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Abstract: Cellular steel beams are primarily used to accommodate electrical and mechani-
cal services within their structural depth, helping to reduce the floor-to-ceiling height in
buildings. These beams are often tapered for various reasons, such as connecting members
(e.g., beams) of different depths, adjusting stiffness in specific areas, or enhancing architec-
tural design. This paper presents an algorithm developed using MATLAB R2019a and an
artificial neural network (ANN) to predict the deflection of tapered cellular steel beams.
The approach considers the web I-section variation parameter (α), along with shear and
bending effects that contribute to additional deflections. It also accounts for the influence
of the stiffness of the upper and lower T-sections at the centreline of the web opening. To
validate the model, a total of 1415 finite element models were analysed. The deflections
predicted by the analytical and ANN models were compared with finite element results,
showing good agreement.

Keywords: cellular beams; tapered I-beam; additional deflection; artificial intelligence;
numerical modelling

1. Introduction
Designers aim to optimize material usage for more economical and sustainable designs.

In many cases, tapered steel elements offer a highly effective solution for both buildings
and roof structures, especially when applied to long-span cantilevers, such as stadium
stands, continuous beams, footbridges, or portal frame rafters.

Several studies have analysed the behaviour of prismatic perforated steel beams to
provide engineers with approximate design formulas. However, tapered steel beams
present a more complex analysis due to their geometry [1], (Figure 1). Integrating services
and equipment within the structural floor depth has become common practice with the
use of perforated beams, such as cellular and castellated beams [2]. These beams allow for
passaging electric and hydraulic services through their openings, eliminating the need for
running them beneath the sections [3,4]. Additionally, they are lighter and deeper than
standard beams due to the material reduction from web openings, enabling longer spans
without excessive deflection.
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BS EN 1993-1-1 (2022) [5] and BS EN 1993-1-13 (2024) [6] do not offer specific guidelines
for calculating the deflection of perforated beams, particularly for prismatic and non-
prismatic steel beams with web openings. However, SCI-P355 [7] provides an approximate
method for calculating additional deflection in beams with single or multiple openings.
The Steel Design Guide 31 [8] provides a formula based on the radial stress method to
estimate local deflection caused by web openings.

Researchers have increasingly used ANNs to predict the behaviour of structural
components and systems. ANNs have proven effective in making accurate predictions
across a range of structural applications.

Warren McCulloch and Walter Pitts were among the first to develop a neuron model in
1943, which was divided into two components. This foundational model remains integral
to modern artificial neural networks (ANNs) [9,10].

ANNs have been applied to the analysis of perforated steel beams, which exhibit
complex structural behaviour. Gholizadeh et al. [11] used an ANN with 140 finite element
models to predict web-post capacity. Sharifi and Tohidi [12] developed an ANN-based
formula to predict the buckling of steel girders with rectangular web openings. Tohidi
and Sharifi [13,14] used an ANN to estimate the lateral–torsional buckling resistance of
corroded steel beams. Other studies have focused on lateral–distortional buckling [15]
and the bearing capacity of castellated beams [16]. Large datasets have been used to train
ANN models; Abambres et al. [17] used 3645 finite element models and Ferreira et al. [18]
used 768 models to predict lateral–torsional buckling resistance. Recent works by Shamass
et al. [10] and others have continued to refine ANN models for web-post buckling resistance
and ultimate load predictions of perforated steel beams [10,19].

Degtyarev and Tsavdaridis [20] developed ML models for calculating the buckling
and ultimate loads of steel cellular beams. Unlike previous studies, which predominantly
focused on constant-section perforated beams, this study integrates the novel parameter
(α) into analytical and ANN models, enabling the accurate deflection prediction of tapered
cellular beams with varying geometry. This approach uniquely bridges the gap between
analytical simplicity and the computational precision of finite element methods.

This study aims to predict the total elastic deflection of tapered perforated steel I-beams
with circular web openings using both ANN and analytical models. A dataset comprising
1438 finite element models was developed, simulating various loading conditions. The
results from the proposed calculation methods and ANN models are validated against
finite element models generated using the commercial software ABAQUS/CAE 2017 [21],
focusing on elastic analysis.

This paper addresses a key research gap by proposing an analytical formulation for
tapered steel beams with web openings, focusing on the additional deflection caused
by multiple circular openings in the web of I-section beams under bending loads. The
formulation introduces a new parameter to account for variations in the web I-section,
which are often overlooked by traditional elastic models. It begins by calculating the
additional deflection for a single circular opening, considering local shear and bending
effects in the upper and lower Tee-sections. An algorithm is then applied to compute the
total additional deflection for both the openings and solid tapered beams under various
load conditions. The total deflection of the tapered cellular steel beam is determined by
combining the deflection from the openings with that of the solid beam.
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Figure 1. Application of tapered cellular steel beams in a real building [8]. 
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2. Prediction Models for Additional and Total Deflection
As previously mentioned, SCI-P355 [7] outlines an approximate approach for calcu-

lating the extra deflection caused by single and multiple openings in composite beams of
constant sections. This method is based on an analytical technique for single web open-
ings, which considers both additional bending deflection and additional shear deflection.
Thus, the additional deflection for multiple regular openings is calculated according to
Equation (1), in which wadd is the total additional deflection for multiple regular openings,
wb is the deflection of the solid beam, n0 is the number of regular openings along the beam,
k0 is the coefficient equal to 1.0 for longitudinally stiffened and 1.5 for unstiffened openings,
h0 is the opening height, h is the beam height, l0 is the effective length of the opening, and
L is the beam span.

wadd
wb

= 0.7 · n0 · k0

(
h0

h

)(
l0
L

)
(1)

For the case of cellular beams, the effective length (l0) of the opening is 0.45h0. Thus,

wadd
wb

= 0.47 · n0

(
h0

h

)2( h
L

)
(2)

These equations originate from the SCI P355 [7] guide, which provides a design
method in accordance with Eurocode 3 [5] and Eurocode 4 [22]. These formulations were
developed based on multiple research studies investigating the impact of web openings on
beam stiffness and deflection.

