation is 

nothing but Brans-Dicke vacuum equation in the case 

co = 0, and the term with g^ is a cosmological term.

But we can, after using [2.5.6]/y rewrite [2.5.4] in

the following manner: 

co
2(j>2

[5.4.10]

where the first two terms may be regarded as 

cosmological terms, and where, we used the following 

conformal relation

<j>;p = gf° [5.4.11],0
In view of the common features of [5.4.1, 10], we 

can add to $ a term k = k(co) which will ensure that 

whenk(w R2 as the case in [5.4.6 ->9].

Thus we assume that:

R = - 4C4> - k(co) [5.4.12]
Now by using this relation, the term-by-term compari-

son between [5.4.1] and [5.4.10] yields:
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U~ R-Z)r

Z ■pv
i .e.

Zin
Z R 
z

U)

(R+k)2
[5.4.13]

Z"r 1 -2gj

4(R+k)
[5.4 14]

-g —y— R R gpog
9 ;p ;aJ

2(R+k)
[5.4.15]

R Z'r -Z

2 Z

Now by using [5.4.13]

U)_____

(R+k)2 
we get:

R - R gpp 
;p ;a [5.4.16]

pg 3R 3R a2Z 

axp axa aR2

Z

[5.4.17]□ Z = 1(Zr -Z)

This equation can be looked to as a wave equation

with a source term. Also, [5.4.13] and [5.4.14] give

4(n-2) [5.4.18]
Z" R+k

with
n = n(co) . 2-3w [5.4.19]

1 - 2oj

Then by integrating [5.4.18] over R, one

gets the following general form for the Lagrangian: 

2(2n-3)

2(211-3)
(R+k) + |3R + y [5.4.20]

where Cp 3, y are arbitrary constants.

On the other hand, differentiating [5.4.14]
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w.r. to R and then using I5.4.13J will lead to the

equation:

Z'.i
Z R

, 4n-7+ ------
R+k

[5.4.21 J

which is satisfied by:

/(R) = aR(R+k)‘,(n_2)+1 [5.4.22]

where a is a constant.

Now by setting in [5.4.20] the following val ue

for constant C1

[5.4.23]

where a is a new constant, we will obtain

/(R) = a(R+k)2(T3)gR + y [5.4.24]

The difference appearing in the two expressions 

[5.4.22,24] describing the same Lagrangian might have 

been caused by the incomplete correspondence in com-

parison between <j>- and R-equations. However, the 

two formulae can be identified by imposing certain

values on the arbitrary constants.

Now, by knowing that, 

for £ = R2 

for Z= R
n(0)

n(°°)
[5.4.25]

we will find which.of [5.4.22]
7

[5.4.24] give

exactly the correct expression for quadratic and linear

in R Lagrangians. Thus, if in general we assume that

k(0) 0 [5.4.26]
and y is sufficiently small, as it will be shown by [5.5.3], 
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we will get for instance from [5.4.22],

for u * 0 /= a R2+ak('0]R = aR2, [5.4.27]

for u ~ L= a — ~ a,wih [5.4.28]
R+k R '

andjfrom [5.4.24],
T

for w 0 X- aR2 + 3R + y [5.4.29]

for uj </ = a + $R + y [5.4.30]

These expressions for show that for u) -> 0 the

correct Lagrangian is obtained in both [5.4.22,24]

while in the case w -► « [5.4.22] is not satisfactory.

We therefore accept [5.4.24] as the most reliable

Lagrangian. Furthermore, we notice that our Lagrangian 

can be presented in any form of the type [4.2.12] 

with certain values of the constants. The free constant 

appearing in [5.4.24,29,301 can be regarded as in 

[4.2.16] standing for non-gravitational field. Also, 

by using for the constants in [5.4.241 the following.

substitutions

a

Ri-m ,
= (-l)nm— 

e = n(-l
[5.4.31]

Y

where-R^fc is a new constant and,

m - 2(2n-3) [5.4.32]
then, the Lagrangian will be converted to the form:
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R [5.4.33]

which is but the Lagrangian proposed in [4.3.1]

with two differences: that m is not a mere number but 

dependent of the parameter w via [5.4.32] and [5.4.19], 

and that RQ which was defined by [4.3.2- ] as an upper 

bound for R, now, accordingly is depending on w

through m(oj) owing to the following relation:

which by

[5.4.34]

and conversely for k = k(w) [5.4.31,34]

becomes:
rri

kW = (-if -Ro
m-i tn

m

m+i
JL

01

1
m1?

'[5.4.35]

In these relations, is the coefficient

securing correct Newtonian limits, it should be:

[5.4.36]

and since RQ depends on w, it will be possible to 

estimate this limiting curvature value by choosing 

certain values of m(w) and k(oj), provided that 3 

is given by [5.4.36]. For finding out how R might 

depend on w, we substitute in the equation [5.4.17] 

from J5.4.24] to get the following waye equation for R.
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Q2r = aR 3R _ (R+k)m + (R+k)m~1R _ y(R-tk)2~m
R+k 3xpax^ 2m(m-l) 2(m-l) 2C1(m-l)

tn^O/1.
where by [5.4.23] and [5.4.32] the constant Cx is

[5.4.37]

(5.5) Remarks

defined by: F

wi th
C-^ = a(uj)m(co)

a = a(uj) = C^-co)

and, m = m(w) =-(oj-i)“1

[5.4.38]

[5.4.39]

[5.4.40]

The R.H. side of [5.4.37] which represents the source

term is quite informative as we notice the following:

(i) The first term with the derivatives of R describes how 

the source couples with the gradient of R, where R 

indicates the strength of the gravitational field.

(ii) The expression for R will depend on the value of the 

parameter co via m(w) and on the constants y and Cx.

(iii) The coefficient 3 cancelled out indicating that there 

is no given matter in the source term.

(iv) The last term reflects the contribution of the non-

gravitational part of the Lagrangian brought into the field 

by y .

(v) If R is constant somewhere in the spacetime we will 

be left with the last three terms which yield:
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(R+k)2m - tnR(R+k)2ln'1+ Si(R+k)2 = 0
C1

This would allow imaginary part for R at certain values

of m.

[5.5.1]

(vi) In [5.5. 1] if somewhere in the space R is set to 

be zero one would get, by the aid of [5.4.39,40], the

following expression for the parameter k.

k = k (u ,y ) [5.5.2]

This means that k describes the interaction between

the nongravitational part y , and the nonlinear part

represented by a(w) and m(w) of the general Lagrangian [5.4.24].

As co vanishes which corresponds to quadratic R, we will have,

K(o ,y ) [5.5.3]

what is, now, purely nongravitational, and for y it0

agrees with our previous assumption in [5.4.26] and for

positive y it becomes a complex quantity.

(vii) When w = 0 i.e. m = 2 this corresponds to the

Lagrangian with quadratic R, the first term disappears

signifying that the source does not couple with the gradient of the

field and also reflects the special position of this kind 

of Lagrangian. Now ,[,5.4,37] becomes
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4 2C|
[5.5.4]

which can be reduced by [5.5.31 to

[5.5.5]

for K = R(r), and for constant R it yields Einstein equation 

i-e. R = 0.

(viii) The parameter m(w) reflects the nonlinearity of the 

Lagrangian and co is likely indicating the quantum effects 

that are related to this nonlinearity and which are presumably 

considerable in the strong gravitational field.

(5.6) The Generalized Metric

By generalized metric we mean that which is derived from 

generalized equations of gravitation and based on the most 

general Lagrangian of the type [5.4.241. In the following 

chapters we shall exploit this kind of Lagrangian to demon-

strate the possibility of establishing an updated metric by 

virtue of a certain choice of the Lagrangian's constant co-

efficients and parameters. As we notice from [5.4.38] and 

[5.5.2] the parameters k and m and the coefficients a 

and are deeply interlinked, which will impose strong 

restrictions on the choice of the Lagrangian. In Chapter 

Eight we will show that due to some physical requirements 

the coefficient 3 of the general Lagrangian must be 

determined by the other two coefficients a and y .
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Indeed, these restrictions emerge from our original idea of 

bringing together the scalar-tensor theory with the generalized 

gravitational field into the geometrical picture of Riemann. 

Thus we get rid of the duality between R and } fields in 

the Lagrangian of Brans-Dieke theory and at the same time 

maintain the validity of the equivalence principle as we have 

noted in sections (1.8) and (2.7) of this thesis. We see 

that the generalization of Einstein's vacuum equations to the 

4th differential order in g^ is equivalent to incorporating 

a massless source term as in [5.4.1]. On the other hand, 

introducing an additional field that shares the stage with 

g^ in generating the metric but does not enter the equation 

of motion, suggests that these kinds of fields must have a 

zero mass. (This latter concept, due to Dicke [2]» [3]» is 
motivated by Mach's principle (1.2) [4] which regards the 

inertial masses of particles in the universe not as funda-

mental constants, but rather as an effect caused by their 

interaction with some cosmic field [5] .)

Therefore, we identify the two above-noted concepts 

by regarding the generalized equations as an embodiment of 

Brans-Dicke auxilliary field in Riemannian geometry.

In fact, the generalized equations had been first 

derived by Lanczos as a result of applying a variational 

method that accounts for weak deformations of the metric 

tensor g , whereas Mach's idea can have its precise 

significance only in the case of weak perturbations of a 
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given metric field. The two concepts,.therefore, seem equi- 

valent.

Now the metric resulting from this unification of g yv 
and ^-fields is generated by everything in the universe 

including any test mass say, a star under consideration.

GTR ignores all fields other than g^ of the given 

gravitating mass whilst Brans-Dicke theory gives these fields 

a secondary role.

As there are no isolated masses in the universe, we

think that the source of our gravitational field is extended 

all over the space-time continuum, and that there is no 

privileged location in space where equation [5.4.37] does 

not hold. The cancellation of the mass in the source term 

does not mean its vanishing but, rather, it means that we 

are not considering a given mass. The presence of a deri-

vative of R with respect to the coordinates even in the 

R.H. side of [5.4.37] would imply the existence of a source 

or (absorber) which causes the change of the field.

Finally we would say that [5.4.37] describes the

entire field in the cosmos. It says nothing about the metric 

of space-time manifold due to a particular mass and the whole theory 

is concerned with constructing the most physical and the 

most rational form of the Lagrangian. It is only by employing 

this Lagrangian in a metric derived from the generalized 

equations, that we can consider the field generated by a given 
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material object. We will devote the following chapters to 

investigate and study metrics based on general quadratic 

Lagrangians

(5.7) Discussion

Now the expression [5.4.24] , we believe, constitutes 

the most general possible classical Lagrangian which is not 

just constructed to fulfill certain physical requirements, 

but is mathematically derived from correct relations, based 

on the validity of Riemannian geometry and Mach principle, 

namely the generalized gravitational field equation and 

Brans-Dicke theory. This Lagrangian has the advantage of 

having a self-emerging linear term in R, that ensures the 

correct Newtonian limit. Usually such a term is added 

forcibly to avoid bad behaviour at that limit.

The constant coefficients can be adjusted to make pre-

dominant this or that term and the parameter id which, 

clearly, has a certain effect on R, can be chosen to give 

the most adequate and successful result.

The fact that w has a certain role to play in the 

structure of the Lagrangian suggests that uj may have a 

quantum origin. There are some indications of that . We 

notice that when the Lagrangian [5.4.24] is reduced to 
the Einstein Lagrangian Z= pR parameters, m(to) and 

k(w) disappear from the equation while the effect of to
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and k(u)) on the equation for R is obvious for any other 

form of .

Furthermore, we notice that the R.H. side of [5.4.37] 

which would represent the source of the gravitational field, 

the more strongly it is affected by w through m and k, 

the more significant is the field. All these indications 

make our Lagrangian a possible candidate for a strong field 

gravitational theory. Moreover, we would like to admit that 

since the Lagrangian [5.4.24] contains all possible powers of 

R it will provide us with more freedom, and by virtue of the 
arbitrary constants and parameter w, to satisfy all possible 

requirements for a successful theory of gravitation. Our 

incentive was to combine the successes of all existing 

models, especially the viable Einstein's and Brans-Dicke 

theories which are already here correlated via the generalized 

field equations of gravitation. In the end, if we accept the 

idea of scalar curvature having an upper bound Ro in the 

Lagrangian [5.4.24] and hence the relation [5.4.34] 

explaining Ro as depending on the parameter u>, we there-

fore are admitting that R < Ro and owing to [ 5.4.35] k, 

can have imaginary parts at certain values of m, i.e. at 

certain m.

Because of this and what we noted with respect to [5.5.1] 

we will believe that the scalar curvature can be regarded a 

complex function. It looks as though the complexity of R 

has something to do with the quantum significance of the
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parameter w which we think is bearing information which, we 

hope, can be explained later if a successful quantum theory be 

formulated. In Chapter Nine we will elaborate more on the 

possibility of the scalar curvature being complexified.

(5.8) The Cosmic Evolution

The inseparability of matter and space-time on one hand, 

and the motion being the product of their interaction on the 

other hand, raises the question, whether or not the entire 

Universe can be considered a dynamical system. Einstein admitted 

as one solution of his general relativistic equations, the one 

describing a static homogeneous universe [cl, where he introduced 

an/ additional cosmological term [see (1.6)] into the gravitational 

equations. But the observations made by Hubble [7] lead 

cosmologists to believe that the universe is undergoing an 

evolutionary expansion.

In this last section we consider this situation in the light 

of our theory of the generalized Lagrangian. We recall Equation 

[5.4.17] which constitutes a condition on any Lagrangian of any 

dynamical system in relation to the scalar curvature R. It 

relates the space geometry characterized by R to the 
gravitational energy represented by the Lagrangian Zand 

transmitted through the space according to the wave equation with 

a non-vanishing source, i.e.

[5.8.1]
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where we denoted in [5.4.17] the following

Z(R) = * (R)

R / -/= 8iTpG(R)

[5.8.2]

[5.8.3]

with #(R) a certain wave function and G(R) represents the source^ 
and p the background density in the universe.

Further, as we have noted in (5.6) that because of the non- 

localizability of a certain gravitating centre for the whole 

universe, the entire distribution of matter within the space-time 

manifold is serving as the source of gravitation. Generally the 

varying nature of the wave equation which describes a dynamic 

process necessitates the existence of a definitely allocated 

source in the space. But because, in our case, the entire space-

time is coherently connected with matter distribution, therefore, 

we interpret [6.8.1] as describing the evolution of the universe, 

which, if traced back along the time dimension, it would have 

converged to the maximum initial concentration of matter, when and 

where, possibly, the Big Bang [8] could have taken place.

