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Abstract
In the current Noisy Intermediate Scale Quantum (NISQ) era, the presence of noise deteriorates the performance of quantum
computing algorithms.Quantum reservoir computing (QRC) is a type of quantummachine learning algorithm,which, however,
can benefit fromdifferent types of tuned noise. In this paper,we analyze howfinite sampling noise affects the chaotic time series
prediction of the gate-based QRC and recurrence-free quantum reservoir computing (RF-QRC) models. First, we examine
RF-QRC and show that, even without a recurrent loop, it contains temporal information about previous reservoir states using
leaky integrated neurons. This makes RF-QRC different from quantum extreme learning machines (QELM). Second, we
show that finite sampling noise degrades the prediction capabilities of both QRC and RF-QRC while affecting QRCmore due
to the propagation of noise. Third, we optimize the training of the finite-sampled quantum reservoir computing framework
using two methods: (a) singular value decomposition (SVD) applied to the data matrix containing noisy reservoir activation
states and (b) data-filtering techniques to remove the high frequencies from the noisy reservoir activation states. We show that
denoising reservoir activation states improves the signal-to-noise ratios with smaller training loss. Finally, we demonstrate that
the training and denoising of the noisy reservoir activation signals in RF-QRC are highly parallelizable on multiple quantum
processing units (QPUs) as compared to the QRC architecture with recurrent connections. The analyses are numerically
showcased on prototypical chaotic dynamical systems with relevance to turbulence. This work opens opportunities for using
quantum reservoir computing with finite samples for time series forecasting on near-term quantum hardware.

Keywords Quantum reservoir computing · Sampling noise · Recurrence-free quantum reservoir computing · Chaos ·
Turbulence

1 Introduction

Despite various noise sources affecting the performance of
quantum algorithms in NISQ devices, finite sampling noise
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is a device-independent source of noise in various quantum
machine learning (QML) algorithms. Finite sampling noise,
which provides a fundamental limit to learning in differ-
ent QML applications (Hu et al. 2023; Mujal et al. 2023;
Tennie et al. 2025), is rooted in the foundations of quantum
mechanics and will be present in future fault-tolerant quan-
tum computers (FTQC) as well (Preskill 1998).

Obtaining information on the density operatorρ of a quan-
tum system requires measurements of multiple copies of ρ,
which is known as quantum state tomography (Nielsen and
Chuang 2011). A complete quantum state tomography is
exponentially hard and scales exponentially with the sys-
tem size O(D2), where D = 2n with n qubits. In Aaronson
(2018), they showed that instead of generating a full-classical
description of quantum states, it is often sufficient to directly
predict many properties of the associated quantum system
efficiently (shadow tomography), for example, in quantum
chemistry and quantum simulations. The same analysis is
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extended by the approach of classical shadows (Huang et al.
2020), throughwhichwe can predictmany associated proper-
ties of a quantum system from few measurements. For QML
applications, one often requires access to a large number
of measurement expectation values to perform classification
and regression tasks (Schuld and Petruccione 2021). There-
fore, in those cases, the concept of shadow tomography does
not result in useful QML models.

The calculation of finite expectation values in variational
quantumalgorithms can also result in vanishinggradients and
a mostly flat loss landscape called barren plateaus (McClean
et al. 2018). To circumvent the issue of barren plateaus,
quantum extreme learning machines (QELM) and quantum
reservoir computing (QRC) (Fujii and Nakajima 2021; Pfef-
fer et al. 2022; Mujal et al. 2021) are promising frameworks
because they do not require the calculation of gradients for
loss minimization. QRC is inspired by classical reservoir
computers (Jaeger 2001)—a class of recurrent neural net-
works (RNNs), which have proven to be excellent tools for
time series forecasting (Racca and Magri 2022; Doan et al.
2019). QRC also benefits from different types of tuned noises
such as amplitude and phase damping noise (Domingo et al.
2023; Fry et al. 2023a). QELM, on the other hand, does not
involve recurrence and is easier to employ but has limited
applications because they have nomemory of past inputs and
suffer from exponential concentration (Xiong et al. 2025).
The most promising applications of QRC include forecast-
ing chaotic dynamics (Ahmed et al. 2024; Fry et al. 2023a)
and quantum dynamics (Sornsaeng et al. 2024) on a quantum
computer.

The recurrence-free QRC (RF-QRC) (Ahmed et al. 2024)
combines both QRC and QELM frameworks, in a way that
does not have recurrence built in the quantum circuit, mak-
ing it easier to exploit rich quantum reservoir dynamics for
generating reservoir activation signals. Instead of recurrence
inside the reservoir, the information about previous reservoir
states is fed as a classical post-processing stepwith leaky inte-
grated neurons with individual state dynamics and temporal
memory (Jaeger et al. 2007). Nevertheless, it may be possi-
ble to employ both QRC and RF-QRC in classical settings as
a quantum-inspired machine learning algorithm to improve
the prediction capabilities of classical reservoir computers.
For the prediction of chaotic dynamics and extreme events
(Ahmed et al. 2024), this has been done by emulating the
evolution of the quantum state vector, which allows us to
numerically determine exact measurement expectation val-
ues. However, in order to realize any quantum advantage for
the increasing number of qubits and for processing quantum
data using QRC, we require the implementation of QRC (or
RF-QRC) on quantum hardware with finite sampling.

Some previous proposals of QRC also consider the impact
of finite sampling noise in physical implementations (Khan

et al. 2021;Dudas et al. 2023). A recent framework usesweak
and projective measurements in QRC to reduce noise effects
(Mujal et al. 2023). Another proposal for QML applications
uses variance regularization to suppress probabilistic noise
in the framework of quantum neural networks (Kreplin and
Roth 2024). Despite these proposals for suppressing finite
sampling noise, the effect of spreading of correlations for
temporal learning tasks in recurrent QML applications still
needs to be explored.