However, the detailed derivation of these equations is not explicitly provided in
the SCI P355 guide itself. Instead, they are empirical or semi-analytical formulations
calibrated through numerical and experimental studies referenced within the guide. The
works of several researchers, including Lawson [23–25], Ward [26], and Redwood, R.G [27],
among others, provide in-depth insights into the effects of web openings on beam stiffness
and deflection.

3. Proposed Model
The theoretical model proposed in this study focuses on tapered, thin-walled, bi-

symmetric steel beams with circular, regularly spaced web openings of constant size. The
beams are considered simply supported and subjected to three types of transverse loads:
three-point bending, four-point bending, five-point loading, and cantilever beams with
concentrated load (P) at the free end. The displacements of the steel beam sections are
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characterized by linear vertical (wx) and angular (θx) displacements. The values of wx and
θx, which are in an arbitrary section of a prismatic beam with the constant section located
at distance x from the origin, are given by Equations (3) and (4), respectively.

wx = y =
x Mx

EI
dx2 + y′0 x + y0 (3)

θx = y′ =
∫ Mx

EI
dx + y′0 (4)

The maximum deflection of solid beams with a web-tapered section for the four load
cases is given by Equations (5)–(8). These cases include three-point bending, four-point
bending, and five-point bending for beams that are simply supported at both ends, as well
as a cantilever beam.

wx = y =
P L3

48 E Ix
(5)

wx = y =
P a

(
3L2 − 4a2)
24 E Ix

(6)

wx = y =
P L3

20.1 E Ix
(7)

wx = y =
P L3

3 E Ix
(8)

The diagram in Figure 2 illustrates the local bending and shear effects on the upper
and lower tee-sections caused by the presence of circular web openings. The deflection
is influenced by the tapered geometry of the beam, with the parameter (α) representing
the variation in web height (Equation (9)). Figure 2 highlights the Vierendeel mechanism,
where stress concentrations occur around the openings, leading to additional deflections
that must be accounted for in the structural analysis.

α =
hmin
hmax

(9)
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Figure 2. Schematic representation of additional deflection due to web openings in tapered cellular
steel beams.

In these equations, hmax represents the distance between the outer edges of the two
flanges at x = L/2 (mid-span) for the simply supported beam, while hmin is the distance
between the outer edges of the two flanges at x = 0 and x = L (the beam’s ends).

For the case of a cantilever beam, hmax is located at the fixed end, whereas hmin is
located at the free end. Regarding the taper parameter (α), it is evident that the case of a
prismatic cross-section is covered by setting α = 1.
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The deflection of tapered, thin-walled, bi-symmetric steel beams with circular web
openings, subjected to bending and shear forces, is calculated by considering the additional
deflection caused by the web openings, as illustrated in Figure 2. To accurately determine
this additional deflection, the local bending deformation of the upper and lower tee-sections
must also be accounted for.

The deflection due to bending in the upper and lower tee-sections is determined
using Equations (9) and (10), where i f , iwx, and ix represent the moments of inertia of the
flange, the tapered web, and the entire tee-section, respectively. The β angle denotes the
concentration of stresses along the edge of a circular web opening subjected to bending,
with a local plasticised section (Vierendeel mechanism) forming in this area—specifically,
the diagonal section connecting the top and bottom tee-sections. The length l of the tee-
section is modelled as a cantilever beam subjected to an external load (V) on its free end,
calculated using Equations (10)–(14).

w T,b =
V l3

3 E ix
(10)

l = R sinβ (11)

i f =
b f t f

3

12
(12)

iwx =
tw

(
hwx−D

2

)3

12
(13)

ix = i f + A f · d2
f + iwx + Awx · d2

wx (14)

where A f denotes the area of the flange, d f denotes the distance between the centroid of
the I-section and the centroid of the flange section, Awx denotes the area of the tapered web
of the T-section, and dwx denotes distance between the centroid of the I-section and the
centroid of the web-tapered T-section.

Lawson et al. [25] and Tsavdaridis et al. [28] estimated that β, the angle of stress
concentration, ranges between 25◦ and 40◦ for perforated steel beams with circular web
openings, depending on the shear-to-moment ratio at the web opening’s centreline. This
study acknowledges that the Vierendeel mechanism is not fully developed for circular web
openings, especially those with smaller diameters. The Vierendeel effect is more significant
in rectangular openings than circular ones. In this work, a 45◦ angle is adopted, treating
the circular openings as equivalent to a rectangular shape, in line with UK standards.

The deflection under the shear effect of the upper and lower tee-sections is given by
Equations (15)–(18):

wT,s =
V l

G ωx
(15)

G =
E

2 · (1 + υ)
(16)

ωx =
(hwx − 2R)

2
· tw (17)

hwx = Hwx − 2 t f (18)

It is assumed that the two local additional deflections are equivalent for the upper and
lower tee-sections of the beam at the opening, according to Equation (19).

wT = wT,top = wT,bottom = wT,b + wT,s (19)
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The total additional deflection (wadd) at a single opening of the beam, which considers
the effect of bending and shear deformation, is given by Equation (20):

wadd = 2(wT,b + wT,s) (20)

The expression for the additional deflection of a beam with web openings is valid
only for a single opening. Unlike the approach in SCI-P355 [7], this study examines beams
with periodic circular web openings, accounting for local geometric variations due to
the tapered factor. The total additional deflection of a cellular beam is determined by
summing the individual deflections of each web opening. To achieve this, a MATLAB
R2019a algorithm [29] was developed, using a loop parameterized by the index i, which
calculates the deflection for all n openings at the midspan. The loop runs from 1 to m,
where m = 2 n, and the positions x of the openings along the beam’s length are determined
at even i-values, calculated using Equation (21), as shown in Figure 3.

xeven =
i
2

W + (i − 1)
D
2

(21)
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Also, for each even pitch of i, the local additional deflections due to shear (wTs,i)
and bending (wTb,i) are calculated; thus, the local additional deflection for opening i is
calculated according to Equation (22):

wadd, i = 2(wTb,i + wTs,i) (22)

Consequently, the total additional deflection of all openings of the cellular beams can
be predicted by Equation (23):

wadd =
m

∑
i=0

wadd,i (23)

Currently, no analytical expression exists for calculating the deflection of unperforated
(solid web) tapered beams. Instead, deflection (w0) is computed using a numerical finite
element model based on the Euler–Bernoulli approach, developed for four different loading
cases and various tapered web section parameters. The total deflection (w) of the tapered
cellular steel beam is then determined using Equation (24).

w = w0 + wadd (24)
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4. Finite Element Method
The deflection values obtained from the proposed method in Section 3 are compared

with the results from finite element simulations using ABAQUS/CAE 2017 [21].
The numerical model was validated against the proposed analytical method and

SCI-P355 for prismatic beams. The results are presented and discussed in Section 8. Its
application to tapered cellular beams showed strong agreement between the numerical and
analytical results, confirming the method’s reliability.