Moreover, by using [5.4.24, 32] in [5.8.3] the function G 

becomes,

G(R) - G^fR) = ~ Y 4- ot(R+K)m ^f(m-l)R-K] [5.8.4]

For Lagrangians linear in R i.e. m = 0, 1 G reduces to a constant 

which may be identified with the gravitational constant,

G = GQ = - y - V G-| + aKj - a0 [5.8.5]
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For the nonlinear Lagrangians G develops a certain dependence 

on R. We envisaged such kind of variability in Section (4.4) 

where we considered theories with additional fields. Thus it 

becomes evident that in the region dominated by nonlinear'terms 

of the Lagrangian, say, in the direct vicinity of a given 

neutronic star, the G-dependence on R may be observed.

In the end, and as we noted before our previous considera-

tion of the generalized Lagrangian says nothing about the behaviour 

of a specific gravitational field. In the next chapter we shall 

utilize this generalized Lagrangian to construct the metric that 

describes the field generated by a given gravitating mass.
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CHAPTER SIX

Generalized Metric in the Static Isotropic Space-Time

(6.0) Overview

In Chapter Three Einstein's gravitational field equation 

was considered under the conditions of spatial and temporal 

symmetries which resulted in Schwarzschild and Kerr solutions. 

In this chapter we consider .instead ,the generalized field 

equations in a static isotropic metric for a very general 

Lagrangian where we will be able to obtain useful relations 

governing this Lagrangian with respect to the field variables 

R and g^. By utilizing these relations we get expressions 

for the metric tensor components g and g , , which by 

specializing to our Lagrangian [5.4.24], will yield the most 

perfect form for the generalized metric that we discussed before 

in (5.6). These relations also allow us to classify different 

Lagrangians from which we can single out the unreasonable ones.

The generalized metric will certainly contain Schwarzs-

child's space-time as a special solution, whereas in general the 

solution should be far more advanced than those of Einstein's 

spaces. We aim to achieve a metric that explains well, within 

the classical limitations, all possible gravitational phenomena 

in both weak and strong parts of the energy spectra. Thus.our 

metric is expected to be free from any singular features at any 

distance.from the source of gravity.
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(6.1) Generalized Equations of Gravitation in the Static 
Isotropic Metric

Since by [3.1.10] the scalar curvature is

of only r, therefore the covariant derivatives

a function

R. = —

will vanish for all values of p other than r, i.e.

Hence, by

R;o 0 1

I
R ;r

[6.1.1]

the aid of [4^2. Gt] and [3.1.5] one obtains

R;r;r
3R ;r
ar

rrrR;r
»•

= R R
A

1

R;0 ;e

[6.1.2]
ft

f *
= -R =

A

dr

R . 4. . 4.5 t , t 2A

R. . = R. . =
r *-r R
w

where
•ji

R = -— R = -i2R.
dr2

Now we return to [5.2.32] which constitute a set of

16 differential field equations, out of which only 3 are

independent while all other components of identically 

go to zero.

Thus, by [6.1.1,2] we will have
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Ill»«-

tt 2 9tt -Z" Mrr»2

0 [6.1.3]

contracting these equations by gpv and taking into account

the following equation:
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= -3.Z" grrR2-3Z'(9rrR.r.r
J'S*

+ 2Ae;e

+ 9ttR;t;t) +Z'R - 2^ =

Again, by the aid of [6.1.2]

0. [6.1.4]

equations [6.1.3,41 become:

together with [3.1

H rr
* <i» 

= V R
'1
. 2B

2 1 + - Rrr
-A =

2
o

Hee
_ Z'"rV

A

o
R - R

A
A_

2A

and
H =

we have

Hrr

4

B
2B

n
r

+z 1
R 68

A2 = 0
2

sin2eHee = 0

••
R

0

4

• ( A R — -
2A

2]

[6.1.5]

/>"' •!
-3Z-R

A

also from

A
—

2<Z = 0

[6.1.5]

•4

R
««

R -
*

[A B 2 1
2A 2B r

the following relations

[M] 

A B \ /
+ Rrr+ *1

B

[6.1.6]

[6.1.7]
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H rr
- 5 UrzHee =Z R +/ R - + / (r

rr
A
r2

R = 0

+ ?2H69

r

/ 11 * f • XZ RB 2 _ B
/ •2A tt

+ ? Rr2Ree
A

0 [6.1.9]

(6.2)
r

Differential Equations for 9rr»9tt and R

By virtue of equations [6.1.5,-,9] we can obtain non-

linear differential equations for the metric coefficients

A = 9rr» B = -gtt and the scalar curvature 

the Lagrangian and its derivatives w.r.

R together with

to R. Thus, by

using [3.1.7] in [6.1.7] we will obtain.

Z
ill

R + X R
p

. 2 r J lA Bj
= 0 [6.2.1]

Also from [6.1.6] one gets

+ 4
R

+
r

? _^U(2Z- r /')
3 RZ

[6.2.2]

from which one obtains
A

R c
r2 •z(r)

[6.2.3]

where c is an arbitrary

— In 
dr

constant and is defined 

(Zr  - aZ) -'yZA rrv 
3/R

by:

[6.2.4]

or what is the same:

dr A
-4^ (Z'r  - 2Z)
3/ R

16.2.5]
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By substituting R from [6.2.1] in [6.2.2] one
A _

gets:

i.e.

Z"r [5 + 2] +4(A+
[B rj

+ 
r |A

B'

B,
+ = 0

3
[6.2.6]

4
A
A

[6.2.7]

inserting the expression for from [6.2.2] into [6.2.7]

yields the following:

A
A

0 u » •

. L Rr A
2/ AFl

p ii ». 
cZ- Rr

+ Z' + RV
R

+
y 11»

- ẐZ'

+

3

[6.2.8]

and substituting [6.2.7] into [6.2.2] yields:

B
B

(

P'l» 1 XrRB. [r +ri
2/B 1/: z J

<•

R-?
R

[6.2.9]

J I J k* 2/j

p
or by eliminating - from the R.H. side of [6.2.9] by [6.2.2]

one gets
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+

I

[6.2.10]

T
Moreover,

-(X'r  - 2X)
3

by using the relation R = g yvR 3

the help of [3.1.3] , [6.1.9] will lead to:

which by

AR=rR/2.B) +
2J, ' r B'

[3.1.6,9] becomes

j>60 + Rrr

or

Now

by using

AR = 2

RrA I 4
if we

+ 1]

d

r
-Z(A-1) 
r

+ 1
r

«

B
B

3
r

A
A

X
u» f <'

_ Rr 2 _ B
BJ

+ 1 3
4

get rid of the term

r

Z'Vr
4? B

4

A +
A

in

[6.2.7] we will have:

A^+n = x
\ 4 r/ 2B

A +
2A

1 +
r

Then using [6.2.2] in [6.2.13]

will result in expressing

1
4

4

B
B

this

i

4

to eliminate -
B

1
1"

and with

[6.2.11]

[6.2.12]

equation

- 2/) [6.2.13]

and
4

A
A

A in terms of only r, R, £

and their derivatives, i.e.



~ + - - (rz *-2/) r 4 
4 r 3r £‘

[6.2.15]

Further, by multiplying H00 by -32
r

in [6.1.5],

then by [6.1.6] we get:

2rR
A

2/ R00
+ T“

r2Z 
I" + 2r2

3jC
(2j C- Z-'R) = 0 [6.2.16]

and by multiplying by 3
B

in [6.1.5] and using [6.1.6]

and will have

2rR
A

, 4r£ Rtt
» 11 * "r
£ B

2rZ B _
B

(2Z-Z'r ) = 0 [6.2.17]

Now by adding [6.2.16,17] and using [3.1.6] we obtain

1
A

/
II

-B +
1X
B
B

.'I 
B

%

B
f

That is:

or

where

and

+ (2B - rB)
r. r k

r  _ A
3 6l\

1
= 0 [6.2.18]

= 0_d_
r« >

Br + A Br _ r2
( • 'i
2 _ Br c,(R)

dr .8. r _B . 8 j A z*

X + A ']
r

+

X

[6.2.19]

r?z
1

X

=
B

- 2A?^r = 0 [6.2.20]

[6.2.21]

2/ '
[6.2.22]

204



Now by [6.2.19] we can write the following expression 

for the metric coefficient A in terms of r,R, -,,/and.X , 
B

A(r) = ---------

i .e. _^_d_ Br
dr . b J

Br 2
----- r
B

dr IB J

A

f » 1
o Br C,(R) 1 + r r.-4A* p

IC
O

"5I B J
Here

explicitly

A includes

we notice that in this expression 
/ ii  p in

derivatives like and jL 
Z.X'J" and

does not contain

and R while in [6.2.15]

or B.

We also notice that 
p ii p in

either nor JL will

R, R, R and does not

does not

depend

depend

on B

on(R) which

have different values for different

Lagrangians and it will indicate the contribution of the given

Lagrangian to the value of A.

Now using [6.2.22] into [6.2.23] will yield:

f 2
1 +R-X- r 2/ 2r 1 = - A tn In'

4 HF 4 B dr .B.
B .

[6.2.24]

and by subtracting this equation from [6.2.14] the following

relationship yields

[6.2.25]
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or

5(r Z - 2/)[
B [. 6/

[6.2.26]

Further, it is obvious that an expression for B(r) can

be obtained from [6.2.15] or [6.2.23] with the aid of [6.2.3]

where the following relation holds:

C2ip2 
B(r)=-XA(r) [6.2.27]

r R

and ^(r) is such,that in order to satisfy the flat space 

conditions,should behave at r (i.e. A = B = 1) in the 

following manner:

lim ip(r) r2R [6.2.28]

Furthermore, by using [6.1.5, 6] we calculate the 

vanishing combination:

and with the help of [3.1.6] we get

1
A =. B 2 _ 2A 2ARr , ArZ , 2Z'r

“ ------  + -- 7T + ---77“ [6.2.29]
A B r r 3 3/ Z

Also, equations [6.2.12] together with [6.2.7] lead to

A = 1 _ A ARr ■ § + Ar  (r Z'-2Z)
2A B 12

[6.2.30]
A r r 4
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w hi c h  c a n b e  writt e n  a s:

T o  s u m u p,  w e  d eri v e  t h e f oll o wi n g u s ef ul  e x pr e s si o n s

st arti n g  wit h [ 6. 2. 1 2] w hi c h  will  r e a d:

H  •

- 2 +
✓

1 T b
3 B

Al s o, a d di n g  a n d  s u btr a cti n g [ 6. 2. 7]

ot h er will  r e s p e cti v el y yi el d:

9

A  _ 1 A Ar

A r r 6
R + 1 1

L'J

a n d
fl U «  /) I V  III i

A R  +  £  B  =  2 _ 4 1  

. 2 r B r
+

w hi c h,  if e m pl o y e d i n [ 6. 2. 1]

• a

R
- Zr 2

Z " 2 A

2 1'
- R

4 1 14  ( T
+  - - A  Rr  +  - 

r I r 4

a n d [ 6. 2. 2 9]

Z T  B

will  gi v e

£'  f A R , 
I 2+  7 7 7

r2

A  

r A

r2

A
2/'

+

wit h

A  

r2

[ 6. 2. 3 2]

e a c h

[ 6. 2. 3 3]

[ 6. 2. 3 4]

1 '

r2
[ 6. 2. 3 5]

O nl y  t w o o ut  of  e q u ati o n s [ 6. 2. 3 2, 3 4,  3 5] ar e  i n d e p e n d e nt.

T h e s e  e q u ati o n s  will  b e  u s ef ul  i n c o n si d eri n g  diff er e nt  L a gr a n gi a n s.

W e  al s o  a d d

e q u ati o n  of

h er e  t h at alt er n ati v el y  t o [ 6. 2. 3 5] a diff er e nti al
♦

R c a n b e  writt e n  fr o m [ 6. 2. 1 4], i , e.

R  + ‘A  t n ~ ~ T 1 +  A
Rr 1 _ _ r/' +  r

- dr t J 3  r j r

R  - A„( Z' R- 2 Z) = 0  [ 6. 2. 3 6] 

3 X

2 0 7



where

[6.2.37]

Now we conclude that the above derived equations are 

valid for any Lagrangian under the conditions of time-indepen-

dence and isotropy of space. The solution of such equations can 

be sought only if one specializes to a particular Lagrangian. 

Before doing so we consider the simplified case when the scalar 

curvature R does not depend on r, everywhere.

(6.3) The solution of the gravitational equation with
constant scalar curvature.

Let us employ equation [6.2.29] to

B

obtain the following

expression for with globally constant curvature R = Ro:

B(R0) = Bo
ciAo

r2
2 2R0r

r

z f f

exp ■
1

Ao
X

[6.3.1]

Equation [6.2.31] will also be reduced to give at

R = Ro, the following

i.e.

Kdttler-type solution for A, [1 ]

which makes

Bo(r) =

Ao(r)

[6.3.1]

1

1 + y + y (R0)1"2

having the form:

Cl '[ [2 + G(R0)r2] 
exp -------------------

[6.3.2]

r2p- + + y(R0)r2l
dr

Kj + r + YQr3
■ [6.3.3]

3

with C-[&Kjconstant numbersand,
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where we denoted:

and

[6.3.4]

[6.3.5]

We notice here if^-R0 = 0 equations [6.3.2,3] will reduce

to Schwarzschild solution [3.1.15]. However, the flat space

limit can be satisfied specially for Ao not only by RQ = 0
but also by setting X =-3R <0,

R o °
vanish and G(R ) = — . Therefore, 

u 3

this will make y (Rq ) 

we get the Schwarzschild

form for Ao i.e.

A„(r)=— [6.3.6]
r+Ki

with K} a negative constant.

As for B0(r) we obtain the following expression:

It is obvious that for RQ = 0 we come again to Schwarzschild 

metric with its observed singularities. We think that the exponen-

tial factor in [6.3.3] might play a significant role in deciding 

the asymptotic-behaviour of B and also whether the singulari-

ties at r = -Kx and r = 0 will be stronger or weaker or may 

somehow be cancelled away. For this a non-zero non-constant 

scalar curvature should be assumed. However, for static and 

stationary universe [6.3.2] and [6.3.7] will serve good
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cosmological solutions.

(6.4) General Lagrangians, Classified.
The comparison of equations [6.2.30J with [6.2.33]

will lead to interesting relations between the Lagrangian 

and the scalar curvature R(r) which help in classifying

different Lagrangians, i.e.

(^'-1)(r Z'-2/) = 0 [6.4.1]

There are three possibilities of satisfying this condition:

(1) if Z' = 1 1
r Z -^1

[6.4.2]

This will yield a linear Lagrangian with constant R 

which corresponds to Einstein's spaces

and if Y = 0

(2) If

but

This gives

Rc= 0 .

Z'-1 1 
r Z ^ZJ

Z = R(r) + f

(3) If

but
and this yields

/'Hl
r Z =z Zj

Z = aR2

[6.4.3]

[6.4.4]

[6.4.5]

[6.4.6]

[6.4.7]

[6.4.8]

[6.4.9]
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being the unique solution for [6.4.8] where y and a are 

arbitrary constants.