In this work, we study and compare the impact of finite
sampling noise on conventional QRC with recurrence and
recurrence-free QRC (RF-QRC) architectures. We focus our
analysis on the finite sampling noise for two reasons: (a)
The physical computing time required for executing quan-
tum circuits imposes limitations on the possible number of
shots taken for a learning task, which results in lower bounds
on the size of finite sampling noise. (b) Beyond that, in some
cases, QRC can instead benefit from certain types of tuned
noises (Fry et al. 2023a). Therefore, the motivation for this
work is to analyze the impact of sampling noise in QRC as
well as in RF-QRC and to present a few methods to mit-
igate its effects. Because of the lack of recurrence inside
the reservoir (i.e., the parameterized quantum circuit), RF-
QRC suppresses the propagation of correlations arising from
noisy expectation values over time. RF-QRC also contains
leaky integrated neurons, which introduce temporal memory
and provide exponential smoothing of noisy states (lukosevi-
cius 2012). This makes RF-QRC a promising candidate for
succeeding with learning tasks on noisy NISQ devices. A
feedback-driven reservoir computing approach (Kobayashi
et al. 2024) also enhances the memory of QRC by providing
active feedback inside the reservoir at each time step. On the
other hand, RF-QRC does not require active feedback inside
the reservoir, and the previous information is only introduced
as a classical post-processing step.

This paper is structured as follows: In Sect. 2, we pro-
vide a brief overview of classical reservoir computing with
leaky integrated neurons. In Sect. 3, we outline recurrence-
free quantum reservoir computing (RF-QRC) as introduced
in Ahmed et al. (2024) and compare it with leaky integrated
reservoir computing without recurrence. We then extend this
analysis to model uncorrelated noise in RF-QRC. Section4
compares QRC and RF-QRC with finite sampling noise,
and we present two denoising methods based on singular
value decomposition (SVD) and signal smoothing tech-
niques. These denoising methods are then applied to the
three-dimensional Lorenz-63 and a nine-dimensional turbu-
lent shear flow models (Appendix A, B). The proposal of
denoising is then tested onnoisy quantumhardware inSect. 5.
Finally, in Sect. 6, we conclude our findings and present
prospects of future work.
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2 Reservoir computing formalism

Reservoir computing is a type of recurrent neural network
(RNN) that learns temporal correlations from the input
data by mapping the low-dimensional input data to a high-
dimensional reservoir. A particular type of classical reservoir
computing, also known as echo state network (Jaeger 2001),
uses randomly generated input and reservoir weight matrices
WWWin ε R

Nr ×Nu and WWW ε R
Nr ×Nr to generate reservoir acti-

vation states (rrr(ti+1) ε R
Nr ) at each time step from the input

data uuuin(ti ) ε R
Nu (Fig. 1), as

r̂̂r̂r(ti+1) = tanh (WWWinû̂ûuin(ti+1) +WWWrrr(ti )), (1)

rrr(ti+1) = (1 − ε)rrr(ti ) + ε r̂̂r̂r(ti+1), (2)

where ε is the user-defined leak-rate, which combines pre-
vious state information with the current time step as a linear
combination—also known as leaky integrate echo state net-
work (Jaeger et al. 2007). The tanh function is applied
component-wise.

The optimal weight matrix WWWout is obtained by linear
ridge regression

(RRRRRRT + βIII )WWWout = RRRUUUT
d , (3)

here, RRR ≡ [rrr(t1),rrr(t2), ...rrr(tNtr )] ∈ R
Nr ×Ntr is a matrix of

concatenated reservoir activation signals corresponding to
each neuron for Ntr time steps of training (Fig. 2), β is the
Tikhonov regularization factor, and UUUd ≡ [uuuin(t1),uuuin(t2),
...uuuin(tNtr )] ∈ R

Nr ×Ntr is the matrix of concatenated input
time series data used for training.

To predict future time series elements uuu p(ti+1), the reser-
voir computer can either be run in open loop or autonomous
(closed loop) configurations (Ahmed et al. 2024). The pre-
diction, uuu p, is a linear combination of reservoir states

uuu p(ti+1) = [rrr(ti+1)]TWWWout . (4)

2.1 Leaky integrated reservoir computing

The continuous-time dynamics of a dynamical system with
leaky integration can be written as

xxx(t) + τ
dxxx

dt
= FFF(xxx(t),uuu(t)), (5)

where xxx(t) is the state of the dynamical system, τ is a time-
constant of the system determining the rate of leakage or
decay, and FFF is a non-linear function describing the evolution
of state xxx(t) that is influenced by an input signal uuu(t). For
echo state networks, the function FFF depends on random input
and reservoir weight matrices (Jaeger 2001)

τ
dxxx

dt
= −xxx(t) + tanh (WWWinuuuin(t) +WWWxxx(t)). (6)

Using Euler discretization with stepsize �t , we obtain
a discrete time reservoir state update equation. In practical
implementations, the input data uuuin(t) is also sampled at dis-
crete time steps

xxx(t +�t) = (1− �t

τ
) xxx(t)+ �t

τ
tanh (WWWinuuuin(t +�t)+WWWxxx(t)).

(7)

Fig. 1 Schematic representation of a reservoir computer (Jaeger 2001).
The input data uuuin is mapped to the reservoir matrix via WWWin . The
reservoir neuron connections governed by WWW matrix allow the flow of

information between neurons. The linear readout layer, with the trained
output weight matrixWWWout , is used to make output predictions uuu p
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Fig. 2 Training phase in reservoir computing. Input time series uuuin(t)
is mapped to a reservoir usingWWWin matrix for CRC and suitable encod-
ing schemes for QRC. Inside reservoir r , each neuron echoes with the
input time series to generate a series of reservoir activation state signals.