The numerical model was developed for elastic analysis using Static General, where the
linear problem is solved via the Newton–Raphson method. The initial load increment was
set to 10% of the total external load applied to the structure, with the analysis concluding
once 100% of the load was reached. The elastic properties of the steel used in the study
included a modulus of elasticity of 210 GPa and a Poisson’s ratio of 0.3.

Figure 4 illustrates the boundary conditions for three-point bending, where the beams
are considered simply supported. One end has displacements fully restrained in all three
directions (Ux = Uy = Uz = 0), while the other end has displacements restrained in two
directions (Uy = Uz = 0) [30,31].

Buildings 2025, 15, 992 7 of 23 
 

4. Finite Element Method 
The deflection values obtained from the proposed method in Section 3 are compared 

with the results from finite element simulations using ABAQUS/CAE 2017 [21]. 
The numerical model was validated against the proposed analytical method and SCI-

P355 for prismatic beams. The results are presented and discussed in Section 8. Its 
application to tapered cellular beams showed strong agreement between the numerical 
and analytical results, confirming the method’s reliability. 

The numerical model was developed for elastic analysis using Static General, where 
the linear problem is solved via the Newton–Raphson method. The initial load increment 
was set to 10% of the total external load applied to the structure, with the analysis 
concluding once 100% of the load was reached. The elastic properties of the steel used in 
the study included a modulus of elasticity of 210 GPa and a Poisson’s ratio of 0.3. 

Figure 4 illustrates the boundary conditions for three-point bending, where the 
beams are considered simply supported. One end has displacements fully restrained in 
all three directions (𝑈௫ = 𝑈௬ = 𝑈௭ = 0), while the other end has displacements restrained 
in two directions (𝑈௬ = 𝑈௭ = 0) [30,31]. 

 

Figure 4. Boundary conditions of considered tapered cellular steel beam. 

The I-sections were discretized using eight-node quadrilateral shell elements (S8R), 
each with six degrees of freedom per node (three translations and three rotations). This 
element was employed for its ability to provide accurate results with reduced 
computational effort [30,32]. A free mesh rule was applied, and a sensitivity analysis was 
conducted by varying the mesh element size. Table 1 shows the deflections and CPU run-
time for three different mesh sizes applied to IPE600 section beams with three different 
tapered section parameters ( 𝛼 ) under three-point bending with simply supported 
conditions. The parameter 𝛼 represents the tapered factor of the beam’s cross-section and 
is calculated as the ratio of the minimum to maximum web height. In ABAQUS/CAE 2017, 
this parameter is incorporated by defining variable cross-section properties along the 
beam’s length, aligning with the input geometry and load distribution. 

The results indicate that changes in mesh size have a minimal impact on deflection 
predictions. Based on the sensitivity analysis, a mesh size of 20 mm was selected for the 
parametric study. The processing time for each mesh shown in Table 1 varied with mesh 
size. For the smallest mesh, the time was 67.2 s, while for the largest, it was around 3.7 s. 
However, processing time did not significantly affect the number of analyses performed, 
as the mesh size was selected based on accuracy results rather than processing speed. 

  

Figure 4. Boundary conditions of considered tapered cellular steel beam.

The I-sections were discretized using eight-node quadrilateral shell elements (S8R),
each with six degrees of freedom per node (three translations and three rotations). This
element was employed for its ability to provide accurate results with reduced computational
effort [30,32]. A free mesh rule was applied, and a sensitivity analysis was conducted by
varying the mesh element size. Table 1 shows the deflections and CPU run-time for
three different mesh sizes applied to IPE600 section beams with three different tapered
section parameters (α) under three-point bending with simply supported conditions. The
parameter α represents the tapered factor of the beam’s cross-section and is calculated as the
ratio of the minimum to maximum web height. In ABAQUS/CAE 2017, this parameter is
incorporated by defining variable cross-section properties along the beam’s length, aligning
with the input geometry and load distribution.

The results indicate that changes in mesh size have a minimal impact on deflection
predictions. Based on the sensitivity analysis, a mesh size of 20 mm was selected for the
parametric study. The processing time for each mesh shown in Table 1 varied with mesh
size. For the smallest mesh, the time was 67.2 s, while for the largest, it was around 3.7 s.
However, processing time did not significantly affect the number of analyses performed, as
the mesh size was selected based on accuracy results rather than processing speed.



Buildings 2025, 15, 992 8 of 23

Table 1. Mesh sensitivity analysis.

α
L

(m)
P

(kN) Section n

Deflection (mm)
∆ (%)

CPU Run-Time (s)

Mesh Size Proposed
Method

Mesh Size

10 20 40 10.00 20.00 40.00 10 20 40

0.4
6 100 IPE600 24 4.43 4.42 4.39 4.183 5.58 5.36 4.72 29.4 5.7 1.3
8 100 IPE600 32 9.85 9.83 9.79 9.094 7.68 7.49 7.11 48.2 10.8 2.1

12 100 IPE600 48 31.61 31.59 31.52 28.417 10.10 10.04 9.84 67.2 12.2 2.5

0.6
6 100 IPE600 14 4.05 4.04 4.02 3.905 3.58 3.34 2.86 38.7 7.7 1.3
8 100 IPE600 20 8.69 8.69 8.66 8.471 2.52 2.52 2.18 40.3 10 1.9