The relation [6.4.8] had been obtained also by Stephenson 
[2] who subjected to variation the Lagrangian jL which he con-

sidered as a function of only R. Now [6.4.1] can be used to 

classify different forms of Lagrangian and exclude those with 

unreasonable meaning.

We see that the combination of the Lagrangians [6.4.3,7,91 

or more generally, our Lagrangians [5.4.24] will satisfy 

condition [6.4.1] if only certain restrictions were imposed 

on the coefficients a, 3, y and the parameters m and K. 

For instance, [6.4.8] will be satisfied by [5.4.24] i.e.

(R+K)m_1[a(m-2)R-2aK] = BR+2'r [6.4.10]

provided that,

and

6 = -2aK,

y = -aK2,

m 2 2(2n-3) = 2.

[6.4.11]

[6.4.12]

[6.4.13]

We notice that [6.4.12,13]°" fully consistent with [5.5.21

and [5.4.38] and that [6.4.11,12] relate the coefficients

by,
32 = -4aY [6.4.14]

We also notice that [6.4.13] will represent the general

Lagrangian with quadratic and linear in R terms.

We will also see that any Lagrangian of any power P, i.e.
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X = RP will reduce to quadratic R, by [6.4.8] without

imposing any constraints on 
other than X= R^> R will

R itself, while for any Lagrangian

be affected by [6.4.8]. For

instance, if one chooses as a Lagrangian,

X-W = sin a(R) [6.4.15]

it will result in the following

(aa^
— tan a(R) [6.4.16]

this yields

which for P =

P 2 P Rr = - tan Rr
P

2 leads to R o

[6.4.17]

since

R2 = tan R2 [6.4.18]

The Lagrangian/= R will imply, in view of [6.4.8], that

R is not any constant but identically zero, i.e.

[6.4.19]

r

[3RJ

R = 0

This situation gives the Lagrangian X= R2 a 

particular position among other Lagrangians. Moreover,

as another example we use the Lagrangian [4.3.1] in [6.4.1]

that yields, 
n Ff-, R 2 ] f--1

m
1--

Ro,
= 0, [6.4.20]

mJ
Ro 1--

1 Ro,
1

z*

J I

R ^m+[i-B ]rn’1

. Rqj

which, as we have given in [4.3.7,8] and w.r. to cases [6.4.2,6,8]

will be satisfied by Einstein-Schwarzschild space R = 0 as well as

by Einstein's cosmological

R = - Ro 
9

R = i Ro

spaces [3

for m =

for m = -1

[6.4.21]

[6.4.22]
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(6.5) On the possibility of physical solutions of the generalized 
equations.

By physical solution we mean that which satisfies flat space 

limit and preferably free from any apparent singularity. As it 
was mentioned in (4.2) a (ii), the Lagrangian /= R2 leads to

T
solutions which are not asymptotically flat. Therefore, since 

the flatness condition is a physical requirement, the Lagrangian 

ought to be chosen in such a way that this requirement be ful-

filled. In other words, to ensure the asymptotically good 

behaviour of A(r), B(r) and R(r) we suggest that constraints 

should be imposed on the general Lagrangian as it has been done 

in [6.2.28].

We, therefore, in view of [6.2.15] and [6.2.23],require 

that the following relationships should be fulfilled in order 

that the flatness condition be satisfied:

1 d 1 R<Z‘-2Z r Z'-2Z R
dr t/J ’ W 3C /" ’ 4r

lAUffrf" (R) 

r dr B z £

[6.5.1.]

[6.5.2]

where is defined

not know the structure of

in [6.2.22]. But since we do

R or - in terms of and R 
B

we will not be able to solve the equation to find out the desired

Lagrangian, or to try different Lagrangians and see which one 

will satisfy the equation.

We should, first, discover the structure of R as 

depending on R, / and the derivatives of JL w.r. to R.
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To do that we proceed in the following way:

From [6.3.1] we get
r a _fAAdrC A <AA_o‘ 

Bo = B(Ro ) = -i-^e J r 
r

B(R)=exp

Therefore, if we consider the correspondence between

and [6.5.4] we have:

[d -£° 1
K° 7?‘ rdr

^0. z

[6.5.3]

[6.5.4]

[6.5.3]

[6.5.5]

where C, C , C£ are arbitrary constants.

Now by comparison in [6.5.5] we get
/

2
Aodr

r
[6.5.6]

and [6.5.7]

Then we can set,
dro

czcz
^/"(Z'r -zZ)

[6.5.8]

o

A

3 r
J

r
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This will yield for any Lagrangian the following relation:

C2
with C3 = — a new arbitrary constant.

Ci

2
We notice that when C = 0 [6.5.9] will give an

Einstein space R = R =0.

From [6.5.9] we get the following expression for R 
in terms of r, R and / with its derivatives, i.e.

r

where, Ao is given by [6.3.2]

Ro

-2
e J

and

Ao dr 
r

9^ven

[6.5.10]

[6.2.22]

A ,
2X0j [6.5.11]

R =

1
3

1

We then have:

In
dr

[ f" * 1 
JL Rr d

dr
In [£ ( £ ‘ R-2 <L) ]

-2A0 
r

fr 
r [6.5.12]

2A0 _
r

+

Now by inserting [6.5.10] and [6.5.12] into [6.2.15] 

we obtain the following expression for gff = A(r), i.e.
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where,

If
[6.3.2]

we

2 -260
2A0(r) + CzQy(R)e

A(r) = oC

1 +

~=

'&LR)e2So +^(R)’

flo(r)dr
r

[6.5.13]
2 r

[6.5.14]

r \
a" 11 n'L

Z‘(/r -2/) 1, + I'r -2£
L

[6.5.15]

[6.5.16]

[6.5.17]

set R = Ro in £6.5.13] we will have, in view 

the following:

of

1

2

[6.5.18]

notice in this equation, that since 

owing to definition £6.5.14], therefore we

We 60 (0) = Const*;

have:

and

Ao(O) = Ao(~) = 0 [6.5.19]

Q/ (R >= o r = 0 [6.5.20]
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This result will lead to a good estimate for the value of 

the scalar curvature at the centre of the gravitating mass.

Certainly, since by [6.5.9] and [6.5.11], r = 0, would

mean that ? t > (R ) = 0, therefore [6.5.20] would yield,

[6.5.21]

which will be satisfied by,

R(0) = Ro = const. Zq 2(R ) [6.5.22]

This implies that R depends on the choice of the

Lagrangian. For instance, if we use the quadratic form of

[6.5.23]

Then [6.5.21] will become

3aR2 + 3R0 - Y = 0

which will have the following solution:

6± /g2+12aY

6a

[6.5.24]

[6.5.25]

This solution can be adjusted with a certain choice of the 

constants a, 3 and y to have a physically accepted value.

We also expect imaginary values for Ro(O) which is due 

to the introducing of the quadratic form of the Lagrangian and 

which we will discuss later in Chapter Nine. Thus, since the 
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quadratic Lagrangian is associated with the quantization of the 

gravitational field as we have mentioned in (4.2) and (5.7) 

one would admit that the imaginary part of RQ and hence any R 

may be interpreted in quantum mechanical terms as quantum 

gravity theories develop. Moreover, RQ(0) can be given a 

physical meaning if we set in [6.5.24] a = 0, y = |T0 where 

To represents the matter density, and if 3 is set to fulfill 

the Newtonian limit, i.e. 3 = —r as we did before in
16tt G

[5.4.36]. We then have,

R0(O) = 8tt GT0 [6.5.26]

relating the scalar curvature at the centre of mass with matter 

density. But if a is set not to be zero, then by [6.5.22] 

or [6.5.25] Rq (0) would have an imaginary part indicating, 

possibly, the quantum behaviour within and in the vicinity of 

the material centre.

Further, in order to complete the picture of our static

isotropic generalized metric which we aim to be the successful

alternative to Schwarzschild's, we have to obtain the generalized

expression for

by the use of

the metric tensor component g^t = -B.

of [6.5.10 ,16] we[6.5.4] and in view

Tollowing expression:
A^(R)e46°

B(r) =----- -------------
*

2
C2.

A 26
A^e °rdr

-

Therefore,

obtain the

[6.5.27]

This expression, together with [6.5.13] will define our generalized

metric space.
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(6.6) Discussion

Now we return to the expression [6.5.13] and [6.5.27]

where we can deduce certain interesting results.

We immediately notice that since r enters quadratically 

in the expression, therefore no singularity at Schwarzschild's 

or any finite radius will be observed in A(r) or B(r). 

In fact, Schwarzschild's singularity arises in A0(r) not in 

A(r), because in Einstein's model, vacuum equation makes R 

identically zero.

As for Lagrangians with variable R(r), the term AQ(r) 

defined in [6.3.2] will appear as an approximation to A(r) 

in the case when R 3 Ro. Thus, at r = 0, although A0(r) 

will vanish, we see that A(0) may be made non zero, i.e.

A(0) = C2Qy (R) f 0

if only a certain Lagrangian, say X - R2, 

[6.6.1]

was chosen, that

may compete with ? » (R ) in [6.5.15]. The possible link
/ o 0

between quadratic Lagrangian and quantum mechanics will suggest 

that the non-vanishing of A at zero may be explained as a 

quantum effect due to the strength of the gravitational

field in the centre of the matter. This situation may at least

weaken the Schwarzschild's singularity at r = 0.

However, A(0) may vanish according to the choice of the

Lagrangian or by setting the arbitrary constants C or C3

in Qrf and , to be zero.
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But generally the value of A(r) results from the compe-

tition among the different terms which are subjected to the 

choice of the Lagrangian. Therefore, the Lagrangian can be 

chosen in a way that in the weak energy regions the term Ao
r

will be dominant, while at strong field areas, i.e. when r is 

in the vicinity of a massive body, the nonlinearity in the La-

grangian, combined with the exponential, will give the essential 

contribution.

Thus, if we utilize the Lagrangian [5.4.24], then by a 

special choice of the parameters m^k and the constant coefficients, 

a, 3 and y in the Lagrangian as well as the constants C3 

and C in [6.5.10, 13], it will be possible to make the terms 

with r2 behave in such a way that at r , A(r) will go over 

to the flat space limit.

A(oo) = 1 [6.6.2]

Further, the factor 2 in 2A0 appears as a result of 

applying the generalized gravitational field equation. It 

disappears in Einstein's theory because there, one deals only with 

Ao. This factor may be interpreted as double counting of the 

gravitational effect due to the mutual interaction between the 

gravitational field and its source. That is why, where there 

is no such mutual interaction at r = 0 and r = °°, A0(r) auto-

matically vanishes as in [6.5.19].

In [6.5.13] Einstein's GTR is represented by only Ao 

Mich, as described in (6.3), will reduce to Schwarzschild's 

solution [6.3.6] by a certain choice of the Lagrangian in
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[6.3.2] [6.3.4].

This implies:

/(R)+<M) </=Ro=0
A > Ao > Ao Schwarzschild [6.6.3]

r
Similarly, [6.5.27] reduces to [6.3.7] and hence to 

Schwarzschild space according to

Z(r ) 7<r o ) r o =°
B<r> ----------------* Bo (r) ----- * Schwarzschild [6’6'4]

As for the behaviour of B(r) as r -> 0 or as r -> «> , 

we note that it will be subject io the competition between 

different factors of expression [6.5.27].

Furthermore, it is interesting to notice that in [6.5.13] 

the term with decreases with large r due to the

decreasing of R from which the Lagrangian is constructed and 

also due to the exponential. This will signify that far away 

from the source of gravity no quantum effects may be observed, 

but a weak gravitational field in a form of radiation whose 

wave nature may be described by the exponential factor and 

which carries the gravitational energy within and

that may play the role of the amplitudes of the gravitational 

waves.

By this we sum up our discussion by concluding that it is 

always possible to obtain a nonsingular solution for A(r) and 

B(r) with a good behaviour at Minkowskian limit, provided 

that an appropriately chosen Lagrangian is used. The
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Lagrangian selected this way to fulfill the requirements of 

asymptotically flat geometry and nonsingularity of space will 

constitute the most perfect classical choice and the chosen 

constants and parameters may acquire their full meaning in a
T

quantum mechanical interpretation.

(6.7) Conclusion

The fact that expression [6.5.13] and [6.5.27] for A 

and B are dependent on the Lagrangian, provides us with a 

freedom to choose the suitable Lagrangian form so that the 

physical requirements can be satisfied by our metric space. 

The asymptotically flat space and nonsingular behaviour can be 

achieved, and Einstein's and Schwarzschild's spaces come as a 

special case. Also cosmological and conformal solutions can 

be obtained at certain choices of JL and can be derived from 

exact formulae. Being approximated values of A and B, the 

functions Ao and Bo describe the interaction between the 

gravity and its source, and therefore bear more physical signi-

ficance than does Schwarzschild metric which is regarded as a 

further approximation and hence, is defected by singularity.

Since the decrease of the exponential power in £6.5.13} 

is accompanied by increase in A and vice versa, we hope-

fully believe that our model will be good enough to explain 

both weak and strong field features of gravitational phenomena.
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We conclude that since our model is exactly derived from 

generalized equations of gravitation, and by this no singular 

solution is observed, we think that it will constitute a good 

basis for a quantizable gravitational theory, especially if 

we take into the account the indicationsthose mentioned 

in the preceding section. In the next chapters we will 

elaborate in considering this generalized metric with certain 

choices of the Lagrangian function.
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CHAPTER SEVEN

Lagrangian Quadratic in R

(7.0) Foreword

Although we believe that the most general choice of a

Lagrangian should have the form [5.4.24], we would still reckon 

that it is interesting to consider a Lagrangian quadratic in only 

the scalar curvature. In other words, we look into the general 

Lagrangian [5.4.24] with conditions that K = ft = ^=0, 

(X= 1 and m = 2. In spite of the objections against this 

kind of Lagrangian [1][X]stated in (4.2), due to its lack of 

asymptotically flat metric, and the disagreement with observa-

tion of its predictions especially when a matter term is 
incorporated in it, we do admit that the Lagrangian Z = R2 

has an important role to play in the generalized theory of 

gravitation.

As it was shown towards the end of (6.4), we notice that 

this Lagrangian has a special position amongst other Lagrangians, 

and beside that it gives a dominating contribution in the 
generalized Lagrangian Z = »R2+ 3R + Y.