The reservoir activation state signals are concatenated in the reservoir
state matrix (R)(R)(R), which is then used for finding optimal output weight
matrixWWWout in RC training using ridge regression

Simplifying Eq. 7 and keeping �t ≡ 1 for discrete time
steps gives the same reservoir state update equations shown
previously in Eqs. 1–2. Here, ε ≤ 1 is a hyperparameter
governing howmuch information from the previous reservoir
states is retained

xxx(t + 1) = (1 − ε) xxx(t) + ε tanh (WWWinuuuin(t + 1) +WWWxxx(t)).
(8)

This type ofmodel is also known as the leaky integrate and
fire (LIF) neurons, which has several applications in neuro-
science (Teeter et al. 2018; GABBIANI and COX 2010) and
signal processing (Lansky and Ditlevsen 2008). The con-
cept of leakage in reservoir computing was introduced in
liquid state machines (Maass et al. 2002) and echo state net-
works (Jaeger et al. 2007; lukosevicius 2012). Physically,
these leaky integrated neurons have individual state dynam-
ics thatmake themsuitable for temporal learning tasks. Leaky
integration can also be considered as a digital low-pass filter
or exponential smoothing (lukosevicius 2012), making the
model appropriate for learning with noisy data.

3 Recurrence-free quantum reservoir
computing

Quantum reservoir computing exploits the exponential size
of the quantum state space to generate reservoirs for temporal
information processing,with a potential for greater efficiency
than classical reservoir computers (Mujal et al. 2021; Fujii
and Nakajima 2021; Sornsaeng et al. 2024). However, any
prospects of achieving quantum advantage require address-
ing noise issues for practical reservoir implementations.
The combination of leaky integrate with quantum reservoir
dynamics provides a pathway towards noise suppression. In
this section, we briefly review gate-based standard quantum

reservoir computing (Pfeffer et al. 2022) and recurrence-free
quantum reservoir computing (Ahmed et al. 2024),which use
the concept of leaky integrated neurons explained inSect. 2.1.
In Sect. 3.1, we give a brief overview of the parameters of the
RF-QRC model employed in this work. Finally, in Sect. 3.2,
we introduce a theoretical description of finite sampling noise
in recurrence-free quantum reservoir computing.

In gate-based quantum reservoir computing, the quantum
state vector is propagated by a θθθ -parametrized quantum cir-
cuit with unitary U(θθθ) at each time step

|ψ(ti+1)〉 = U(θθθ)|ψ(ti )〉. (9)

Previous proposals of gate-based QRC involve a reservoir
map that depends on input data uuuin , previous reservoir states
rrr , and a random unitary parameterized by ααα. Specifically,

|ψ(ti+1)〉 = U(α̃αα)U(uuuin(ti+1))U(rrr(ti ))|0〉⊗n, (10)

Eq.10 is analogous to the classical reservoir update in Eq. 1.
By contrast, the recurrence-free quantum reservoir state

updating equation only evolves as a function of the input
time series and a random α-parametrized unitary

|ψ(ti+1)〉 = U(ααα)U(uuuin(ti+1))|0〉⊗n . (11)

After each time stepping, a measurement in the computa-
tional basis {|k〉}k=2n

k=0 is performed and the result is used to
form a new reservoir state vector r(ti+1)

r (k)(ti+1) = (1 − ε) r (k)(ti ) + ε |〈ψ(ti+1)|k〉|2. (12)

Equation 12 resembles the leaky integrated quantum reser-
voir state update with recurrence Eq. 8, but is different in that
the state update in the parameterized quantum circuit only
depends on input data uuuin and not on the recurrent rrr(ti ) at
each time step.
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The quantum evolution in Eqs. 10 and 11 represents a uni-
tary quantum featuremap, in the absence of environmental or
system’s noise. For reservoir computing to work, the reser-
voir feature map should be dissipative to satisfy the “echo
state” or fading memory property (Jaeger 2001). This prop-
erty ensures that the reservoir is determined by the driving
signal irrespective of its initial state. In this work, we have
used the measurement of the quantum state in the computa-
tional basis and combined it with the information from the
previous time step (with the hyperparameter ε), which pro-
vides dissipative reservoir states and satisfies the echo state
property. More details about the network are in Sect. 3.1.

The RF-QRC may resemble a QELM because it does not
have an active recurrence inside the reservoir (parameter-
ized quantum circuit) (Mujal et al. 2021; Xiong et al. 2025).
However, RF-QRC is not a QELM because it also contains
information about previous reservoir states using leaky inte-
grated neurons with hyperparameter ε. It has been observed
that ε can be tuned to alter the short-term memory capacity
(lukosevicius 2012). This also makes RF-QRC suitable for
temporal learning tasks as discussed in Ahmed et al. (2024)
for various chaotic systems. Additionally, the performance
of RF-QRC depends on the chosen feature map which is
analogous to the necessity of tuning classical reservoirs in
classical reservoir computing. Owing to the lack of active
recurrence, RF-QRC is a specific kind of quantum reservoir
computer that is scalable and potentially offers a natural path
to mitigate the issue of propagating noise.