12 100 IPE600 30 27.2 27.19 27.14 26.133 3.92 3.89 3.71 66 15.2 3.7

0.8
6 100 IPE600 10 3.93 3.93 3.91 3.878 1.32 1.32 0.82 33.6 9.6 2.4
8 100 IPE600 14 8.2 8.2 8.18 8.053 1.79 1.79 1.55 50.3 12.7 2

12 100 IPE600 20 24.62 24.61 24.58 24.130 1.99 1.95 1.83 66 15.5 3.2

Regarding the parametric study, the loads were applied to the upper flanges of the
cellular beams, considering three- and four-point bending load cases, as shown in Figure 5.
The length of the beams varies between 4.702 m and 12.0 m to represent typical spans.
The deflections are evaluated for the tapered section parameters (α = 0.4, 0.6, and 0.8).
The analysis uses typical steel sections such as IPE600, IPE550, IPE500, and IPE450. The
diameter of the circular web openings of the cellular beams is 75% of the beam’s total height,
excluding the flange thickness. The number of openings ranges from 10 to 18, depending
on the beam’s span, with uniform spacing along the beam length. Notably, no openings are
placed at the mid-span. Deflections are measured at the mid-span on the bottom flange of
the beams.
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5. Artificial Neural Network
A dataset of 1415 finite element models was used to predict the deflections of the

tapered cellular steel beams using an ANN. The ANN model used in this study employs
a feedforward architecture with Levenberg–Marquardt backpropagation for training. It
maps input variables to predict deflections, optimizing accuracy through iterative weight
adjustments. The ANN-based formulas infer deflections by normalizing input variables and
applying trained weights and bias terms to compute outputs. Each formula corresponds
to specific loading conditions, ensuring tailored predictions across various scenarios. The
input parameters for developing the ANN include flange width (b f ), flange thickness
(t f ), tapered section factor (α), beam span (L), opening diameter (D), load distance (L f ),
number of openings (n), spacing between openings (W), load (P), and shear span (s). The
study models the ANN with four, six, and eight neurons in the hidden layer. While the
proposed analytical model offers a manual computation approach, the inclusion of the ANN
is essential for scenarios requiring rapid predictions across a wide range of parameters.
The ANN can achieve an approximate 5% improvement in accuracy, which is critical for
engineering applications where precision directly influences structural integrity and cost-
effectiveness. Figure 6 illustrates the ANN structure, showing the input parameters for
each loading case, the number of hidden layer neurons, and a single output parameter.
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Figure 6. Proposed ANN framework considering 8 neurons. (a) Three-point bending; (b) four-point
bending; (c) five-point bending; (d) cantilever.

The normalization of input variables is applied following the method by Moradi et al. [33],
as described in Equation (25) [34]. In this equation, Xact represents the actual value and
Xnorm is the normalized value, while Xmin and Xmax are the minimum and maximum
values of the input/output parameters. Ymin and Ymax are the minimum (default is −1)
and maximum (default is +1) values for each row of X. The output parameters are then
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denormalized, with Xact derived from the equation, and Xnorm being the predicted value
from the ANN model. Table 2 lists all parameters used.

Xnorm =
(Ymax − Ymin)

(
Xact − Xmin

)
(Xmax − Xmin)

+ Ymin (25)

Table 2. Parameters used to normalize input and target values.

Input/Target Parameter Xmin Xmax Ymin Ymax

bf (mm) 190 220 −1 1
tf (mm) 14.6 19 −1 1
tw (mm) 5 17.2 −1 1
α 0.4 1 −1 1
L (mm) 4702 12,000 −1 1
D (mm) 130 353.6 −1 1
n 10 58 −1 1
Lf (mm) 1175.5 6000 −1 1
W (mm) 66 450 −1 1
a P (kN) 1.67 180 −1 1
a s (mm) 1175.5 6000 −1 1

a Varies according to loading conditions.

A multilayer feedforward neural network is designed and trained using the Levenberg–
Marquardt backpropagation algorithm, which is memory-intensive but efficient in exe-
cution time. The ANN model employs a dataset of 1415 finite element models divided
into two subsets: 70% for training and 30% for testing. This division ensures an adequate
test set for validating the model with new data while minimizing the risk of overfitting
during training.

The hyperbolic tangent transfer function (tansig) was employed, as it is well suited for
capturing non-linear relationships in data [33] and is readily available in MATLAB R2019a.

The reliability of the developed model is assessed by comparing the target and pre-
dicted values using several metrics. The correlation coefficient (R), Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE) are calculated according to Equations (26)–(28), in
which ti and Oi are the actual and predicted deflections, N is the total number of data points
in each set of data, and O and t are the average of the predicted and actual deflections.

R =
∑N

i=1
(
Oi − Oi

)(
ti − ti

)√
∑N

i=1
(
Oi − Oi

)2
∑N

i=1
(
ti − ti

)2
(26)

RMSE =

√
∑N

i=1(Oi − ti)
2

N
(27)

MAE =
1
N

N

∑
i=1

|Oi − ti| (28)

The analysis of how input parameters affect the deflection of tapered cellular steel
beams is conducted using the connection weight approach (proposed by Olden and Jack-
son [35]) according to Equation (29), in which X is the input parameter, Y is the weighted
connection between the input parameter and the hidden layer, and Hidden is the weighted
connection between the hidden layer and the output parameter. This method has been
referenced in other studies as well [10,18,36].

InputX =
E

∑
Y=A

HiddenXY (29)
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The significance of each input variable in the ANN is assessed using Garson’s algo-
rithm [37], which has been referenced in various studies [38–40]. Equation (30) quantifies
the importance of the jth input parameter on the output, in which Ni and Nh are the num-
bers of neurons in the input and hidden layers, respectively, w is connection weight, k, m,
and n refer to the input, hidden, and output neurons, respectively, and i, h, and o refer to
the input, hidden, and output layers, respectively.

Ij =
∑m=Nh

m=1

(
wih

jm

∑Ni
k=1 wih

km
who

mn

)
∑k=Ni

k=1

[
∑m=Nh

m=1

(
wih

km
∑Ni

k=1 wih
km

who
mn

)] (30)

6. Results and Discussion
The results are discussed in terms of how additional and total deflections are influenced

by the number of openings and the development of the ANN.