In this chapter we will show that, in spite of all objections 
raised against the Lagrangian Z = R2, we are able to obtain a 

metric that is more advantageous than Schwarzschild's though 

it is derived from some approximated relations in which 

Schwarzschild's metric is but a further approximation.
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(7.1) R^ - Equations

By directly substituting for </= R^ in the generalized

equations and relations of section (6.2), we will correspondingly 

obtain the following relations and expressions for A(r), B(r) 

and R(r). Starting from [6.2.1] to [6.2.30^ we will have 

respectively the following relevant relationships: i.e.

r • • •

A _ B = 2R + 4
A B R r
• _ C A
R

rj/b

• • • z •
A B R sr
- + - = - - - + 2
A B R B

7

• • • • • • 4 *

A r R A R.r R R 2
+ — 4- - + - + -

A 2 R A R RRr

B = _ r R B _ R _ R _ 2
B 2 R B R R r

[7.1.2]

[7.1.3]

[7.1.4]

[7.1.5]

[7.1.6]

[7.1.7]

[7.1.8]

[7.1.9]

[7.1.10]
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5 (R) = -
X=R2 4

[7.1.11]

/ *

B f rd
r « •, 
Br

-J  dr B
1 + 1 Br r2R r Bri
r 4 b r B 4

2 —
. 7T J

[7.1.12]

dr IR
X

b'
B

/

AR B
2 B

[7.1.13]

d (R B' 
dr |R B,

AR2= ruR2RB
2R 2C

[7.1.14]

where we used,
C__
“R2

[7.1.15]

and hence,

d 1— Ln 
dr

d
dr

R Bl = AR B
R BJ 2 B

d
dr

• •

Rr B
2R B

3 i .e.

RA 1 A B = -r3R2g

Rrj 2r B 2C

A A2 A2R A R B r

r r 4 2 R B

[7.1.16]

[7.1.17]

[7.1.18]

[7.1.19]
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We have also from [6.2.32,34,35] the following relationships:

A -R
■.
Br

•
B 4 r3- = — — - 2 + - + - - A Rr + -

A R lB J B r I
[7.1.20]

R r
ir

B
4R
R

[7.1.21]1

44 • [A 2' A 1 A [Rr ni
R = R — - _ + R — - ~ + - —— + -

[2A rj rA 2 r r 4 d s

[7.1.22]

Further, from [6.3.2,41 one gets:

1
“i

and from [7.1.11 and [7.1.21 one obtains for A
A

and

[7.1.23]

B
B

the following:

2
+ -

r

2R rRr + R >
4
R Rr + 2R,

[7.1.24]

B
B

R

1

2
r

[7.1.25]

From which one has:

AB = const. Rrdr
Rr + 2R

[7.1.26]
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and by [7.1.3] this yields:

A = CRr2exp Rrdr
Rr + 2R

[7.1.27]

r
with C a constant.

The flatness condition hence reads:

1 im
j Rr + 2R

o

[7.1.28]

Finally, we notice that by [7.1.3]

1 i .e. RR [7.1.29]
r -><» r

which is quite reasonable.

Now, all the relations between the metric tensor components 

and the scalar curvature given in this section are obtained 

from the generalized equations of section (6.2), almost, by 
direct substitution of the Lagrangian Z= R2. They are 

presented here to demonstrate their nonlinearity in comparison 

with the relations obtained from general relativity.

The solution of these equations will be involving a 

Schwarzschild version as a special case. The various 

expressions relating A, B and R will be useful in 

facilitating the search for an analytic, or otherwise a 

computational solution. We will utilize these expressions 

partially in the present chapter and in Chapter Nine.
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2
(7.2) An approximate solution for R -equations.

Because of the nonlinearities of the equations given above 

which are based on / = R2, we use a certain approximation 

to a certain extent that the resulting solution will differ 

from that based on the linear Lagrangian, X = R and then we 

lookasfohow the introduction of nonlinear Lagrangians may 

improve the solution of the gravitational equation.

If the approximated solution leads to any improvement 
then we expect that the exact one will surely lead to a better 

result. And this gives indications that the use of a more 

general Lagrangian with adjustable parameters may allow us to 

obtain the most adequate solutions. Thus, we employ equations 

[7.1.3] and [7.1.8] and by denoting:

A(r)
B(r)

= h2(r) [7.2.1]

we get:

i.e.

wi th

and

Since C in [7.2.3]

setting C = 0, that

[7.1.1] or [7.1.4]

R(r) = -2h(r) 
r2

R(r) = c+ Ro

constant,Ro = R(0) =

h
h

is

[7.2.2]

[7.2.3]

R + 1
R r

A 2)Rr
T.

2 1 + 2L
r s

an arbitrary

is when R = RQ,

we shal1 have:

[7.2.4]

constant, therefore by

and with the help of
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A0(r)B0(r) = K*= const.

which by [7.2.1] yields

A (r) =iKh (r)o o

Therefore, [7.2.4] will have the form:

r

ho

C \

d Ifl =-k  
dr r

X /

hfl. ,
r

+ 4 J
or what is the same,

now results ;

d V = K [bz  + 1]
dr .h0J 4 J

The following solution

h0(r) 1
K + Kl + KRor2

r 12

= flo(r)
K

[7.2.5]

[7.2.6]

[7.2.7]

[7.2.8]

[7.2.9]

In genera] h(r) is given by [7.2.1] for nonconstant R; 

it is only within our approximation that h •+ h0 which is 

presented in [7.2.9], Further approximation would yield 

Schwarzschild's form where Ro = 0 and K = 1 = -Kj, i.e.

h°(r) *—77
r

s A0(r) [7.2.10]

Thus [7.2.9] will yield for the scalar curvature [7.2.3],

the following approximated form:

R(r)s? -- In K + -1 
r*1

+ Ro [7.2.11]
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Now by using [7.2.2.9,111 in [7.1.91 we obtain for

A(r) and hence by [7.2.11 for B(r) the following

approximate expressions
K

r 12A(r)

K
Kr+Ki+

1 12 C 1 r 12 IJ
K + Kl+KR()r2

r 12

Cr2
4K2

■£lr 0+ tn 
C

K + Kj + KRflr2 
r 12

[7.2.121

and

+ Ki 
r

+ KRpI"2

12

2

A(r) [7.2.131

1

We notice that the above expressions for R(r), A(r) and

B(r) exhibit no singularity at Schwarzschild's or any finite
-Kiradius r = —, and that at zero the singularity is much 

K
weaker than that in the solution of general relativity since

lim A(r)
r+o

0
|nr

and
lim B(r) 1

r2lnrr-> 0

[7.2.141

We notice also that at asymptotically large r the metric 

is, in contrast with Schariscbild's geometry, not flat. This 

situation makes us think that such a defect can be remedied 

if we apply the exact solution for R2-equations or at least 

by adopting a stronger method of approximation and consequently 

the singularity at zero can be made much weaker or may be totally 

abolished. That is, because we believe that the constant 
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quantities like Ro, C, K and Ki appearing in the expressions 

[7.2.11,12,13] as a result of utilizing the Lagrangian R2, 

must have a certain role to play.in deciding the behaviour 

of the metric. For instance, Ro which represents the scalar 

curvature at the strongest area of gravitational energy (as 

Ro = R(°))» should depend on quantum effects that may 

be described by certain parameters. We have already noted 

such a connection between Ro and the parameter co in [5.4.34], 

and it will be shown in [7.3.25] of the next section and in 

[8.4.7] when a more general Lagrangian will be considered, 

that Ro is linked with parameters that govern the metric 

space. Thus we reckon that these constants are but the classical 

limits of quantum parameters. Therefore we assume that the 

constant quantity, say, Ro would become significantly large 

whenever quantum feature of gravity be dominant, and conversely, 

it would diminish to zero as long as no quantum effects are 

observed. (In GTR Ro = 0 and the constant K = 1.) This 

assumption will secure the fulfilment of the flatness 

condition at asymptotic distances, i.e.

R(°°) = 0
[7.2.1

A(“) = B(°o) = 1

We may assume that the constants, K,Kj and C can be also 

influenced by quantum effects near the gravitational source, so 

that a well behaved metric can be established through assigning 

certain proper values for these constant parameters.
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2
Now if we consider the exact solution of R -equation 

instead of the afore-given approximated one, we will notice 

that more terms will be present that may compete with each 

other in deciding the form of the metric and that other para-

meters will emerge, as we shall see in the next section, whose 

significance may elucidate the picture of the gravitational 

field in all energetic domains. In fact, the most general 

and the most informative metric should be based on the 

most general Lagrangian. . However, we have justified, in the 

beginning of this chapter, our choice for the Lagrangian R2.

Further, the approximated expressions for A and B are 

not aimed to be necessarily the reliable source of information 

about the space geometry, they are rather indicating how the 

metric may behave under certain constraints. Let us adopt 

a weaker approximation by constraining Ro to be zero, i.e. 

by ignoring any quantum effect that could occur. This will, 

of course, allow a straight-forward comparison with Schwarzs-

child's metric. Thus [7.2.11,12,13]' reduces, for Ro = 0,

to the following:

1 - 1 +
Kr+K] r

[7.2.16]

[7.2.17]
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B(r) ~ K+*
r]

17.2.18]

These expressions are good in the absence of quantum effects 

which we characterize by, say, setting Ro = C = 0, and thisr
will explain why such a constraint on the parameters leads to satis-

fying Minkowskian flatness [7.2.15] related to weak-field areas 

where definitely only classical features of gravity are prevailing.

Therefore, [7.2.16,17,18] as well as Schwarzschild metric 

are not applicable in the area where Ro 4 0, i.e. in strong 

gravity, it is only the exact solution which will account for 

strong-field region by virtue of the quantum parameters which 

will govern the field behaviour. Furthermore, the constant Kx 

can be determined by exploiting the Newtonian limit to be 

Ki = -2MG. but as we showed in (5.8) , that G is not 

necessarily constant specially in strong gravitational fields, 

we will admit that consequently Kx is not necessarily constant 

and besides that, for infinitismally small mass, point source, 

-> 0 and hence the singularity of B(r) at r = 0 may not 

be extremely big as in [7.2.14]. This yields:

- > B(0) > A(0) = 0 [7.2.19]

Moreover, by furthering the approximation we can come to 

Schwarzschild's metric. We set C = 0 K = 1 in [7.2.16,17,18], 

to get:
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R(r) * 0

1 K,

1+Ki r 1+-M
r r. J r 1

Ki Ki
1 +

H‘]

r irln 1+Ki
r

17.2.20]

where the first terms in both A(r) and B(r) represent 

Schwarzschild's solution, whereas the other terms would have 

disappeared had we employed Einsteinian Lagrangian (R = 0), 

instead of R2(r) 4 0. We notice that even in this last 

approximation the behaviour of A(r) and B(r) is better than 

in Schwarzschild's geometry and yet sharing with GTR its 

experimental successes by including the Schwarzschild term.

We also notice that B(r) is large and positive at r = 0. 

This would suggest that the gravitational potential, there, will 

be maximum since gtt - the metric tensor component - is 

related to the potential by

-9tt(r) = B(r)

which is a reasonable result.

It is obvious from relation

coincide only if 

$(r) [7.2.21]
r

[7.2.18] that A and B

±1
r

that implies either Kx -> 0 i.e. extremely small mass, or at 

large distance from the source, i.e. r -> «>, or otherwise when
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r = - 2^ = MG.

Unlike Schwarzschild's space the scalar curvature in this metric 

is finite at r = 0, and non-zero for small r. The points of 

intersection of the curves representing A and B with the curve 

representing R can serve as additional conditions ensuring the 

consistency amongst our approximated values. This would enable us 

to reconstruct an expression for R which will be more adequate than 

the one in [7.2.11]. That can be achieved by a special choice of the 

constant parameters K, Kp Rq and C.

In Figure 7-1 we sketch a graph for the expressions of R, A and 

B given in [7.2, 11, 12, 13] where we set K = - K-j =1, R = 1.5, and 

C = - 0.1, being average values of these parameters.

2
It is clear from the plotted curves that our modified R -metric 

is better behaved than the Schwarzschild's version in the strong-

field area. The peak appearing at the gravitational radius would 

represent the remnant of Schwarzschild's singularity and no singular 

feature of B(r) at the zero. As R(o) is finite, this would suggest 

that there is a limiting curvature beyond which space geometry cannot 

be influenced by matter. This last statement is equivalent to the 

existence of a short-range gravitational field that would overcome 

any force that might cause the matter to collapse. The constant 

parameters symbolize the quantum aspect of this field. Later we shall 

suggest that they develop an r-dependence in the proximity of the 

source due to the quantum effects of gravity. Thus, by knowing the 

exact values of these parameters we may completely abolish the 

irregular behaviour of the metric, e.g. the peak at r = 1, in Figure 

7-1 would shrink to the minimum.
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2
An R -metric versus the Schwarzschild's metric.
The broken and dotted curves represent,respectively, 
coefficients A and B in Schwarzschild's geometry.



(7.3) Towards Exact Solution for R -equations

Let us consider [6.3.3] for the Lagrangian R2.

We get by [6.3.4,51 the following relation between the

metric tensor components with constant scalar curvature,

r
B0(r) = -iAo(r)eFo(>~)

r2

where,

F0(r) = f0(r)dr

and
fo(r) i

We notice that there is a correspondence between the

and B(r)metric coefficients A(r)

and those with constant R, as follows:

with variable R(r)

and

This implies

A(r) $ A0(r)

B(r) i B0(r)

that

as R

as R

3

3

which yields,

Then by [7.1.3]

wi th

Ro
c

R0J

A(r)
B(r)

= Mrl
BoC")

B(r)
r2 -F (r)- e o
Ci

we get
R(r) = C2e-iF0(r)

r

[7.3.1]

[7.3.2]

[7.3.3]

[7.3.4]

[7.3.5]

[7.3.6]

[7.3.7]

[7.3.8]
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Now by integrating [7.3.71 it gives:

'2J
[7.3.9]

Then we ought to obtain an exact expression for 

that R(r) and R(r) can be calculated. Thus

F0(r) so

[7.3.2,3]

yield,

F0(r) = 2<S0 (r) +
r2dr
r+ M3

12
[7.3.10]

where, as defined in [6.5.141, we will have

«o(r) =
* r

dr
Rnr3K +r+' 1 ]2

[7.3.111

and the integrand

to make [7.3.101

in the

read

r2dr

- Ki+r+ r3 i 12

hence, by this,

R.H. side integral can be factorized

[7.3.121
Ro 12

[7.3.10] reduces to

F0(r) = 2 In Ki+r+ -^£3
12

[7.3.13]

Thence [7.3.71 becomes
f

R(r) = -2 K^r+Bh-ps
r

l-i
[7.3.141

I 12 J

This means that our approximated expression [7.2.91 is

correct.

Further, equation [7.3.91 will have the form

239



R(r) = C2 c
J r Kx+r+

dr

12 7

+ R(0) [7.3.15]

Now the integral in [7.3.15] can be calculated as follows;

we use the identity:

1 1 12 [7.3.16]
r K +r+ •f^-3

12
v. 7

]_ :
7 J

1

K1+r+1 12 J

Then, by [7.3.11,12] we shall have

(

7

dr_____

r K^r-t- -^-r3
I 12 J

31 lnjl+-1 Mi
3Kj 1 r 12

-A(r) [7.3.17]

where A(r) is defined by

A(r) = — [<S0(r) - lnC3r] 
3Kj

with

[7.3.18]

C3 an arbitrary constant.