3.1 Model parameters

In this section, we present the parameters for the RF-QRC
model implemented in thiswork. The quantum reservoir state
update equation shown in Eq. 11 involves unitary quantum
feature maps. Each unitary evolution is parameterized by the
classical input with single qubit rotation Ry gate and two-
qubit entanglement CNOT gates. Common choices of the
unitary map were explored in Pfeffer et al. (2023); Ahmed
et al. (2024); Suzuki et al. (2022). In this work, we utilize

a fully connected feature map for unitary evolution. For the
second unitary encoding V (α), the random rotation angles
(α) are sampled V (α) ε R

n (n = number of qubits) from a
uniform distribution interval [0, 4π ] with a predefined seed,
which we keep it fixed throughout the training and predic-
tion of a particular realization. This is similar to the classical
input WWWin and reservoir weight matrices WWW , which are also
pseudo-randomly generated and fixed for any specific real-
ization Eqs. 1 and 2. Alternatively, (α) could also be treated
as a hyperparameter for performance enhancement.

Weapplied theRF-QRCmodel to study a three-dimensional
reduced order model of thermal convection flow also known
as Lorenz-63 model (Lorenz 1995) and a nine-dimensional
qualitative low-order model of turbulent shear flows, which
is based on Fourier modes known as “Moehlis, Faisst, and
Eckhardt (MFE)” (Moehlis et al. 2004)model. Further details
about the physics of these models are presented in Appen-
dices A and B, respectively. The time series data for both of
thesemodels are derived by aRunge–Kuttamethod. The time
step (dt) for the numerical schemes and hyperparameters for
RF-QRC are shown in Table 1. Each time series is divided
into a washout, training, and testing data set. The washout
phase also known as preparation time is the warmup phase
in which the transients are discarded to wash out the effect
of initial conditions.

The dynamics of chaotic systems can be characterized by
the leading Lyapunov exponentλ1 (Boffetta et al. 2002). This
exponent underpins the average exponential rate of diver-
gence for initially nearby trajectories in chaotic systems.
The Lyapunov exponent also provides a time scale to assess
the time-accurate prediction of the chaotic systems. We have
rescaled our time units to the inverse of the Lyapunov expo-
nent (λ1), which is called the Lyapunov time (LT). Based
on the discretization time step, 1 LT corresponds to 110
steps for Lorenz-63 and 245 steps for the MFE system as
shown in Table 1. After specifying quantum feature maps,
only tunable hyperparameters are Tikhonov regularization β

and leak-rate ε in RF-QRC. We perform a grid search to find
optimal parameters between the ranges specified in Table 1.

Table 1 Parameters for the tests
on the Lorenz-63 and MFE
systems with the recurrence-free
quantum reservoir computing
architecture

Parameters Symbol Lorenz-63 system MFE system

Time step dt 0.01s 0.25s

Leading Lyapunov exponent λ1 0.9056 0.0163

Lyapunov Time LT 1 LT = 110 steps 1 LT = 245 steps

Washout steps NW 5 LT 2 LT

Training steps Ntr 20 LT 65 LT

Tikhonov regularization β 1×10−9,1×10−12 1×10−9,1×10−12

Leak rate ε [0.05, 0.3] [0.05, 0.3]

Resevoir density D Fully connected Fully connected
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3.2 Quantum reservoir computing with finite
samples

Before exploring the effect of finite sampling noise by apply-
ing the RF-QRC model to prototypical model systems, we
first consider the effects of finite sampling noise analytically.
Due to the absence of active recurrence, the finite sampling
noise can generally be assumed as noise uncorrelated in time.
When neglecting hardware noise, the actual reservoir state
rN (t) is related to the outcomes of S measurements rN (t)
by1

rrr N (t) = lim
S→∞rrr N (t). (13)

The effect of finite sampling noise on reservoir activation
states (rrr N ) can be modeled as a time-dependent stochastic
variable ζ (t) with an explicit constant prefactor of 1/

√
S

accounting for the central limit theorem

rrr N (t) = rrr N (t) + 1√
S
ζ (t). (14)

Like in classical reservoir computing, in QRC, compu-
tational basis states correspond to neurons N1, N2, ..., Nres

where Nres = 2n is the dimension of the reservoir. The time
varying shot noise signals may therefore be regarded as time-
dependent noise functions on those neurons as illustrated in
Fig. 2. The stochastic nature of individual reservoir vectors
translates to a reservoir state matrix R with stochastic vari-
ability Z

RRR = RRR + 1√
S
ZZZ . (15)

Quantum sampling noise of a single qubit follows a
binomial distribution (Schuld and Petruccione 2021). For
multiple qubits forming a quantum state vector with finite
samples, the sampling noise becomes a multinomial distri-
bution. The lack of recurrence in RF-QRC allows us tomodel
this noise as uncorrelated in time. This form of noise has also
been considered in Hu et al. (2023) in the context of the anal-
ysis of resolvable expressive capacity (REC).

Consequently, in Eq. 15, we can model ZZZ as a centered
multinomial stochastic process. Without loss of generality,
ZZZ can always be shifted to have zero mean (E [ZZZ ] = 0).
Thus, the stochastic matrix can bemodeled by only consider-
ing second-order moments that form the sampled covariance
matrix

���i j (t) = Cov[ζi (t), ζ j (t)]. (16)

1 We will drop the subscript from ti+1 for brevity.

By taking the expectation value over an infinite number of
measurements, one gets the covariance matrix V = E [���i j ].
It can be written in terms of the sampled reservoir matrix R

V = diag

⎛
⎝ 1

Ntr

∑
Ntr

(RRR)

⎞
⎠ − RRR RRR

T
. (17)

The second term on the right-hand side of Eq. 17, also
known as Gram Matrix, arises naturally in the ridge regres-
sion loss in reservoir computing Eq. 3. This type of loss
function is quadratic, and cumulants up to second-order
(mean and covariances) are generally assumed to be suf-
ficient to study the effect of noise in the training of these
models (Hu et al. 2023; Khan et al. 2023).