6.1. Additional Deflection

Figure 7 illustrates the relationship between the ratio of additional deflection (wt)
to total deflection (w) as a function of the number of openings under various loading
conditions: three-point bending (Figure 7a), four-point bending (Figure 7b), five-point
bending (Figure 7c), and cantilever loading (Figure 7d). As the number of openings and the
span increase, the influence of additional deflection on the total deflection of cellular beams
diminishes. In the cellular beams studied in this article, the openings are uniformly spaced
and have a constant diameter along the span. Consequently, the stiffness of the Tee-section
increases toward the mid-span of the beam. Our analytical formulation for calculating the
additional deflection evaluates it at each opening, considering the exact force applied at
that location. Due to the increasing stiffness of the Tee-section toward the centre of the
beam, the additional deflection progressively decreases at each opening.

Therefore, fewer openings lead to a more significant impact on total deflection, consis-
tent with the behaviour observed in prismatic perforated beams, as noted by Tsavdaridis
and D’Mello [41]. Additionally, the opening diameter and the width of the web-post
are based on the height of the web I-section, as shown in Figure 3. Furthermore, when
the tapered section factor decreases, the effect of web openings on total elastic deflection
also decreases, as the deflection at the tee-section becomes less critical and the Vierendeel
effect diminishes.

The influence of loading conditions on total deflection shows similar behaviour across
different scenarios. Under the same applied load, the additional deflection in three-point
bending is significantly greater than in four-point bending, with increases ranging from 44%
to 111%. In three-point bending, global shear remains constant, while the bending moment
varies across the span, leading to a moment–shear interaction. Conversely, in four-point
bending, the central span experiences null global shear and a constant bending moment,
resulting in no shear–moment interaction in that area. Consequently, the Vierendeel effect
is more pronounced in the three-point bending case.
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Figure 7. Influence of additional deflection on total deflection considering IPE 600 section.
(a) Three-point bending; (b) four-point bending; (c) five-point bending; (d) cantilever.

6.2. Total Deflection

Several examples illustrate the relationship between total deflection and the number
of openings under different loading conditions (Figure 8), including three-point bending
(Figure 8a), four-point bending (Figure 8b), five-point bending (Figure 8c), and cantilever
loading (Figure 8d). Notably, an increase in the number of openings leads to a higher total
deflection. Conversely, a reduction in the section factor results in smaller total deflections.
This indicates that a smaller opening diameter increases the amount of steel used in the
member, thereby enhancing the moment of inertia at the strong axis.
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Figure 8. Total deflection vs. number of openings considering IPE 600 section. (a) Three-point
bending; (b) four-point bending; (c) five-point bending; (d) cantilever.

6.3. Prediction-Based ANN

Table 3 displays the comparison of the ANN results with the finite element models,
using four, six, and eight neurons based on R2 and RMSE metrics. The results show a
distinct correlation between the model’s accuracy and the number of neurons in the hidden
layer. Specifically, as the number of neurons increases, the model’s accuracy improves.
However, an excessive number of neurons may lead to a more complex model, potentially
resulting in overfitting.

Table 3. Accuracy of the ANN models with different numbers of neurons.

3 Points 4 Points

Number of neurons 4 6 8 4 6 8
Max error 36.41 26.28 68.52 29.91 33.26 12.21
Min error −24.48 −24.86 −28.64 −56.84 −22.13 −68.88
R2 0.99970 0.99993 0.99980 0.99940 0.9999 0.9999
RMSE 0.632 0.262 0.274 0.309 0.108 0.0997

5 points Cantilever

Number of neurons 4 6 8 4 6 8
Max error 45.57 13.44 70.52 4.56 3.18 1.49
Min error −26.40 −11.40 −60.09 −1.96 −1.46 −0.62
R2 0.9995 0.9999 0.9995 0.99976 0.99993 0.99999
RMSE 0.288 0.121 0.627 0.0188 0.023 0.008

The possibility of using fewer neurons (one or two) was initially explored, but perfor-
mance metrics revealed that while this could simplify the model, it would likely compro-
mise accuracy and reliability. Consequently, a compromise was made by selecting four, six,
and eight neurons for optimal performance. The training process was repeated multiple
times to address the inherent variability in machine learning, and the reported RMSE values
reflect the average across these runs. For example, the higher RMSE for the five-point
bending scenario with eight neurons compared to six is attributed to this variability.

The final RMSE values for the six-neuron model were as follows: R2 = 0.99993 and
RMSE = 0.262 for three-point beams; R2 = 0.9999 and RMSE = 0.108 for four-point beams;
R2 = 0.9999 and RMSE = 0.121 for five-point beams; and R2 = 0.99993 and RMSE = 0.023
for cantilever beams. These results indicate that the six-neuron model achieves a very
high level of accuracy, making it effective for predicting outcomes. The high R2 values
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(>0.99) indicate strong model performance. Overfitting risks were mitigated by dividing
the dataset into 70% training and 30% testing, ensuring the model generalizes well to
unseen data.

6.3.1. Variable Contribution

Figure 9 shows the importance of input parameters for deflection calculations. The
most significant parameter is identified by the highest contribution value, as determined
using Garson’s algorithm. For three-point bending beams (Figure 9a), the load (P), flange
width (b f ), and span (L) are the key contributors, with percentage contributions of 19.9%,
13.3%, and 13.17%, respectively. In contrast, the distance between openings, web thickness,
and section height have lesser impacts, contributing only 5.3%, 4.9%, and 5.0%, respectively.
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For four-point bending beams (Figure 9b), the importance ranking is as follows: P
(16.2%), number of openings (n) (12.5%), b f (10.7%), and span (s) (10.6%), among others. In
five-point bending beams (Figure 9c), the most influential parameters are b f and L, while
the distance between openings (W) has the least significant effect at 6.5%. For cantilever
beams (Figure 9d), the most impactful parameters are P, L, and diameter (D), while web
thickness (tw) has the least effect.