Therefore, [7.3.15] yields

3Kj
- C2A(r) + Ro [7.3.19]

The R.H. side first term represents our approximated value

[7.2.11] of the preceding section where we have neglected

A(r) term. We shall see whether or not such neglect can be

justified in certain regions of gravitational field. Before

that we have to calculate the exact expression for the function

<5o(r) the form of which will define A(r). In order to do that
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we proceed by employing the following identity for the algebraic 

rational functions [3],

1________
(K+d•r)(a+br+cr2)

1 d2
ad2+cK2-bKd K+d’r

cK-bd-dcr
a+br+cr2

[7.3.20]

where K^b,c,d are constants which are, generally, complex.

Let us set

bd = -Kc

Kb = 1-ad

Ro e 12cd >

[7.3.21]

where, -Kj is the Schwarzschild's gravitational radius and

the constant scalar curvature

Ro = R(0) [7.3.22]

we then get for [7.3.20] the form,

1 = 1
K1+r+SflI3 3ad2-2d

12

d [7.3.23]

which by being integrated results into the following.somewhat,

lengthy expression for [7.3.11], i.e.

1
3ad-2 KiRo r + Rnr?

12ad2 12d
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The constants appearing in this relationship a,b and d may be 

determined through Kx and Ro from [7.3.211 by,

KjR0 = -12abd2 [7.3.25]

This would give a, b and d a physical meaning and at

the same time, would impose restrictions on the parameters.

Now, if as we did in (3.1), go to the Newtonian limit, we can 

set,

Kx = -2MG [7.3.26]

and by making use of [6.5.26] which relates Ro at r = 0 

with the mass density To, i.e.

R(0) = Ro = 8it G To [7.3.27]

Then by using [7.3.26,27] in [7.3.25] we get

[7.3.28]

Indeed, this will constitute a physical condition on the para-

meters a, b and d and at the same time, may uncover their 

nature. For instance, we notice that for a large density To 



the product abd2 will be large, and vice versa, that would, 

certainly, indicate together with [5.4.34] and [7.3.25] that 

a, b and d are characterizing the strong gravitational field 

with its presumably quantum properties.

Further, by analysing the expression [7.3.19] we find 

out that the terms dominated by the constant parameters bring 

a significant contribution to R(r) mainly through [7.3.24] 

in which we believe quantum mechanical features might be hidden. 

Indeed, since by [7.3.27] Ro responds to the mass density, 

so whenever To vanishes, i.e. in the vacuum, which is 

equivalent to setting Ro = 0, the last term of [7.3.24] 

will disappear. The same terms will equally vanish at large 

r, whilst it will reduce, together with other terms of 

<5Q(r) as r = 0 to a logarithmic form containing Rqj Kj , a 

and d and indicating that there is no strong-field (quantum) 

effect far from the source of gravitation and that for small r 

the parameters of strong-field gravity will be effectively con-

tributing to space curvature. In the preceding section we 

have ignored terms dominated by these parameters so that a 

direct comparison with Schwarzschild's singular metric can be 

permitted in weak-field areas.

Now owing to [7.1.3] and [7.1.9] the behaviour of the 

metric components A(r) and B(r) will be fully determined 

by [7.3.19]. We therefore note here that due to the arbitrari-

ness of the parameters and their being generally complex, we can
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adjust them to satisfy conditions that will lead to physically 

and mathematically accepted nonsingular metric. We would also 

admit, that by virtue of the constant parameters which we regard 

as indicating the classical limit of quantum gravity, ar
quantizable model based on R2-gravitational equations can be 

developed. Moreover, we notice that because of the complexity 

of the parameters the expressions for R(r) and consequently 

for A(r) and B(r) will contain imaginary parts, and 

since R(r) is a purely logarithmic function we can calculate 

its real and imaginary parts by utilizing the following useful 

formula [3].

ln(x ± iy) = | 1n(x2+y2) ± i tan"1 X [7.3.29]
X

where x and y represent the combination of both the real 

and the imaginary parts of the argument of the logarithmic 

function expressing R(r).

Thus the scalar curvature can be presented as

R(r) = ReR(r) + i ImR(r) [7.3.30]

Therefore, by calculating the metric coefficients based on 

the [7.3.30] we can achieve an exact solution for gravitational 

equations based on the Lagrangian X = R2.

Finally, as we noted before in sections (5.7) and (6.5), 

the presence of an imaginary in the formulation of the metric 

influenced by the complexity of R(r) would intuitively be 

connected with quantum effects of gravity. We shall discuss this 

situation again in (8.5, 6) with respect to a more general Lagrangian. 

In Chapter Nine we shall elaborate more on the complex aspect of 

the metric.
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(7.4) The Effective Potential and the R2-Theory

The magnitude of the 4-vector of energy-momentum is 

related to the rest mass Mo of a particle moving in a gravi-

tational field by the following equation [4]: 
F .

= -g PpPv
0 p\>

[7.4.1]

where,

and,

Pu = gpv P [7.4.2]

Po = -E (Energy) P^ = ±L (Angular Momentum)

P e —— (Radial Momentum) ds - the proper time interval 
ds

0 d0P e — - Zero Momentum, i.e. in 6-direction.
ds

to calculate Pp per unit rest mass we will simply

yields: 

00 2
1 = - g E 9rr

dr
ds

[7.4.3]

By the help of [3.1.3,4] we get,

dr^
A

2 L2 E2
+ 1 + ~ 2 = “ 

r2 B

i .e.
AB

[dsj
[7.4.4]

L2
The term B 1 + -

r2
and it is defined as the full energy per unit mass for a

is called the effective potential

A
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test particle moving in spherically symmetric fields of a 

massive source when the radial kinetic energy becomes zero.

The effective potential therefore grows quickly in the proximity

of the source, and it tends to unity at asymptotic distances.
7 rAt weak field area, owing to L7.2.21J and when the velocity

vanishes, we would have:
MG1 '
r

JI

= B^ 1
r z

[7.4.5]1

i.e.

-1
off

MS _ MGL2 + 

r 2r3
[7.4.6]

where, the first terms correspond to Newton potential.

Moreover, the factor AB appearing in [7.4.4], by vi rtue

of [7.2.18] reads:

AB = '1 + MV
. r.

[7.4.7]

and in the Newtonian approximation will tend to MG, therefore

we suggest to call AB the “effective gravitational mass".

In Schwarzschild's geometry AB = 1, and the effective

potential reads
I

eff "
'■I _ 2MGD i [ L2]1 + -

r J r2
[7.4.8]

The effective potential depends on the spacetime metric.

This is why it will be useful in comparing different models. 
MBecause of the competition between - and A near r -> 0 
r2

the effective potential and the effective mass in our R2-model 

behave better than those in Schwarzschild space and are more 

promising even in the strong field region.
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(7.5) Resume and Critique

In the preceding sections we obtained useful relationships 

between the metric coefficients A(r) and B(r) and the scalar 

curvature R(r) derived from the generalized field equations in 

the static isotropic space and based on the Lagrangian R2. 

Equation [7.1.9] expresses A(r) in terms of R(r) and 

[7.1.3] relates A with B. Although these equations are too 

complicated to solve analytically, where usually computational 

methods are adopted, we are able to achieve an exact solution 

for R2-equations. The problem was to solve the equation for 

R = R(r) and hence.by [7.1.9] and [7.1.3] get expressions 

for A(r) and B(r) respectively. In fact, the equations for 

R, as we shall see in Chapter Nine, are highly non-linear and 

very complicated, but we avoided their directly difficult solu-

tion by introducing a method of correspondence.

The results obtained in Section (7.2) are based on approxi-

mated expressions for R(r) which would represent the dominant 

term of the exact solution in the weak-field areas and thus it 

is regarded as more advantageous by comparison with Schwarzschild's 

version.

In spite of these rather interesting results, there is what 
seemed to be a valid objection to our Lagrangian X= R2. The 

objection that we mentioned in the beginning of this chapter 

made Bicknell [1] believe that theories of gravity based on 
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such a Lagrangian should be excluded from the class of viable 

gravitational theories.

Also, by investigating the gravitational field equations 

arising from this Lagrangian, Buchdahl [2] came to the 

following conclusion, that there exists no static solution of 

the field equations generated by R2 which have asymptotically 

flat behaviour and the curvature does not vanish everywhere.

On the other hand, this Lagrangian has a certain appeal 

and a certain position. Its similarity to Lagrangians of 

quantizable nongravitational fields raised the hope that it 

would pave the route to quantum gravitational theory. In 

addition to that, the results obtained by us give strong indi-

cations that the above raised points against the R2-theory may 

be wrong. To explain this, we note that the success of GTR 

is manifest in the free-field when the matter term is zero, as 

for inside, or, in the vicinity of a massive body, i.e. in 

strong-field region, we do not believe that the way matter is 

incorporated in Einstein's Lagrangian is necessarily indisputable. 

Therefore, instead of objecting to the quadratic Lagrangian 

when matter is incorporated in it, one would rather object to the 

way matter is usually assumed to generate the R2-curvature in 

the strong-field area, in which case, we think it is not similar 

to that in general relativity. Thus, we do not accept the very 

idea of incorporating the matter to the R2-Lagrangian, since 

in our model described in sec. (5.6), the matter term is a priori 
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included in our derived Lagrangian [5.4.24] through the 

nongeometrical term y. i.e.

c£,(R) = aR2 + BR + y

where a, 3 and y are restricted by physical constraints 

as we will show in the next chapter. Now, setting = - = 0,
&■ a 

would imply that we are concerned about a particular area 

where the contribution of R2-term is dominantly large. There-

fore, we see that the objection made by Bicknell against R2- 

Lagrangian with matter term is, at least, irrelevant to our 

choice of / = R2.

As for the point raised by Buchdahl, we notice that if we

use equations [6.1.2] or [6.1.6] we wi 11 get for the static

isotropic space the following result,

R =

|2R = guvR = 1 R - R 'A _ B _ 2V
1 a .2A " 2B ’ rJ, [7.5.1]

This condition is satisfied by setting 0, i.e. R =

constant. It was found [2],[5] if R was assumed to be depen-

ding on r then asymptotically the spacetime will not be flat

= 0 .

as r -> «> . However, the choice of coordinate made by Buchdahl,

by which he came to this conclusion, is not necessarily reason-

able. We regard it as an imposition of constraints on the metric.

Our result [7.1.29] derived from [7.1.3] and based on the 

validity of Minkowskian limit, would impose on R(r) the condi-

tion [7.1.28] which we can satisfy by a proper choice of our 
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parameters in [7.3.9].

o
Thus the Buchdahl choice which resulted in R = 0 and 

hence R % kr and leads to nonflatness, must be rejected. 

Further, differently from other authors, we do not consider 

Schwarzschild metric as an alternative solution, but, rather 

as an approximation to a correct metric and hence there is no 

fear from the singular features which are removable in our 

metric, based on R2-equation and derived from very general 

formulae.

Furthermore, since in the weak-field approximation

[7.2.20] Schwarzschild terms are present, we expect 

our metric to reproduce all the well-known results of general 

relativity including the correct Newtonian limit.

Moreover, we first obtain the exact solution with adjustable 

parameter for the scalar curvature which is, in general, a complex 

function. We introduced the concept of complexity of R(r) to 

be an access to quantum gravity, the formulation of which, 

generally, includes imaginary parts. By doing so, we were guided 

by the well-established fact that any correct classical theory 

must be quantizable. The solution which we have obtained in 

Section (7.3), we believe, should revive with great optimism the 

interest of the gravitational theory based on the Lagrangian 

quadratic in the scalar curvature R.
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CHAPTER EIGHT

An Advanced Model of Gravity

(8.0) Introductory Remark

In Chapter Seven we considered a special case of the 

generalized Lagrangian where we were concerned solely about 

the contribution brought into the metric by R2 and resulted in 

very useful relationships between the field variables. In fact, 

the application of R2-Lagrangian indicates directly to the 

secrets of strong-field gravity through a number of parameters.

In this chapter we do not, a priori, impose any conditions 

on the coefficients of the generalized Lagrangian, which we 

discover, are restricted by certain physical constraints.

The most general form of Lagrangian

/(R) = a(R+K)m + B(R+1) + Y [8.0.1]

which is similar to [5.4.24], would probably reveal more about 

the metric at any distance from the gravitating source. However, 

a form of the Lagrangian with R and R2 plus a nongeometrical 

term will fairly serve the purpose. This kind of Lagrangian is 

quite interesting since it differs from Einstein's one by being 
raised only one power higher and from the Lagrangian Z= R2 

by the presence of the nongeometrical term y , i.e.

^(R) = (01R +Y1)2 = a2R2 + 2ai)-jR + [8.0.2]

and since it will lead to expressions that allow direct comparison
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with general relativity.

By using a Lagrangian of this type in [6.5.13,27] we 

would be able to analyse the behaviour of the metric at any 

radius from the source. We shall commence in the next section 

by considering the metric at the boundary values r = 0 and 

r = which represent, respectively, the strong and weak- 

field regions.

(8.1) The Metric at Weak and Strong-field Limits

Let us employ the Lagrangian [8.0.1] in the following 

special case when m = 2 and K = q = 0, i.e.

/(R) = aR2 + 3R + Y [8.1.1]

We recall the metric coefficients A(r) and B(r) in [6.5.13] 

and [6.5.27] together with the functions [6.3.4] and [6.5.11],

then by substituting [8.1.1] in A0(r), Q^(R)» ^(R) anc^ 

^(R) defined in [6.3.2] and [6.5.15,17] respectively we

obtain

A(r)

2________3C2C^(RQ)(4aSR+2cxY+62)c-2Mr)
l+K1/r+Y(Rn)r2 2a(6R+2Y)2(2aR+g) [8.1.2]

(gR+2v)2 e260(r)
,9C3C25(R0) 6(2aR+$)

(3aR2+2BR+y)'+

and

B(r)
A(r)(BR+2y)2 e2io(r^p ------ 2____

3C2C34(R0)r2 [?C2C3c (r 0)
A(r)(gR+2Y)2e26°(r)r dr

[8.1.3]
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where,

y (Rq ) = “ L(S+3)R0+2y J
36

[8.1.4]

[8.1.5]

and
3aRQ+gRQ-y
3(4aRg+2g)r

Now since B(r) depends on A(r), therefore we will 

confine ourselves at first in investigating the expression 

[8.1.2] by imposing physical requirements on the Lagrangian 

coefficients a,g, and y. Then having found the physical 

structure of A(r) we look to how it would affect the 

expression for B(r). To avoid lack of consistency in 

fulfilling the physical conditions between A(r) and B(r) 

we will be able to impose further constraints on the constants, 

otherwise we should employ the Lagrangian in its most general 

form where more parameters are involved. That will provide us 

with more freedom to adjust our constants to the most correct 

values.