4 Noisy reservoir activation states

In this section, we analyze the impact of finite sampling
noise on the prediction capabilities of QRC and RF-QRC
and propose methods to reduce it. After training classical
and quantum reservoirs on the MFE model, we perform
autonomous closed loop predictions for both networks to
compare the performances. In Fig. 3, results of the time series
prediction are shown for an ideal probability distribution
(assuming an infinite number of measurements, sometimes
referred to as “shots”) and for various different learning out-
comes based on a variable number of shots, S. A minimum
number of finite samples is required to improve the forecast-
ing abilities ofQRCbeyond classical reservoir computers. To
address the performance deterioration with a finite number
of shots in QRC, we first outline the working of the reservoir
computers.

The working principle of reservoir computing is to com-
bine the generated reservoir activation signals for functional
approximation of the dynamical systems (Fig. 2). This is
done by minimizing the loss function over the input train-
ing data set. Reservoir signals have a large overlap with
a relatively lower-dimensional manifold (Carroll 2020) of
active states, which is the active space. More specifically, the
singular value decomposition of common reservoir matrices
reveals only a limited number of relevant singular values, and
any denoising procedure should preserve the corresponding
eigenspaces.

For a number of chaotic systems, the time series signals
have corresponding reservoirs with low-dimensional active
spaces (Carroll 2020). Often, in the classical reservoir com-
puting framework, reservoir matrices with high-dimensional
active spaces are associated with lower testing errors (Carroll
and Pecora 2019). However, in QRC, we find that, although
the addition of finite sampling noise in QRC reservoirs
increases the dimensionality of the active space, it does not
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Fig. 3 Prediction of the MFE time series on unseen data set with a
noise-free probability distribution, b 0.5×105 shots, c 2×105 shots, d
4×105 shots.Classical reservoir computing (CRC) results from thebest-

performing reservoir of size 1024 (hyperparameters in Appendix C)
compared with best-performing quantum reservoir computing (QRC)
of 10 qubits. QRC hyperparameters are detailed in Sect. 3.1

necessarily improves the learning performance. REC analy-
sis (Hu et al. 2023) shows that, in the presence of noise, taking
more activation states than a given threshold results in poor
functional approximation. Therefore, in order to perform an
analysis of the impact of noise on the learning performance,
we consider the signal-to-noise (SNR) ratios of individual
reservoir activation signals. Furthermore, we compute the
accuracy of function fitting of these noisy signals, which is
determined by computing the training loss.

In Fig. 4, we compare the SNR ratio for QRC and RF-
QRC for a 9-dimensional chaotic shear flow model of the

Fig. 4 Averaged signal-to-noise ratios (SNR) of the reservoir states of
QRC and RF-QRC with and without denoising filters. The underlying
model is an MFE times series with a reservoir size of 10 qubits (Nres =
1024)

MFE system (Moehlis et al. 2004). Our results indicate that
the presence of correlated noise in QRC results in more noisy
estimates of the reservoir activation signals than RF-QRC
because of the propagation of correlations in QRC.An exam-
ple of the noisy and denoised reservoir activation state signals
for RF-QRC, measured on a 10 qubits system, can be seen
in Fig. 5. Our results indicate that for a constant number of
samples, denoising reservoir activation signals results in a
better fit of the training signal with lower noise variance. We
now discuss the details of the two approaches utilized for
suppressing noise in RF-QRC.

4.1 Noise suppression using SVD

In signal processing, principal component analysis (PCA) or
singular value decomposition (SVD) is a method to improve
the SNR of noisy signals (Shlens 2014; Schanze 2017; Jha
and Yadava 2010). The unbiased estimation of the expecta-
tion values in quantum computation is fundamentally limited
by the Cramer-Rao bound (Yu et al. 2022). For an ensemble
of quantum systems, governed by an input time series, the
resulting expectation values form a reservoir signal with an
added finite sampling noise. We found that the SNR of these
noisy reservoir signals can be improved by using classical
signal processing tools such as SVD. For a noisy reservoir
state matrix RRR ∈ R

Nr×Ntr , the singular value decomposition
is

RRR = UUU SSS VVV T , (18)

where U is an orthogonal Nr × Ntr matrix, S is a diago-
nal Ntr × Ntr matrix with non-negative singular values, and
V is an orthogonal Ntr × Ntr matrix. In order to maximize
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Fig. 5 MFE system trained on a 10-qubit system results in Nres = 1024
reservoir activation signals each of length Ntr = 5800 time steps. A
single randomly chosen reservoir activation signal is shownwith 50,000
shots at each timestep for RF-QRC are used for training. Top, visual-
ization of the noisy reservoir activation signal (left) plotted on ideal

(noise-free) signal, and the noise component—the difference between
the two signals (right). Bottom, visualization of the denoised reservoir
activation signal (left) plotted on ideal (noise-free) signal, and the noise
component—the difference between the two signals (right)

the SNR, we derive a low-rank approximation of our noisy
reservoir matrix by truncating singular values below a given
threshold that are assumed to be associated with the noise
component.

We apply SVD to denoise reservoir activation signals in
the Lorenz-63 and MFE systems, considering two cases for
each system: (a) The low-rank approximation of the noisy
reservoirmatrix (after SVD) is compared to the original noisy
matrix, which contains more reservoir activation signals but
includes noise. This approach evaluates the impact of truncat-
ing approximately half of the singular values to reduce noise.
(b) The low-order reduced rank approximation after SVD is
compared with the reduced noisy matrix of the same size,
effectively having the same number of reservoir activation

signals. This is relevant when the reduced dimensionality of
the reservoir state matrix is required to reduce computational
resources before post-processing it for training.