The influence of input parameters varies by beam type. For example, n contributes
13.1%, 12.5%, 8.4%, and 10.4% to the deflections in three-point, four-point, five-point, and
cantilever beams, respectively. The contribution of flange width (b f ) ranges from 10.7% to
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14.3% for simply supported beams, compared to 8.1% for cantilever beams. Overall, both L
and P significantly affect deflections across all beam types.

6.3.2. Impact of Input Parameters on Deflection

Figure 10 displays the results from the connection weight approach, demonstrating
the effect of each input parameter on the output for all models studied. The findings reveal
consistent patterns in identifying which parameters significantly influence deflections and
whether their effects are positive or negative.
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For all beam types, increasing the span (L), load (P), and opening diameter (D) leads
to higher deflections. This is explained by Equations (10) and (15), which incorporate the
local shear force (V) derived from the overall load and recognize that a larger diameter
increases the effective length, enhancing local deflections. Consequently, the Vierendeel
effect accounts for both parameters. Additionally, as the number of web openings increases
with the span, the total additional deflection also rises due to a higher number of local
additional deflections, as indicated in Equation (23).

Conversely, parameters such as flange width (b f ), distance between openings (W),
and tapered factor (α) negatively affect deflections. The main equations calculating ad-
ditional deflection do not include the width of the web-post (W). Both b f and α influ-
ence the stiffness of the tee-section in the perforated profiles, as seen in the denomina-
tors of Equations (10) and (15). However, b f has a minor effect on additional deflection
since it remains constant along the beam, resulting in minimal variation in stiffness. Re-
garding α, while openings are uniformly spaced, the stiffness of the tee-section becomes
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more significant toward the beam’s centre, where local additional deflection influences
are counterproductive.

6.3.3. ANN-Based Formula

For each loading condition examined, a separate ANN-based formula was created to
predict the deflection of tapered cellular steel beams, as outlined in Equations (31)–(34) for
the three-point bending, four-point bending, five-point bending, and cantilever scenarios.

The ANN model automates the application of these design equations, improving pre-
diction accuracy and reducing computational time [36]. The process involves the following:

• Input Data Collection: Geometric and loading parameters such as flange width, web
thickness, taper factor, beam span, and number of openings.

• ANN Model Execution: Normalised inputs are fed into the trained ANN model for
deflection predictions.

This approach bridges the gap between theoretical models and practical design, en-
hancing the efficiency and accuracy of structural analysis.

(wANN)n = B2 + ∑n=6
i=1 w2(i)

(
2

1+e−2Hi
− 1

)
Hi = B1(i) + w1(i, 1)(bf)n + w1(i, 2)(tf)n + w1(i, 3)(tw)n + w1(i, 4)(α)n + w1(i, 5)(L)n

+w1(i, 6)(D)n + w1(i, 7)(n)n + w1(i, 8)(W)n + w1(i, 9)(P)n

(31)

(wANN)n = B2 + ∑n=6
i=1 w2(i)

(
2

1+e−2Hi
− 1

)
Hi = B1(i) + w1(i, 1)(bf)n + w1(i, 2)(tf)n + w1(i, 3)(tw)n + w1(i, 4)(α)n + w1(i, 5)(L)n

+w1(i, 6)(D)n + w1(i, 7)(Lf)n + w1(i, 8)(n)n + w1(i, 9)(W)n
+w1(i, 10)(P)n + w1(i, 11)(s)n

(32)

(wANN)n = B2 + ∑n=6
i=1 w2(i)

(
2

1+e−2Hi
− 1

)
Hi = B1(i) + w1(i, 1)(bf)n + w1(i, 2)(tf)n + w1(i, 3)(tw)n + w1(i, 4)(α)n + w1(i, 5)(L)n

+w1(i, 6)(D)n + w1(i, 7)(Lf)n + w1(i, 8)(n)n + w1(i, 9)(W)n
+w1(i, 10)(P)n

(33)

(wANN)n = B2 + ∑n=6
i=1 w2(i)

(
2

1+e−2Hi
− 1

)
Hi = B1(i) + w1(i, 1)(bf)n + w1(i, 2)(tf)n + w1(i, 3)(tw)n + w1(i, 4)(α)n + w1(i, 5)(L)n

+w1(i, 6)(D)n + w1(i, 7)(n)n + w1(i, 8)(W)n + w1(i, 9)(P)n

(34)

In these expressions, the parameters (bf)n, (tf)n, (tw)n, (α)n, (L)n, (D)n, (Lf)n, (n)n,
(W)n, (P)n, and (s)n represent the normalised values of the inputs bf, tf, tw, α, L, D, L f ,
n, W, P, and s, respectively; w1(i, j) is the connection weight between the neuron in the
hidden layer (i) and the input (j); and w2(i) is the connection weight between the neuron in
the hidden layer (i) and the output. Each neuron in the hidden layer (i) has a bias value
denoted as B1(i). The output bias value (B2) is equal to −0.08187, 0.24666, 0.81534, and
3.50353 for three-point bending, four-point bending, five-point bending, and the cantilever
beams, respectively. The values of w1(i, j), w2(i), and B1(i) corresponding to each neuron
i are given in Tables 4–7 for three-point bending, four-point bending, five-point bending,
and the cantilever beams, respectively.

It is essential to note that input data were normalized before being used in the ANN
model, enhancing its performance and accuracy. However, the model’s applicability is
restricted to the parameter range of the training dataset, and caution is advised when using
it outside this range, as it may compromise prediction accuracy and reliability.
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Table 4. The connection weight and bias values for three-point bending.

Neuron
w1 (i,j)

w2 (i) B1 (i)
bf tf tw α L D n W P

1 −0.8323 −0.2838 0.2185 0.6005 0.5157 −0.0184 −1.0640 0.2714 0.2282 −0.009 1.9988
2 −0.3009 0.5388 0.0270 0.2434 −0.6898 −0.4004 −0.3283 0.0379 0.5404 1.1882 1.3659
3 −0.4953 0.4739 0.2031 −0.378 −1.2543 0.0158 −0.4703 −0.0504 −0.2901 −0.0565 −0.6044
4 −0.1522 −0.1612 −0.0724 −0.1355 0.6588 0.1919 0.2130 0.0137 0.2587 2.6628 −1.1937
5 1.0733 1.3069 0.5113 0.3062 0.4176 0.0260 −0.3167 0.2060 0.7646 0.0129 1.3511
6 −0.0981 −0.2377 0.1109 1.0537 0.2210 0.1974 0.4015 0.6608 0.7172 −0.6093 −1.7799

Table 5. The connection weight and bias values for four-point bending.