We consider the behaviour of A(r) at r = 0 and at 

r = r -> co. Then by [6.5.14] and [6.5.19] we get
00

A(0) = -

for any y(R0),

and,

3C2C3g(Ro)[4aBR(O)+2aY+B2]

2a[$R(0)+2Y]2[2aR(0)+B]

A(“)

3C2C3;(Rn)(2ay+B2) e-26(») 
8aBy2

9C3C\(RO)

[8.1.6]

[*■1.7
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for any y(R0) = 0 , where we have assumed that R(«>) =

Now to guarantee the asymptotically flat space limit we

e26(“) = -3C3C2g(Ro)(2aY+g2) = -3C3C2;(Rq )

8aBy2 8By

and this means that,

3 = ± i voV .

This relation is equivalent to the flatness condition,

A(°°) = B(°°) = 1 .

It imposes constraints on the constant coefficients of the 

Lagrangian where any two of which will determine the third 

constant. Evidently it is these constants which will decide 

the structure of our model, its validity and viability, by 

being adjusted to satisfy the physical requirements.

(8.2) Construction of Different Lagrangians

The requirement of the asymptotic flatness of space geometry 

[8.1.10] will be formulated in terms of cc ,3,y in the following 

theorem.

THEOREM 1.

For the space geometry to be flat at asymptotically 

large distance from the source of static isotropic 

gravitational field, it is necessary that the constant 

coefficients in the general Lagrangian,

0.

set

[8.1.8]

[8.1.9]

[8.1.10]
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^(R) 2 aR(r)2 + 3R(r) + y

be chosen in such a way that the following relation 

holds, i.e.

32 E -ay . [8.2.11

Provided that the scalar curvature is such that

R(oo) = 0. [8.2.2]

This restriction will allow us to classify different 

Lagrangians with respect to a,3,y each value of which 

may be positive, negative or zero either real or even 

imaginary.

Thus we can build the Lagrangian in different ways 

within the condition [8.1.9], some of which will lead 

to either pathological or trivial solutions, whilst on 

the other hand the Lagrangian may be complex or even purely 

imaginary. But if we required the Lagrangian to be real, 

we would impose further conditions of the metric. Here 

we count ten possible constructions of the Lagrangian, i.e.

1. y = -n > a p > 0 ; 3 = i/xr? » cL= aR2 iv'ap' R-p.

2. a = -X, Xsy > 0 ; 3 = ±/xy ; £ = "XR2 ±/Xy" R+y

3. a = ±X, y - ±p i • e.ay >0 ; 3 = ±t /xp"; ±XR2±p±i An" R
4. a = ±iX,y = ±ip ay < 0; 3 = qr/x-p J/,= y/Xr? R ± i(XR2+p)

5. a = ±iX,y = :pip ay > 0; 3 = ± f^Xp"; ±i(XR2+/Xp* Rip)

[8.2.3]
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where the signs are taken in a respective way.

If we require the Lagrangian to be real, then the cases

3, 4 and 5, listed above, should be excluded. Otherwise, 

the scalar curvature R will have a restricted complex form.

Evidently, a complex Lagrangian will cause the metric 

components A(r) and B(r) to be complex.

In cases 3 and 4, since a and y have the same sign, the 

Lagrangian will be complex. Consequently expressions 

[8.1.2, 3] for both A(r) and B(r) will contain imaginary parts.

In case 5, the purely imaginary Lagrangian will lead to 

complex Yo (Ro ) and hence (see [8.1.2, 4] ,, [6.5.14] and [6.3.2]) 

to complex values of AQ(r) and 6Q(r).

(8.3) Lagrangian Coefficients and Physical Significance.

We notice that since the correct Newtonian limit is

guaranteed solely by the linear in terms of the Lagrangian,R

then by adjusting 3 in [8.2.1] to fit that limit as in

[5.4.36], i.e. by setting,

ct
1

(16nG)Y
> 0, [8.3.1]Y

we will give the Lagrangian [8.1.1] the following form:

+ J_
16nG

R -I- y. [8.3.2]

It is obvious that the term with quadratic R in I(R) will

give the bigger contribution, the smaller we set the nongeometric
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term y and vice versa, and due to the positiveness of y 

it will always be negative.

Further, since we assumed as in [8.2.2] that R(«) = 0, 

then the Lagrangian will reduce to just a constant which, by 

condition [8.1.9], becomes

1(R(»)) = y = - g2. [8.3.3]
a

Then due to the positiveness of y, this implies that the 

suitable Lagrangian can be constructed in only two different 

ways for any value of R(r), i.e.

|(R) = -XR2±bR + y [8.3.4]

or

X(R) = aR2±ibR + y [8.3.5]

where X,a, b and y are real positive numbers.

Now, [8.3.4] and [8.3.5] belong to 2. and 3. of

[8.2.3] respectively.

Therefore, by imposing the following conditions,

1. the metric should be flat at r -> «>;

2. the correct Newtonian limit should be satisfied;

3. the nongeometric term y should be positive )

w? will exclude from [8.2.3] all other ways of constructing 

the Lagrangian leaving only those of the type [8.3.4] and 

[8.3.5].
If we require that X(R) must be real we would have to 

reject [8.3.5], otherwise R would be imaginary, and in 
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this latter case, we would have to reject [8.3.41. In either 

case the signs of R and R2 are just interchanged, which 

suggests that both cases are equivalent. We notice here that 

the construction [8.3.21 is the most reliable form of 

Lagrangian since it fulfills all the above requirements with 

a certain choice of the constant y. We also notice that the 

complexity arising in the Lagrangian is due to the requirement 

of asymptotic flatness expressed by condition [8.1.91.

In order to summarize the above discussed ideas we re-

formulate Theorem 1. in the following statements.

THEOREM - 2

Every solution with asymptotically flat behaviour, of 

gravitational equations describing static isotropic gravity and 
based on the Lagrangian Z= aR2+ pR + y , with y > 0, will 

not have correct Newtonian limit , if this Lagrangian is 

irreducible to a positive constant at asymptotic distance. 

We also introduce the following theorem^

THEOREM - 3

Every nonzero constant Lagrangian of the static isotropic 

gravitational field will lead to gravitational equations whose 

solution will neither be asymptotically flat, nor satisfying 

Newtonian limit.

As an example to verify this last theorem, we take the 

solutions [6.3.2] and [6.3.7] which are physically 
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unaccepted because of their vanishing at infinity and their 

violation of Newton's limit. Moreover, we add that equations 

[8.3.1,2] describe the relation between the general distri-

bution of matter in the universe represented by y which 

will be negligibly small in the vicinity of a given star and 

which, therefore, causes a to be exceedingly large and the 

term with R be dominant. Conversely, this implies that far 

from a given star this quadratic term will be of a diminishing 

effect, and this explains why the Lagrangian quadratic in R 

is so linked with quantum and strong-field gravity. Further-

more, if instead of [8.1.1] we employ the Lagrangian [8.0.1] 

in the case m = 2:

£(R) = a(R+K)2 + 3(R+q) + y

which will reduce to the form [8.1.1] as,

£(R) - aR + $R + y

where 3 and y are new constants

3 = 3 + 2otK

y = y + 3q + aK2,

[8.3.6]

[8.3.7]

[8.3.8]

then the flatness condition will become

(3+2ak)2 = -a(y+3q+aK2) [8.3.9]

i .e.
32 = - ay - a3q ~ 4a3k - 4a2K2 [8.3.10]

This will yield [8.2.1] as K = q = 0.
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If we set a = 0, then by [8.3.9] or [8.3.10] 3 

becomes zero, but differently from [8.2.1] if y was set 

to be zero 3 will not vanish. This situation will give 

more freedomin choosing the coefficients which will satisfy 

the physical requirements.

Now for y = 0, 3 will be zero, 3 = -2ak

will become
Y

k(2?-k)
2ak(R+^) + y

for a = 0,

[8.3.11]

[8.3.12]

Let us now consider which gravitational field has to be regarded 

as weak and which is strong. For this we use the Lagrangian [8.3.73 

in the form [8.3.4]

with

/(R) = - XR2 ± bR + y

b = /xy - ± 3

[8.3.13]

[8.3.14]

where y anc* & are defined in [8.3.8] and X = - a.

The scalar curvature is positive, and the constants X and Y- and 

hence b are positive and real.

We note that the term with quadratic R, assumed to represent 

strong gravity, should cease to be dominant as from a certain distance 

from the gravitational centre. The value of R = R(r) at that distance 

will serve an upper limit beyond which the weak-field behaviour of 

gravity diminishes. Correspondingly, the positive and negative 

terms of [8.3.13] would cancel out giving for the scalar curvature 

the fol lowing value t
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Then the scalar curvature describing a weak-field phenomena 

should not exceed R . Thus by [8.3.14] it yields;

R(r} < Rj, =| c^± n H [8-3-15J

which by the help of [8.2.1] and [8.3.8] becomes;

R(r)<_ 1) /]± k/^ - k2 [8.3.17]

where we set q - k

This limiting value of the scalar curvature leads to a very 

interesting result, since it determines the domain for the applica-’. 

bility of general relativity. It indicates that any value of R not 

restricted by [8.3.17] would predict unphysical situation. Thus 

due to this limitedness of the scalar curvature a suitable choice 

of the parameter kwill curb R from growing large. This implies 

that the gravitational collapse can be prevented.

We also notice that [8.3.17] allows imaginary part for R which 

we have admitted in our previous discussions and which will be 

considered again in Chapter Nine.

The square root in [8.3.17]wil1 play an important role for 

values of R beyond the limiting value R . It indicates to how far 

the quantum effects might dominate strong-field gravity. In fact, 

as we explained in (5.5), the parameter k and consequently X, which 

describe the interaction between matter and its field, are connected 

with, quantum features of the gravity. From [5.5.3] one gets



and hence [8.3.17] may become

R(r) < | (/5 ± l)k(O.y) [8.3.19]

Thus the parameter k which can be regarded as a classical limit 

of a quantum-mechanical function turns to be the upper limit of 

the scalar curvature. Further, by using [8.3.1 , 18] in [8.3.19] 

and by denoting the matter density as;

T=(/5± 1)y

we obtain

R(r) < 87t GT

or

= 8tt GT£

[8.3.20]

[8.3.21]

[8.3.22]

where is the limiting matter density that corresponds to the 

limiting curvature, and Equation [8.3.22] is the Einstein's general 

relativistic equation.

In the end we conclude that the new result obtained in this 

section confirms our belief which we advocated throughout this 

thesis that strong-field gravity is nonsingular, quantizable and 

undescribable by Lagrangian linear in R.
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(8.4) The Scalar Curvature (Approxi ma ted)

In order to know the behaviour of A and B in [8.1.2,31 

at any distance from a given centre we ought to, first, get an 

explicit expression for the scalar curvature, then by an 

appropriate choice of the constant coefficients the metric will 

be fully defined.

We notice in [6.5.10] that the expression for R must 

depend not o.rAy on y, but on the choice of the Lagrangian.
The mutual dependence between R and Z is evident from the 

very definition of the Lagrangian [8.1.1] and it arises from 

the fact that gravitational energy affects the space geometry 

and in return the curvature of space affects the path of energy.

Now by [8.1.1] expression [6.5.10] reads

• - 9 e'26o<r>(SR + 2y)R = C(I0) £ 0 [8.4.1]

where 6Q(r) is defined in [6.5.14] and given by [7.3.24]

and
C(Z ) = - ^gRo+gRp-y) [8.4.2]

0 2a(4aR0+2g)

Equations [8.4.1] can now be written as

A (eR+2y)2 = 2gc(Z0) § 26° 

dr r

that yields

BR + 2y = ±BP(r)

or
R(r) = - 2y ±p(r)

3

[8.4.3]

[8.4.4]

[8.4.5]
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where the function P(r) is defined as follows,

P(r) =
1
2

[8.4.6]

and Co is an arbitrary constant of integration.

Further, by recalling [8.1.4] and using [8.2.1] we

will see that if a and 3 were chosen to be satisfying:

Ro =
a($+3)

[8.4.7]

then setting y (Rq ) -> 0 is equavalent to Ro -> 2B2 
a(3+3)

and accordingly [8.4.2] gives,

C(R0)—
Yot^o)^0

-3C3C2B(582+4g4-3)
4a*(5B2+18B+g)

[8.4.8]

and <So(r) becbhies

60(r) = Ao(r). dp =
J r J

dr
r+lq+YotRoJr3

In^^R+k;^

[8.4.9]

Therefore in this case
[ e“26(r) 2 (

- --------- Coi b 
J r------------------- )

we get:

dr
rfr+kj2

CQ1

ki(r+kx)

2
- Cpi lnh + -1

where CQ1 is a constant of integration.

Now the function [8.4.6] will become,
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P(r) -3C3C2C01(5g2+43+3)
<2a2 (5g2+W+9)

1
k(r+Kx)

[8.4.11] 

Then because of the vanishing of R(r) at infinity and by 

[8.4.5] and [8.4.11] the constant Co is determined as,

Co = 4y2 [8.4.12]

We now conclude that if the constant curvature Ro

was chosen to be in the proximity of the value [8.4.7] 

then the following expression results for R(r):

. 2yJ3C2C02,C, (5B2+4b+3) 1 ]r)
<5B2+18B+9)I rf

1
Mr+M ,2a2

[8.4.13]

It is clear that in view of [8.1.9] R(r) will be, in general, 

a complex function. However, a real R can be obtained by a 

certain choice of the constants.

Let us consider the case when

and a

become:

R(r) 'Ir > Kjtr+Ki)
1 [8.4.14]

or
C°ln cOjSi

r+Ki
[8.4.15]1 +

with o
C

2 2c Cqi C3
2Ki

[8.4.16]
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Comparing [8.4.14, 15] with our approximated function 

[7.2.16] and the exact expression [7.3.19] obtained from R2- 

equations, we find that the square root expression results 
from utilizing the full Lagrangian instead ofZ = R2.

The latter is a restricted form of [8.1.11 where a = 1, 

y = 0 and by [8.2.1] p 0. Such constraints on the 

coefficients should be accepted with certain care, since 

a and y are interconnected by [8.3.1].’

(8.5) An Exact Form of the Scalar Curvature

The afore-given results have been obtained on the 

basis of certain restrictions on the Lagrangian 

coefficients oc and A and on the constant R . This was/ o
done in order to simplify the integral [8.4.6] expressing 

the scalar curvature R(r), and hence allow to understand the 

mode of its behaviour within these restrictions. However 

a full general expression of the scalar curvature results 

when one utilizes in [8.4.6] the expression [7.3.24] for
R

Y0(r) with one difference; the constant is now replaced 

defined in [8.1.4], i.e.