In Fig. 6, we show the results of the training error for a
7-qubits (Nres = 128) reservoir size trained on a Lorenz-
63 time series with finite quantum reservoir sampling. The
results indicate that truncating half of the singular values,
as shown in Fig. 6a, increases the mean-squared error com-
pared to the original noisy reservoirmatrix. This suggests that
while truncation removes noise, itmay also discard important
activation signals necessary for functional approximation. In
contrast, Fig. 6b demonstrates that the low-rank approxima-
tion improves training error compared to a reduced noisy
matrix of the same size, making it particularly effective for

Fig. 6 Time series prediction of the Lorenz 63 model using RF-QRC.
Averaged mean-squared errors of the trajectory are shown as a func-
tion of the number of measurements S for noisy and SVD denoised

protocols. a Comparison of noisy and denoised figures with an under-
lying original reservoir size of Nres = 128. b Comparison of noisy and
denoised figureswith an underlying reduced reservoir size of Nres = 60
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dimensionality reduction of the feature matrix before train-
ing. We have found similar results for the MFE model in
Fig. 7.

Despite the noise suppression in the reduced dimension-
ality case, the SVD approach for quantum reservoirs is not
computationally feasible. The number of reservoir activa-
tion signals (Nres) in quantum reservoir scales exponentially
with the number of qubits. The computational complexity
of SVD applied to the noisy reservoir activation signal is
O(Ntr Nres × min(Ntr Nres)), which makes SVD on classi-
cal computers unfeasible for high-dimensional reservoirs. In
Sect. 4.2, we present the denoising method based on signal
filtering, which is scalable for larger reservoir sizes.

4.2 Noise suppression using signal filtering

Using SVD for denoising requires the knowledge of the
complete reservoir matrix RRR, the dimension of which scales
exponentially with the number of qubits, which limits the
application of SVD analysis for RF-QRC. In this section,
we propose a second method of suppressing noise from the
reservoir activation states by applying a denoising low-pass
filter to each reservoir activation state.

We emphasize that in the case of RF-QRC and the absence
of recurrence, reservoir activation states are only driven by
the input time series, which are known a priori, as opposed
to conventional quantum reservoirs with recurrence, which
require the reservoir activation states fromprevious time step.
Thus, we can employ multiple quantum systems in parallel
to generate the reservoir activation states at each time step
(Fig. 11). Later on, we can concatenate the expectation of
the estimates for each eigenbasis to form a reservoir activa-
tion signal. This signal is the noisy estimate of our reservoir

signal in which we remove the high frequencies by applying
a moving average polynomial regression method (Schafer
2011). In principle, one could also apply a physical filter to
the noisy signal estimates (Khan et al. 2023); in this work,
we employ digital filtering by post-processing quantummea-
surements on a classical computer. Specifically, we have used
a Savitsky-Golay (Schafer 2011) type of moving-average fil-
ter and applied it to each reservoir activation state. This type
of signal filtering needs the window size and the order of the
polynomial to be prescribed. On the one hand, in an open
loop (training), the maximum length of the window is equal
to the length of the training timeseries, and there is no con-
strain on the minimum length. On the other hand, in a closed
loop (prediction), we need to evolve the noisy reservoir as
long as themoving-average window length before denoising.
Therefore, the moving average window is a hyperparameter
that requires tuning. By performing a grid search for the poly-
nomial degree in the range {2,6} and the window length in
the range {10,60} with a stepsize of 10, we select a 3rd poly-
nomial for a window length of 20 and a 4th order polynomial
with a window length of 30 for the Lorenz-63 and MFE sys-
tems, respectively.

In Fig. 8, for a time series of the Lorenz-63 system, we
present the SNR and mean-squared training error for noisy
and denoised reservoir activation states using polynomial
regression. By contrast to denoising based on SVD, using
this method for suppressing noise always results in a lower
mean-squared error for both cases of reduced and complete
reservoir activation state matrix representations. The results
in Fig. 8b show that denoising leads to a lower mean-squared
error for various numbers of shots. The lower mean-squared
error therefore gives an improved SNR ratio for the reservoir
activation signals. In Fig. 9, similar results are shown for the

Fig. 7 Time series prediction of the MFE model using RF-QRC. Aver-
aged mean-squared errors of the trajectory are shown as a function of
the number ofmeasurements S for noisy and SVDdenoised protocols. a

Comparison of noisy and denoised figures with an underlying original
reservoir size of Nres = 1024. b Comparison of noisy and denoised
figures with an underlying reduced reservoir size of Nres = 500
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Fig. 8 Comparison of a signal-to-noise ratios and bmean-squared errors of noisy and denoised RF-QRC trained on a time series of the Lorenz 63
system. Reservoir size Nres = 128 represented by 7 qubits

MFE model, indicating that denoising reduces the training
error significantly. These analyses can be extended to explore
and employmore advanced classical filtering techniques. For
the computational time, this method also requires the appli-
cation of a denoising filter to each reservoir activation signal
(Nres), which scales exponentiallywith the number of qubits.
However, by comparison with SVD, denoising methods that
involve individual signal smoothing are parallelizable clas-
sically for each reservoir signal, offering an efficient choice
for noise suppression.

5 Hardware implementation

To demonstrate the feasibility of training RF-QRC on quan-
tum hardware and test our proposal of denoising, we train
the turbulent chaotic shear flow model on the IBM Quantum

Fig. 9 Turbulent chaotic shear flow time series analysis with RF-QRC,
using 10 qubit systems. Mean-squared error for noisy and denoised
activation states with signal filtering according to Sect. 4.2

127-Qubit ibmq_kyoto device (IBM Quantum 2024). The
qubit connectivity map of the hardware backend is shown
in Fig. 10. From the 127-qubit system, we train our MFE
model on a 10-qubit space that corresponds to a reservoir
size of Nres = 1024.