Neuron
w1 (i,j)

w2 (i) B1 (i)
bf tf tw α L D Lf n W P s

1 −0.252 −0.011 −0.017 −0.158 0.392 −0.091 0.562 −0.390 −0.019 0.445 0.468 0.184 −0.285
2 0.309 −0.133 −0.317 −0.337 0.877 0.357 −0.055 0.584 −0.815 −1.120 −0.298 0.225 −1.722
3 1.314 −1.483 0.156 −0.238 0.275 0.932 0.191 1.490 −0.279 −0.401 −0.266 0.352 −0.741
4 0.194 −0.611 −0.870 0.023 −0.276 0.039 0.528 0.123 1.204 0.705 0.230 0.140 −0.840
5 0.147 −0.296 0.022 −0.444 −0.084 0.634 −0.115 0.947 0.059 −0.985 0.620 −0.791 −1.000
6 −0.900 0.339 −0.047 −0.305 −0.140 0.138 0.304 0.177 −0.141 0.660 0.721 1.121 −1.642

Table 6. The connection weight and bias values for five-point bending.

Neuron
w1 (i,j)

w2 (i) B1 (i)
bf tf tw α L D Lf n W P

1 −1.088 0.503 −0.083 0.377 0.255 −0.272 0.016 −0.190 0.304 −0.305 −0.305 1.052
2 0.153 0.015 0.134 −0.682 −0.714 0.647 0.648 0.060 −0.124 0.255 −1.121 −1.247
3 −0.647 0.693 1.163 −0.779 0.015 0.375 −0.083 −0.042 0.148 −0.189 0.074 −0.344
4 −0.377 0.249 0.309 0.142 −1.150 −0.405 −0.336 0.421 0.366 0.048 −0.057 −0.009
5 −0.411 0.121 −0.114 −0.024 0.387 0.089 0.080 0.918 0.400 −1.221 −0.357 −1.266
6 0.378 −0.071 0.085 0.195 0.404 −0.210 −0.923 −0.185 −0.067 −0.374 −2.923 1.216

Table 7. The connection weight and bias values for the cantilever beams.

Neuron
w1 (i,j)

w2 (i) B1 (i)
bf tf tw α L D n W P

1 −0.205 0.254 0.602 0.075 −0.405 0.188 0.493 −0.104 −0.481 −0.324 2.361
2 −0.415 −0.247 −0.067 0.826 −0.819 0.280 −0.438 1.758 1.255 −0.024 −1.786
3 0.339 −0.386 0.039 −0.721 −1.342 1.197 0.271 0.967 −0.354 −0.041 0.206
4 0.548 0.795 0.098 −0.249 −0.128 −0.503 −0.177 −0.159 −0.208 0.024 0.151
5 0.314 0.716 0.054 0.847 −0.884 −0.804 0.694 −0.041 −0.208 −3.545 2.564
6 −0.065 0.155 0.040 0.192 −0.420 0.391 −0.319 −0.258 −0.987 −0.669 0.782

7. Comparative Study
The statistical analysis reveals, as shown in Figure 11, that the proposed method

reached 80.8% in terms of observations, indicating safety with a wproposed/wFEM ratio < 1.0.
The maximum and minimum relative errors (wproposed/wFEM − 1) for this method were
16% and −30%, respectively. In contrast, the ANN model demonstrated higher accuracy,
with maximum and minimum relative errors of 33% and −25%. Table 8 summarizes the
statistical results, indicating that both models are suitable for practical applications and
design purposes.
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Table 8. Statistical analysis of comparative study.

Model Proposed ANN

Mean 0.95 1.00
S.D 7.15% 2.79%
R2 0.9942 0.9999
MAE 0.904 0.087
RMSE 1.550 0.154
Minimum error
(WPredicted/NFE − 1) −30% −25%

Maximum error
(WPredicted/NFE − 1) 16% 33%

8. Benchmarking the Proposed Analytical Method Against SCI P355
and FEM

As explained previously, the literature currently lacks studies on the deflection calcu-
lations for cellular beams with tapered sections; most existing works focus solely on beams
with constant sections. The proposed formulation addresses this gap by incorporating a
parameter (α) that accounts for all web height dimensions, including prismatic sections.

In this section, we validate the proposed formulation for cellular beams with a constant
web section (α = 1) by comparing its predictions to those obtained via finite element
modelling and the standard SCI P355 code. The comparison includes total elastic deflections
(w), additional deflections (wadd) computed using the proposed formulation, Abaqus/CAE
2017 FEM results (wFEM), and deflections derived from SCI P355 through Equation (2).

Five IPE beam are analysed for simply supported beams subjected to two load cases:
three-point bending and four-point bending. The geometrical properties of the beams
studied in this comparison are presented in Table 9. It is also important to note that
concentrated forces are applied to the upper flange of the beams for each load case.

The relative errors associated with the proposed method—w, w(SCI P355), and wFEM—
are given respectively by the expressions (35) and (36). The comparison results are listed in
Table 10.

∆1 =
|w − wFEM|

wFEM
× 100 (35)
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∆2 =

∣∣∣w(SCI P355) − wFEM

∣∣∣
wFEM

× 100 (36)

Table 9. Geometries of cellular steel beams used in comparison.

Beam tf
[mm]

tw
[mm]

b
[mm]

h
[mm] Openings D

[mm]
W

[mm]
P

[mm]
L

[m]

B1 19 12 220 600 14 257.6 125 382.6 6
B2 19 12 220 600 24 161.6 80 241.6 6
B3 16 10.2 200 745 10 525 135 660 7
B4 16 10.2 200 745 13 525 135 660 9
B5 19 12 220 896 11 630 160 790 9

Table 10. Total deflection of prismatic cellular steel beams (α = 1) under two load cases.