(8d2 - K,)c 2 r - p+
~>y~T~z--------??—V7T (’’5—~ 01 n C q2(P+ “ Pja k2pr - pj 3

[8.5.1]
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where we denoted

e e 3ad - 2

_ Mo

° = 77

P
_ 7o 
= <T

■Vo
BR0 + 2Y

35 [8.5.2]

p+

K1 
acT

o + fo' - 4ap

MRo> = TZ +

P

P. = yo - / o - 4ap

This yields for the following exponential function the form;

-2^0(r) = £ (a - or + pr2) 2 
3 (r + p)*3!

e

wi th

' 2pr - p 1 p3

2pr - P+ [8.5.3]

„ = 4 
P1 ’ 3Kqe

P2 = 2 pi 0 + ■£■ P)

o(8d2- K-j) 

p3 = pl 2(p+- p_)d [8.5.4]

C3 = constant

J
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It is clear that if yQ is set to be zero, p-j = 2, and 

p = K-], [8.5.3] will reduce to

[8.4.13] for the scalar curvature can be. obtained’

e-4<r) = c3 j [b .s .sj
(r + K1)

which will lead to [8.4.10] and hence the expression

The general form of R(r) can be obtained by solving

r

the integral

/

2 (a - or + pr ) 
r(r + p)pl

2pr - p..' 

Zpr - P+
dr

[8.5.61

for certain choices of the constants , p, p, Pp p£

and pg. Now, by [8.4.5, 6] the full expression for the

scalar curvature reads

By using this in [8.1.2, 3] the exact full solution for 

the metric coefficients A(r) and B(r) can be obtained. 

Then by taking into account the relationships [8.2.1] 

and [8.3.1] based on certain physical requirements, 

and by suitably chosing values for the parameters and 

the constants in [8.5.2, 4] a non-singular metric can be 

obtained.
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If we assume that the quadratic terms of the 

Lagrangian is dominantly large within a certain domain 

due to a large a, then by view of [8.3.1] we can 

approximately set y - 0, and [8.5.7] will reduce to 

the square root of the integral form which can be reduced 

further to [8.4.14].

Now let us set a = - X and the arbitrary constant

= ft, then by using [8.2.1] and [8.4.2] expression

[8.5.7] reads

2 ^2- or + pr ) 
r(r + p)pl

2pr - p_
2pr + p+

where similar to [8.3.18] we denote

[8.5.9]

[8.5.10]

(8.6) Strong Gravity Domain

The expression [8.5.7] or [8.5.8] constitutes the

very general exact solution for R(r), based on the Lagrangian 

[8.1.1]. It is required that this form of the scalar 

curvature will reasonably describe the weak-field as well as 

the strong-field behaviours of the gravitational field.
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The integral under the square root bracket is difficult to

in [8.5.4, 2] by undetermined constants. However we know that

[8.5.7] should reduce to [7.3.19] as the full Lagrangian

= cxR2 + BR + y reduces to Z = aR2. But [7.3.19] is primarily 

aimed to describe strong-field gravity that is, when the ratio 

77 is negligibly small. Therefore by taking a = 1 and setting to 

zero the coefficients y and, consequently by [8.2.1], B, one obtains 

from [8.5.7];

where now according to [8.5.2, 4] we have, 

P-jO (8d2 - Kp A
M \ wU IX’i J

P3 = 2d" • (F+ - PT)

a

and y 0
17

7
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Now [8.6.1] can be equated with [7.3.19] from which it seems 

possible to assess the values of Pp p2 and p^. It is clear that 

[8.6.1] represents the contribution to the expression for R [8.5.8], 

of the quadratic term. This contribution corresponds to strong 

gravity which is therefore, expected to disappear at large 

distances from the gravitational centre. Such a situation suggests 

that the constant coefficients and parameters are somehow attached 

to strong-field effect that would presumably diminish with distance 

from the centre. We also learn from [8.6.1] that.the square root 

would indicate that the strong-field gravity is generally described 

by complex functions.

This description seems to be essentially nonsingular or at 

least can be made nonsingular by virtue of certain choices of the 

constant coefficients and parameters. It again confirms our 

belief concerning the close link between the nonsingularity of the 

metric, the complexity of the field variables and the quadraticity 

of the Lagrangian in strong-field gravity. Then the afore-mentioned 

effect in strong gravity is thought to be of a quantum nature and 

hence described by complex functions. Thust it is 3 quantum effect^ 

and cis we noted in Sections (4.8), (5.7) and (7.3) it should be 

represented by a nonlinear (quadratic) Lagrangian. Such an effect 

will certainly abolish any singularity that could have occurred 

had a linear Lagrangian been employed.

Now in order to explain how strong gravity can be manifested 

through the coefficients and parameters we visualize RQ and, k 

and given by [8.5.9, 10], as classical limits of quantum-
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mechanical quantities. Being guided by the relationships 

[5.4.34, 39]-and[5.5.2] where Rq and X = - a are presumably 

reflecting certain quantum mechanical features of gravity, we 

admit the following.

At very small distances from the gravitational centre where

strong gravity is prevailing Rq , C4 and k develop an effective

dependence on r such that, for instance:

r) [8.6.3]

r) [8.6.4]

k(w, r) [8.6.5]

where ti is the Planck constant characterizing the quantum 

corrections and f(o>) characterizes the field strength, and Z, m, 

and n are certain positive constants.

Such choice will guarantee that the scalar curvature [8.5.8] 

vanishes, at asymptotically large distances whereas it becomes of 

a significant value in strong field regions. The same will hold 

for the expression [7.3.19] if only the coefficient C2 is to be 

identified with given by [8.6.4].

1

7^
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(8.7) Conclusion

The choice [8.6.4] implies that the quantity CgC2 

given by [8.5.10] is some function of the (quantum) 

parameter <*> i.e,

C3C2 = c5(u) [8.7.1]

which would compete with A to secure the correct behaviour 

of either the strong or the weak gravitational fields.

Now the use of [8.6.3, 4, 5] in [8.5.8] yields

R(o) = I /3C4R0C^/('m

where 8Q(r) is defined by [8.5.3] , and also,

R(°°) = lim R(r) = 0
oo

[8.7.3]

Thus R(r) satisfies the condition of the asymptotic flatness 

at large distances, and in the proximity of the gravita-

tional centre it becomes finite,though,in general, non-real. 

The complexity of R, as we noted before, would correspond 

to a quantum mechanical effect.

Then if [8.7.2, 3] are substituted into [8.1.6, 7] 

respectively, a well-behaved A(r) will be obtained in the 

strong-field region, which will satisfy the Minkowski limit 

in the weak-field zones. The same can be proved to hol/i 

for the metric coefficient B(r) in [8.1.3] by virtue of 

the appropriate choice of a and y and also Pp p2, Pg 
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appearing in [8.5.3] . Though, a strong singularity can 

occur at r = 0 if such a choice is not made. This situation 

imposes additional constraints on these quantities which 

will lead to a precise definition of their nature.

Further study of the expression for R(r) [8.5.8] and 

consequently expressions [8.1.2, 3] for A(r) and B(r) will 

provide us with the full picture of the gravitational 

interaction at any distance from the source. However the 

detailed expression of R(r) can be obtained only by evaluat-

ing the integral under the square root in [8.5.8]. But as 

we have pointed out in the preceding section the expression 

[7.3.19] can be identified with the strong-field limit of 

R2, that is, with the integral in [8.6.1], Thus an explicit 

form of R in. terms of r can be readily given without going 

to the tedious task of detailed calculations. Here it is
^2 

suggested that the coefficient rr-
K1

in a way similar to C4(r, oj ) in [8.6.4]. This result will 

evidently provide us with a very useful information about tne 

nonlinear aspect of the gravitational field in the proximity of, 

say, a star with a gigantic density. However, our approach is 

still classical and restricted to the static isotropic spacetimes. 

We therefore believe that eventually the departure from the 

classical and symmetrical metric to a more realistic situation 

will certainly elucidate more the enigmatic features of gravity 

in the limit of strong energy spectrum. It is obvious tha^t such a 

departure should not disprove our static model. It will rather 

add to our metric certain quantum dynamical corrections.

in [7.3.19] should behave
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In the end, we conclude this section by admitting that we 

are able to derive and obtain, in this chapter, an essentially 

nonsingular advanced metric based on the Lagrangian containing 

terms both linear and quadratic in R as well as a nongeometrical 

term. The coefficients in the Lagrangian form proved to bear 

certain physical significance whose full interpretation may be 

well understood in quantum gravity. However the interesting 

results we obtain in Sections (8.2), (8.3) and (8.5) reveal 

the importance of the role these coefficients can play in strong 

gravitational field domains. As far as quantum mechanical effects 

are concerned, we believe that the emerging of an imaginary part 

in the expression for R(r) in areas with small r, reflects the 

nonclassical character of strong-field gravity. In the next 

chapter we shall elaborate more on the complexity of the scalar 

curvature and consequently of the metric space.
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CHAPTER NINE

The Complex Metric

(9.0) A New Possibility

In this chapter we draw the attention to a new possibility 

of the solution for the gravitational equations. Namely, by 

splitting the scalar curvature R to a real and imaginary 

parts, we can clear out the controversy arising when one 

tries to combine strong and weak gravity behaviours by one 

law. Such a controversy might arise due to ignoring either 

the imaginary or the real parts of R in either strong or 

weak-field areas of the gravitational field.

As it was noticed from the preceding chapter the imaginary 

part of R emerges as a result of employing the Lagrangian with 

a quadratic term. Then by complexifying the scalar curvature 

the resulting equations will lead to expressions for the 

metric hopefully explaining gravity at both small and 

asymptotically large distances from the source. For instance, 

the imaginary parts of R>and consequently of the metric 

coefficient gfr,might explain well the strong-field gravity 

whilst the weak-field gravitation can be appropriately described 

by their real parts.

Now by admitting this new possibility of solution we are, 

in fact, reviving the interest in the quadratic Lagrangian 

which as we mentioned before, has been abahdoned wu-for

sovne fivvie-
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(9.1) The Physical Meaning of complexity

We have mentioned repeatedly in Sections (5.7), (6.5), 

(7.3, 5) and (8.6) that a close relation exists between the 

scalar curvature R having an imaginary part and the effects 

of a strong gravitational field in the vicinity of its source. 

It was shown before that the complexity of R can be imposed 

by constant coefficients of physically chosen Lagrangians. 

We also pointed out that the metric coefficients will 

consequently be complex and their behaviour at r + 0 will be 

essentially nonsingular. In (8.2) we gave examples of 

Lagrangians that cause the metric to have an imaginary part. 

Towards the end of the last chapter we admitted the existence 

of a complex value of the metric coefficients A and B near 

r = 0, which in our opinion is due to quantum nature of 

gravitation in the strong gravity limit.

General relativity which is based on the linear Lagrangian 
J!~ R will not Iwe imaginary parts in its formulation and 

hence is not applicable to strong-field quantum effects. 

The singular behaviour of GTR in the region r 0, is, in 

fact, due to this lack of applicability.

It was noted in Section (4.2)1 that the quantization 

of the gravitational field was thought to be linked with the 

quadratic-R-equations. This link becomes, now stronger due 

to the interrelation between the quadraticity and the complexity 

on one han^and the quantization on the other hand.
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Further, in the Lagrangian

/(R) = - XR2 ± XXy R + Y; X, Y > 0, [9-1-1]

since R becomes infinitesimally small as r -> °°, i.e. as the 

field tends to be flat, and by virtue of the property of 

the coefficient X described by (8.5.9) and (8.6.5) the term 

AR will be negligible. The Lagrangian will, therein, be 

dominated by the linear R-term. Contrarily, in the areas 

with r -> 0 the term with quadratic R will be dominant.

Also, it can be noticed that the disappearance of the
2 

R-term by setting A = 0 will cause the term with linear R 

to disappear whereas the contrary is not necessarily valid. 

It is, therefore, possible to choose a Lagrangian purely 

quadratic in R that will lead to the equations obtained in

(7.1).  In the next sections we consider these equations with 

more detail with an intent to obtain a general solution for R 

which will be of a complex form.

At the beginning we shall not assume the complexity of 

the scalar curvature which we expect to be manifested by 

approaching the gravitational source which in our case is a 

point mass. We will rather look for the expression for R at 

the zero point to see what it looks like. Such value of R will 

constitute an initial point for calculating the curvature at 

any distance from the point source, Moreover, we regard the 

complexity of R as corresponding to a short-range effect of 

strong gravity and hence we will be less interested in the 

asympotic behaviour of this complex metric.
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2
(9.2) Further derivation of R -equations

In Chapter Seven we obtained useful relations between the 

metric coefficients A(r) and B(r) and the scalar curvature 

R(r). In order to investigate R(r) we utilize these 

relations to eliminate A and B, but at their expense 

we will have to deal with highly nonlinear third order in r 

differential equations.

We commence by employing [7.1.9] and [7.1.12] to get

rid of A: i.e.

By using

d ' 
cTr Bj
B
B " (4; Rr 

T

[7.1.25] on the L.H. side, we eliminate

[9.2.1]

B
B

and the following equation results by differentiation:

r2R2(Rr2+4)(2R+rR)RR-r2R2(Rr2+4)(4R+3rR)R2

+rR[(4+r2R)(2R2+r2R2)+(2+r2R)(R+rR)(2R+rR)

-2(2+r2R)(2R+rR)2]RR+2r3(2+r2R)R5+6r2R(2+r2R)R1*

-8(2+r2R)R3R2 = 0.

By differentiating In A of [7.1.9] we get after equate that to [74.2.4]
•• •

d
dr

In ■r _rj ' 

R R r
’rR.lL 2R(Rr+R) + 
,4 r] R(Rr+2R)

2
r

[9,2.31

which results into the equation ,

r2R2(4+r2R)(2R+rR)RR-r2R2(4+r2R)(4R+3rR)R2 
+[(4+r2R)(-2rR3-8rR3R-4r2R2R2+r3RR3)+rR2(4R-r2RR 

-r3R2)(2R+rR)]R+2r3(2+r2R)R5+6r2R(2+r2R)Rl* 

-8(2+r2R)R3R2 = 0. [9.2.4]
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Also, the use of [7.1.14] and [7.1.9] yields,

d R Bl 2r2R d [R1
dr LR Bj (4+r2R) dr Rr]

[9.2.5]

and by [7.1.25] this leads to,

r2R2(4+r2R)(2R+rR)RR-r2(4+r2R)(4R+3rR)R2R2 
-rR3(4+r2R)(16R2+8r2R2+l2rRR+7r3RR-4r2R2)R2R

+2r3(2+r2R)R5+6r2R(2+r2R)R‘*-8R3(2+r2R)R2= 0.

Now equations [9.2.2] and [9.2.4] reduce to the cubric 1st 

order nonlinear equation:

r2R3-rR(l+r2R)R2-R2(10+3r2R)R-R2(4+r2R) = 0

and, equations [9.2.2] and [9.2.6] reduce to:

4r2R2(4+r2R)R3-[2r2+(4+r2R](7r3+12r)R3lR2

+ [5r(2+r2R)R-8(2+r2) (4+r2R)R**]R+4(l+r2R)R2= 0 

Eliminating R* by using [9.2.7] in [9.2.8] yields the 

following quadratic in R equation:

(4r5R5-7r5R4+8r3RM8r3R3-32rR3-2r2)R2+

+(12r4R6-8r^R5+72r2R5-32r2R4+96R1H 5r3R2+ 

+10rR)R+4R2(r4R4+8r2R3+16R2+r2R+l) = 0 .