Before proceeding with the training of RF-QRC, we
simplified the ansatz from fully connected layers to linear
entangling layers (Ahmed et al. 2024). This simplification
is necessary because the device used has limited connectiv-
ity. Our simplified RF-QRC contains a layer of Hadamard
gates applied on each qubit followed by Ry rotation gates,
parameterized by the input time series signal (9 parameters
for MFE). The circuit is then followed by a linear entangling
layer of CNOT gates entangling all 10 qubits. This first fea-
ture map is applied twice to enrich reservoir dynamics. The
second feature map differs from the first in that the rotation
gates Ry are now parameterized by random rotation angles
V (ααα) uniformly sampled from the interval [0, 4π ], to intro-
duce randomization in the reservoir. These random rotation
gates are sampled once and are kept constant throughout the
training.

The quantum circuit is then transpiled by the Qiski t run-
time transpiler to achieve an optimal map of the quantum
circuit to the physical qubits of the ibmq_kyoto backend.
Finally, dynamic decoupling (Qiskit contributors 2023) to
the idle qubits is applied to mitigate decoherence. No addi-
tional error mitigation strategies were applied.

5.1 Parallel training and denoising onmultiple QPUs

The MFE input time series signal parameters are mapped on
the pre-processed parameterized quantum circuit. The length
of the time series signal was chosen as 1200 time steps.
The training procedure for RF-QRC is illustrated in Fig. 11.
Each quantum circuit is executed in parallel, independent of
the other quantum circuits because of the lack of recurrence
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Fig. 10 Connectivity and qubit
map of the ibmq_kyoto 127
qubit device. Ten of the qubits
with the lowest readout
assignment error are used as a
reservoir for RF-QRC of the
MFE model

Fig. 11 Recurrence-free quantum reservoir computing parallel train-
ing. Input data uuuin(t) is divided into smaller-length signals and passed
through multiple parallel quantum computers. The obtained reservoir
activation signals r̂̂r̂r in(t) associated with each input time series signal

are concatenated classically where leaky integration and denoising are
applied. The combined reservoir state matrix RRR is then used for training
using ridge regression
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Fig. 12 Turbulent chaotic shear flow (MFE) training mean-squared error comparison with noisy and denoised states for both emulated and quantum
processor-based RF-QRC

inside the circuit and the measurement in the computational
basis is performed. For each data point, 104 shots are sam-
pled, and the results are concatenated classically, followed
by leaky integration and denoising techniques as outlined in
Sect. 4.

Results in Fig. 12 indicate that denoising helps to improve
the training accuracy for both the emulation of the state vector
propagation (only subject shot noise) and the training on the
ibmq_kyoto quantum processor (subject to shot noise and
hardware noise) for increasing reservoir states. Therefore,
even in the presence of correlated hardware noises, denois-
ing improves the performance of the model. Other results in
Fig. 13 demonstrate that hardware noise also has a signifi-
cant impact on the performance, in addition to the impact of
shot noise. In particular, the model trained on the quantum
processor requires more reservoir states (i.e., a larger active
space of the reservoir) for the same training accuracy when
compared to a model with only shot noise. Similar effects
are observed in both denoised models. However, denoising
can be instrumental in mitigating those errors to reduce this
gap between hardware and emulated reservoirs. This sug-
gests that denoising suppresses shot noise and potentially

other different types of noises as well. The averaged training
loss for each configuration with all included reservoir states
(Nres = 1024) is listed in Table 2.

Finally, we present the results of the reconstructed time
series of kinetic energy from a trained 9-mode MFE in
Fig. 14. We do so for both emulated models with shot noise
and the trained RF-QRC on the backend including hardware
noises. The reconstructed time series demonstrates that with-
out denoising, the resulting fit for the trained signal suffers
more from finite sampling and hardware noise. However, the
training of RF-QRC coupled with denoising helps in reduc-
ing the shot noise as well as various hardware noises to have
a better fit for optimal training.

6 Conclusion

Quantum reservoir computing is a promising tool for time
series forecasting of chaotic signals when emulated classi-
cally with the assumption of ideal (noise-free) expectation
values. To realize any quantum advantage and for real-
world applications in weather and climate forecasting, a

Fig. 13 Turbulent chaotic shear flow training mean-squared error comparison with emulated and quantum processor results

123



Quantum Machine Intelligence             (2025) 7:31 Page 13 of 16    31 

Table 2 Training loss comparison on emulator and backend trained
networks, with and without denoising

Noisy Denoised

Emulator 1.24 ×10−7 3.28 ×10−9

Backend 1.10 ×10−6 1.16 ×10−8

high-dimensional reservoir and a sufficient number of qubits
on quantum hardware are required. The performance of
quantum hardware is, however, limited by the presence of
environmental and sampling noise. In this work, we study
the effect of sampling noise on chaotic and turbulent systems,
which exhibits extreme events. The findings of this paper are
four-fold. First, we provide a mathematical overview of RF-
QRC that involves a temporal memory with leaky integrator,
which also provides exponential smoothing of noisy states.
This also makes the RF-QRC model scalable and suitable
for temporal learning tasks. Second, we compare the effects
of finite sampling noise on quantum reservoir architectures
with and without recurrence. We show that the framework
of RF-QRC is more resilient to sampling noise than QRC
with correlated noise. Third, we propose two methods based
on SVD and signal filtering to suppress noise in reservoir
activation signals. Our emulated results indicate that sup-
pressing noise improves the training accuracy as highlighted
by smallermean-squared training errors and higher signal-to-
noise (SNR) ratios. The methods of denoising applied in this
work are general, and the same analysis could be extended

further by employing different advanced techniques for noise
filtering to further improve the performance. Finally, we
demonstrate our proposal by employingRF-QRConmultiple
parallelQPUsonhardware backends, coupledwith denoising
techniques. The results indicate that denoising helps sup-
press finite sampling noise as well as other types of hardware
noises. The proposed denoising can be extended to standard
quantum reservoir computing architectures with recurrence
and quantum extreme learning machines to suppress sam-
pling and other types of noises for optimal training. This
work opens up opportunities to employ quantum reservoir
computing on quantum hardware for chaotic time series fore-
casting.