Beam Load
case

P
[kN]

wadd
[mm]

w0
[mm]

w
[mm]

SCI
P355
[mm]

w(SCIP355)
[mm]

wFEM
[mm]

∆1
(%)

∆2
(%)

B1 3 pts 100 0.50 2.43 2.92 0.129 2.74 3.33 12.25 17.71
B2 3 pts 100 0.37 2.43 2.79 0.087 2.64 3.14 11.08 15.99
B3 3 pts 100 2.886 2.937 5.82 0.260 3.70 5.78 0.76 35.98
B4 3 pts 100 3.464 6.242 9.71 0.262 7.88 10.12 4.09 22.13
B5 3 pts 100 2.43 3.230 5.66 0.266 4.09 6.14 7.88 33.47

B1 4 pts 50 0.28 1.67 1.95 0.129 1.88 2.16 9.68 12.78
B2 4 pts 50 0.18 1.67 1.85 0.087 1.81 2.04 9.27 11.10
B3 4 pts 50 1.732 2.019 3.75 0.260 2.54 3.39 10.66 24.97
B4 4 pts 50 1.732 4.292 6.02 0.262 5.42 6.21 2.98 12.74
B5 4 pts 50 1.458 2.220 3.68 0.266 2.81 3.74 1.54 24.78

Table 10 clearly shows that the validation process was very successful. In the first
phase, the proposed method aligns well with the Finite Element Method (FEM) results,
with relative errors (∆1) ranging from 0.76% to 12.25%. These small errors indicate that the
analytical method is both robust and reliable, particularly in how accurately it calculates
the additional deflection of cellular steel beams.

In the second part of the comparison, the relative error (∆2) between the deflection val-
ues predicted by the SCI P355 formulation and those from the FEM for cellular steel beams
with constant sections was significantly larger, ranging from 11.1% to 35.98%. This high-
lights the fact that the SCI P355 formulation, although useful in some situations, tends to
underestimate the total deflection of cellular steel beams. The SCI P355 method fails to fully
account for the complexities introduced by variations in geometry and local shear forces,
which further emphasizes the need for a more detailed and accurate analytical approach.

Additional validation tests were not deemed necessary, as they showed similar results,
reinforcing the initial findings. These discrepancies underscore the importance of develop-
ing methods that better capture the complexity of cellular steel beams, including their local
variations and the impact of shear forces.

The method works by evaluating the additional deflection for each opening individu-
ally, considering the specific geometry of each T-section formed by the web and flanges of
the beam. Additionally, the exact shear force (V) acting on each T-section is included in the
calculation. This shear force can vary across the length of the beam, depending on both the
type of global loading and the position of the openings, which makes the method highly
precise and well suited for handling changes in geometry and local load distributions. The
overall additional deflection is then obtained by summing the contributions from each
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opening. To streamline the process, a MATLAB R2019a program was developed to help
automate the calculations, making this approach practical for real-world applications. This
thorough approach ensures an accurate and reliable model of the structural behaviour of
the beam.

Ultimately, it is clear that the SCI P355 formulation underestimates the total deflection
of cellular steel beams. On the other hand, the proposed method delivers highly accurate
results that align closely with the FEM predictions. This precision, combined with the
detailed consideration of geometric variations and local forces, makes the method an
excellent tool for structural design.

In conclusion, the comparison highlights the clear advantage of the proposed analyti-
cal method for predicting the deflections of cellular steel beams under different loading
conditions and geometries. By addressing the limitations of SCI P355, the method fills an
important gap in current design practices and provides engineers with a more reliable and
accurate solution.

9. Conclusions
This paper presents both analytical and artificial neural network (ANN) solutions to

predict the additional and total deflection of tapered cellular steel beams under various
loading conditions, including three-, four-, and five-point bending, as well as cantilever
loading. The proposed method is based on Vierendeel beam behaviour, calculating addi-
tional deflection by considering shear and bending effects on circular web openings, with
equal transverse displacement assumed in the upper and lower tee-sections. A new pa-
rameter (α) is introduced to represent the tapered geometry factor in non-prismatic beams,
which is used to estimate deflections. The results showed good agreement with the finite
element models, with additional deflection being more significant in beams with fewer web
openings. As the tapered section factor increases, additional deflection decreases, though
its impact grows with higher tapered section values. The ANN-based formula using six
neurons accurately predicted deflections and is suitable for design purposes, particularly
for the Service Limit State. The proposed analytical method provides a highly precise
and computationally efficient alternative to finite element simulations for non-prismatic
beams, with error margins significantly lower than those observed in the SCI P355 code.
Future studies could further explore the applicability of the analytical model for beams
with non-circular openings or under dynamic loading conditions.
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Abbreviations
The following notations and symbols are used in this paper:

b f Flange width
E Modulus of elasticity
F Force for four-point bending analysis
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G Shear modulus
hwx Height of tapered web steel I-section without flanges
Hmax Maximum height of tapered web steel I-section
Hmin Minimum height of tapered web steel I-section
Hx Height of tapered web steel I-section
I Moment of inertia
Ix Moment of inertia of tapered steel I-section
i Index loop counter
i f Moment of inertia of the flange
ix Moment of inertia of the tee-section
iwx Moment of inertia of the tee-section tapered web
L Beam length
l Cantilever length at circular web opening
Mx Bending moment
m Index end-of-loop counter
n Number of openings
P Force for three-point bending analysis
R Circular opening radius
t f Flange thickness
tw Web thickness
U Displacement
V Global shear
W Distance between openings
p Distance between two circular openings at their centre
w Total deflection
wadd Total additional deflections for all openings
wadd,i Total additional deflections for i opening
wFEM Finite element model deflection
wT,b The deflection under bending effect
wTb,i Local additional deflections for i opening due to bending effect
wT,s The deflection under shear effect
wTs,i Local additional deflections for i opening due to shear effect
wT,top Local additional deflections for the upper tee-sections
wT,bottom Local additional deflections for the lower tee-sections
wT Total additional deflections for tee-section
w0 Deflection for solid tapered beam
xpair Position of openings
α Tapered factor section
β The angle of stress concentration
θx Angular displacement
ν Poisson’s ratio
ωx Web area at opening
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