Equation [9.2.7] is satisfied by the trivial solution R = 

which represents Einstein's space. It satisfies also the 

solution
R(r) = ’J2

This solution would have meant, due to [7.1.3] , that

the metric coefficients A(r) and B(r) are related by:

[9.2.6]

[9.2.7]

[9.2.8]

[9.2.9]

0

[9.2.10]
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A(r) = 64
B(r) C2r2

[9.2.11]

which gives bad asymptotic behaviour at large r. Otherwise 

the flat space limit can be satisfied only if C is infini-
o

tesmally small so that r -> r = - -> However, [9.2.10] 
oo C

is not the unique solution and hence R(r) and R(r) are 

not necessarily singular at r = 0. In fact, being cubic, 

equation [9.2.7] allows other solutions which may be 

complex.

(9.3) Scalar Curvature Complexified

Equations [9.2.7] and [9.2.9] are still too 

complicated to be analytically solved. But, here, in this 

chapter, we are less interested in the solution itself 

which we have already obtained in the preceding chapter. 

For more general cases, we are rather investigating the 

complex structure of this solution in areas where the 

behaviour of the metric is either singular or incompatible 

with physical requirements in some other theories.

Now, in order to avoid any violation of flat space 

limit, we assume that R(0) and R(0) are finite. There-

fore, at r = 0 [9.2.7] and [9.2.9] yield:

R(0) = -0.4

R(0)
[9.3.1]

This indicates the complex nature of R(r) and suggests that
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the solution for R-equation should be sought in the form of 

a complex function, i.e.

R(r) = Ke la(r)= K[cosa(r)-isina(r)] [9.3.2]

and
R(r) = -ia(r)R(r) = -Ka(r) [sina(r)+icosct(r)] [9.3.3]

where K is a constant.

The use of [9.3.1] in [9.3.2] and [9.3.3] yields:

cos<x(0) = 0

sincx(O) —~
K/6.4

K =
/ 6.4

a(0) =±0.4^~4

[9.3.4]

[9.3.5]

[9.3.6]

Thus we write R(r) in the form:

R(r) = * --J-r e~ia(r) = 1 -J— [cosd(r)-isina(r)] [9.3.7]
6.4 f6.4

i.e. the real and imaginary parts of R(r) will read,

ReR(r)

ImR(r)

±-d— cosa(r)
/6~4

[9.3.8]
1

sina(r)

Now by considering A and B, the metric coefficients, 

being complex functions because of the complexity of R, we 

get, by using [7.1.9] the following expressions for real 

and imaginary parts of A(r), i.e.
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a(r)

R.eA(r)
-z(r) [1 + 7- cosa(r)]

[9.3.9]
1 + —2cosa(r)

2
. Kzr*+ ------

16

where

Jm A(r) _ Kr2sina(r)
4 + Kr2cosa(r)

ReA(r) [9.3.10]

Z(r) = 1 + r“(r) [9.3.11]

Further, we denote
■K(r) = P r=r~ [9.3.12]

r a2(r) ^finite r<r
' ' 00

where r = Tim r , i.e. r^ is sufficiently large value 
r ->«>

for r.

Then, by using the flat space condition that
-1

A(oo)B(co) = 1, and the relation [7.1.3], we obtain for the

metric coefficient B(r) the following expressions:

ReB(r) =K(r) cos(a(~)-a(r)) + sin(a(»)-a(r)).
•^72' +cosa(r)]

ReA(r)

. [9.3.13]and,

ImB(r) =sK(r) cos(a(«)-a(r)) -——sin(a(°°)-a(r)) ReA(r)

[9.3.14]tKr2
+cosa(r)

Now since by [9.3.9] and [9.3.10] we have:
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therefore,

and,

A(r) = 1 + i [9.3.15]ReA(r)sina(r)

—„ + cosa(r)-* Kr2 v '

A(0) = ReA(O) = Z(0) [9.3.16]

A(“) = h + i sina(^) ~1 ReA(°°). [9.3.17]
cosa(~) J

But to satisfy the flatness condition we ought to set:

and

COSa(°°) = ±1
[9.3.18]

A(«) = ReA(<») = 1 [9.3.19]

By [9.3.9] and [9.3.11] this would make Z(°°) behave as:

±Z(°°) = ±2 r2
00

[9.3.20]

± = 
a(°°)

We have also, owing to
4 "

[9.3.10]

± 3 [9.3.21]

and [9.3.18], the following

ImA(O) = 0 [9.3.22]

ImA(oo) = 0

Further, by using [9.3.4] and

[9.3.23]

[9.3.181 together with

[9.3.12], [9.3.19] in [9.3.13] and [9.3.14] one gets:

ReB(O) =^(0)Z(0)cos(a(~)-a(0))'
■

ImB(O) = 4f(0)Z(0)sin(a(»)-a(0))

[9.3.24]

and,

284



[9.3.25]
ReB(-) = ReA(») = 1 '

IniB(oo) = 0

1
where the trigonometric functions in [9.3,24] will have, 

due to [9.3.4,18] the following values.

cos(a(°°) -a(0)) = COSa(«)coSa(0) + sina(°°)sina(0) = 0
■

sin(a(~) -a(0)) = sina(°°)cosa(0) - COSa(«)sina(0) =±\
[9.3.26]

We notice from [9.3.13,14,15] that if ReA(r) = 0 then 

both A(r) and B(r) will automatically vanish, which is 

meaningless. This implies that ReA(r) should be always 

nonzero.

Now to calculate A and B we need to obtain expressions 

for Z(r) and ^(r). For this we use [9.3.2] into* [9.2.7] 

to yield the following two coupling equations:

Kr2a3(r) - l(2r3sina(r)i2(r) + K[3Kr2cosa(r) + 10]a(r) = 4sina(r)
» 

Kr(l+Kr2cosa(r)la2(r) + 3K2r2sina(r)d(r) = 4cosa(r) +Kr2

[9.3.27] 
By multiplying the 2nd equation of [9.3.27] by a(r) and 

then by solving the two equations together one can eliminate

a3(r), then by again eliminating u2(r) by the 2nd equation

of [9.3.27] it yields:

a(r) = 4 sina(r) [9.3.28]

where we denote

285



[9.3.29]

U = u (r) = 5kr2 coscc(r) + k2r4 + ]
9

y ~ v(r) = y(r) + y-j (r) cosa(r) + y2(r) cos a(r)
y = y(r) = 12k3r4 + kr3 + 10K >

y1=yi(r)s k2r5 + 13k2r2 + 4r

y2-y2(r) - 4kr3 “ 9k3r4 ,

By differentiating [9.3.28] one gets

a(r) _ [cosa 
a(r) ~ [sina

9
5Kr sina

U

2y2 cosoc sina + y^ since
_

IQkr cosa + 4k2r3
U

2
X + X-j cosa + X2 cos oe

_ [9.3.30]

With
X = x(r) s 48k3r3 + 3kr2

X,= X1(r)z5k2r4 + 26k2r + 4

X2= X2(r)al2kr2 - 36k3r3

The relation [9.3.28] yields

ot(TO) = 0 [9.3.32]

Relations [9.3.28, 30] can be used to compute 3\(r) and 

Z(r) defined by [9.3.12, 11] respectively, and thence the 

real and imaginary parts of both A and B can be computed.
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A preliminary study of the scalar curvature R and the 

metric coefficients A and B is made. The curves for the real 

and the imaginary parts of R(r), A(r) and B(r) are illustrated 

in Figures 9.1, II and III respectively. For a qualitative 

description we exploited the Euler's computational method run 

on a Fortran programme.Although this method is not quite 

accurate for these kind of equations we reckon it will be fairly 

sufficient for assessment within a short range of r.

(9.4) Discussion

The resulting expression for R, A and B in the preceding 

section are derived from equations based on a very restricted 
form of the Lagrangian [9.1.1], viz, jL- R^(r). This form is 

essentially irrelevant for asymptotically large r from the 

source, since as we mentioned earlier, it may represent the 

strong-field contribution. Thus, for our present purpose 

distances lying just beyond the range of the strong gravita-

tional field of the point mass may be regarded as asymptotically 

far from the gravitational centre. This is what we meant by 

subjecting A and B to the flatness condition [9.3.19, 25]. It 

is interesting to notice from these relations and from Figures 

9^.11,111 that it is the real parts of A and B which can be 

subjected to the flatness limit. As for the imaginary parts of 

R, A and B, Figures 9„I, lib and Illb respectively reveal that 

they describe a short range field in the proximity of the source. 

The inconsistency between Figure 9-IIIa and the flatness of 

Re B(r) at large r is due to the limitation of the computational 

method we used, caused by the accumulation of the error. In 

contrast with Schwarzschild's metric the curvature is finite at 

r = 0 and, in view of [9.3.1] and Figure 9-1, is purely imaginary.
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Thus, we conclude this chapter by the following:

1. The gravitational equations based on the Lagrangian
2

R in a static isotropic space lead to the com-

plexity of the metric.

2. The imaginary part of this metric would correspond to 

a short-range gravitational field.

3. The presence of such a short-range field cause the metric 

to be essentially nonsingular.

Finally, we admit that due to the inaccuracy of the 

computational method used by us, the curves illustrated in 

Figures 9^11, III will not be quite reliable for assessment 

of the theory with a complex metric. However, analytically 

the boundary values of R, A and B consistently ensure the 

correctness of this theory.

We believe that a further investigation of the complex 

metric with the aid of a more accurate computational method 

would lead to more interesting results.
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Figure 9-1 The scalar curvature R in the vicinity 

of the gravitational source.
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Figure 9*IIa,b The metric component A in the vicinity 

of the gravitational source.
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Figure 9—IIIa,b The metric component B in the vicinity

of the gravitational source.
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GENERAL CONCLUSION

RESUME

In the introduction to this thesis we have noted that Einstein's 

general relativity, besides its aesthetical advantages, stands as the 

best model of weak-field gravity. Its viability is unquestionable. 

Though, the theory is defective in certain respects and therefore 

we consider it imperfect for the following reasons:

i - It predicts its "own collapse", in the strong gravity, by 

predicting the gravitational collapse. Consequently, it 

predicts the yet unconfirmed formation of the exotic black 

holes.

ii - It is isolated from the mainstream of physics, and in 

particular;

iii - It is not amendable to quantization.

Our concern in this work was to attempt establishing a classical 

model of gravitation, alternative to Einstein's, which is required 

to be free from any unpleasant features. Such kind of model we define 

as "perfect theory". Hence, we set the following requirements that 

every perfect theory should satisfy:

a - It should be viable, i.e. it should be complete, self-consistent, 

reducible to Newtonian and special relativistic limits and 

agreeing with experiment and observations at least to the same 

extent as does general relativity.

b - It should not contradict itself by predicting the breakdown of 

its laws, i.e. should not be singular.
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c - It should be quantizable i.e. it should not lead to arbitrary

or ambiguous description when subjected to quantization.

d -It should share with the rest of physics common grounds i.e. 

should be not isolated from the general picture of physical 

laws.

A theory coping with these requirements will be certainly challeng-

ing all the existing gravitational models.

Most of the various attempts introduced in Chapter Four, at 

constructing a candidate theory congruent with the afore-set conditions, 

achieved no significant success. However, some like Kilmister-Yang 

model, and the limiting curvature theory, whose viability is not 

disputable, are quite promising.

Then in the light of our previous critical views and assessments 

made mainly withe last sectioYis of each chapter of this thesis we came 

to the following important conclusions. These conclusions summarize 

the previously discussed ideas and lay criteria that should be taken 

into account in establishing a perfect theory of gravitation. Thus, 

we conclude that:

1 - Although general relativity is imperfect it is still regarded

as the best basis for any further modification.

2 - Any generalization of GTR should be within the picture of

Riemannian geometry.

3 - Gravitational equations of the highest possible (i.e. the 4th)

differential order should be exploited.

4 - The successfully modified version of general relativity should

utilize a Lagrangian containing both linear and nonlinear terms 

of the scalar curvature R.
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5 - Quantum gravity may be reached not by directly subjecting

GTR to quantization, but by quantizing its generalized

form.

6 - The resulting metric space should allow a complex structure in

wh-ich the imaginary part of R would correspond to strong-field

quantum effects.

7 - Such a complexity is caused by the contribution of the quadratic
term in the Lagrangian, Z= ctR^ + £R + y.

8 - This Lagrangian has the roost physical and the most rational form.

As. it has been elucidated in Sections (8.2, 3) the Lagrangian 

coefficients are physically inter-connected. Therefore, by a 

certain choice of them, the metric may reduce to Einstein and 

Schwarzschild spaces in the weak gravity or, for another choice it

would fairly describe strong gravity without exhibiting any

pathological behaviour. This property of the Lagrangian coeffi-

cients suggests that they would represent classical limits of 

quantum mechanical quantities as we have advocated that in (8.6).

9 - In view of No. 8 a Lagrangian dominated by the quadratic

R-term could bridge the gap with other fields' theories and with 

quantum mechanics. As we pointed out in (7.5) such a Lagrangian 

will not be relevant to describe the spacetime at asymptotic

distances, from the gravitational centre.

Now we notice that the gravitational model developed by us through-

out the last five chapters of this thesis is consistently adapted to 

the aboye-counted criteria and ideas. Therefore it is worthy of being 

considered, to a certain extent, as a perfect classical theory 

of grayitation. Theories which partially agree with these criteria 

will have limited merits.
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AN OUTLOOK

Physics does not come to an end. We learn from the history of 

physics that there is no "absolutely perfect" theory. A physical theory 

is called perfect with respect to the utmost knowledge human intellect 

can produce and comprehend. Every law of physics considered as general 

at one time will need to be further generalized after it reaches the 

boundary of its domain of applicability and so forth. It is this chain 

of generalizations which makes the history of science continue.

As. we have noted in the introduction to this thesis, the early 

decades of this century had witnessed a great revolution in physics. 

Newtonian mechanics was generalized in two directions, quantum theory, 

and special relativity. The latter was immediately generalized into 

GTR. It is therefore very rational to think of a further modifica-

tion that may accommodate, a generalized version of "general" relativity 

with s.ay, quantum theory. Hence we believe that the generalized 

metric which we have founded tn the present work is a step forward 

that will underlie certain prospects towards success. However, though 

our model has been generalized,, further generalization would open 

new. horizons for exploring the highly complicated nature of the 

gravitational field. We propose here four avenues for a further study 

of our generalized metric, i.e.

I - By employing the most general nonlinear Lagrangian (5.4.24).

II - By studying the complex metric of Chapter Nine in more details.

Ill - By departing from the static isotropic coordinates.

IV - By subjecting the model to quantization.

Then we. expect that more information about the subtle features of the 

gravitational field may be revealed which may generate new ideas for 

a new theory. This will be a new threshold in the realm of physical 

1 aw.s.
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