Appendix A. Three-dimensional Lorenz-63
model

One of the analyzed system, Lorenz-63 (Lorenz 1995) is
a reduced order model of thermal convection flow. In this
model, the fluid is heated uniformly from bottom and cooled
from the top. Mathematically,

dx1
dt

= σ (x2 − x1), (A1)

dx2
dt

= x1 (ρ − x3) − x2, (A2)

dx3
dt

= x1x2 − βx3, (A3)

Fig. 14 Turbulent chaotic shear flow reconstructed kinetic energy comparison with emulated and backend results. The top panel presents the results
of emulated noisy and denoised reservoir activation states. The bottom panel presents the results of hardware-trained noisy and denoised reservoir
activation states
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where σ , ρ, and β are system parameters, and we take [σ ,
ρ, β] = [10, 28, 8/3] to ensure chaotic behavior of the sys-
tem. The largest Lyapunov exponent describes the non-linear
dynamics (Racca and Magri 2022), which is � = 0.9 for
Lorenz-63 system and 1LT = 1/0.9 (Lorenz 1995). The
time series data set is derived numerically via Runge–Kutta
method and by taking a time step size dt = 0.01. The train-
ing time series comprises data points over a total time of 20
LT. For the training, the reservoir is evolved in an open loop
to obtain reservoir states and calculate the WWWout matrix and
associated training mean-squared error.

Appendix B. Nine-dimensional turbulent
chaotic shear flowmodel

To study turbulence, we consider a qualitative low-order
model of turbulent shear flows, which is based on Fourier
modes. Also known as theMFEmodel (‘Moehlis, Faisst, and
Eckhardt (MFE)’ model), it is a non-linear model that cap-
tures the relaminarization and turbulent bursts (Moehlis et al.
2004). Due to the non-linear nature of this model, the MFE
model has been employed to study turbulence transitions and
chaos predictability (Srinivasan et al. 2019).Mathematically,
the MFE model can be described by the non-dimensional
Navier–Stokes equations for forced incompressible flow

∂vvv

∂t
= −(vvv .∇∇∇)vvv −∇∇∇ p+ 1

Re
�vvv+FFF(y), ∇∇∇.vvv = 0, (B4)

where vvv = (u, v, w) is the three-dimensional velocity vec-
tor, p is the pressure, Re is the Reynolds number, ∇ is
the gradient, and � is the Laplacian operator. FFF(y) on the
right-hand side is the sinusoidal body forcing term, which is
FFF(y) = √

2π2/(4Re) sin(π y/2)exexex . The body forcing term
is applied between the plates along the x, y direction of the
shear. Furthermore, we consider a three-dimensional domain
of size Lx ×Ly×Lz = [4π, 2, 2π ] and apply free slip bound-

ary conditions at y = Ly/2 andperiodic boundary conditions
at x = [0; Lx ] and z = [0; Lz]. The set of PDEs can be con-
verted into ODEs by projecting the velocities onto Fourier
modes as given by Eq. B5

vvv(xxx, t) =
9∑

i=1

ai (t) v̂vvi (xxx). (B5)

These nine decompositions for the amplitudes ai (t) are
substituted into Eq. B4 to yield a set of nine ordinary differ-
ential equations as inMoehlis et al. (2004). TheMFE system
displays a chaotic transient, which in the long term converges
to a stable laminar solution. We want to predict the turbu-
lent burst of kinetic energy and chaotic transients, which are
extreme events. We solve the MFE system ODEs using an
RK4 solver with dt = 0.25. The leading Lyapunov exponent
of the MFE model (Racca and Magri 2022) is � = 0.0163.
The length of each training time series is 65 LT. The resulting
time series is used as input data uuuin(t) for training reservoir
networks.

Appendix C. Classical reservoir computing
hyperparameters

The performance of classical reservoir computers critically
depends on the set of chosen hyper-parameters (Racca and
Magri 2021). As compared to QRC or RF-QRC with only
two hyperparameters reported in Sect. 3.1, in classical reser-
voir, there are additional two hyperparameters known as the
spectral radius ρ and input scaling σin . We, therefore, use
grid search and Bayesian optimization to tune the hyperpa-
rameters (Snoek et al. 2012). We have used the scikit-learn
library (Pedregosa et al. 2011) and recycle validation tech-
niques (Racca and Magri 2021) for hyperparameter tuning
in classical reservoir computers. The hyperparameter ranges
for different chaotic systems are reported in Table 3.

Table 3 Parameters for the Lorenz-63 and MFE system for the classical reservoir computing architecture

Parameters Symbol Lorenz-63 system MFE system

Time step dt 0.01s 0.25s

Leading Lyapunov exponent λ1 0.9056 0.0163

Lyapunov Time LT 1 LT = 110 steps 1 LT = 245 steps

Washout steps NW 5 LT 2 LT

Training steps Ntr 20 LT 65 LT

Spectral radius ρ [0.1, 1] [0.1, 1]

Input scaling σin [0, 1] [0, 1]

Tikhonov regularization β 1×10−6,1×10−9,1×10−12 1×10−6,1×10−9,1×10−12

Leak rate ε [0.05, 0.3] [0.05, 0.3]

Resevoir density D 0.1,0.6,0.9 0.1,0.6,0.9
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